DECISION DOCUMENT

FORMER SCHENECTADY ARMY DEPOT AREA OF CONCERN #2: BIVOUAC AREA/ POST COMMANDER'S LANDFILL

FORMERLY USED DEFENSE SITE CO2NY000203

GUILDERLAND, NEW YORK

PREPARED BY:

NOVEMBER 2009

TABLE OF CONTENTS

<u>Pag</u>
ABBREVIATIONS/ACRONYMS AND GLOSSARYIII
1. DECLARATION1
1.1 SITE NAME AND LOCATION
1.2 STATEMENT OF BASIS AND PURPOSE
1.3 ASSESSMENT OF THE SITE
1.4 DESCRIPTION OF THE REMOVAL ACTION
1.5 STATUTORY DETERMINATIONS
1.5.1 Statutory Requirements
1.5.2 Statutory Preference for Treatment
1.5.3 Recurring (a.k.a. "Five-Year") Review Requirement
1.6 DECISION DOCUMENT DATA CERTIFICATION CHECKLIST4
1.7 AUTHORIZING SIGNATURE4
2. DECISION SUMMARY5
2.1 SITE NAME, LOCATION, AND BRIEF DESCRIPTION5
2.2 SITE HISTORY AND ENFORCEMENT ACTIVITIES
2.2.1 Activities Leading to Current Problems
2.2.2 Site Investigations
2.2.3 Site Actions
2.3 COMMUNITY PARTICIPATION 6
2.4 SCOPE AND ROLE OF THE RESPONSE ACTION
2.5 SITE CHARACTERISTICS
2.5.1 Conceptual Site Model
2.5.1 Conceptual Site Woder
2.5.2 Sampling Strategy
2.5.4 Materials Remediated
2.6 CURRENT AND POTENTIAL FUTURE SITE AND RESOURCE
USES9
2.7 SUMMARY OF SITE RISKS
2.7 SOMMART OF SITE RISKS
2.7.1 Findings of the Truman Health Risk Assessment10 2.7.2 Findings of the Screening Level Ecological Risk Assessment11
2.7.2 Findings of the Screening Level Ecological Risk Assessment11 2.8 REMEDIAL ACTION OBJECTIVES
2.9 DESCRIPTION OF ALTERNATIVES
2.10 COMPARISON OF ALTERNATIVES
2.11 PRINCIPAL THREAT WASTES
2.11 PRINCIPAL THREAT WASTES
2.12 THE SELECTED RESPONSE ACTION
2.12.1 Summary of the Rationale for the Response Action
2.12.2 Description of the Response Action

TABLE OF CONTENTS (CONTINUED)

<u>Pa</u>	age
2.12.4 Outcome of the Removal Action1	4
2.13 STATUTORY DETERMINATIONS1	3
2.13.1 Protection of Human Health and the Environment	4
2.13.2 Compliance with Applicable, Relevant and Appropriate	
Regulations (ARARs)1	4
2.13.4 Reduction of Toxicity, Mobility, or Volume Through	
Treatment1	
2.13.5 Short-Term Effectiveness	6
2.13.6 Implementability1	6
2.13.7 Cost1	
2.13.8 State Acceptance	7
2.13.9 Community Acceptance	7
3. RESPONSIVENESS SUMMARY1	7
REFERENCES1	9

LIST OF APPENDICES

- 1. Figures
- 2. Area B, Tables 10 thru 13 / Post-Excavation Analyses of Soils
- 3. Area C, Tables 6 thru 9 / Post-Excavation Analyses of Soils
- 4. Area D, Tables 14 thru 17 / Post-Excavation Analyses of Soils
- 5. Area F, Tables 2 thru 5 and 23 thru 24 / Post-Excavation Analyses of Soils
- 6. Areas of Interest / Post-Excavation of Soils (AOI 5 and AOI 6)
- 7. Groundwater Monitoring Report
- 8. Background Memorandum for Nickel

ABBREVIATIONS/ACRONYMS AND GLOSSARY

AOC Area of Concern – portion of a site designated for further study.

ARARs applicable or relevant and appropriate requirements – Applicable

requirements are cleanup standards, standards of control, and other substantive environmental protection requirements promulgated under Federal or state environmental law that specifically address a hazardous substance, pollutant, contaminant, remedial action, location or other circumstance found at a CERCLA site. Relevant and appropriate requirements are cleanup standards that, while not "applicable," address situations sufficiently similar to those encountered at a CERCLA site that

their use is well suited to the particular site.

BEHP bis(2-ethylhexyl)phthalate – a semivolatile organic compound.

bgs below ground surface – a reference point for depth measurements.

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act – federal statute that concerns responses to releases of threats of releases of hazardous substances, pollutants, or contaminants, and

concerns compensation and liability

CFR Code of Federal Regulations – compilation of Federal regulations

COC Contaminant of Concern – contaminant suspected to be site-related.

COPC Contaminant of Potential Concern - contaminant suspected to be site-

related.

CPAH Carcinogenic polynuclear aromatic hydrocarbon – a type of semivolatile

organic compound.

DCA Dichloroethane – a volatile organic compound.

DCE Dichloroethene – a volatile organic compound.

DD Decision Document – a public document that explains which alternatives

will be used to clean up a Superfund site. The ROD for sites listed on the

NPL is created from information generated during the RI/FS.

DERP Defense Environmental Restoration Program – Congressionally authorized

in 1986, DERP promotes and coordinates efforts for the evaluation and cleanup of contamination at Department of Defense installations and

Formerly Used Defense Sites.

DNAPL Dense Non-aqueous Phase Liquid – a heavier than water chemical.

DoD Department of Defense

EE/CA Engineering Evaluation / Cost Analysis – Section 300.415(b)(4)(i) of the NCP requires an EE/CA for all non-time-critical removal actions (NTCRAs). The goals of the EE/CA are to identify the extent of a hazard, to identify the objectives of the removal action, and to analyze the various alternatives that may be used to satisfy these objectives for cost, effectiveness, and implementability. An EE/CA serves an analogous

function to, but is more streamlined than, the remedial

investigation/feasibility study (RI/FS) conducted for remedial actions. The results of the EE/CA and the selected removal action are summarized in the Action Memorandum.

EPC Exposure Point Concentration – the value calculated as being the amount of a particular contaminant that a person is exposed to, as part of a risk

assessment.

FFS Focused Feasibility Study – an evaluation of remedial alternatives that

address hazards posed by a site.

FUDS Formerly Used Defense Site— a facility or site (property) that was under the jurisdiction of the Secretary of Defense and owned by, leased to, or

otherwise possessed by the United States at the time of actions leading to contamination by hazardous substances. By the Department of Defense Environmental Restoration Program (DERP) policy, the FUDS program is limited to those real properties that were transferred from DoD control

prior to 17 October 1986.

HHRA Human Health Risk Assessment - an evaluation of the risk posed to

humans from exposure to contaminants.

LRI Limited Remedial Investigation – a study of the soil, groundwater, surface

water, sediment and/or air quality at a site.

LUC Land Use Control – Physical, legal, or administrative mechanisms that

restrict the use of, or limit access to, contaminated property to reduce risk

to human health and the environment.

m³ cubic meters – a unit of volume measurement.

MCL maximum contaminant level - The maximum permissible level of a

contaminant in water delivered to any user of a public system. MCLs are

enforceable standards.

mg/kg milligrams per kilogram – unit of measurement for contaminants in soil.

mg/L milligrams per liter – unit of measurement for contaminants in water.

MNA Monitored Natural Attenuation - Natural attenuation relies on natural

processes to clean up or attenuate pollution in soil and groundwater.

MSSL media-specific screening level – a concentration used to assess water or

soil quality.

MW monitoring well – a hollow pipe drilled into the ground, used to collect

groundwater samples.

NCP National Oil and Hazardous Substances Pollution Contingency Plan -

regulations that implement and provide a regulatory framework for

CERCLA.

NEIP Northeastern Industrial Park – current name for the property that was

formerly the Schenectady Army Depot – Voorheesville Area.

NPAH Noncarcinogenic polynuclear aromatic hydrocarbon – a type of

semivolatile organic compound.

NTCRA Non-Time Critical Removal Action – response action conducted at a site

when the lead agency determines, based on the site evaluation, that a removal action is appropriate, and a planning period of at least six months

is available before on-site activities must begin.

NYCRR New York Code of Rules and Regulations – compilation of New York

State regulations.

NYS New York State – state in which the Former Schenectady Army Depot—

Voorheesville Area (FSADVA) is located.

NYSDEC New York State Department of Environmental Conservation – regulatory

body for environmental issues in New York State.

NYSDOH New York State Department of Health – regulatory body for health issues

in New York State.

O&M operation and maintenance – procedures to ensure an engineering or other

site control remains effective.

PAHs polycyclic aromatic hydrocarbons – PAHs are created when products like

coal, oil, gas, and garbage are burned but the burning process is not

complete.

PCBs polychlorinated biphenyls - A group of toxic, persistent chemicals used in

electrical transformers and capacitors for insulating purposes, and in gas

pipeline systems as lubricant.

PCL protective concentration level – a concentration of a particular chemical

that is protective of human health or the environment.

ppm parts per million – unit of measure for concentration of contaminants in

water, air or soil.

PRAP Proposed Remedial Action Plan (a.k.a. Proposed Plan) – The purpose of

the proposed plan is to supplement the RI/FS and provide the public with a

reasonable opportunity to comment on the preferred alternative for remedial action, as well as alternative plans under consideration, and to

participate in the selection of remedial action at a site.

PRGs

preliminary remediation goals - tools for evaluating and cleaning up contaminated sites. They are risk-based concentrations that are intended to assist risk assessors and others in initial screening-level evaluations of environmental measurements.

Remedial action -- Those actions consistent with permanent remedy taken instead of or in addition to removal actions in the event of a release or threatened release of a hazardous substance into the environment.

RA

Removal action – the cleanup or removal of released hazardous substances from the environment; such actions as may be necessary taken in the event of the threat of release of hazardous substances into the environment; such actions as may be necessary to monitor, assess, and evaluate the release or threat of release of hazardous substances; the disposal of removed material; or the taking of such other actions as may be necessary to prevent, minimize, or mitigate damage to the public health or welfare of the United States or to the environment, which may otherwise result from a release or threat of release.

RAB

Restoration Advisory Board – a forum for the discussion and exchange of information between representatives of the Department of Defense (DoD), regulators, state and local governments, tribal governments, and the affected community. RABs provide an opportunity for stakeholders to have a voice and actively participate in the review of technical documents, to review restoration progress, and to provide individual advice to decision makers regarding restoration activities at FUDS Properties and Projects.

RAGS

Risk Assessment Guide for Superfund – USEPA guidance for performing risk assessments.

RAO

Remedial Action Objective – a goal that a remedial action is intended to achieve.

RCRA

Resource Conservation and Recovery Act - Enacted by Congress in 1976, RCRA promotes the protection of health and the environment. It regulates waste generation, treatment, storage, transportation, and disposal for facilities currently in operation.

RI

Remedial Investigation – An in-depth study designed to gather the data necessary to determine the nature and extent of known contamination at a site, assess risk to human health and the environment, and establish criteria for cleaning up the site.

RSCO

Residential Soil Clean up Objective

SADVA

Schenectady Army Depot – Voorheesville Area

SARA

Superfund Amendments and Reauthorization Act - Federal law, enacted in 1986, reauthorizing and expanding the jurisdiction of CERCLA.

SLERA

screening-level ecological risk assessment – an abbreviated form of an ecological risk assessment that assesses the health of plants and animals at a site.

vi

A semivolatile organic compound is an organic compound which has a boiling point higher than water and which may vaporize when exposed to temperatures above room temperature. Semivolatile organic compounds

include phenols and polynuclear aromatic hydrocarbons (PAH).

TAGM Technical and Administrative Guidance Memorandum – a series of

guidance documents published by NYSDEC.

TBCs "to be considered" – advisories, criteria, or guidance that were developed

by EPA, other federal agencies, or states that may be useful in developing

CERCLA remedies

TCE trichloroethene – a volatile organic compound, typically used as a

degreaser.

TCEQ Texas Commission on Environmental Quality – a regulatory body in

Texas that has published sediment criteria for protection of human health.

TCLP Toxicity Characteristic Leaching Procedure – an analytical procedure used

to determine of a material meets certain criteria to be classified as

hazardous waste.

TPH Total Petroleum Hydrocarbons – a class of petroleum-related compounds

expressed as a concentration for site assessment purposes.

UCL Upper Confidence Level – a statistical method for estimating the average

concentration of a contaminant that a person might be exposed to over

time.

μg/kg micrograms per kilogram – unit of measure for contaminants in soil.

μg/L micrograms per liter - unit of measure for contaminants in water.

USACE United States Army Corps of Engineers - The USACE is has day-to-day

program management and execution responsibilities for the FUDS

Program.

USEPA United States Environmental Protection Agency - The mission of the

Environmental Protection Agency is to protect human health and the

environment.

VC vinyl chloride – a volatile organic compound.

VOCs volatile organic compounds – compounds that are emitted as gases from

certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects. Concentrations of many VOCs are consistently higher indoors (up to ten times higher) than outdoors. VOCs are emitted by a wide array of products numbering in the thousands. Examples include: paints and lacquers, paint strippers, cleaning supplies, pesticides, building materials and furnishings, office equipment such as copiers and printers, correction fluids and carbonless copy paper, graphics and craft materials including

glues and adhesives, permanent markers, and photographic solutions.

1. DECLARATION

1.1 SITE NAME AND LOCATION

The former Schenectady Army Depot-Voorheesville Area (SADVA) is located one-quarter mile southeast of the Village of Guilderland Center, New York (Figure A1.1). The Department of Defense (DoD) used the SADVA property from 1941 through 1969. The site was originally constructed as a regulating station and a holding and reconsignment point, and later became a general Army depot. The principal mission of the installation was the receipt, storage, maintenance, and distribution of supply items for the U.S. Department of the Army.

In 1963, approximately 40 acres on the west side of Route 201 were sold to a private party for use as a residence (see dashed property boundary on Figure 1.2). This area was designated AOC #2, as addressed under the Formerly Used Defense Site (FUDS) Program. Historical information indicates that AOC #2 was used by the Army as a transit troop bivouac area and officer family housing area in the 1950s and 1960s. After being purchased in 1963, the new owners of the parcel noticed a disposal area (later known as the Post Commander's Landfill), which they ultimately reported to the New York State Department of Environmental Conservation.

1.2 STATEMENT OF BASIS AND PURPOSE

USACE performs response actions for hazardous substances at FUDS pursuant to: the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This Decision Document concludes that the non-time critical removal action (NTCRA), which was undertaken at AOC #2 over the period September 2005 to October 2006, was effective in removing contaminants from soils and groundwater. Further, based on post-excavation soils and groundwater sampling and analyses, no further action at AOC #2 is deemed necessary, with the exception of the proper removal and closure of monitoring wells.

The U.S. Army Corps of Engineers (USACE), as lead agency, made the removal action decision for the AOC #2 parcel, subsequent to public review and comment on the AOC #2 Engineering Evaluation/Cost Analysis (EE/CA) (made available in July 2005) and documented that removal decision in an Action Memorandum dated August 10, 2005. Following that, our investigation revealed that the removal action was successful. Accordingly, in November 2008, we published the Proposed Remedial Action Plan for this site, with a preferred alternative of no further action, provided a public comment period and conducted a public meeting on December 9, 2008, in order to provide the public an opportunity to voice their comments, and/or to provide them in writing.

USACE has evaluated and responded to comments on the Proposed Plan for AOC #2, provided by the New York State Department of Environmental Conservation (NYSDEC) and members of the public,. (See specific responses to NYSDEC comments as provided in the Responsiveness Summary, Section 3.0). The Administrative Record, which concerns

information relevant to our decision making for this site, may be reviewed at the Guilderland Public Library, 2228 Western Avenue, Guilderland New York, or at the Voorheesville Public Library, 51 School Road, Voorheesville, New York.

1.3 ASSESSMENT OF THE SITE

Based on the remedial investigations conducted in 2001 and 2004 (Parsons Engineering Science), the primary soil contaminants of concern (COCs) identified were volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and metals. Disposed glass bottles containing a light, orange-colored liquid were analyzed and found to exhibit the hazardous characteristic of flammability, and contained hazardous levels of benzene. Liquid sludge in the vicinity of waste drums, tar buckets and paint residues were also found to exhibit the hazardous characteristics of flammability, and to contain elevated levels of benzene, ethylbenzene, toluene, xylenes, 2-methylnapthalene, and naphthalene. Groundwater sampling and analysis revealed elevated concentrations of VOCs and SVOCs downgradient of the site, indicating groundwater impact from contaminants.

1.4 DESCRIPTION OF THE REMOVAL ACTION

The removal action was necessary to protect the public health or welfare or the environment from actual or threatened releases of hazardous substances and/or pollutants or contaminants from this site, which presented an imminent and substantial endangerment to public health or welfare or the environment. The media impacted at AOC # 2 included on-site soils, groundwater and surface water. Based on the findings of the remedial investigation (RI) and the results of the risk assessments completed at the AOC # 2 site, certain areas of the property presented chemical risks in soils and groundwater. Therefore, to accommodate the anticipated future residential use of AOC # 2, we evaluated removal action alternatives. The removal action we selected was the removal of buried wastes/soils that were visibly contaminated with debris and/or staining; transportation and disposal of wastes to licensed disposal facilities, replacing excavated areas with clean fill, and regrading and restoring excavated areas, along with periodic inspection and maintenance. Post-excavation soil, surface water and groundwater sampling and analyses were conducted to evaluate the effectiveness of the removal action.

The removal action has been successful and provides the highest level of protectiveness to human health and the environment due to the removal of contaminated materials and is expected to result in an unrestricted end use of the property. No further response action is necessary.

1.5 STATUTORY DETERMINATIONS

1.5.1 Statutory Requirements

At the time the removal action was executed (i.e., over the period September 2005 through October 2006), it complied (and still complies) with Federal and State requirements that were applicable or relevant and appropriate to the remedial action; the removal action was cost-effective, and utilized permanent solutions to the maximum extent practicable. During the course of completing the removal action, USACE was in consultation with NYSDEC, and post-excavation sampling and analysis results were compared to New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum

(TAGM) residential soil clean up levels; additional excavation was conducted only when determined that all waste materials and visibly contaminated soils had not been removed and if residual soil contaminant concentrations had not reached an asymptotic level.

Although all excavation, backfill and site restoration work had been completed by October 2006, the NYSDEC promulgated new unrestricted soil cleanup objectives (SCOs) at 6 NYCRR Part 375, effective December 14, 2006 (see Appendices 2 through 6). In comparing postexcavation soil analysis results to the new unrestricted SCOs, it was determined that remaining concentrations of nickel are related to natural background conditions of the parcel (see Appendix 8), two sampling locations slightly exceeded the new unrestricted SCOs for arsenic (13.2 and 13.3 milligrams/kilogram (mg/kg) vs. 13.0 mg/kg), but were within the range of site background, and methyl ethyl ketone in one post-excavation sample met the TAGM soil value, however was slightly elevated when compared to the new unrestricted SCO (0.19 mg/kg vs. 0.12 mg/kg). All post-excavation soil samples, when analyzed for pesticide compounds met TAGM values; subsequently, when compared to the new unrestricted SCOs, it was found that the unrestricted soil criteria for pesticides were not met in several instances (4,4-DDD results ranged from 3.6 microgram/kilogram (ug/kg) to 240 ug/kg; 4.4-DDE results ranged from 4.6 ug/kg to 52 ug/kg; 4,4 DDT results ranged from 3.4 ug/kg to 390 ug/kg; while the unrestricted SCO for all three compounds is 3.3 ug/kg—previously, the TAGM comparison value was 2,900 ug/kg for 4,4-DDD and 2,100 ug/kg for both 4,4 DDE and 4,4-DDT). These pesticide compounds did not appear to be components of wastes disposed at the site, and may have been normally applied at the site. A human health risk assessment, completed using post-excavation soil sample analysis results, concluded that remaining risks fell within an acceptable risk range at AOC #2. NYSDEC concurs with this conclusion, and it states that we are in compliance with New York's standards.

1.5.2 Statutory Preference for Treatment

None of the alternatives considered for the site reduces the toxicity or volume of contaminants through treatment. Although the removal action reduced the mobility of the hazardous substances, pollutants, or contaminants at this site through removal, it did not achieve this by treatment.

Although treatment was not a principal element of the removal action, pumpable liquids and sludges from excavated waste drum containers at AOC #2 were shipped to licensed disposal facilities and incinerated.

1.5.3 Recurring (a.k.a. "Five-Year") Review Requirement

In accordance with CERCLA and the NCP, remedial actions that do not allow unlimited use and unrestricted exposure (UU/UE) must be reviewed no less than every five (5) years after the start of the remedial action, or more frequently if required by the DD. The reviews are conducted to ensure that the remedial actions remain protective of human health, safety, and the environment.

The removal action taken allows for unrestricted site use; therefore, the five groundwater monitoring wells at AOC #2 will be properly closed and periodic reviews will not be required.

1.6 DECISION DOCUMENT DATA CERTIFICATION CHECKLIST

The following information is included in the Decision Summary section of this Decision Document. Additional information may be found in the Administrative Record for this site.

Decision Document Data Checklist Former Schenectady Army Depot, AOC #2

Decision Document Data Checklist Item	Decision Document Section, Number Reference
The contaminants of concern (COCs) and their respective concentrations (Sources, Types and Extent of Contamination)	Sections 2.4, 2.5.3
The land use resulting from the implementation of the Selected Remedy	Section 2.6
The estimate of potential risk (Summary of Human Health Risk Assessment)	Section 2.7.1
The cleanup levels established for the COCs and their basis	Section 2.8
The principle threat source materials (Principal-Threat Waste)	Section 2.11
The key factors that led to the selection of the Remedy	Sections 2.12, 2.13
The estimated costs of the Selected Remedy	Section 2.13.7

1.7 AUTHORIZING SIGNATURE

John R. Boulé II Colonel, U. S. Army District Engineer Date

2. DECISION SUMMARY

2.1 SITE NAME, LOCATION, AND BRIEF DESCRIPTION

The former Schenectady Army Depot-Voorheesville Area (SADVA) is located one-quarter mile southeast of the Village of Guilderland Center, New York (Figure A1.1). The Department of Defense (DoD) held ownership of the SADVA property from 1941 through 1969. The site was originally constructed as a regulating station and a holding and reconsignment point, and later became a general Army depot. The principal mission of the installation was the receipt, storage, maintenance, and distribution of supply items for the U.S. Department of the Army.

In 1963, approximately 40 acres on the west side of Route 201 were sold to a private party for use as a residence (see dashed property boundary on Figure 1.2). This area was designated AOC #2, as addressed under the FUDS Program. Historical information indicates that AOC #2 was used by the Army as a transit troop bivouac area and officer family housing area in the 1950s and 1960s. After being purchased in 1963, the new owners of the parcel noticed a disposal area (later known as the Post Commander's Landfill), which they ultimately reported to the New York State Department of Environmental Conservation.

In accordance with the provisions of the Defense Environmental Restoration Program (DERP) Management Guidance, the Department of the Army (DA) serves as the Department of Defense (DoD) Executive Agent for execution of the Defense Environmental Restoration Program for Formerly Used Defense Sites (DERP-FUDS).

The DA further delegated the responsibility of the DERP-FUDS program management and execution to the U. S. Army Corps of Engineers. All plans and activities conducted by USACE at FSADVA are coordinated with the New York State Department of Environmental Conservation, the New York State Department of Health, the Albany County Department of Health, and the current owner of the SADVA property.

The actions conducted addressed the removal of site contaminants from soils, and in doing so, reduced the likelihood of potential adverse impacts to surface water, groundwater and sediments at AOC #2.

2.2 SITE HISTORY AND ENFORCEMENT ACTIVITIES

2.2.1 Activities Leading to Current Problems

There is no record of any enforcement activities taken at this site, however, in 1982 the U. S. Environmental Protection Agency (USEPA), Region II, conducted an environmental field investigation at the site, which noted impacts to groundwater and potential for surface water contamination.

An archive search, commencing in 1999, was conducted by USACE to examine records pertaining the operations of the former Depot. The AOC #2 parcel was indicated as an area of interest, where there was evidence of use of the site as a bivouac area, and for the disposal of iodine and salt pill bottles.

NYSDEC has *not* listed the AOC #2 parcel as a "Class 2" site (i.e., a property that may present a significant threat to human health and the environment) on its *Registry of Inactive Hazardous Waste Disposal Sites in New York*.

2.2.2 Site Investigations

USACE initiated a remedial investigation in the year 2000 timeframe, which addressed the AOC #2 property. Further investigations, including test-pitting (i.e., limited excavation of soils for examination of select areas of the site), in the year 2004 yielded the discovery of buried drums and other wastes in a portion of the 40-acre site. In August 2005, USACE issued an Engineering Evaluation / Cost Analysis (EE/CA). Subsequent to public review of the EE/CA, a removal action at AOC #2 was recommended by USACE, accepted by the public, and USACE subsequently decided to perform the removal action..

2.2.3 Site Actions

On August 10, 2005, an Action Memorandum was issued by the New York District, USACE, proposing the removal of soils impacted by hazardous materials disposed of on site. Subsequently, over the period September 2005 through October 2006, soils impacted by disposal activities, including buried items, were removed from the site and transported to licensed disposal facilities. Further, post-excavation sampling and analysis of soils, groundwater and surface water was conducted to demonstrate the effectiveness of the removal action. Post-excavation sampling of soils occurred during the course of soil removals; groundwater was sampled and analyzed in April & October 2007, and once again in May 2008; surface water was sampled/analyzed in April 2007; since the appearance of surface water at the site is intermittent, there were no surface waters available to sample in the monitoring events subsequent to April 2007.

2.3 COMMUNITY PARTICIPATION

Community participation activities provide the public with an opportunity to express its views on the preferred remedial action. USACE considered state (NYSDEC and NYSDOH), Albany County Health Department (ACHD) and public input from the community participation activities in selecting the remedial alternative to be used for AOC #2.

In July 2005, USACE announced the availability of the EE/CA addressing AOC #2 in a notice published in the *Altamont Enterprise*, the *Schenectady Gazette*, and the *Albany Times-Union*, all newspapers of general circulation in the area of the former Schenectady Army Depot. Subsequently, comments from the public (including the Restoration Advisory Board membership for the site), NYSDEC, and ACHD were received. It should be noted that there was consensus that the removal action specified in Alternative 3 be the selected remedy. Further, it was recommended by NYSDEC that at least one monitoring well be installed downgradient of the buried wastes, in order to demonstrate the efficiency of the removal action. Upon further review, USACE determined that two monitoring wells be installed downgradient of the buried wastes. USACE installed two monitoring wells (#PCMW-01 and #PCMW-02), which were used as sampling points subsequent to completion of the removal action.

In September 2005, a notice announcing the approval of the removal action (Alternative 3), was published in the *Altamont Enterprise*, the *Schenectady Gazette*, and the *Albany Times-Union*. All previous comments received on the EE/CA were addressed in the *Responsiveness Summary*, appended to the *Action Memorandum*, which was made part of the administrative record for the site.

Based upon the completion of the removal action, and results of post-excavation sampling and analysis, a *Draft Final Proposed Plan for AOC #2* (recommending no further action, except for the proper removal of monitoring wells) was made available for review on-line at the project website (www.fsadva.com), as well as at the Guilderland, New York Public Library and the Voorheesville, New York Public Library. Public Notice of the document's availability was made in *Altamont Enterprise* on November 27, 2008, the *Schenectady Gazette* on November 28, 2008, and the *Albany Times-Union* on November 29, 2008; concurrent to the newspaper notices was the announcement of a public meeting, which was held on December 9, 2008. A responsiveness summary, based on public comments received both at the meeting and via mail, is provided in Section 3.0 of this *Decision Document*.

2.4 SCOPE AND ROLE OF THE RESPONSE ACTION

As with many FUDS, the concerns at AOC #2 were with the impacts and potential impacts of disposed wastes on soils, groundwater, surface waters and sediments, as related to human health and the environment.

Based on the remedial investigations conducted in 2001 and 2004 (Parsons Engineering Science, 2001 and 2004), the primary soil contaminants of concern (COCs) identified were VOCs, SVOCs, and metals. Disposed glass bottles containing a light, orange-colored liquid, were analyzed and found to exhibit the hazardous characteristic of flammability, and contain hazardous levels of benzene. Liquid sludge in the vicinity of waste drums, tar buckets and paint residues were also found to exhibit the hazardous characteristic of flammability, and to contain elevated levels of benzene, ethylbenzene, toluene, xylenes, 2-methylnapthalene, and naphthalene. Groundwater sampling and analysis revealed elevated concentrations of VOCs and SVOCs downgradient of the site, indicating groundwater impact from site contaminants. Several metals, SVOCs and pesticides were found above criteria (Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Technical and Operational Guidance Series (T.O.G.S.) 1.1.1., NYSDEC, October 1998) in surface water; metals and pesticides were also noted above criteria in sediments (Technical Guidance for Screening Contaminated Sediment, NYSDEC, January 1999). It should be noted that in the case of surface water and sediments, most locations were in the areas addressed by the removals, or proximate to those areas (see Figures 2 & 3). The intention of the removal action was to remove all visibly contaminated soils and buried wastes, properly dispose of them at off-site properly licensed or permitted disposal facilities, and restore the site, thereby reducing the further potential of contaminants to migrate to groundwater, surface waters or sediments at AOC #2, or beyond.

2.5 SITE CHARACTERISTICS

2.5.1 Conceptual Site Model

During remedial investigations, soil contaminants of concern (COCs) identified were VOCs, SVOCs, and metals. Disposed glass bottles containing a light, orange-colored liquid, were analyzed and found to exhibit the hazardous characteristic of flammability, and contain hazardous levels of benzene. Liquid sludge in the vicinity of waste drums, tar buckets and paint residues were also found to exhibit the hazardous characteristic of flammability, and to contain elevated levels of benzene, ethylbenzene, toluene, xylenes, 2-methylnapthalene, and naphthalene. Groundwater sampling and analysis revealed elevated concentrations of VOCs and SVOCs downgradient of the site, indicating groundwater impact from site contaminants.

AOC #2 and the entire SADVA are situated in an area of generally low relief at the base of the Helderberg Mountains, at an elevation of approximately 320 feet above mean sea level (AMSL). AOC #2 presently has a residence located on the property; this residence dates back to the DoD's former use of the property. The residence is located about 300 yards from the area thought to be the Post Commander's Landfill (see Figure 1). A small barn, a farm pond, and small sheds are presently located on the property, but were not part of the DoD use of the site. These structures are located 200 yards or more from the Post Commander's Landfill area. There is a gradual upward sloping of the portion of the 40.6 acre parcel from the residence, to a peak of about 320 feet AMSL, and then a drop off into an intermittently swampy area.

Bedrock occurs beneath AOC 2 at depths ranging from 15 to 25 feet below ground surface. Subsurface investigations at SADVA have encountered bedrock as shallow as five feet in the southwest portion of the site at the Voorheesville Depot, and as deep as 67 feet in the southeastern portion of the SADVA near the U. S. Army Southern Landfill. Borings drilled in the western portion of the SADVA encountered gray shale at 14 to 20 feet. Test borings from various studies indicate that the overburden consists of a complex sequence of glacial drift, glacial till, and stream deposits, which were laid down during the last Wisconsin glacial episode. Borings drilled in 1988 generally showed glacial till in the south end of the SADVA, and silt and sand with varying amounts of clay and gravel lenses in the northeast portion of the SADVA. drilling logs are provided in the *Remedial Investigation Report*.

2.5.2 Sampling Strategy

Soils, groundwater, sediments and surface water were sampled at AOC #2 during remedial investigations at SADVA conducted in 2000. Monitoring wells were installed, and hydropunches were performed to affect groundwater sampling. Test pits were conducted in the 2000 investigation, as well. The sampling focused on delineating the extent of site impacts, and used historical information developed and aerial photography included in the *Archive Search Report* (prepared by EA, 2003). Convinced that there was more investigation work that needed to be performed to properly characterize the site, members of the Restoration Advisory Board insisted that additional sampling (e.g., test pits, groundwater sampling) be performed; this additional sampling and analysis work, conducted in the Summer of 2004, indicated that, in fact, there were hazardous materials buried at the site.

2.5.3 Sources, Types and Extent of Contamination

Prior to completing the remedial investigations, there was no written documentation about waste disposal at AOC #2. Local residents have related recollections of pits being dug and bottles and other wastes being dumped and covered over during the DoD's use of the property. Conditions at the site indicate the area was used for waste disposal, including the disposal of drums, glass bottles of liquid and pills/tablets and other waste in a portion of the 40-acre site. The wastes appear to have been disposed in trenches dug into the soil and covered over with a thin soil layer.

Many of those areas are devoid of vegetation, or have stressed vegetation covering them. Visual evidence of the disposal areas included the presence of small vials containing pills that were exposed sporadically around the area. An area of ground where standing water had been observed during rainy periods produced discolored soil and runoff. The disposal area was about 300 yards west of the onsite residence that formerly utilized a drinking water well adjacent to the house. The onsite residents have been connected for municipal water since approximately 1971 and the well is no longer in use. Sampling and analysis data are included in Section 3.2.3.6 of the *Remedial Investigation Report*, which is part of the administrative record for the site.

2.5.4 Materials Remediated

The areas targeted for the removal action, based on the site investigation and conditions described, are noted on Figure 1. Visibly impacted soils and buried commingled wastes were removed, and soils and wastes disposed of at permitted or licensed disposal facilities.

2.6 CURRENT AND POTENTIAL FUTURE SITE AND RESOURCE USES

AOC #2 has a residence onsite, and is bordered by Route 201 on the east, by residences to the north and south, and by a wetland area to the west. The land use in the immediate vicinity of AOC #2 is residential and agricultural, with a few commercial properties nearby. There is no fence or other barrier to trespassers. The Guilderland High School is located less than one mile northeast of AOC #2.

According to the 2000 census, the Town of Guilderland has a population of 32,688. The main portion of SADVA, now operated as Northeast Industrial Park, is currently zoned industrial, while most properties adjacent to the site are zoned agricultural. According to the 1983 census of agriculture, about 27.2 percent of the area in Albany County was farmed. AOC #2 is a residential property; the site is unsecured and access to the site is unrestricted. The disposal area is approximately 300 yards west of the onsite residence. Possible receptors at this site include the onsite residents, trespassers (hunters) that may gain unrestricted access to the property, and future users of the site, should the property be sold and used for residential or other purposes. The property owner typically hires a local farmer to cut grass on the property at least once per year. The property may be used for gardening or agricultural purposes, consistent with the surrounding land use.

2.7 SUMMARY OF SITE RISKS

2.7.1 Findings of the Human Health Risk Assessment

The remedial investigation identified the presence of hazardous wastes and hazardous substance waste sources at AOC #2. The buried materials (iodine and salt pill bottles, solvent-filled bottles, paint residue, tar buckets, metallic debris and drums of oily wastes) were most likely attributable to former Depot operations. The locations of waste materials generally coincide with disturbed areas indicated on historical aerial photographs, which were taken during the Department of Defense use of the site. Sample results indicated that hazardous substances were released from the waste sources to the soil and groundwater pathways.

Based on the remedial investigations conducted in 2001 and 2004, the primary soil contaminants of concern identified were volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals. A groundwater sample from a well located at an adjacent property to the southwest of AOC #2 exhibited levels of iron and magnesium which exceeded groundwater standards; sodium was also detected, however, there is no maximum contaminant level identified for sodium.

The human health risk assessment, developed with data reflecting the condition of environmental media (e.g., soils, sediments, groundwater) prior to performing the removal action, identified the majority of risk at AOC #2 to be from the potential pathways of ingestion of surface soils or mixed soils, and from ingestion of groundwater. A human health risk assessment was recalculated for groundwater and soils, after the removal action was completed.

Over the period September 2005 through October 2006, wastes and impacted soils were excavated from AOC #2 and disposed of at licensed facilities. Figure 1 depicts the excavation limits of areas B, C, D and F, and area of interest (AOI) #5. After wastes and excavated soils were removed from those areas, the excavations were backfilled with clean fill and reseeded. A final report documenting removal action activities was completed in January 2007; which includes the analyses of soils at the bottom and walls of excavations, and concluded that further work was unnecessary at other AOIs identified when site excavation work was underway.

Subsequently, in April and October 2007, groundwater samples were taken from monitoring wells at the site, and analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), metals and pesticides. In April 2007, there was sufficient surface water downgradient of the site to obtain a surface water sample, which was analyzed for the constituents noted above. The monitoring wells and the surface water sample location are depicted on Figure 1.

In May 2008, an additional groundwater sample was taken at monitoring wells PCMW-02 and MW-03, and analyzed for VOCs. A summary of analysis results of all post-removal groundwater and surface water sampling is located at Appendix 7.

Groundwater sampling and analyses evidenced no VOCs, SVOCs, PAHs or pesticides remaining (i.e., as indicated by the October 2007 results) at levels above New York State groundwater quality standards. Metals were found throughout site groundwater; however, those

that exceeded criteria were predominantly the typical naturally occurring elements for the area (i.e., iron, magnesium and manganese).

It should be noted that none of the metals (i.e., mercury, barium, lead, nickel and zinc) found in the formerly removed wastes were present in groundwater at concentrations exceeding groundwater criteria. Iron was detected in both groundwater and surface water in excess of drinking water standards; however, site groundwater and surface water is not used for potable water. Iron may cause aesthetic concerns, but is not expected to be toxic to humans at the site. Although a pesticide compound (Heptachlor Epoxide) was found in a surface water sample (taken in April 2007), the compound was not detected in groundwater analyzed from the April and October 2007 sampling events. In May 2008, additional groundwater samples were taken from PCMW-02 and MW-03, in order to evaluate if any VOCs remain in groundwater; analyses results indicated no detection of VOC in groundwater samples taken from those monitoring wells.

A post remediation human health risk assessment for groundwater and soils was performed for groundwater and soils at AOC #2. A summary of those findings is provided as follows:

<u>Groundwater</u>: the general approach to conducting the human health risk assessment was to examine the analyses results for groundwater sampled subsequent to the removal action at monitoring wells PCMW-01, PCMW-02, MW-3, MW-5 and

MW-7. Based upon post remediation analyses, there were generally no unacceptable cumulative non-carcinogenic risks expected due to groundwater impacts at these well locations; carcinogenic risks were either within or below the U. S. Environmental Protection Agency (EPA) acceptable risk range; lead was found to be below the media specific screening level (MSSL); iron was detected above the EPA secondary maximum contaminant level (MCL) meaning that the water, if untreated, could be stained or have a metallic taste. It should be noted that at MW-5, it was required to examine the contribution of manganese to the non-carcinogenic risk, since manganese accounted for 93% of the total non-carcinogenic risk at that location. When target organs were considered, it was concluded that an unacceptable non-carcinogenic risk is not expected at the general location of MW-5 groundwater.

Future buildings at the site may be susceptible to vapor intrusion, but it should be noted that the absence of VOCs indicates that unacceptable human health risks due to vapor intrusion from VOCs in groundwater into indoor air are not anticipated. Further, the detected concentration of mercury at PCMW-02 is less than the vapor intrusion screening value for mercury, which has been shown to be potentially volatile; unacceptable human health risks due to vapor intrusion for mercury in groundwater into indoor air are not anticipated.

<u>Soils</u>: Based upon post-excavation data, no unacceptable risks were calculated for the non-carcinogenic or carcinogenic chemicals detected in soils at AOC #2. The risk ratio results were calculated for residential receptors.

2.7.2 Findings of the Screening Level Ecological Risk Assessment

AOC #2 is an unsecured site that frequently has trespassers that use the site for hunting. The property owner has reported that wildlife are often present onsite, and trespassing hunters are a

frequent problem. The potential exists for wildlife and trespassers to be exposed to the hazardous waste and hazardous substances sources and the impacted soil, groundwater and surface water/sediment onsite. The property owner raised horses on the property in the past, and it is possible that animals could be raised on the property again, or in the future by future property owners. In the vicinity of the waste sources and seeps, vegetative cover was stressed or absent. The receiving area for waste source seeps was a wetland area that ultimately drains to Black Creek, a Class C(t) stream protected for fishing and trout habitation. The waste sources onsite posed a risk of exposure and adverse impacts to the ecological receptors noted above.

Although there were chemicals on site in various media which posed a risk to aquatic and terrestrial wildlife, AOC #2, and the former SADVA site appears to support wildlife in its current setting. Subsequent to the removal of wastes and the soils impacted by those wastes at AOC #2, the removal areas were backfilled with clean fill and reseeded; grass has been established in reseeded areas, while the swampy wetland areas have recovered with lush, naturally grown vegetation. Therefore, from an ecological standpoint, the removal action appears to have been effective.

2.8 REMEDIAL ACTION OBJECTIVES

In order to continue the site's unrestricted residential use, the objective of the removal action undertaken at AOC #2 was to remove visibly contaminated soils (containing chemicals of concern: VOCs, SVOCs and metals) and co-mingled wastes, and to dispose of them at licensed or permitted disposal facilities. Post excavation soil sampling was conducted to compare soil analysis results to the New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum (TAGM) residential soil cleanup objectives (RSCOs). If those results could not meet the RSCO values, but concentrations reached an asymptotic level, then the excavated area was backfilled.

Upon completion of the removal action, the site was restored with clean fill, seeded, and groundwater was sampled in site monitoring wells, and analyzed for VOCs, SVOCs (including low-level PAHs), pesticides and metals, with the intention of providing evidence that the removal action was effective in eliminating sources that may adversely impact groundwater.

2.9 DESCRIPTION OF ALTERNATIVES

The Engineering Evaluation/Cost Analysis (EE/CA) Report, finalized in August 2005, identified the following alternatives to be considered to address AOC #2:

Alternative 1: No Action

Alternative 2: Provide a soil cover for Areas B, C, D and F, grade, reseed and periodic

inspection and maintenance

Alternative 3: Removal of buried wastes/soils that were visibly contaminated with debris

and/or staining; transport and dispose of wastes at licensed disposal facilities, replace excavated areas with clean fill, regrade and restore areas

and periodic inspection and maintenance

The EE/CA Report fulfilled the requirement to describe remedy components, and to present the common and distinguishing features of each alternative. Alternative 1 would not have been protective of human health and environment, as uncontrolled wastes would remain at the site, allowing for the potential of contaminant migration of contaminants. Alternative 2 would have provided some measure of protection by containing the impacted soils onsite, and minimize direct human and wildlife exposure to the soils if the areas were not disturbed. Alternative 3, the chosen alternative, removed the known impacted soil and waste materials associated with past DOD activities.

2.10 COMPARISON OF ALTERNATIVES

Section 7 of the EE/CA provided for a detailed comparison of alternatives described above. In summary, the alternatives would all be easily implemented, however, Alternative 1 would not be protective of human health and the environment, and the selection of Alternative 2 may have precluded maintaining the residential use of the property without land/deed restrictions. Public comment on the EE/CA strongly favored the selection of Alternative 3.

2.11 PRINCIPAL THREAT WASTES

The NCP establishes an expectation that treatment that reduces the toxicity, mobility, or volume of the principal threat wastes will be utilized by a remedy to the extent practicable. Although treatment was not part of the principal remedy at the AOC #2 site proper, pumpable liquids and sludges from buried waste drums unearthed at the site were shipped to licensed facilities and incinerated.

2.12 THE SELECTED RESPONSE ACTION

2.12.1 Summary of the Rationale for the Response Action.

By removing the waste sources, there was less likelihood of future migration from source areas of contaminants to soils, surface water, sediments and groundwater.

2.12.2 Description of the Response Action

The response action selected and implemented included the removal and disposal of impacted soils and buried wastes from the site at licensed facilities, and was deemed to be the most protective of human health and the environment.

2.12.3 Summary of the Estimated Response Costs

Initially, the estimated removal costs presented in the EE/CA and Action Memorandum was \$646,000, based upon removal of 1,128 cubic yards (cys) of commingled wastes/soils, transportation to licensed facilities and refilling excavation with clean fill and top soil. During the course of the work, there was an increase in the quantities of wastes and impacted soils discovered and removed [1,458 cy of impacted soils, 61 drums of wastes, 20 cys of solid waste drum husks from Area F, 40 cys of waste sludges, unanticipated dewatering costs due to unexpected rainy weather, as well as the increased costs of replacing removed soils with clean fill material]. The contractual costs for the removal action totaled \$1,201,141. There remains about \$5,000 in additional costs to properly close the five monitoring wells on the site.

2.12.4 Outcome of the Removal Action

It is expected that there will be no future impacts to groundwater, surface waters, or environment due to the removal of wastes and impacted soils from the site. Further, it is expected that the future use of the site will be unrestricted.

2.13 STATUTORY DETERMINATIONS

2.13.1 Protection of Human Health and the Environment

Definition: This criterion determines whether an alternative eliminates, reduces, or controls exposure to the site contaminants of concern (COCs) to a level that protects public health and the environment.

Analysis: Alternative 1 offered no protection because exposures could result, since site contaminants remain in place without controls or restrictions. Alternative 2 offered some measure of protection of human health and environment by covering exposed areas, however, the contaminants would remain exposed to groundwater, and be subject to potential migration. Further, property deed restrictions would need to be put in place, which may not have allowed for unrestricted site use. Alternative 3 provides the best measure of protection to human health and environment by removing soils and wastes from defined disposal areas.

2.13.2 Compliance with Applicable, Relevant and Appropriate Regulations (ARARs)

Definition: This criterion evaluates whether an alternative meets federal environmental and state environmental statute facility citing laws or regulations that establish standards, requirements or criteria that are applicable or relevant and appropriate to the cleanup of the site COCs, or whether a waiver of the ARARs is justified.

Analysis: Alternative 1 would not have complied with ARARs. By leaving contaminants in place, Alternative 2 would not have complied with ARARs. When all removal work was completed in October 2006, post-excavation soil analyses were found to have met the NYSDEC Recommended Soil Cleanup Objectives (RSCOs), except for nickel, which was demonstrated to be a background site condition (see Dr. Carson memorandum at Appendix 8).

On December 14, 2006, NYSDEC promulgated soil clean up objectives (SCOs) at 6 NYCRR Part 375. When compared to the new SCOs, the post-excavation results for pesticides in soils met the residential objective, but not the unrestricted level. These results appear to be incidental to the normal application of pesticides on the property, since during the removal action there was no evidence of disposed containers of pesticide wastes. Arsenic was found at two sampling locations (at 13.2 and 13.3 mg/kg), slightly exceeding the new unrestricted level of 13.0 mg/kg; however, the arsenic level was within the level of site background and met the new residential SCO. Methyl ethyl ketone (at 0.19 mg/kg) was found above the unrestricted SCO of 0.12 mg/kg in one sample; however, it was well within the new residential SCO of 100 mg/kg. It should be noted that methyl ethyl ketone was not detected in follow up post-excavation groundwater and surface water analyses.

Groundwater sampling and analyses evidenced no VOCs, SVOCs, PAHs or pesticides remaining (i.e., as indicated by the October 2007 results) at levels above New York State groundwater quality guidance standards for Class GA waters (i.e., the *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Technical and Operational Guidance Series (T.O.G.S.) 1.1.1.*, NYSDEC, October 1998) or Federal Safe Drinking Water Act (42 U.S.C. § 300f-j) MCLs. According to NYSDEC standards, all fresh groundwater in New York State is classified as "Class GA."

Metals were found throughout site groundwater. However, those that exceeded criteria were predominantly the typical naturally occurring elements for the area (i.e., iron, magnesium and manganese). There are recommended standards for iron and manganese in the National Secondary Drinking Water Regulations, but these are not enforceable limits. There are no drinking water standards for magnesium. The New York State Department of Health, Subpart 5-1, "Public Drinking Water Standards" states that if iron and manganese are present, the total concentration of both should not exceed 0.5 mg/L. Higher levels may be allowed by the State when justified by the supplier of water, as the standard has been issued for aesthetic, not health-based reasons. The water derived from monitoring wells at this site do not constitute a public water supply, therefore, the standards do not apply in this case. It should be noted that none of the metals (i.e., mercury, barium, lead, nickel and zinc) found in the formerly removed wastes were present in groundwater at concentrations exceeding groundwater criteria. Iron was detected in both groundwater and surface water in excess of secondary drinking water standards, however, site groundwater and surface water is not used for potable water. Iron may cause aesthetic concerns, but is not expected to be toxic to humans at the site. Although a pesticide compound (Heptachlor Epoxide) was found in a surface water sample (taken in April 2007), the compound was not detected in groundwater analyzed from the April and October 2007 sampling events. In May 2008, additional groundwater samples were taken from PCMW-02 and MW-03, in order to evaluate if any VOCs remain in groundwater; analyses results indicated no detection of VOCs in groundwater samples taken from those monitoring wells.

The unrestricted soil SCOs were infrequently exceeded, the risk assessments conclude that no unacceptable risks remain for soils or groundwater, and there is an absence of contaminants in groundwater sampled subsequent to the removal action. Per a message from John Swartwout, P.E. (NYSDEC Chief, Section C, Remedial Bureau A, Division of Environmental Remediation) dated Oct. 13, 2009, NYSDEC has determined that this area is not in violation of the SCOs: (1) NYDEC has stated that AOC #2 is not a Class 2 site on the New York State Registry of Inactive Hazardous Waste Disposal Sites (Registry) and is therefore not directly subject to the State Superfund Program's cleanup requirements. (2) Although NYDEC compares each individual post-excavation sampling result with the cleanup goals, it does not consider a small number of exceedences to be significant unless they exceed the goals by a large margin. (3) NYSDEC and its sister agency, the New York State Department of Health, do not believe that the low levels of residual pesticide compounds found at the site (within the TAGM-4046 guidance used at the time but exceeding Part 375 unrestricted use SCOs) are indicative of hazardous waste disposal or are a sufficient threat to necessitate further remediation or use restrictions. As pesticides were never identified as one of the wastes disposed at the Post Commander's Landfill and the levels

are low, it concludes that they are likely related to past agricultural practices, and not waste disposal. Accordingly, the removal action was successful, and further cleanup is not required.

2.13.3 Long Term Effectiveness and Permanence

Definition: This criterion considers the capacity of an alternative to maintain long-term protection of human health and the environment over time.

Analysis: Improvement in groundwater and soils quality has already been demonstrated subsequent to the removal of wastes and impacted soils from the site.

2.13.4 Reduction of Toxicity, Mobility, or Volume Through Treatment

Definition: The NCP establishes an expectation that treatment that reduces the toxicity, mobility, or volume of the principal threat wastes will be utilized by a remedy to the extent practicable. This criterion evaluates the capacity of treatment associated with a given alternative to reduce the harmful effects of the principal contaminants, their capacity to move in the environment, and the amount of contamination present.

Analysis: Although Alternative 3 did not address contaminants primarily through treatment, some of the waste (i.e., sludges) were disposed of via incineration, and other wastes were sent to licensed disposal facilities, where there disposition is a more controlled setting.

2.13.5 Short-Term Effectiveness

Definition: This criterion considers the length of time required to implement the alternative, and the risks posed to workers, residents, and the environment during implementation.

Analysis: Alternative 1 would have taken no time to implement, and would not have provided protection of human health and the environment. Alternative 2 may have been accomplished in less time than Alternative 3, however, Alternative 2 would not have led to future unrestricted use of the site.

2.13.6 Implementability

Definition: This criterion considers the technical and administrative feasibility of implementing the alternative, including the factors of relative availability of goods and services.

Analysis: All alternatives would have been readily implementable.

2.13.7 Cost

Definition: This criterion includes an estimate of the capital, annual operations, and present-worth costs. Present-worth cost is the total cost of an alternative over time in terms of today's dollars. Cost estimates are expected to be accurate within a range of +50% to -30%.

Analysis: The estimated costs of Alternatives 1, 2 & 3 were: \$0, \$320,000 and \$646,000. Although the most expensive alternative (3) was chosen, it was the alternative that afforded the most current and potential protection of human health and environment.

2.13.8 State Acceptance

Definition: This criterion considers whether the State agrees with, opposes, or has no comment on the Preferred Alternative.

Analysis: NYSDEC has reviewed the proposed remedy for this AOC, and finds that the removal action was successful and that no further action is required

2.13.9 Community Acceptance

Definition: This criterion considers whether the local community agrees with the Preferred Alternative. Comments received during the Public Comment Period are an important indicator of community acceptance.

Analysis: The public firmly supported Alternative 3, and has been satisfied with its implementation. There have been no objections to the proposed plan of no further action at AOC #2.2.13.10 Five Year Review Requirements

Given that NYSDEC has accepted the removal action at the unrestricted level, five year reviews are not necessary (email from John Swartwout, NYSDEC, dated October 13, 2009). Therefore, the groundwater monitoring wells at AOC #2 will be properly closed.

3. RESPONSIVENESS SUMMARY

COMMENTS: E-mail dated November 25, 2008 from Ms. Heather Bishop, New York State Department of Environmental Conservation:

"The New York State Department of Environmental Conservation has reviewed the Proposed Plan for AOC2 at the Former Schenectady Army Depot in Altamont, NY (ID# 401009). Based upon this review, the Department has the following comment to provide:

In the analysis of the soil and sediment results, the soil analysis should be compared to New York State 6 NYCRR Part 375 Soil Cleanup Objectives for Unrestricted Use.

(Website: http://www.dec.ny.gov/docs/remediation hudson pdf/techsuppdoc.pdf).

Any sediment analysis should be compared to NYSDEC Division of Fish, Wildlife and Marine Resources Technical Guidance for Screening Contaminated Sediments (Table 2) (Website: http://www.dec.ny.gov/docs/wildlife_pdf/seddoc.pdf). A copy of both standards is included in the attachment to this letter. If New York State's standards are found to be the most stringent, the comparison of the soil and sediment results should be made in accordance with New York State's standards.

Please also add the data results tables to the proposed plan so that the reader does not have to reference past reports to obtain the data."

RESPONSE: We have compared all soil results to the New York State 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs) for Unrestricted Use, and the tables included with this Decision Document include the Part 375 SCOs for unrestricted use. Further, the previous sediment results shown on Figure 2 were compared to the Table 2 values of the NYSDEC Division of Fish, Wildlife and Marine Resources Technical Guidance for Screening Contaminated Sediments.

As discussed in Section 2.13.2, per John Swartwout of NYDEC (Oct. 13, 2009), this particular site is not in violation of the SCOs.

COMMENT: At public meeting of December 9, 2008 and via letter dated April 2, 2009 from Mr. Charles Rielly, Acting Community Co-Chairman, FSADVA RAB:

"Where did the mercury come from?"

RESPONSE: The source of mercury is unknown.

COMMENT: Mr. Charles Rielly at public meeting of December 9, 2008:

"Were solvents related to the Depot's operation of cleaning parts?"

RESPONSE: It is uncertain which operations the materials came from, but solvent-related materials were removed from all areas identified.

COMMENT(S): From Mr. Ted Ausfeld at public meeting of December 9, 2008:

"At the very beginning, the State of New York and the Corps said nothing was there. It boils down to the contamination was there, the Corps cleaned it up, and AOC #2 is no longer contaminated."

RESPONSE: The U. S. Army Corps of Engineers offered to conduct a site walk at AOC #2 with Mr. Ausfeld, and other interested parties. Subsequent to the site walk, the Corps agreed to perform additional investigation work at the property, which resulted in a Corps recommendation and decision to implement a removal action.

COMMENTS: Letter dated January 8, 2009 from Mrs. Joan Burns, owner of AOC #2:

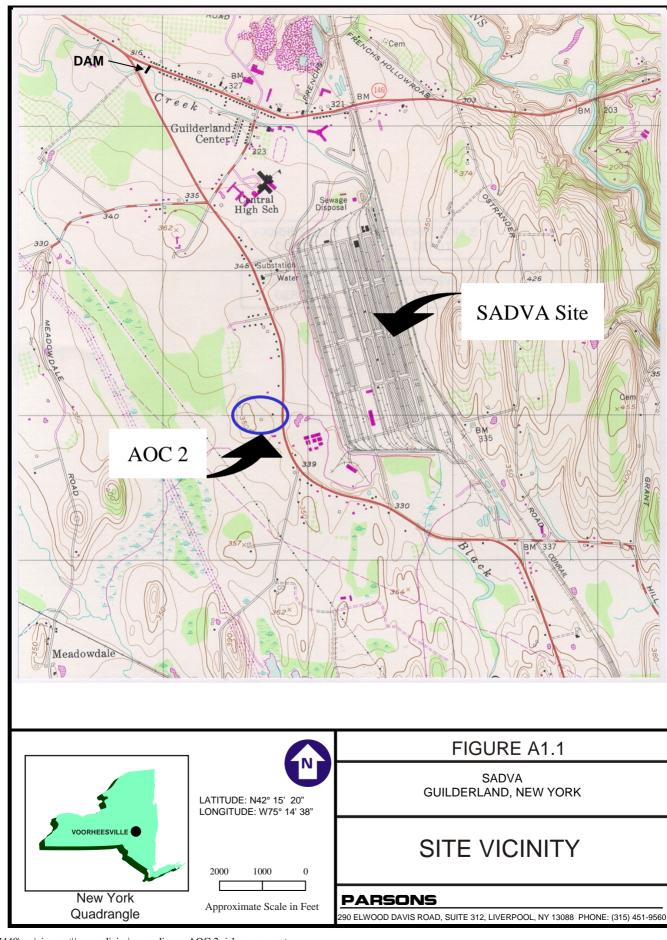
"I have been a member of the Restoration Advisory Board (RAB) since its creation. Mr. Gregory Goepfert of the U. S. Army Corps of Engineers is a well organized leader that keeps its members well informed, runs a very thorough meeting and follows through. He is always readily available when one has questions or needs clarification on an issue. Mr. Charles Rielly and Mr. Ted Ausfeld, Co-chairs, have given an enormous amount of their time and energy as well as their expertise serving on the RAB. They were always well-informed and knowledgeable and certainly demonstrated their leadership abilities. As an owner of AOC #2, I have had first hand experience working with Mr. Goepfert, Mr. Rielly and Mr. Ausfeld. They, as well as other members of the RAB, have been well-informed and helpful. I appreciate that the clean up was done for my property. A thank you to everyone involved."

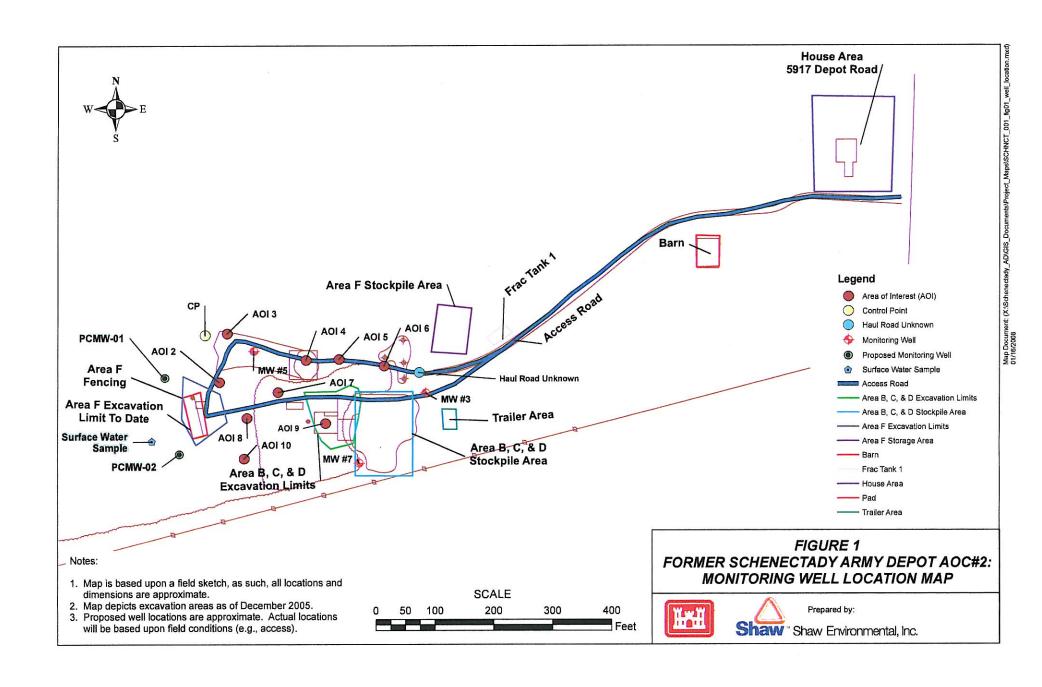
RESPONSE: Thank you for your comments, Mrs. Burns.

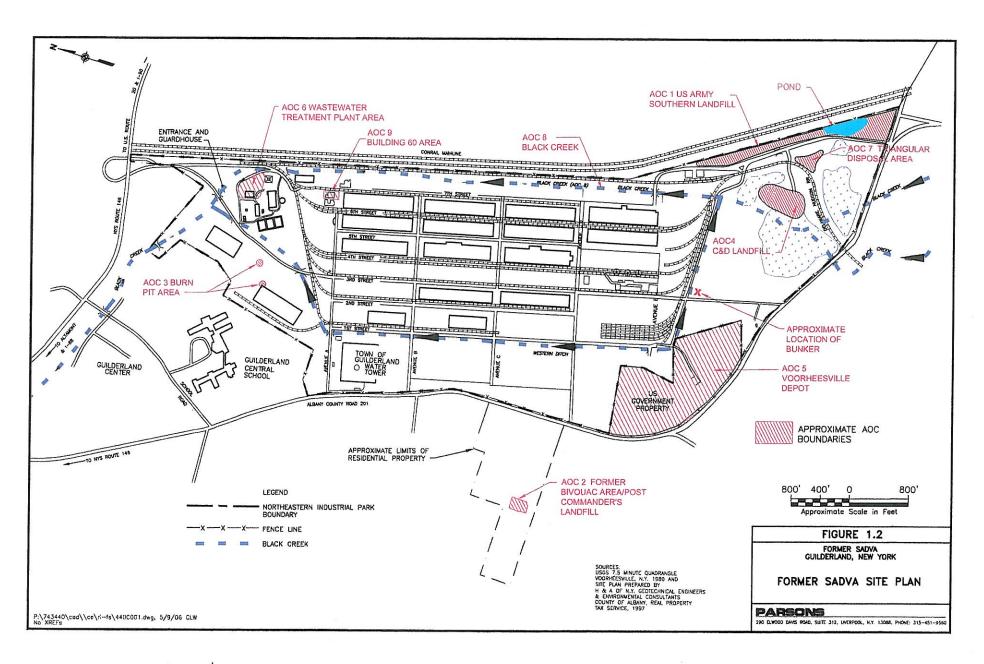
COMMENT: E-mail dated March 31, 2009 from Ms. Heather Bishop, New York State Department of Environmental Conservation:

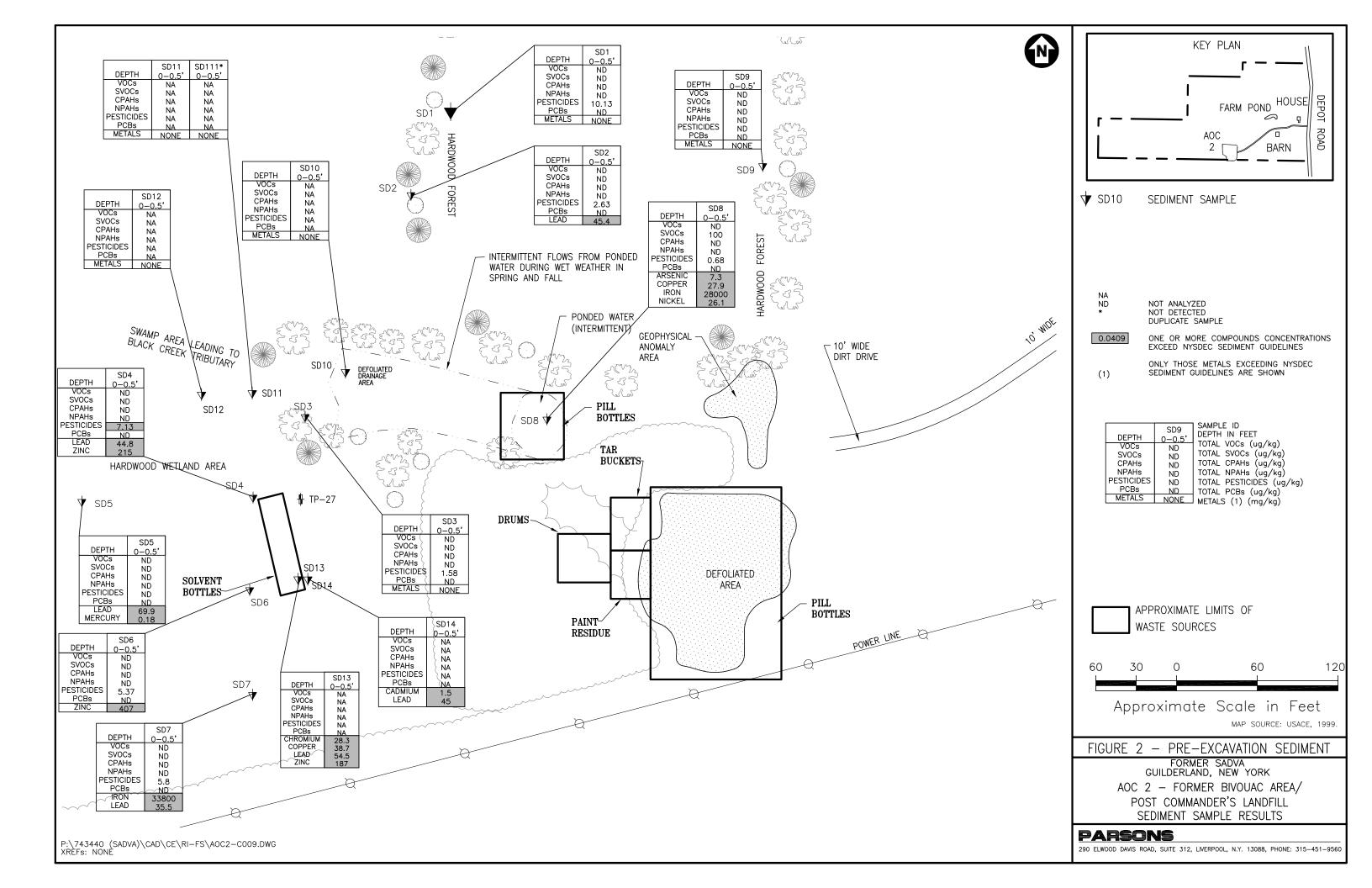
"There are no additional New York State Department of Health (NYSDOH) comments on the AOC 2 [Proposed Plan], in addition to my e-mail of 11/25/2008."

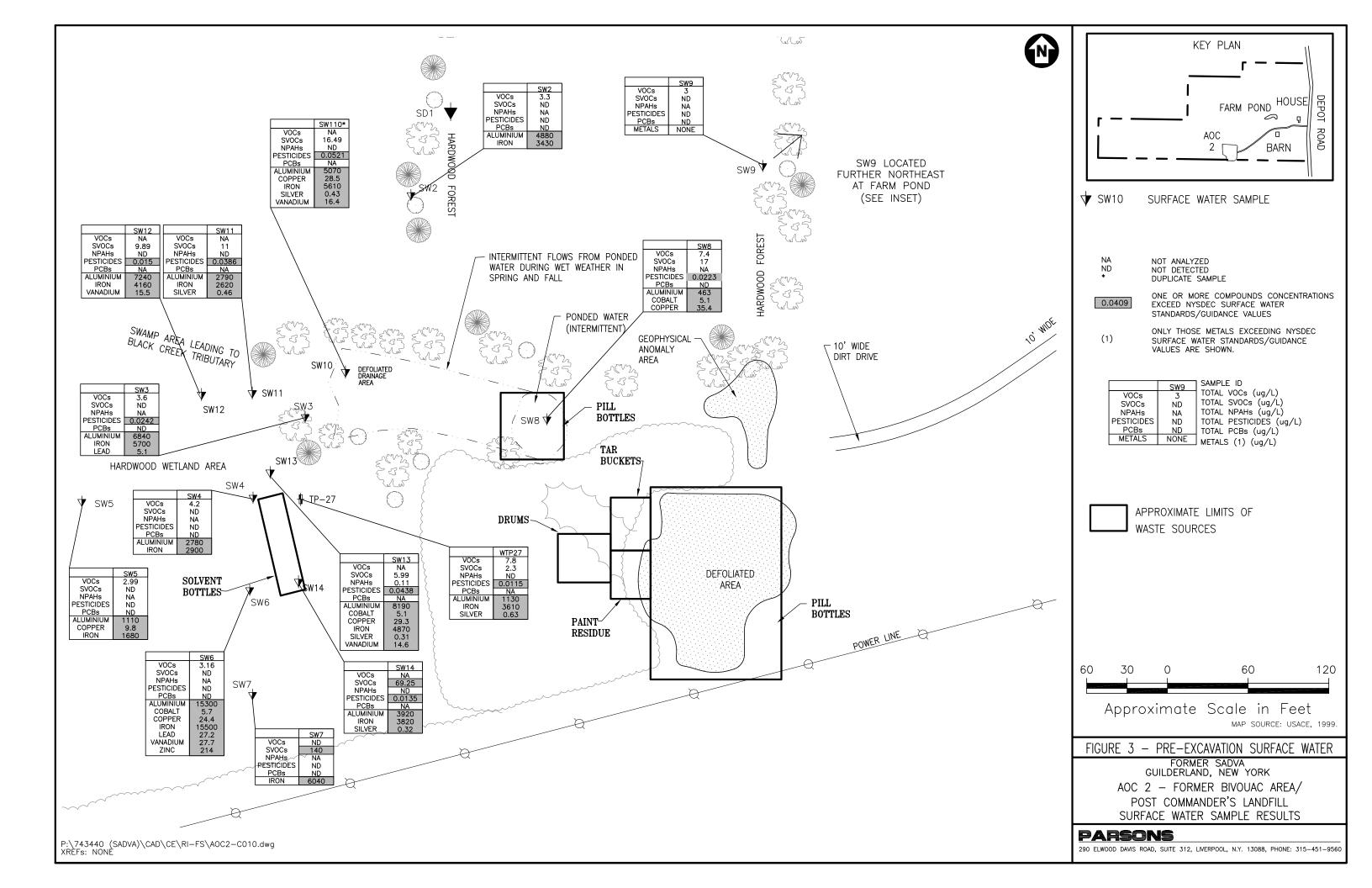
RESPONSE: Thank you, Ms. Bishop.


REFERENCES


- <u>Investigation Report Archival Search, Former Schenectady Army Depot—Voorheesville Area,</u> by EA for the U. S. Army Corps of Engineers, May 2003.
- Engineering Evaluation / Cost Analysis, Former Bivouac Area / Post Commander's Landfill (Area of Concern 2), Former Schenectady Army Depot—Voorheesville Area Formerly Used Defense Site, Guilderland, New York, Final Version, by Parsons for the U. S. Army Corps of Engineers, August 2005.
- Action Memorandum: Non-Time Critical Removal Action, Former Schenectady Army Depot— <u>Voorheesville Area, Area of Concern #2,</u> by Gregory J. Goepfert, Project Manager and approved by Colonel Richard J. Polo, Jr., District Engineer, U. S. Army Corps of Engineers, New York District, August 10, 2005.
- Final Project Report, Former Schenectady Army Depot, Former Bivouac Area / Post


 Commander's Landfill, Area of Concern #2, by Shaw Environmental for the U. S. Army
 Corps of Engineers, January 2007.
- Remedial Investigation Report, Former Schenectady Army Depot—Voorheesville Area, Guilderland, New York, by Parsons for the U. S. Army Corps of Engineers, September 2007.
- Post Removal Groundwater and Surface Water Sampling Report for October 2007, Area of Concern No. 2, by Shaw Environmental for the U. S. Army Corps of Engineers, January 2008.
- Groundwater Supplement to Appendix A1, Post Remediation Human Health Risk Assessment at AOC 2, Remedial Investigation Report for Former Schenectady Army Depot-Voorheesville Area (SADVA), by Parsons for the U. S. Army Corps of Engineers, April 2008.
- <u>Post-Removal Groundwater Sampling Report, Area of Concern (AOC) No. 2, Former Schenectady Army Depot Voorheesville Area, Guilderland, New York, by Parsons for the U. S. Army Corps of Engineers, May 2008.</u>


APPENDICES

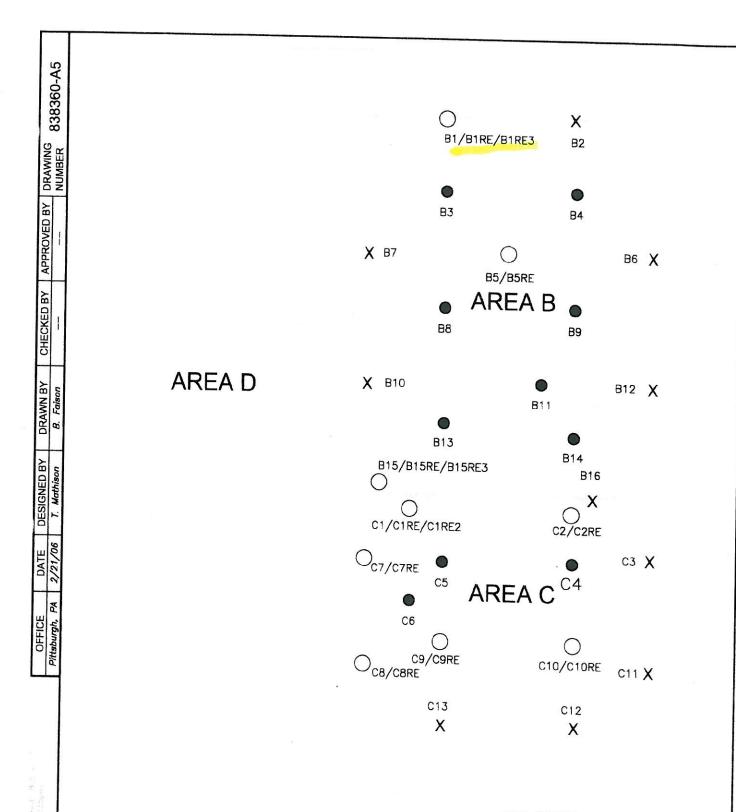

APPENDIX 1 FIGURES

APPENDIX 2 AREA B, TABLES 10 THROUGH 13 / POSTEXCAVATION ANALYSES OF SOILS

AREA B – POST EXCAVATION SOIL ANALYSIS SUMMARY

FSADVA AOC #2

All post-excavation soil analyses met the unrestricted NYSDEC Part 375 standards for metals (except nickel), SVOCs and VOCs (See following Tables 10, 11 and 12). A data analysis memorandum, at Appendix 8, notes that nickel is a background condition.


Although all final post-excavation samples analyzed for pesticides met the NYSDEC Part 375 residential standard, the unrestricted standard was not met at locations EX-B-1, 10, 12, 13, 15 and 16 (Table 13). These areas were all covered with clean fill.

The post-excavation analysis summary tables and sampling location sketches follow in this appendix.

Date 10/24/05 Subject SCHENKCTARY ACC 2 Sheet No. of By TPM SAMPLE LOCATIONS Proj. No. 838360 Chkd. By____ _Date_ .25 in. X .25 in. POLY SHEETING 82 81 B3 34 OBS 37 06 AREA 088 089 AREA D B10 B11 BIZ OBIY B16 ARKA C Ocg 0 (10 68 CIIX C13] - SAMPLES THAT WERE RE-COLLECTED X - SIDEWALL SAMPLE O - FLOOR SAMPLE - ARRA TO BE BACKFILLED NOT TO SCALE

LEGEND:

 \bigcirc

RECOLLECTED SAMPLE AFTER ADDITIONAL EXCAVATION

B3 🔵

FLOOR SAMPLE

B7 X

SIDEWALL SAMPLE

THIS DRAWING NOT TO SCALE

Shaw Environmental, Inc.

U.S. ARMY CORPS OF ENGINEERS

FIGURE 2-3

AREA B AND C SAMPLE LOCATIONS (2005)

FORMER SCHENECTADY ARMY DEPOT - AOC2 SCHENECTADY, NEW YORK

NYSDEC Part 375 Unrestricted Soil Cleanup

NYDEC Objectives

	Objectives	NYDEC	East US BG	Site BG (mg/kg)	FY-R-1	EX-B-2	EX-B-3	EX-B-4	EX-B-5	EX-B-6
Metal	(SCOs)	(mg/kg)	East US BG	Site DG (ilig/kg)	10/4/2005		10/4/2005	10/4/2005	10/4/2005	10/4/2005
Aluminum	NC NC	SB	33000	7080-12800	16300	17300	15000	15000	16000	14600
Aluminum		SB	NA		0.50-J	<1.6	<1.7	<1.6	<1.6	<1.7
Antimony	NC		2.000000	012 0100	7.8		8.6	8.4	8.1	8.8
Arsenic	13		3-12	4.3-16.4			80.5	72.9	67.9	75.6
Barium	350		15-600	33-104	74.3		0.78	0.76		
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.82				<0.48	<0.5
Cadmium	2.5	1	0-1.75	0.21-0.52	0.062-J	<0.49	<0.52	<0.48		
Calcium	NC	SB	130-35000	1280-46600	4300			28100		
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	53.1	26	22.3		23.0	21.7
Cobalt	NC	30	2.5-60	5.3-12.2	13.3	15.3	12.8	13.4	12.3	
Copper	50		1-50	13.4-26.9	38.5	49.5	45.7	42.7	40.1	42.6
Iron	NC		2000-550000	14100-25700	33000	38000	33000	32400	31100	31700
Lead	63		NA	16.5-60.8	204	17.5		14	19.1	14.4
Magnesium	NC	SB	100-5000	2150-13100	6470					
Manganese	1600	SB	50-5000	197-875	30.5					
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	0.22		<0.034	0.023		0.031
Nickel	30	13	0.5-25	10.6-24.8	30.5					
Potassium	NC	SB	8500-43000	443-1660	1850	1990				
Seleium	3.9	2	0.1-3.9	0.44-1.2	0.25-J	<1.6	<1.7	<1.6	0.34-J	<1.7
Silver	2	SB	NA	0.16-0.17	<0.27	<0.25	<.026-J	<0.24	<0.24	<0.25
Thallium	NC	SB	NA	D-0.67	0.33-J	0.60-J	0.48-J	0.77-J	<2.4	0.58-J
Vanadium	NC	150	1-300	13.7-24	29.3		25.4	26.5		
Zinc	109	20	9-50	46-134	178	90.6	76.9	80.9	71.9	79.1

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil Cleanup

Objectives NYDEC EX-B-12 EX-B-9 EX-B-10 EX-B-11 EX-B-8 Site BG (mg/kg) EX-B-07 (SCOs) (mg/kg) East US BG Metal 10/4/2005 10/4/2005 10/4/2005 10/4/2005 10/4/2005 10/4/2005 16400 15100 17000 15600 33000 7080-12800 17800 13300 SB NC Aluminum <1.6 <1.5 <1.7 <1.3 <1.6 NA 0.2-0.59 <1.4 NC SB Antimony 8.3 7.2 6.8 8.6 6.4 7.8 4.3-16.4 7.5 3-12 13 Arsenic 58.3 79.3 81.4 58.5 60.2 67 300 15-600 33-104 350 Barium 0.78 0.68 0.89 0.67 0.78 0.86 0.38-0.67 7.2 0.16 0-1.75 Beryllium < 0.49 <0.52 < 0.48 < 0.46 1 0-1.75 0.21-0.52 < 0.43 < 0.4 2.5 Cadmium 1780 2410 30600 20300 922 20600 130-35000 1280-46600 NC SB Calcium 25.5 22.6 22.9 23.4 19.7 9.3-17.5 24.6 30 (TRIVALENT) 10 1.5-40 Chromium 10.5 10.5 15.2 13.7 13.6 30 2.5-60 5.3-12.2 11.4 NC Cobalt 37.4 26.0 37.3 41.1 40.0 13.4-26.9 43.0 50 25 1-50 Copper 30000 33600 33000 31100 35000 30300 14100-25700 2000 2000-550000 NC Iron 39.9 13.1 14.4 16.5 16.5-60.8 15.3 13.7 63 SB NA ead 8760 4880 5730 5920 7610 8080 100-5000 2150-13100 NC SB Magnesium 484 415 717 610 197-875 349 605 1600 SB 50-5000 Manganese 0.022 0.043 0.034 0.057 0.030 0.024 0.1 0.001-0.2 0.039-0.095 0.18 Mercury 28.2 23.5 31.7 27.4 31.0 32.0 10.6-24.8 13 0.5-25 Nickel 30 1350 1990 1770 2330 1780 1720 443-1660 8500-43000 NC SB Potassium 0.50-J <1.6 <1.5 <1.7 0.44-1.2 0.30-J <1.3 3.9 2 0.1-3.9 Seleium < 0.25 < 0.23 < 0.26 < 0.2 < 0.24 NA 0.16-0.17 < 0.21 SB 2 Silver 0.53-J <2.6 0.37-J D-0.67 0.35-J 0.43-J 0.31-J NA NC SB Thallium 29.4 26.6 29 22.9 27.4 13.7-24 29.8 NC 150 1-300 Vanadium 79 72.1 69.9 77.8 67.2 77.1 20 9-50 46-134 109 Zinc

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil Cleanup

Objectives NYDEC

	Objectives	NYDEC						EV D 46	EV D DUD
Metal	(SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)		EX-B-14	EX-B-15	EX-B-16	EX-B-DUP
					10/4/2005	10/4/2005			10/4/2005
Aluminum	NC	SB	33000	7080-12800	15900	15000		20100	15800
Antimony	NC	SB	NA	0.2-0.59	<1.6	<1.7	<2.0	<2.1	<1.6
Arsenic	13	7.5	3-12	4.3-16.4	8.5		9.8	4.6	9.5
Barium	350	300	15-600	33-104	81.5				
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.83		0.90	0.85	
Cadmium	2.5	1	0-1.75	0.21-0.52	<0.48	<0.52	<0.59	0.056-J	<0.47
Calcium	NC	SB	130-35000	1280-46600	24900				
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	23.5		35.4	25.3	23.6
Cobalt	NC		2.5-60	5.3-12.2	15.2	14.2	14.9		16.4
Copper	50	25	1-50	13.4-26.9	45.2	41.4	40.9		47.8
Iron	NC	2000	2000-550000	14100-25700	34200	33900	34500		34800
Lead	63	SB	NA	16.5-60.8	16.1	14.5			17
Magnesium	NC	SB	100-5000	2150-13100	8760				
Manganese	1600	SB	50-5000	197-875	599	609			
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	0.036				0.035
Nickel	30	13	0.5-25	10.6-24.8	36.1	33.4			
Potassium	NC	SB	8500-43000	443-1660	2300	2160			2140
Seleium	3.9	2	0.1-3.9	0.44-1.2	<1.6	<1.7	0.24-J	0.44-J	<1.6
Silver	2	SB	NA	0.16-0.17	<0.24	<0.26	<0.3	<0.31	<0.23
Thallium	NC	SB	NA	D-0.67	0.45-J	<2.6	<3.0	0.38-J	0.52-J
Vanadium	NC	150	1-300	13.7-24	28	27.6			
Zinc	109	20	9-50	46-134	79.9	77.7	121	89.5	84.8

NC - NO CRITERIA LISTED

Zinc

Table 10 Area B Confirmation Metals Results

NYSDEC Part 375 Unrestricted Soil Cleanup

Objectives NYDEC EX-B-15RE3 EX-B-1-RE 3 EX-B-15RE EX-B-5RE Site BG (mg/kg) EX-B-1RE East US BG (SCOs) (mg/kg) Metal 12/6/2005 10/13/2005 10/13/2005 10/13/2005 12/6/2005 14500 14500 17500 17800 15000 33000 7080-12800 SB NC Aluminum <3.00 <3.00 <1.4 0.2-0.59 <1.8 <1.8 SB NA NC Antimony 7.6 < 0.25 <0.25 8.6 8.3 7.5 3-12 4.3-16.4 13 Arsenic 22.3 61.2 22.3 65.1 71.4 300 15-600 33-104 350 Barium 0.6 0.9 0.73 0.6 0.84 0.38-0.67 0.16 0-1.75 7.2 Beryllium < 0.25 < 0.25 < 0.53 < 0.43 1 0-1.75 0.21-0.52 < 0.55 2.5 Cadmium 1280 2240 1280 1280-46600 2150 2510 130-35000 SB NC Calcium 21.8 24 21.8 26.2 9.3-17.5 25.8 30 (TRIVALENT) 10 1.5-40 Chromium 9.83 9.83 13.1 12.6 12.6 30 2.5-60 5.3-12.2 NC Cobalt 35.7 35.7 40.7 29.1 34.8 25 1-50 13.4-26.9 50 Copper 33200 31000 33200 34300 34000 14100-25700 2000 2000-550000 NC Iron 18.9 18.9 19 47.8 24.6 16.5-60.8 SB NA 63 Lead 5090 5090 5100 5400 5500 2150-13100 SB 100-5000 NC Magnesium 331 331 507 197-875 525 461 SB 50-5000 Manganese 1600 < 0.020 0.1 0.05 < 0.020 0.27 0.1 0.001-0.2 0.039-0.095 0.18 Mercury 21.5 21.5 29.1 24.1 25.6 10.6-24.8 13 0.5-25 30 Nickel 552 1410 552 1590 1790 8500-43000 443-1660 NC SB Potassium 0.47-J < 0.25 < 0.25 0.64-J 0.44 - 1.20.79-J 2 0.1-3.9 Seleium 3.9 <1.00 < 0.27 < 0.22 <1.00 0.16-0.17 < 0.27 2 SB NA Silver < 0.50 < 0.50 1.3-J 0.97-J 0.93-J NA D-0.67 SB NC Thallium 23.6 23.6 28.8 13.7-24 33.5 31.6 NC 150 1-300 Vanadium

46-134

NC - NO CRITERIA LISTED

109

The SCOs for unrestricted use were capped at a maximum value of 100 ppm

20 9-50

74.6

65.1

80.2

88.3

65.1

NYSDEC PART 375 UNRESTRICTED NYDEC

SOIL CLEANUP **RSCO** EX-B-9 EX-B-7 EX-B-8 EX-B-4 EX-B-5 EX-B-6 (mg/kg) EX-B-1 EX-B-3 CRITERIA (SCOs) EX-B-2 Compound 10/4/2005 10/4/2005 10/4/2005 10/4/2005 10/4/200 10/4/200 10/4/200 10/4/200 10/4/2005 < 0.370 < 0.400 < 0.390 < 0.380 < 0.370 <0.390 0.1 < 0.450 < 0.390 < 0.370 2.4.5-Trichlorophenol NC < 0.370 < 0.400 < 0.390 < 0.380 < 0.390 < 0.370 < 0.370 < 0.390 0.4 < 0.450 NC 2.4-Dichlorophenol <0.790 < 0.770 < 0.760 < 0.740 < 0.740 < 0.770 < 0.740 0.200 < 0.900 < 0.780 2.4-Dinitrophenol NC < 0.390 < 0.380 < 0.400 < 0.370 < 0.370 < 0.390 < 0.370 NC 1.0 < 0.450< 0.390 2,6-Dinitrotoluene < 0.390 < 0.380 < 0.400 0.8 < 0.450 < 0.390 < 0.370 < 0.370 < 0.390 < 0.370 2-Chlorophenol NC < 0.380 <0,390 < 0.370 < 0.400 < 0.390 36.4 < 0.450 < 0.390 < 0.370 < 0.370 2-Methylnaphthalene NC < 0.390 < 0.380 < 0.370 < 0.370 < 0.390 < 0.370 < 0.400 < 0.390 0.430 < 0.450 2-Nitroaniline NC < 0.380 < 0.370 <0.370 < 0.390 < 0.370 < 0.400 < 0.390 < 0.390 NC 0.330 < 0.450 2-Nitrophenol < 0.380 < 0.390 < 0.370 < 0.400 < 0.390 0.100 < 0.450 < 0.390 < 0.370 <0.370 NC 2-methylphenol < 0.400 < 0.390 < 0.380 < 0.370 < 0.390 < 0.370 0.500 < 0.450 < 0.390 < 0.370 NC 3-Nitroaniline < 0.370 < 0.400 < 0.390 < 0.380 < 0.390 < 0.390 < 0.370 < 0.370 NC 0.220 < 0.450 4-Chloroaniline < 0.380 < 0.400 < 0.390 < 0.390 < 0.370 < 0.370 < 0.370 NC NS < 0.450 < 0.390 4-Nitroaniline < 0.790 < 0.770 < 0.760 < 0.740 0.100 < 0.900 < 0.780 < 0.740 < 0.740 < 0.770 NC 4-Nitrophenol < 0.390 < 0.380 0.240 < 0.450 < 0.390 < 0.370 < 0.370 < 0.390 < 0.370 < 0.400 NC 4-chloro-3-methylphenol < 0.400 < 0.390 <0.380 < 0.370 < 0.370 < 0.390 < 0.370 0.9 < 0.450 < 0.390 NC 4-methylphenol <0.380 < 0.370 <0.400 < 0.390 < 0.370 < 0.390 50.0 < 0.450 < 0.390 < 0.370 20 Acenaphthene < 0.370 < 0.400 < 0.390 < 0.380 < 0.370 < 0.390 100 41.0 < 0.450 < 0.390 < 0.370 Acenaphthylene < 0.400 < 0.390 < 0.380 < 0.370 < 0.370 < 0.390 < 0.370 Aniline (Phenylamine, Aminobenzene) 0.1 < 0.450 < 0.390 NC < 0.390 < 0.370 < 0.400 < 0.390 < 0.380 < 0.370 100 50.0 < 0.450 < 0.390 < 0.370 Anthracene <0.390 < 0.380 < 0.390 <0.370 < 0.400 0.224 < 0.450 < 0.390 < 0.370 < 0.370 Benzo(a) anthracene 1 < 0.380 <0.390 < 0.370 <0.400 < 0.390 0.061 < 0.450 < 0.390 < 0.370 < 0.370 Benzo(a) pyrene < 0.390 < 0.380 <0.370 < 0.400 1.1 < 0.450 < 0.390 < 0.370 < 0.370 < 0.390 1 Benzo(b) fluoranthene < 0.390 < 0.380 < 0.370 < 0.390 < 0.370 < 0.400 < 0.390 < 0.370 50.0 < 0.450 NC Benzyl Butyl Phthalate < 0.390 < 0.380 < 0.390 < 0.370 < 0.400 < 0.370 < 0.370 0.4 < 0.450 < 0.390 Chrysene < 0.390 < 0.380 < 0.370 < 0.400 < 0.370 < 0.370 < 0.390 0.33 0.014 < 0.450 < 0.390 Dibenz(a,h) Anthracene < 0.390 < 0.380 < 0.370 < 0.400 < 0.370 < 0.370 < 0.390 NC 6.2 < 0.450 < 0.390 Dibenzofuran < 0.370 < 0.390 < 0.370 < 0.400 < 0.390 < 0.380 < 0.370 NC 7.1 < 0.450 < 0.390 Diethyl Phthalate < 0.370 < 0.400 < 0.390 < 0.380 < 0.390 2.0 < 0.450 < 0.390 <0.370 < 0.370 NC Dimethyl Phthalate < 0.400 < 0.390 < 0.380 < 0.370 < 0.390 < 0.370 < 0.370 < 0.390 100 50.0 < 0.450 Fluoranthene < 0.390 < 0.380 < 0.400 50.0 < 0.450 < 0.390 < 0.370 < 0.370 < 0.390 < 0.370 30 Fluorene < 0.390 < 0.380 < 0.370 < 0.390 < 0.370 < 0.400 0.41 < 0.450 < 0.390 < 0.370 Hexachlorobenzene NC < 0.400 < 0.390 < 0.380 <0.390 < 0.370 3.2 < 0.450 < 0.390 < 0.370 < 0.370 Indeno(1,2,3-c,d) Pyrene 0.5 < 0.380 < 0.390 < 0.390 < 0.370 < 0.400 < 0.390 < 0.370 < 0.370 NC 4.40 < 0.450 Isophorone <0.380 < 0.370 < 0.390 < 0.370 < 0.400 < 0.390 12 13.0 0.340-J < 0.390 < 0.370 Naphthalene < 0.380 < 0.370 < 0.390 < 0.370 < 0.400 < 0.390 NC 0.200 < 0.450 < 0.390 < 0.370 Nitrobenzene < 0.770 < 0.740 < 0.790 < 0.770 < 0.760 1.0 < 0.900 < 0.780 < 0.740 < 0.740 0.8 Pentachlorophenol < 0.390 <0.380 < 0.370 < 0.400 50.0 < 0.450 < 0.390 < 0.390 < 0.370 < 0.370 100 Phenanthrene < 0.380 < 0.400 < 0.390 < 0.390 < 0.370 0.33 0.03 < 0.450 < 0.390 < 0.370 0.370 Phenol < 0.400 < 0.390 < 0.380 < 0.370 < 0.390 < 0.370 50 < 0.450 <0,390 < 0.370 100 Pyrene < 0.400 < 0.390 < 0.380 < 0.370 < 0.370 < 0.390 < 0.370 50.0 < 0.450 < 0.390 NC bis(2-ethylhexyl) phthalate < 0.380 < 0.390 < 0.370 < 0.390 < 0.370 < 0.400 8.1 < 0.450 < 0.390 < 0.370 di-n-Butyl Phthalate NC < 0.380 < 0.370 < 0.400 < 0.390 < 0.370 < 0.390 50.0 < 0.450 < 0.390 < 0.370 di-n-Octyl Phthalate NC

NYSDEC PART 375

UNRESTRICTED NYDEC SOIL CLEANUP RSCO

	SOIL CLEANUP	RSCO						100000000000000000000000000000000000000		
Compound	CRITERIA (SCOs)	(mg/kg)	EX-B-10	EX-B-11	EX-B-12	EX-B-13	EX-B-14	EX-B-15	EX-B-16	EX-B-DUP
			10/4/2005			10/4/2005	10/4/2005		10/4/2005	
2,4,5-Trichlorophenol	NC	0.1		< 0.370	<0.370	<0.390	<0.390	< 0.390	<0.460	<0.390
2,4-Dichlorophenol	NC		< 0.360	< 0.370	<0.370	<0.390	<0.390	< 0.390	<0.460	<0.390
2,4-Dinitrophenol	NC	0.200	<0.730	<0.750	< 0.740	<0.780	<0.770	<0.790	<0.920	<0.770
2,6-Dinitrotoluene	NC		< 0.360	<0.370	< 0.370	<0.390	<0.390	<0.390	<0.460	<0.390
2-Chlorophenol	NC	8.0	< 0.360	< 0.370	< 0.370	<0.390	<0.390	<0.390	<0.460	<0.390
2-Methylnaphthalene	NC	36.4	< 0.360	< 0.370	< 0.370	<0.390	<0.390	< 0.390	<0.460	<0.390
2-Nitroaniline	NC	0.430	< 0.360	< 0.370	<0.370	<0.390	<0.390	<0.390	<0.460	<0.390
2-Nitrophenol	NC		< 0.360	< 0.370	< 0.370	<0.390	<0.390	<0.390	<0.460	<0.390
2-methylphenol	NC	0.100	< 0.360	< 0.370	< 0.370	<0.390	<0.390	< 0.390	<0.460	<0.390
3-Nitroaniline	NC	0.500	< 0.360	< 0.370	< 0.370	<0.390	<0.390	<0.390	<0.460	<0.390
4-Chloroaniline	NC	0.220	< 0.360	< 0.370	< 0.370	<0.390	< 0.390	< 0.390	<0.460	<0.390
4-Nitroaniline	NC	NS	< 0.360	< 0.370	< 0.370	<0.390	< 0.390	< 0.390	< 0.460	<0.390
4-Nitrophenol	NC	0.100	<0.730	< 0.750	< 0.740	<0.780	<0.770	<0.790	<0.920	< 0.770
4-chloro-3-methylphenol	NC	0.240	<0.360	< 0.370	< 0.370	<0.390	< 0.390	< 0.390	< 0.460	< 0.390
4-methylphenol	NC	0.9	< 0.360	< 0.370	< 0.370	<0.390	< 0.390	< 0.390	<0.460	< 0.390
Acenaphthene	20	50.0	<0.360	< 0.370	< 0.370	<0.390	<0.390	< 0.390	< 0.460	<0.390
Acenaphthylene	100	41.0	< 0.360	< 0.370	< 0.370	< 0.390	<0.390	< 0.390	<0.460	< 0.390
Aniline (Phenylamine, Aminobenzene)	NC	0.1	< 0.360	< 0.370	< 0.370	< 0.390	<0.390	< 0.390	<0.460	< 0.390
Anthracene	100	50.0	< 0.360	< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Benzo(a) anthracene	1 1	0.224	< 0.360	< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Benzo(a) pyrene	1	0.061	<0,360	< 0.370	< 0.370	< 0.390	< 0.390	0.350-J	< 0.460	< 0.390
Benzo(b) fluoranthene	1	1.1	< 0.360	< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Benzyl Butyl Phthalate	NC	50.0	< 0.360	< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Chrysene	1	0.4	< 0.360	< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Dibenz(a,h) Anthracene	0.33	0.014	< 0.360	< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	<0.390
Dibenzofuran	NC	6.2	<0.360	< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Diethyl Phthalate	NC	7.1		< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	<0.460	< 0.390
Dimethyl Phthalate	NC	2.0	< 0.360	< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Fluoranthene	100	50.0		< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Fluorene	30	50.0		< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Hexachlorobenzene	NC	0.41		< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Indeno(1,2,3-c,d) Pyrene	0.5	3.2		< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	<0.460	< 0.390
Isophorone	NC	4.40		< 0.370	< 0.370	< 0.390	<0.390	< 0.390	< 0.460	< 0.390
Naphthalene	12	13.0		< 0.370	< 0.370	< 0.390	< 0.390	<0.390	< 0.460	< 0.390
Nitrobenzene	NC	0.200		< 0.370	< 0.370	< 0.390	< 0.390	< 0.390	< 0.460	< 0.390
Pentachlorophenol	0.8	1.0		<0.750	< 0.740	< 0.780	< 0.770	< 0.790	< 0.920	< 0.770
Phenanthrene	100	50.0	-	<0.370	< 0.370	<0.390	< 0.390	< 0.390	< 0.460	< 0.390
Phenol	0.33		<0.360	<0.370	< 0.370	< 0.390	<0.390	< 0.390	< 0.460	< 0.390
Pyrene	100	50		< 0.370	< 0.370	<0.390	< 0.390	< 0.390	< 0.460	< 0.390
bis(2-ethylhexyl) phthalate	NC NC	50.0		<0.370	< 0.370	<0.390	< 0.390	< 0.390	< 0.460	< 0.390
di-n-Butyl Phthalate	NC NC	8.1		<0.370	< 0.370	<0.390	< 0.390	< 0.390	< 0.460	< 0.390
di-n-Octyl Phthalate	NC NC		<0.360	< 0.370	< 0.370	<0.390	<0.390	< 0.390	< 0.460	< 0.390

NYSDEC PART 375 UNRESTRICTED

NYDEC

SOIL CLEANUP **OBJECTIVES RSCO**

Compound	(SCOs)	(mg/kg	1)	EX-B-1	EX-B-2	EX-B-3	EX-B-4	EX-B-5	EX-B-6	EX-B-7
Compound	(10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005
1.1.1Trichloroethane	0.68		0.8	<0.0068	<0.0058	< 0.0056	<0.0056	<0.0058	<0.0055	<0.0059
1,1,2,2-Tetrachloroethane	NC		0.6	<0.0068	<0.0058	<0.0056	< 0.0056	<0.0058	<0.0055	<0.0059
1.1,2-Trichloroethane	NC	NS		0.011	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
1,1-Dichloroethane	0.27		0.2	<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
1.1-Dichloroethene	0.33	NS								
1,2-Dichlorobenzene	1.1		7.9	<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
1,2-Dichloroethane	0.02	NS								0.0050
1,3-Dichlorobenzene	2.4		1.6	<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
1,3-Dichloropropane	NC	NS	W 30 - 50							0.0050
1,4-Dichlorobenzene	1.8			<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
trans-1,2 Dichloroethene	0.19		0.3	<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
2-Butanone (MEK)	0.12		0.3	< 0.014	< 0.012	<0.011	< 0.011	<0.012	<0.011	<0.012
4-Methyl-2-Pentanone (MIBK)	NC		1	< 0.014	< 0.012	<0.011	< 0.011	<0.012	<0.011	<0.012
Acetone	0.05		0.2	< 0.014	< 0.012	< 0.011	< 0.011	< 0.012	<0.011	<0.012
Benzene	0.06	C	.06	<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	0.0036	
Bromomethane	NC	NS		< 0.014	< 0.012	< 0.011	<0.011	<0.012	<0.011	<0.012
Carbon Disulfide	NC		2.7	<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
Carbon Tetrachloride	0.76		0.6	<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
Chlorobenzene	1.1		1.7	<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
Chloroethane	NC		1.9	< 0.014	< 0.012	<0.011	<0.011	<0.012	<0.011	<0.012
Chloroform	0.37		0.3	<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
Chloromethane	NC	NS		< 0.014	<0.012	< 0.011	<0.011	<0.012	<0.011	<0.012
Dibromochloromethane	NC	NS		<0.0068	<0.0058	< 0.0056	< 0.0056	<0.0058	<0.0055	<0.0059
Ethylbenzene	1		5.5	< 0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
Freon 113	NC		6	<0.0068	<0.0058	< 0.0056	<0.0056	<0.0058	<0.0055	<0.0059
Methylene Chloride	0.05		0.1	< 0.014	< 0.012	< 0.011	< 0.011	<0.012	<0.011	<0.012
Styrene	NC	NS		<0.0068	<0.0058	< 0.0056	<0.0056	<0.0058	<0.0055	<0.0059
Tetrachloroethene	1.3		1.4	<0.0068	<0.0058	<0.0056	<0.0056	<0.0058	<0.0055	<0.0059
Toluene	0.7		1.5	<0.0068	<0.0058	< 0.0056	<0.0056	<0.0058	<0.0055	<0.0059
Trichloroethene	0.47		0.7	<0.0068	<0.0058	< 0.0056	<0.0056	<0.0058	<0.0055	<0.0059
Vinyl Chloride	0.02		0.2	< 0.014	<0.012	<0.011	<0.011	<0.012	<0.011	<0.012
Xylenes	0.26		1.2	<0.0068	<0.0058	0.0083	<0.0056	<0.0058	0.011	<0.0059

NYSDEC PART 375 UNRESTRICTED SOIL CLEANUP

NYDEC

OBJECTIVES RSCO EX-B-14 EX-B-11 EX-B-12 EX-B-13 EX-B-10 (mg/kg) EX-B-8 EX-B-9 (SCOs) Compound 10/4/2005 10/4/2005 10/4/2005 10/4/2005 10/4/2005 10/4/2005 10/4/2005 < 0.0056 <0.0058 < 0.0058 < 0.0057 < 0.0055 < 0.0056 0.8 < 0.0058 0.68 1,1,1,-Trichloroethane < 0.0058 < 0.0055 < 0.0056 < 0.0056 <0.0058 0.6 < 0.0058 < 0.0057 NC 1,1,2,2-Tetrachloroethane < 0.0058 < 0.0056 < 0.0058 < 0.0057 < 0.0055 < 0.0056 NC NS < 0.0058 1,1,2-Trichloroethane <0.0058 < 0.0056 <0.0058 0.2 < 0.0058 < 0.0057 < 0.0055 < 0.0056 0.27 1.1-Dichloroethane 0.33 NS 1.1-Dichloroethene <0.0058 < 0.0056 < 0.0056 < 0.0058 < 0.0055 7.9 < 0.0058 < 0.0057 1.1 1,2-Dichlorobenzene 0.02 NS 1.2-Dichloroethane < 0.0058 < 0.0056 < 0.0056 < 0.0058 1.6 < 0.0058 < 0.0057 < 0.0055 2.4 1,3-Dichlorobenzene NC NS 1,3-Dichloropropane < 0.0058 < 0.0056 < 0.0058 8.5 < 0.0058 < 0.0057 < 0.0055 < 0.0056 1.8 1.4-Dichlorobenzene <0.0058 < 0.0056 < 0.0058 < 0.0056 < 0.0057 < 0.0055 0.19 0.3 < 0.0058 trans-1,2 Dichloroethene < 0.012 < 0.012 < 0.011 < 0.011 0.3 < 0.012< 0.011 < 0.011 2-Butanone (MEK) 0.12 < 0.012 < 0.012 < 0.011 < 0.011 < 0.011 < 0.011 NC 1 < 0.012 4-Methyl-2-Pentanone (MIBK) < 0.011 < 0.011 < 0.012 < 0.012 0.020 < 0.011 0.2 < 0.0120.05 Acetone < 0.0058 < 0.0056 < 0.0056 < 0.0058 0.06 < 0.0058 0.0013 < 0.0055 0.06 Benzene < 0.012 < 0.012 < 0.011 < 0.011 < 0.011 < 0.011 NC NS < 0.012 Bromomethane <0.0058 < 0.0058 < 0.0055 < 0.0056 < 0.0056 2.7 < 0.0058 < 0.0057 NC Carbon Disulfide < 0.0058 < 0.0058 < 0.0056 0.6 < 0.0058 < 0.0057 < 0.0055 < 0.0056 0.76 Carbon Tetrachloride <0.0058 < 0.011 < 0.011 < 0.0058 0.024 < 0.011 1.7 < 0.011 1.1 Chlorobenzene < 0.012 < 0.012 < 0.011 < 0.011 < 0.011 1.9 < 0.012 < 0.011 NC Chloroethane <0.0058 < 0.0056 < 0.0056 < 0.0058 0.3 < 0.0058 < 0.0057 < 0.0055 0.37 Chloroform < 0.012 < 0.012 < 0.011 < 0.011 < 0.011 < 0.011 NC NS < 0.012 Chloromethane < 0.0058 <0.0058 < 0.0055 < 0.0056 < 0.0056 NS < 0.0058 < 0.0057 NC Dibromochloromethane <0.0058 < 0.0058 < 0.011 < 0.011 0.013 < 0.011 < 0.011 1 5.5 Ethylbenzene < 0.0058 < 0.0056 < 0.0056 < 0.0058 6 < 0.0058 < 0.0057 < 0.0055 NC Freon 113 < 0.012 < 0.012 < 0.011 < 0.011 0.1 < 0.012 < 0.011 < 0.011 0.05 Methylene Chloride < 0.0056 < 0.0056 < 0.0058 < 0.0058 < 0.0058 < 0.0057 < 0.0055 NS NC Styrene < 0.0058 < 0.0055 < 0.0056 < 0.0056 < 0.0058 1.4 < 0.0058 < 0.0057 1.3 Tetrachloroethene < 0.0058 <0.0056 < 0.0056 < 0.0058 1.5 < 0.0058 < 0.0057 < 0.0055 0.7 Toluene < 0.0058 < 0.0056 < 0.0058 < 0.0055 < 0.0056 0.47 0.7 < 0.0058 < 0.0057 Trichloroethene < 0.012 < 0.012 < 0.011 0.2 < 0.012 < 0.011 < 0.011 < 0.011 0.02 Vinyl Chloride < 0.0058 < 0.0056 < 0.0056 < 0.0058 0.014 < 0.0057 < 0.0055 0.26 **Xylenes**

NYSDEC PART 375 UNRESTRICTED

SOIL CLEANUP NYDEC
OBJECTIVES RSCO

Compound	(SCOs)	(mg/kg)	EX-B-15	EX-B-16	EX-B-DUP	EX-B-1RE	EX-B-2RE	EX-B-4RE	EX-B-5RE
Joinpaina	(/	1	10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005
1,1,1,-Trichloroethane	0.68	0.8	< 0.0059	< 0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
1,1,2,2-Tetrachloroethane	NC	0.6	<0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
1.1.2-Trichloroethane	NC	NS	< 0.0059	< 0.0069	<0.0058	<.140	<0.0058	<0.0056	<0.0058
1.1-Dichloroethane	0.27	0.2	<0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
1,1-Dichloroethene	0.33	NS							
1.2-Dichlorobenzene	1.1	7.9	< 0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
1,2-Dichloroethane	0.02	NS							
1,3-Dichlorobenzene	2.4	1.6	<0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
1,3-Dichloropropane	NC	NS							
1,4-Dichlorobenzene	1.8	8.5	<0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
trans-1,2 Dichloroethene	0.19	0.3	<0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
2-Butanone (MEK)	0.12	0.3	< 0.012	< 0.014	<0.012	<.140	<0.012	<0.011	<0.012
4-Methyl-2-Pentanone (MIBK)	NC	1	<0.012	< 0.014	<0.012	<.140	<0.012	<0.011	<0.012
Acetone	0.05	0.2	<0.012	< 0.014	<0.012	<.140	<0.012	<0.011	<0.012
Benzene	0.06	0.06	<0.0059	< 0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Bromomethane	NC	NS	<0.012	< 0.014	<0.012	<.140	<0.012	<0.011	<0.012
Carbon Disulfide	NC	2.7	< 0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Carbon Tetrachloride	0.76	0.6	< 0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Chlorobenzene	1.1	1.7	<0.0059	< 0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Chloroethane	NC	1.9	< 0.012	<0.014	<0.012	<.140	<0.012	<0.011	<0.012
Chloroform	0.37	0.3	<0.0059	< 0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Chloromethane	NC	NS	<0.012	< 0.014	<0.012	<.140	<0.012	<0.011	<0.012
Dibromochloromethane	NC	NS	<0.0059	< 0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Ethylbenzene	1	5.5	< 0.0059	< 0.0069	<0.0058	<0.068	<0.0058		<0.0058
Freon 113	NC	6	< 0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Methylene Chloride	0.05	0.1	< 0.012	< 0.014	<0.012	<.140	0.002	0.0015	
Styrene	NC	NS	< 0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Tetrachloroethene	1.3	1.4	< 0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Toluene	0.7	1.5	<0.0059	<0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Trichloroethene	0.47	0.7	<0.0059	< 0.0069	<0.0058	<0.068	<0.0058	<0.0056	<0.0058
Vinyl Chloride	0.02	0.2	<0.012	< 0.014	<0.012	<.140	<0.012	<0.011	<0.012
Xylenes	0.26	1.2	< 0.0059	< 0.0069	<0.0058	<0.068	<0.0058	0.0094	<0.0058

NYSDEC PART 375 UNRESTRICTED SOIL CLEANUP

NYDEC RSCO

OBJECTIVES (mg/kg) EX-B-6RE EX-B-7RE EX-B-8RE EX-B-10RE EX-B-11RE EX-B-12RE Compound (SCOs) 10/4/2005 10/4/2005 10/4/2005 10/4/2005 10/4/2005 10/4/2005 < 0.0056 < 0.058 < 0.0055 < 0.0056 0.8 < 0.0055 < 0.0059 0.68 1,1,1,-Trichloroethane < 0.0056 <0.0056 < 0.0055 < 0.0059 <0.058 NC 0.6 < 0.0055 1.1.2.2-Tetrachloroethane < 0.0055 < 0.0056 < 0.0056 NS < 0.0055 < 0.0059 < 0.058 NC 1,1,2-Trichloroethane < 0.0056 < 0.0055 < 0.0056 0.2 < 0.0055 < 0.0059 < 0.058 1.1-Dichloroethane 0.27 0.33 NS 1.1-Dichloroethene < 0.0056 < 0.0056 7.9 < 0.0055 < 0.0059 < 0.058 < 0.0055 1.1 1.2-Dichlorobenzene 0.02 NS 1,2-Dichloroethane <0.0056 <0.058 < 0.0055 < 0.0056 2.4 1.6 < 0.0055 < 0.0059 1.3-Dichlorobenzene NC NS 1.3-Dichloropropane < 0.0055 < 0.0056 < 0.0056 < 0.058 8.5 < 0.0055 < 0.0059 1.8 1,4-Dichlorobenzene < 0.0056 < 0.0056 < 0.0059 < 0.058 < 0.0055 0.3 < 0.0055 0.19 trans-1,2 Dichloroethene < 0.011 < 0.120 < 0.011 < 0.011 0.3 < 0.011 < 0.012 0.12 2-Butanone (MEK) < 0.011 < 0.011 1 < 0.011 < 0.012 < 0.120 < 0.011 4-Methyl-2-Pentanone (MIBK) NC 0.0043 < 0.011 < 0.011 0.05 0.2 0.0064 < 0.012 < 0.120 Acetone < 0.0056 < 0.0056 0.0043 < 0.0059 < 0.058 < 0.0055 0.06 0.06 Benzene < 0.011 < 0.011 < 0.011 NS < 0.011 < 0.012 < 0.120 NC Bromomethane < 0.0056 2.7 < 0.0055 < 0.058 < 0.0055 < 0.0056 < 0.0059 NC Carbon Disulfide < 0.0056 <0.058 < 0.0055 < 0.0056 0.6 < 0.0055 < 0.0059 0.76 Carbon Tetrachloride < 0.011 <0.0059 < 0.120 < 0.011 < 0.011 1.7 < 0.0055 1.1 Chlorobenzene < 0.011 < 0.011 1.9 < 0.011 < 0.012 < 0.120 < 0.011 NC Chloroethane < 0.0056 <0.058 < 0.0055 < 0.0056 0.3 < 0.0055 < 0.0059 0.37 Chloroform < 0.011 < 0.011 < 0.012 < 0.120 < 0.011 NC NS < 0.011 Chloromethane < 0.0056 < 0.0055 < 0.0056 < 0.058 NS < 0.0055 < 0.0059 Dibromochloromethane NC < 0.011 < 0.011 < 0.011 < 0.120 0.003 < 0.0059 5.5 Ethylbenzene < 0.0056 < 0.058 < 0.0055 < 0.0056 6 < 0.0055 < 0.0059 NC Freon 113 0.0012 0.0013 0.1 0.0017 0.0014 < 0.120 0.0016 Methylene Chloride 0.05 < 0.0056 < 0.0055 < 0.0056 NC NS < 0.0055 < 0.0059 < 0.058 Styrene < 0.0056 < 0.0056 < 0.0059 < 0.058 < 0.0055 1.3 1.4 < 0.0055 Tetrachloroethene < 0.0056 < 0.0056 < 0.0055 1.5 < 0.0055 < 0.0059 < 0.058 0.7 Toluene < 0.0056 < 0.0055 < 0.0056 < 0.058 0.7 < 0.0055 < 0.0059 Trichloroethene 0.47 < 0.011 < 0.011 < 0.011 0.2 < 0.011 < 0.012 < 0.120 0.02 Vinyl Chloride < 0.058 < 0.0055 < 0.0056 < 0.0056 0.024 < 0.0059 0.26 1.2 **Xylenes**

NYSDEC PART 375 UNRESTRICTED

SOIL CLEANUP NYDEC OBJECTIVES RSCO

EX-B-

	OBJECTIVES	RSCO					EY-D-
Compound	(SCOs)	(mg/kg)	EX-B-13RE	EX-B-14RE	EX-B-15RE	EX-B-16RE	
Odinpodila			10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005
1.1.1,-Trichloroethane	0.68	0.8	<0.0058	<0.0058	<0.0059	<0.0069	<0.0058
1.1.2.2-Tetrachloroethane	NC	0.6	<0.0058	<0.0058	<0.0059	<0.0069	<0.0058
1,1,2-Trichloroethane	NC	NS	<0.0058	<0.0058	<0.0059	<0.0069	<0.0058
1,1-Dichloroethane	0.27		<0.0058	<0.0058	< 0.0059	<0.0069	<0.0058
1.1-Dichloroethene	0.33	NS					
1.2-Dichlorobenzene	1,1		<0.0058	<0.0058	< 0.0059	<0.0069	<0.0058
1,2-Dichloroethane	0.02	NS	10.000				
1.3-Dichlorobenzene	2.4		<0.0058	<0.0058	< 0.0059	< 0.0069	<0.0058
	NC NC	NS	10,000				
1,3-Dichloropropane	1.8		<0.0058	<0.0058	< 0.0059	< 0.0069	<0.0058
1,4-Dichlorobenzene	0.19		<0.0058	<0.0058	< 0.0059	< 0.0069	<0.0058
trans-1,2 Dichloroethene	0.19		<0.012	<0.012	< 0.012	< 0.014	<0.012
2-Butanone (MEK)	NC NC	1	<0.012	<0.012	<0.012	< 0.014	<0.012
4-Methyl-2-Pentanone (MIBK)	0.05	0.2	<0.012	<0.012	< 0.012	< 0.014	< 0.012
Acetone	0.05		<0.0058	<0.0058	< 0.0059	< 0.0069	<0.0058
Benzene	NC	NS 0.00	<0.012	<0.012	<0.012	< 0.014	<0.012
Bromomethane	NC NC	2.7		<0.0058	< 0.0059	< 0.0069	<0.0058
Carbon Disulfide			<0.0058	<0.0058	<0.0059	< 0.0069	< 0.0058
Carbon Tetrachloride	0.76		<0.0058	<0.0058	<0.0059	< 0.0069	<0.0058
Chlorobenzene	1.1		<0.0036	<0.0036	<0.012	< 0.014	< 0.012
Chloroethane	NC			<0.012	<0.0059	<0.0069	<0.0058
Chloroform	0.37		<0.0058	<0.0036	<0.0033	<0.014	<0.012
Chloromethane	NC	NS	<0.012		< 0.0059	<0.0069	<0.0058
Dibromochloromethane	NC	NS	<0.0058	<0.0058	<0.0059	<0.0069	<0.0058
Ethylbenzene	11		<0.0058	<0.0058	<0.0059	<0.0069	<0.0058
Freon 113	NC		<0.0058	<0.0058			<0.0036
Methylene Chloride	0.05	0.1		<0.012	<0.012		<0.012
Styrene	NC	NS	<0.0058	<0.0058	<0.0059	<0.0069	<0.0058
Tetrachloroethene	1.3		<0.0058	<0.0058	<0.0059	<0.0069	
Toluene	0.7		<0.0058	<0.0058	<0.0059	<0.0069	<0.0058
Trichloroethene	0.47		<0.0058	<0.0058	<0.0059	<0.0069	<0.0058
Vinyl Chloride	0.02		<0.012	<0.012	<0.012	<0.014	<0.012
Xylenes	0.26	1.2	<0.0058	<0.0058	<0.0059	<0.0069	<0.0058

Table 13 **Area B Confirmation** Pesticide, PCB, Herbicide Results

NYSDEC PART 375 UNRESTRICTED

SOIL CLEANUP NYDEC

RSCO OBJECTIVES

Compound	(SCOs)	(ug/kg)	EX-B-1	EX-B-2	EX-B-3	EX-B-4	EX-B-5	EX-B-6	EX-B-7	EX-B-8
	1		10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005	10/4/2005
4,4-DDD	3.3	2900	6.8	<2.0	<1.9	<1.9	2.0	<1.9	<2.0	0.84-J
4,4-DDE	3.3	2100	33	0.50-J	<1.9	0.21	1.9-J	<1.9	<2.0	<1.9
4,4-DDT	3.3	2100	21	0.28-J	<1.9	<1.9	2.1	<1.9	<2.0	<1.9
Aldrin	5	41.0	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Alpha-BHC	20	110	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Beta-BHC	36		<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Chlordane	94	540	<45	<39	<37	<37	<39	<37	<40	<39
Delta-BHC	40	300	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Dieldrin	5	44.0	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Endosulfan I	2400	900	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Endosulfan II	2400	900	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Endosulfan Sulfate	NC	1000	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Endrin	14	100	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Gamma-BHC (Lindane)	NC	60.0	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Heptachlor	42	100	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Heptachlor Epoxide	NC	20.0	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
Methoxychlor	NC	NS	<2.3	<2.0	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9
PCB-1016	100	1000	<23	<19	<19	<19	<19	<18	<20	<19
PCB-1221	100	1000	<23	<19	<19	<19	<19	<18	<20	<19
PCB-1232	100	1000	<23	<19	<19	<19	<19	<18	<20	<19
PCB-1242	100	1000	<23	<19	<19	<19	<19	<18	<20	<19
PCB-1248	100	1000	<23	<19	<19	<19	<19	<18	<20	<19
PCB-1254	100	1000	<23	<19	<19	<19	<19	<18	<20	<19
PCB-1260	100	1000	<23	<19	<19	<19	<19	<18	<20	<19
2,4,5-T	NC	1900	<140	<120	<110	<110	<120	<110	<120	<120
2,4,5-TP (Silvex)	3.8		<140	<120	<110	<110	<120	<110	<120	<120
2,4-D	NC NC		<140	<120	<110	<110	<120	<110	<120	<120

Table 13 **Area B Confirmation** Pesticide, PCB, Herbicide Results

NYSDEC PART 375 UNRESTRICTED

SOIL CLEANUP NYDEC

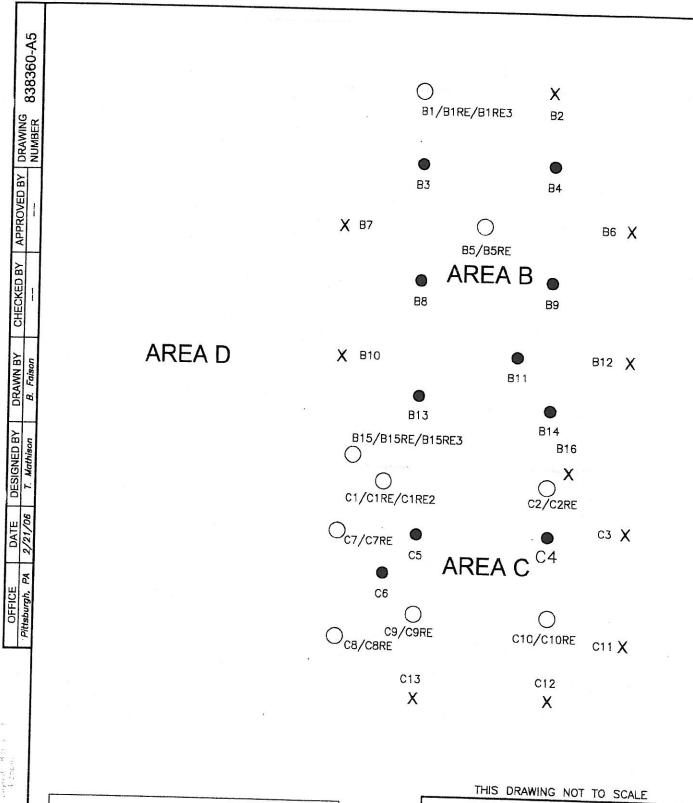
	OBJECTIVES	RSCO		EX-B-10					EX-B-15		
Compound	(SCOs)	(ug/kg)	EX-B-9	DL	EX-B-11	EX-B-12	EX-B-13	EX-B-14	DL	EX-B-16	EX-B-DUP
Compound	1 (5555)	(10/4/2005		10/4/2005	10/4/2005	10/4/2005	10/4/2005			
4,4-DDD	3.3	2900	0.29-J	57	<1.9	0.60-J	4.2	<1.9	240	0.71-J	<1.9
4,4-DDE	3.3		0.74-J	52	<1.9	4.6	1.2-J	<1.9	40		<1.9
4,4-DDT	3.3	2100	2.0	160	<1.9	14	5.2	0.39-J	390		<1.9
Aldrin	5	41.0	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Alpha-BHC	20	110	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Beta-BHC	36	200	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Chlordane	94	540	<38	<360	<37	<37	<39	<38	<390	<46	<39
Delta-BHC	40	300	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Dieldrin	5	44.0	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Endosulfan I	2400	900	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Endosulfan II	2400	900	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Endosulfan Sulfate	NC	1000	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Endrin	14	100	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Gamma-BHC (Lindane)	NC	60.0	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Heptachlor	42		<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Heptachlor Epoxide	NC	20.0	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
Methoxychlor	NC	NS	<1.9	<18	<1.9	<1.9	<1.9	<1.9	<20	<2.3	<1.9
PCB-1016	100	1000	<19	<18	<19	<19	<19	<19	<20	<23	<19
PCB-1221	100	1000		<18	<19	<19	<19	<19	<20	<23	<19
PCB-1232	100	1000	<19	<18	<19	<19	<19	<19	<20	<23	<19
PCB-1242	100	1000	<19	<18	<19	<19	<19	<19	<20	<23	<19
PCB-1248	100	1000	<19	<18	<19	<19	<19	<19	<20	<23	<19
PCB-1254	100	1000	<19	<18	<19	<19	<19	<19	<20	<23	<19
PCB-1260	100	1000	<19	<18	<19	<19	<19	<19	<20	<23	<19
2,4,5-T	NC	1900	<110	<110	<110	<110	<120	<120	<120	<140	<120
2,4,5-TP (Silvex)	3.8	700	<110	<110	<110	<110	<120	<120	<120	<140	<120
2,4-D	NC	500	<110	<110	<110	<110	<120	<120	<120	<140	<120

APPENDIX 3 AREA C, TABLES 6 THROUGH 9 / POSTEXCAVATION ANALYSES OF SOILS

AREA C – POST EXCAVATION SOIL ANALYSIS SUMMARY

FSADVA AOC #2

All post-excavation soil analyses met the unrestricted NYSDEC Part 375 standards for metals (except nickel), SVOCs and VOCs (See following Tables 6, 7 and 8). A data analysis memorandum, at Appendix 8, notes that nickel is a background condition. The sidewall soils were removed and disposed from the excavation where low levels of mercury were detected at EX-C-7RE and EX-C-8RE.


Although all final post-excavation samples analyzed for pesticides met the NYSDEC Part 375 residential standard, the unrestricted standard was not met at location EX-C-6 (Table 9). This area was at the excavation bottom and was covered with clean fill.

The post-excavation summary tables and sampling location sketches follow in this appendix.

1

By TPH	Date/o/2;	//of_Subject_	SCHENECTARY	AOC 2	Sheet No	of
Chkd. By	Date		SAMPLE LOCATE		Proj. No	838360
			X	SLY SHEETIN	82	.25 in. X .25 i
		, , , , , , , , , , , , , , , , , , ,		0 B5	84	
	AREA [2]	068		39 X	
			815 X = 1	811 081 0cz	B 16	
			× ⁽⁷ ₍₅ 0	DERA C	C3 X	
			X C8 10 c/3		C/1 ×	
	- ARRA TO B	F DANKE	X	AMPURS THA SIPEWALL FLOOR SAM		- Collected
	, ,,,, , , , ,	C Ducky to			NOT TO	SCALE

LEGEND:

 \bigcirc

RECOLLECTED SAMPLE AFTER ADDITIONAL EXCAVATION

ВЗ 🔵

FLOOR SAMPLE

B7 X

SIDEWALL SAMPLE

Shaw Shaw Environmental, Inc.

U.S. ARMY CORPS OF ENGINEERS

FIGURE 2-3 AREA B AND C SAMPLE LOCATIONS (2005)

FORMER SCHENECTADY ARMY DEPOT - AOC2 SCHENECTADY, NEW YORK

NYSDEC Part 375 Unrestricted Soil Cleanup

Antimory NC SB NA 0.20.59 <1.9 <1.6 <1.8 <1.6 <1.5 <1.8		Cleanup									
Netal Scots Highest Search Highest Search Highest Search Highest Search Highest Search Highest Hig		Objectives	NYDEC							EV 0 5	EV O C
Aluminum NC SB 33000 7080-12800 18300 18200 18200 18900 17000 17500 17	Metal	(SCOs)	(mg/kg)	East US BG	(mg/kg)	EX-C-1					
Antimory NC SB NA 0.20.59 <1.9 <1.6 <1.8 <1.6 <1.5 <1.8 Al. S.						9/28/2005	9/28/2005	9/28/2005			
Antimony NC SB	Aluminum	NC	SB	33000	7080-12800	18300	18000				
Alsentic 13	Antimony	NC	SB	NA	0.2-0.59	<1.9	<1.6				
Beryllium 7.2 0.16 0-1.75 0.38-0.67 0.95 0.83 0.79 0.97 0.82 0.70 Cadmium 2.5 1 0-1.75 0.21-0.52 0.34-J 0.6 0.36-J 0.36-J 0.43-J 0.23-J	Arsenic	13	7.5	3-12	4.3-16.4	9					
Cadmium 2.5 1 0-1.75 0.21-0.52 0.34-J 0.6 0.36-J 0.36-J 0.43-J 0.23-J	Barium	350	300	15-600	33-104						
Cadmium 2.5 1 0-1.75 0.21-0.52 0.34-J 0.6 0.36-J 0.36-J 0.43-J 0.23-J Calcium NC SB 130-35000 1280-46600 6970 24800 1560 7810 20100 265 Chromium 30 (TRIVALENT) 10 1.5-40 9.3-17.5 29 172 22.6 25.9 23.7 24. Cobalt NC 30 2.5-60 5.3-12.2 16.1 15.4 12.6 14.3 13.6 12 Copper 50 25 1-50 13.4-26.9 42.8 48.9 26.9 39.7 41.2 32 Iron NC 2000 2000-550000 14100-25700 37400 44200 31700 36800 33500 3120 Lead 63 SB NA 16.5-60.8 64.5 960 18 16.7 17.2 3 Magnesium NC SB 100-5000 2150-13100 7380 7860 4900 7200 7600 53	Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.95					0.79
Carlottin	Cadmium	2.5	1	0-1.75	0.21-0.52						
Chromium 30 (TRIVALENT) 10 1.5-40 9.3-17.5 29 172 22.6 25.9 23.7 24. Cobalt NC 30 2.5-60 5.3-12.2 16.1 15.4 12.6 14.3 13.6 12 Copper 50 25 1-50 13.4-26.9 42.8 48.9 26.9 39.7 41.2 32 Iron NC 2000 2000-550000 14100-25700 37400 44200 31700 36800 33500 3120 Lead 63 SB NA 16.5-60.8 64.5 960 18 16.7 17.2 3 Magnesium NC SB 100-5000 2150-13100 7380 7860 4900 7200 7600 536 Marguesium NC SB 50-5000 197-875 641 590 580 638 536 51 Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.16 0.17 0.030-J 0.045	Calcium	NC	SB	130-35000	1280-46600	6970					
Copper 50 25 1-50 13.4-26.9 42.8 48.9 26.9 39.7 41.2 32 Iron NC 2000 2000-550000 14100-25700 37400 44200 31700 36800 33500 3120 Iron NC 2000 2000-550000 14100-25700 37400 44200 31700 36800 33500 3120 Lead 63 SB NA 16.5-60.8 64.5 960 18 16.7 17.2 3 Magnesium NC SB 100-5000 2150-13100 7380 7860 4900 7200 7600 536 Manganese 1600 SB 50-5000 197-875 641 590 580 638 536 51 Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.16 0.17 0.030-J 0.045 0.033-J 0.07 Nickel 30 13 0.5-25 10.6-24.8 37.8 37.3 24.7 34.1<	Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5						24.4
Tron NC 2000 2000-550000 14100-25700 37400 37400 31700 36800 33500 312000 3120000 31200000 31200000 31200000 31200000 31200000 31200000 31200000 31200000 31200000 31200000 312000000000000000000000000000000000000	Cobalt	NC	30	2.5-60	5.3-12.2						
NC 2000 2000-550000 14100-25700 37400 44200 31700 36800 33500 31200	Copper	50	25	1-50	13.4-26.9	42.8					
Lead 63 SB IAX 10.5-00.0 31.5-00.0	Iron	NC	2000	2000-550000	14100-25700	37400					
Magnesum NC SB 160 300 197-875 641 590 580 638 536 536 536 536 51 Manganese 1600 SB 50-5000 197-875 641 590 580 638 536 536 536 51 Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.16 0.17 0.030-J 0.045 0.033-J 0.07 0.045 0.033-J 0.07 Nickel 30 13 0.5-25 10.6-24.8 37.8 37.8 37.3 24.7 34.1 30.4 27 34.1 30.4 27 Potassium NC SB 8500-43000 443-1660 2330 2670 1720 2360 2310 196 Selenium 3.9 2 0.1-3.9 0.44-1.2 0.87-J 0.99-J 0.83-J 0.50-J 0.38-J 0.75-J Silver 2 SB NA 0.16-0.17 <0.47 <0.40 <0.45 <0.45 <0.4 <0.38 <0.44	Lead	63	SB	NA	16.5-60.8	64.5					
Manganese 1600 SB 50-5000 197-875 641 590 580 638 536 51 Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.16 0.17 0.030-J 0.045 0.033-J 0.07 Nickel 30 13 0.5-25 10.6-24.8 37.8 37.3 24.7 34.1 30.4 27. Potassium NC SB 8500-43000 443-1660 2330 2670 1720 2360 2310 196 Selenium 3.9 2 0.1-3.9 0.44-1.2 0.87-J 0.99-J 0.83-J 0.50-J 0.38-J 0.75-J Silver 2 SB NA 0.16-0.17 <0.47	Magnesium	NC	SB	100-5000	2150-13100	7380					
Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.16 0.17 0.030-J 0.045 0.033-J 0.07 0.030-J Nickel 30 13 0.5-25 10.6-24.8 37.8 37.3 24.7 34.1 30.4 27.0 34.1 30.4 27.0 34.1 30.4 27.0 34.1 30.4 27.0 34.1 30.4 27.0 34.1 30.4 27.0 34.1 30.4 27.0 34.1 30.4 27.0 34.1 30.4 30.4 34.1 30.4 30.4 37.0 34.1 30.4 37.0 34.1 30.4 37.0 34.1 30.4 37.0 34.1 30.4 37.0 34.1 30.4 37.0 34.1 30.4 37.0 34.1 30.4 37.0 34.1 30.4 37.0 34.1 30.4 37.0		1600	SB	50-5000	197-875	641					
Nickel 30 13 0.5-25 10.6-24.8 37.8 37.3 24.7 34.1 30.4 27.0 Potassium NC SB 8500-43000 443-1660 2330 2670 1720 2360 2310 196 Selenium 3.9 2 0.1-3.9 0.44-1.2 0.87-J 0.99-J 0.83-J 0.50-J 0.38-J 0.75-J Silver 2 SB NA 0.16-0.17 <0.47		0.18	0.1	0.001-0.2	0.039-0.095	0.16					
Potassium NC SB 8500-43000 443-1660 2330 2670 1720 2360 2310 196 Selenium 3.9 2 0.1-3.9 0.44-1.2 0.87-J 0.99-J 0.83-J 0.50-J 0.38-J 0.75-J Silver 2 SB NA 0.16-0.17 <0.47	Nickel	30	13	0.5-25	10.6-24.8	37.8					
Selentum 3.9 2 0.173.5 0.447.2 0.576 0.586 0.686	Potassium	NC	SB	8500-43000	443-1660	2330	2670				
Silver 2 SB NA 0.16-0.17 <0.47 <0.40 <0.45 <0.4 <0.38 <0.44 Thallium NC SB NA ND-0.67 <2.8	Selenium	3.9	2	0.1-3.9	0.44-1.2	0.87-J	0.99-J				
Triallitin NC 3B IV	Silver	2	SB	NA	0.16-0.17	<0.47	<0.40	<0.45			
Vanadium NC 150 1-300 13.7-24 31.9 29.3 32.8 32.6 28.9 31.	Thallium	NC	SB	NA	ND-0.67	<2.8					
Zinc 109 20 9-50 46-134 96.8 81.4 75.5 95.1 84.8 80.	Vanadium	NC	150	1-300	13.7-24						
	Zinc	109	20	9-50	46-134	96.8	81.4	75.5	95.1	84.8	80.1

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil Cleanup

	Cleanup			10/19/00 00-00-20/						
	Objectives	NYDEC		Site BG			= 4 0 0	EV 0 10	EV C 11	EX-C-12
Metal	(SCOs)	(mg/kg)	East US BG	(mg/kg)	EX-C-07	EX-C-8	EX-C-9	EX-C-10	EX-C-11	
	T				9/28/2005	9/28/2005	9/28/2005			9/28/2005
Aluminum	NC	SB	33000	7080-12800	19900		18400	16900		19200
Antimony	NC	SB	NA	0.2-0.59	<1.7	<1.7	<1.8	<1.4	<1.5	<1.7
Arsenic	13	7.5	3-12	4.3-16.4	9.9		9.1	7.6		9
Barium	350	300	15-600	33-104	101	98.6		94.7	93.9	
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.98		0.85	0.85	0.97	0.95
Cadmium	2.5	1	0-1.75	0.21-0.52	0.35-J	0.24-J		0.29-J	0.38-J	0.42-J
Calcium	NC	SB	130-35000	1280-46600	2840	2450				
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	27.7	31.7	198	24.4	26.1	27.6
Cobalt	NC	30	2.5-60	5.3-12.2	14.8					15.3
Copper	50	25	1-50	13.4-26.9	42.5		44.1	45.2	44.3	
Iron	NC	2000	2000-550000	14100-25700	37000		41100	33300	36900	36800
Lead	63	SB	NA	16.5-60.8	21.5		1150			
Magnesium	NC	SB	100-5000	2150-13100	6400					6780
Manganese	1600	SB	50-5000	197-875	577	559				626
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	0.25				0.020-J	0.061
Nickel	30	13	0.5-25	10.6-24.8	33.3			34.3		
Potassium	NC	SB	8500-43000	443-1660	2240					
Selenium	3.9	2	0.1-3.9	0.44-1.2	0.85-J	0.65-J		0.42-J	0.42-J	0.85-J
Silver	2	SB	NA	0.16-0.17	<0.42	<0.41	<0.46	<0.36	<0.73	<0.42
Thallium	NC	SB	NA	ND-0.67	<2.5	<2.5	<2.7	<2.2	<4.4	<2.5
Vanadium	NC	150	1-300	13.7-24	34.6		30.3			33.6
Zinc	109	20	9-50	46-134	88.6	81.8	82.9	84.7	89.1	87.4

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil Cleanup

E EX-C-9RE 05 10/13/2005 00 14000 <1.7 3.8 8.0 3.4 76.0
05 10/13/2005 00 14000 <1.7 8.8 8.0
00 14000 <1.7 3.8 8.0
<1.7 3.8 8.0
8.8
[.4]/6.0
0.70
97 0.73
<.5
64 <1.7
<.25
.1 1.0
.4 70.6
833 24 15 480 24 733 66 0.2 34 205 0.6

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil Cleanup

	Objectives	NYDEC		Site BG		
Metal	(SCOs)	(mg/kg)	East US BG	(mg/kg)	EX-C-10RE	EX-C-1RE2
Wictai	(0003)	(mg/ng/			10/13/2005	10/27/2005
Aluminum	NC	SB	33000	7080-12800	15800	16100
Antimony	NC	SB	NA	0.2-0.59	<1.7	<1.5
Arsenic	13	7.5	3-12	4.3-16.4	6.3	9.1
Barium	350	300	15-600	33-104	43.6	82
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.62	0.85
Cadmium	2.5	1	0-1.75	0.21-0.52	<.51	0.63
Calcium	NC	SB	130-35000	1280-46600	936	28500
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	20.1	23.6
Cobalt	NC	30	2.5-60	5.3-12.2	7.9	14.7
Copper	50	25	1-50	13.4-26.9	21.3	41.9
Iron	NC	2000	2000-550000	14100-25700	27800	35000
Lead	63	SB	NA	16.5-60.8	10.9	16.7
Magnesium	NC	SB	100-5000	2150-13100	4340	9000
Manganese	1600	SB	50-5000	197-875	274	626
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	<.036	0.049
Nickel	30	13	0.5-25	10.6-24.8	18.8	34.5
Potassium	NC	SB	8500-43000	443-1660	1220	2440
Selenium	3.9	2	0.1-3.9	0.44-1.2	0.50	0.3
Silver	2	SB	NA	0.16-0.17	<.26	0.049
Thallium	NC	SB	NA	ND-0.67	0.98	0.67
Vanadium	NC	150	1-300	13.7-24	29.5	27.8
Zinc	109	20	9-50	46-134	52.0	88.4

NC - NO CRITERIA LISTED

			0.0	0 1100011					
	UNRESTRICTED	NYDEC							
	SOIL CLEANUP	RSCO							
Compound	CRITERIA (SCOs)	(mg/kg)	EX-C-1	EX-C-2	EX-C-3	EX-C-4	EX-C-5	EX-C-6	EX-C-7
			9/28/2005	9/28/2005	9/28/2005		9/28/2005	9/28/2005	9/28/2005
2,4,5-Trichlorophenol	NC	0.1-ADL	<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
2,4-Dichlorophenol	NC		<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
2,4-Dinitrophenol	NC	0.200-ADL	<0.780	<0.780	<0.750				
2,6-Dinitrotoluene	NC		<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
2-Chlorophenol	NC		<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
2-Methylnaphthalene	NC		<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
2-Nitroaniline	NC		<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
2-Nitrophenol	NC		<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
2-methylphenol	NC	0.100-ADL		<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
3-Nitroaniline	NC		<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
4-Chloroaniline	NC	0.220-ADL		<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
4-Nitroaniline	NC	NS	<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
4-Nitrophenol	NC	0.100-ADL	<0.780	<0.780	<0.750				
4-chloro-3-methylphenol	NC	0.240-ADL		<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
4-methylphenol	NC		<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Acenaphthene	20		< 0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Acenaphthylene	100		< 0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Aniline	NC	0.1-ADL		<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Anthracene	100	50.0	< 0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Benzo(a) anthracene	1	0.224-ADL	< 0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Benzo(a) pyrene	1		<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Benzo(b) fluoranthene	1	1.1	< 0.390	< 0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Benzyl Butyl Phthalate	NC	50.0	< 0.390	< 0.390	<0.380	< 0.360	<0.380	<0.370	<0.360
Chrysene	1	0.4	< 0.390	<0.390	<0.380	< 0.360	<0.380	<0.370	<0.360
Dibenz(a,h) Anthracene	0.33	0.014-ADL	<0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Dibenzofuran	NC	6.2	< 0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Diethyl Phthalate	NC	7.1	<0.390	< 0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Dimethyl Phthalate	NC	2.0	< 0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Fluoranthene	100	50.0	< 0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Fluorene	30	50.0	<0.390	< 0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Hexachlorobenzene	NC	0.41		<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Indeno(1,2,3-c,d) Pyrene	0.5	3.2	< 0.390	<0.390	<0.380	<0.360	<0.380	<0.370	<0.360
Isophorone	NC	4.40	< 0.390	< 0.390	<0.380	< 0.360	<0.380	<0.370	<0.360
Naphthalene	12	13.0	<0.390	< 0.390	<0.380	< 0.360	<0.380	<0.370	<0.360
Nitrobenzene	NC	0.200-ADL	<0.390	< 0.390	<0.380	< 0.360	<0.380	<0.370	<0.360
Pentachlorophenol	0.8	1.0	<0.780	<0.780	< 0.750	< 0.710	< 0.770		
Phenanthrene	100	50.0	< 0.390	<0.390	<0.380	< 0.360	<0.380	<0.370	<0.360
Phenol	0.33	0.03-ADL		< 0.390	<0.380	<0.360	<0.380	< 0.370	<0.360
Pyrene	100		< 0.390	<0.390	<0.380	<0.360	<0.380	<0.370	< 0.360
bis(2-ethylhexyl) phthalate	NC	50.0		0.370-J	<0.380	<0.360	0.38	0.051-J	0.036-J
di-n-Butyl Phthalate	NC	8.1		<0.390	<0.380	<0.360	<0.380	<0.370	< 0.360
di-n-Octyl Phthalate	NC	50.0	< 0.390	<0.390	<0.380	< 0.360	< 0.380	< 0.370	< 0.360

NYDEC UNRESTRICTED **RSCO** SOIL CLEANUP EX-C-13 EX-C-12 EX-C-10 EX-C-11 (mg/kg) EX-C-8 EX-C-9 **CRITERIA (SCOs)** Compound 9/28/2005 | 9/28/2005 9/28/2005 9/28/2005 9/28/2005 9/28/2005 < 0.390 < 0.390 < 0.360 < 0.430 < 0.390 0.1-ADL < 0.400 NC 2,4,5-Trichlorophenol < 0.390 < 0.360 < 0.390 < 0.430 < 0.390 0.4 < 0.400NC 2,4-Dichlorophenol < 0.790 < 0.770 < 0.860 < 0.770 < 0.710 0.200-ADL < 0.800 NC 2,4-Dinitrophenol < 0.390 < 0.390 < 0.390 < 0.360 1.0 < 0.400 < 0.430 NC 2.6-Dinitrotoluene < 0.390 < 0.390 < 0.360 < 0.390 NC 0.8 < 0.400 < 0.430 2-Chlorophenol < 0.390 < 0.360 < 0.390 36.4 < 0.400 < 0.430 < 0.390 NC 2-Methylnaphthalene < 0.390 < 0.390 < 0.390 < 0.360 < 0.430 0.430 < 0.400NC 2-Nitroaniline < 0.390 < 0.360 < 0.390 < 0.430 < 0.390 0.330 < 0.400 NC 2-Nitrophenol < 0.390 < 0.390 < 0.430 < 0.390 < 0.360 0.100-ADL < 0.400 NC 2-methylphenol < 0.390 < 0.390 < 0.360 0.500 < 0.400 < 0.430 < 0.390 NC 3-Nitroaniline < 0.390 < 0.390 < 0.390 < 0.360 0.220-ADL < 0.400 < 0.430 NC 4-Chloroaniline < 0.390 < 0.390 < 0.360 < 0.430 < 0.390 NC NS < 0.400 4-Nitroaniline < 0.770 < 0.710 < 0.790 < 0.770 0.100-ADL < 0.800 < 0.860 NC 4-Nitrophenol < 0.390 < 0.360 < 0.390 < 0.430 < 0.390 0.240-ADL < 0.400 NC 4-chloro-3-methylphenol < 0.390 < 0.390 < 0.390 < 0.360 < 0.430 0.9 < 0.400NC 4-methylphenol < 0.390 < 0.390 50.0 < 0.400 < 0.430 < 0.390 < 0.360 20 Acenaphthene <0.390 < 0.360 < 0.390 41.0 < 0.400 < 0.430 < 0.390 100 Acenaphthylene < 0.390 < 0.390 < 0.360 NC 0.1-ADL < 0.400 < 0.430 < 0.390 Aniline < 0.390 < 0.390 < 0.360 < 0.430 < 0.390 100 50.0 < 0.400 Anthracene < 0.390 < 0.390 < 0.360 < 0.390 0.224-ADL < 0.400 < 0.430 1 Benzo(a) anthracene < 0.390 < 0.360 < 0.390 < 0.390 < 0.430 0.061-ADL < 0.400 1 Benzo(a) pyrene < 0.390 < 0.390 < 0.390 < 0.360 < 0.430 1 1.1 < 0.400 Benzo(b) fluoranthene < 0.390 < 0.360 < 0.390 50.0 < 0.400 < 0.430 < 0.390 NC Benzyl Butyl Phthalate < 0.390 < 0.390 < 0.360 0.4 < 0.400< 0.430 < 0.390 1 Chrysene < 0.390 < 0.390 < 0.430 < 0.390 < 0.360 0.33 0.014-ADL < 0.400 Dibenz(a,h) Anthracene < 0.390 < 0.360 < 0.390 < 0.430 6.2 < 0.400 < 0.390 NC Dibenzofuran < 0.360 < 0.390 < 0.390 < 0.430 < 0.390 7.1 < 0.400 NC Diethyl Phthalate < 0.390 < 0.390 < 0.360 < 0.390 < 0.430 2.0 < 0.400 NC Dimethyl Phthalate < 0.390 < 0.390 < 0.430 < 0.390 < 0.360 50.0 < 0.400 100 Fluoranthene < 0.390 < 0.360 < 0.390 50.0 < 0.400 < 0.430 < 0.390 30 Fluorene < 0.390 < 0.390 < 0.360 NC 0.41 < 0.400 < 0.430 < 0.390 Hexachlorobenzene < 0.390 < 0.390 < 0.360 < 0.430 < 0.390 0.5 3.2 < 0.400 Indeno(1,2,3-c,d) Pyrene < 0.390 < 0.390 < 0.360 < 0.390 4.40 < 0.400 < 0.430 NC Isophorone < 0.360 < 0.390 < 0.390 13.0 < 0.400 < 0.430 < 0.390 12 Naphthalene < 0.390 < 0.360 < 0.390 < 0.430 < 0.390 NC 0.200-ADL < 0.400 Nitrobenzene < 0.710 < 0.790 < 0.770 < 0.800 < 0.860 < 0.770 0.8 1.0 Pentachlorophenol < 0.390 < 0.390 < 0.360 50.0 < 0.400 < 0.430 < 0.390 100 Phenanthrene < 0.390 < 0.390 < 0.390 < 0.360 0.33 0.03-ADL < 0.400 < 0.430 Phenol < 0.390 < 0.390 < 0.360 < 0.390 50 < 0.400 < 0.430 100 Pvrene < 0.360 < 0.390 < 0.390 0.040-J 50.0 < 0.400 < 0.430 NC bis(2-ethylhexyl) phthalate < 0.390 < 0.390 < 0.360 < 0.390 < 0.430 8.1 < 0.400 NC di-n-Butyl Phthalate < 0.390 < 0.390 < 0.430 < 0.390 < 0.360 50.0 < 0.400 NC di-n-Octyl Phthalate

NYSDEC PART 375 UNRESTRICTED

SOIL CLEANUP NYDEC OBJECTIVES RSCO

	OBJECTIVES	naco			2222 12332		=v o =	
Compound	(SCOs)	(mg/kg)	EX-C-1	EX-C-2	EX-C-3	EX-C-4	EX-C-5	
			9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	
1,1,1,-Trichloroethane	0.68	0.8	< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
1,1,2,2-Tetrachloroethane	NC	0.6	< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
1,1,2-Trichloroethane	NC	NS	< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
1,1-Dichloroethane	0.27	0.2	< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
1,1-Dichloroethene	0.33	1 1100	<0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
1,2-Dichlorobenzene	1.1	7.9	< 0.0059	<0.0058	<0.0056	< 0.0053	<0.0057	
1,2-Dichloroethane	0.02		< 0.0059	<0.0058	<0.0056	< 0.0053	<0.0057	
1,3-Dichlorobenzene	2.4	1.6	<0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
1,3-Dichloropropane	NC		< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
1,4-Dichlorobenzene	1.8	8.5	<0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
trans-1,2 Dichloroethene	0.19	0.3	< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
2-Butanone (MEK)	0.12	0.3	< 0.012	< 0.012				
4-Methyl-2-Pentanone (MIBK)	NC	1	< 0.012	< 0.012				
Acetone	0.05	0.2	< 0.012	< 0.012	<0.011			
Benzene	0.06	0.06	< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
Bromomethane	NC	NS	< 0.012	< 0.012	< 0.011			
Carbon Disulfide	NC	2.7	< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
Carbon Tetrachloride	0.76	0.6	< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
Chlorobenzene	1.1		< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
Chloroethane	NC	1.9						
Chloroform	0.37	0.3	<0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
Chloromethane	NC	NS	< 0.012	< 0.012	<0.011			
Dibromochloromethane	NC	NS	<0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
Ethylbenzene	1	5.5	< 0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
Freon 113	NC	6	<0.0059	<0.0058	<0.0056	<0.0053	<0.0057	
Methylene Chloride	0.05	0.1	0.0034-J	0.0027-J	0.0058	0.0046-J	0.005-J	
Styrene	NC	NS	<5.9-U	<0.0058	<0.0056	<0.0053	<0.0057	
Tetrachloroethene	1.3	1.4	<5.9-U	<0.0058	<0.0056	<0.0053	<0.0057	
Toluene	0.7	1.5	<5.9-U	<0.0058	<0.0056	<0.0053	<0.0057	
Trichloroethene	0.47	0.7	<5.9-U	<0.0058	<0.0056	<0.0053	<0.0057	
Vinyl Chloride	0.02	0.2			<0.011		0.013	
Xylenes	0.26	1.2	<5.9-U	<0.0058	<0.0056	<0.0053	<0.0057	

NYSDEC PART 375

UNRESTRICTED

SOIL CLEANUP NYDEC OBJECTIVES RSCO

Compound	(SCOs)	(mg/kg)	EX-C-6	EX-C-7	EX-C-8	EX-C-9	EX-C-10	EX-C-11
			9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005
1,1,1,-Trichloroethane	0.68	0.8	<0.0055	< 0.0054	<0.006	<0.0065	<0.0058	<0.0054
1.1.2.2-Tetrachloroethane	NC	0.6	<0.0055	< 0.0054	< 0.006	<0.0065	<0.0058	<0.0054
1,1,2-Trichloroethane	NC	NS	<0.0055	< 0.0054	<0.006	<0.0065	<0.0058	<0.0054
1,1-Dichloroethane	0.27	0.2	<0.0055	< 0.0054	< 0.006	<0.0065	<0.0058	<0.0054
1,1-Dichloroethene	0.33		<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
1,2-Dichlorobenzene	1.1	7.9	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
1,2-Dichloroethane	0.02		<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
1.3-Dichlorobenzene	2.4	1.6	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
1,3-Dichloropropane	NC		<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
1,4-Dichlorobenzene	1.8	8.5	<0.0055	< 0.0054	<0.006	<0.0065	<0.0058	<0.0054
trans-1,2 Dichloroethene	0.19	0.3	<0.0055	< 0.0054	<0.006	<0.0065	<0.0058	<0.0054
2-Butanone (MEK)	0.12	0.3	< 0.011	< 0.011	< 0.012	< 0.013		
4-Methyl-2-Pentanone (MIBK)	NC	1	< 0.011	<0.011	< 0.012	<0.013		
Acetone	0.05	0.2	< 0.011	< 0.011	<0.012	<0.013		
Benzene	0.06	0.06	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Bromomethane	NC	NS	<0.011	<0.011	<0.012	<0.013		
Carbon Disulfide	NC	2.7	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Carbon Tetrachloride	0.76	2000/0000	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Chlorobenzene	1.1	1.7	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Chloroethane	NC	1.9		<0.011		<0.013		
Chloroform	0.37	0.3	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Chloromethane	NC	NS	<0.011	<0.011	<0.012			
Dibromochloromethane	NC	NS	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Ethylbenzene	1	5.5	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Freon 113	NC	6	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Methylene Chloride	0.05	0.1		0.0032-J	0.0027-J	0.0033-J	0.0037-J	0.0054
Styrene	NC	NS	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Tetrachloroethene	1.3	1.4	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Toluene	0.7		<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Trichloroethene	0.47	0.7	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054
Vinyl Chloride	0.02	0.2		0.013	0.012	0.012-J	0.012	0.014
Xylenes	0.26	1.2	<0.0055	<0.0054	<0.006	<0.0065	<0.0058	<0.0054

Table 9 **Area C Confirmation** Pesticide, PCB, Herbicide Results

NYSDEC PART 375 UNRESTRICTED **SOIL CLEANUP**

NYDEC **RSCO**

	OBJECTIVES	RSCO									
Compound	(SCOs)	(ug/kg)	EX-C-1	EX-C-2	EX-C-3	EX-C-4	EX-C-5	EX-C-6	EX-C-7	EX-C-8	EX-C-9
			9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005
4,4-DDD	3.3	2900	0.30	0.29	0.84	<1.8	0.50	2.0	<1.8	<2.0	<2.2
4,4-DDE	3.3	2100	<2.0	<1.9	0.82	<1.8	<1.9	1.7	2.1	<2.0	<2.2
4,4-DDT	3.3	2100	<2.0	<1.9	0.24	<1.8	0.26	5.1	<1.8	<2.0	<2.2
Aldrin	5	41.0	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Alpha-BHC	20	11.0	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Beta-BHC	36	200	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Chlordane	94	540	<39	<39	<38	<36	<38	<37	<36	<40	<43
Delta-BHC	40	300	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Dieldrin	5	44.0	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Endosulfan I	2400	900	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Endosulfan II	2400	900	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Endosulfan Sulfate	NC	1000	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Endrin	14	100	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Gamma-BHC (Lindane)	NC	60.0	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Heptachlor	42	100	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Heptachlor Epoxide	NC	20.0	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
Methoxychlor	NC	NS	<2.0	<1.9	<1.9	<1.8	<1.9	<1.8	<1.8	<2.0	<2.2
PCB-1016	100	1000	<20	<19	<19	<18	<19	<18	<18	<20	<22
PCB-1221	100	1000							<18	_	
PCB-1232	100	1000							<18		
PCB-1242	100	1000	<20	<19					<18		
PCB-1248	100	1000		<19			<19	<18	<18	<20	<22
PCB-1254	100	1000							<18	<20	<22 <22
PCB-1260	100	1000	<20	<19	<19	<18	<19	<18	<18	<20	
2,4,5-T	NC	1900	<120	<120	<110	<110	<120	<110	<110	<120	<130
2,4,5-TP (Silvex)	3.8	700							<110	<120	
2,4-D	NC	500							<110		

Table 9 Area C Confirmation Pesticide, PCB, Herbicide Results

NYSDEC PART 375 UNRESTRICTED

SOIL CLEANUP

NYDEC RSCO

	OBJECTIVES	RSCO						
Compound	(SCOs)	(ug/kg)	EX-C-8	EX-C-9	EX-C-10	EX-C-11	EX-C-12	EX-C-13
			9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005
4,4-DDD	3.3	2900	<2.0	<2.2	<1.9	<1.8	<2.0	0.76
4,4-DDE	3.3	2100	<2.0	<2.2	<1.9	<1.8	<2.0	1.4
4,4-DDT	3.3	2100		<2.2	<1.9	<1.8	<2.0	0.74
Aldrin	5	41.0	<2.0	<2.2	<1.9	<1.8	<2.0	<1.9
Alpha-BHC	20	11.0	<2.0	<2.2	<1.9	<1.8	<2.0	<1.9
Beta-BHC	36	200	<2.0	<2.2	<1.9	<1.8	<2.0	<1.9
Chlordane	94	540						
Delta-BHC	40	300	<2.0	<2.2	<1.9	<1.8	<2.0	<1.9
Dieldrin	5	44.0		<2.2	<1.9	<1.8	<2.0	<1.9
Endosulfan I	2400	900	<2.0	<2.2	<1.9	<1.8	<2.0	<1.9
Endosulfan II	2400	900		<2.2	<1.9	<1.8	<2.0	<1.9
Endosulfan Sulfate	NC		<2.0	<2.2	<1.9	<1.8	<2.0	<1.9
Endrin	14	100	<2.0	<2.2	<1.9	<1.8	<2.0	<1.9
Gamma-BHC (Lindane)	NC	60.0		<2.2	<1.9	<1.8	<2.0	<1.9
Heptachlor	42		<2.0	<2.2	<1.9	<1.8	<2.0	<1.9
Heptachlor Epoxide	NC	20.0	<2.0	<2.2	<1.9	<1.8	<2.0	<1.9
Methoxychlor	NC	NS	<2.0	<2.2	<1.9	<1.8	<2.0	<1.9
PCB-1016	100	1000	<20	<22	<19	<18		
PCB-1221	100	1000	<20	<22	<19	<18		
PCB-1232	100	1000	<20	<22	<19		<20	
PCB-1242	100	1000	<20	<22	<19	<18	<20	
PCB-1248	100	1000	<20	<22	<19	<18		
PCB-1254	100	1000	<20		<19			
PCB-1260	100	1000	<20	<22	<19	<18	<20	<19
2,4,5-T	NC	1900	<120	<130	<120	<110		
2,4,5-TP (Silvex)	3.8	700	<120	<130	<120	<110	<120	
2,4-D	NC	500	<120	<130	<120	<110	<120	<120

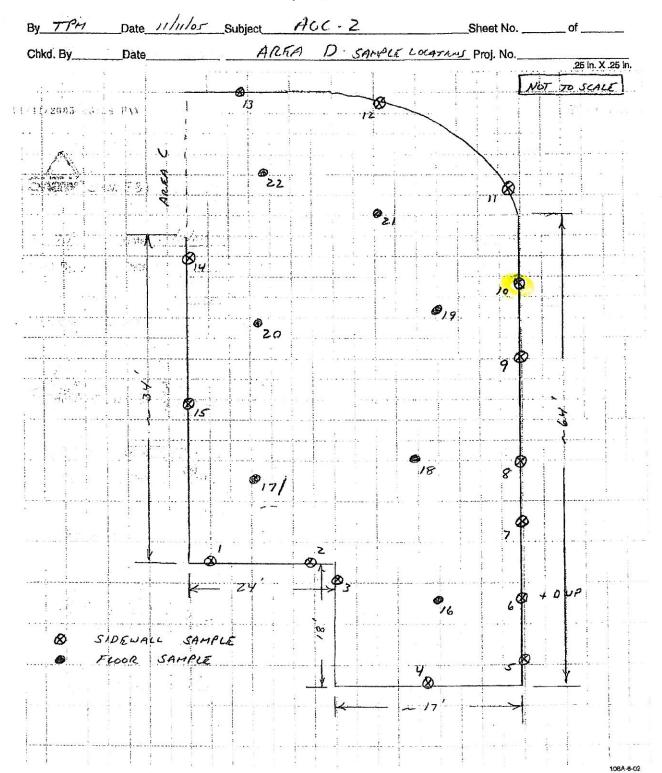
APPENDIX 4 AREA D, TABLES 14 THROUGH 17 / POSTEXCAVATION ANALYSES OF SOILS

AREA D – POST EXCAVATION SOIL ANALYSIS SUMMARY

FSADVA AOC #2

All post-excavation soil analyses met the unrestricted NYSDEC Part 375 standards for metals (except nickel and one exceedance of chromium at excavation sidewall location EX-D-14). The nickel results were found to range between 31.3 mg/kg and 43.7 mg/kg in 5 locations; a data analysis memorandum, at Appendix 8, notes that nickel appears to be background condition for nearby areas B,C and F on the property. The slightly elevated result for chromium (35.1 mg/kg vs. unrestricted standard of 30 mg/kg) at location EX-D-14 meets the Part 375 residential standard of 36 mg/kg.

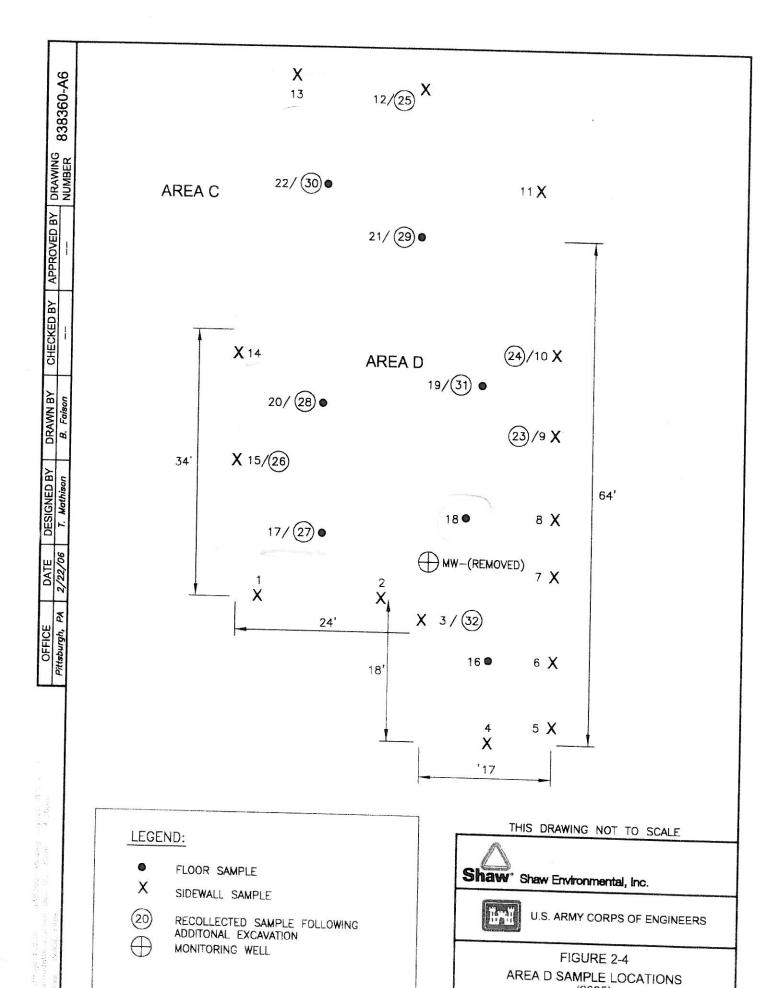
All post-excavation soil analyses met the unrestricted NYSDEC Part 375 standards for SVOCs and pesticides.


All post-excavation soil analyses met the unrestricted NYSDEC Part 375 standards for VOCs, with the following exceptions:

- Before re-excavation took place at EX-D-10, acetone was found at 0.15 mg/kg, vs. the unrestricted SCO of 0.05 mg/kg; however, the re-excavated area was not re-tested for acetone since the previous TAGM value was met. This result is well within the current residential standard of 100 mg/kg.
- Before re-excavation took place at EX-D-12, xylenes were found at 2.8 mg/kg, vs. the unrestricted SCO of 0.26 mg/kg, however, the re-excavated area was not re-tested for xylenes. This result, however, is well within the current residential standard of 100 mg/kg for xylenes.
- Xylenes at 0.61 mg/kg were found at the floor of the excavation (sample location EX-D-18), exceeding the unrestricted SCO of 0.26 mg/kg, however, within the current residential standard of 100 mg/kg.
- Xylenes at 1.03 mg/kg were found at the floor of the excavation (sample location EX-D-27), exceeding the unrestricted SCO of 0.26 mg/kg, however, within the current residential standard of 100 mg/kg.

The post-excavation summary tables and sampling location sketches follow in this appendix.

Figure 1
Original Jaryphe LOCUTIONS
11/02/2005


Figure 2

SAMPLINE FOLLOWING OVER- EXCURPTION METALS ONLY - 11/11/2005

Date 11/11/05 Subject ACC - 2 Sheet No. of By TPH ARRA D. SAMPLE LOCATIONS Proj. No. Chkd. By_ Date TO SCALE 11:15,2003 - 0:14 PAN (3/26 8 40 SIDEWALL SAMPLE O sample above consenus
on 11/2/05 effort
(oxchaine Nichel only)

	Figure.	3		
Shaw Shaw E&I Rojamel	ed Followalk as	DITION AL (emound	
11/21/200	ed Followalk AS	-Y		
By TPM Date 11/11/05 SI	ubjectACC-2		neet No of _	
Chkd. By Date	ARRA D'SAM	PLE LOCATEUS F	roj. No	in. X .25 ln.
	8	a	NOT TO	SCALE
11/16/2005 (2014 PAX	12)	25,1		AND E
Charles Con 19 and	E2/30		,,&	
		E)/29		
8,4				
74			+//,0	
		€Ø /31		
	*E9/28	enter este manta se este a consecutivo de la consecutivo de la consecutivo de la consecutivo de la consecutivo	i3/19 &	
33			3,/9	
7 815/16;			3	
			,	
	* (2/12)	18	8	
	1= 0			
			7	! ! !*********************************
	* 1 de /22			
	29 130	9 16	600 + 000	
SIDEWALL SAMPLE	7,8			
FLOOR SAMPLE	Y July	y _a	-8	
(7) Sample above custer		17' -		
(25.) Samplel 11/11/05 F	on metals			
11 0 1000 4000	C Chutener			

(2005)

FORMER SCHENECTADY ARMY DEPOT - AOC2
SCHENECTADY, NEW YORK

375
Unrestricted
Soil Cleanup

Objectives **NYDEC** Site BG EX-D-6 EX-D-7 EX-D-4 EX-D-5 EX-D-3 EX-D-1 EX-D-2 East US BG (mg/kg) (SCOs) (mg/kg) Metal 11/2/2005 11/2/2005 11/2/2005 11/2/2005 11/2/2005 11/2/2005 11/2/2005 16200 15700 15600 17100 18300 16700 33000 7080-12800 18600 Aluminum NC SB <1.8 <1.4 <1.7 <1.7 <1.5 0.2-0.59 <1.7 SB NA <1.8 Antimony NC 5.9 9.4 6.2 5.8 10.3 6.5 9.3 7.5 3-12 4.3-16.4 Arsenic 13 51.6 47.6 51.9 81.7 68.2 61.8 120 33-104 300 15-600 Barium 350 0.69 0.69 0.66 0.93 0.7 0.73 0.38-0.67 7.2 0.16 0 - 1.75Bervllium 0.38-J 0.45-J 0.37-J 0.48-J 0.45-J 0.66 0.42-J 0.21-0.52 0-1.75 2.5 Cadmium 1170 1260 1360 1580 1600 3230 2720 1280-46600 SB 130-35000 NC Calcium 19.4 19 26.3 20.8 26.8 21.3 25.1 30 (TRIVALENT) 9.3-17.5 10 1.5-40 Chromium 8.7 9.4 8.8 11 5.3-12.2 14.3 11.6 13.8 30 2.5-60 Cobalt NC 17.1 17.5 17.6 42.5 37.1 13.4-26.9 40.6 24.1 25 1-50 50 Copper 26800 26000 30000 31300 37700 39300 2000-550000 14100-25700 42500 NC 2000 Iron 13.4 12.5 17.5 18.1 19.8 16.9 NA 16.5-60.8 18.4 SB 63 Lead 4020 4000 6070 4360 6750 5030 SB 100-5000 2150-13100 6580 NC Magnesium 425 365 292 560 583 540 SB 50-5000 197-875 444 1600 Manganese 0.047 0.04 0.069 0.028-J 0.074 0.082 0.038 0.039-0.095 0.1 0.001-0.2 0.18 Mercury 19 17.4 19.5 22.2 43.7 25.6 31.3 13 0.5-25 10.6-24.8 Nickel 30 1040 1120 1060 1530 1850 1080 1770 NC SB 8500-43000 443-1660 Potassium 0.90-J 1.1-J 1.2-J 1.4-J 0.95-J 0.13-J 1.5-J 3.9 2 0.1 - 3.90.44-1.2 Selenium < 0.39 < 0.36 < 0.42 1.8 < 0.42 < 0.43 0.16-0.17 < 0.45 2 SB NA Silver <2.5 0.50-J <2.7 < 0.21 0.50-J 0.67-J < 2.5 ND-0.67 Thallium NC SB NA 29.8 30.3 27.8 28.3 28.7 29 31.4 150 1-300 13.7-24 Vanadium NC 57.5 81.6 61.2 60.7 91.7 70.8 91.8 46-134 20 9-50 Zinc 109

NC - NO CRITERIA LISTED

375 Unrestricted Soil Cleanup

	Soil Cleanup										
	Objectives	NYDEC		Site BG			=W D 40	EV D 44	EV D 10	EX-D-13	EX-D-14
Metal	(SCOs)	(mg/kg)	East US BG	(mg/kg)	EX-D-8	EX-D-9	EX-D-10	EX-D-11	EX-D-12		
					11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005
Aluminum	NC	SB	33000	7080-12800	15800	14500	17400	17100	17300	19600	27300
Antimony	NC	SB	NA	0.2-0.59	<1.6	<1.6	<1.7	<1.8	<1.7	<1.8	<2.4
Arsenic	13	7.5	3-12	4.3-16.4	6.2	5.1	7.8	6.5	6.5	11.1	11.1
Barium	350	300	15-600	33-104	60.6	55.2	75.5	63.1	72.2	111	90
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.7	0.63	0.86	0.73	0.8	1.4	1
Cadmium	2.5	1	0-1.75	0.21-0.52	0.42-J	0.40-J	0.5	0.44-J	0.48-J	0.4-J	0.46-J
Calcium	NC	SB	130-35000	1280-46600	1040	1390	1600	3430	2210	1860	2240
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	19	17.8	23.4	21.4	26.7	26.9	35.1
Cobalt	NC NC	30	2.5-60	5.3-12.2	11.4	8.8	14.7	10.6	14.2	41.1	15.2
Copper	50	25	1-50	13.4-26.9	17.5	17.8	30.8	22.7	61.5	48.7	42.9
Iron	NC	2000	2000-550000	14100-25700	27600	23500	34000	29300	30300	40600	49600
Lead	63	SB	NA	16.5-60.8	18.4	14.8	18	15	39	18.4	20.9
Magnesium	NC	SB	100-5000	2150-13100	4060	3870	5340	4870	5230	6900	7820
Manganese	1600	SB	50-5000	197-875	686	598	763	435	503	880	709
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	0.052	0.19	0.17	0.04	7.7	0.38-J	0.086
Nickel	30	13	0.5-25	10.6-24.8	17.8	17.7	27.2	21.9	26.4	40.3	34.8
Potassium	NC	SB	8500-43000	443-1660	877	958	1370	1240	1510	1710	1900
Selenium	3.9	2	0.1-3.9	0.44-1.2	0.86-J	1.0-J	1.2-J	1.1-J	0.98-J	<3.6	1.7-J
Silver	2	SB	NA NA	0.16-0.17	<0.4	< 0.39	<0.42	< 0.46	< 0.42	<0.9	<0.61
Thallium	NC NC	SB	NA	ND-0.67	<2.4	<2.3	<2.5	<2.7	<2.5	1.3-J	0.67-J
Vanadium	NC NC	150	1-300	13.7-24	29.2	25.4	29.8	29.4	29.2	31.7	45.2
Zinc	109	20	9-50	46-134	66.8	58.6	77.4	67.2	74.5	106	101
ZITIC	109	20	0.00	10101	55.0		75 FLOTISE				

NC - NO CRITERIA LISTED

375
Unrestricted
Soil Cleanup

Metal Objectives (gCOs) NYPEC (mg/kg) East US BG East US BG Ex-D-15 (mg/kg) EX-D-16 EX-D-15 EX-D-16 EX-D-16 EX-D-18 EX-D-18 EX-D-19 EX-D-20 Duplicate Duplicate Aluminum NC SB 33000 7080-12800 16300 11/2/2005		Soil Cleanup	NVDEC		Site BG							EX-D-
Michael Mich	14-4-1			Fact IIS RG		FX-D-15	EX-D-16	EX-D-17	EX-D-18	EX-D-19	EX-D-20	Duplicate_
Aluminum	Metai	(SCUS)	(IIIg/kg)	Last 03 Du	(mg/kg/			11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005
Antimony NC SB NA 0.2-0.59 <1.5 <1.7 <1.5 <1.8 <1.6 <1.7 <1.5	Aluminum	NC	SB	33000	7080-12800			15400	15200	17900	18600	15700
Arsenic 13 7.5 3-12 4.3-16.4 6.4 9.3 8.6 8.4 9.3 7.9 6.1 Barium 350 300 15-600 33-104 78.7 82.3 74.6 72.6 129 83.4 77 Beryllium 7.2 0.16 0-1.75 0.38-0.67 0.86 0.87 0.79 0.77 0.97 0.82 0.72 Cadmium 2.5 1 0-1.75 0.21-0.52 0.53 0.56 0.58 0.59 0.52 0.42-J 0.35-J Calcium NC SB 130-35000 1280-46600 2780 27400 28700 30500 2160 5560 1840 Chromium 30 (TRIVALENT) 10 1.5-40 9.3-17.5 24.8 23.7 23 22.8 25.7 26.7 20.3 Cobalt NC 30 2.5-60 5.3-12.2 13.7 17.4 15.9 14.6 14.9 13.8 10.4 Copper 50 25 1-50 13.4-26.9 43.8 45.3 44.1 37.6 41.7 71 23.5 Inn NC 2000 2000-550000 14100-25700 34300 34600 34300 38600 36000 28000 Lead 63 SB NA 16.5-60.8 15.7 17.9 16.4 15.3 16.8 44.6 13.3 Magnesium NC SB 100-5000 2150-13100 7490 9030 8860 8740 6930 6120 4830 Manganese 1600 SB 50-5000 197-875 387 829 668 639 705 379 462 Manganese 1600 SB 50-5000 197-875 387 829 668 639 705 379 462 Manganese 1600 SB 50-5000 197-875 387 829 668 639 705 379 462 Manganese NC SB 8500-43000 443-1660 1880 2200 2070 1990 1910 1650 1310 NC SB 8500-43000 443-1660 1880 2200 2070 1990 1910 1650 1310 NC SB NA 0.16-0.17 <0.38 -0.44 -0.20 0.03 -0.55 -0.55 0.21 0.055 -0.55 0.21 0.055 -0.55 0.21 0.055 -0.55 0.21 0.055 -0.55 0.21 0.055 -0.55 0.21 0.055 -0.55 0.21 0.055 -0.55 0.25 0.055 0.05 0.05 0.05 0.05 0.05								<1.5	<1.8	<1.6	<1.7	<1.5
Assemble 13								8.6	8.4	9.3	7.9	6.1
Bartlim									72.6	129	83.4	77
Cadmium Cadm										0.97	0.82	0.72
Cathrith 2.3 1 0 1.75 287 2780 2780 27400 28700 30500 2160 5560 1840 Calcium NC SB 130-35000 1280-46600 2780 27400 28700 30500 2160 5560 1840 Chromium 30 (TRIVALENT) 10 1.5-40 9.3-17.5 24.8 23.7 23 22.8 25.7 26.7 20.3 Cobalt NC 30 2.5-60 5.3-12.2 13.7 17.4 15.9 14.6 14.9 13.8 10.4 Copper 50 25 1-50 13.4-26.9 43.8 45.3 44.1 37.6 41.7 71 23.5 Iron NC 2000 2000-550000 14100-25700 34300 35400 34600 34600 36600 28000 Lead 63 SB NA 16.5-60.8 15.7 17.9 16.4 15.3 16.8 44.6 13.3			1						0.59	0.52	0.42-J	0.35-J
Calcititin NC SB 186 6000 185 100 Chromium 30 (TRIVALENT) 10 1.5-40 9.3-17.5 24.8 23.7 23 22.8 25.7 26.7 20.3 Cobalt NC 30 2.5-60 5.3-12.2 13.7 17.4 15.9 14.6 14.9 13.8 10.4 Copper 50 25 1-50 13.4-26.9 43.8 45.3 44.1 37.6 41.7 71 23.5 Iron NC 2000 2000-550000 14100-25700 34300 35400 34600 34300 38600 36000 28000 Lead 63 SB NA 16.5-60.8 15.7 17.9 16.4 15.3 16.8 44.6 13.3 Magnesium NC SB 100-5000 2150-13100 7490 9030 8860 8740 6930 6120 4830 Marguesium NC SB 50-5000 197-875 387 <t< td=""><td></td><td></td><td>CD CD</td><td></td><td></td><td></td><td></td><td></td><td>30500</td><td>2160</td><td>5560</td><td>1840</td></t<>			CD CD						30500	2160	5560	1840
Chromitim 30 (TRIVALENT) 10 1.3-40 3.0-11.2 21.5 25.6 14.9 13.8 10.4 Cobalt NC 30 2.5-60 5.3-12.2 13.7 17.4 15.9 14.6 14.9 13.8 10.4 Copper 50 25 1-50 13.4-26.9 43.8 45.3 44.1 37.6 41.7 71 23.5 Iron NC 2000 2000-550000 14100-25700 34300 34600 34300 38600 36000 28000 Lead 63 SB NA 16.5-60.8 15.7 17.9 16.4 15.3 16.8 44.6 13.3 Magnesium NC SB 100-5000 2150-13100 7490 9030 8860 8740 6930 6120 4830 Marganese 1600 SB 50-5000 197-875 387 829 668 639 705 379 462 Mercury 0.18 0.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>22.8</td> <td>25.7</td> <td>26.7</td> <td>20.3</td>									22.8	25.7	26.7	20.3
Cobalt NC 30 2.5-60 3.3-12.2 17.7 17.7 17.7 23.5 Copper 50 25 1-50 13.4-26.9 43.8 45.3 44.1 37.6 41.7 71 23.5 Iron NC 2000 2000-550000 14100-25700 34300 35400 34300 38600 36000 28000 Lead 63 SB NA 16.5-60.8 15.7 17.9 16.4 15.3 16.8 44.6 13.3 Magnesium NC SB 100-5000 2150-13100 7490 9030 8860 8740 6930 6120 4830 Manganese 1600 SB 50-5000 197-875 387 829 668 639 705 379 462 Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.21 0.037 0.11 0.030-J 0.049 0.72 0.034-J Nickel 30 13 0.5-25 <td></td> <td>13.8</td> <td>10.4</td>											13.8	10.4
Copper 50 25 1-50 13.4-26.9 43.6 43.5 44.7 37.6 37.0 3800 36000 28000 Iron NC 2000 2000-550000 14100-25700 34300 35400 34600 34300 38600 36000 28000 Lead 63 SB NA 16.5-60.8 15.7 17.9 16.4 15.3 16.8 44.6 13.3 Magnesium NC SB 100-5000 2150-13100 7490 9030 8860 8740 6930 6120 4830 Manganese 1600 SB 50-5000 197-875 387 829 668 639 705 379 462 Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.21 0.037 0.11 0.030-J 0.049 0.72 0.034-J Nickel 30 13 0.5-25 10.6-24.8 37.9 37.9 35 34.5 45 28.8 <t< td=""><td>Cobalt</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>23.5</td></t<>	Cobalt											23.5
Iron NC 2000 2000-350000 14100-25700 34300 54500 54800	Copper										Company of the Compan	
Lead 63 SB NA 16.5-00.8 13.7 17.3 18.5 18.6 6930 6120 4830 Magnesium NC SB 100-5000 2150-13100 7490 9030 8860 8740 6930 6120 4830 Manganese 1600 SB 50-5000 197-875 387 829 668 639 705 379 462 Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.21 0.037 0.11 0.030-J 0.049 0.72 0.034-J Nickel 30 13 0.5-25 10.6-24.8 37.9 37.9 35 34.5 45 28.8 22.8 Potassium NC SB 8500-43000 443-1660 1880 2200 2070 1990 1910 1650 1310 Selenium 3.9 2 0.1-3.9 0.44-1.2 0.97-J 0.82-J 0.80-J 0.75-J 1.2-J 1.2-J 1.	Iron	NC	2000	2000-550000								
Magnesium NC SB 100-5000 2130-13100 7430 300 30 197-875 387 829 668 639 705 379 462 Manganese 1600 SB 50-5000 197-875 387 829 668 639 705 379 462 Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.21 0.037 0.11 0.030-J 0.049 0.72 0.034-J Nickel 30 13 0.5-25 10.6-24.8 37.9 35 34.5 45 28.8 22.8 Nickel 30 13 0.5-25 10.6-24.8 37.9 35 34.5 45 28.8 22.8 Potassium NC SB 8500-43000 443-1660 1880 2200 2070 1990 1910 1650 1310 Selenium 3.9 2 0.1-3.9 0.44-1.2 0.97-J 0.82-J 0.80-J 0.75-J <td< td=""><td>Lead</td><td>63</td><td>SB</td><td>NA</td><td>16.5-60.8</td><td>15.7</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Lead	63	SB	NA	16.5-60.8	15.7						
Manganese 1600 SB 50-5000 197-875 387 829 668 639 705 379 402 Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.21 0.037 0.11 0.030-J 0.049 0.72 0.034-J Nickel 30 13 0.5-25 10.6-24.8 37.9 35 34.5 45 28.8 22.8 Potassium NC SB 8500-43000 443-1660 1880 2200 2070 1990 1910 1650 1310 Selenium 3.9 2 0.1-3.9 0.44-1.2 0.97-J 0.82-J 0.80-J 0.75-J 1.2-J 1.2-J 0.87-J Silver 2 SB NA 0.16-0.17 <0.38	Magnesium	NC	SB	100-5000	2150-13100	20. 20. 20. 20. 20.						
Mercury 0.18 0.1 0.001-0.2 0.039-0.095 0.21 0.037 0.11 0.030-J 0.049 0.72 0.034-J Nickel 30 13 0.5-25 10.6-24.8 37.9 35 34.5 45 28.8 22.8 Nickel NC SB 8500-43000 443-1660 1880 2200 2070 1990 1910 1650 1310 Potassium 3.9 2 0.1-3.9 0.44-1.2 0.97-J 0.82-J 0.80-J 0.75-J 1.2-J 1.2-J 0.87-J Selenium 3.9 2 SB NA 0.16-0.17 <0.38		1600	SB	50-5000	197-875	387	829	668				
Nickel 30 13 0.5-25 10.6-24.8 37.9 37.9 35 34.5 45 28.8 22.8 Potassium NC SB 8500-43000 443-1660 1880 2200 2070 1990 1910 1650 1310 Selenium 3.9 2 0.1-3.9 0.44-1.2 0.97-J 0.82-J 0.80-J 0.75-J 1.2-J 1.2-J 0.87-J Silver 2 SB NA 0.16-0.17 <0.38			0.1	0.001-0.2	0.039-0.095	0.21	0.037					
Potassium NC SB 8500-43000 443-1660 1880 2200 2070 1990 1910 1650 1310 Selenium 3.9 2 0.1-3.9 0.44-1.2 0.97-J 0.82-J 0.80-J 0.75-J 1.2-J 1.2-J 0.87-J Silver 2 SB NA 0.16-0.17 <0.38			13	0.5-25	10.6-24.8	37.9	37.9	35				
Selenium 3.9 2 0.1-3.9 0.44-1.2 0.97-J 0.82-J 0.80-J 0.75-J 1.2-J 1.2-J 0.87-J Silver 2 SB NA 0.16-0.17 <0.38				8500-43000	443-1660	1880	2200	2070				
Silver 2 SB NA 0.16-0.17 <0.38 <0.43 <0.45 0.051-J <0.43 <0.38 Thallium NC SB NA ND-0.67 0.58-J 0.62-J 0.55-J <2.7				0.1-3.9	0.44-1.2	0.97-J	0.82-J	0.80-J	0.75-J	1.2-J		
Thallium NC SB NA ND-0.67 0.58-J 0.62-J 0.55-J <2.7 0.84-J 0.48-J <2.3 Vanadium NC 150 1-300 13.7-24 27.4 27.1 26 25.8 29.5 30.3 27 Vanadium NC 150 1-300 13.7-24 27.4 27.1 26 25.8 29.5 30.3 27 Vanadium NC 150 1-300 13.7-24 27.4 27.1 26 25.8 29.5 30.3 27 Vanadium NC 150 1-300 13.7-24 27.4 27.1 26 25.8 29.5 30.3 27 Vanadium NC 150 1-300 13.7-24 27.4 27.1 26 25.8 29.5 30.3 27 Vanadium NC 150 1-300 13.7-24 27.4 27.1 26 25.8 29.5 30.3 27 27.4 27.4			7	NA	0.16-0.17	<0.38	< 0.43	<0.38	<0.45	0.051-J		
Vanadium NC 150 1-300 13.7-24 27.4 27.1 26 25.8 29.5 30.3 27					ND-0.67	0.58-J	0.62-J	0.55-J	<2.7	0.84-J		
Validuliii NO 100 100 100 100 100 100 100 100 100 10							27.1	26	25.8	29.5	30.3	
								85	81.3	92.9	77.4	68.5

NC - NO CRITERIA LISTED

375
Unrestricted
Soil Cleanup

	Soil Cleanup			C'1 BC			EX-D-				
	Objectives	NYDEC		Site BG	EV D 01	EX-D-22	Duplicate 2	EX-D-23	EX-D-24	EX-D-25	EX-D-26
Metal	(SCOs)	(mg/kg)	East US BG	(mg/kg)	EX-D-21 11/2/2005	11/2/2005	11/2/2005	11/11/2005	11/11/2005	11/11/2005	11/11/2005
			22000	7080-12800	15700	14700	17100	7470	9070	9270	7310
Aluminum	NC	SB	33000	0.2-0.59	<1.7	<1.5	<1.8	3.76	<3.00	<3.00	<3.00
Antimony	NC	SB	NA 0.40		9.3	8.1	5.7	<0.25	<0.25	< 0.25	<0.25
Arsenic	13	7.5	3-12	4.3-16.4		76.9	82	33.7	43.9	32.5	44
Barium	350	300	15-600	33-104	73.8			0.39	0.53	0.45	0.61
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.83	0.74	0.77		<0.25	<0.25	<0.25
Cadmium	2.5	11	0-1.75	0.21-0.52	0.53	0.6	0.39-J	<0.25		906	2650
Calcium	NC	SB	130-35000	1280-46600	18800	50100	3750	1150	1300		21.6
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	24	21.8	25.3	11.4	14.5	15.1	9.36
Cobalt	NC	30	2.5-60	5.3-12.2	14.7	13.4	13.5	5.33	8.57	6.02	
Copper	50	25	1-50	13.4-26.9	47.5	40.3	80.2	8.41	11.4	11.4	27.8
Iron	NC	2000	2000-550000	14100-25700	35300	32600	31400	9080	18000	14100	17400
Lead	63	SB	NA	16.5-60.8	19.6	15.3	57.2	6.57	9.38	6.94	25.7
Magnesium	NC	SB	100-5000	2150-13100	8450	8660	5660	2370	2940	3240	4820
Manganese	1600	SB	50-5000	197-875	753	612	311	325	657	223	224
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	0.079	0.046	1.2	0.03	0.071	0.02	0.074
Nickel	30	13	0.5-25	10.6-24.8	33.7	32.6	26.8	<2.50	<2.50	<2.50	<2.50
	NC NC	SB	8500-43000	443-1660	2010	2060	1510	320	464	420	602
Potassium	3.9	2	0.1-3.9	0.44-1.2	0.86-J	0.48-J	1.0-J	<0.25	< 0.25	<0.25	<0.25
Selenium		SB	NA NA	0.16-0.17	<0.44	< 0.39	>0.44	<1.0	<1.00	<1.00	<1.00
Silver	2		NA NA	ND-0.67	0.45-J	0.51-J	<2.7	< 0.50	< 0.50	< 0.50	< 0.50
Thallium	NC	SB		13.7-24	26.8	25.3	29.2	8.53	10.7	11.2	13.5
Vanadium	NC	150	1-300			79.6	77.2	34.3	42.9	43.8	68.9
Zinc	109	20	9-50	46-134	88.7	/ 9.0	11.2	04.0	72.0		

NC - NO CRITERIA LISTED

375 Unrestricted Soil Cleanup

	Soil Cleanup						514 B
	Objectives	NYDEC		Site BG			EX-D-
Metal	(SCOs)	(mg/kg)	East US BG	(mg/kg)	EX-D-27	EX-D-28	Duplicate 3
					11/11/2005	11/11/2005	11/11/2005
Aluminum	NC	SB	33000	7080-12800	7560	8770	9970
Antimony	NC	SB	NA	0.2-0.59	<3.00	<3.00	<3.00
Arsenic	13	7.5	3-12	4.3-16.4	<0.25	0.71	<0.25
Barium	350	300	15-600	33-104	43.9	40.1	46.1
Bervllium	7.2	0.16	0-1.75	0.38-0.67	0.41	0.46	0.57
Cadmium	2.5	1	0-1.75	0.21-0.52	<0.25	<0.25	<0.25
Calcium	NC	SB	130-35000	1280-46600	10100	13800	2190
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	15.4	18.5	19.3
Cobalt	NC	30	2.5-60	5.3-12.2	8.79	8.99	9.45
Copper	50	25	1-50	13.4-26.9	23.5	28.7	30.5
Iron	NC	2000	2000-550000	14100-25700	12200	18800	20700
Lead	63	SB	NA	16.5-60.8	7.1	12.9	11.1
Magnesium	NC	SB	100-5000	2150-13100	5470	6240	4620
Manganese	1600	SB	50-5000	197-875	385	372	440
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	0.028	0.06	0.086
Nickel	30	13	0.5-25	10.6-24.8	<2.50	<2.50	<2.50
Potassium	NC	SB	8500-43000	443-1660	680	878	511
Selenium	3.9	2	0.1-3.9	0.44-1.2	<0.25	<0.25	<0.25
Silver	2	SB	NA	0.16-0.17	<1.00	<1.00	<1.00
Thallium	NC	SB	NA	ND-0.67	<0.50	<0.50	<0.50
Vanadium	NC	150	1-300	13.7-24	9.93	11.2	11.5
Zinc	109	20	9-50	46-134	60.4	69.2	63.6

NC - NO CRITERIA LISTED

Table 15
Area D Confirmation
SVOC Results

	UNRESTRICTED SOIL CLEANUP	NYDEC RSCO								
Compound	CRITERIA (SCOs)	(mg/kg)	EX-D-1	EX-D-2	EX-D-3	EX-D-4	EX-D-5	EX-D-6	EX-D-7	EX-D-8
			11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005
2,4,5-Trichlorophenol	NC	0.1-ADL	< 0.390	< 0.390	<0.380	<0.370	<0.400	<0.400	<0.410	<0.410
2,4-Dichlorophenol	NC	0.4	< 0.390	< 0.390	<0.380	<0.370	<0.400	<0.400	<0.410	<0.410
2.4-Dinitrophenol	NC	0.200-ADL	<0.780	< 0.790	<0.770	<0.750	<0.790	<0.800	<0.810	<0.820
2,6-Dinitrotoluene	NC	1.0	< 0.390	< 0.390	<0.380	<0.370	<0.400	<0.400	< 0.410	<0.410
2-Chlorophenol	NC	0.8	< 0.390	< 0.390	<0.380	< 0.370	<0.400	< 0.400	<0.410	<0.410
2-Methylnaphthalene	NC	36.4	< 0.390	< 0.390	<0.380	<0.370	<0.400	<0.400	<0.410	<0.410
2-Nitroaniline	NC	0.430	< 0.390	<0.390	<0.380	< 0.370	<0.400	<0.400	<0.410	<0.410
2-Nitrophenol	NC	0.330	< 0.390	< 0.390	<0.380	<0.370	<0.400	<0.400	<0.410	<0.410
2-methylphenol	NC	0.100-ADL	< 0.390	<0.390	<0.380	<0.370	<0.400	<0.400	<0.410	<0.410
3-Nitroaniline	NC	0.500	<0.390	<0.390	<0.380	<0.370	<0.400	<0.400	<0.410	<0.410
4-Chloroaniline	NC	0.220-ADL	<0.390	<0.390	<0.380	<0.370	<0.400	<0.400	<0.410	<0.410
4-Nitroaniline	NC	NS	<0.390	<0.390	<0.380	<0.370	<0.400	<0.400	<0.410	<0.410
4-Nitrophenol	NC	0.100-ADL	<0.780	< 0.790	<0.770	<0.750	<0.790	<0.800	<0.810	<0.820
4-chloro-3-methylphenol	NC	0.240-ADL	<0.390	< 0.390	<0.380	< 0.370	<0.400	< 0.400	<0.410	<0.410
4-methylphenol	NC	0.9	<0.390	< 0.390	<0.380	<0.370	<0.400	<0.400	<0.410	<0.410
Acenaphthene	20	50.0	< 0.390	<0.390	<0.380	<0.370	<0.400	< 0.400	<0.410	<0.410
Acenaphthylene	100	41.0	< 0.390	< 0.390	<0.380	< 0.370	<0.400	< 0.400	< 0.410	<0.410
Aniline	NC	0.1-ADL	< 0.390	< 0.390	< 0.380	< 0.370	<0.400	<0.400	<0.410	<0.410
Anthracene	100	50.0	<0.390	< 0.390	< 0.380	< 0.370	<0.400	<0.400	<0.410	<0.410
Benzo(a) anthracene	1	0.224-ADL	< 0.390	< 0.390	< 0.380	< 0.370	<0.400	<0.400	<0.410	<0.410
Benzo(a) pyrene	1	0.061-ADL	< 0.390	< 0.390	<0.380	< 0.370	<0.400	<0.400	<0.410	<0.410
Benzo(b) fluoranthene	1	1.1	< 0.390	< 0.390	< 0.380	< 0.370	< 0.400	<0.400	<0.410	<0.410
Benzyl Butyl Phthalale	NC	50.0	< 0.390	< 0.390	< 0.380	< 0.370	< 0.400	<0.400	<0.410	<0.410
Chrysene	1	0.4	< 0.390	< 0.390	< 0.380	< 0.370	< 0.400	< 0.400	<0.410	<0.410
Dibenz(a,h) Anthracene	0.33	0.014-ADL	< 0.390	< 0.390	< 0.380	< 0.370	< 0.400	<0.400	<0.410	<0.410
Dibenzofuran	NC	6.2	<0.390	< 0.390	< 0.380	< 0.370	< 0.400	<0.400	<0.410	<0.410
Diethyl Phthalate	NC	7.1	< 0.390	< 0.390	< 0.380	< 0.370	< 0.400	<0.400	<0.410	<0.410
Dimethyl Phthalate	NC	2.0	<0.390	< 0.390	< 0.380	< 0.370	< 0.400	< 0.400	< 0.410	<0.410
Fluoranthene	100		< 0.390	< 0.390	< 0.380	< 0.370	< 0.400	< 0.400	<0.410	<0.410
Fluorene	30	50.0	< 0.390	< 0.390	< 0.380	< 0.370	<0.400	< 0.400	< 0.410	< 0.410
Hexachlorobenzene	NC	0.41	< 0.390	< 0.390	< 0.380	< 0.370	< 0.400	< 0.400	< 0.410	<0.410
Indeno(1,2,3-c,d) Pyrene	0.5	3.2	< 0.390	< 0.390	< 0.380	< 0.370	<0.400	<0.400	< 0.410	<0.410
Isophorone	NC	4.40	<0.390	< 0.390	< 0.380	< 0.370	< 0.400	<0.400	<0.410	<0.410
Naphthalene	12	13.0	< 0.390	< 0.390	< 0.380	< 0.370	<0.400	<0.400	<0.410	<0.410
Nitrobenzene	NC	0.200-ADL	<0.390	< 0.390	<0.380	< 0.370	<0.400	< 0.400	<0.410	<0.410
Pentachlorophenol	0.8		<0.780	<0.790	<0.770	<0.750	<0.790	<0.800	<0.810	<0.820
Phenanthrene	100	50.0	<0.390	< 0.390	< 0.380	< 0.370	<0.400	<0.400	<0.410	<0.410
Phenol	0.33	0.03-ADL	<0.390	<0.390	< 0.380	< 0.370	<0.400	<0.400	<0.410	<0.410
Pyrene	100		<0.390	< 0.390	<0.380	< 0.370	< 0.400	< 0.400	< 0.410	<0.410
bis(2-ethylhexyl) phthalate	NC	50.0		< 0.390	< 0.380	< 0.370	< 0.400	< 0.400	<0.410	<0.410
di-n-Butyl Phthalate	NC		< 0.390	< 0.390	<0.380	< 0.370	<0.400	<0.400	<0.410	<0.410
di-n-Octyl Phthalate	NC		<0.390	< 0.390	<0.380	< 0.370	<0.400	< 0.400	< 0.410	<0.410

Table 15 Area D Confirmation SVOC Results

	UNRESTRICTED	NYDEC									
	SOIL CLEANUP	RSCO			EV D 44	EV D 40	EX-D-13	EX-D-14	EX-D-15	EX-D-16	EX-D-17
Compound	CRITERIA (SCOs)	(mg/kg)	EX-D-9	EX-D-10 11/2/2005	EX-D-11 11/2/2005	EX-D-12 11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005
		0.4.451	11/2/2005		< 0.400	< 0.390	<0.390	<0.580	< 0.380	<0.380	<0.370
2,4,5-Trichlorophenol	NC NC	0.1-ADL		<0.410	<0.400	<0.390	<0.390	<0.580	<0.380	<0.380	<0.370
2,4-Dichlorophenol	NC		<0.390		<0.400	<0.390	<0.390	<1.2	<0.760	<0.750	<0.740
2,4-Dinitrophenol	NC	0.200-ADL		<0.810	<0.400	<0.770	<0.390	<0.580	<0.380	<0.380	<0.370
2,6-Dinitrotoluene	NC NC		<0.390	<0.410		<0.390	<0.390	<0.580	<0.380	<0.380	<0.370
2-Chlorophenol	NC		<0.390	<0.410	<0.400		<0.390	<0.580	<0.380	<0.380	<0.370
2-Methylnaphthalene	NC		<0.390	<0.410	<0.400	0.310-J	<0.390	<0.580	<0.380	<0.380	<0.370
2-Nitroaniline	NC		<0.390	<0.410	<0.400	<0.390		<0.580	<0.380	<0.380	<0.370
2-Nitrophenol	NC		<0.390	<0.410	<0.400	<0.390	<0.390	<0.580	<0.380	<0.380	<0.370
2-melhylphenol	NC	0.100-ADL		<0.410	<0.400	<0.390	<0.390		<0.380	<0.380	<0.370
3-Nitroaniline	NC		<0.390	< 0.410	<0.400	<0.390	<0.390	<0.580	<0.380	<0.380	<0.370
4-Chloroaniline	NC	0.220-ADL		<0.410	<0.400	<0.390	<0.390	<0.580		<0.380	<0.370
4-Nitroaniline	NC	NS	<0.390	<0.410	<0.400	<0.390	<0.390	<0.580	<0.380	<0.380	<0.740
4-Nitrophenol	NC	0.100-ADL		<0.810	<0.790	<0.770	<0.390	<1.2	<0.760		<0.740
4-chloro-3-methylphenol	NC	0.240-ADL		<0.410	<0.400	<0.390	< 0.390	<0.580	<0.380	<0.380	
4-methylphenol	NC		<0.390	<0.410	<0.400	<0.390	<0.390	<0.580	<0.380	<0.380	<0.370
Acenaphthene	20	50.0	<0.390	<0.410	<0.400	<0.390	<0.390	< 0.580	<0.380	<0.380	<0.370
Acenaphthylene	100	41.0	<0.390	< 0.410	<0.400	<0.390	<0.390	<0.580	<0.380	<0.380	<0.370
Aniline	NC	0.1-ADL	<0.390	< 0.410	< 0.400	<0.390	<0.390	<0.580	<0.380	<0.380	<0.370
Anthracene	100	50.0	< 0.390	< 0.410	<0.400	0.051-J	<0.390	<0.580	<0.380	<0.380	<0.370
Benzo(a) anthracene	1	0.224-ADL	< 0.390	< 0.410	< 0.400	0.041-J	<0.390	<0.580	<0.380	<0.380	<0.370
Benzo(a) pyrene	1	0.061-ADL	< 0.390	< 0.410	< 0.400	<0.390	<0.390	<0.580	<0.380	<0.380	<0.370
Benzo(b) fluoranthene	1	1.1	< 0.390	< 0.410	< 0.400	<0.390	<0.390	<0.580	<0.380	<0.380	<0.370
Benzyl Butyl Phthalate	NC	50.0	<0.390	< 0.410	< 0.400	< 0.390	<0.390	<0.580	<0.380	<0.380	<0.370
Chrysene	1	0.4	<0.390	< 0.410	< 0.400	< 0.390	<0.390	<0.580	<0.380	<0.380	<0.370
Dibenz(a,h) Anthracene	0.33	0.014-ADL	< 0.390	< 0.410	< 0.400	< 0.390	<0.390	<0.580	<0.380	<0.380	<0.370
Dibenzofuran	NC	6.2	<0.390	< 0.410	< 0.400	< 0.390	<0.390	<0.580	<0.380	<0.380	<0.370
Diethyl Phthalate	NC	7.1		< 0.410	< 0.400	< 0.390	< 0.390	<0.580	<0.380	<0.380	<0.370
Dimethyl Phthalate	NC	2.0	<0.390	< 0.410	< 0.400	< 0.390	< 0.390	<0.580	<0.380	<0.380	<0.370
Fluoranthene	100	50.0	<0.390	< 0.410	< 0.400	0.062-J	< 0.390	< 0.580	<0.380	<0.380	<0.370
Fluorene	30		< 0.390	< 0.410	< 0.400	0.037-J	< 0.390	<0.580	<0.380	<0.380	<0.370
Hexachlorobenzene	NC		< 0.390	< 0.410	< 0.400	< 0.390	< 0.390	< 0.580	<0.380	<0.380	<0.370
Indeno(1,2,3-c,d) Pyrene	0.5	3.2	< 0.390	< 0.410	< 0.400	< 0.390	< 0.390	< 0.580	<0.380	<0.380	<0.370
Isophorone	NC NC		<0.390	< 0.410	< 0.400	< 0.390	< 0.390	<0.580	<0.380	<0.380	< 0.370
Naphthalene	12	13.0		< 0.410	< 0.400	1.2	< 0.390	<0.580	<0.380	<0.380	<0.370
Nitrobenzene	NC	0.200-ADL		< 0.410	< 0.400	< 0.390	< 0.390	<0.580	<0.380	<0.380	< 0.370
Pentachlorophenol	0.8		<0.790	< 0.810	< 0.790	< 0.770	< 0.390	<1.2	<0.760	< 0.750	< 0.740
Phenanthrene	100	50.0		<0.410	< 0.400	0.240-J	< 0.390	< 0.580	0.053-J	<0.380	< 0.370
Phenol	0.33	0.03-ADL		<0.410	<0.400	<0.390	<0.390	<0.580	< 0.380	<0.380	< 0.370
	100	50		<0.410	< 0.400	0.085-J	<0.390	<0.580	0.067-J	<0.380	< 0.370
Pyrene	NC NC		<0.390	<0.410	<0.400	<0.390	<0.390	<0.580	<0.380	<0.380	< 0.370
bis(2-ethylhexyl) phthalate	NC NC		<0.390	<0.410	<0.400	<0.390	<0.390	<0.580	<0.380	<0.380	< 0.370
di-n-Butyl Phthalate	NC NC		<0.390	<0.410	< 0.400	<0.390	<0.390	<0.580	<0.380	<0.380	< 0.370
di-n-Octyl Phthalate	_ I NO	1 30.0	1/0.030	10.410	1.0.700	130.000	1-0.000	1.5.000	1.5.7		

Compound	UNRESTRICTED SOIL CLEANUP CRITERIA (SCOs)	NYDEC RSCO (mg/kg)	EX-D-18	EX-D-19	EX-D-20	EX-D- Duplicate	EX-D-21	EX-D-22	EX-D- Duplicate 2
			11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005
2,4,5-Trichlorophenol	NC	0.1-ADL		<0.380	<0.420	<0.420	<0.380	< 0.370	< 0.410
2,4-Dichlorophenol	NC	0.4	<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	<0.410
2,4-Dinitrophenol	NC	0.200-ADL	<0.760	<0.760	<0.840	<0.830	<0.770	<0.750	<0.820
2.6-Dinitrotoluene	NC	1.0	< 0.380	<0.380	<0.420	<0.420	<0.380	<0.370	<0.410
2-Chlorophenol	NC	0.8	< 0.380	<0.380	<0.420	<0.420	<0.380	< 0.370	<0.410
2-Methylnaphthalene	NC	36.4	0.120-J	<0.380	0.052-J	<0.420	<0.380	0.091-J	0.044-J
2-Nitroaniline	NC	0.430	<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	<0.410
2-Nitrophenol	NC	0.330	<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	< 0.410
2-methylphenol	NC	0.100-ADL	<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	<0.410
3-Nitroaniline	NC	0.500	<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	<0.410
4-Chloroaniline	NC	0.220-ADL	<0.380	< 0.380	<0.420	<0.420	<0.380	<0.370	<0.410
4-Nitroaniline	NC	NS	<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	<0.410
4-Nitrophenol	NC	0.100-ADL	<0.760	<0.760	<0.840	<0.830	<0.770	<0.750	<0.820
4-chloro-3-methylphenol	NC	0.240-ADL	<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	<0.410
4-methylphenol	NC	0.9	<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	<0.410
Acenaphthene	20	50.0	<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	<0.410
Acenaphthylene	100	41.0	<0.380	< 0.380	<0.420	<0.420	<0.380	<0.370	<0.410
Aniline	NC	0.1-ADL	<0.380	<0.380	<0.420	<0.420	<0.380	< 0.370	<0.410
Anthracene	100	50.0	<0.380	< 0.380	<0.420	<0.420	<0.380	< 0.370	<0.410
Benzo(a) anthracene	1	0.224-ADL	<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	0.054-J
Benzo(a) pyrene	1	0.061-ADL	<0.380	< 0.380	< 0.420	<0.420	<0.380	< 0.370	0.040-J
Benzo(b) fluoranthene	1	1,1	<0.380	<0.380	< 0.420	<0.420	<0.380	<0.370	0.056-J
Benzyl Butyl Phthalate	NC	50.0	<0.380	< 0.380	< 0.420	<0.420	<0.380	<0.370	<0.410
Chrysene	1	0.4	<0.380	< 0.380	<0.420	<0.420	<0.380	<0.370	0.056-J
Dibenz(a,h) Anthracene	0.33	0.014-ADL	<0.380	<0.380	< 0.420	<0.420	<0.380	<0.370	<0.410
Dibenzofuran	NC	6.2	<0.380	<0.380	< 0.420	<0.420	<0.380	<0.370	< 0.410
Diethyl Phthalate	NC	7.1	<0.380	<0.380	< 0.420	<0.420	<0.380	<0.370	< 0.410
Dimethyl Phthalate	NC	2.0	< 0.380	<0.380	< 0.420	<0.420	<0.380	< 0.370	<0.410
Fluoranthene	100	50.0	<0.380	< 0.380	< 0.420	<0.420	<0.380	<0.370	<0.410
Fluorene	30	50.0	<0.380	< 0.380	< 0.420	<0.420	<0.380	< 0.370	<0.410
Hexachlorobenzene	NC	0.41	< 0.380	<0.380	< 0.420	<0.420	<0.380	< 0.370	<0.410
Indeno(1,2,3-c,d) Pyrene	0.5	3.2	<0.380	<0.380	< 0.420	<0.420	<0.380	< 0.370	<0.410
Isophorone	NC	4.40	0.067-J	<0.380	0.051-J	<0.420	<0.380	0.076-J	0.043-J
Naphthalene	12	13.0	0.46	0.087-J	0.270-J	<0.420	<0.380		0.220-J
Nitrobenzene	NC	0.200-ADL	<0.380	<0.380	< 0.420	< 0.420	<0.380	< 0.370	< 0.410
Pentachlorophenol	0.8	1.0	<0.760	<0.760	< 0.840	< 0.830	<0.770	<0.750	<0.820
Phenanthrene	100		0.130-J	<0.380	< 0.420	< 0.420	<0.380	< 0.370	<0.410
Phenol	0.33	0.03-ADL	<0.380	<0.380	<0.420	<0.420	<0.380	< 0.370	< 0.410
Pyrene	100		0.044-J	<0.380	< 0.420	<0.420	<0.380	< 0.370	0.059-J
bis(2-ethylhexyl) phthalate	NC	50.0	<0.380	<0.380	< 0.420	<0.420	<0.380	< 0.370	0.170-J
di-n-Butyl Phthalate	NC		<0.380	<0.380	<0.420	<0.420	<0.380	<0.370	<0.410
di-n-Octyl Phthalate	NC		<0.380	< 0.380	<0.420	<0.420	<0.380	< 0.370	0.062-J

NYSDEC PART 375
UNRESTRICTED SOIL NYDEC

	CLEANUP	RSCO					
Compound	OBJECTIVES (SCOs)	(mg/kg)	EX-D-1	EX-D-2	EX-D-3	EX-D-4	EX-D-5
			11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005
1,1,1,-Trichloroethane	0.68	0.8	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
1,1,2,2-Tetrachloroethane	NC	0.6	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
1,1,2-Trichloroethane	NC	NS	0.055	< 0.0059		<0.0056	<0.0059
1.1-Dichloroethane	0.27	0.2	<0.0058	< 0.0059	<0.0058	<0.0056	<0.0059
1,1-Dichloroethene	0.33		<0.0058	< 0.0059	<0.0058	<0.0056	<0.0059
1.2-Dichlorobenzene	1.1	7.9	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
1.2-Dichloroethane	0.02		<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
1.3-Dichlorobenzene	2.4	1.6	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
1,2-Dichloropropane	NC		<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
1.4-Dichlorobenzene	1.8	8.5	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
trans-1,2 Dichloroethene	0.19	0.3	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
2-Butanone (MEK)	0.12	0.3	< 0.012	< 0.012	<0.012	<0.011	<0.012
4-Methyl-2-Pentanone (MIBK)	NC	1	<0.012	<0.012	< 0.012	<0.011	<0.012
Acetone	0.05	0.2	< 0.012	<0.012		<0.011	<0.012
Benzene	0.06	0.06	<0.0058	<0.0059		<0.0056	<0.0059
Bromomethane	NC	NS	< 0.012	< 0.012	<0.012	<0.011	<0.012
Carbon Disulfide	NC	2.7	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
Carbon Tetrachloride	0.76	0.6	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
Chlorobenzene	1.1	1.7	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
Chloroethane	NC	1.9	<0.012	< 0.012	<0.012	<0.011	<0.012
Chloroform	0.37	0.3	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
Chloromethane	NC	NS	<0.012	< 0.012	<0.012	<0.011	<0.012
Dibromochloromethane	NC	NS	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
Ethylbenzene	1	5.5	0.02	<0.0059		<0.0056	<0.0059
Freon 113	NC	6	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
Methylene Chloride	0.05	0.1	<0.012	0.0031-J	0.0045-J	<0.011	<0.012
Styrene	NC	NS	0.0015-J	<0.0059	0.057	<0.0056	<0.0059
Tetrachloroethene	1.3	1.4	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
Toluene	0.7		<0.0058	<0.0059		<0.0056	<0.0059
Trichloroethene	0.47	0.7	<0.0058	<0.0059	<0.0058	<0.0056	<0.0059
Vinyl Chloride	0.02	0.2	< 0.012	<0.012	<0.012	<0.011	<0.012
Xylenes	0.26	1.2	0.055	< 0.0059	< 0.0058	< 0.0056	< 0.0059

NYSDEC PART 375 UNRESTRICTED SOIL NYDEC

CLEANUP RSCO EX-D-12 EX-D-11 EX-D-9 EX-D-10 EX-D-8 EX-D-6 EX-D-7 (mg/kg) **OBJECTIVES (SCOs)** Compound 11/2/2005 11/2/2005 11/2/2005 11/2/2005 11/2/2005 11/2/2005 11/2/2005 <0.0058 < 0.0059 < 0.0059 < 0.0061 < 0.0061 0.8 < 0.006 < 0.0061 0.68 1,1,1,-Trichloroethane < 0.0059 < 0.0058 < 0.0061 < 0.0059 < 0.0061 < 0.0061 0.6 < 0.006 1,1,2,2-Tetrachloroethane NC 0.038-J < 0.0059 < 0.0061 < 0.0061 < 0.0059 < 0.0061 < 0.006 NC NS 1.1.2-Trichloroethane <0.0058 < 0.0059 < 0.0061 < 0.0061 < 0.0059 0.2 < 0.006 < 0.0061 0.27 1.1-Dichloroethane < 0.0058 < 0.0059 < 0.0059 < 0.0061 < 0.0061 < 0.006 < 0.0061 0.33 1.1-Dichloroethene < 0.0058 < 0.0059 < 0.0061 < 0.0061 < 0.0061 < 0.0059 7.9 < 0.006 1.1 1,2-Dichlorobenzene < 0.0058 < 0.0059 < 0.0061 < 0.0059 < 0.0061 < 0.0061 < 0.006 0.02 1.2-Dichloroethane < 0.0058 < 0.0061 < 0.0059 < 0.0061 < 0.0059 1.6 < 0.006 < 0.0061 2.4 1,3-Dichlorobenzene < 0.0059 <0.0058 < 0.0061 < 0.0059 < 0.0061 < 0.006 < 0.0061 NC 1,2-Dichloropropane < 0.0058 < 0.0061 < 0.0059 < 0.0059 < 0.0061 8.5 < 0.006 < 0.0061 1.8 1,4-Dichlorobenzene < 0.0059 < 0.0058 < 0.0059 < 0.0061 < 0.0061 < 0.0061 0.3 < 0.006 0.19 trans-1.2 Dichloroethene < 0.012 < 0.120 < 0.012 < 0.012 < 0.012 < 0.012 0.12 0.3 < 0.012 2-Butanone (MEK) < 0.120 < 0.012 < 0.012 < 0.012 < 0.012 1 < 0.012 < 0.012 NC 4-Methyl-2-Pentanone (MIBK) 0.15 < 0.012 < 0.120 < 0.012 < 0.012 < 0.012 0.2 < 0.012 0.05 Acetone <0.0058 < 0.0059 < 0.0059 < 0.0061 < 0.0061 0.06 < 0.006 < 0.0061 0.06 Benzene < 0.120 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 NC NS Bromomethane < 0.0058 < 0.0059 < 0.0059 < 0.0061 < 0.0061 2.7 < 0.006 < 0.0061 NC Carbon Disulfide < 0.0058 < 0.0061 < 0.0059 < 0.0061 < 0.0059 0.6 < 0.006 < 0.0061 0.76 Carbon Tetrachloride 0.025-J < 0.0061 < 0.0059 < 0.0061 < 0.0059 1.7 < 0.006 < 0.0061 1.1 Chlorobenzene < 0.120 < 0.012 < 0.012 < 0.012 < 0.012 1.9 < 0.012 < 0.012 NC Chloroethane < 0.0058 < 0.0061 < 0.0059 < 0.0061 < 0.0059 < 0.0061 0.3 < 0.006 0.37 Chloroform < 0.120 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 NC NS Chloromethane < 0.0058 < 0.0061 < 0.0059 < 0.0059 < 0.0061 < 0.0061 NS < 0.006 NC Dibromochloromethane 0.23 < 0.0059 < 0.0061 < 0.0059 < 0.0061 < 0.0061 5.5 < 0.006 1 Ethylbenzene < 0.0058 < 0.0059 < 0.0059 < 0.0061 6 < 0.006 < 0.0061 < 0.0061 NC Freon 113 < 0.012 < 0.120 < 0.012 < 0.012 < 0.012 0.1 < 0.012 < 0.012 0.05 Methylene Chloride < 0.0059 0.037-J < 0.0061 < 0.0059 < 0.0061 NS <0.006 < 0.0061 NC Styrene < 0.0059 < 0.0058 < 0.0061 < 0.0059 < 0.0061 1.4 < 0.006 < 0.0061 1.3 Tetrachloroethene < 0.0058 < 0.0061 < 0.0059 < 0.0059 < 0.0061 < 0.0061 1.5 < 0.006 0.7 Toluene <0.0058 < 0.0061 < 0.0059 < 0.0059 < 0.0061 0.7 < 0.006 < 0.0061 0.47 Trichloroethene < 0.120 < 0.012 < 0.012 < 0.012 < 0.012 0.2 < 0.012 < 0.012 0.02 Vinyl Chloride 2.8 < 0.0061 < 0.0059 < 0.0059 < 0.0061 1.2 < 0.006 < 0.0061 0.26 **Xvlenes**

NYSDEC PART 375 UNRESTRICTED SOIL

NYDEC

CLEANUP RSCO EX-D-18 EX-D-16 EX-D-17 EX-D-14 EX-D-15 **OBJECTIVES (SCOs)** (mg/kg) EX-D-13 Compound 11/2/2005 11/2/2005 11/2/2005 11/2/2005 11/2/2005 11/2/2005 < 0.0056 < 0.055 < 0.0057 < 0.0057 0.8 < 0.0059 < 0.0086 1,1,1,-Trichloroethane 0.68 < 0.0057 < 0.0056 < 0.055 < 0.0086 < 0.0057 0.6 < 0.0059 1.1.2.2-Tetrachloroethane NC 6.9 0.017-J < 0.0057 < 0.0056 < 0.0086 NC NS < 0.0059 1,1,2-Trichloroethane < 0.0057 < 0.0057 < 0.0056 < 0.055 0.2 < 0.0059 < 0.0086 0.27 1,1-Dichloroethane < 0.055 < 0.0057 <0.0086 < 0.0057 < 0.0056 < 0.0059 0.33 1.1-Dichloroethene < 0.0056 < 0.055 < 0.0057 7.9 < 0.0059 < 0.0086 < 0.0057 1.1 1.2-Dichlorobenzene <0.0057 < 0.0056 < 0.055 < 0.0059 < 0.0086 < 0.0057 1.2-Dichloroethane 0.02 < 0.0057 <0.0086 < 0.0057 < 0.0056 < 0.055 1.6 < 0.0059 2.4 1.3-Dichlorobenzene <0.055 < 0.0057 < 0.0059 <0.0086 < 0.0057 < 0.0056 NC 1,2-Dichloropropane < 0.0056 < 0.055 < 0.0057 8.5 < 0.0059 < 0.0086 < 0.0057 1.8 1.4-Dichlorobenzene < 0.0057 < 0.0056 < 0.055 0.19 0.3 < 0.0059 < 0.0086 < 0.0057 trans-1,2 Dichloroethene < 0.011 < 0.011 < 0.011 < 0.110 0.12 0.3 < 0.012 < 0.017 2-Butanone (MEK) < 0.011 < 0.011 < 0.011 < 0.110 NC < 0.012 < 0.017 4-Methyl-2-Pentanone (MIBK) 0.027 < 0.017 < 0.011 < 0.011 < 0.110 0.05 0.2 < 0.012 Acetone 0.0094 0.0036-J 0.17 <0.0086 < 0.0057 0.06 0.06 < 0.0059 Benzene < 0.011 < 0.011 < 0.110 < 0.017 < 0.011 NC NS < 0.012 Bromomethane < 0.0057 < 0.0057 < 0.0056 < 0.055 2.7 < 0.0059 < 0.0086 Carbon Disulfide NC <0.055 < 0.0057 < 0.0057 < 0.0056 0.6 < 0.0059 < 0.0086 Carbon Tetrachloride 0.76 < 0.0057 <0.0086 < 0.0057 < 0.0056 < 0.055 1.7 < 0.0059 Chlorobenzene 1.1 < 0.011 < 0.011 < 0.110 < 0.017 < 0.011 1.9 < 0.012 Chloroethane NC < 0.055 < 0.0057 < 0.0056 0.37 0.3 < 0.0059 < 0.0086 < 0.0057 Chloroform < 0.110 < 0.011 < 0.011 < 0.011 NC NS < 0.012 < 0.017 Chloromethane < 0.0056 <0.055 < 0.0057 NS < 0.0059 <0.0086 < 0.0057 NC Dibromochloromethane 5.5 0.0057-J < 0.0057 0.0027-J 37 0.023-J < 0.0086 1 Ethylbenzene <0.0086 < 0.0057 < 0.0056 < 0.055 < 0.0057 NC 6 < 0.0059 Freon 113 < 0.017 < 0.011 < 0.011 < 0.110 < 0.011 0.05 0.1 < 0.012 Methylene Chloride < 0.0086 <0.0057 < 0.0056 0.03 NC NS < 0.0059 Styrene < 0.055 < 0.0057 1.4 < 0.0059 < 0.0086 < 0.0057 < 0.0056 1.3 Tetrachloroethene 2.8 0.075 1.5 < 0.0059 < 0.0086 < 0.0057 < 0.0056 0.7 Toluene < 0.0057 < 0.0086 < 0.0056 < 0.055 0.7 < 0.0059 < 0.0057 Trichloroethene 0.47 0.2 0.0021-J < 0.011 0.0025-J 0.023 - J< 0.011 0.02 < 0.017 Vinyl Chloride

1.2

The SCOs for unrestricted use were capped at a maximum value of 100 pr NC - NO CRITERIA LISTED

0.26

0.029 < 0.0086

< 0.0057

330

0.02

0.61

Xylenes

NYSDEC PART 375

Compound	UNRESTRICTED SOIL CLEANUP OBJECTIVES (SCOs)	NYDEC RSCO (mg/kg)	EX-D-19	EX-D-20	EX-D- Duplicate	EX-D-21	EX-D-22 11/2/2005	EX-D- Duplicate 2	EX-D-27
			11/2/2005	11/2/2005		<0.029	< 0.056	< 0.062	<0.025
1,1,1,-Trichloroethane	0.68		<0.0057	<0.063	<0.0062	<0.029	<0.056	<0.062	<0.025
1,1,2,2-Tetrachloroethane	NC		<0.0057	<0.063	<0.0062 <0.0062	0.22			<0.025
1,1,2-Trichloroethane	NC	NS	<0.0057	<0.063	<0.0062	<0.029	<0.056	<0.062	<0.025
1,1-Dichloroethane	0.27	0.2	<0.0057	<0.063	<0.0062	<0.029	<0.056	<0.062	<0.025
1,1-Dichloroethene	0.33		<0.0057	<0.063	<0.0062	<0.029	<0.056	<0.062	<0.025
1,2-Dichlorobenzene	1.1	7.9	<0.0057	<0.063		<0.029	<0.056	<0.062	<0.025
1,2-Dichloroethane	0.02		<0.0057	<0.063	<0.0062	<0.029	< 0.056	<0.062	<0.025
1,3-Dichlorobenzene	2.4	1.6	<0.0057	<0.063	<0.0062	<0.029	< 0.056	<0.062	<0.025
1,2-Dichloropropane	NC		<0.0057	<0.063	<0.0062		< 0.056	<0.062	<0.025
1,4-Dichlorobenzene	1.8		<0.0057	<0.063	<0.0062	<0.029	<0.056	<0.062	<0.025
trans-1,2 Dichloroethene	0.19		< 0.0057	<0.063	<0.0062	<0.029		<0.002	<0.023
2-Butanone (MEK)	0.12	0.3	<0.011	<0.130	<0.012	<0.058	<0.110	<0.120	<0.050
4-Methyl-2-Pentanone (MIBK)	NC		<0.011	<0.130	<0.012	<0.058	<0.110		<0.050
Acetone	0.05	0.2				0.17	0.18		<0.050
Benzene	0.06	0.06			<0.0062	0.35			<0.025
Bromomethane	NC	NS	<0.011	<0.130	<0.012	<0.058	<0.110	<0.120	<0.025
Carbon Disulfide	NC		<0.0057	< 0.063	<0.0062	<0.029	<0.056	<0.062	<0.025
Carbon Tetrachloride	0.76		< 0.0057	<0.063	<0.0062	<0.029	<0.056	<0.062	
Chlorobenzene	1.1	1.7	<0.0057	<0.063	<0.0062	<0.029	<0.056	<0.062	<0.025
Chloroethane	NC	1.9	0.011	<0.130	<0.012	<0.058	<0.110	<0.120	<0.050
Chloroform	0.37	0.0	3 < 0.0057	< 0.063	<0.0062	<0.029	<0.056	<0.062	<0.025
Chloromethane	NC	NS	< 0.011	< 0.130	<0.012	<0.058	<0.110	<0.120	<0.050
Dibromochloromethane	NC	NS	< 0.0057	< 0.063	<0.0062	<0.029	<0.056	<0.062	<0.025
Ethylbenzene	1	5.5	1.1	28	<0.0062	0.7			
Freon 113	NC		6 < 0.0057	< 0.063	< 0.0062	<0.029	<0.056	<0.062	<0.025
Methylene Chloride	0.05	0.	1 < 0.011	0.037-J	< 0.012	0.014-J	0.023-J	0.025-J	0.033
Styrene	NC	NS	0.081	0.69	< 0.0062	0.23			<0.025
Tetrachloroethene	1.3		4 < 0.0057	< 0.063	< 0.0062	<0.029	<0.056	<0.062	<0.025
Toluene	0.7	1.5		0.63	< 0.0062	1.2			
Trichloroethene	0.47		7 < 0.0057	< 0.063	< 0.0062	<0.029	<0.056	<0.062	<0.025
Vinyl Chloride	0.02		2 0.016-J	< 0.130	< 0.012	0.0085-J	0.022-J	<0.120	<0.050
Xylenes	0.26	1.:			< 0.0062	16	170	620	1.03

NYSDEC PART 375
UNRESTRICTED SOIL NYDEC

	UNRESTRICTED SOIL	NYDEC						EV D
	CLEANUP	RSCO						EX-D
Compound	OBJECTIVES (SCOs)	(mg/kg)	EX-D-28	EX-D-29	EX-D-30	EX-D-31	EX-D-32	Duplicate 4
			11/21/2005	11/21/2005	11/21/2005	11/21/2005	11/21/2005	11/21/2005
1,1,1,-Trichloroethane	0.68		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,1,2,2-Tetrachloroethane	NC		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,1,2-Trichloroethane	NC	NS	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,1-Dichloroethane	0.27	0.2	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,1-Dichloroethene	0.33		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,2-Dichlorobenzene	1.1	7.9	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,2-Dichloroethane	0.02		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,3-Dichlorobenzene	2.4	1.6	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,2-Dichloropropane	NC		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,4-Dichlorobenzene	1.8		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
trans-1,2 Dichloroethene	0.19	93507007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Butanone (MEK)	0.12	0.3	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
4-Methyl-2-Pentanone (MIBK)	NC	1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Acetone	0.05	0.2		<0.010	<0.010	<0.010	<0.010	<0.010
Benzene	0.06	0.06	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Bromomethane	NC	NS	<0.005	<0.010	<0.010	<0.010	<0.010	<0.010
Carbon Disulfide	NC	2.7	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Carbon Tetrachloride	0.76	0.6	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chlorobenzene	1.1	1.7		<0.005	<0.005	<0.005	<0.005	<0.005
Chloroethane	NC		<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Chloroform	0.37		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chloromethane	NC	NS	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010
Dibromochloromethane	NC	NS	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Ethylbenzene	1	5.5	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Freon 113	NC	6	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methylene Chloride	0.05	0.1			<0.005	0.005		
Styrene	NC	NS	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Tetrachloroethene	1.3		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	0.7		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Trichloroethene	0.47		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Vinyl Chloride	0.02		<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Xylenes	0.26	1.2	<0.005	<0.005	<0.005	0.012	<0.005	<0.005

Table 17 Area D Confirmation Pesticide, PCB, Herbicide Results

NYSDEC PART 375 UNRESTRICTED

SOIL CLEANUP NYDEC OBJECTIVES RSCO

	OBJECTIVES	RSCO							
Compound	(SCOs)	(ug/kg)	EX-D-1	EX-D-2	EX-D-3	EX-D-4	EX-D-5	EX-D-6	EX-D-7
	1		11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005
4,4-DDD	3.3	2900	1.1-J	3.3	<1.9	<1.9	<2.0	<2.0	0.41-J
4,4-DDE	3.3	2100	0.61-J	1.3-J	<1.9	0.27-J	0.64-J	<2.0	<2.0
4,4-DDT	3.3	2100	2.5	0.82-J	<1.9	<1.9	0.51-J	<2.0	<2.0
Aldrin	5	41.0	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Alpha-BHC	20	11.0	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Beta-BHC	36	200	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Chlordane	94	540	<39	<40		<37	<39		
Delta-BHC	40	300	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Dieldrin	5	44.0		<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Endosulfan I	2400	900		<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Endosulfan II	2400	900	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Endosulfan Sulfate	NC	1000	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Endrin	14	100	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Gamma-BHC (Lindane)	NC	60.0	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Heptachlor	42	100	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Heptachlor Epoxide	NC	20.0	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
Methoxychlor	NC	NS	<2.0	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0
PCB-1016	100	1000	<19	<20	<19	<19	<20	<20	
PCB-1221	100	1000		<20		<19	<20		
PCB-1232	100	1000		<20	<19	<19	<20	<20	
PCB-1242	100	1000			<19	<19	<20		
PCB-1248	100	1000				<19	<20		
PCB-1254	100	1000			<19	<19	<20		
PCB-1260	100	1000		<20	<19	<19	<20	<20	<20
2,4,5-T	NC	1900	<120	<120	<120	<110	<120	<120	
2,4,5-TP (Silvex)	3.8	700		<120	<120	<110	<120		
2,4-D	NC	500			<120	<110	<120	<120	<120

Table 17
Area D Confirmation
Pesticide, PCB, Herbicide Results

Compound	EX-D-8	EX-D-9	EX-D-10	EX-D-11	EX-D-12	EX-D-13	EX-D-14	EX-D-15	EX-D-16
	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005
4,4-DDD	0.67-J	<2.0	<2.0	<2.0	1.2-J	0.86-J	<2.9	<1.9	<1.9
4,4-DDE	0.47-J	0.46-J	<2.0	<2.0	<1.9	0.58-J	<2.9	<1.9	0.36-J
4,4-DDT	<2.0	0.36-J	<2.0	<2.0	0.72-J	2.3	<2.9	<1.9	<1.9
Aldrin	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Alpha-BHC	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Beta-BHC	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Chlordane	<41	<39	<41	<41		<39	<57	<38	<38
Delta-BHC	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Dieldrin	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Endosulfan I	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Endosulfan II	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Endosulfan Sulfate	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Endrin	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Gamma-BHC (Lindane)	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Heptachlor	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Heptachlor Epoxide	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
Methoxychlor	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.9	<1.9	<1.9
PCB-1016	<20	<20	<20	<20		<20	<29		
PCB-1221	<20	<20	<20	<20		<20	<29		
PCB-1232	<20	<20	<20	<20	<20	<20			
PCB-1242	<20	<20	<20	<20	<20	<20	<29		
PCB-1248	<20	<20	<20	<20		<20	<29		
PCB-1254	<20	<20	<20	<20		<20			
PCB-1260	<20	<20	<20	<20	<20	<20	<29	<19	<19
2,4,5-T	<120	<120	<120	<120			<170		
2,4,5-TP (Silvex)	<120	<120	<120	<120		<120			
2,4-D	<120	<120	<120	<120	<120	<120	<170	<110	<110

Table 17
Area D Confirmation
Pesticide, PCB, Herbicide Results

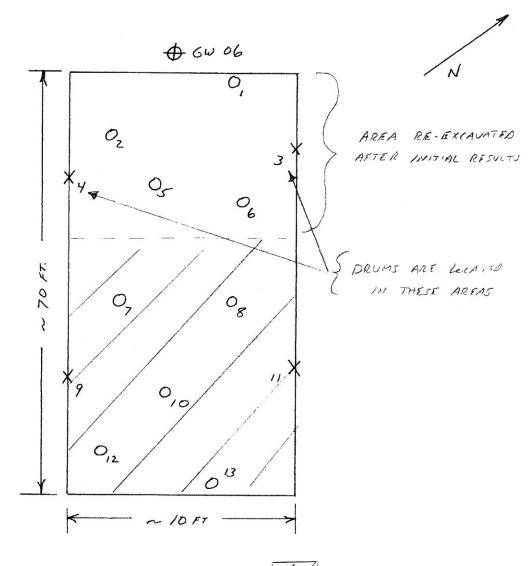
								EX-D-
					EX-D-			Duplicate
Compound	EX-D-17	EX-D-18	EX-D-19	EX-D-20	Duplicate	EX-D-21	EX-D-22	2
Compound	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005	11/2/2005
4,4-DDD	1.2-J	1.2-J	<1.9	3	<2.1	<1.9	<1.9	3.9
4,4-DDE	<1.8	0.69-J	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
4,4-DDT	<1.8	0.66-J	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Aldrin	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Alpha-BHC	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Beta-BHC	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Chlordane	<37	<38	<38	<42	<42	<39	<37	<41
Delta-BHC	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Dieldrin	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Endosulfan I	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Endosulfan II	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Endosulfan Sulfate	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Endrin	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Gamma-BHC (Lindane)	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Heptachlor	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Heptachlor Epoxide	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
Methoxychlor	<1.8	<1.9	<1.9	<2.1	<2.1	<1.9	<1.9	<2.1
PCB-1016	<18	<19	<19	<21	<21	<19		
PCB-1221	<18	<19			<21	<19		<21
PCB-1232	<18	<19	<19		<21	<19		<21
PCB-1242	<18	<19			<21	<19		
PCB-1248	<18	<19	<19		<21	<19		
PCB-1254	<18	<19	<19		<21	<19		
PCB-1260	<18	<19	<19	<21	<21	<19	<19	<21
2,4,5-T	<110	<110	<110	<130	<130	<120		
2,4,5-TP (Silvex)	<110				<130	<120		
2,4-D	<110					<120	<110	<120

APPENDIX 5

AREA F, TABLES 2 THROUGH 5 AND 23 THROUGH 24 / POST-EXCAVATION ANALYSES OF SOILS

AREA F – POST EXCAVATION SOIL ANALYSIS SUMMARY

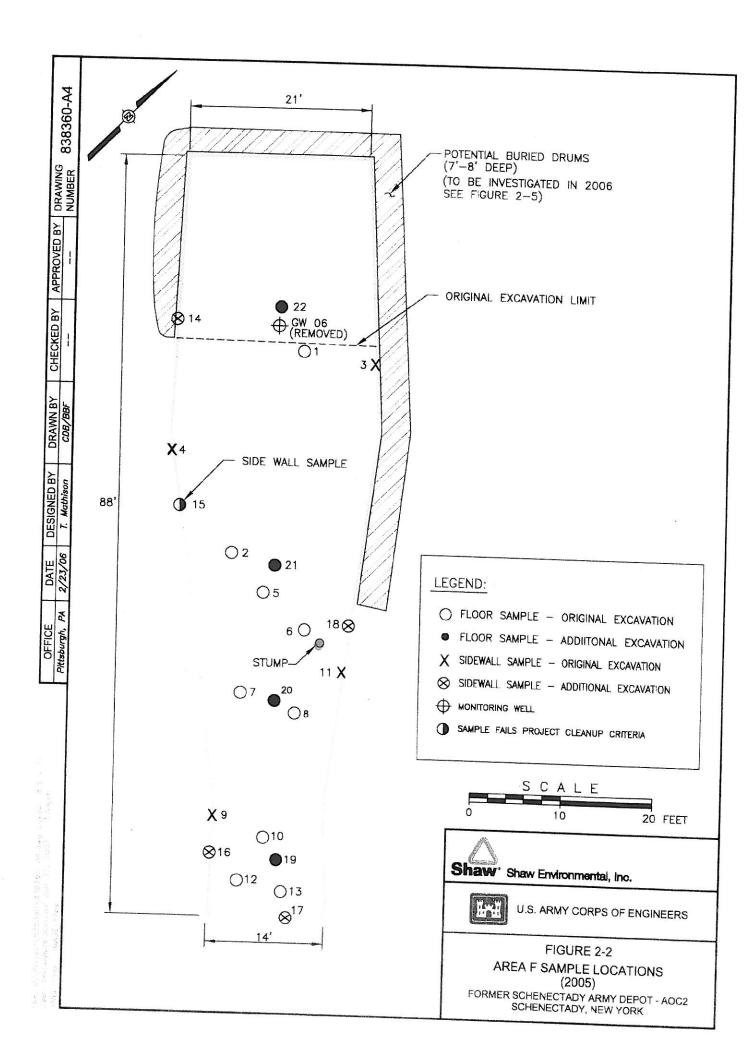
FSADVA AOC #2

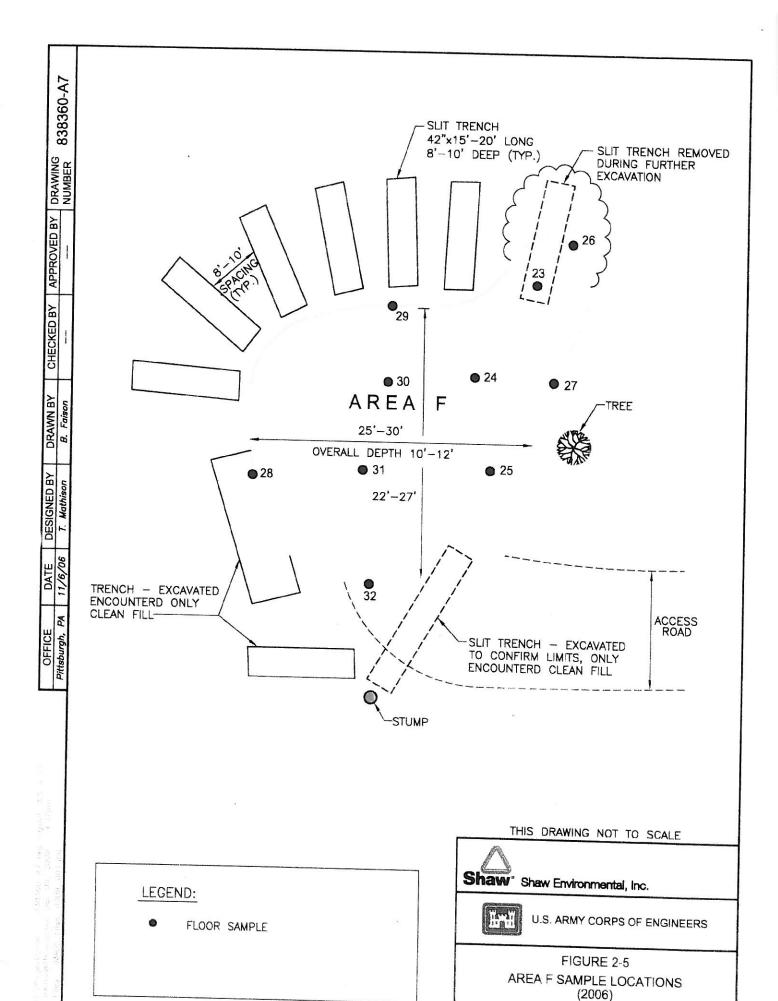

All post-excavation soil analyses met the unrestricted NYSDEC Part 375 standards for metals, SVOCs and VOCs.

Although several samples from excavated areas exceeded unrestricted pesticide concentrations, those areas were re-excavated, and were not re-tested for pesticides, since the levels met (i.e., did not exceed) the TAGM RSCOs at the time. Those results are also within the current-day residential SCO.

The post-excavation summary tables and sampling location sketches follow in this appendix.

199	
	1
()
/	


X - SIDEWALL SAMPLE


- AREA TO BE BACEFULSED

0 - FLOOR SAMPLE

+ - MONITORING WELL

NOT TO SCALE

FORMER SCHENECTADY ARMY DEPOT - AOC2 SCHENECTADY, NEW YORK

NYSDEC Part 375 Unrestricted Soil

	Officatificted Con										
	Cleanup	NYDEC					= = 0	EV E 4	EV E 5		EX-F-07
Metal	Objectives (SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	EX-F-1	EX-F-2	EX-F-3	EX-F-4	EX-F-5	EX-F-6	
					9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005		
Aluminum	NC	SB	33000	7080-12800	14400	15700	20200	14200	13000	21200	
Antimony	NC	SB	NA	0.2-0.59	0.45-J	<1.8	<2.1	<1.6	<1.7	<1.8	<1.8
Arsenic	13	7.5	3-12	4.3-16.4	7.4	6.7	3.5	4.5		3.1	6.3
Barium	350	300	15-600	33-104	728	170	232	5740			
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.77	0.87	0.78	0.67	0.62		
Cadmium	2.5	1	0-1.75	0.21-0.52	0.63	0.44-J	0.36-J	0.64			0.49-J
Calcium	NC	SB	130-35000	1280-46600	5690	17100	2530	5780			
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	27.1	19.3	18.8	16.5	15.4		
Cobalt	NC	30	2.5-60	5.3-12.2	10.6	9.9	6.6	7	6.8		10
Copper	50	25	1-50	13.4-26.9	38.4	28.9	17.9	25.5	22.6		
Iron	NC	2000	2000-550000	14100-25700	43700	27400	15900	21100	18500	18200	
Lead	63	SB	NA	16.5-60.8	33.1	15.2	16.5	38.2	54.6		
Magnesium	NC	SB	100-5000	2150-13100	4640	4870	3400	4480			
Manganese	1600	SB	50-5000	197-875	234	284	135	260			
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	0.029-J	0.030-J	0.054	0.035			
Nickel	30	13	0.5-25	10.6-24.8	34.8	25.1	16.9	21.5	19.2		24.4
Potassium	NC	SB	8500-43000	443-1660	1640	1640	1370	1630	1490		
Selenium	3.9	2	0.1-3.9	0.44-1.2	0.81-J	0.30-J	0.55-J	0.64-J	0.66-J	0.41-J	0.46-J
Silver	2	SB	NA	0.16-0.17	<0.27	<0.28	< 0.31	<0.24	<0.25	<0.27	<0.27
Thallium	NC	SB	NA	ND-0.67	<2.7	<2.8	<3.1	<2.4	0.31-J	<2.7	0.35-J
Vanadium	NC	150	1-300	13.7-24	26.3	29.1	30.7	23.5			
Zinc	109	20	9-50	46-134	328	86.1	103	7010	10200	598	107

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil

Area-F

Unrestricted Soil										Alca-i
Cleanup	NYDEC								Stockholm make unintersale	North
Objectives (SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	EX-F-8	EX-F-9	EX-F-10	EX-F-11			Comp
				9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005		
NC	SB	33000	7080-12800	14800	19200			17800		
NC	SB	NA	0.2-0.59	<1.6	<1.8					<3.0
13	7.5	3-12	4.3-16.4	6.2	6.3					
350	300	15-600	33-104	67.3	102	72.9				
7.2	0.16	0-1.75	0.38-0.67	0.8	0.8					
2.5	1	0-1.75	0.21-0.52	0.52	0.35-J					<0.25
NC	SB	130-35000	1280-46600	4190						
30 (TRIVALENT)	10	1.5-40	9.3-17.5	18.9						13
NC	30	2.5-60	5.3-12.2	13						
50	25	1-50	13.4-26.9	26.3	13.8	20.2				19.5
NC	2000	2000-550000	14100-25700	27500	24200	19100				24000
63	SB	NA	16.5-60.8	16.1	10.4					8.73
NC	SB	100-5000	2150-13100	4910	3750					
1600	SB	50-5000	197-875	459	93.6					
0.18	0.1	0.001-0.2	0.039-0.095	0.053	0.046	0.072				<0.020
30	13	0.5-25	10.6-24.8	25.6	15.6					15.6
NC *	SB	8500-43000	443-1660							
3.9	2	0.1-3.9	0.44-1.2	0.70-J	0.36-J	0.47-J				<0.25
2	SB	NA	0.16-0.17	<0.23	<0.28	<0.24				<1.00
NC	SB	NA	ND-0.67	<2.3	<2.8	<2.4	<2.3	<2.2		<0.50
NC	150	1-300	13.7-24	29.4	34.1	27.4				
109	20	9-50	46-134	74.5	47	80	94	70.2	63.2	302
	Cleanup Objectives (SCOs) NC NC 13 350 7.2 2.5 NC 30 (TRIVALENT) NC 50 NC 63 NC 1600 0.18 30 NC 3.9 2 NC NC NC	Cleanup Objectives (SCOs) NYDEC (mg/kg) NC SB NC SB 13 7.5 350 300 7.2 0.16 2.5 1 NC SB 30 (TRIVALENT) 10 NC 30 50 25 NC 2000 63 SB NC SB 1600 SB 0.18 0.1 30 13 NC SB 3.9 2 2 SB NC SB NC SB	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG NC SB 33000 NC SB NA 13 7.5 3-12 350 300 15-600 7.2 0.16 0-1.75 2.5 1 0-1.75 NC SB 130-35000 30 (TRIVALENT) 10 1.5-40 NC 30 2.5-60 NC 2000 2000-55000 63 SB NA NC SB 100-5000 63 SB 100-5000 63 SB 50-5000 0.18 0.1 0.001-0.2 30 13 0.5-25 NC SB 8500-43000 3.9 2 0.1-3.9 2 SB NA NC SB NA NC SB NA NC SB NA NC SB NA	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) NC SB 33000 7080-12800 NC SB NA 0.2-0.59 13 7.5 3-12 4.3-16.4 350 300 15-600 33-104 7.2 0.16 0-1.75 0.38-0.67 2.5 1 0-1.75 0.21-0.52 NC SB 130-35000 1280-46600 30 (TRIVALENT) 10 1.5-40 9.3-17.5 NC 30 2.5-60 5.3-12.2 50 25 1-50 13.4-26.9 NC 2000 2000-550000 14100-25700 63 SB NA 16.5-60.8 NC SB 100-5000 2150-13100 1600 SB 50-5000 197-875 0.18 0.1 0.001-0.2 0.039-0.095 30 13 0.5-25 10.6-24.8 NC SB 8500-43000 443-1660	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-F-8 NC SB 33000 7080-12800 14800 NC SB NA 0.2-0.59 <1.6	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-F-8 EX-F-9 NC SB 33000 7080-12800 14800 19200 NC SB NA 0.2-0.59 <1.6	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-F-8 EX-F-10 NC SB 33000 7080-12800 14800 19200 9/23/2005 NC SB NA 0.2-0.59 <1.6	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-F-8 EX-F-9 EX-F-10 EX-F-11 NC SB 33000 7080-12800 14800 19200 16300 17100 NC SB NA 0.2-0.59 <1.6	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-F-9 EX-F-10 EX-F-10 EX-F-12 NC SB 33000 7080-12800 14800 19200 9/23/2005 <td> Note</td>	Note

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil

Cleanup	NYDEC								
Objectives (SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	EX-F-Supp 1	EX-F-Supp 2	EX-F-14			EX-F-17
				10/7/2005	10/7/2005	11/9/2005	11/9/2005		
NC	SB	33000	7080-12800	9470	6240	10100	8920		
NC	SB	NA	0.2-0.59	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
13	7.5	3-12	4.3-16.4	<0.25	<0.25	<0.25			<0.25
350	300	15-600	33-104	458	210				
7.2	0.16	0-1.75	0.38-0.67	0.42	0.28	0.72	0.57		
2.5	1	0-1.75	0.21-0.52	<0.25	0.7		<0.25		<0.25
NC	SB	130-35000	1280-46600	6510	1710	1000	3240		
30 (TRIVALENT)	10	1.5-40	9.3-17.5	12.6	6.32		14.4		10.8
NC	30	2.5-60	5.3-12.2	4.56	<2.50				
50	25	1-50	13.4-26.9	26.5	11.5	27.1			15.4
NC	2000	2000-550000	14100-25700	18700	9950	15900	13000		
63	SB	NA	16.5-60.8	43.3	11.2				
NC	SB	100-5000	2150-13100	5260	1800	4260			
1600	SB	50-5000	197-875	206	95.2	130			
0.18	0.1	0.001-0.2	0.039-0.095	0.015	<0.010	<0.020			
30	13	0.5-25	10.6-24.8	20.4	9.77	4.14		The state of the s	<2.50
NC	SB	8500-43000	443-1660	913	729	408			
3.9	2	0.1-3.9	0.44-1.2	3.73	7.97	<0.25	<0.25	<0.25	<0.25
2	SB	NA	0.16-0.17	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
NC	SB	NA	ND-0.67	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
NC	150	1-300	13.7-24	16.7	10.3				
109	20	9-50	46-134	10100	25400	58	398	50	40.7
	Objectives (SCOs) NC NC 13 350 7.2 2.5 NC 30 (TRIVALENT) NC 63 NC 1600 0.18 30 NC 3.9 2 NC NC NC	Objectives (SCOs) (mg/kg) NC SB NC SB 13 7.5 350 300 7.2 0.16 2.5 1 NC SB 30 (TRIVALENT) 10 NC 30 50 25 NC 2000 63 SB NC SB 1600 SB 0.18 0.1 30 13 NC SB 3.9 2 SB NC NC SB NC SB	Objectives (SCOs) (mg/kg) East US BG NC SB 33000 NC SB NA 13 7.5 3-12 350 300 15-600 7.2 0.16 0-1.75 2.5 1 0-1.75 NC SB 130-35000 30 (TRIVALENT) 10 1.5-40 NC 30 2.5-60 50 25 1-50 NC 2000 2000-550000 63 SB NA NC SB 100-5000 1600 SB 50-5000 0.18 0.1 0.001-0.2 30 13 0.5-25 NC SB 8500-43000 3.9 2 0.1-3.9 2 SB NA NC SB NA NC SB NA NC SB NA NC SB NA <	Objectives (SCOs) (mg/kg) East US BG Site BG (mg/kg) NC SB 33000 7080-12800 NC SB NA 0.2-0.59 13 7.5 3-12 4.3-16.4 350 300 15-600 33-104 7.2 0.16 0-1.75 0.38-0.67 2.5 1 0-1.75 0.21-0.52 NC SB 130-35000 1280-46600 30 (TRIVALENT) 10 1.5-40 9.3-17.5 NC 30 2.5-60 5.3-12.2 50 25 1-50 13.4-26.9 NC 2000 2000-550000 14100-25700 63 SB NA 16.5-60.8 NC SB 100-5000 2150-13100 1600 SB 50-5000 197-875 0.18 0.1 0.001-0.2 0.039-0.095 30 13 0.5-25 10.6-24.8 NC SB 8500-43000 443-1660 <tr< td=""><td>Objectives (SCOs) (mg/kg) East US BG Site BG (mg/kg) EX-F-Supp 1 NC SB 33000 7080-12800 9470 NC SB NA 0.2-0.59 <3.00</td> 13 7.5 3-12 4.3-16.4 <0.25</tr<>	Objectives (SCOs) (mg/kg) East US BG Site BG (mg/kg) EX-F-Supp 1 NC SB 33000 7080-12800 9470 NC SB NA 0.2-0.59 <3.00	Objectives (SCOs) (mg/kg) East US BG Site BG (mg/kg) EX-F-Supp 1 EX-F-Supp 2 NC SB 33000 7080-12800 9470 6240 NC SB NA 0.2-0.59 <3.00	Objectives (SCOs) (mg/kg) East US BG Site BG (mg/kg) EX-F-Supp 1 EX-F-Supp 2 EX-F-14 NC SB 33000 7080-12800 9470 6240 10100 NC SB NA 0.2-0.59 <3.00	Objectives (SCOs) (mg/kg) East US BG Site BG (mg/kg) EX-F-Supp 1 EX-F-Supp 2 EX-F-14 EX-F-15 NC SB 33000 7080-12800 9470 6240 10100 8920 NC SB NA 0.2-0.59 <3.00	Objectives (SCOs) (mg/kg) East US BG Site BG (mg/kg) EX-F-Supp 1 EX-F-Supp 2 EX-F-14 EX-F-15 EX-F-16 NC SB 33000 7080-12800 9470 6240 10100 8920 7870 NC SB NA 0.2-0.59 -3.00 -3.51 -3.20 -0.25

NC - NO CRITERIA LISTED

AOC-2

Table 2 Area F Confirmation Metals Results

NYSDEC Part 375 Unrestricted Soil

NYDEC Cleanup EX-F-22 EX-F-20 EX-F-21 EX-F-18 EX-F-19 (mg/kg) East US BG Site BG (mg/kg) Objectives (SCOs) Metal 11/9/2005 11/9/2005 11/9/2005 11/9/2005 11/9/2005 8850 9980 7540 11900 7700 33000 7080-12800 NC SB Aluminum <3.00 <3.00 <3.00 <3.00 NC SB NA 0.2-0.59 <3.00 Antimony < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 13 7.5 3-12 4.3-16.4 Arsenic 58.2 60.3 30 43.6 33-104 79.5 350 300 15-600 Barium 0.4 0.56 0.42 0.42 0.16 0-1.75 0.38-0.67 0.97 7.2 Beryllium < 0.25 < 0.25 < 0.25 < 0.25 1 0-1.75 0.21-0.52 < 0.25 Cadmium 2.5 12300 13300 18400 15500 2650 130-35000 1280-46600 Calcium NC SB 18.9 14.2 17.9 17.1 14.4 10 1.5-40 9.3-17.5 30 (TRIVALENT) Chromium 9.9 7.87 9.67 7.46 13.5 30 2.5-60 5.3-12.2 Cobalt NC 27.7 22.9 22.7 30.7 22 13.4-26.9 50 25 1-50 Copper 18000 14100-25700 13400 16200 20500 13600 2000 2000-550000 NC Iron 7.75 4.97 11 8.05 6.2 16.5-60.8 63 SB NA Lead 8440 8350 6660 2150-13100 3820 6720 100-5000 NC SB Magnesium 466 360 197-875 225 365 440 50-5000 1600 SB Manganese 0.022 0.028 0.025 0.1 0.001-0.2 0.039-0.095 0.024 0.024 0.18 Mercury 3.45 7.11 6.12 10.6-24.8 8.63 3.8 13 0.5-25 Nickel 30 1130 872 841 589 951 8500-43000 443-1660 NC SB Potassium < 0.25 < 0.25 < 0.25 < 0.25 2 0.1-3.9 0.44-1.2 < 0.25 3.9 Selenium <1.00 <1.00 <1.00 <1.00 2 SB NA 0.16-0.17 <1.00 Silver < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 NC SB NA ND-0.67 Thallium 10.9 9.67 13.7-24 9.95 12.7 16.5 NC 150 1-300 Vanadium 48 53.9 64.8 20 9-50 50.5 50.6 46-134 109 Zinc

NC - NO CRITERIA LISTED

NYSDEC PART 375 UNRESTRICTED NYDEC

	UNRESTRICTED	NYDEC							
	SOIL CLEANUP	RSCO		25.000000000000000000000000000000000000				= = = =	FV F 7
Compound	CRITERIA (SCOs)	(mg/kg)	EX-F-1	EX-F-2	EX-F-3	EX-F-4	EX-F-5	EX-F-6	EX-F-7
			9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005
2,4,5-Trichlorophenol	NC	0.1-ADL	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
2,4-Dichlorophenol	NC	0.4	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	< 0.390
2,4-Dinitrophenol	NC	0.200	<0.760	<0.760	<0.910	<0.780	<0.750	<0.790	<0.780
2,6-Dinitrotoluene	NC	1.0	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
2-Chlorophenol	NC	0.8	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	< 0.390
2-Methylnaphthalene	NC	36.4	<0. 380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
2-Nitroaniline	NC	0.430	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
2-Nitrophenol	NC	0.330	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
2-methylphenol	NC	0.100-ADL	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
3-Nitroaniline	NC	0.500	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
4-Chloroaniline	NC	0.220-ADL	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
4-Nitroaniline	NC	NS	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
4-Nitrophenol	NC	0.100-ADL	<0.760	<0.760	<0.910	<0.780	<0.750	<0.790	<0.780
4-chloro-3-methylphenol	NC	0.240-ADL	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
4-methylphenol	NC	0.9	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Acenaphthene	20	50.0	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	< 0.390
Acenaphthylene	100	41.0	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Aniline	NC	0.1-ADL	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Anthracene	100	50.0	< 0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Benzo(a) anthracene	1	0.224-ADL	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Benzo(a) pyrene	1	0.061-ADL	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Benzo(b) fluoranthene	1	1.1	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Benzyl Butyl Phthalate	NC	50.0	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Chrysene	1	0.4	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Dibenz(a,h) Anthracene	0.33	0.014-ADL	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Dibenzofuran	NC	6.2	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Diethyl Phthalate	NC	7.1	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Dimethyl Phthalate	NC	2.0	< 0.380	< 0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Fluoranthene	100	50.0	<0.380	<0.380	<0.460	<0.390	< 0.370	<0.400	<0.390
Fluorene	30	50.0	<0.380	< 0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Hexachlorobenzene	NC	0.41	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	< 0.390
Indeno(1,2,3-c,d) Pyrene	0,5	3.2	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Isophorone	NC	4.40	<0.380	<0.380	<0.460	< 0.390	<0.370	<0.400	<0.390
Naphthalene	12	13.0	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Nitrobenzene	NC	0.200-ADL	< 0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Pentachlorophenol	0.8	1.0	<0.760	<0.760	<0.910	<0.780	<0.750	<0.790	<0.780
Phenanthrene	100	50.0	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Phenol	0.33	0.03-ADL	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
Pyrene	100	50	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390
bis(2-ethylhexyl) phthalate	NC NC	50.0	<0.380	<0.380	<0.460	< 0.390	<0.370	<0.400	<0.390
di-n-Butyl Phthalate	NC	8.1	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	< 0.390
di-n-Octyl Phthalate	NC	50.0	<0.380	<0.380	<0.460	<0.390	<0.370	<0.400	<0.390

Compound	NYSDEC PART 375 UNRESTRICTED SOIL CLEANUP CRITERIA (SCOs)	NYDEC RSCO (mg/kg)	EX-F-8	EX-F-9	EX-F-10	EX-F-11	EX-F-12	EX-F-13
Compound	CHITCHIA (SCOS)	(ilig/kg/	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005
2.4.5-Trichlorophenol	NC	0.1-ADL	<0.370	< 0.410	<0.400	< 0.410	<0.400	<0.390
2,4-Dichlorophenol	NC NC	0.4	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
2,4-Dichiorophenol	NC NC	0.200	<0.750	<0.820	<0.790	<0.810	<0.790	<0.780
2.6-Dinitrophenor	NC NC	1.0	< 0.370	<0.410	<0.400	<0.410	<0.400	<0.390
2-Chlorophenol	NC	0.8	< 0.370	<0.410	<0.400	<0.410	<0.400	<0.390
2-Methylnaphthalene	NC	36 4	< 0.370	<0.410	<0.400	<0.410	<0.400	<0.390
2-Nitroaniline	NC	0,430	< 0.370	<0.410	<0.400	<0.410	<0.400	<0.390
2-Nitrophenol	NC	0.330	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
2-methylphenol	NC	0.100-ADL	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
3-Nitroaniline	NC	0.500	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
4-Chloroaniline	NC	0.220-ADL	<0.370	<0.410	<0.400	< 0.410	<0.400	<0.390
4-Nitroaniline	NC	NS	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
4-Nitrophenol	NC	0.100-ADL	<0.750	<0.820	<0.790	<0.810	<0.790	<0. 780
4-chloro-3-methylphenol	NC	0.240-ADL	<0.370	< 0.410	<0.400	<0.410	<0.400	<0.390
4-methylphenol	NC	0.9	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Acenaphthene	20	50.0	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Acenaphthylene	100	41.0	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Aniline	NC	0.1-ADL	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Anthracene	100	50.0	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Benzo(a) anthracene	1	0.224-ADL	< 0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Benzo(a) pyrene	1	0.061-ADL	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Benzo(b) fluoranthene	11	1.1	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Benzyl Butyl Phthalate	NC	50.0	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Chrysene	11	0.4	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Dibenz(a,h) Anthracene	0.33	0.014-ADL	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Dibenzofuran	NC	6.2	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Diethyl Phthalate	NC	7.1	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Dimethyl Phthalate	NC	2.0	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Fluoranthene	100	50.0	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Fluorene	30	50.0	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Hexachlorobenzene	NC	0.41	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390 <0.390
Indeno(1,2,3-c,d) Pyrene	0.5	3.2	<0.370	<0.410	<0.400	<0.410		
Isophorone	NC	4.40	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Naphthalene	12	13.0	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Nitrobenzene	NC	0.200-ADL	<0.370	<0.410	<0.400	<0.410	<0.400	
Pentachlorophenol	0.8	1.0	<0.750	<0.820	<0.790	<0.810	<0.790 <0.400	<0.390 <0.390
Phenanthrene	100	50.0	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390
Phenol	0.33	0.03-ADL	<0.370	<0.410	<0.400	<0.410		<0.390
Pyrene	100	50	<0.370	<0.410	<0.400	< 0.410	<0.400	220
bis(2-ethylhexyl) phthalate	NC	50.0	<0.370	<0.410	<0.400	< 0.410	<0.400 <0.400	<0.390
di-n-Bulyl Phthalate	NC	8.1	<0.370	<0.410	<0.400	< 0.410		<0.390
di-n-Octyl Phthalale	NC	50.0	<0.370	<0.410	<0.400	<0.410	<0.400	<0.390

NYSDEC PART 375 UNRESTRICTED SOIL

NYDEC RSCO CLEANUP EX-F-4 EX-F-5 EX-F-3 EX-F-1 EX-F-2 **OBJECTIVES (SCOs)** (mg/kg) Compound 9/23/2005 9/23/2005 9/23/2005 9/23/2005 9/23/2005 < 0.0056 < 0.0060 < 0.0051 < 0.0062 0.8 < 0.0065 0.68 1,1,1-Trichloroethane < 0.0056 < 0.0062 < 0.0060 0.6 < 0.0065 < 0.0051 NC 1.1.2.2-Tetrachloroethane < 0.0060 < 0.0056 < 0.0062 NS < 0.0065 < 0.0051 NC 1.1.2-Trichloroethane <0.0056 < 0.0060 < 0.0062 0.2 < 0.0065 < 0.0051 1.1-Dichloroethane 0.27 < 0.0056 < 0.0062 < 0.0060 < 0.0051 7.9 < 0.0065 1.2-Dichlorobenzene 1.1 < 0.0056 < 0.0062 < 0.0060 1.6 < 0.0065 < 0.0051 1,3-Dichlorobenzene 2.4 < 0.0060 < 0.0056 < 0.0051 < 0.0062 8.5 < 0.0065 1.4-Dichlorobenzene 1.8 < 0.0062 < 0.0060 < 0.0056 0.3 < 0.0065 < 0.0051 trans-1,2 Dichloroethene 0.19 0.3 < 0.013 < 0.010 < 0.012 < 0.012 < 0.011 0.12 2-Butanone (MEK) < 0.011 1 < 0.013 < 0.010 < 0.012 < 0.012 NC 4-Methyl-2-Pentanone (MIBK) 0.039 0.015 0.2 0.011-J 0.011-J 0.016 0.05 Acetone 0.0032-J < 0.0056 0.06 < 0.0065 < 0.0051 < 0.0062 0.06 Benzene 0.0019-J < 0.012 0.0023-J NC NS < 0.013 < 0.010 Bromomethane 0.015 < 0.0056 < 0.0062 NC 2.7 < 0.0065 < 0.0051 Carbon Disulfide < 0.0060 < 0.0056 < 0.0062 0.76 0.6 < 0.0065 < 0.0051 Carbon Tetrachloride < 0.0056 < 0.0060 < 0.0062 1.7 < 0.0065 < 0.0051 1.1 Chlorobenzene < 0.012 < 0.011 < 0.010 < 0.012 NC 1.9 < 0.013 Chloroethane < 0.0060 < 0.0056 < 0.0051 0.0038-J 0.37 0.3 < 0.0065 Chloroform 0.0033-J 0.0058-J < 0.0060 0.0035-J NC NS 0.0032-J Chloromethane < 0.0056 < 0.0060 < 0.0062 < 0.0065 < 0.0051 NC NS Dibromochloromethane < 0.0056 0.0050-J 5.5 < 0.0065 < 0.0051 < 0.0062 1 Ethylbenzene <0.0056 < 0.0062 < 0.0060 6 < 0.0065 < 0.0051 NC Freon 113 < 0.012 0.0013-J 0.0011-J 0.0022-J 0.1 < 0.0065 0.05 Methylene Chloride < 0.0060 < 0.0056 <0.0065 < 0.0051 < 0.0062 NC NS Styrene < 0.0062 < 0.0060 < 0.0056 1.4 < 0.0065 < 0.0051 1.3 Tetrachloroethene 0.0018 < 0.0056 < 0.0062 1.5 < 0.0065 < 0.0051 0.7 Toluene < 0.0051 < 0.0062 < 0.0060 < 0.0056 0.7 < 0.0065 0.47 Trichloroethene < 0.010 < 0.012 < 0.012 < 0.011 0.2 < 0.013 0.02 Vinyl Chloride 1.2 < 0.0065 < 0.0051 < 0.0062 0.023 < 0.0056 0.26 **Xylenes**

NYSDEC PART 375 UNRESTRICTED SOIL

NYDEC RSCO **CLEANUP** EX-F-9 EX-F-10 EX-F-11 EX-F-7 EX-F-8 EX-F-6 **OBJECTIVES (SCOs)** (mg/kg) Compound 9/23/2005 9/23/2005 9/23/2005 9/23/2005 9/23/2005 9/23/2005 < 0.0064 < 0.0058 < 0.0059 0.8 < 0.0057 < 0.0058 < 0.0047 1.1.1-Trichloroethane 0.68 < 0.0059 < 0.0064 0.6 < 0.0057 <0.0058 < 0.0047 < 0.0058 NC 1.1.2.2-Tetrachloroethane < 0.0064 <0.0058 < 0.0059 NS < 0.0057 < 0.0058 < 0.0047 NC 1.1.2-Trichloroethane < 0.0064 <0.0058 < 0.0059 0.2 < 0.0057 <0.0058 < 0.0047 0.27 1.1-Dichloroethane < 0.0064 < 0.0059 < 0.0047 < 0.0058 7.9 < 0.0057 <0.0058 1.1 1,2-Dichlorobenzene < 0.0064 < 0.0059 <0.0058 < 0.0047 < 0.0058 2.4 1.6 < 0.0057 1,3-Dichlorobenzene < 0.0064 <0.0058 < 0.0059 <0.0058 < 0.0047 1.8 8.5 < 0.0057 1.4-Dichlorobenzene < 0.0064 < 0.0059 < 0.0058 0.3 < 0.0057 < 0.0058 < 0.0047 0.19 trans-1,2 Dichloroethene < 0.013 < 0.012 < 0.012 < 0.0094 < 0.012 0.3 < 0.011 0.12 2-Butanone (MEK) < 0.013 < 0.012 < 0.012 < 0.0094 < 0.012 1 < 0.011 4-Methyl-2-Pentanone (MIBK) NC 0.014 < 0.013 0.023 0.021 0.0092-J 0.021 0.2 0.05 Acetone < 0.0059 < 0.0064 <0.0058 0.06 < 0.0057 0.0032-J < 0.0047 0.06 Benzene < 0.012 < 0.013 < 0.0094 < 0.012 < 0.011 < 0.012 NC NS Bromomethane < 0.0058 < 0.0059 < 0.0064 < 0.0047 2.7 < 0.0057 < 0.0058 NC Carbon Disulfide < 0.0047 < 0.0058 < 0.0059 < 0.0064 <0.0058 0.6 < 0.0057 0.76 Carbon Tetrachloride < 0.0047 < 0.0058 < 0.0059 < 0.0064 1.7 < 0.0057 <0.0058 1.1 Chlorobenzene < 0.013 < 0.012 < 0.0094 < 0.012 < 0.012 1.9 < 0.011 NC Chloroethane 0.0045-J 0.0044-J 0.3 0.0036-J < 0.0058 < 0.0047 0.0040-J 0.37 Chloroform 0.0050-J < 0.013 < 0.012 0.0054-J < 0.012 0.0029-J NC NS Chloromethane < 0.0064 < 0.0059 <0.0057 <0.0058 < 0.0047 < 0.0058 NC NS Dibromochloromethane 0.0014-J < 0.0058 < 0.0059 5.5 < 0.0057 0.0033-J < 0.0047 1 Ethylbenzene < 0.0059 < 0.0064 < 0.0058 6 < 0.0057 <0.0058 < 0.0047 NC Freon 113 0.0016-J 0.0025-J 0.0016-J 0.1 0.0016-J 0.0027-J < 0.0094 0.05 Methylene Chloride < 0.0064 <0.0058 < 0.0047 <0.0058 < 0.0059 NS < 0.0057 Styrene NC < 0.0064 <0.0058 < 0.0059 <0.0058 < 0.0047 1.3 1.4 < 0.0057 Tetrachloroethene < 0.0059 < 0.0064 < 0.0058 1.5 < 0.0057 0.014 < 0.0047 0.7 Toluene < 0.0059 < 0.0064 < 0.0058 0.7 < 0.0057 <0.0058 < 0.0047 Trichloroethene 0.47 < 0.012 < 0.012 < 0.013 < 0.0094 0.2 < 0.011 < 0.012 Vinyl Chloride 0.02 < 0.0064 < 0.0058 < 0.0059 0.0094 < 0.0047 1.2 < 0.0057 0.26 **Xylenes**

NYSDEC PART 375 UNRESTRICTED SOIL

CLEANUP NYDEC RSCO EX-F-16 EX-F-17 EX-F-13 EX-F-14 EX-F-15 **OBJECTIVES (SCOs)** EX-F-12 (mg/kg) Compound 11/9/2005 11/9/2005 11/9/2005 9/23/2005 9/23/2005 11/9/2005 < 0.005 < 0.005 < 0.005 0.8 < 0.0063 < 0.0058 < 0.005 0.68 1,1,1-Trichloroethane < 0.005 < 0.005 < 0.005 < 0.005 NC 0.6 < 0.0063 < 0.0058 1,1,2,2-Tetrachloroethane < 0.005 < 0.005 < 0.005 < 0.005 NC NS < 0.0063 < 0.0058 1,1,2-Trichloroethane < 0.005 < 0.005 < 0.005 < 0.005 0.27 0.2 < 0.0063 < 0.0058 1,1-Dichloroethane <0.005 < 0.005 < 0.005 7.9 < 0.0063 <0.0058 < 0.005 1.1 1.2-Dichlorobenzene < 0.005 < 0.005 < 0.005 1.6 < 0.0063 <0.0058 < 0.005 2.4 1.3-Dichlorobenzene < 0.005 < 0.005 8.5 < 0.0063 < 0.0058 < 0.005 < 0.005 1.8 1.4-Dichlorobenzene < 0.005 < 0.005 < 0.005 < 0.005 0.3 < 0.0063 < 0.0058 trans-1,2 Dichloroethene 0.19 < 0.010 < 0.010 < 0.010 0.3 < 0.013 < 0.012 < 0.010 0.12 2-Butanone (MEK) < 0.010 < 0.010 < 0.010 < 0.010 1 < 0.013 < 0.012 4-Methyl-2-Pentanone (MIBK) NC 0.015 < 0.010 0.014 < 0.010 < 0.010 0.2 < 0.013 0.05 Acetone 0.004 < 0.005 < 0.005 < 0.005 < 0.005 0.06 0.0022-J 0.06 Benzene < 0.010 < 0.010 < 0.010 < 0.010 < 0.013 < 0.0058 NC NS Bromomethane < 0.005 < 0.005 < 0.005 < 0.005 2.7 < 0.0063 < 0.0058 NC Carbon Disulfide < 0.005 0.6 < 0.0063 <0.0058 < 0.005 < 0.005 < 0.005 0.76 Carbon Tetrachloride < 0.005 1.7 < 0.0063 <0.0058 < 0.005 < 0.005 < 0.005 1.1 Chlorobenzene < 0.010 < 0.010 1.9 < 0.013 < 0.012 < 0.010 < 0.010 NC Chloroethane < 0.005 < 0.005 0.3 0.0035-J <0.0058 < 0.005 < 0.005 0.37 Chloroform < 0.010 < 0.010 < 0.010 < 0.013 < 0.012 < 0.010 NC NS Chloromethane < 0.005 < 0.005 < 0.005 NS < 0.0063 < 0.0058 < 0.005 NC Dibromochloromethane < 0.005 < 0.005 0.0041 < 0.005 < 0.005 5.5 0.0023-J 1 Ethylbenzene < 0.005 < 0.005 < 0.005 < 0.005 NC 6 < 0.0063 < 0.0058 Freon 113 < 0.005 < 0.005 < 0.005 < 0.012 < 0.005 0.05 0.1 < 0.013 Methylene Chloride < 0.005 < 0.005 < 0.005 < 0.0063 < 0.0058 < 0.005 NC NS Styrene < 0.005 < 0.005 1.4 < 0.0063 < 0.005 < 0.005 < 0.0058 1.3 Tetrachloroethene < 0.005 0.24 < 0.005 < 0.005 < 0.005 1.5 < 0.0063 0.7 Toluene < 0.005 < 0.005 < 0.005 < 0.005 0.7 < 0.0063 < 0.0058 Trichloroethene 0.47 < 0.010 < 0.010 < 0.010 < 0.010 0.2 < 0.013 < 0.012 Vinyl Chloride 0.02 < 0.005 < 0.005 0.26 < 0.005 < 0.005 0.009 1.2 **Xylenes** 0.26

NYSDEC PART 375 UNRESTRICTED SOIL

EX-F-NYDEC RSCO CLEANUP EX-F-21 EX-F-22 Duplicate#2 EX-F-19 EX-F-20 EX-F-18 **OBJECTIVES (SCOs)** (mg/kg) Compound 11/9/2005 11/9/2005 11/9/2005 11/9/2005 11/9/2005 11/9/2005 < 0.005 < 0.005 < 0.005 0.8 < 0.005 < 0.005 < 0.005 1.1.1-Trichloroethane 0.68 < 0.005 0.6 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 NC 1.1.2.2-Tetrachloroethane < 0.005 < 0.005 <0.005 < 0.005 < 0.005 < 0.005 NC NS 1.1.2-Trichloroethane <0.005 < 0.005 0.2 < 0.005 < 0.005 < 0.005 < 0.005 0.27 1.1-Dichloroethane < 0.005 < 0.005 < 0.005 7.9 < 0.005 < 0.005 < 0.005 1,2-Dichlorobenzene 1.1 < 0.005 < 0.005 < 0.005 2.4 1.6 < 0.005 < 0.005 < 0.005 1.3-Dichlorobenzene <0.005 < 0.005 < 0.005 < 0.005 < 0.005 1.8 8.5 < 0.005 1.4-Dichlorobenzene < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 0.19 0.3 < 0.005 trans-1,2 Dichloroethene < 0.010 < 0.010 < 0.010 < 0.010 0.3 < 0.010 < 0.010 0.12 2-Butanone (MEK) < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 1 < 0.010 4-Methyl-2-Pentanone (MIBK) NC 0.013 < 0.010 0.2 < 0.010 0.031 0.011 0.017 0.05 Acetone < 0.005 < 0.005 0.06 < 0.005 < 0.005 < 0.005 < 0.005 Benzene 0.06 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 NC NS Bromomethane < 0.005 < 0.005 < 0.005 2.7 < 0.005 < 0.005 < 0.005 NC Carbon Disulfide < 0.005 < 0.005 < 0.005 < 0.005 0.6 < 0.005 < 0.005 0.76 Carbon Tetrachloride < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 1.7 < 0.005 1.1 Chlorobenzene < 0.010 < 0.010 < 0.010 < 0.010 1.9 < 0.010 < 0.010 NC Chloroethane < 0.005 < 0.005 < 0.005 < 0.005 0.3 < 0.005 < 0.005 0.37 Chloroform < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 NC NS Chloromethane < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 NC NS Dibromochloromethane < 0.005 < 0.005 5.5 < 0.005 < 0.005 < 0.005 < 0.005 1 Ethylbenzene < 0.005 < 0.005 6 < 0.005 < 0.005 < 0.005 < 0.005 NC Freon 113 < 0.005 < 0.005 < 0.005 < 0.005 0.1 < 0.005 < 0.005 0.05 Methylene Chloride < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 NC NS Styrene < 0.005 < 0.005 <0.005 < 0.005 < 0.005 1.3 1.4 < 0.005 Tetrachloroethene < 0.005 < 0.005 1.5 < 0.005 < 0.005 < 0.005 < 0.005 0.7 Toluene < 0.005 < 0.005 < 0.005 0.7 < 0.005 < 0.005 < 0.005 Trichloroethene 0.47 < 0.010 < 0.010 < 0.010 0.2 < 0.010 < 0.010 < 0.010 Vinyl Chloride 0.02 < 0.005 < 0.005 < 0.005 1.2 < 0.005 < 0.005 < 0.005 0.26 Xylenes

Table 5 Area F Confirmation Pesticide, PCb, Herbicide Results

NYSDEC PART 375 UNRESTRICTED SOIL CLEANUP

OBJECTIVES NYDEC RSCO

	OBJECTIVES	NYDEC RSCO						0000000000	
Compound	(SCOs)	(ug/kg)	EX-F-1	EX-F-2	EX-F-3	EX-F-4	EX-F-5	EX-F-6	EX-F-7
100000000000000000000000000000000000000			9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005
4,4-DDD	3.3	2900	2.3	0.83	0.46	<2.0	8.8	0.53	3.6
4,4-DDE	3.3	2100	2	2.1	<2.3	<2.0	2.9	<2.0	0.53
4,4-DDT	3.3	2100	2.6	3.1	<2.3	<2.0	63	0.39	0.58
Aldrin	5	41	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Alpha-BHC	20	110	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Beta-BHC	36	200	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Chlordane	94	540	<38	<38	<46	<39	<37	<40	<39
Delta-BHC	40	300	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Dieldrin	5	44	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Endosulfan I	2400	900	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Endosulfan II	2400	900	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Endosulfan Sulfate	NC	1000	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Endrin	14	100	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Gamma-BHC (Lindane)	NC	60	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Heptachlor	42	100	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Heptachlor Epoxide	NC	20	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
Methoxychlor	NC	NS	<1.9	<1.9	<2.3	<2.0	<1.9	<2.0	<2.0
PCB-1016	100	1000	<19	<19	<23	<19	<19	<20	<19
PCB-1221	100	1000	<19	<19	<23	<19	<19	<20	<19
PCB-1232	100	1000	<19	<19	<23	<19	<19	<20	<19
PCB-1242	100	1000	<19	<19	<23	<19	<19	<20	<19
PCB-1248	100	1000	<19	<19	<23	<19	<19	<20	<19
PCB-1254	100	1000	<19	<19	<23	<19	<19		<19
PCB-1260	100	1000	<19	<19	<23	<19	<19	<20	<19
2,4,5-T	NC	1900	<110	<110	<140	<120	<110		<120
2,4,5-TP (Silvex)	3.8	700	<110	<110	<140	<120	<110		
2,4-D	NC	500	<110	<110	<140	<120	<110	<120	<120

Table 5 Area F Confirmation Pesticide, PCb, Herbicide Results

NYSDEC PART 375 UNRESTRICTED SOIL CLEANUP

OBJECTIVES NYDEC RSCO

Compound	(SCOs)	(ug/kg)	EX-F-8	EX-F-9	EX-F-10	EX-F-11	EX-F-12	EX-F-13
Compound	(3003)	(ug/kg)	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005
4,4-DDD	3.3	2900	0.92	<2.0	3.6	6.1	6.6	12
4,4-DDE	3.3	2100	3.3	0.27	4.8	1.4	1.4	0.45
4,4-DDT	3.3	2100	3.4	<2.0	2.3	0.54	0.4	<2.0
Aldrin	5	41	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Alpha-BHC	20	110	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Beta-BHC	36	200	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Chlordane	94	540	<37	<41	<40	<41	<40	<39
Delta-BHC	40	300	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Dieldrin	5	44	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Endosulfan I	2400	900	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Endosulfan II	2400	900	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Endosulfan Sulfate	NC	1000	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Endrin	14	100	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Gamma-BHC (Lindane)	NC	60	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Heptachlor	42	100	<1.9	<2.0	<2.0	<2.0		<2.0
Heptachlor Epoxide	NC	20	<1.9	<2.0	<2.0	<2.0		<2.0
Methoxychlor	NC	NS	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
PCB-1016	100	1000	<19	<20	<20	<20		<20
PCB-1221	100	1000	<19	<20	<20	<20	<20	<20
PCB-1232	100	1000	<19	<20	<20			<20
PCB-1242	100	1000	<19	<20	<20	<20	<20	<20
PCB-1248	100	1000	<19	<20	<20	<20	<20	<20
PCB-1254	100	1000	<19	<20	<20			<20
PCB-1260	100	1000	<19	<20	<20	<20	<20	<20
2,4,5-T	NC	1900	<110					<120
2,4,5-TP (Silvex)	3.8	700	<110				<120	<120
2,4-D	NC	500	<110	<120	<120	<120	<120	<120

NYSDEC Part 375 Unrestricted Soil

Cleanup Objectives NYDEC East US BG Site BG (mg/kg) EX-F-23 EX-F-24 EX-F-24A EX-F-25 EX-F-25A EX-F-26 EX-F-27 Metal (SCOs) (mg/kg) 9/13/2006 9/7/2006 9/7/2006 9/7/2006 9/7/2006 9/13/2006 9/7/2006 33000 7080-12800 8500 11300 11800 10400 5340 11700 7090 NÇ Aluminum SB 16.5 34.4 <13.5/0.2 24.5 Antimony NC SB NA 0.2-0.59 <13.0/0.2 85.3 <13.0/0.2 7.5 3-12 1.66 < 1.13 1.76 < 1.18 <1.11 4.3-16.4 <1.08 <1,28 Arsenic 13 42.4 52.6 300 15-600 33-104 42.9 3070 103 721 46.5 Barium 350 0.28 J 0.55 J <1.11 <1.13 <1.18 Beryllium 7.2 0.16 0-1.75 0.38-0.67 <1.08 <1.28 1 0-1.75 0.21-0.52 <1.08 <1.13 <1.12 <1.18 <1.11 :1.08 <1.28 Cadmium 2.5 14600 10400 2630 23800 19800 NC 130-35000 1280-46600 19900 Calcium 21.6 19.3 10.2 19.8 12.1 14.3 25.9 10 1.5-40 9.3-17.5 Chromium 30 (TRIVALENT) 17.3 11.8 30 2.5-60 5.3-12.2 12.7 316 23.9 81.7 11.3 Coball NC 28.3 19.8 34.3 18.8 35.5 13.4-26.9 32.7 50 25 1-50 23 Copper 17000 12700 2000 2000-550000 14100-25700 15900 20600 32600 17000 14700 NC Iron <1.12 1.18 <1.13 63 16.5-60.8 <1.28 <1.08 Lead 2150-13100 7490 5790 9770 8530 4660 5230 5960 100-5000 NC SB Magnesium 334 130 371 Manganese 1600 SB 50-5000 197-875 444 287 548 497 < 0.217 <0.108 < 0.112 < 0.236 0.1 0.001-0.2 0.039-0.095 < 0.257 < 0.226 Mercury 0.18 13 0.5-25 10.6-24.8 <10.8 <12.8 <10.8 <11.3 <11.2 <11.8 <11.1 Nickel 30 1590 1040 995 8500-43000 443-1660 925 1320 NC 1230 Potassium 0.44-1.2 <1.08 <1.28 <1.08 <1.13 <1,12 <1.18 <1.11 Selenium 3.9 2 0.1-3 9 <4.50 <4.44 <4.72 2 NA 0.16-0.17 <4.33 <5.13 <4.33 <4.52 Silver <2.26 <2.25 <2.36 <2.22 NA ND-0.67 <2.17 <2.57 <2.16 Thallium NC SB 16.3 <11.1 150 1-300 20 9-50 14.3 5.2 J NC 13.7-24 10.6 Vanadium 54 74.1 428 28.8 79.3 76.3 1040 Zinc 109 46-134

NC - NO CRITERIA LISTED

NYSDEC Part 375
Unrestricted Soil
Cleanup Objectives

	Cleanup Objectives	NYDEC											
Metal	(SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	EX-F-27A	EX-F-28	EX-F-29	EX-F-30	EX-F-30A	EX-F-31	EX-F-31A	EX-F-32	EX-F-32A
					9/13/2006	9/8/2006	9/8/2006	9/8/2006	9/13/2006	9/9/2006			
Aluminum	NC	SB	33000	7080-12800	9790	12000	11200	7950		9350			
Antimony	NC	SB	NA	0.2-0.59	0.26-J	<14.7/0.2	<15.2/0.2	<13.6/0.2	<13.1/0.2	6.9- J	<13.2/0.2		<14.3/0.2
Arsenic	13	7.5	3-12	4.3-16.4	0.18	1.44	<1.27	<1.13	<1.10	2.19	0.52-J		0.12-J
Barium	350	300	15-600	33-104	29.5	111	53 2	669		454	113		62.3
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.54 J	<1.22	<1.27	<1.13	0.35 J	0.43 J	0.60 J	0.67 J	0.99 J
Cadmium	2.5	1	0-1.75	0.21-0.52	<1.20	<1.22	<1.27	<1.13	<1.10	<1.11	<1.10	<1.24	<1.19
Calcium	NC	SB	130-35000	1280-46600	2500	1450	1440	27000		19500			
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	18	18.8	19.8	13.6		16.6			
Cobalt	NC	30	2.5-60	5.3-12.2	33	15.8	19.2	73.9		54.8			
Copper	50	25	1-50	13.4-26.9	42.2	25.3		16.4		19.5			
Iron	NC	2000	2000-550000	14100-25700	27100	19400	20000	16000		16400			
Lead	63	SB	NA	16.5-60.8	<1.20	<1.22	<1.27	<1.13	<1.10	<1.11	<1.10	<1.24	<1.19
Magnesium	NC	SB	100-5000	2150-13100	4680	3630	4230			6620			
Manganese	1600	SB	50-5000	197-875	222	97.4	91.9	360	397	487			
Mercury	0.18	0.1	0.001-0.2	0,039-0.095	<0.120	< 0.244	< 0.253	<0.226	< 0.110	< 0.111	< 0.110	<0.124	<0.119
Nickel	30	13	0.5-25	10.6-24.8	6.7 J	<12.2	<12.7	<11.3	<11.0	<11.1	0.23 J	<12.4	<11.9
Potassium	NC	SB	8500-43000	443-1660	710	518	1080	822	791	1380			
Selenium	3.9	2	0.1-3.9	0.44-1.2	<1.20	<1.22	<1.27	<1.13	<1.10	<1.11	<1.10	<1.24	<1. 1 9
Silver	2	SB	NA	0.16-0.17	<4.80	<4.89	<5.06	<4.52	<4.36	<4.46	<4.39	<4.97	<4.75
Thallium	NC	SB	NA	ND-0.67	<2.40	<2.44	<2.53	<2.26	<2.19	<2.23	<2.20	<2.48	<2.38
Vanadium	NC	150	1-300	13.7-24	13.8	19.3	14.4	<11.3	9.1 J	11.3			
Zinc	109		9-50	46-134	88.3	48.8	69.1	218	45.1	160	63.8	159	64

NC - NO CRITERIA LISTED

Table 24 Area F-2006 Confirmation VOCs

NYSDEC PART 375 UNRESTRICTED SOIL

CLEANUP OBJECTIVES NYDEC RSCO

Compound	(SCOs)	(mg/kg)	EX-F-23	EX-F-24	EX-F-25	EX-F-26	EX-F-27
		3 3 3/	9/7/2006	9/7/2006	9/7/2006	9/7/2006	9/7/2006
1,1,1-Trichloroethane	0.68	0.8	<0.005	<0.006	< 0.006	<0.006	<0.006
1,1,2,2-Tetrachloroethane	NC	0.6	<0.005	<0.006	<0.006	<0.006	<0.006
1,1,2-Trichloroethane	NC	NS	< 0.005	<0.006	<0.006	<0.006	<0.006
1,1-Dichloroethane	0.27	0.2	<0.005	<0.006	<0.006	<0.006	<0.006
1,2-Dichlorobenzene	1.1	7.9	<0.005	<0.006	<0.006	<0.006	<0.006
1,3-Dichlorobenzene	2.4		<0.005	<0.006	<0.006	<0.006	<0.006
1,4-Dichlorobenzene	1.8	8.5	< 0.005	<0.006	<0.006	<0.006	<0.006
trans-1,2 Dichloroethene	0.19	0.3	<0.005	<0.006	<0.006	<0.006	<0.006
2-Butanone (MEK)	0.12	0.3		<0.013	<0.011	<0.012	<0.011
4-Methyl-2-Pentanone (MIBK)	NC	1	<0.011	<0.013	<0.011	<0.012	<0.011
Acetone	0.05		<0.011	0.016		<0.012	<0.011
Benzene	0.06		<0.005	<0.006	<0.006	<0.006	<0.006
Bromomethane	NC	NS	<0.011	<0.013	<0.011	<0.012	<0.011
Carbon Disulfide	NC	9-30	<0.005	<0.006	<0.006	<0.006	<0.006
Carbon Tetrachloride	0.76		<0.005	<0.006	<0.006	<0.006	<0.006
Chlorobenzene	1.1		<0.005	<0.006	<0.006	<0.006	<0.006
Chloroethane	NC		<0.011	<0.013	<0.011	<0.012	<0.011
Chloroform	0.37	0.3	<0.005	<0.006	<0.006	<0.006	<0.006
Chloromethane	NC	NS	<0.011	<0.013	<0.011	<0.012	<0.011
Dibromochloromethane	NC	NS	<0.005	<0.006	<0.006	<0.006	<0.006
Ethylbenzene	1	5.5	<0.005	<0.006	<0.006	<0.006	<0.006
Freon 113	NC		<0.005	<0.006	<0.006	<0.006	<0.006
Methylene Chloride	0.05	0.1	0.01	0.008		0.007	0.006
Styrene	NC	NS	<0.005	<0.006	<0.006	<0.006	<0.006
Tetrachloroethene	1.3		<0.005	<0.006	<0.006	<0.006	<0.006
Toluene	0.7		<0.005	<0.006	<0.006	<0.006	<0.006
Trichloroethene	0.47		<0.005	<0.006	<0.006	<0.006	<0.006
Vinyl Chloride	0.02		<0.011	<0.013	<0.011	<0.012	<0.011
Xylenes	0.26	1.2	<0.005	<0.006	<0.006	<0.006	<0.006

Table 24 Area F-2006 Confirmation VOCs

NYSDEC PART 375 UNRESTRICTED SOIL

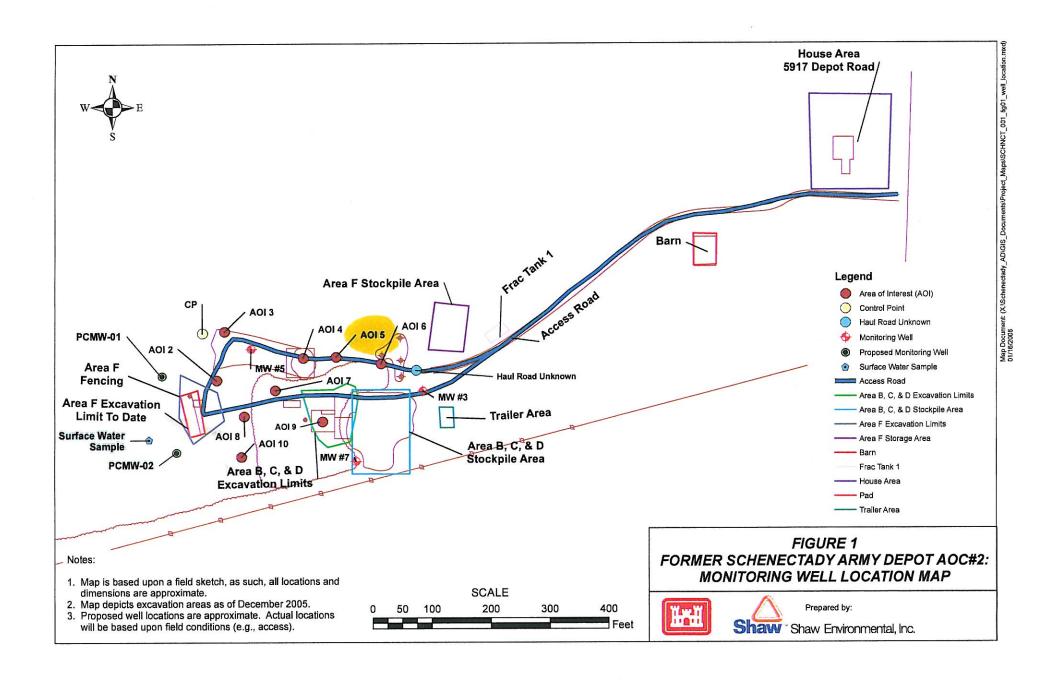
CLEANUP OBJECTIVES NYDEC RSCO

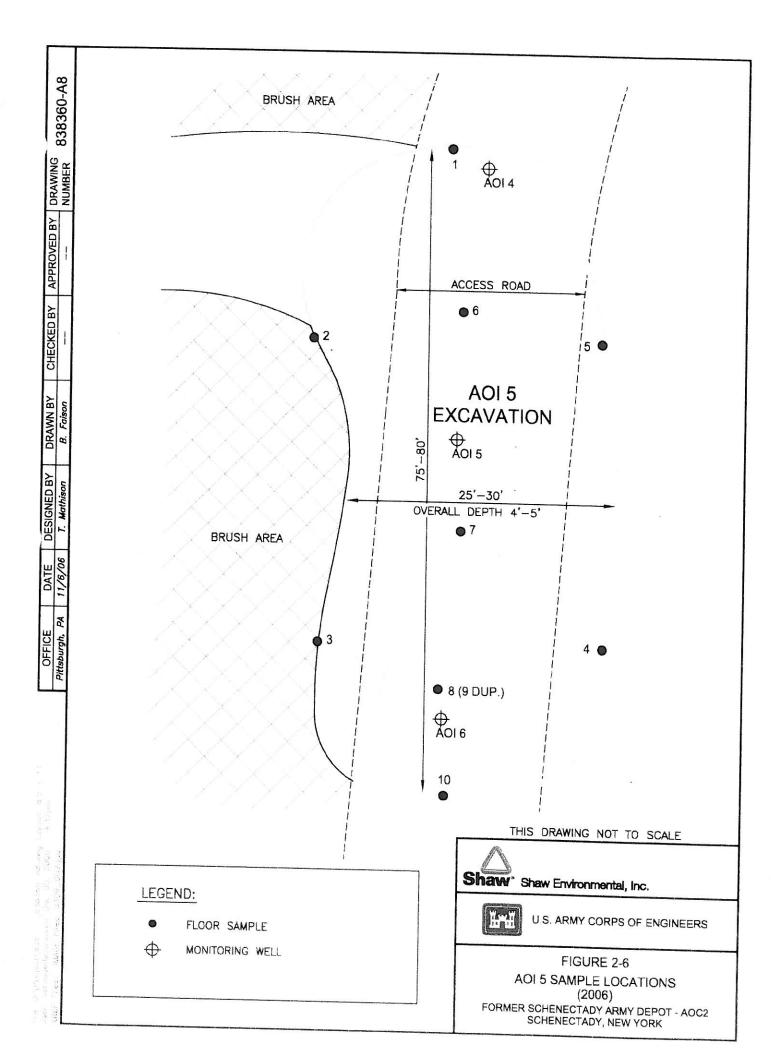
6	(COC)		EX-F-28	EX-F-29	EX-F-30	EX-F-31	EX-F-32
Compound	(SCOs)	(mg/kg)	9/8/2006	9/8/2006	9/8/2006	9/9/2006	9/9/2006
4447	0.68	0.0	<0.006	< 0.006	<0.006	< 0.006	< 0.006
1,1,1-Trichloroethane	0.68 NC		<0.006	<0.006	<0.006	<0.006	<0.006
1,1,2,2-Tetrachloroethane		NS	<0.006	<0.006	<0.006	<0.006	<0.006
1,1,2-Trichloroethane	NC NC			<0.006	<0.006	< 0.006	<0.006
1,1-Dichloroethane	0.27	0.2				<0.006	<0.006
1,2-Dichlorobenzene	1.1		<0.006	<0.006	<0.006		<0.006
1,3-Dichlorobenzene	2.4		<0.006	<0.006	<0.006	<0.006	
1,4-Dichlorobenzene	1.8	8.5		<0.006	<0.006	<0.006	<0.006
trans-1,2 Dichloroethene	0.19		<0.006	<0.006	<0.006	<0.006	<0.006
2-Butanone (MEK)	0.12	0.3	<0.012	<0.013	<0.011	<0.011	<0.012
4-Methyl-2-Pentanone (MIBK)	NC	1	<0.012	<0.013	<0.011	<0.011	<0.012
Acetone	0.05	0.2		<0.013	<0.011	<0.011	<0.012
Benzene	0.06		<0.006	<0.006	<0.006	<0.006	<0.006
Bromomethane	NC	NS	<0.012	<0.013	<0.011	<0.011	<0.012
Carbon Disulfide	NC	2.7	<0.006	<0.006	<0.006	<0.006	<0.006
Carbon Tetrachloride	0.76	0.6	<0.006	<0.006	<0.006	<0.006	<0.006
Chlorobenzene	1.1	1.7	<0.006	< 0.006	<0.006	<0.006	<0.006
Chloroethane	NC	1.9	<0.012	<0.013	<0.011	<0.011	<0.012
Chloroform	0.37	0.3	<0.006	<0.006	<0.006	<0.006	<0.006
Chloromethane	NC	NS	< 0.012	< 0.013	< 0.011	< 0.011	<0.012
Dibromochloromethane	NC	NS	<0.006	< 0.006	< 0.006	<0.006	<0.006
Ethylbenzene	1	5.5	<0.006	< 0.006	<0.006	<0.006	<0.006
Freon 113	NC	6	<0.006	<0.006	<0.006	<0.006	< 0.006
Methylene Chloride	0.05	0.1	0.006	0.008	<0.006	<0.006	0.011
Styrene	NC	NS	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Tetrachloroethene	1.3	1.4	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Toluene	0.7	1.5	<0.006	< 0.006	<0.006	< 0.006	< 0.006
Trichloroethene	0.47	0.7	< 0.006	<0.006	<0.006	< 0.006	<0.006
Vinyl Chloride	0.02	0.2	<0.012	< 0.013	< 0.011	< 0.011	<0.012
Xylenes	0.26		<0.006	< 0.006	< 0.006	< 0.006	<0.006

APPENDIX 6 AREAS OF INTEREST/POST-EXCAVATION OF SOILS (AOI 5 AND AOI 6)

AREA OF INTEREST (AOI 5) – POST EXCAVATION SOIL ANALYSIS SUMMARY

FSADVA AOC #2


All post-excavation soil analyses met the unrestricted NYSDEC Part 375 standards for metals, with the exception of nickel (a data analysis memorandum, at Appendix 8, notes that nickel is a background condition); arsenic was found at locations EX-AOI5-001A and EX-AOI5-002A (at 13.2 and 13.3 mg/kg) slightly exceeding the unrestricted value of 13.0 mg/kg, however, those locations were re-excavated, but not retested for arsenic. Zinc was found at 111 mg/kg, slightly above the unrestricted criteria of 109 mg/kg at EX-AOI5-005A, however this location was also re-excavated, but not re-tested for zinc.


All post-excavation soil analyses met the unrestricted NYSDEC Part 375 standards for VOCs, SVOCs and pesticides.

AREA OF INTEREST (AOI 6) – POST EXCAVATION SOIL ANALYSIS SUMMARY

Table 27 shows a result for another area of interest that was evaluated as AOI 6. VOC samples were taken, which resulted in finding methyl ethyl ketone (MEK) at 0.19 mg/kg. At that time, the result met the TAGM RSCO (0.30 mg/kg) and the area was backfilled; the new unrestricted standard is currently 0.12 mg/kg, and the residential standard is 100 mg/kg.

The post-excavation analysis summary tables and sampling location sketches follow in this appendix.

NYSDEC Part 375 Unrestricted Soil

	Office Stricted Soff									
	Cleanup	NYDEC		9	0.00 00 00				EV 4010 0044	EV AOIE 001
Metal	Objectives (SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	TP-AOI-1/Area F	TP-AOI5-1	DS-AOI5-001	TP-AOI6-1	EX-AOI6-001*	EX-AOI5-001
					12/5/2005	11/30/2005	9/11/2006	11/30/2005	9/12/2006	9/18/2006
Aluminum	NC	SB	33000	7080-12800	8560	8550	15300	10400	16200	15600
Antimony	NC	SB	NA	0.2-0.59	<3.45	<3.00	0.48-J	<3.00	15.6	0.33-J
Arsenic	13	7.5	3-12	4.3-16.4	<0.29	<0.25	9.5	<0.25	1.57	8.0
Barium	350	300	15-600	33-104	45.9	38.1	79.8	39.2	60.9	71.7
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.41	0.44	0.77	0.54	0.55-J	0.75
Cadmium	2.5	1	0-1.75	0.21-0.52	<0.29	<0.25	0.47-J	<0.25	<1.12	0.39-J
Calcium	NC	SB	130-35000	1280-46600	10200	18700	37800	11800	22400	13800
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	13.7	18.8	23.8	16	26.4	23.3
Cobalt	NC	30	2.5-60	5.3-12.2	8.51	9.25	15.6	5.96	21.2	14.2
Copper	50	25	1-50	13.4-26.9	26.3	48	44.7	8.24	36.7	36.3
Iron	NC	2000	2000-550000	14100-25700	14400	34600	35400	23300	15800	33900
Lead	63	SB	NA	16.5-60.8	10.5	21.1	16.9	10.7	<1.12	19.9
Magnesium	NC	SB	100-5000	2150-13100	6180	5900	8670	5650	8550	6660
Manganese	1600	SB	50-5000	197-875	306	362	497	394	573	659
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	< 0.023	<0.020	0.038-J	<0.020	<0.112	0.039
Nickel	30	13	0.5-25	10.6-24.8	19.8	24.5	35.1	17.1	<11.2	30.6
Potassium	NC	SB	8500-43000	443-1660	672	779	2460	720	2320	1890
Selenium	3.9	2	0.1-3.9	0.44-1.2	<0.29	<0.25	<0.21	<0.25	<1.12	<0.18
Silver	2	SB	NA	0.16-0.17	<1.15	<1.00	< 0.054	<1.00	<4.49	<0.047
Thallium	NC NC	SB	NA	D-0.67	<0.58	< 0.50	1.1-J	<0.50	<2.25	0.98-J
Vanadium	NC NC	150	1-300	13.7-24	15.5	16.3	27.6	17.3	19.7	28.2
Zinc	109	20	9-50	46-134	58	76.1	93.8	54.9	86.2	87.3

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil

Unrestricted Soil								
Cleanup	NYDEC				100000000000000000000000000000000000000		= 1	EV 40/5 000D
Objectives (SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	EX-AOI5-001A				EX-AOI5-002B
			102	10/6/2006	10/18/2006	9/18/2006		10/18/2006
NC	SB	33000	7080-12800	16700	10200	14000	16300	10300
NC	SB	NA	0.2-0.59	0.68-J		0.31-J		
13	7.5	3-12	4.3-16.4	13.2		8.0		
350	300	15-600	33-104	77.8		92.7		
7.2	0.16	0-1.75	0.38-0.67	0.83		0.73		
2.5	1	0-1.75	0.21-0.52	0.65		0.35-J		
NC	SB	130-35000	1280-46600	21400		49100		
30 (TRIVALENT)	10	1.5-40	9.3-17.5	23.6		21.1		
NC /	30	2.5-60	5.3-12.2	14.9		13.4	17.3	
50	25	1-50	13.4-26.9	40		42.3	45.4	
NC	2000	2000-550000	14100-25700	35300	21500	29800	337700	22000
63	SB	NA	16.5-60.8	16.7		13.2		
NC	SB	100-5000	2150-13100	8080		8150	7940	
1600	SB	50-5000	197-875	903		860	752	
0.18	0.1	0.001-0.2	0.039-0.095	0.041		0.018-J		
30	13	0.5-25	10.6-24.8	34.5	7.02	34.8		4.92
NC	SB	8500-43000	443-1660	2070		2230		
3.9	2	0.1-3.9	0.44-1.2	1.7-J		<0.17		
2	SB	NA	0.16-0.17	<0.12		<0.045	<0.12	
NC	SB	NA	D-0.67	0.83-J		0.86-J	0.51-J	
NC	150	1-300	13.7-24	27.3		24.2		
109	20	9-50	46-134	94		78.0	94.5	
	Cleanup Objectives (SCOs) NC NC 13 350 7.2 2.5 NC 30 (TRIVALENT) NC 63 NC 1600 0.18 30 NC 3.9 2 NC NC	Cleanup Objectives (SCOs) NYDEC (mg/kg) NC SB NC SB 13 7.5 350 300 7.2 0.16 2.5 1 NC SB 30 (TRIVALENT) 10 NC 30 50 25 NC 2000 63 SB NC SB 1600 SB 0.18 0.1 30 13 NC SB 3.9 2 2 SB NC SB NC SB NC SB	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG NC SB 33000 NC SB NA 13 7.5 3-12 350 300 15-600 7.2 0.16 0-1.75 2.5 1 0-1.75 NC SB 130-35000 30 (TRIVALENT) 10 1.5-40 NC 30 2.5-60 NC 2000 2000-550000 63 SB NA NC SB 100-5000 1600 SB 50-5000 0.18 0.1 0.001-0.2 30 13 0.5-25 NC SB 8500-43000 3.9 2 0.1-3.9 2 SB NA NC SB NA	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) NC SB 33000 7080-12800 NC SB NA 0.2-0.59 13 7.5 3-12 4.3-16.4 350 300 15-600 33-104 7.2 0.16 0-1.75 0.38-0.67 2.5 1 0-1.75 0.21-0.52 NC SB 130-35000 1280-46600 30 (TRIVALENT) 10 1.5-40 9.3-17.5 NC 30 2.5-60 5.3-12.2 50 25 1-50 13.4-26.9 NC 2000 2000-550000 14100-25700 63 SB NA 16.5-60.8 NC SB 100-5000 2150-13100 1600 SB 50-5000 197-875 0.18 0.1 0.001-0.2 0.039-0.095 30 13 0.5-25 10.6-24.8 NC SB 8500-43000 443-1660	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-001A NC SB 33000 7080-12800 16700 NC SB NA 0.2-0.59 0.68-J 13 7.5 3-12 4.3-16.4 13.2 350 300 15-600 33-104 77.8 7.2 0.16 0-1.75 0.38-0.67 0.83 2.5 1 0-1.75 0.21-0.52 0.65 NC SB 130-35000 1280-46600 21400 30 (TRIVALENT) 10 1.5-40 9.3-17.5 23.6 NC 30 2.5-60 5.3-12.2 14.9 50 25 1-50 13.4-26.9 40 NC 2000 2000-550000 14100-25700 35300 63 SB NA 16.5-60.8 16.7 NC SB 10-5000 2150-13100 8080 1600 SB 50-5000 197-875 903 <	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-001A EX-AOI5-001B NC SB 33000 7080-12800 16700 10/200 NC SB NA 0.2-0.59 0.68-J 13 7.5 3-12 4.3-16.4 13.2 350 300 15-600 33-104 77.8 7.2 0.16 0-1.75 0.38-0.67 0.83 2.5 1 0-1.75 0.21-0.52 0.65 NC SB 130-35000 1280-46600 21400 30 (TRIVALENT) 10 1.5-40 9.3-17.5 23.6 NC 30 2.5-60 5.3-12.2 14.9 NC 2000 2000-550000 14100-25700 35300 21500 63 SB NA 16.5-60.8 16.7 16.7 NC SB 100-5000 2150-13100 8080 16.7 0.18 0.1 0.001-0.2 0.039-0.095 0.041	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-001A EX-AOI5-001B EX-AOI5-002 NC SB 33000 7080-12800 10/6/2006 10/18/2006 9/18/2006 NC SB NA 0.2-0.59 0.68-J 0.31-J 13 7.5 3-12 4.3-16.4 13.2 8.0 350 300 15-600 33-104 77.8 92.7 7.2 0.16 0-1.75 0.38-0.67 0.83 0.73 2.5 1 0-1.75 0.21-0.52 0.65 0.35-J NC SB 130-35000 1280-46600 21400 49100 30 (TRIVALENT) 10 1.5-40 9.3-17.5 23.6 21.1 NC 30 2.5-60 5.3-12.2 14.9 13.4 NC 200 200-550000 14100-25700 35300 21500 29800 63 SB NA 16.5-60.8 16.7 13.2 NC </td <td>Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-001A EX-AOI5-001B EX-AOI5-002A EX-AOI5-002A NC SB 33000 7080-12800 16700 10/18/2006 9/18/2006 10/6/2006 NC SB NA 0.2-0.59 0.68-J 0.31-J 0.48-J 13 7.5 3-12 4.3-16.4 13.2 8.0 13.3 350 300 15-600 33-104 77.8 92.7 72.1 7.2 0.16 0-1.75 0.38-0.67 0.83 0.73 0.88 2.5 1 0-1.75 0.21-0.52 0.65 0.35-J 0.62 NC SB 130-35000 1280-46600 21400 49100 3300 30 (TRIVALENT) 10 1.5-40 9.3-17.5 23.6 21.1 23.9 NC 30 2.5-60 5.3-12.2 14.9 13.4 17.3 50 25 1-50 13.4-26.9 40 <td< td=""></td<></td>	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-001A EX-AOI5-001B EX-AOI5-002A EX-AOI5-002A NC SB 33000 7080-12800 16700 10/18/2006 9/18/2006 10/6/2006 NC SB NA 0.2-0.59 0.68-J 0.31-J 0.48-J 13 7.5 3-12 4.3-16.4 13.2 8.0 13.3 350 300 15-600 33-104 77.8 92.7 72.1 7.2 0.16 0-1.75 0.38-0.67 0.83 0.73 0.88 2.5 1 0-1.75 0.21-0.52 0.65 0.35-J 0.62 NC SB 130-35000 1280-46600 21400 49100 3300 30 (TRIVALENT) 10 1.5-40 9.3-17.5 23.6 21.1 23.9 NC 30 2.5-60 5.3-12.2 14.9 13.4 17.3 50 25 1-50 13.4-26.9 40 <td< td=""></td<>

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil

	Cleanup	NYDEC							
Metal	Objectives (SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	EX-AOI5-003	EX-AOI5-003A	EX-AOI5-003B	EX-AOI5-004	EX-AOI5-004A
motal	05,0000 (0000)	(33)		J 3 3/	9/18/2006	10/6/2006	10/18/2006	9/18/2006	10/6/2006
Aluminum	NC	SB	33000	7080-12800	15300	15800	24300	16500	16400
Antimony	NC	SB	NA	0.2-0.59	0.51-J	0.49-J		<1.8	0.78-J
Arsenic	13	7.5	3-12	4.3-16.4	6.9	11.9		9.4	11.2
Barium	350	300	15-600	33-104	61.8	78.2		81.5	76.7
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.77	0.84		0.87	0.89
Cadmium	2.5	1	0-1.75	0.21-0.52	0.30-J	0.7		0.18-J	0.72
Calcium	NC	SB	130-35000	1280-46600	20700	31300		8330	12500
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	24.0	23.1		26.4	24
Cobalt	NC /	30	2.5-60	5.3-12.2	13.7	15.1		15.7	16.3
Copper	50	25	1-50	13.4-26.9	38.6	40.3		45.2	45.3
Iron	NC	2000	2000-550000	14100-25700	3290	35200	44700	36300	37100
Lead	63	SB	NA	16.5-60.8	16.5	15.8		23.0	17.7
Magnesium	NC	SB	100-5000	2150-13100	9090	8910		7920	8440
Manganese	1600	SB	50-5000	197-875	492	801		703	662
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	0-037-J	0.030-J		0.039	0.029
Nickel	30	13	0.5-25	10.6-24.8	33.8	40	5.9	36.8	36.2
Potassium	NC	SB	8500-43000	443-1660	2300	2050		2040	1990
Selenium	3.9	2	0.1-3.9	0.44-1.2	<0.18	1.7-J	The second secon	<0.18	1.2-J
Silver	2	SB	NA	0.16-0.17	<0.048	<0.12		<0.046	<0.12
Thallium	NC	SB	NA	D-0.67	1.3-J	0.57-J		1.7-J	0.64-J
Vanadium	NC NC	150	1-300	13.7-24	26.8	25.7		28.5	26.1
Zinc	109	20	9-50	46-134	85.3	85.8		95.6	103

NC - NO CRITERIA LISTED

Table 25 Areas of Interest Investigation and Confirmation Metals

NYSDEC Part 375 Unrestricted Soil

Office Circles 3011								
Cleanup	NYDEC					10400000 20032-24400-40000-00020		
Objectives (SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	EX-AOI5-004B	EX-AOI5-005	EX-AOI5-005A		EX-AOI5-006
				10/18/2006	9/18/2006	10/6/2006	10/18/2006	9/18/2006
NC	SB	33000	7080-12800	18900	18600	15900	16200	15400
NC	SB	NA	0.2-0.59		0.41-J	0.21-J		0.47-J
13	7.5	3-12	4.3-16.4		11.4	8.7		9.8
350	300	15-600	33-104		110	181		75.5
7.2	0.16	0-1.75	0.38-0.67		1.1	0.8		0.82
2.5	1	0-1.75	0.21-0.52		0.27-J	0.86		0.28
NC	SB	130-35000	1280-46600		4390	36300	75.545. 0100 St. Will	18900
30 (TRIVALENT)	10	1.5-40	9.3-17.5		26.6	22.3		24.1
NC /	30	2.5-60	5.3-12.2		19.4	11.8		16.0
50	25	1-50	13.4-26.9		49.9	35.9	15.00	44.7
NC	2000	2000-550000	14100-25700	30400	38300	33700	29400	35100
63	SB	NA	16.5-60.8		23.9	20.4		16.3
NC	SB	100-5000	2150-13100		6550	6960		8520
1600	SB	50-5000	197-875		916	642		581
	0.1	0.001-0.2	0.039-0.095		0.036	0.036		0.031-J
	13	0.5-25	10.6-24.8	13.1	41.8	33.2	9	38.7
NC	SB	8500-43000	443-1660		2040	1640		2220
	2	0.1-3.9	0.44-1.2		<0.18	1.7-J		<0.18
2	SB	NA	0.16-0.17		< 0.047	<0.12		<0.046
NC NC	SB	NA	D-0.67		1.4-J	0.38-J		1.3-J
	150	1-300	13.7-24		31.0	25.6		26.7
	20	9-50	46-134		104	111		95.6
	Cleanup Objectives (SCOs) NC NC 13 350 7.2 2.5 NC 30 (TRIVALENT) NC 50 NC 63 NC 1600 0.18 30 NC 3.9	Cleanup Objectives (SCOs) NYDEC (mg/kg) NC SB NC 13 7.5 350 300 7.2 0.16 2.5 1 NC SB 30 (TRIVALENT) 10 NC 30 50 25 NC 2000 63 SB NC SB 1600 SB 0.18 0.1 30 13 NC SB 3.9 2 2 SB NC SB NC SB NC SB	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG NC SB 33000 NC SB NA 13 7.5 3-12 350 300 15-600 7.2 0.16 0-1.75 2.5 1 0-1.75 NC SB 130-35000 30 (TRIVALENT) 10 1.5-40 NC 30 2.5-60 50 25 1-50 NC 2000 2000-550000 63 SB NA NC SB 100-5000 1600 SB 50-5000 0.18 0.1 0.001-0.2 30 13 0.5-25 NC SB 8500-43000 3.9 2 0.1-3.9 2 SB NA NC SB NA	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) NC SB 33000 7080-12800 NC SB NA 0.2-0.59 13 7.5 3-12 4.3-16.4 350 300 15-600 33-104 7.2 0.16 0-1.75 0.38-0.67 2.5 1 0-1.75 0.21-0.52 NC SB 130-35000 1280-46600 30 (TRIVALENT) 10 1.5-40 9.3-17.5 NC 30 2.5-60 5.3-12.2 50 25 1-50 13.4-26.9 NC 2000 2000-550000 14100-25700 63 SB NA 16.5-60.8 NC SB 100-5000 2150-13100 1600 SB 50-5000 197-875 0.18 0.1 0.001-0.2 0.039-0.095 30 13 0.5-25 10.6-24.8 NC SB 8500-43000 443-1660	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-004B NC SB 33000 7080-12800 18900 NC SB NA 0.2-0.59 18900 13 7.5 3-12 4.3-16.4 4.3-16.4 350 300 15-600 33-104 33-104 7.2 0.16 0-1.75 0.38-0.67 0.21-0.52 NC SB 130-35000 1280-46600 30 (TRIVALENT) 10 1.5-40 9.3-17.5 NC 30 2.5-60 5.3-12.2 50 25 1-50 13.4-26.9 NC 2000 2000-550000 14100-25700 30400 63 SB NA 16.5-60.8 NC SB 100-5000 2150-13100 1600 SB 50-5000 197-875 0.18 0.1 0.001-0.2 0.039-0.095 30 13 0.5-25 10.6-24.8 13.1 <	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-004B EX-AOI5-005 NC SB 33000 7080-12800 18900 18600 NC SB NA 0.2-0.59 0.41-J 13 7.5 3-12 4.3-16.4 11.4 350 300 15-600 33-104 110 7.2 0.16 0-1.75 0.38-0.67 1.1 2.5 1 0-1.75 0.21-0.52 0.27-J NC SB 130-35000 1280-46600 4390 30 (TRIVALENT) 10 1.5-40 9.3-17.5 26.6 NC 30 2.5-60 5.3-12.2 19.4 NC 30 2.5-60 5.3-12.2 19.4 NC 2000 2000-550000 14100-25700 30400 38300 63 SB NA 16.5-60.8 23.9 NC SB 100-5000 2150-13100 6550 1600 SB <td>Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-004B EX-AOI5-005 EX-AOI5-005A NC SB 33000 7080-12800 18900 18600 15900 NC SB NA 0.2-0.59 0.41-J 0.21-J 13 7.5 3-12 4.3-16.4 11.4 8.7 350 300 15-600 33-104 110 181 7.2 0.16 0-1.75 0.38-0.67 1.1 0.8 2.5 1 0-1.75 0.21-0.52 0.27-J 0.86 NC SB 130-35000 1280-46600 4390 36300 30 (TRIVALENT) 10 1.5-40 9.3-17.5 26.6 22.3 NC 30 2.5-60 5.3-12.2 19.4 11.8 50 25 1-50 13.4-26.9 49.9 35.9 NC 2000 2000-550000 14100-25700 30400 38300 33700 63 <t< td=""><td>Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-004B EX-AOI5-005B EX-AOI5-005A EX-AOI5-005B 10/18/2006 10/18/2006 16200</td></t<></td>	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-004B EX-AOI5-005 EX-AOI5-005A NC SB 33000 7080-12800 18900 18600 15900 NC SB NA 0.2-0.59 0.41-J 0.21-J 13 7.5 3-12 4.3-16.4 11.4 8.7 350 300 15-600 33-104 110 181 7.2 0.16 0-1.75 0.38-0.67 1.1 0.8 2.5 1 0-1.75 0.21-0.52 0.27-J 0.86 NC SB 130-35000 1280-46600 4390 36300 30 (TRIVALENT) 10 1.5-40 9.3-17.5 26.6 22.3 NC 30 2.5-60 5.3-12.2 19.4 11.8 50 25 1-50 13.4-26.9 49.9 35.9 NC 2000 2000-550000 14100-25700 30400 38300 33700 63 <t< td=""><td>Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-004B EX-AOI5-005B EX-AOI5-005A EX-AOI5-005B 10/18/2006 10/18/2006 16200</td></t<>	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-004B EX-AOI5-005B EX-AOI5-005A EX-AOI5-005B 10/18/2006 10/18/2006 16200

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil

Unrestricted Soil								
Cleanup	NYDEC					1202		
Objectives (SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	EX-AOI5-006A	EX-AOI5-006B	EX-AOI5-007		EX-AOI5-007B
				10/6/2006	10/18/2006	9/18/2006	10/6/2006	10/18/2006
NC	SB	33000	7080-12800	14900	15500	15400	15100	15800
NC	SB	NA	0.2-0.59	0.44-J		<1.8	0.63-J	
13	7.5	3-12	4.3-16.4	9.3		10.2		
350	300	15-600	33-104	78.6		79.6		
7.2	0.16	0-1.75	0.38-0.67	0.79				
2.5	1	0-1.75	0.21-0.52	0.69		0.26-J		
NC	SB	130-35000	1280-46600	28800		24700	23600	
30 (TRIVALENT)	10	1.5-40	9.3-17.5	21.4		24.3	22	
NC	30	2.5-60	5.3-12.2	13.8		18.9		
50	25	1-50	13.4-26.9	39.5		47.5	40.3	
NC	2000	2000-550000	14100-25700	33900	30400	35100	32700	29700
63	SB	NA	16.5-60.8	15		19.9	16.2	
NC	SB	100-5000	2150-13100	10100		9320	8480	
1600	SB	50-5000	197-875	710		898	679	
0.18	0.1	0.001-0.2	0.039-0.095	0.031-J		0.028-J	0.041	
30	13	0.5-25	10.6-24.8	34.7	8.1	39.7		6.69
NC	SB	8500-43000	443-1660	2110	. 49804 178 134	2340	2150	
3.9	2	0.1-3.9	0.44-1.2	1.3-J		< 0.17	1.6-J	
2	SB	NA	0.16-0.17	<0.11		< 0.045	<0.11	
NC	SB	NA	D-0.67	0.32-J		1.4-J	0.50-J	
NC	150	1-300	13.7-24	24.6		27.0	24.8	
109	20	9-50	46-134	88.5		102	92	
	Cleanup Objectives (SCOs) NC NC 13 350 7.2 2.5 NC 30 (TRIVALENT) NC 50 NC 63 NC 1600 0.18 30 NC 3.9 2 NC NC	Cleanup Objectives (SCOs) NYDEC (mg/kg) NC SB NC SB 13 7.5 350 300 7.2 0.16 2.5 1 NC SB 30 (TRIVALENT) 10 NC 30 50 25 NC 2000 63 SB NC SB 1600 SB 0.18 0.1 30 13 NC SB 3.9 2 2 SB NC SB NC SB NC SB	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG NC SB 33000 NC SB NA 13 7.5 3-12 350 300 15-600 7.2 0.16 0-1.75 2.5 1 0-1.75 NC SB 130-35000 30 (TRIVALENT) 10 1.5-40 NC 30 2.5-60 NC 25 1-50 NC 2000 2000-550000 63 SB NA NC SB 100-5000 1600 SB 50-5000 0.18 0.1 0.001-0.2 30 13 0.5-25 NC SB 8500-43000 3.9 2 0.1-3.9 2 SB NA NC SB NA NC SB NA	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) NC SB 33000 7080-12800 NC SB NA 0.2-0.59 13 7.5 3-12 4.3-16.4 350 300 15-600 33-104 7.2 0.16 0-1.75 0.38-0.67 2.5 1 0-1.75 0.21-0.52 NC SB 130-35000 1280-46600 30 (TRIVALENT) 10 1.5-40 9.3-17.5 NC 30 2.5-60 5.3-12.2 50 25 1-50 13.4-26.9 NC 2000 2000-550000 14100-25700 63 SB NA 16.5-60.8 NC SB 100-5000 2150-13100 1600 SB 50-5000 197-875 0.18 0.1 0.001-0.2 0.039-0.095 30 13 0.5-25 10.6-24.8 NC SB 8500-43000 443-1660	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-006A NC SB 33000 7080-12800 14900 NC SB NA 0.2-0.59 0.44-J 13 7.5 3-12 4.3-16.4 9.3 350 300 15-600 33-104 78.6 7.2 0.16 0-1.75 0.38-0.67 0.79 2.5 1 0-1.75 0.21-0.52 0.69 NC SB 130-35000 1280-46600 28800 30 (TRIVALENT) 10 1.5-40 9.3-17.5 21.4 NC 30 2.5-60 5.3-12.2 13.8 50 25 1-50 13.4-26.9 39.5 NC 2000 2000-550000 14100-25700 33900 63 SB NA 16.5-60.8 15 NC SB 100-5000 2150-13100 10100 1600 SB 50-5000 197-875 710	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-006A EX-AOI5-006B NC SB 33000 7080-12800 14900 15500 NC SB NA 0.2-0.59 0.44-J 15500 13 7.5 3-12 4.3-16.4 9.3 350 350 300 15-600 33-104 78.6 78.6 7.2 0.16 0-1.75 0.38-0.67 0.79 0.79 2.5 1 0-1.75 0.21-0.52 0.69 0.69 NC SB 130-35000 1280-46600 28800 0.69 30 (TRIVALENT) 10 1.5-40 9.3-17.5 21.4 0.21.4 NC 30 2.5-60 5.3-12.2 13.8 0.00 50 25 1-50 13.4-26.9 39.5 0.00 NC 2000 2000-550000 14100-25700 33900 30400 63 SB NA 16.5-60.8 15 </td <td>Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-006A EX-AOI5-006B EX-AOI5-007 NC SB 33000 7080-12800 14900 15500 9/18/2006 NC SB NA 0.2-0.59 0.44-J <1.8</td> 13 7.5 3-12 4.3-16.4 9.3 10.2 350 300 15-600 33-104 78.6 79.6 7.2 0.16 0-1.75 0.21-0.52 0.69 0.26-J NC SB 130-35000 1280-46600 28800 24700 30 (TRIVALENT) 10 1.5-40 9.3-17.5 21.4 24.3 NC 30 2.5-60 5.3-12.2 13.8 18.9 50 25 1-50 13.4-26.9 39.5 47.5 NC 2000 2000-55000 14100-25700 33900 30400 35100 63 SB NA 16.5-60.8 15 19.9	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-006A EX-AOI5-006B EX-AOI5-007 NC SB 33000 7080-12800 14900 15500 9/18/2006 NC SB NA 0.2-0.59 0.44-J <1.8	Cleanup Objectives (SCOs) NYDEC (mg/kg) East US BG Site BG (mg/kg) EX-AOI5-006A EX-AOI5-006B EX-AOI5-007A EX-AOI5-007A NC SB 33000 7080-12800 10/6/2006 10/18/2006 9/18/2006 10/6/2006 NC SB NA 0.2-0.59 0.44-J 15500 15400 15100 13 7.5 3-12 4.3-16.4 9.3 10.2 9.1 350 300 15-600 33-104 78.6 79.6 79.6 79.3 7.2 0.16 0-1.75 0.38-0.67 0.79 0.86 0.81 2.5 1 0-1.75 0.21-0.52 0.69 0.26-J 0.78 NC SB 130-35000 1280-46600 28800 24700 23600 30 (TRIVALENT) 10 1.5-40 9.3+17.5 21.4 24.3 22 NC 30 2.5-60 5.3-12.2 13.8 18.9 15.6 50 25 1-50 1

NC - NO CRITERIA LISTED

NYSDEC Part 375 Unrestricted Soil

	Unrestricted Soil							
	Cleanup	NYDEC						
Metal	Objectives (SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	EX-AO15-008	EX-AOI5-008A	EX-AOI5-008B	EX-AOI5-009
					9/18/2006	10/6/2006	10/18/2006	9/18/2006
Aluminum	NC	SB	33000	7080-12800	15500	15800	15800	15200
Antimony	NC	SB	NA	0.2-0.59	<1.8	0.39-J		0.25-J
Arsenic	13	7.5	3-12	4.3-16.4	9.0	9.9		9.2
Barium	350	300	15-600	33-104	79.3	97.4		76.4
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.82	0.84		0.81
Cadmium	2.5	1	0-1.75	0.21-0.52	0.26	0.81		0.31-J
Calcium	NC	SB	130-35000	1280-46600	26800	28700		25500
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	24.2	23		23.7
Cobalt	NC	30	2.5-60	5.3-12.2	17.3	15.4		15.2
Copper	50	25	1-50	13.4-26.9	46.1	44		47.3
Iron	NC	2000	2000-550000	14100-25700	34300	35300	31500	34500
Lead	63	SB	NA	16.5-60.8	16.9	17.2		15.9
Magnesium	NC	SB	100-5000	2150-13100	8910	9120		91.9
Manganese	1600	SB	50-5000	197-875	724	646		648
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	0.043	0.023-J		0.032-J
Nickel	30	13	0.5-25	10.6-24.8	38.0	36.9	5.07	36.1
Potassium	NC	SB	8500-43000	443-1660	2320	2300		2240
Selenium	3.9	2	0.1-3.9	0.44-1.2	<0.17	1.7-J		<0.18
Silver	2	SB	NA	0.16-0.17	< 0.045	<0.12		<0.046
Thallium	NC	SB	NA	D-0.67	1.3-J	<0.29		2.0-J
Vanadium	NC	150	1-300	13.7-24	26.9	25.7		26.4
Zinc	109	20	9-50	46-134	97.9	92.4		100

NC - NO CRITERIA LISTED

NYSDEC Part 375

	Unrestricted Soil								
	Cleanup	NYDEC						DUPE10606	EX-AOI5-012
Metal	Objectives (SCOs)	(mg/kg)	East US BG	Site BG (mg/kg)	EX-AOI5-010	EX-AOI5-010A	EX-AOI5-010B	(Dup 003A)	(Dup 003B)
		, , , , , , , , , , , , , , , , , , , ,			9/18/2006	10/6/2006	10/18/2006	10/6/2006	10/18/2006
Aluminum	NC	SB	33000	7080-12800	16100	15800	10300	15700	12600
Antimony	NC	SB	NA	0.2-0.59	<1.9	0.58-J		0.88-J	
Arsenic	13	7.5	3-12	4.3-16.4	8.2	9.3		10	
Barium	350	300	15-600	33-104	73.0	133		81.7	
Beryllium	7.2	0.16	0-1.75	0.38-0.67	0.80	0.8		0.83	
Cadmium	2.5	1	0-1.75	0.21-0.52	0.17-J	0.66		0.88	
Calcium	NC	SB	130-35000	1280-46600	8970	22900	No. 100	34900	
Chromium	30 (TRIVALENT)	10	1.5-40	9.3-17.5	22.9	21.6		22.7	
Cobalt	NC NC	30	2.5-60	5.3-12.2	15.1	14.6		16.7	
Copper	50	25	1-50	13.4-26.9	36.3	36.3		43.2	
Iron	NC	2000	2000-550000	14100-25700	33200	32400	18600	35000	26000
Lead	63	SB	NA	16.5-60.8	19.0	16.7		16	
Magnesium	NC	SB	100-5000	2150-13100	3730	7120		8750	
Manganese	1600	SB	50-5000	197-875	688	622		945	
Mercury	0.18	0.1	0.001-0.2	0.039-0.095	0.028-J	0.026-J	2 EU - 10 E	0.045	
Nickel	30	13	0.5-25	10.6-24.8	32.3	31.7	<2.90	42.1	7.59
Potassium	NC	SB	8500-43000	443-1660	1810	1870		2050	
Selenium	3.9	2	0.1-3.9	0.44-1.2	<0.18	1.7-J		1.5-J	
Silver	2	SB	NA	0.16-0.17	<0.048	<0.12		<0.11	
Thallium	NC	SB	NA	D-0.67	1.0-J	0.66-J		0.44-J	
Vanadium	NC	150	1-300	13.7-24	28.1	26		25.3	
Zinc	109	20	9-50	46-134	86.8	95.9		93.9	

NC - NO CRITERIA LISTED

Table 26 Areas of Interest Investigation and Confirmation SVOC

NYSDEC PART 375 UNRESTRICTE D SOIL

NYDEC CLEANUP RSCO TP-AOI-1/Area F DS-AOI5-001 EX-AOI6-001* EX-AO15-001 EX-AO15-002 EX-AO15-003 EX-AO15-004 **CRITERIA** (mg/kg) Compound 9/18/2006 9/12/2006 9/18/2006 9/18/2006 9/18/2006 9/11/2006 12/5/2005 < 0.390 < 0.380 < 0.390 < 0.360 < 0.370 2,4,5-Trichlorophenol NC 0.1-ADL <0.380 < 0.410 < 0.770 < 0.760 < 0.790 < 0.730 < 0.380 < 0.410 < 0.370 2,4-Dichlorophenol NC 0.4 <0.380 < 0.360 < 0.390 NC 0.200 <2.000 < 0.820/0.210 < 1.90 < 0.390 2,4-Dinitrophenol < 0.360 < 0.390 < 0.380 < 0.390 NC 1.0 <0.380 < 0.410 < 0.370 2,6-Dinitrotoluene < 0.390 < 0.380 < 0.360 NC 0.8 <0.380 < 0.410 < 0.370 < 0.390 2-Chlorophenol <0.380 < 0.360 < 0.390 NC 36.4 <0.380 4.4 < 0.370 < 0.390 2-Methylnaphthalene < 0.390 <0.380 NC 0.430 <2.000 < 0.410 <1.90 < 0.390 < 0.360 2-Nitroaniline <0.370 < 0.390 < 0.360 < 0.390 < 0.380 0.330 <0.380 < 0.410 NC 2-Nitrophenol < 0.380 < 0.390 < 0.360 < 0.390 <0.380 < 0.410 < 0.370 NC 0.100-ADL 2-methylphenol <0.380 < 0.360 < 0.390 <2.000 < 0.410 <1.90 < 0.390 3-Nitroaniline NC 0.500 < 0.360 < 0.390 < 0.380 < 0.410 < 0.370 <0.390 4-Chloroaniline NC 0.220-ADL < 0.380 <1.90 < 0.390 < 0.360 < 0.390 < 0.380 < 0.410 NC NS <2.000 4-Nitroaniline < 0.790 < 0.730 < 0.770 < 0.760 < 0.820/0.093 <1.90 0.100-ADL <2.000 NC 4-Nilrophenol < 0.360 < 0.390 < 0.380 < 0.390 0.240-ADL <0.380 < 0.410 < 0.370 4-chloro-3-methylphenol NC < 0.390 < 0.380 < 0.390 < 0.360 <0.380 0.76 < 0.370 NC 0.9 4-methylphenol < 0.390 <0.380 < 0.410 < 0.370 < 0.390 < 0.360 20 50.0 <0.380 Acenaphthene < 0.390 <0.380 <0.370 < 0.390 < 0.360 41.0 <0.380 < 0.410 100 Acenaphthylene <0.380 < 0.410 NR < 0.390 < 0.360 < 0.390 0.1-ADL NR Aniline NC <0.380 <0.370 < 0.390 < 0.360 < 0.390 100 50.0 <0.380 < 0.410 Anthracene < 0.370 <0.390 < 0.360 < 0.390 < 0.380 0.224-ADL <0.380 < 0.410 Benzo(a) anthracene < 0.360 < 0.390 <0.380 < 0.410 <0.370 < 0.390 0.061-ADL <0.380 Benzo(a) pyrene < 0.380 < 0.360 < 0.390 <0.370 < 0.390 <0.380 < 0.410 Benzo(b) fluoranthene < 0.380 < 0.390 < 0.390 < 0.360 NC 50.0 <0.380 < 0.410 < 0.370 Benzyl Butyl Phthalate < 0.390 <0.380 0.4 <0.380 < 0.410 <0.370 < 0.390 < 0.360 Chrysene < 0.390 < 0.380 0.014-ADL <0.380 < 0.410 < 0.370 < 0.390 < 0.360 0.33 Dibenz(a,h) Anthracene < 0.380 < 0.390 < 0.410 < 0.370 <0,390 < 0.360 <0.380 Dibenzofuran NC 6.2 <0.380 < 0.360 < 0.390 <0.370 < 0.390 Diethyl Phthalate NC 7.1 <0.380 < 0.410 < 0.360 < 0.390 < 0.380 2.0 <0.380 < 0.410 <0.370 < 0.390 NC Dimethyl Phthalate < 0.390 < 0.360 < 0.390 < 0.380 < 0.410 < 0.370 100 50.0 <0.380 Fluoranthene < 0.390 < 0.380 <0.370 < 0.390 < 0.360 30 50.0 <0.380 < 0.410 Fluorene < 0.380 < 0.390 < 0.360 < 0.390 NC 0.41 <2.000 < 0.410 <1.90 Hexachlorobenzene < 0.360 < 0.390 < 0.380 0.5 3.2 <0.380 < 0.410 <0.370 < 0.390 Indeno(1,2,3-c,d) Pyrene < 0.390 < 0.380 < 0.410 <0.370 < 0.390 <0.360 4.40 <0.380 NC Isophorone < 0.390 < 0.380 <0.370 < 0.390 < 0.360 13.0 <0.380 12 Naphthalene <0.380 <0.370 < 0.390 < 0.360 < 0.390 0.200-ADL <0.380 < 0.410 Nitrobenzene NC < 0.760 < 0.820 < 0.790 < 0.730 < 0.770 <0.380 <0.370 Pentachlorophenol 8.0 1.0 < 0.380 <0.380 < 0.410 <0.370 < 0.390 < 0.360 < 0.390 50.0 Phenanthrene 100 < 0.360 < 0.390 < 0.380 <0.370 < 0.390 <0.380 < 0.410 Phenol 0.33 0.03-ADL < 0.360 < 0.390 < 0.380 < 0.390 50 <0.380 < 0.410 <0.370 Pyrene 100 < 0.390 < 0.380 < 0.360 NC 50.0 <0.380 < 0.410 < 0.370 < 0.390 bis(2-ethylhexyl) phthalale 0.170-J 0.160-J <0.380 3.3 < 0.370 0.160-J 0.120-J NC 8.1 di-n-Butyl Phthalate < 0.380 < 0.390 <0.370 < 0.390 < 0.360

The SCOs for unrestricted use were capped at a maximum value of 100 ppm NC - NO CRITERIA LISTED

NC

50.0

<0.380

< 0.410

di-n-Octyl Phthalate

Table 26 Areas of Interest Investigation and Confirmation SVOC

NYSDEC PART 375 UNRESTRICTE

D SOIL NYDEC CLEANUP RSCO

	CLEANUP	RSCO												
Compound	CRITERIA	(mg/kg)	EX-A01	5-005	EX-A015-		EX-A01		EX-AO1		EX-AO1		EX-AO1	
	2 10		9/1	8/2006		3/2006		18/2006		18/2006		18/2006		18/2006
2,4,5-Trichlorophenol	NC	0.1-ADL	<0.370		< 0.360		<0,370		<0.370		< 0.370		<0.380	
2,4-Dichlorophenol	NC	0.4		< 0.740		<0.730		<0.730		< 0.740		< 0.740		<0.760
2.4-Dinitrophenol	NC		< 0.370		<0.360		< 0.370		< 0.370		< 0.370		<0.380	
2,6-Dinitrotoluene	NC	1.0	< 0.370		<0.360		< 0.370		< 0.370		< 0.370		<0.380	
2-Chlorophenol	NC	8.0			< 0.360		< 0.370		<0.370		<0.370		<0.380	
2-Methylnaphthalene	NC	36.4	< 0.370		< 0.360		< 0.370		< 0.370		< 0.370		<0.380	
2-Nitroaniline	NC	0.430	< 0.370		< 0.360		<0.370		<0.370		< 0.370		<0.380	
2-Nitrophenol	NC	0.330	< 0.370		< 0.360		< 0.370		<0.370		< 0.370		< 0.380	
2-methylphenol	NC	0.100-ADL	< 0.370		<0.360		< 0.370		< 0.370		< 0.370		<0.380	
3-Nitroaniline	NC	0.500	< 0.370		<0.360		< 0.370		<0.370		< 0.370		< 0.380	
4-Chloroaniline	NC	0.220-ADL	< 0.370		<0.360		< 0.370		< 0.370		< 0.370		<0.380	
4-Nitroaniline	NC	NS	< 0.370		< 0.360		< 0.370		< 0.370		<0.370		<0.380	
4-Nitrophenol	NC	0.100-ADL		< 0.740		< 0.730		< 0.730		< 0.740		< 0.740		< 0.760
4-chloro-3-methylphenol	NC	0.240-ADL	< 0.370		< 0.360		< 0.370		<0.370		< 0.370		<0.380	
4-methylphenol	NC	0.9	< 0.370		< 0.360		< 0.370		< 0.370		< 0.370		<0.380	
Acenaphthene	20	50.0	< 0.370		< 0.360		<0.370		< 0.370		< 0.370		<0.380	
Acenaphthylene	100	41.0	< 0.370		< 0.360		<0.370		<0.370		< 0.370		<0.380	
Aniline	NC	0.1-ADL	< 0.370		< 0.360	FE. 105549	< 0.370		<0.370		< 0.370		< 0.380	
Anthracene	100	50.0	< 0.370		< 0.360		< 0.370		<0.370		< 0.370		<0.380	
Benzo(a) anthracene	1	0.224-ADL	< 0.370		< 0.360		< 0.370		<0.370		< 0.370		<0.380	
Benzo(a) pyrene	1	0.061-ADL	< 0.370		< 0.360		< 0.370		< 0.370		< 0.370		<0.380	
Benzo(b) fluoranthene	1	1.1	< 0.370		< 0.360		< 0.370		<0.370		< 0.370		<0.380	
Benzyl Butyl Phthalale	NC	50.0	< 0.370		< 0.360		< 0.370		< 0.370		<0,370		<0.380	
Chrysene	1	0.4	< 0.370		< 0.360		< 0.370		< 0.370		< 0.370		<0.380	
Dibenz(a,h) Anthracene	0.33	0.014-ADL	< 0.370		<0.360		<0.370		< 0.370		< 0.370		<0.380	
Dibenzofuran	NC	6.2	< 0.370		< 0.360		< 0.370		< 0.370		< 0.370		<0.380	
Diethyl Phthalate	NC	7.1	< 0.370		< 0.360		< 0.370		< 0.370		< 0.370		<0.380	
Dimethyl Phthalate	NC	2.0	< 0.370		< 0.360		< 0.370		< 0.370		< 0.370		<0.380	
Fluoranthene	100	50.0	< 0.370		< 0.360		< 0.370		<0.370		< 0.370		<0.380	
Fluorene	30	50.0	< 0.370		< 0.360	7 26	< 0.370		< 0.370		< 0.370		<0.380	
Hexachlorobenzene	NC	0.41	< 0.370		< 0.360	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	< 0.370		< 0.370		< 0.370		<0.380	
Indeno(1,2,3-c,d) Pyrene	0.5	3.2	< 0.370		< 0.360		< 0.370		< 0.370		< 0.370		<0.380	
Isophorone	NC	4.40	< 0.370		< 0.360		< 0.370		<0.370		<0.370		<0.380	
Naphthalene	12	13.0	< 0.370		< 0.360		< 0.370		<0.370		<0.370		<0.380	
Nitrobenzene	NC	0.200-ADL	< 0.370		< 0.360		< 0.370		<0.370		< 0.370		<0.380	
Pentachlorophenol	0.8	1.0		< 0.740	<	< 0.730		< 0.730		< 0.740		< 0.740		< 0.760
Phenanthrene	100	50.0	< 0.370		< 0.360		< 0.370		< 0.370		< 0.370		<0.380	
Phenol	0.33	0.03-ADL	<0.370		< 0.360		< 0.370	9.000	<0.370	0000-000	< 0.370		<0.380	
Pyrene	100	50	< 0.370		< 0.360		< 0.370		< 0.370	A160	< 0.370		<0.380	
bis(2-ethylhexyl) phthalate	NC	50.0	< 0.370		0	.150-J	< 0.370				< 0.370		<0.380	
di-n-Butyl Phthalate	NC	8.1		0.093-J	0	.066-J		0.096-J		0.086-J		0.260-J		0.140-J
di-n-Octyl Phthalate	NC	50.0	< 0.370		< 0.360		< 0.370		<0.370		<0.370		< 0.380	

The SCOs for unrestricted use were capped at a maximum NC - NO CRITERIA LISTED

Table 27 Areas of Interest Investigation and Confirmation VOC

UNRESTRICTED
SOIL CLEANUP NYDEC

	OBJECTIVES	RSCO						
Compound	(SCOs)	(mg/kg)	TP-AOI-1/Area F	TP-AOI5-1	DS-AOI5-001	TP-AOI6-1	EX-AOI6-001*	EX-AOI5-001
Compound	(0000)]	12/5/2005	11/30/2005	9/11/2006	11/30/2005	9/12/2006	9/18/2006
1,1,1,-Trichloroethane	0.68	0.8	< 0.006	<1.0	<0.025	<0.005	<0.006	<0.006
1,1,2,2-Tetrachloroethane	NC	0.6	< 0.006	<1.0	<0.025	<0.005	<0.006	<0.006
1.1.2-Trichloroethane	NC	NS	< 0.006	<1.0	<0.025	<0.005	< 0.006	<0.006
1.1-Dichloroethane	0.27	0.2	<0.006	<1.0	<0.025	<0.005	<0.006	<0.006
1.2-Dichlorobenzene	1,1	7.9	<0.006	<1.0	<0.025	<0.005	<0.006	<0.006
1.3-Dichlorobenzene	2.4	1.6	< 0.006	<1.0	<0.025	<0.005	<0.006	<0.006
1.4-Dichlorobenzene	1.8	8.5	<0.006	<1.0	<0.025	<0.005	<0.006	<0.006
trans-1,2 Dichloroethene	0.19	0.3	< 0.006	<1.0	<0.025	<0.005	<0.006	<0.006
2-Butanone (MEK)	0.12	0.3	0.19	<2.0	<0.050	<0.01	0.19	<0.012
4-Methyl-2-Pentanone (MIBK)	NC	1	<0.011	<2.0	<0.050	<0.01	<0.011	<0.012
Acetone	0.05	0.2	< 0.011	<2.0	<0.050	0.014	<0.011	<0.012
Benzene	0.06	0.06	< 0.006	<1.0	0.0073-J	<0.005	<0.006	<0.006
Bromomethane	NC	NS	< 0.011	<2.0	<0.050	<0.01	<0.011	<0.012
Carbon Disulfide	NC	2.7	< 0.006	<1.0	<0.025	<0.005	<0.006	<0.006
Carbon Tetrachloride	0.76	0.6	< 0.006	<1.0	<0.025	<0.005	<0.006	<0.006
Chlorobenzene	1.1	1.7	< 0.006	<1.0	<0.025	<0.005	<0.006	<0.006
Chloroethane	NC	1.9	<0.011	<2.0	<0.050	<0.01	<0.011	<0.012
Chloroform	0.37	0.3	<0.006	<1.0	<0.025	<0.005	<0.006	<0.006
Chloromethane	NC	NS	<0.011	<2.0	<0.050	<0.01	<0.011	<0.012
Dibromochloromethane	NC	NS	<0.006	<1.0	<0.025	<0.005	<0.006	<0.006
Ethylbenzene	1	5.5	<0.006	1.4	0.15	<0.005	<0.006	<0.006
Freon 113	NC	6	NR	NR	<0.025	NR	<0.006	<0.006
Methylene Chloride	0.05	0.1	< 0.006	1.6	<0.050	0.006	<0.006	<0.012
Styrene	NC	NS	< 0.006	<1.0	<0.025	<0.005	<0.006	<0.006
Tetrachloroethene	1.3	1.4	<0.006	<1.0	<0.025	<0.005	<0.006	<0.006
Toluene	0.7	1.5	<0.006	0.13	0.041	<0.005	<0.006	<0.006
Trichloroethene	0.47	0.7	<0.006	<1.0	<0.025	<0.005	<0.006	<0.006
Vinyl Chloride	0.02	0.2	<0.011	<2.0	<0.050	<0.01	<0.011	<0.012
Xylenes	0.26	1.2	< 0.006	76-E	1.8	<0.005	<0.006	0.002-J

The SCOs for unrestricted use were capped at a maximum value of 100 ppm $\,$ NC - NO CRITERIA LISTED

Table 27 Areas of Interest Investigation and Confirmation VOC

UNRESTRICTED
SOIL CLEANUP NYDEC
OBJECTIVES RSCO

	SOIL CLEANUP	NYDEC						
	OBJECTIVES	RSCO	EX-AOI5-002	EX-AOI5-003	EX-AOI5-003A	EX-AOI5-004	EX-AOI5-004A	EX-AOI5-005
Compound	(SCOs)	(mg/kg)		9/18/2006	10/6/2006	9/18/2006	10/6/2006	9/18/2006
	0.00	0.8	9/18/2006 <0.0055	<0.0058	<0.0055	< 0.0057	<0.0056	<0.0056
1,1,1,-Trichloroethane	0.68			<0.0058	<0.0055	<0.0057	<0.0056	<0.0056
1,1,2,2-Tetrachloroethane	NC	0,6	<0.0055	<0.0058	<0.0055	<0.0057	<0.0056	<0.0056
1,1,2-Trichloroethane	NC	NS	<0.0055		<0.0055	<0.0057	<0.0056	<0.0056
1,1-Dichloroethane	0.27	0.2	<0.0055	<0.0058	<0.0055	<0.0057	<0.0056	<0.0056
1,2-Dichlorobenzene	1.1	7.9	<0.0055	<0.0058		<0.0057	<0.0056	<0.0056
1,3-Dichlorobenzene	2.4	1.6	<0.0055	<0.0058	<0.0055		<0.0056	<0.0056
1,4-Dichlorobenzene	1.8	8.5	<0.0055	<0.0058	<0.0055	<0.0057		<0.0056
trans-1,2 Dichloroethene	0.19	0.3	<0.0055	<0.0058	<0.0055	<0.0057	<0.0056	<0.011
2-Butanone (MEK)	0.12	0.3	<0.011	<0.012	<0.011	<0.011	<0.011	<0.011
4-Methyl-2-Pentanone (MIBK)	NC	1	<0.011	<0.012	<0.011	<0.011	<0.011	
Acetone	0.05	0.2	<0.011	<0.012	<0.011	<0.011	<0.011	<0.011
Benzene	0.06	0.06	<0.0055	<0.0058	<0.011	<0.0057	<0.0056	<0.0056
Bromomethane	NC	NS	<0.011	<0.012	<0.011	<0.011	<0.011	<0.011
Carbon Disulfide	NC	2.7	<0.0055	<0.0058	<0.0055	<0.0057	0.0076	<0.0056
Carbon Tetrachloride	0.76	0.6	<0.0055	<0.0058	<0.0055	<0.0057	<0.0056	<0.0056
Chlorobenzene	1.1	1.7	<0.0055	<0.0058	<0.0055	<0.0057	<0.0056	<0.0056
Chloroethane	NC	1.9	< 0.011	< 0.012	<0.011	<0.011	<0.011	<0.011
Chloroform	0.37	0.3	0.0035-J	0.065	<0.0055	0.38	0.0048-J	<0.011
Chloromethane	NC	NS	< 0.011	< 0.012	<0.011	<0.011	<0.011	<0.011
Dibromochloromethane	NC	NS	< 0.0055	<0.0058	<0.0055	<0.0057	<0.0056	<0.0056
Ethylbenzene	1	5.5	< 0.0055	<0.0058	0.005	<0.0057	0.0075	<0.0056
Freon 113	NC	6	< 0.0055	<0.0058	< 0.0055	<0.0057	<0.0056	<0.0056
Methylene Chloride	0.05	0.1	< 0.011	< 0.012	<0.011	<0.011	<0.011	<0.011
Styrene	NC	NS	< 0.0055	<0.0058	< 0.0055	<0.0057	<0.0056	<0.0056
Tetrachloroethene	1.3	1.4	< 0.0055	<0.0058	<0.0055	<0.0057	<0.0056	<0.0056
Toluene	0.7	1.5	< 0.0055	<0.0058	<0.0055	<0.0057	0.0026-J	<0.0056
Trichloroethene	0.47	0.7	< 0.0055	<0.0058	< 0.0055	< 0.0057	<0.0056	<0.0056
Vinyl Chloride	0.02	0.2	< 0.011	< 0.012	<0.011	< 0.011	<0.011	<0.011
Xylenes	0.26	1.2	< 0.0055	<0.0058	<0.0055	<0.0057	<0.0056	<0.0056
Aylettes	0.20							

The SCOs for unrestricted use were capped at a maximum value of 100 pp NC - NO CRITERIA LISTED

Table 27 **Areas of Interest Investigation and Confirmation** VOC

NYSUEC PART 3/5 UNRESTRICTED SOIL CLEANIER

NVDEC

	SOIL CLEANUP	NYDEC					
	OBJECTIVES	RSCO			EV 4015 000	EV 4015 000	EX-AOI5-010
Compound	(SCOs)	(mg/kg)	EX-AOI5-006	EX-AOI5-007	EX-AOI5-008	EX-AOI5-009	9/18/2006
			9/18/2006	9/18/2006	9/18/2006	9/18/2006	01 101000
1,1,1,-Trichloroethane	0.68	0.8	<0.0055	<0.0055	<0.0056	<0.0056	<0.0057
1,1,2,2-Tetrachloroethane	NC	0.6	<0.0055	<0.0055	<0.0056	<0.0056	<0.0057
1,1,2-Trichloroethane	NC	NS	<0.0055	<0.0055	<0.0056	<0.0056	<0.0057
1,1-Dichloroethane	0.27	0.2	<0.0055	<0.0055	<0.0056	<0.0056	<0.0057
1,2-Dichlorobenzene	1.1	7.9	<0.0055	<0.0055	<0.0056	<0.0056	<0.0057
1,3-Dichlorobenzene	2.4	1.6	< 0.0055	<0.0055	<0.0056	<0.0056	<0.0057
1,4-Dichlorobenzene	1.8	8.5	< 0.0055	<0.0055	<0.0056	<0.0056	<0.0057
trans-1,2 Dichloroethene	0.19	0.3	< 0.0055	<0.0055	<0.0056	<0.0056	<0.0057
2-Butanone (MEK)	0.12	0.3	< 0.011	< 0.011	<0.011	<0.011	<0.011
4-Methyl-2-Pentanone (MIBK)	NC	1	< 0.011	<0.011	<0.011	< 0.011	<0.011
Acetone	0.05	0.2	< 0.011	< 0.011	<0.011	<0.011	<0.011
Benzene	0.06	0.06	0.0015-J	< 0.011	0.0067	0.0096	<0.011
Bromomethane	NC	NS	< 0.011	< 0.011	<0.011	<0.011	<0.011
Carbon Disulfide	NC	2.7	< 0.0055	<0.0055	0.0076	<0.0056	<0.0057
Carbon Tetrachloride	0.76	0.6	< 0.0055	<0.0055	<0.0056	<0.0056	<0.0057
Chlorobenzene	1.1	1.7	< 0.0055	<0.0055	<0.0056	<0.0056	<0.0057
Chloroethane	NC	1.9	<0.011	< 0.011	<0.011	<0.011	<0.011
Chloroform	0.37	0.3	0.0021-J	0.0021-J	0.0033-J	0.0038-J	0.0041
Chloromethane	NC	NS	< 0.011	< 0.011	< 0.011	<0.011	<0.011
Dibromochloromethane	NC	NS	< 0.0055	< 0.0055	<0.0056	<0.0056	<0.0057
Ethylbenzene	1	5.5	0.0078	0.005	0.0075	0.0075	<0.0057
Freon 113	NC	6	< 0.0055	<0.0055	<0.0056	<0.0056	<0.0057
Methylene Chloride	0.05	0.1	< 0.011	< 0.011	< 0.011	<0.011	<0.011
Styrene	NC	NS	< 0.0055	< 0.0055	<0.0056	<0.0056	<0.0057
Tetrachloroethene	1.3	1.4	< 0.0055	<0.0055	<0.0056	<0.0056	<0.0057
Toluene	0.7	1.5	0.0058	<0.0055	0.0026-J	0.0047-J	<0.0057
Trichloroethene	0.47	0.7	< 0.0055	< 0.0055	<0.0056	<0.0056	<0.0057
Vinyl Chloride	0.02	0.2	<0.011	< 0.011	<0.011	<0.011	<0.011
Xylenes	0.26	1.2	0.023	0.011	0.035	0.038	<0.0057

The SCOs for unrestricted use were capped at a maximum value of 100 pp NC - NO CRITERIA LISTED

Table 28 Areas of Interest Investigation and Confirmation Pesticide-PCB-Herbicide

NYSDEC PART 375 UNRESTRICTED SOIL

NYDEC

	CLEANUP OBJECTIVES	RSCO				
Compound	(SCOs)	(ug/kg)	TP-AOI-1/Area F	DS-AOI5-001	EX-AOI6-001*	
•			12/5/2005			
4,4-DDD	3.3	2900	<3.8	270	<3.7	3.2
4,4-DDE	3.3	2100	<3.8	<21	<3.7	<2.0
4,4-DDT	3.3	2100	<3.8	<21	<3.7	0.52
Aldrin	5		<2.0	<21	<1.9	<2.0
Alpha-BHC	20	110	<2.0	<21	<1.9	<2.0
Beta-BHC	36	200	<2.0	<21	<1.9	<2.0
Chlordane	94	540	<200	<410	<1.9 ¹	<39
Delta-BHC	40	300	<2.0	<21	<1.9	<2.0
Dieldrin	5	44	<3.8	<21	<3.7	<2.0
Endosulfan I	2400	900	<2.0	<21	<1.9	<2.0
Endosulfan II	2400	900	<3.8	<21	<3.7	<2.0
Endosulfan Sulfate	NC		<3.8	<21	<3.7	<2.0
Endrin	14	100	<3.8	<21	<3.7	<2.0
Gamma-BHC (Lindane)	NC	60	<2.0	<21	<1.9	<2.0
Heptachlor	42	100	<2.0	<21	<1.9	<2.0
Heptachlor Epoxide	NC	20	<2.0	<21	<1.9	<2.0
Methoxychlor	NC	NS	<20	<21	<20	<2.0
Toxaphene	NC	NS		NR	<190	
PCB-1016	100	1000	<38	<21	<37	
PCB-1016	100	1000		<21	<37	700
PCB-1232	100	1000		<21	<37	
PCB-1242	100	1000		<21	<37	
PCB-1248	100	1000		<21	<37	
PCB-1254	100	1000		<21	<37	
PCB-1260	100	1000		<21	<37	
F GB-1200	100	1300	100			
2,4,5-T	NC	1900		<120	<225	
2,4,5-TP (Silvex)	3.8	700		<120	4-J	
2,4-D	NC	500	<230	<120	<225	

The SCOs for unrestricted use were capped at a maximum value of 100 ppm NC - NO CRITERIA LISTED

^{*-}post excavation sample NS-none specified 1-reported as alpha and gamma J-result is >MDL<RL, estimated

Table 28 Areas of Interest Investigation and Confirmation Pesticide-PCB-Herbicide

NYSDEC PART 375 UNRESTRICTED SOIL

NYDEC

	CLEANUP OBJECTIVES	RSCO						
Compound	(SCOs)	(ug/kg)		EX-AO15-003				EX-AO15-006
			9/18/2006		10/6/2006			
4,4-DDD	3.3	2900	<1.8		<1.8	<1.9	0.38-J	<1.8
4,4-DDE	3.3	2100	<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
4,4-DDT	3.3	2100			<1.8	<1.9	1.4-J	1.9
Aldrin	5		<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
Alpha-BHC	20	110	<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
Beta-BHC	36	200	<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
Chlordane	94	540	<36	<38	<37	<38	<37	<36
Delta-BHC	40	300	<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
Dieldrin	5	44	<1.8	14	<1.8	<1.9	<1.9	<1.8
Endosulfan I	2400	900	<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
Endosulfan II	2400	900	<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
Endosulfan Sulfate	NC	1000	<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
Endrin	14	100	<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
Gamma-BHC (Lindane)	NC	60	0.64-J	<1.9	<1.8	<1.9	<1.9	<1.8
Heptachlor	42	100	<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
Heptachlor Epoxide	NC	20	<1.8	<1.9	<1.8	<1.9	<1.9	<1.8
Methoxychlor	NC	NS	<1.8	7.9	<1.8	<1.9	<1.9	<1.8
Toxaphene	NC	NS						
PCB-1016	100	1000					70.00	
PCB-1221	100	1000						
PCB-1232	100	1000						
PCB-1242	100	1000						
PCB-1248	100	1000						
PCB-1254	100	1000						
PCB-1260	100	1000						
2,4,5-T	NC	1900						
2,4,5-TP (Silvex)	3.8	700						
2,4-D	NC	500						

The SCOs for unrestricted use were capped at a maximum value of 10 NC - NO CRITERIA LISTED

^{*-}post excavation sample NS-none specified 1-reported as alpha and gamma J-result is >MDL<RL, estimated

Table 28 **Areas of Interest Investigation and Confirmation** Pesticide-PCB-Herbicide

NYSDEC PART 375 UNRESTRICTED SOIL

NYDEC **RSCO** CLEANUP OBJECTIVES

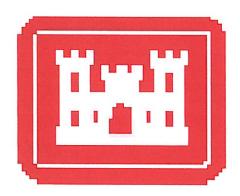
	CLEANUP OBJECTIVES	RSCO				
Compound	(SCOs)	(ug/kg)	EX-AO15-007	EX-AO15-008	EX-AO15-009	EX-AO15-010
			9/18/2006	[] W. A. P. W. G. D. C.		
4,4-DDD	3.3	2900	<1.8	0.39-J	<1.9	<1.9
4,4-DDE	3.3	2100	<1.8	<1.9	<1.9	<1.9
4,4-DDT	3.3	2100	<1.8	<1.9	<1.9	<1.9
Aldrin	5	41	<1.8	<1.9	<1.9	<1.9
Alpha-BHC	20	110	<1.8	<1.9	<1.9	<1.9
Beta-BHC	36	200	<1.8	<1.9	<1.9	<1.9
Chlordane	94	540	<37	<37	<37	<38
Delta-BHC	40	300	<1.8	<1.9	<1.9	<1.9
Dieldrin	5	44	<1.8	<1.9	<1.9	<1.9
Endosulfan I	2400	900	<1.8	<1.9	<1.9	<1.9
Endosulfan II	2400	900	<1.8	<1.9	<1.9	<1.9
Endosulfan Sulfate	NC	1000	<1.8	<1.9	<1.9	<1.9
Endrin	14	100	<1.8	<1.9	<1.9	<1.9
Gamma-BHC (Lindane)	NC	60	<1.8	<1.9	<1.9	<1.9
Heptachlor	42	100	<1.8	<1.9	<1.9	<1.9
Heptachlor Epoxide	NC	20	<1.8	<1.9	<1.9	<1.9
Methoxychlor	NC	NS	<1.8	<1.9	<1.9	<1.9
Toxaphene	NC	NS				
PCB-1016	100	1000				
PCB-1221	100	1000				
PCB-1232	100	1000				
PCB-1242	100	1000				
PCB-1248	100	1000				
PCB-1254	100	1000				
PCB-1260	100	1000				
2,4,5-T	NC	1900				
2,4,5-TP (Silvex)	3.8	700				
2,4-D	NC	500				

The SCOs for unrestricted use were capped at a maximum value of 10 NC - NO CRITERIA LISTED

^{*-}post excavation sample NS-none specified 1-reported as alpha and gamma J-result is >MDL<RL, estimated

838360 Areas of Interest Miscellaneous

Parameter	Limit/ Criteria	TP-A0I-1/Area F 12/5/2005
Ignitability (Flash Point)	<140 degrees F	>200 (-)
Paint Filter	no free liquids	Pass
pH	2-12	7.4
Reactive Cyanide	30 mg/kg	<1.0
Reactive Sulfide	30 mg/kg	<10


APPENDIX 7 GROUNDWATER MONITORING REPORT

POST-REMOVAL GROUNDWATER SAMPLING REPORT

Area of Concern (AOC) No. 2 Former Schenectady Army Depot - Voorheesville Area Guilderland, New York

Contract No. DACA87-02-D-0005 Task Order No. 18

Submitted to:

U.S. Army Corps of Engineers New York District

Prepared By:

PARSONS

MAY 2008

Table of Contents

1.0	INTRODUCTION	1
	SITE HISTORY AND BACKGROUND	
	SAMPLING AND ANALYTICAL METHODOLOGY	
4.0	RESULTS	4
	SUMMARY	

Tables

Table 1 Summary of Analytical Results Groundwater Sampling at SADVA AOC 2

Figures

Figure 1 Site Plan-Monitoring Well Locations

Attachments

Attachment A Summary of Previous Post-Removal Groundwater Sampling Results

Attachment B Groundwater Sampling Field Data Sheets

Attachment C Laboratory Analytical Data Usability Memo

List of Acronyms

AOC Area of Concern

DOD Department of Defense

EE/CA Engineering Evaluation & Cost Analysis

MW Monitoring Well

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health PCMW Post Construction Monitoring Well

SADVA Schenectady Army Depot - Voorheesville Area

USACE United States Army Corps of Engineers

VOCs Volatile Organic Compounds

1.0 INTRODUCTION

This Groundwater Sampling Report has been prepared by Parsons for the U.S. Army Corps of Engineers (USACE), New York District under Contract No. DACA87-02-D-0005, Task Order No. 18 with the USACE Huntsville Center.

Two groundwater monitoring wells within the Area of Concern (AOC) 2, known as the former Post Commander's Landfill at the former Schenectady Army Depot – Voorheesville Area (SADVA), were sampled on May 1, 2008. This sampling event was conducted at the request of the New York State Department of Health (NYSDOH) and the New York State Department of Environmental Conservation (NYSDEC) to confirm recent sampling results. The first two rounds of post-removal groundwater sampling were completed in April and October 2007 and were discussed in a report by Shaw Environmental, Inc dated October 2007. For the October 2007 sampling event, volatile organic compounds (VOCs) were not detected in any of the wells. The summary tables of results for the first two sampling rounds can be found in Attachment A.

2.0 SITE HISTORY AND BACKGROUND

The former Post Commander's Landfill (also known as AOC 2) is located west of County Route 201. This 40.6 acre parcel was part of the SADVA from its inception in 1941 until its sale to a private landowner in 1963. Historical information indicates the parcel was used as a transit troop bivouac area and officer's family housing area in the 1950s and 1960s. Sometime after purchasing the property in 1963, the new owners noticed a disposal area (later referred to as the Post Commander's Landfill). The existence of the landfill was subsequently reported to the NYSDEC. The USACE commenced planning for a remedial investigation in 1999. A subsequent Engineering Evaluation and Cost Analysis (EE/CA) described the waste disposal area as consisting of several distinct waste areas with waste materials including salt/iodine pill bottles, drums, glass bottles containing flammable liquids and other materials.

During the time spanning September 2005 to October 2006, an interim removal action was completed within AOC 2. This removal action, performed by Shaw Environmental under USACE direction, consisted of the excavation and disposal of waste materials and impacted soils followed by restoration to grade. The excavation activities were concentrated in areas defined in the EE/CA and in other impacted areas identified during the excavation activities. The removal action resulted in the excavation and off-site disposal of approximately 10,000 cubic yards of waste and impacted soils. These wastes primarily consisted of dried paint residues, flammable liquids, mercury-contaminated flammable liquids, and other materials.

AOC 2 presently has a residence located on the property; this residence dates back to the Department of Defense's (DOD) use of the property. The residence is located about 300 yards from the former Post Commander's Landfill. A small barn, a farm pond, and small sheds are also presently located on the property, but were not part of the DOD use of the site. All of these structures are located 200 yards or more from the Post Commander's Landfill area.

3.0 SAMPLING AND ANALYTICAL METHODOLOGY

One remedial investigation monitoring well (MW-03) and one post construction monitoring well (PCMW-02) were sampled on May 1, 2008. A field duplicate sample (PCMW-12) was collected from PCMW-02 as a quality control check on the representativeness of the sampling methods. A site map providing the well locations is included as Figure 1. All sampling and analyses were performed in accordance with procedures that included the following:

- Prior to sample collection, each monitoring well was gauged for depth to water and depth to bottom of well.
- Each well was purged and sampled using low-flow techniques to ensure that the samples collected were representative of groundwater quality with minimal disturbance. During purging activities, a continuous flow-through water quality meter was used to measure the pH, conductivity, and turbidity of the water. Purging continued until there was no more than a ten percent variation in the field-measured water quality parameters between each measuring point.
- The monitoring wells were allowed to recharge following purging activities.
- Samples were packaged and submitted under Chain of Custody for analysis to an off-site subcontract laboratory for VOCs by method SW-8260LL.
- The samples were analyzed by GPL Laboratories in Frederick, Maryland. GPL is certified by the State of New York to perform the requested analyses.

Field sampling logs are included in Attachment B. Attachment C contains the Data Usability Report for the GPL data package.

4.0 RESULTS

Table 1 presents the analytical results for MW-03 and PCMW-02. VOCs were not detected in either sample.

Table 1 also presents a summary of the field duplicate (PCMW-12) and trip blank analytical results. No VOCs were detected in the trip blank sample, meaning the samples were not adversely affected by sampling handling and shipping. The results for PCMW-02 matched the field duplicate sample PCMW-12, meaning the sampling methods yielded representative samples.

The laboratory quality control results are discussed in the Data Usability Report attached as Attachment C to this report. Results for acetone, bromomethane, 2-hexanone and vinyl chloride were flagged as estimated values due to continuing calibrations that were outside specifications. The results for those analytes are valid and usable.

5.0 SUMMARY

Based on the results of the post-removal action groundwater sampling, the USACE will prepare and coordinate a proposed plan recommending that no further actions to be taken at AOC 2.

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS GROUNDWATER SAMPLING AT SADVA AOC 2 **MAY 2008**

100 to 10 to 100 to							
			SAMPLE ID:	MW-03	PCMW-02	PCMW-12	TRIP BLANK
			LAB ID:	805012-001-001-1/3		805012-003-007-1/3	805012-004-010-1/3
			LAB:	GPL	GPL	GPL	GPL
l			SDG:	805012	805012	805012	805012
			MATRIX:	Groundwater	Groundwater	Groundwater	Groundwater
			SAMPLE DATE:	5/1/2008	5/1/2008	5/1/2008	5/1/2008
			VALIDATION DATE:	5/16/2008	5/16/2008	5/16/2008	5/16/2008
		NYSDEC CLASS GA					
CAS	VOLATILE ORGANIC	STANDARDS/	111170				
NUMBER	COMPOUNDS	GUIDANCE VALUES					
71-55-6	1,1,1-Trichloroethane	5	ug/L	1 U	1 U	1 U	1 U
79-34-5	1,1,2,2-Tetrachloroethane	5	ug/L	1 U	1 U	1 U	1 U
79-00-5	1,1,2-Trichloroethane	1	ug/L	1 U	1 U	1 U	1 U
75-34-3	1,1-Dichloroethane	5	ug/L	1 U	1 U	1 U	1 U
75-35-4	1,1-Dichloroethene	5	ug/L	1 U	1 U	1 U	1 U
107-06-2	1,2-Dichloroethane	0.6	ug/L	1 U*	1 U*	1 U*	1 U*
78-87-5	1,2-Dichloropropane	1	ug/L	1 U	1 U	1 U	1 U
78-93-3	2-Butanone	50 G	ug/L	5 U	5 U	5 U	5 U
591-78-6	2-Hexanone	50 G	ug/L	5 UJ	5 UJ	5 UJ	5 UJ
108-10-1	4-Methyl-2-Pentanone	NS	ug/L	5 U	5 U	5 U	5 U
67-64-1	Acetone	50 G	ug/L	5 UJ	5 UJ	5 UJ	5 UJ
71-43-2	Benzene	1	ug/L	1 U	1 U	1 U	1 U
75-27-4	Bromodichloromethane	50 G	ug/L	1 U	1 U	1 U	1 U
75-25-2	Bromoform	50 G	ug/L	1 U	1 U	1 U	1 U
74-83-9	Bromomethane	5	ug/L	1 UJ	1 UJ	1 UJ	1 UJ
75-15-0	Carbon Disulfide	NS	ug/L	1 U	1 U	1 U	1 U
56-23-5	Carbon Tetrachloride	5	ug/L	1 U	1 U	1 U	1 U
108-90-7	Chlorobenzene	5	ug/L	1 U	1 U	1 U	1 U
75-00-3	Chloroethane	5	ug/L	1 U	1 U	1 U	1 U
67-66-3	Chloroform	7	ug/L	1 U	1 U	1 U	1 U
74-87-3	Chloromethane	5	ug/L	1 U	1 U	1 U	1 U 1 U
124-48-1	Dibromochloromethane	50 G	ug/L	1 U	1 U	1 U	1 U 1 U
100-41-4	Ethylbenzene	5	ug/L	1 U	1 U	1 U	
75-09-2	Methylene Chloride	5	ug/L	1 U	1 U	1 U	1 U
100-42-5	Styrene	5	ug/L	1 U	1 U	1 U 1 U	1 U 1 U
127-18-4	Tetrachloroethylene	5	ug/L	1 U	1 U		1 U
108-88-3	Toluene	5	ug/L	1 U	1 U	1 U 1 U	1 U 1 U
79-01-6	Trichloroethene	5	ug/L	1 U	1 U		1 U 1 UJ
75-01-4	Vinyl Chloride	2	ug/L	1 UJ	1 UJ	1 UJ	1 UJ 1 U
156-59-2	cis-1,2-Dichloroethene	5	ug/L	1 U	1 U	1 U	1 U*
10061-01-5	cis-1,3-Dichloropropene	0.4 (a)	ug/L	1 U*	1 U*	1 U*	1 U
136777-61-2		NS	ug/L	1 U	1 U	1 U	1 U 1 U
95-47-6	o-Xylene	5	ug/L	10	1 U	1 U	
156-60-5	trans-1,2-Dichloroethene	5	ug/L	1 U	1 U	1 U 1 U**	1 U 1 U**
10061-02-6	trans-1,3-Dichloropropene	0.4 (a)	ug/L	1 U**	1 U**	10"	10

U = Undetected.

[&]quot;UJ" = The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.

^{* -} The method detection limit for this analyte is 0.2 ug/L

NS - No Standard exists at this time

G - Guidance Value

⁽a) - Applies to sum of cis- and trans- isomers
** - The method detection limit for this analyte is 0.3 ug/L

ATTACHMENT A

Summary of Previous Post-Removal Groundwater Sampling Results

Table 1 AOC-2 Water Monitoring VOC Results

NYDEC MCL

	NYDEC MCL							
Compound	(ug/l)	RL (ug/L)	PCMW-01	PCMW-02	MW-3	MW-5	MW-7	SURFACE H2O
Date Collected			4/12/2007	4/12/2007	4/12/2007	4/12/2007	4/12/2007	4/12/2007
1,1,1,-Trichloroethane	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL
1,1,2,2-Tetrachloroethane	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL
1.1.2-Trichloroethane	1	1.0	BQL	BQL	BQL	BQL	BQL	BQL
1,1-Dichloroethane	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL
1,1-Dichloroethene	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL
1,2-Dichlorobenzene	3	1.0	BQL	BQL	BQL	BQL	BQL	BQL
1.2-Dichloroethane	0.6-ADL	1.0	BQL	3.5	BQL	BQL	BQL	BQL
1.3-Dichlorobenzene	3	1.0	BQL	BQL	BQL	BQL	BQL	BQL
1,3-Dichloropropane	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL
1.4-Dichlorobenzene	3	1.0	BQL	BQL	BQL	BQL	BQL	BQL
2-Butanone (MEK)	50	5.0	BQL	BQL	BQL	BQL	BQL	BQL
4-Methyl-2-Pentanone (MIBK)	NS	5.0	BQL	BQL	BQL	BQL	BQL	BQL
Acetone	50	5.0	BQL	BQL	BQL	BQL	BQL	BQL
Benzene	1	1.0	0.37	2.9	1.5	0.4	0.4	0.17
Bromochloromethane	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL
Bromomethane	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL
Carbon Disulfide	NS	1.0	BQL	BQL	BQL	BQL	BQL	BQL
Carbon Tetrachloride	5	1.0	BQL	BQL	BQL	0.44	BQL	BQL
Chlorobenzene	5	1.0	0.42	2.3	1.2	BQL	BQL	0.24
Chloroethane	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL
Chloroform	7	1.0	BQL	BQL	BQL	BQL	BQL	BQL
Chloromethane	NS	1.0	BQL	BQL	BQL	BQL	BQL	BQL
Dibromochloromethane	50	1,0	BQL	BQL	BQL	BQL	BQL	BQL
Ethylbenzene	5	1.0	BQL	3.8	0.16	BQL	0.25	BQL
Freon 113	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL
Methylene Chloride	5	1.0	BQL	1.4	BQL	BQL	1.5	0.78
Styrene	930	1.0	BQL	BQL	BQL	BQL	BQL	BQL
Tetrachloroethene	5	1.0	0.41	17	7.5-JM	0.36	0.29	0.18
Toluene	5	1.0	0.14	0.94	0.45	0.16	1.0	BQL
Xylenes (total)	5	1.0	BQL	2.3	1.1	BQL	1.0	BQL
Trichloroethene	5	1.0	BQL	0.51	0.24	BQL	BQL	BQL
Trichlorofluoromethane	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL
Vinyl Chloride	2	1.0	BQL	BQL	BQL	BQL	BQL	BQL
trans -1,2 Dichloroethene	5	1.0	BQL	BQL	BQL	BQL	BQL	BQL

MCL from NYDEC TOGS 111- Groundwater Effluent Standards Class GA

Results in **bold** type are >MCL

JM-flagged as "estimated minimum value" due to poor QC Matrix recovery

1 of 12

Table 1 AOC-2 Water Monitoring VOC Results

NYDEC MCL

	NYDEC MCL						
Compound	(ug/l)	RL (ug/L)	PCMW-01	PCMW-02	MW-3	MW-5	MW-7
Date Collected			10/10/2007	10/10/2007	10/10/2007	10/10/2007	10/10/2007
1,1,1,-Trichloroethane	5	1.0	BQL	BQL	BQL	BQL	BQL
1,1,2,2-Tetrachloroethane	5	1.0	BQL	BQL	BQL	BQL	BQL
1,1,2-Trichloroethane	1	1.0	BQL	BQL	BQL	BQL	BQL
1.1-Dichloroethane	5	1.0	BQL	BQL	BQL	BQL	BQL
1.1-Dichloroethene	5	1.0	BQL	BQL	BQL	BQL	BQL
1,2-Dichlorobenzene	3	1.0	BQL	BQL	BQL	BQL	BQL
1.2-Dichloroethane	0.6-ADL	1.0	BQL	BQL	BQL	BQL	BQL
1.3-Dichlorobenzene	3	1.0	BQL	BQL	BQL	BQL	BQL
1,3-Dichloropropane	5	1.0	BQL	BQL	BQL	BQL	BQL
1.4-Dichlorobenzene	3	1.0	BQL	BQL	BQL	BQL	BQL
2-Butanone (MEK)	50	5.0	BQL	BQL	BQL	BQL	BQL
4-Methyl-2-Pentanone (MIBK)	NS	5.0	BQL	BQL	BQL	BQL	BQL
Acetone	50	5.0	BQL	BQL	BQL	BQL	BQL
Benzene	1	1.0	BQL	BQL	BQL	BQL	BQL
Bromochloromethane	5	1.0	BQL	BQL	BQL	BQL	BQL
Bromomethane	5	1.0	BQL	BQL	BQL	BQL	BQL
Carbon Disulfide	NS	1.0	BQL	BQL	BQL	BQL	BQL
Carbon Tetrachloride	5	1.0	BQL	BQL	BQL	BQL	BQL
Chlorobenzene	5	1.0	BQL	BQL	BQL	BQL	BQL
Chloroethane	5	1.0	BQL	BQL	BQL	BQL	BQL
Chloroform	7	1.0	BQL	BQL	BQL	BQL	BQL
Chloromethane	NS	1.0	BQL	BQL	BQL	BQL	BQL
Dibromochloromethane	50	1.0	BQL	BQL	BQL	BQL	BQL
Ethylbenzene	5	1.0	BQL	BQL	BQL	BQL	BQL
Freon 113	5	1.0	BQL	BQL	BQL	BQL	BQL
Methylene Chloride	5	1.0	BQL	BQL	BQL	BQL	BQL
Styrene	930	1.0	BQL	BQL	BQL	BQL	BQL
Tetrachloroethene	5	1.0	BQL	BQL	BQL	BQL	BQL
Toluene	5	1.0	BQL	BQL	BQL	BQL	BQL
Xylenes (total)	5	1.0	BQL	BQL	BQL	BQL	BQL
Trichloroethene	5	1.0	BQL	BQL	BQL	BQL	BQL
Trichlorofluoromethane	5	1.0	BQL	BQL	BQL	BQL	BQL
Vinyl Chloride	2	1.0	BQL	BQL	BQL	BQL	BQL
trans -1,2 Dichloroethene	5	1.0	BQL	BQL	BQL	BQL	BQL

MCL from NYDEC TOGS 111- Groundwater Effluent Standards Class GA

Results in **bold** type are >MCL

JM-flagged as "estimated minimum value" due to poor QC Matrix recovery

ATTACHMENT A Previous Post Removal Groundwater Sampling Results

NYDEC MCL

	MIDEC MICE						
Compound	(ug/l)	RL (ug/L)	PCMW-01	PCMW-02	MW-3	MW-5	MW-7
Date Collected			4/12/2007	4/12/2007	4/12/2007	4/12/2007	4/12/2007
2,4,5-Trichlorophenol	2	1.1	BQL	BQL	BQL	BQL	BQL
2,4-Dichlorophenol	2	1.1	BQL	BQL	BQL	BQL	BQL
2,4-Dinitrophenol	2	2.6	BQL	BQL	BQL	BQL	BQL
2,4-Dinitrotoluene	5	0.21	BQL	BQL	BQL	BQL	BQL
2,6-Dinitrotoluene	5	0.21	BQL	BQL	BQL	BQL	BQL
2-Chlorophenol	2	1.1	BQL	BQL	BQL	BQL	BQL
2-Methylnaphthalene	NS	0.21	BQL	BQL	BQL	BQL	BQL
2-Nitroaniline	5	0.21	BQL	BQL	BQL	BQL	BQL
2-Nitrophenol	2	1.1	BQL	BQL	BQL	BQL	BQL
2-methylphenol	2	1.1	BQL	BQL	BQL	BQL	BQL
3-Nitroaniline	5	0.21	BQL	BQL	BQL	BQL	BQL
4-Chloroaniline	5	0.21	BQL	BQL	BQL	BQL	BQL
4-Nitroaniline	5	0.21	BQL	BQL	BQL	BQL	BQL
4-Nitrophenol	2	2.6	BQL	BQL	BQL	BQL	BQL
4-chloro-3-methylphenol	2	1.1	BQL	BQL	BQL	BQL	BQL
4-methylphenol	2	1,1	BQL	BQL	BQL	BQL	BQL
Acenaphthene	20	0.21	BQL	BQL	BQL	BQL	BQL
Acenaphthylene	NS	0.21	BQL	BQL	BQL	BQL	BQL
Aniline	5	0.21	BQL	BQL	BQL	BQL	BQL
Anthracene	50	0.21	BQL	BQL	BQL	BQL	BQL
Benzo(a) anthracene	0.002-ADL	0.21	BQL	BQL	BQL	0.078-J	BQL
Benzo(a) pyrene	ADL	0.21	BQL	BQL	BQL	BQL	BQL
Benzo(b) fluoranthene	0.002-ADL	0.21	BQL	BQL	BQL	0.067~J	BQL
Benzo(g,h,i)perylene	NS	0.21	BQL	BQL	BQL	0.078-J	BQL
Benzo(k) fluoranthene	0.002-ADL	0.21	BQL	BQL	BQL	BQL	BQL
Butyl benzyl phthalate	50	0.21	BQL	BQL	BQL	BQL	BQL

MCL from NYDEC TOGS 111- Groundwater Effluent Standards Class GA

Values in **bold** type are above MCL, including MCLs established at ADL

J-value is >MDL<RL, estimated

ATTACHMENT A Previous Post Removal Groundwater Sampling Results

NYDEC MCL

Commound	(ug/l)	DI /ug/L\	PCMW-01	PCMW-02	MW-3	MW-5	MW-7
Compound	(ug/l)	RL (ug/L)		4/12/2007	4/12/2007	4/12/2007	4/12/2007
Date Collected			4/12/2007				
Chrysene	0.002-ADL	0.21	BQL	BQL	BQL	0.067-J	BQL
Dibenz(a,h) Anthracene	NS	0.21	BQL	BQL	BQL	0.056-J	BQL
Dibenzofuran	NS	0.21	BQL	BQL	BQL	BQL	BQL
Diethyl Phthalate	50	0.21	0.22	0.13-J	0.12-J	0.4	0.13-J
Dimethyl Phthalate	50	0.21	BQL	BQL	BQL	BQL	BQL
Fluoranthene	50	0.21	BQL	BQL	BQL	0.067-J	BQL
Fluorene	50	0.21	BQL	BQL	BQL	BQL	BQL
Hexachlorobenzene	0.04-ADL	0.21	BQL	BQL	BQL	BQL	BQL
Hexachlorocyclopentadiene	5	0.21	BQL	BQL	BQL	BQL	BQL
Indeno(1,2,3-c,d) Pyrene	0.002-ADL	0.21	BQL	BQL	BQL	0.067-J	BQL
Isophorone	50	0.21	BQL	BQL	BQL	BQL	BQL
Naphthalene	10	0.21	BQL	BQL	BQL	BQL	BQL
Nitrobenzene	0.4	0.21	BQL	BQL	BQL	BQL	BQL
Pentachlorophenol	2	2.6	BQL	BQL	BQL	BQL	BQL
Phenanthrene	50	0.21	0.17	0.18	BQL	BQL	BQL
Phenol	2	1.1	BQL	BQL	BQL	BQL	BQL
Pyrene	50	0.21	BQL	BQL	BQL	0.056-J	BQL
bis(2-ethylhexyl) phthalate	5	0.21	2.8	4	1.7	2.7	5.4
di-n-Butyl Phthalate	50	0.21	0.16-J	0.16-J	0.23	0.21	0.24
di-n-Octyl Phthalate	50	0.21	BQL	BQL	BQL	BQL	BQL

MCL from NYDEC TOGS 111- Groundwater Effluent Standards Class GA Values in **bold** type are above MCL, including MCLs established at ADL J-value is >MDL<RL, estimated

4 of 12 Table 2

ATTACHMENT A Previous Post Removal Groundwater Sampling Results

NYDEC MCL

	NIDEC WICE	.	011001001100	DOLLAR A	DOING O	1.004 O	B.63.47 C	8.6147 7
Compound	(ug/l)	RL (ug/L)	SURFACE H2O	PCMW-1	PCMW-2	MW-3	MW-5	MW-7
Date Collected			4/12/2007	10/10/2007	10/10/2007	10/10/2007	10/10/2007	10/10/2007
2,4,5-Trichlorophenol	2	1.1	BQL	BQL	BQL	BQL	BQL	BQL
2,4-Dichlorophenol	2	1.1	BQL	BQL	BQL	BQL	BQL	BQL
2,4-Dinitrophenol	2	2.6	BQL	BQL	BQL	BQL	BQL	BQL
2,4-Dinitrotoluene	5	0.21	BQL	BQL	BQL	BQL	BQL	BQL
2,6-Dinitrotoluene	5	0.21	BQL	BQL	BQL	BQL	BQL	BQL
2-Chlorophenol	2	1.1	BQL	BQL	BQL	BQL	BQL	BQL
2-Methylnaphthalene	NS	0.21	BQL	BQL	BQL	BQL	BQL	BQL
2-Nitroaniline	5	0.21	BQL	BQL	BQL	BQL	BQL	BQL
2-Nitrophenol	2	1.1	BQL	BQL	BQL	BQL	BQL	BQL
2-methylphenol	2	1.1	BQL	BQL	BQL	BQL	BQL	BQL
3-Nitroaniline	5	0.21	BQL	BQL	BQL	BQL	BQL	BQL
4-Chloroaniline	5	0.21	BQL	BQL	BQL	BQL	BQL	BQL
4-Nitroaniline	5	0.21	BQL	BQL	BQL	BQL	BQL	BQL
4-Nitrophenol	2	2.6	BQL	BQL	BQL	BQL	BQL	BQL
4-chloro-3-methylphenol	2	1.1	BQL	BQL	BQL	BQL	BQL	BQL
4-methylphenol	2	1.1	BQL	BQL	BQL	BQL	BQL	BQL
Acenaphthene	20	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Acenaphthylene	NS	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Aniline	5	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Anthracene	50	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Benzo(a) anthracene	0.002-ADL	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Benzo(a) pyrene	ADL	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Benzo(b) fluoranthene	0.002-ADL	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Benzo(g,h,i)perylene	NS	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Benzo(k) fluoranthene	0.002-ADL	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Butyl benzyl phthalate	50	0.21	BQL	BQL	BQL	BQL	BQL	BQL

MCL from NYDEC TOGS 111- Groundwater Effluent Standards Class GA

Values in **bold** type are above MCL, including MCLs established at ADL

J-value is >MDL<RL, estimated

ATTACHMENT A Previous Post Removal Groundwater Sampling Results

NYDEC MCL

Compound	(ug/l)	RL (ug/L)	SURFACE H2O	PCMW-1	PCMW-2	MW-3	MW-5	MW-7
Date Collected			4/12/2007	10/10/2007	10/10/2007	10/10/2007	10/10/2007	10/10/2007
Chrysene	0.002-ADL	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Dibenz(a,h) Anthracene	NS	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Dibenzofuran	NS	0,21	BQL	BQL	BQL	BQL	BQL	BQL
Diethyl Phthalate	50	0.21	BQL	0.10-J	BQL	BQL	BQL	BQL
Dimethyl Phthalate	50	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Fluoranthene	50	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Fluorene	50	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Hexachlorobenzene	0.04-ADL	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Hexachlorocyclopentadiene	5	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Indeno(1,2,3-c,d) Pyrene	0.002-ADL	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Isophorone	50	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Naphthalene	10	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Nitrobenzene	0.4	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Pentachlorophenol	2	2.6	BQL	BQL	BQL	BQL	BQL	BQL
Phenanthrene	50	0.21	BQL	BQL	BQL	BQL	BQL	BQL
Phenol	2	1.1	BQL	BQL	BQL	BQL	BQL	BQL
Pyrene	50	0.21	BQL	BQL	BQL	BQL	BQL	BQL
bis(2-ethylhexyl) phthalate	5	0.21	3	1.6	3	1.8	1.7	0.72
di-n-Butyl Phthalate	50	0.21	0.18-J	1	0.86	0.62	0.63	0.29
di-n-Octyl Phthalate	50	0.21	BQL	BQL	BQL	BQL	BQL	BQL

MCL from NYDEC TOGS 111- Groundwater Effluent Standards Class GA Values in **bold** type are above MCL, including MCLs established at ADL J-value is >MDL<RL, estimated

Table 3 AOC-2 Water Monitoring Pesticide Results

	NYDEC MCL	MCL								
Compound	(ug/l)	RL (ug/L)	PCMW-01	PCMW-02	MW-3	MW-5	MW-7	SURFACE H2O		
			4/12/2007	4/12/2007	4/12/2007	4/12/2007	4/12/2007	4/12/2007		
4,4-DDD	0.3	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
4,4-DDE	0.2	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
4,4-DDT	0.2	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
Aldrin	ADL	0.052	0.028-J	BQL	BQL	BQL	BQL	BQL		
alpha-BHC	ADL	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
beta-BHC	0.04	0.052	0.075	BQL	BQL	BQL	BQL	BQL		
Chlordane	0.05-ADL	1.0	BQL	BQL	BQL	BQL	BQL	BQL		
delta-BHC	ADL	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
Dieldrin	0.004-ADL	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
Endosulfan I	NS	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
Endosulfan II	NS	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
Endosulfan Sulfate	NS	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
Endrin	ADL	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
Gamma-BHC (Lindane)	0.05	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
Heptachlor	0.04	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
Heptachlor Epoxide	0.03	0.052	BQL	BQL	BQL	BQL	BQL	0.068		
Methoxychlor	35	0.052	BQL	BQL	BQL	BQL	BQL	BQL		
Toxaphene	0.06	1.0	BQL	BQL	BQL	BQL	BQL	BQL		

MCL from NYDEC TOGS 111- Groundwater Effluent Standards Class GA

J-value is >MDL<RL;estimated

Table 3
AOC-2
Water Monitoring
Pesticide Results

	NYDEC MCL		resticide Results								
Compound	(ug/l)	RL (ug/L)	PCMW-01	PCMW-02	MW-3	MW-5	MW-7				
			10/10/2007	10/10/2007	10/10/2007	10/10/2007	10/10/2007				
4,4-DDD	0.3	0.052	BQL	BQL	BQL	BQL	BQL				
4,4-DDE	0.2	0.052	BQL	BQL	BQL	BQL	BQL				
4,4-DDT	0.2	0.052	BQL	BQL	BQL	BQL	BQL				
Aldrin	ADL	0.052	BQL	BQL	BQL	BQL	BQL				
alpha-BHC	ADL	0.052	BQL	BQL	BQL	BQL	BQL				
beta-BHC	0.04	0.052	BQL	BQL	BQL	BQL	BQL				
Chlordane	0.05-ADL	1.0	BQL	BQL	BQL	BQL	BQL				
delta-BHC	ADL	0.052	BQL	BQL	BQL	BQL	BQL				
Dieldrin	0.004-ADL	0.052	BQL	BQL	BQL	BQL	BQL				
Endosulfan I	NS	0.052	BQL	BQL	BQL	BQL	BQL				
Endosulfan II	NS	0.052	BQL	BQL	BQL	BQL	BQL				
Endosulfan Sulfate	NS	0.052	BQL	BQL	BQL	BQL	BQL				
Endrin	ADL	0.052	BQL	BQL	BQL	BQL	BQL				
Gamma-BHC (Lindane)	0.05	0.052	BQL	BQL	BQL	BQL	BQL				
Heptachlor	0.04	0.052	BQL	BQL	BQL	BQL	BQL				
Heptachlor Epoxide	0.03	0.052	BQL	BQL	BQL	BQL	BQL				
Methoxychlor	35	0.052	BQL	BQL	BQL	BQL	BQL				
Toxaphene	0.06	1.0	BQL	BQL	BQL	BQL	BQL				

MCL from NYDEC TOGS 111- Groundwater Effluent Standards Class GA

J-value is >MDL<RL;estimated

Table 4
AOC-2
Water monitoring
Metals Results

NYDEO	3
-------	---

Metal	MCL (ug/l)	RL (ug/L)	PCMW-01	PCMW-02	MW-3	MW-5	MW-7	SURFACE H2O
Date Collected			4/12/2007	4/12/2007	4/12/2007	4/12/2007	4/12/2007	4/12/2007
Aluminum	2000	100	27000	2424	107	1560	104	398
Antimony	6	1	0.56	BQL	BQL	BQL	BQL	0.3
Arsenic	50	5	11	2.2	BQL	BQL	BQL	1.3
Barium	2000	5	178	33.9	13	22.2	7.8	14.9
Beryllium	3	0.2	1.1	0.11	BQL	0.059	BQL	BQL
Cadmium	10	0.5	0.49	0.39	BQL	0.16	0.68	0.17
Calcium	NS	1000	104000	90700	555000	444000	550000	14700
Chromium	100	2	39	3.4	BQL	2.6	BQL	BQL
Cobalt	NS	1	13	5.8	0.87	3.4	BQL	0.46
Copper	1000	2	44.9	5.3	1.9	3.2	2.5	2.8
Iron	600	50	71800	4830	557	2280	134	819
Lead	50/15	2	25.8	1.3	0.46	1.7	0.49	0.71
Magnesium	35000	100	43600	46300	210000	418000	56200	6100
Manganese	600	2	1310	1350	1240	1630	271	66.3
Mercury	1.4	0.2	BQL	BQL	BQL	BQL	BQL	BQL
Nickel	200	1	35.1	11.1	4.5	8.2	2.5	4
Potassium	NS	1000	27700	1440	9810	15800	3890	790
Selenium	20	5	1.6	BQL	BQL	BQL	BQL	BQL
Silver	100	0.3	0.24	BQL	BQL	BQL	BQL	BQL
Sodium	NS	1000	45000	32800	50200	215000	1550	3360
Thallium	0.5	2	0.46	0.22	0.096	0.14	0.12	BQL
Vanadium	NS	10	52	4.1	BQL	3.7	BQL	BQL
Zinc	5000	10	82.8	15.6	5.2	8.2	6.4	8.2

MCL for Lead also reflects current drinking water value of 15ug/l

MCL from NYDEC TOGS 111- Groundwater Effluent Standards Class GA

Values in **bold** type are above MCL

Lead values in *italics* are above DW MCL but below NYDEC TOGS 111 limit

Values in *italics* exceed one or more criteria Values in **bold** face exceed all criteria

^{*} result from Shaw requested re-analyis performed on 11/7/2007 after original data indicated a potential for improperly reported data

Table 4
AOC-2
Water monitoring
Metals Results

NYDEC

Metal	MCL (ug/l)	RL (ug/L)	PCMW-1	PCMW-2	MW-3*	MW-5*	MW-7	
Date Collected			10/10/2007	10/10/2007	10/10/2007	10/10/2007	10/10/2007	
Aluminum	2000	100	397	804	53.3	471	352	-000
Antimony	6	1	BQL	BQL	BQL	0.28	BQL	
Arsenic	50	5	2.4	BQL	1.3	BQL	BQL	
Barium	2000	5	524	25.4	14.7	18.4	9.6	
Beryllium	3	0.2	0.056	0.13	BQL	0.037	BQL	
Cadmium	10	0.5	BQL	1.3	BQL	0.27	0.1	
Calcium	NS	1000	136000	41000	570000	469000	551000	
Chromium	100	2	3.7	2.5	BQL	3	BQL	
Cobalt	NS	1	0.28	6.9	0.71	3.1	0.54	
Copper	1000	2	2.4	6.3	3	3.6	3.3	
Iron	600	50	16800	1440	1620	1100	432	
Lead	50/15	2	0.71	0.84	0.26	0.82	0.62	
Magnesium	35000	100	53100	22800	226000	453000	75900	
Manganese	600	2	222	697	1540	1600	348	
Mercury	1.4	0.2	BQL	0.076	BQL	BQL	BQL	
Nickel	200	1	1.6	11.4	3.4	8.2	2.4	
Potassium	NS	1000	16500	900	11200	18400	5100	
Selenium	20	5	BQL	BQL	BQL	BQL	BQL	
Silver	100	0.3	BQL	BQL	BQL	BQL	BQL	
Sodium	NS	1000	109000	43600	59400	255000	2000	
Thallium	0.5	2	0.27	0.14	0.1	0.099	0.23	72
Vanadium	NS	10	52	2.4	BQL	2.2	BQL	
Zinc	5000	10	82.8	29.4	9.9	14.2	10.9	

MCL for Lead also reflects current drinking water value of 15ug/l

MCL from NYDEC TOGS 111- Groundwater Effluent Standards Class GA

Values in bold type are above MCL

Lead values in *italics* are above DW MCL but below NYDEC TOGS 111 limit

Values in *italics* exceed one or more criteria Values in **bold** face exceed all criteria

^{*} result from Shaw requested re-analyis performed on 11/7/2007 after original data indicated a potential for improperly reported data

Table 5 AOC-2 **Water Sampling** Field QC

Apr-07

Oct-07 Trip DUPE MW-3 Blank BQL BQL BQL INDETER BQL INDETER BQL BQL BQL BQL BQL BQL INDETER BQL BQL BQL BQL BQL BQL BQL BQL BQL INDETER BQL BQL BQL INDETER BQL BQL BQL INDETER BQL BQL BQL INDETER BQL BQL INDETER BQL BQL BQL BQL INDETER BQL BQL BQL INDETER BQL BQL BQL INDETER BQL BQL BQL INDETER INDETER BQL BQL BQL BQL BQL BQL INDETER INDETER BQL BQL BQL BQL BQL INDETER BQL BQL BQL BQL INDETER

BQL

BQL

BQL

BQL

BQL

BQL

RPD

INDETER

	NYDEC	RL	Trip				
Metal	MCL (ug/l)	(ug/L)	Blank	MW-7	B. DUP	RPD	
1,1,1,-Trichloroethane	5	1.0	BQL	BQL	BQL	INDETER	
1,1,2,2-Tetrachloroethane	5	1.0	BQL	BQL	BQL	INDETER	
1,1,2-Trichloroethane	1	1.0	BQL	BQL	BQL	INDETER	1
1,1-Dichloroethane	5	1.0	BQL	BQL	BQL	INDETER	
1,1-Dichloroethene	5	1.0	BQL	BQL	BQL	INDETER	
1,2-Dichlorobenzene	3	1.0	BQL	BQL	BQL	INDETER	
1,2-Dichloroethane	0.6	1.0	BQL	BQL	BQL	INDETER	
1,3-Dichlorobenzene	3	1.0	BQL	BQL	BQL	INDETER	
1,3-Dichloropropane	5	1.0	BQL	BQL	BQL	INDETER	
1,4-Dichlorobenzene	3	1.0	BQL	BQL	BQL	INDETER	
2-Butanone (MEK)	50	5.0	BQL	BQL	BQL	INDETER	
4-Methyl-2-Pentanone (MIBK)	NS	5.0	BQL	BQL	BQL	INDETER	1
Acetone	50	5.0	BQL	BQL	BQL	INDETER	
Benzene	1	1.0	BQL	0.4	0.20	66.7	J-flagged
Bromochloromethane	5	1.0	BQL	BQL	BQL	INDETER	
Bromomethane	5	1.0	BQL	BQL	BQL	INDETER	
Carbon Disulfide	NS	1.0	BQL	BQL	BQL	INDETER]
Carbon Tetrachloride	5	1.0	BQL	BQL	BQL	INDETER]
Chlorobenzene	5	1.0	BQL	BQL	0.20	INDETER	
Chloroethane	5	1.0	BQL	BQL	BQL	INDETER	
Chloroform	7	1.0	BQL	BQL	BQL	INDETER	
Chloromethane	NS	1.0	BQL	BQL	BQL	INDETER	
Dibromochloromethane	50	1.0	BQL	BQL	BQL	INDETER	
Ethylbenzene	5	1.0	BQL	0.25	BQL	INDETER	
Freon 113	5	1.0	BQL	BQL	BQL	INDETER	
Methylene Chloride	5	1.0	1.5	1.5	1.1	30.8	
Styrene	930	1.0	BQL	BQL	BQL	INDETER	
Tetrachloroethene	5	1.0	BQL	0.29	0.20	36.7	J-flagged
Toluene	5	1.0	0.13	1.0	0.41	83.7	J-flagged
Xylenes (total)	5	1.0	BQL	1.0	0.46	74.0	J-flagged
Trichloroethene	5	1.0	BQL	BQL	BQL	INDETER	50000000
Trichlorofluoromethane	5	1.0	BQL	BQL	BQL	INDETER	
Vinyl Chloride	2	1.0	BQL	BQL	BQL	INDETER	
trans-1,2 Dichloroethene	5	1.0	BQL	BQL	BQL	INDETER	

Table 5 AOC-2 Water Sampling Field QC

Apr-07

	NYDEC	RL	Trip			
Metal	MCL (ug/l)	(ug/L)	Blank	MW-7	B. DUP	RPD
Aluminum	2000	100	NA	104	BQL	INDETER
Arsenic	50	5	NA	BQL	33.1	INDETER
Barium	2000	5	NA	7.8	52.6	148.3
Cadmium	10	0.5	NA	0.68	BQL	INDETER
Calcium	NS	1000	NA	550000	558000	1.4
Cobalt	NS	1	NA	BQL	6	INDETER
Copper	1000	2	NA	2.5	1.3	63.2
Iron	600	50	NA	134	20400	197.4
Lead	50/15	2	NA	0.49	BQL	INDETER
Magnesium	35000	100	NA	56200	34900	46.8
Manganese	600	2	NA	271	1820	148.2
Nickel	200	1	NA	2.5	6.4	87.6
Potassium	NS	1000	NA	3890	4520	15.0
Sodium	NS	1000	NA	1550	4040	89.1
Thallium	0.5	2	NA	0.12	0.19	45.2
Zinc	5000	10	NA	6.4	5.3	18.8
Diethyl Phthalate	50	0.13	NA	0.13	BQL	INDETER
bis(2-ethylhexyl) phthalate	5	0.21	NA	5.4	3	57.1
di-n-Butyl Phthalate	50	0.21	NA	0.24	0.16	40.0

Field Duplicate data reflects hits only-no hits for Pesticides in either sample or Duplicate sample

Oct-07

Trip				
Blank	MW-3	DUPE	RPD	
NA	54.1	69.5	24.9	
NA	1.2	1	18.2	
NA	14.8	15.7	5.9	
NA	BQL	BQL	INDETER	
NA	546000	586000	7.1	
NA	1	1.1	9.5	
NA	2.7	2.6	3.8	
NA	1670	1750	4.7	
NA	0.29	0.37	24.2	
NA	224000	243000	8.1	
NA	1500	1510	0.7	
NA	3.6	3.8	5.4	
NA	10900	11100	1.8	
NA	57300	58200	1.6	
NA	0.12	0.22	58.8	J-flagged
NA	7.9	10.8	31.0	J-flagged
NA	BQL	BQL	INDETER	\$2000
NA	1.8	2.9	46.8	
NA	0.62	0.43	36.2	

ATTACHMENT B

Groundwater Sampling Field Data Sheets

Daga 1	-5
raue I	OT

PARSONS WELL PURGING OBSERVATIONS

SITE NA	AME: CT NUMBER	2: 743	DNSC Scho	enectady Dep	oot AOC-2				
	E NUMBER:	M W-	-3	V	VEATHER:	Clear Sul	my, cold (30's-	40'5	
SAMPLE	ERS: 54	H Dilln	ran		of	Par song	5		
Sa	PTION OF S ample Location creen/Sample ample Method	e Depth:	11	10/1	fhill toc tic por	nf			
GROUN	DWATER PU	IRGING	,		4130	V			
	itial Static Wa		6.01 f	m Toc	d 1.00	TA- 2X	1.2 fm Toc		
Or	ne Well Volur	me:			1	111-	3 Volumes		
		ng: 22,19	Feet of Wat	er x 0.16 Gall	ons/Foot =	3,5			
	3-Inch Casir		Feet of Water	er x 0.36 Gall	ons/Foot =	21100	Gallons	_	
	4-Inch Casir	ng:	Feet of Water	er x 0.65 Gall	ons/Foot =	-	Gallons	_	
			-	_				_	
		ndwater purg		6.0	Gallo	ns			
	rging Device		Lattic Po	mp					
ru	ige water Di	sposition (e.g	i., contained):						
FIELD	MEASURE!	MENTS				culi	brited Horiba - OK 9:	40	
Time	рН	Conductivity	Temp.	Turbidity	DO	ORP			-
		(mS)	(Degrees C)	(NTUs)			Comments		
10:12	Begir	Purae					Charge Gertery	ile	
0'28	6.67	3.93	9.86	15.8	0,00	62	300 m//min		DTW
15:33	6,68	3.92	10,01	18.4	0,00	57	Z40 ml/ama	7.41	1
0:37	6.68	3.92	10.16	19-27	0.00	53	225 m/ / min	1	010
10:42	- 6,69	3.92	10.15	10,5	0,00	50	225 ml/min	7,43	ATU
10:47	6.69	3.91	10.17	8,2	6.00	48	180 ml/min	7.47	DTW .
10:52	6.69	3,90	16,29	18	0,00	47	205 m/min	7.40	Pumy Stepped
1100	0 00	3 92	, 2	_			John Miller	11 10	PIW

Note: prap will not ron slower than 200 ml/min

1023

10.29

10.35

10:30

5,2

45

45

44

43

220 ml/min

225 ml/min

9.56 ATW

7,62 DTW

7.66 OTW.

0,00

0.00

0,00

0.00

3,90

3.87

3.85

3.84

6.69

6,69

6,69

6.69

10:58

11:19

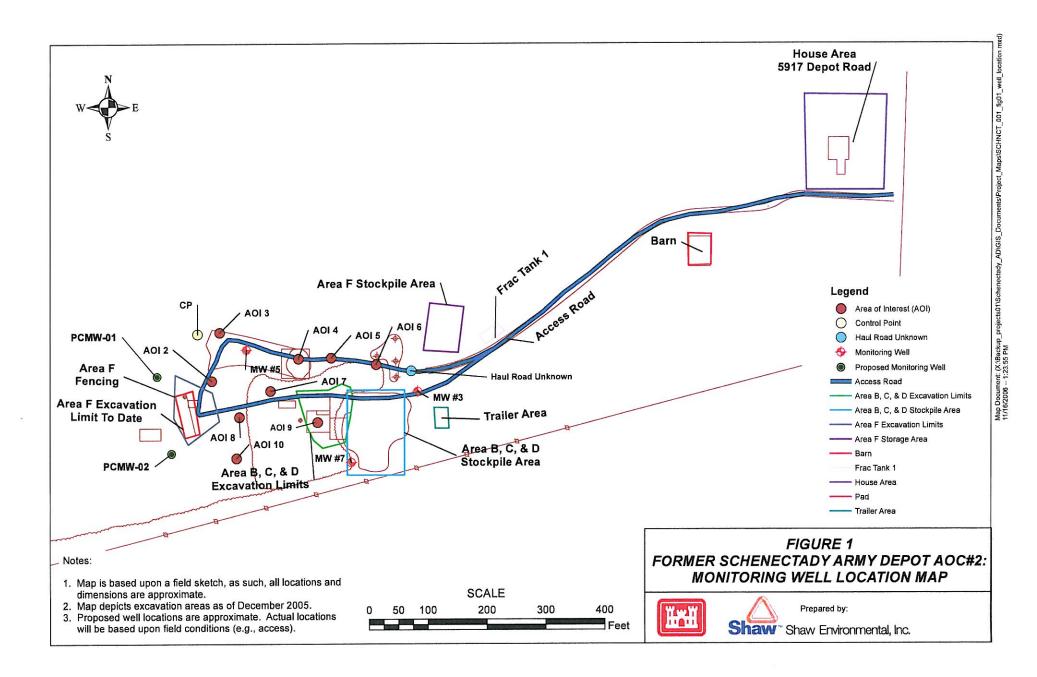
11115

11:02

Page 2 of 2 **PARSONS** WELL PURGING OBSERVATIONS SITE NAME: DNSC Schenectady Depot AOC-2 PROJECT NUMBER: 743440.08000 SAMPLE NUMBER: MW-3 TIME: 11: \$5 DATE: 5-1-08 SAMPLERS: Scott Dillman Time рН Conductivity Temp. Turbidity DO ORP (mS) (Degrees C) m 9/L (NTUs) mV Comments 11:18 6,69 3.83 10,23 11.9 0,00 225 m//min 7.71 DTW 0,00 225 n//min 7.73 DTW 0.00 225 m//min 0,00 235 W/ min 7.79 DTW 11:35 gallans water discharged to ground in Filtrated Seckint grand Hle. V eacted

		-	THE OWNER WHEN	-
Page	1	of	2	_

PARSONS


				WELL PU	RGING (DBSERVA	ATIONS	
	SITE NA	AME: CT NUMBER	: 743	DNSC Sche	nectady Dep	oot AOC-2		
		5-1-68	PCMW.	-02		VEATHER:		outly doudy tight breeze
S	SAMPLE	RS: 563	4 Dillm	an		of	al San	5
D	Sa	PTION OF Sometimes of the property of the prop	Depth:	PCMW		- Toc	The	3 feet for TOC
G	ROUNI	DWATER PU	RGING	7 ./				
		tial Static Wa		2,4	6 fra	TOC		10
	Or	ne Well Volun	1 11	Foot of Motor		-	, 16	3 Volumes
	2-Inch Casing: 70.3 Feet of Water x 0.16 Gallons/Foot = 7.68 Gallons 5.1 3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons Gallons							
	3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons 4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons							
						0110/1 001	-	
			ndwater purg			Gallo		
	Pu	rging Device:	Low	Flow	Perist	altic 1	Pup	
	Pu	rge Water Di	sposition (e.g	., contained):	Disch	orged to	= groun	d
	FIELD	MEASURE	MENTS				J	
Tir	me	рН	Conductivity	Temn	Turbidity	DO	ORP	
			(mS)	(Degrees C)	(NTUs)		ORP	Comments
21	55	Stan	rt Rum					350 m/min
1:0	00	6.45	1518	8.14	40.8	0.38	23	2.52 DTW
1:0	5	6,37	1.40	8,19	32	0.03	24	
11	0	6.05	1,30	8.29	9.0	0.00	67	300 ml/mm 2,51 DTW
	5	5.84	1.27	8,26	2.5	6,61	88	30 m/my 2,57 5TW
,2	0	5.82	1.26	8.30	0,6	1.27	93	280 m/min 2,51 DTG
	25	5.82	1.26	8,32	1,0	1,61	95	300 m/min 2.51 "4
10	30	5.81	1.26	8.34	0.0	1.86	97	300 m/min 2,51
	35	5.79	1,26	8.40	0,0	2.69	99	300 m/min 2.51 "
. (10	5.79	1.26	8.24	0.0	2.31	101	310 m/min 2,51 ". 1
:4		5.78	1,26	8,23	0.0	2.49	IOH	280 m/min 2,5/ 1 11

Page Zof _2_

PARSONS WELL PURGING OBSERVATIONS

SITE NA	T NUMBER:	7434	DNSC Scher	8000	ot AOC-2			
SAMPLE DATE:	NUMBER: 1 5-1-08	CMW-0	2	. V	EATHER: 3	inny In	thy cloudy, light	+ 5, ecte 50'5-60°
SAMPLE	RS: Sect	+ Dilln	an		of P	er sm	Ś	
Time	рН	Conductivity (mS) cm	Temp. (Degrees C)	Turbidity (NTUs)	m g/L	ORP m V	Comments	6
1:50	5.78	1.26	8135	0,0	2,52	104	280 ml/min	AT. 1 251
1:55	5.78	1,26	8.35	6.0	2.78	106	280 ml/min	DTW 2,5
2:00	5.77	1.27	838	0.0	2,80	107	280 ml/min	
2:05	5.77	1.27	8.47	0,0	2.99	108	290 m//min	75/70
2:10	5.77	1.27	8.50	6.4	3.18	109		
2:14	5.77	1.27	8.37	6.0	321	110	290 m)/min	1111
2:19	5.78	1.26	8.47	10.2	3.23	1 (1	, ,	1.7
	Cal	lect 5	ans 6	2125	7	tal pr	reld 7 a	al
	No	ador no		water	- Clear	/)	
			/					-447

FIGURES

ATTACHMENT C

Laboratory Analytical Data Usability Memo

ATTACHMENT A

DATA USABILITY REPORT FOR SAMPLES COLLECTED AT FORMER SCHENECTADY ARMY DEPOT - VOORHEESVILLE AREA (SADVA) AOC 2

Introduction

This data usability report presents the results of the quality assurance (QA) evaluation, performed by Parsons, of sample analytical data and results for samples collected at the SADVA Area of Concern (AOC) 2 – Former Post Commander's Landfill. Three groundwater samples were collected by Parsons on May 01, 2008 and were analyzed by GPL Laboratories, LLLP (GPL), Frederick, Maryland. A trip blank was shipped and submitted with the field samples. Analytical data and results were presented by GPL in a report identified as "Analytical Report for 805012". The report was signed by Chino Ortiz under the statement on the cover page that 'GPL Laboratories, LLLP certifies that the test results meet all requirements of the NELAC Standards unless otherwise noted".

The specific samples contained in the data package and the analyses performed are presented in Table 1. Recommended data qualifiers resulting from this QA evaluation are summarized on Table 2.

Table 1 – Summary of Samples and Analyses					
Parsons Sample ID	Collection Date	Matrix	Analyses Performed		
MW-03	05/01/2008	Groundwater	Volatile Organic Compounds (VOCs) by Method SW8260B		
PCMW-02	05/01/2008	Groundwater	Volatile Organic Compounds (VOCs) by Method SW8260B		
PCMW-12	05/01/2008	Groundwater	Volatile Organic Compounds (VOCs) by Method SW8260B		
TRIP BLANK	05/01/2008	Laboratory Water	Volatile Organic Compounds (VOCs) by Method SW8260B		

QA Evaluation Results

All samples were received by the laboratory on May 02, 2008, intact and properly preserved. The cooler was submitted under proper chain of custody and received with an internal temperature of 4° C, which is within the acceptance range of 4° C + 2° C.

The following describes the overall OA/OC indicators:

Analytical holding time: All samples were analyzed on May 06, 2008, which is 5 days from sample collection, within analysis holding time of 14 days for acid-preserved samples. The sample "pH <2" was verified for each sample by the laboratory prior to analysis.

GC/MS instrument tuning and performance verification: The GC/MS system was tuned and met the method performance criteria (BFB ion abundance criteria).

Analysis sequence: All analyses and QC runs were completed with the method analysis time and sequence requirements (12-hour tune clock).

Calibration results: The initial calibration results met QC acceptance criteria. The initial calibration verification results met QC acceptance criteria (±25%D) for all target analytes, with the exception of Acetone (-37.9%D) and 2-Hexanone (-41.6%D). The continuing calibration verification met QC acceptance criteria (±20%D) for all target analytes, with the exception of Acetone (-69.0%D), 2-Hexanone (-35.4%D), Bromomethane (-25.6%D), and Vinyl Chloride (-20.5%D). The sample results for these four analytes should be considered to be estimated values, biased low.

Internal standard results: Internal standard results [retention time and recovery (areas)] for all samples met QC acceptance criteria.

Surrogate compound results: Surrogate compound recoveries for all samples met QC acceptance criteria.

Method blank: No target analytes were reported as detected in the method blank.

Laboratory Control Sample (LCS): The LCS recoveries met QC acceptance criteria for all target analytes.

Matrix spike/matrix spike duplicate (MS/MSD) results: MS/MSD results met QC acceptance criteria for recovery (%R) and for relative percent difference (RPD) for each target analyte, with the exception of 2-Butanone (59% RPD), which exceeded the QC acceptance limit of 25%RPD. However, since the recoveries of the MS and MSD met QC acceptance criteria, no sample results are recommended for data qualification or restricted data usability.

Field QC (trip blank) results: No target analytes were reported as detected in the trip blank.

Data Usability Summary

Target VOC data should be utilized without qualification, with the exception that the results of four VOCs (Acetone, Bromomethane, 2-Hexanone, and Vinyl Chloride) in each of the samples should be considered to be estimated values, biased low, due to the non-compliance of the associated continuing calibration verification results. Data qualification recommendations are summarized in Table 2.

Analyte	Sample Concentration (ug/L)	Recommended Data Qualifier	
Acetone Bromomethane 2-Hexanone Vinyl chloride	U	UJ	

Data Qualifiers

[&]quot;U" = Undetected.

[&]quot;UJ"= The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.

APPENDIX 8 BACKGROUND MEMORANDUM FOR NICKEL

16406 US Route 224 East Findlay, OH 45840

Memorandum

Date: Thursday, October 27, 2005

To: Guy Gallello

CC:

From: John Carson, Ph.D.

RE: Results of Schenectady AD AOC-2 data analysis

As we discussed, I have analyzed the metals data from the excavations in AOC-2 of Schenectady Army Depot and the relevant background (BG) for the purpose of comparing mercury (Hg) and nickel (Ni) soil concentrations to BG.

Data

I started with the Excel files that you provided ('838360 AOC-2 Area B.xls', '838360 AOC-2 Area C.xls', '838360 AOC-2 Area F.xls' and 'AOC-2 Metal hits.xls'). Based on the field drawing you provided of the planned backfill area (Area B + part of Area C), I grouped those sample locations within the planned backfill area into an area B/C to facilitate the analysis. The data is listed in Attachment 3. I did not use the original data for locations that were resampled except for analysis of trace metals/ major metals relationships. For the comparisons of mean concentrations to BG, I used the data from duplicate sample pairs with weights of 0.5 for each member of the pair. Unduplicated samples were given a weight of one.

Nondetects

There were no nondetects (ND) for Ni and two ND for Hg among the sample results used in this analysis. A number of J-qualified results were also reported at values less than the reporting limit (RL). The ND were given as <RL, where RL was the sample specific reporting limit. The laboratory RLs are almost always greater than or equal to the limit of quantitation (LOQ) which is a little more than three times the limit of detection (LOD). When J-qualified results are reported, their estimated concentrations lie between the LOD and the LOQ. In this case, ND are actually between zero and the LOD but are reported as if they are between zero and the LOQ. Unless the ND are assumed to be zero (as in Aitchison's method), reporting ND as <RL when they are really <LOD creates a high bias in statistical procedures. This problem is known as *informative censoring* (see Helsel, chapter 3). If the ND is replaced by substituting RL/2, then that result is biased by a factor greater than three, since RL ≥LOQ ≥3·LOD.

predicting the total silt and clay content of the soil. Ni concentration would be reduced as there is more sand or organics in the soil and increased as there is less.

The Ni levels appear higher in area B/C than in BG because the Fe levels are higher due to natural variation in the soil, as indicated by the boxplots in Figure 3, not because there is anthropogenic Ni contamination. In fact, after controlling for the concentrations of Fe, K and Al, the estimated effects for areas B, C and F area actually *lower* than the effect for BG. That means that based on modeling this data, for samples in each area having the same concentrations of Fe, K and Al, we would expect to see higher Ni concentrations in the samples from BG than in those from Areas B, C or F.

Conclusion

I conclude based on this analysis that there is no evidence that either Hg or Ni are elevated above BG in the studied areas: backfill area B/C and Area F. Please contact me if you have any questions about this analysis.

Carson, John, Ph.D.

Senior Statistician, Senior Technical Leader Shaw Environmental & Infrastructure 16406 US Rte. 224 East Findlay OH 45840 419-425-6156 direct 419-424-4939 fax www.shawgrp.com John.Carson@shawgrp.com

References

Helsel, D. 2004. Nondetects and Data Analysis: Statistics for Censored Environmental Data. John Wiley. New York. 268 pp.

R Development Core Team (2005). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Rao, C R. 1973. Linear Statistical Inference and Its Applications. Second Edition. John Wiley. New York. 625 pp.