Appendix H

Sample Logs, Chain of Custody and Laboratory Data Packages (2006)

Shaw Environmental & Infrastructure, Inc.

Data Validation Report

16406 U.S. Route 224 East • Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER: PROJECT NAME:

Tom Mathison

SAMPLE RECEIPT DATE: LABORATORY SDG: USACE-Schenectady

09/07/2006

GPL-609048

The Findlay Ohio Federal Technical Services Group has performed a QA evaluation of the data report from GPL Laboratories, LLLP, Frederick, MD. The results are for [5] soil samples collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table.

	Sample Summ	ary Table	
Sample Number	Collection Date	Matrix	Analysis Requested
DS-F-2	09/07/2006	Soil	TCLP Pest – SW-8081A, TCLP Herb – SW-8151A, Total PCB – SW-8082, TCLP SVOC-SW-8270C TCLP Metals – SW-6010B and 7471A, Reactive Cyanide – SW-9014R, Reactive Sulfide – SW-9034R, pH – SW-9045C, Paint Filter – SW-9095A, and Flashpoint – SW-1010
DS-F2A, DS-F-2B, DS-F-2C	09/07/2006	Soil	TCLP/VOC-SW8260B
Trip Blank	09/07/2006	Water	VOC-TCLP list (not analyzed per COC)

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and was received having a temperature of 3°C upon opening. The Trip Blank was not analyzed as it would provide limited data for purposes of comparison to TCLP criteria. The laboratory provided an electronic copy of the data within the specified turn around time. The following describes the overall QA/QC indicators.

TCLP Pesticide Analysis in Soil by SW-1311/8081A

The GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples were high for some analytes. No analytes were detected in the samples. No qualification necessary.

Method Blanks: The method blank results are below reporting limits for the target analytes. This is indicative of proper sample handling and for ensuring a contaminant free analytical system.

LCS: The LCS recoveries are within acceptance criteria for the target analytes. This is indicative of acceptable method accuracy and verifying proper instrument control.

MS: The MS recoveries were within control limits. This is indicative of acceptable matrix accuracy.

Surrogates: All surrogate recoveries are within acceptable criteria. This is indicative of acceptable method extraction and maintaining instrument control throughout the analytical sequence.

Reported results should be acted upon without reservation.

PCB Analysis in Soil by SW8082

The GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples were below control limits for both primary and secondary columns. PCBs were not detected above the reporting limit. The LCS and MS/MSD were acceptable as described below. The results will be qualified as estimated to be below the reporting limit, UJ.

Method Blanks: The method blank results are below reporting limits for the target analytes. This is indicative of proper sample handling and for ensuring a contaminant free analytical system.

LCS: The LCS recoveries are within acceptance criteria for the target analytes. This is indicative of acceptable method accuracy and verifying proper instrument control.

MS/MSD: The MS/MSD recoveries are within acceptance criteria for target analytes. This is indicative of acceptable method accuracy and matrix precision.

Surrogates: The surrogate recoveries are within acceptable criteria.

The reported results should be utilized with confidence.

TCLP Herbicide Analysis in Soil by SW1311/8151A

The GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration.

Method Blanks: The method blank results are below reporting limits for the target analytes, indicative of proper sample handling and for ensuring a contaminant free analytical system.

LCS: The LCS recoveries are within acceptance criteria for the target analytes, indicative of acceptable method accuracy and verifying proper instrument control.

MS/MSD: The QC Matrix recoveries are within acceptance limits. There was no MSD performed to evaluate precision.

Surrogates: All surrogate recoveries are within acceptable criteria. This is indicative of acceptable method extraction and maintaining instrument control throughout the analytical sequence.

Reported results should be utilized with confidence.

TCLP SVOC Analysis in Soil by SW1311/8270C

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs.

Method Blanks: The method blank results are below reporting limits for the target analytes, indicative of proper sample handling and for ensuring a contaminant free analytical system.

LCS: The LCS recoveries are within acceptance criteria for the target analytes, indicative of acceptable method accuracy and verifying proper instrument control.

MS/MSD: The QC Matrix recovery is within acceptance limits for all compounds except, pyridine. Performance for this analyte is slightly below the acceptance range, but still within reasonable expectations. There was no MSD performed.

Surrogates: Recovery of one of six surrogates was slightly below the acceptance range. Since it is standard practice to allow one of each fraction to be outside limits, the surrogate recoveries are within acceptable criteria.

Reported results should be utilized with confidence.

TCLP VOC Analysis in Soil by SW1311/8260B

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs.

Method Blanks: The method blank results are below reporting limits for the target analytes, indicative of proper sample handling and for ensuring a contaminant free analytical system.

LCS: The LCS recoveries are within acceptance criteria for the target analytes, indicative of acceptable method accuracy and verifying proper instrument control.

MS/MSD: The QC Matrix recovery is within acceptance limits for all compounds. There was no MSD performed.

Surrogates: All surrogate recoveries are within acceptable criteria. This is indicative of acceptable method extraction and maintaining instrument control throughout the analytical sequence.

Reported results should be utilized with confidence.

TCLP Metals Analysis in Soil by SW1311/6010B and SW7471A

The ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements. All instrument interference check samples were within control limits. The initial and continuing calibration check samples were within control limits. The initial calibration blank results were below reporting limits.

Method Blanks: The method blank results are below reporting limits.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

MS/MSD: The MS/MSD recoveries and precision are within acceptance limits.

Reported results should be utilized with confidence

General Chemistry

LCS recoveries for all spiked compounds were within control limits indicating acceptable method accuracy. A duplicate sample analysis was performed for reactive cyanide, reactive sulfide, Free Liquid, and pH. The percent RPD was within project objectives for pH. Percent RPDs could not be compared to the other duplicate since the results were below the QL.

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

Guy Gallello, Jr.-Project Chemist

Data

Analytical Report For 609048

for

Shaw E&I, Inc

Project Manager: Guy Gallello

Project Name: SAD-AOC2

GPLLaboratories

GPL Laboratories, LLLP certifies that the test results meet all requirements of the NELAC Standards unless otherwise noted.

Reviewed By, Project Manager Approved By, Laboratory Director

Case Narrative

Shaw E&I, Inc SAD-AOC2

Work Order: 609048

Reviewed by Patricia Huebschman on 09-27-2006

The Case Narrative, Chain of Custody, Sample Receipt Checklist, and the cover page of the Sample Analysis Report, are integral parts of GPL Laboratories' report package. If you did not receive all of these documents, please contact GPL immediately.

Sample Receipt

Four soil samples were received on 09/09/2006. The samples were delivered by UPS. Sample receipt conditions and temperatures are documented on the Sample Receipt checklist.

Sample Analysis

Samples were prepared and analyzed by GPL using the analytical methodologies indicated on the Sample Analysis Summary Report. In some chromatographic analyses, manual integration is used instead of automated integration because it produces more accurate results. All manual integrations are denoted on the sample quantitation report. Analysis results and limits for soil are reported on a dry weight basis unless otherwise specified on the report.

Volatiles

Four soil samples were analyzed for TCLP compounds using SW846 method 8260B.

Samples were analyzed within the holding time.

All surrogate and internal standard recoveries were within the QC limits.

A matrix spike analysis was performed on sample DS-F-2A. Three spike recoveries were below the QC limits.

A laboratory control sample was analyzed along with the samples batch. One spike recovery was outside the QC limits.

Manual integration was performed on some peaks that were improperly integrated by the software. The manually integrated compounds are designated by an "m" next to the area of the quantitation report, and chromatograms for these compounds were submitted with the package.

Semivolatiles

One soil sample was extracted using SW846 method 3510C. This sample was analyzed for semivolatile TCLP compounds using method 8270C.

The extraction and analysis holding times were met.

All surrogate recoveries met the QC requirements.

A matrix spike analysis was performed on sample DS-F-2. One spike recovery was outside the QC limits.

A laboratory control sample was extracted and analyzed along with this batch. One spike recovery was outside QC limits.

Pesticides

One soil sample was extracted and analyzed for TCLP pesticide compounds using SW846 method 8081A.

The extraction and analysis holding times were met.

All surrogate recoveries were within the QC limits.

The matrix spike and matrix spike duplicate analyses were performed on the sample. All recoveries were within the QC limits.

PCBs

One soil sample was extracted and analyzed for PCB compounds using SW846 method 8082.

All extraction and analysis holding times were met.

The surrogate recoveries for the sample were within the QC limits.

The matrix spike and matrix spike duplicate analyses was shared with work order 609004. PCB 1260 recovery for both the matrix spike and matrix spike duplicate was outside the QC limits due to matrix interference. All other recoveries were within the QC limits.

A laboratory control sample was extracted and analyzed along with the batch. Recoveries were within the QC limits

<u>Herbicides</u>

One soil sample was extracted and analyzed for TCLP Herbicide compounds using SW846 method 8151A.

All extraction and analysis holding times were met.

All surrogate recoveries were within the QC limits.

A matrix spike analysis was performed on sample DS-F-2. All recoveries were within the QC limits.

A laboratory control sample was extracted and analyzed with the sample batch. All recoveries were within the QC limits.

Metals

One soil sample was analyzed for TCLP metals plus beryllium by EPA SW846 methods.

A matrix spike and matrix spike duplicate were performed on the sample for all required TCLP analytes plus beryllium. A serial dilution was performed also for the ICP analytes. They were within the control limits.

Calibration standards are verified against independent check standards purchased from a commercial vendor of environmental standards.

All GPL QA/QC criteria were met.

General Chemistry

One soil sample was distilled according to SW846 section 7.3 and was analyzed for Reactive Cyanide by method 9014 and Reactive Sulfide by method 9034.

A duplicate analysis was performed on this sample.

A laboratory control sample was distilled and analyzed along with the batch for each analyte.

All QC criteria were met.

Other Analysis

One sample was analyzed using method SW 1010. A quality control standard was analyzed together with this sample and met the calibration acceptance criteria. There was no flash-point on this sample.

Pat Wudselm

Reviewed By,

Project Manager

Slan Tad

Approved By,

Laboratory Director

GPL Laboratories, LLLP

Sample Summary Report

Shaw E&I, Inc

Work Order: 609048

Client Sample ID	Lab Sample ID	Analytical Method	Matrix	Date Sampled	Date Recieved
DS-F-2A	609048-001-001-1/1	SW8260B_TCLP	WATER	09/07/2006	09/09/2006
DS-F-2B	609048-002-002-1/1	SW8260B_TCLP	WATER	09/07/2006	09/09/2006
DS-F-2C	609048-003-003-1/1	SW8260B_TCLP	WATER	09/07/2006	09/09/2006
DS-F-2	609048-004-004-1/2	SW8270C_TCLP	SOIL	09/07/2006	09/09/2006
	609048-004-004-1/2	SW8081A_TCLP			
	609048-004-004-1/2	SW8151A_TCLP			
	609048-004-005-2/2	SW8082			
	609048-004-004-1/2	SW6010B_TCLP			
	609048-004-004-1/2	SW7471A_TCLP			
	609048-004-005-2/2	CLP_SOLIDS			
	609048-004-005-2/2	SW9014R			
	609048-004-005-2/2	SW9034R			
	609048-004-004-1/2	SW1010			
DS-F-2A	609048-001-001-1/1	CLP_SOLIDS	SOIL	09/07/2006	09/09/2006
DS-F-2B	609048-002-002-1/1	CLP_SOLIDS	SOIL	09/07/2006	09/09/2006
DS-F-2C	609048-003-003-1/1	CLP_SOLIDS	SOIL	09/07/2006	09/09/2006

Client Name:

Shaw E&I, Inc

Sample Matrix:

WATER

Client Sample ID:

DS-F-2A

Lab Sample ID:

609048-001-001-1/1

Sample Date/Time:

09/07/2006 16:10

Percent Moisture:

18.99

Receipt Date/Time:

09/09/2006 09:29

Preparation Method:

SW5030B

Prepared Date/Time:

09/13/2006 06:11

Analytical Method:

SW8260B_TCLP

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1-Dichloroethene	BQL	U	100	10	ug/L	09/13/06	09:57
2) 1,2-Dichloroethane	BQL	U	100	10	ug/L	09/13/06	09:57
3) 2-Butanone	BQL	U	100	10	ug/L	09/13/06	09:57
4) Benzene	BQL	U	100	10	ug/L	09/13/06	09:57
5) Carbon Tetrachloride	BQL	U	100	10	ug/L	09/13/06	09:57
6) Chlorobenzene	BQL	U	100	10	ug/L	09/13/06	09:57
7) Chloroform	14	J	100	10	ug/L	09/13/06	09:57
8) Tetrachloroethylene	BQL	U	100	10	ug/L	09/13/06	09:57
9) Trichloroethene	BQL	U	100	10	ug/L	09/13/06	09:57
10) Vinyl Chloride	16	J	100	10	ug/L	09/13/06	09:57
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
11) 1,2-Dichlorobenzene-d4	68 %	64 - 132		10		09/13/06	09:57
12) 1,2-Dichloroethane-d4	84 %	70 - 120		10		09/13/06	09:57
13) 4-Bromofluorobenzene	80 %	75 - 120		10		09/13/06	09:57
14) Toluene-D8	87 %	85 - 120		10		09/13/06	09:57

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-F-2A

Sample Date/Time:

09/07/2006 16:10

Receipt Date/Time:

09/09/2006 09:29

Prepared Date/Time:

Sample Matrix:

iviali ix.

SOIL

Lab Sample ID:

609048-001-001-1/1

Percent Moisture:

18.99

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/T	
1) Percent Solids	81	1.0	1	%	09/12/06	09:54

Client Name:

Shaw E&I, Inc

WATER

17.59

Client Sample ID:

DS-F-2B

Sample Matrix: Lab Sample ID:

609048-002-002-1/1

Sample Date/Time:

09/07/2006 16:10

Percent Moisture:

Receipt Date/Time:

09/09/2006 09:29

Preparation Method:

SW5030B

Prepared Date/Time: 09/13/2006 06:11		Analytical Method:		od: SW	SW8260B_TCLP			
# Parameter	Reported Result	Q		Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1-Dichloroethene	BQL	U		100	10	ug/L	09/13/06	10:30
2) 1,2-Dichloroethane	BQL	U		100	10	ug/L	09/13/06	10:30
3) 2-Butanone	BQL	U		100	10	ug/L	09/13/06	10:30
4) Benzene	BQL	U		100	10	ug/L	09/13/06	10:30
5) Carbon Tetrachloride	BQL	U		100	10	ug/L	09/13/06	10:30
6) Chlorobenzene	BQL	U		100	10	ug/L	09/13/06	10:30
7) Chloroform	13	J		100	10	ug/L	09/13/06	10:30
8) Tetrachloroethylene	BQL	U		100	10	ug/L	09/13/06	10:30
9) Trichloroethene	BQL	U		100	10	ug/L	09/13/06	10:30
10) Vinyl Chloride	BQL	U		100	10	ug/L	09/13/06	10:30
# Surrogate Parameter	Percent Recovery		Control Limits		Dil Fact		Analy Date/	
11) 1,2-Dichlorobenzene-d4	71 %		64 - 132		10		09/13/06	10:30
12) 1,2-Dichloroethane-d4	88 %		70 - 120		10		09/13/06	10:30
13) 4-Bromofluorobenzene	82 %		75 - 120		10		09/13/06	10:30
14) Toluene-D8	90 %		85 - 120		10		09/13/06	10:30

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-F-2B

Sample Date/Time:

09/07/2006 16:10

Receipt Date/Time: Prepared Date/Time:

09/09/2006 09:29

Lab Sample ID:

Sample Matrix:

609048-002-002-1/1

Percent Moisture:

17.59

SOIL

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/	,
1) Percent Solids	82	1.0	1	%	09/12/06	09:54

Client Name:

Shaw E&I, Inc

Sample Matrix:

WATER

Client Sample ID:

DS-F-2C

Lab Sample ID:

609048-003-003-1/1

Sample Date/Time:

09/07/2006 16:10

Percent Moisture:

18.21

Receipt Date/Time:

09/09/2006 09:29

Preparation Method:

SW5030B

Prepared Date/Time:

09/13/2006 06:11

Analytical Method:

SW8260B TCLP

# Parameter	Reported Result	Q		Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1-Dichloroethene	BQL	U		100	10	ug/L	09/13/06	11:02
2) 1,2-Dichloroethane	BQL	U		100	10	ug/L	09/13/06	11:02
3) 2-Butanone	BQL	U		100	10	ug/L	09/13/06	11:02
4) Benzene	BQL	U		100	10	ug/L	09/13/06	11:02
5) Carbon Tetrachloride	BQL	U		100	10	ug/L	09/13/06	11:02
6) Chlorobenzene	BQL	U		100	10	ug/L	09/13/06	11:02
7) Chloroform	15	J		100	10	ug/L	09/13/06	11:02
8) Tetrachloroethylene	BQL	U		100	10	ug/L	09/13/06	11:02
9) Trichloroethene	BQL	U		100	10	ug/L	09/13/06	11:02
10) Vinyl Chloride	13	J		100	10	ug/L	09/13/06	11:02
# Surrogate Parameter	Percent Recovery		ontrol imits		Dil Fact		Analy Date/	
11) 1,2-Dichlorobenzene-d4	72 %	64	- 132		10		09/13/06	11:02
12) 1,2-Dichloroethane-d4	88 %	70	- 120		10		09/13/06	11:02
13) 4-Bromofluorobenzene	82 %	75	- 120		10		09/13/06	11:02
14) Toluene-D8	90 %	85	- 120		10		09/13/06	11:02

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-F-2C

Lab Sample ID:

609048-003-003-1/1

Sample Date/Time:

09/07/2006 16:10 09/09/2006 09:29 Percent Moisture:

18.21

Receipt Date/Time: Prepared Date/Time: Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

Reported Result Parameter

Q

Reporting Limit

Dil Fact

Units

Analysis Date/Time

1) Percent Solids

82

1.0

1

% 09/12/06

09:54

GPL Laboratories, LLLP 7210A Corporate CT, Frederick, MD 21703 Tel. (301)694-5310 Fax (301)620-0731

www.gplab.com

Page 11 of 25 Printed: 9/27/06 Version 2.4.2 (Build 0)

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-F-2

Sample Date/Time:

09/07/2006 16:10

Receipt Date/Time:

09/09/2006 09:29

Prepared Date/Time:

09/12/2006 08:33

Sample Matrix:

Lab Sample ID:

SOIL

609048-004-004-1/2

Percent Moisture:

11.91

Preparation Method:

SW3510C

Analytical Method:

SW8270C_TCLP

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,4-Dichlorobenzene	BQL	U	50	1	ug/L	09/14/06	15:3
2) 2,4,5-Trichlorophenol	BQL	U	50	1	ug/L	09/14/06	15:3
3) 2,4,6-Trichlorophenol	BQL	U	50	1	ug/L	09/14/06	15:3
4) 2,4-Dinitrotoluene	BQL	U	50	1	ug/L	09/14/06	15:3
5) 2-methylphenol	BQL	U	50	1	ug/L	09/14/06	15:3
6) 3 & 4-Methylphenol	BQL	U	50	1	ug/L	09/14/06	15:3
7) Hexachlorobenzene	BQL	U	50	1	ug/L	09/14/06	15:3
8) Hexachlorobutadiene	BQL	U	50	1	ug/L	09/14/06	15:3
9) Hexachloroethane	BQL	U	50	1	ug/L	09/14/06	15:3
10) Nitrobenzene	BQL	U	50	1	ug/L	09/14/06	15:3
11) Pentachlorophenol	BQL	U	100	1	ug/L	09/14/06	15:3
12) Pyridine	BQL	U	50	1	ug/L	09/14/06	15:3
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
13) 2,4,6-Tribromophenol	88 %	35 - 157		1		09/14/06	15:3
14) 2-Fluorobiphenyl	69 %	46 - 108		1		09/14/06	15:3
15) 2-Fluorophenol	37 %	28 - 116		1		09/14/06	15:3
16) Nitrobenzene-d5	72 %	38 - 122		1		09/14/06	15:3
17) Phenol-d5	26 %	34 - 118		1		09/14/06	15:3
18) p-Terphenyl-d14	101 %	29 - 133		1		09/14/06	15:3

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-F-2

Lab Sample ID:

609048-004-004-1/2

Sample Date/Time:

09/07/2006 16:10

Percent Moisture:

NA

Receipt Date/Time:

09/09/2006 09:29

Preparation Method:

. . .

Prepared Date/Time:

09/12/2006 00:00

r reparation ivietnou.

SW3510C

Analytical Method:

SW8081A_TCLP

	Reported		Reporting	Dil		Analy	/eie
# Parameter	Result	Q	Limit	Fact	Units	Date/	
1) Chlordane	BQL	U	5.0	1	ug/L	09/13/06	14:08
2) Endrin	BQL	U	0.25	1	ug/L	09/13/06	14:08
3) Gamma-BHC (Lindane)	BQL	U	0.25	1	ug/L	09/13/06	14:08
4) Heptachlor	BQL	U	0.25	1	ug/L	09/13/06	14:08
5) Heptachlor Epoxide	BQL	U	0.25	1	ug/L	09/13/06	14:08
6) Methoxychlor	0.48	P	0.25	1	ug/L	09/13/06	14:08
7) Toxaphene	BQL	U	5.0	1	ug/L	09/13/06	14:08
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
8) Decachlorobiphenyl	76 %	16 - 155		1		09/13/06	14:08
9) Decachlorobiphenyl	69 %	16 - 155		1		09/13/06	14:08
10) Tetrachloro-m-xylene	85 %	6 - 154		1		09/13/06	14:08
11) Tetrachloro-m-xylene	84 %	6 - 154		1		09/13/06	14:08

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-F-2

Lab Sample ID:

609048-004-004-1/2

Sample Date/Time:

09/07/2006 16:10

Percent Moisture:

NA

Receipt Date/Time:

09/09/2006 09:29

Preparation Method:

EXT_SW8151

Prepared Date/Time:

09/12/2006 00:00

Analytical Method:

SW8151A_TCLP

# Parameter	Reported Result	Q		Reporting Limit	Dil Fact Units		Analysis Date/Time	
1) 2,4,5-TP (Silvex)	BQL	Ü		5.0	1	ug/L	09/14/06	15:44
2) 2,4-D	BQL	U		5.0	1	ug/L	09/14/06	15:44
# Surrogate Parameter	Percent Recovery		Control Limits		Dil Fact		Analy Date/	
3) 2,4-DCAA	63 %		7 - 170		1		09/14/06	15:44
4) 2,4-DCAA	100 %		7 - 170		1		09/14/06	15:44

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-F-2

Sample Date/Time:

09/07/2006 16:10

Receipt Date/Time:

09/09/2006 09:29

Prepared Date/Time:

09/12/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609048-004-004-1/2

Percent Moisture:

11.91

Preparation Method:

SW3010A

Analytical Method:

SW6010B_TCLP

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Arsenic	BQL	U	200	1	ug/L	09/12/06	22:54
2) Barium	2350		1000	1	ug/L	09/12/06	22:54
3) Beryllium	BQL	U	20	1	ug/L	09/12/06	22:54
4) Cadmium	BQL	U	60	1	ug/L	09/12/06	22:54
5) Chromium	BQL	U	50	1	ug/L	09/12/06	22:54
6) Lead	BQL	U	100	1	ug/L	09/12/06	22:54
7) Selenium	BQL	U	200	1	ug/L	09/12/06	22:54
8) Silver	BQL	U	50	1	ug/L	09/12/06	22:54

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-F-2

Lab Sample ID:

609048-004-004-1/2

Sample Date/Time:

09/07/2006 16:10

Percent Moisture:

11.91

Receipt Date/Time:

09/09/2006 09:29

Preparation Method:

SW7470A_DIG

Prepared Date/Time:

09/12/2006 18:00

Analytical Method:

SW7471A_TCLP

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	Гime
1) Mercury	BQL	U	2	1	ug/L	09/13/06	19:50

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-F-2

Sample Date/Time:

09/07/2006 16:10

Receipt Date/Time:

09/09/2006 09:29

Prepared Date/Time:

Sample Matrix:

SOIL

Lab Sample ID:

609048-004-004-1/2

Percent Moisture:

11.91

Preparation Method:

NA

Analytical Method:

SW1010

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Flash Point	BQL	U	100	1	DC	09/12/06	00:00

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-F-2

Sample Date/Time:

09/07/2006 16:10

Receipt Date/Time:

09/09/2006 09:29

Prepared Date/Time:

09/11/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609048-004-005-2/2

Percent Moisture:

11.91

Preparation Method:

SW3550

Analytical Method:

SW8082

	Reported		Reporting	Dil		Analy	rsis	
# Parameter	Result	Q	Limit	Fact	Units	Date/Time		
1) PCB-1016	BQL	U	19	1	ug/kg	09/12/06	00:5	
2) PCB-1221	BQL	U	19	1	ug/kg	09/12/06	00:5	
3) PCB-1232	BQL	U	19	1	ug/kg	09/12/06	00:5	
4) PCB-1242	BQL	U	19	1	ug/kg	09/12/06	00:5	
5) PCB-1248	BQL	U	19	1	ug/kg	09/12/06	00:5	
6) PCB-1254	BQL	U	19	1	ug/kg	09/12/06	00:5	
7) PCB-1260	BQL	U	19	1	ug/kg	09/12/06	00:5	
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/		
8) Decachlorobiphenyl	69 %	30 - 144		1		09/12/06	00:5	
9) Decachlorobiphenyl	83 %	30 - 144		1		09/12/06	00:5	
10) Tetrachloro-m-xylene	78 %	49 - 133	•	1		09/12/06	00:5	
11) Tetrachloro-m-xylene	93 %	49 - 133		1		09/12/06	00:5	

Client Name:

Shaw E&I, Inc.

Client Sample ID:

DS-F-2

Sample Date/Time:

09/07/2006 16:10

Receipt Date/Time:

09/09/2006 09:29

Prepared Date/Time:

Sample Matrix:

Lab Sample ID:

609048-004-005-2/2

Percent Moisture:

11.91

SOIL

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	/sis Time
1) Percent Solids	88		1.0	1	%	09/12/06	09:54

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-F-2

Lab Sample ID:

609048-004-005-2/2

Sample Date/Time:

09/07/2006 16:10

Percent Moisture:

11.91

Receipt Date/Time:

09/09/2006 09:29

Preparation Method:

SW7.3_EXT

Prepared Date/Time:

09/12/2006 08:00

Analytical Method:

SW9014R

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Cyanide, Reactive	BQL	U	0.020	1	mg/kg	09/12/06	18:15

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-F-2

Lab Sample ID:

609048-004-005-2/2

Sample Date/Time:

09/07/2006 16:10

Percent Moisture:

11.91

Receipt Date/Time:

09/09/2006 09:29

Preparation Method:

NA

Prepared Date/Time:

Analytical Method:

SW9034R

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Sulfide, Reactive	BQL	U	9.3	1	mg/kg	09/12/06	15:30

GPL Laboratories, LLLP

Qualifier Definitions

Shaw E&I, Inc

Work Order: 609048

All Departments

- U Indicates that the compound was analyzed for but not detected
- BQL Below Quantitation Limit

Organics

- B Indicates that the analyte was found in the associated blank as well as in the sample
- D Indicates that the analyte was reported from a diluted analysis
- E Indicates that the concentration detected exceeded the calibration range of the instrument
- J Value is less than the reporting limit but greater than the MDL
- P Indicates that there is greater than 25% difference for detected pesticide/Arochlor results between the two GC columns

Metals

- J Indicates that the reported value was less than the reporting limit but greater than or equal to the IDL/MDL
- E Indicates that the reported value is estimated because of the possible presence of interference (i.e. the serial dilution not within control limits)
- H Indicates that the element was found in the associated blank as well as in the sample and the value is greater than or equal to the reporting limit
- D Indicates that the analyte was reported from a diluted analysis
- N Spiked sample recovery not within control limits
- Duplicate analysis not within control limits

Chain of Custody

Shaw E&I, Inc

SDG: 609048

		9		1	30	П	Т	Т		-3	L.	T.J.	T		r	Т=	Т	T>	100	<u>ہ</u>	T-5	1
	nem Guigney ny:		Halinquished By	melile	Relincuished By					T-pislawk	25-/-2	- F-2C	Z - - X	DS-F-24	Samoto D#	more 4/1	L	Address: 161	Sandifessia a Social Cachelle	Seat Seat	APP S wells	
	·		••	1 3.2						<			' '	4/7/2	Cup	33.20 - 5-Ch - 51.16	1	16416 V	SC V	Stan Europanion		
	<u>_</u>		Dayle	多							-			764 1616	Personass Time	5-60	C T	US C+ 234044	100	Novaes	Am Digit	
	Oake Time		DabaTimo	8			İ			11.0	€÷			Ę	Symple	Ê	36,5.5.5	224 C	Þ	1300	7	
	Acceived By	*	Received By:		Raceive R	,					Ŵ	-		ક				3. it			AN. 42.	
	***		75	,								×	×	×	TE ST	N. a Jose	Typed	Lead Lead	Cantainer lypu	# of Comsiners	1 1172:0,111 7 1178	
											×	_	٠	-				E	X.	18	11.8	**: 22
3	Lab Cur) ments		Derbe/Time				1				χ χ			_			•	7	402/202	3	1724	Courte to the man
	:::IBms:	<u> </u>	shippor:	Controlled of							X	İ			(E/2) //	13				- /2		,
	• •		H							 	X					1000		1		/-		Caninas सम्भाग्ना Restrance
			nà.		31						X X			- 1	\%,	,	\	7		/ ~	N	ing Rosso
			Airbill No.:								'\'; 	\dashv	1	\dashv	Zactur.		\ \ \	/ ~	7	//		кo
**************************************			4	Tack and the state of the state										1	1		`	No.		·/	M	
	س ج			, e					1	Sistem's S		/ n 1				W C	OU &	160			*	o.
	W. E. B.		1		7					اخ	¥				CLIENT		\	NO.		\setminus		

Chain of Custody

Shaw E&I, Inc

SDG: 609048

Chain of Custody

Shaw E&I, Inc

SDG: 609048

GPI. Luboratories, LLLP

	Figure I
3	AMPLE RECEIPT CHECK! ST
Wa. W 6090 48	Currier Name: UPS
C ent Name:	Preceded (Logged in) By: 180 ; 9 11 0 6
Date Reserved: 919 vb.	Project:
Time Rans ved: 10 km	Sita:
Received by	VQA Holding Blank LD. No
Algui Magritest Present?	YES NO Trip Blanks: No of Sets
No	Equip. Stank: No. of Sets
:	r'eld Duclicato: No. 01 Sets
Shipping Container in Good Conditive?	
Custody Seas Present or Stroping Container?	VOA Visit Have Zero Hendapade? If no, erro this or greater than a Green Post (see dumments)
mact-not dated or signed	Preservatives Added to Earlip #7
	p-1 Check Sequinari?
Usage of Tumper EV don't Tyce	Farlomas By's
C-Bin-of-Custody Present:	'co Present in Stipping Containor'
Chair-of-Cristody Agmes with Samore Leoels?	Occident # Temp. Contacter# Camp.
Chair-of-Custody Signed?	
Pecking Present in Scipping Container? Type of Pecking	and the second s
Consider Good Broken	- Comment Comm
Total Number of Gemple Bodies 6	
Total Number of Samules	
Samples Intrid?	
Sufficient Seam e Volume for Indicator (1857)	Project Wanager Contented?
•	Tate Consacted:
Any NO response must be detailed in the comments should be marked WAY	section tealow. If from are not epolimose to partiral 2 samples or contracts, they
The second second	a worked for the Top Blanks-
	Sometime of the second
•	7
*	
According a second	1 2 0 f. A
	Checklist Completed By:
	3/11/86
•	Cale:

GPL Laboratories, LLLP 7210A Corporate CT, Frederick, MD 21703 Tel. (301)694-5310 Fax (301)620-0731

SOF No: F.2V18

Shaw Environmental & Infrastructure, Inc.

Data Usability Report

16406 U.S. Route 224 East • Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER:

Tom Mathison

SAMPLE RECEIPT DATE:

09/11/2006

PROJECT NAME:

USACE-Schenectady

LABORATORY SDG:

GPL-609051

The Findlay Ohio Federal Applied Sciences Group has performed a QA evaluation of the data report from GPL Laboratories, LLLP, Frederick, MD. The results are for [1] soil/waste sample collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table.

	Sample Summary Table										
Sample Number	Collection Date	Matrix	Analysis Requested								
DS-AOI-001	09/11/2006	Soil	TCLP Pest – SW-8081A,								
			TCLP Herb - SW-8151A,								
		İ	Total PCB – SW-8082,								
			TCLP SVOC-SW-8270C								
			TCLP Metals SW-6010B/ 7471A								
			Metals-SW6010B/7471A,								
			Reactive Cyanide - SW-9014R,								
			Reactive Sulfide - SW-9034R,								
			pH – SW-9045C,								
			Paint Filter - SW-9095A, and								
DC ACIT cod A d			Flashpoint - SW-1010								
DS-AOI5-001A through C	09/11/2006	Soil	TCLP/VOC-SW8260B								
			(ZHE combined)								
			Total VOC-SW8260B								
			(Lab composited)								

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and was received having a temperature of 2°C upon opening. The laboratory provided an electronic copy of the data within the specified turn around time. The following describes the overall QA/QC indicators.

TCLP Pesticide Analysis in Soil by SW-1311/8081A

The GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples were high for some analytes. No analytes were detected in the samples. No qualification necessary.

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

M/MSD: The MS/MSD recoveries and precision were within control limits. It should be noted that the QC Matrix analyses were performed on a sample not from the specific site.

Surrogates: All surrogate recoveries are within acceptable criteria on at least one of the two columns.

Reported results should be acted upon without reservation.

PCB Analysis in Soil by SW8082

The GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples were below control limits for both primary and secondary columns. PCBs were not detected above the reporting limit.

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

MS/MSD: The MS/MSD recoveries, from a non-site sample are within acceptance criteria for target analytes.

Surrogates: The surrogate recoveries are within acceptable criteria.

The reported results should be utilized with confidence.

TCLP Herbicide Analysis in Soil by SW1311/8151A

The GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration.

Method Blanks: The method blank results are below reporting limits for the target analytes, indicative of proper sample handling and for ensuring a contaminant free analytical system.

LCS: The LCS recoveries are within acceptance criteria for the target analytes, indicative of acceptable method accuracy and verifying proper instrument control.

MS/MSD: The QC Matrix recoveries, using a site sample from a another SDG, are within acceptance limits. There was no MSD performed to evaluate precision.

Surrogates: All surrogate recoveries are within acceptable criteria. This is indicative of acceptable method extraction and maintaining instrument control throughout the analytical sequence.

Reported results should be utilized with confidence.

TCLP SVOC Analysis in Soil by SW1311/8270C

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs.

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for all the target analytes except pyridine, which was recovered at less than 20 percent

MS/MSD: There was no QC Matrix analysis performed. The LCS matrix was TCLP fluid and does indicate expected performance in the fluid matrix.

Surrogates: Recovery of the two lowest boiling point surrogates was below the acceptance range and may indicate loss of lower-boiling analytes. However since the regulatory limits for the these compounds are actually several orders of magnitude above the reporting limit and spike levels there is no effect on data usability.

Reported results should be utilized with confidence.

TCLP VOC Analysis in Soil by SW1311/8260B

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs. Three grab samples were composited in the ZHE and extracted.

Method Blanks: The method blank results are below reporting limits for the target analytes, indicative of proper sample handling and for ensuring a contaminant free analytical system.

LCS: The LCS recoveries are within acceptance criteria for the target analytes, indicative of acceptable method accuracy and verifying proper instrument control.

MS/MSD: There was no QC Matrix analysis performed. The laboratory evaluated precision via a LCSD which was within limits. The LCS/LCSD matrix was ZHE fluid and does indicate expected performance in the fluid matrix.

Surrogates: All surrogate recoveries are within acceptable criteria. This is indicative of acceptable method extraction and maintaining instrument control throughout the analytical sequence.

Reported results should be utilized with confidence.

VOC Analysis in Soil by 8260B

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs. Three grab samples were composited by the laboratory and analyzed via purge and trap analysis.

Method Blanks: The method blank results are below reporting limits for the target analytes, indicative of proper sample handling and for ensuring a contaminant free analytical system.

LCS: The LCS recoveries are within acceptance criteria for the target analytes, indicative of acceptable method accuracy and verifying proper instrument control.

MS/MSD: There was no QC Matrix analysis performed. The laboratory evaluated precision via a LCSD which was within limits. T

Surrogates: All surrogate recoveries are within acceptable criteria. This is indicative of acceptable method extraction and maintaining instrument control throughout the analytical sequence.

Reported results should be utilized with confidence.

TCLP Metals plus Beryllium Analysis in Soil by SW1311/6010B and SW7471A

The ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements. All instrument interference check samples were within control limits. The initial and continuing calibration check samples were within control limits. The initial calibration blank results were below reporting limits.

Method Blanks: The method blank results are below reporting limits.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

MS/MSD: The MS/MSD recoveries and precision are within acceptance limits.

Reported results should be utilized with confidence

Metals Analysis in Soil by 6010B and SW7471A

The ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements. All instrument interference check samples were within control limits. The initial and continuing calibration check samples were within control limits. The initial calibration blank results were below reporting limits.

Method Blanks: The method blank results are below reporting limits.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

MS/MSD: The MS/MSD recoveries and precision are within acceptance limits for all analytes for which the data is valid. The unspiked sample concentrations for aluminum, calcium, iron, magnesium, and potassium were greater than 4X the spiking level, rendering the data invalid.

Reported results should be utilized with confidence

General Chemistry

LCS recoveries for all spiked compounds were within control limits indicating acceptable method accuracy. A duplicate sample analysis was performed for reactive cyanide, reactive sulfide, Free Liquid, and pH. The percent RPD was within project objectives for pH. Percent RPDs could not be compared to the other duplicate since the results were below the QL.

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

Analytical Report For 609051

for

Shaw E&I, Inc

Project Manager: Guy Gallello

Project Name: SAD-AOC2

GPLLaboratories

GPL Laboratories, LLLP certifies that the test results meet all requirements of the NELAC Standards unless otherwise noted.

Reviewed By, Project Manager Approved By, -Laboratory Director

Case Narrative

Shaw E&I, Inc SAD-AOC2

Work Order: 609051

Reviewed by Patricia Huebschman on 09-29-2006

The Case Narrative, Chain of Custody, Sample Receipt Checklist, and the cover page of the Sample Analysis Report, are integral parts of GPL Laboratories' report package. If you did not receive all of these documents, please contact GPL immediately.

Sample Receipt

Two soil samples were received on 09/12/2006. The samples were delivered by UPS. Sample receipt conditions and temperature are documented on the Sample Receipt checklist.

Sample Analysis

Samples were prepared and analyzed by GPL using the analytical methodologies indicated on the Sample Analysis Summary Report. In some chromatographic analyses, manual integration is used instead of automated integration because it produces more accurate results. All manual integrations are denoted on the sample quantitation report. Analysis results and limits for soil are reported on a dry weight basis unless otherwise specified on the report.

Volatiles

One soil sample was analyzed for bothTCLP and volatile compounds using SW 846 method 8260B.

Samples were analyzed within the holding time.

All surrogate and internal standard recoveries were within the QC limits.

Sample DS-AO15-001ABC had one surrogate recovery outside QC limits due to matrix interference. The sample was analyzed at 1:5 dilution.

Two laboratory control samples were analyzed along with sample batches. All spike recoveries were within the QC limits.

Manual integration was performed on some peaks that were improperly integrated by the software. The manually intregrated compounds are designated by an " m " next to the area of the quantitation report and chromatograms for these compounds were submitted with the package.

Semivolatiles

8270-TCLP

One soil sample was extracted using SW846 method 3510C. This sample was analyzed for semivolatile TCLP compounds using method 8270C.

All extraction and analysis holding times were met.

2-Fluorophenol and Phenol-d5 surrogate recoveries for sample DS-AO15-001 were below the QC limits and the sample was reanalyzed with similar results, the re-injection data is included in the package for documentation purposes. The rest of the surrogate recoveries met the QC requirements.

The QC was shared with work order 609048. The matrix spike analysis was performed on sample DS-F-2. One spike recovery was outside the QC limits.

A laboratory control sample was extracted and analyzed along with this batch. One spike recovery was outside the QC limits.

8270C

One soil sample was extracted using SW846 methods 3550B . This sample was analyzed for semi-volatile organic compounds using method 8270C.

All extraction and analysis holding times were met.

All surrogate recoveries were within the QC requirements.

The QC was shared with work order 609030. The matrix spike and duplicate analyses were performed on sample LL10-BLSTWALL. The Pyrene spike recovery in the MS\MSD pair were outside the QC limits due to the presence of this compound in the parent sample.

A laboratory control sample was extracted and analyzed with this batch. All spike recoveries were within the QC limits.

Pesticides

One soil sample was extracted and analyzed for TCLP pesticide compounds using SW846 method 8081A.

The extraction and analysis holding times were met.

All surrogate recoveries were within the QC limits.

The matrix spike and analyses was shared with work order 609048. All recoveries were within the QC limits. A laboratory control sample was extracted and analyzed with this batch. All recoveries were well within the QC limits.

One soil sample was extracted and analyzed for Pesticide compounds using the EPA method 8081A.

Both Surrogate recoveries for the sample on both columns were outside QC limits due to matrix interference.

A laboratory control sample was extracted and analyzed along with batch. All recoveries were within the QC limits.

A matrix spike and matrix spike duplicate analyses were shared with work order 609004. Seventeen spike recoveries were outside the QC limits. All other recoveries were within the QC limits.

PCBs

One soil sample was extracted and analyzed for PCB compounds using SW846 method 8082.

All extraction and analysis holding times were met.

TCMX surrogate recoveries for sample DS-AO15-001 on one column were outside the QC limits due to matrix interference.

The matrix spike and matrix spike duplicate analyses for both samples were shared with work order 609004. The MS ,MSD for the PCB-1016 recoveries were outside the QC limits due to matrix interference.

Two laboratory control samples were extracted and analyzed along with the batch. The recoveries were within the QC limits.

Herbicides

One soil sample was extracted and analyzed for TCLP Herbicide compounds using SW846 method 8151A.

All extraction and analysis holding times were met.

All surrogate recoveries were within the QC limits.

The matrix spike analysis was shared with work order 609048. All recoveries were within the QC limits.

A laboratory control sample was extracted and analyzed with the sample batch. All recoveries were within the QC limits.

One soil sample was extracted and analyzed for Herbicide compounds using SW846 method 8151A.

All extraction and analysis holding times were met.

2,4DCAA surrogate recoveries for all samples were outside the QC limits due to matrix interference.

The matrix spike analysis was performed on sample DS-AO15-001. The RPD for 2,4-D was outside the QC limits. All other recoveries were well within the QC limits.

A laboratory control sample was extracted and analyzed with the sample batch. All recoveries were within the QC limits.

Metals

One soil sample was analyzed for HSL metals (except sodium) and TCLP plus beryllium by EPA SW846 methods.

The total metals and TCLP metals were reported on separate forms.

On form one, The software flags all results for specific elements with a B qualifier if they have a result above two times the MDL and less than ½ the reporting limit for a continuing calibration blank, initial calibration blank or interference check solution A.

A matrix spike and matrix spike duplicate were performed on the sample for all required total analytes. A serial dilution was also performed for ICP analytes. The matrix spike and matrix spike duplicates were outside of the control limits for antimony, barium, potassium, and vanadium; all associated data were flagged with an "N". A post digestion analytical spike was performed with recoveries within 25% of the true value (except barium). The post digestion spike failed for barium. No control limits were applied to the matrix spike for aluminum, calcium, iron, and magnesium; matrix spike duplicate for aluminum, calcium, iron, magnesium and manganese due to an insignificant spike addition.

A matrix spike and matrix spike duplicate were performed on the sample for all required TCLP analytes. A serial dilution was also performed for ICP analytes. They were within the control limits.

Calibration standards are verified against independent check standards purchased from a commercial vendor of environmental standards.

All GPL QA/QC criteria were met with the exceptions of those mentioned above.

General Chemistry

One soil sample was distilled according to SW846 section 7.3 and was analyzed for Reactive Cyanide by method 9014 and Reactive Sulfide by method 9034.

A duplicate analysis was performed on this sample.

A laboratory control sample was distilled and analyzed along with the batch for each analyte.

All QC criteria were met.

Other Analysis

One sample was analyzed using method SW 1010. A quality control standard was analyzed together with this sample and met calibration acceptance criteria. There was no flash-point on this sample.

Reviewed By,

Project Manager

Approved By,

Laboratory Director

GPL Laboratories, LLLP

Sample Summary Report

Shaw E&I, Inc

Work Order: 609051

Client Sample ID	Lab Sample ID	Analytical Method	Matrix	Date Sampled	Date Recieved
DS-AOI5-001ABC	609051-002-004-1/1	SW8260B_TCLP	WATER	09/11/2006	09/12/2006
DS-AOI5-001	609051-001-001-1/1	SW8270C	SOIL	09/11/2006	09/12/2006
	609051-001-001-1/1	SW8270C_TCLP			
	609051-001-001-1/1	SW8081A_TCLP			
	609051-001-001-1/1	SW8082			
	609051-001-001-1/1	SW8151A			
	609051-001-001-1/1	SW8151A_TCLP			
	609051-001-002-1/1	SW8082			
	609051-001-001-1/1	SW6010B			•
in the second se	609051-001-001-1/1	SW7471A			
	609051-001-001-1/1	SW7471A_TCLP			
	609051-001-003-1/1	SW6010B_TCLP			
	609051-001-001-1/1	CLP_SOLIDS			
	609051-001-001-1/1	SW9014R			
	609051-001-001-1/1	SW9034R			
	609051-001-001-1/1	SW1010			
DS-AOI5-001 DL	609051-001-001-1/1 DL	SW8081A	SOIL	09/11/2006	09/12/2006
DS-AOI5-001ABC	609051-002-004-1/1	CLP_SOLIDS	SOIL	09/11/2006	09/12/2006
DS-AOI5-001ABCDL	609051-002-004-1/1DL	SW8260B	SOIL	09/11/2006	09/12/2006

Client Name:

Shaw E&I, Inc.

Client Sample ID: Sample Date/Time: DS-AOI5-001

09/11/2006 15:10

Receipt Date/Time:

09/12/2006 10:00

Prepared Date/Time:

09/18/2006 00:00

Sample Matrix:

Lab Sample ID:

609051-001-001-1/1

Percent Moisture:

18.8

SOIL

Preparation Method:

SW3550

Analytical Method:

SW8270C

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 2,4,5-Trichlorophenol	BQL	U	410	1	ug/kg	09/21/06	22:02
2) 2,4-Dichlorophenol	BQL	U	410	1	ug/kg	09/21/06	22:02
3) 2,4-Dinitrophenol	. BQL	U	820	1	ug/kg	09/21/06	22:02
4) 2,6-Dinitrotoluene	BQL	U	410	1	ug/kg	09/21/06	22:02
5) 2-Chlorophenol	BQL	Ú	410	1	ug/kg	09/21/06	22:02
6) 2-Methylnaphthalene	4500		410	1	ug/kg	09/21/06	22:02
7) 2-Nitroaniline	BQL	U	410	1	ug/kg	09/21/06	22:02
8) 2-Nitrophenol	BQL	U	410	1	ug/kg	09/21/06	22:02
9) 2-methylphenol	BQL	U	410	1	ug/kg	09/21/06	22:02
10) 3,3-Dichlorobenzidine	BQL	U	820	1	ug/kg	09/21/06	22:02
11) 3-Nitroaniline	BQL	U	410	1	ug/kg	09/21/06	22:02
12) 4-Chloroaniline	BQL	U	410	1	ug/kg	09/21/06	22:02
13) 4-Nitroaniline	BQL	U	410	1	ug/kg	09/21/06	22:02
14) 4-Nitrophenol	BQL	U	820	1	ug/kg	09/21/06	22:02
15) 4-chloro-3-methylphenol	BQL	U	410	1	ug/kg	09/21/06	22:02
16) 4-methylphenol	750		410	1	ug/kg	09/21/06	22:02
17) Acenaphthene	BQL	U	410	1	ug/kg	09/21/06	22:02
18) Acenaphthylene	BQL	U	410	1	ug/kg	09/21/06	22:02
19) Aniline (Phenylamine, Aminobenzene)	BQL	U	410	1	ug/kg	09/21/06	22:02
20) Anthracene	BQL	U	410	1	ug/kg	09/21/06	22:02
21) Benzo(a)anthracene	BQL	U	410	1	ug/kg	09/21/06	22:02
22) Benzo(a)pyrene	BQL	U	410	1	ug/kg	09/21/06	22:02
23) Benzo(b)fluoranthene	BQL	U	410	1	ug/kg	09/21/06	22:02
24) Benzo(g,h,i)perylene	BQL	U	410	1	ug/kg	09/21/06	22:02
25) Benzo(k)fluoranthene	BQL	U	410	1	ug/kg	09/21/06	22:02
26) Benzoic Acid	BQL	U	820	1	ug/kg	09/21/06	22:02
27) Benzyl Butyl Phthalate	BQL	U	410	1	ug/kg	09/21/06	22:02
28) Chrysene	BQL	U	410	1	ug/kg	09/21/06	22:02

	Analytical Sul	ттагу кероп					
Client Name: Shaw E&I, Inc		Sample Matrix:	SC	OIL			•
Client Sample ID: DS-AOI5-001		Lab Sample ID:	60	9051-00	1-001-1	/1	
Sample Date/Time: 09/11/2006 15:10		Percent Moisture:	18	8.8			
Receipt Date/Time: 09/12/2006 10:00		Preparation Method	d: SV	V3550			
Prepared Date/Time: 09/18/2006 00:00		Analytical Method:	SV	V8270C			
29) Dibenz(a,h)Anthracene	BQL	U	410	1	ug/kg	09/21/06	22:02
30) Dibenzofuran	BQL	U	410	1	ug/kg	09/21/06	22:02
31) Diethyl Phthalate	BQL	U	410	1	ug/kg	09/21/06	22:02
32) Dimethyl Phthalate	BQL	U	410	1	ug/kg	09/21/06	22:02
33) Fluoranthene	BQL	U	410	1	ug/kg	09/21/06	22:02
34) Fluorene	BQL	U	410	1	ug/kg	09/21/06	22:02
35) Hexachlorobenzene	BQL	U	410	1	ug/kg	09/21/06	22:02
36) Indeno(1,2,3-c,d)Pyrene	BQL	U	410	1	ug/kg	09/21/06	22:02
37) Isophorone	BQL	U	410	1	ug/kg	09/21/06	22:02
38) Naphthalene	4000		410	1	ug/kg	09/21/06	22:02
39) Nitrobenzene	BQL	U	410	1	ug/kg	09/21/06	22:02
40) Pentachlorophenol	BQL	U	820	1	ug/kg	09/21/06	22:02
41) Phenanthrene	240	J	410	1	ug/kg	09/21/06	22:02
42) Phenol	BQL	U	410	1	ug/kg	09/21/06	22:02
43) Pyrene	BQL	U	410	1	ug/kg	09/21/06	22:02
44) bis(2-ethylhexyl) phthalate	BQL	U	410	1	ug/kg	09/21/06	22:02
45) di-n-Butyl Phthalate	3300		410	1	ug/kg	09/21/06	22:02
46) di-n-Octyl Phthalate	BQL	U	410	1	ug/kg	09/21/06	22:02
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
47) 2,4,6-Tribromophenol	96 %	35 - 125		1		09/21/06	22:02
48) 2-Fluorobiphenyl	74 %	45 - 105		1		09/21/06	22:02
49) 2-Fluorophenol	58 %	35 - 105		1		09/21/06	22:02
50) Nitrobenzene-d5	59 %	35 - 100		1		09/21/06	22:02
51) Phenol-d5	68 %	40 - 100		1		09/21/06	22:02
52) p-Terphenyl-d14	114 %	30 - 125		1		09/21/06	22:02

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-AOI5-001

Lab Sample ID:

609051-001-001-1/1

Sample Date/Time:

09/11/2006 15:10

Percent Moisture:

18.8

Receipt Date/Time:

09/12/2006 10:00

Preparation Method:

SW3510C

Prepared Date/Time:

09/13/2006 00:00

1 Toparation Method

.

Analytical Method:

SW8270C_TCLP

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,4-Dichlorobenzene	BQL		50	1	ug/L	09/15/06	12:47
2) 2,4,5-Trichlorophenol	BQL	U	50	1	ug/L	09/15/06	12:47
3) 2,4,6-Trichlorophenol	BQL	U	50	1	ug/L	09/15/06	12:47
4) 2,4-Dinitrotoluene	BQL	U	50	1	ug/L	09/15/06	12:47
5) 2-methylphenol	BQL	U	50	1	ug/L	09/15/06	12:47
6) 3-Methylphenol	BQL	U	50	1	ug/L	09/15/06	12:47
7) 4-methylphenol	BQL	U	50	1	ug/L	09/15/06	12:47
8) Hexachlorobenzene	BQL	U	50	1	ug/L	09/15/06	12:47
9) Hexachlorobutadiene	BQL	U	50	1	ug/L	09/15/06	12:47
0) Hexachloroethane	BQL	U	50	1	ug/L	09/15/06	12:47
1) Nitrobenzene	BQL	U	50	1	ug/L	09/15/06	12:47
2) Pentachlorophenol	BQL	U	100	1	ug/L	09/15/06	12:47
3) Pyridine	BQL	U	50	1	ug/L	09/15/06	12:47
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/1	
4) 2,4,6-Tribromophenol	67 %	35 - 157		1		09/15/06	12:47
5) 2-Fluorobiphenyl	61 %	46 - 108		1		09/15/06	12:47
6) 2-Fluoropheno l	27 %	28 - 116		1		09/15/06	12:47
7) Nitrobenzene-d5	62 %	38 - 122		1		09/15/06	12:47
8) Phenol-d5	18 %	34 - 118		1		09/15/06	12:47
9) p-Terphenyl-d14	96 %	29 - 133		1		09/15/06	12:47

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-AOI5-001

09/11/2006 15:10

Sample Date/Time: Receipt Date/Time:

09/12/2006 10:00

Prepared Date/Time:

09/13/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609051-001-001-1/1

Percent Moisture:

18.8

Preparation Method:

SW3510C

Analytical Method:

SW8081A_TCLP

# Parameter	Reported Result	Q	Reporting Limit	_imit Fact		Analysis Date/Time	
1) Chlordane	BQL	U	5.0	1	ug/L	09/15/06	11:13
2) Endrin	BQL	U	0.25	1	ug/L	09/15/06	11:13
3) Gamma-BHC (Lindane)	BQL	U	0.25	1	ug/L	09/15/06	11:13
4) Heptachlor	BQL	U	0.25	1	ug/L	09/15/06	11:13
5) Heptachlor Epoxide	BQL	U	0.25	1	ug/L	09/15/06	11:13
6) Methoxychlor	0.17	J	0.25	1 .	ug/L	09/15/06	11:13
7) Toxaphene	BQL	U	5.0	1	ug/L	09/15/06	11:13
# Surrogate Parameter	Percent Recovery	Con Lim		Dil Fact		Analysis Date/Time	
8) Decachlorobiphenyl	72 %	16 -	155	1		09/15/06	11:13
9) Decachlorobiphenyl	71 %	16 -	155	1		09/15/06	11:13
0) Tetrachloro-m-xylene	74 %	6 -	154	1		09/15/06	11:13
l1) Tetrachloro-m-xylene	124 %	6 -	154	- 1		09/15/06	11:13

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-AOI5-001

Sample Date/Time: Receipt Date/Time:

09/11/2006 15:10 09/12/2006 10:00

Prepared Date/Time:

09/12/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609051-001-001-1/1

Percent Moisture:

18.8

Preparation Method:

SW3550

Analytical Method:

SW8082

Prepared Date/Time: 09/12/2006 00:00		Anaiy	/tical ivietn		/8U8Z 			
# Parameter	Reported Result	Q		Reporting Limit	Dil Fact	Units	Analy Date/	
1) PCB-1016	BQL	U		21	1	ug/kg	09/13/06	15:43
2) PCB-1221	BQL	U		21	1	ug/kg	09/13/06	15:43
3) PCB-1232	BQL	U		21	1	ug/kg	09/13/06	15:43
4) PCB-1242	BQL	U		21	1	ug/kg	09/13/06	15:43
5) PCB-1248	BQL	U		21	1	ug/kg	09/13/06	15:43
6) PCB-1254	BQL	U		21	1	ug/kg	09/13/06	15:43
7) PCB-1260	BQL	U		21	1	ug/kg	09/13/06	15:43
# Surrogate Parameter	Percent Recovery		Control Limits		Dil Fact		Analy Date/	
8) Decachlorobiphenyl	74 %		30 - 144		1		09/13/06	15:43
9) Decachlorobiphenyl	88 %		30 - 144		1		09/13/06	15:43
10) Tetrachloro-m-xylene	86 %		49 - 133		1		09/13/06	15:43
11) Tetrachloro-m-xylene	263 %		49 - 133		1		09/13/06	15:43

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-AOI5-001

Lab Sample ID:

Percent Moisture:

609051-001-001-1/1

Sample Date/Time:

09/11/2006 15:10

Receipt Date/Time:

09/12/2006 10:00

18.8

Prepared Date/Time:

09/18/2006 00:00

Preparation Method:

EXT_SW8151

Analytical Method: SW8151A

Troparda Bato, Firme.								
# Parameter	Reported Result	Q		Reporting Limit	Dil Fact	Units	Analy Date/	
1) 2,4,5-T	BQL	U		120	1	ug/kg	09/21/06	12:09
2) 2,4,5-TP (Silvex)	BQL	U		120	1	ug/kg	09/21/06	12:09
3) 2,4-D	BQL	U		120	1	ug/kg	09/21/06	12:09
# Surrogate Parameter	Percent Recovery		Control Limits		Dil Fact		Analy Date/	
4) 2,4-DCAA	1218 %		29 - 143		1		09/21/06	12:09
5) 2,4-DCAA	2605 %	-	29 - 143		1		09/21/06	12:09

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-AOI5-001

Lab Sample ID:

Percent Moisture:

609051-001-001-1/1

Sample Date/Time:

09/11/2006 15:10

18.8

Receipt Date/Time:

09/12/2006 10:00

Preparation Method:

Prepared Date/Time:

09/13/2006 00:00

EXT_SW8151

SW8151A_TCLP Analytical Method:

# Parameter	Reported Result	Q		Reporting Limit	Dil Fact	Units	Analy Date/	
1) 2,4,5-TP (Silvex)	BQL	U		5.0	1	ug/L	09/15/06	11:40
2) 2,4-D	BQL	U		5.0	1 .	ug/L	09/15/06	11:40
# Surrogate Parameter	Percent Recovery		Control Limits		Dil Fact		Analysis Date/Time	
3) 2,4-DCAA	85 %		7 - 170		1		09/15/06	11:40
4) 2,4-DCAA	59 %		7 - 170		1		09/15/06	11:40

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-AOI5-001

Lab Sample ID:

609051-001-001-1/1

Sample Date/Time:

09/11/2006 15:10

Percent Moisture:

18.8

Receipt Date/Time: Prepared Date/Time: 09/12/2006 10:00

Preparation Method:

09/19/2006 12:00

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result	Q	Reporting Limit			Analy Date/	
1) Aluminum	15300		21.8	1	mg/kg	09/20/06	17:46
2) Antimony	0.48	JN	2.2	1	mg/kg	09/20/06	17:46
3) Arsenic	9.5		2.2	1	mg/kg	09/20/06	17:46
4) Barium	79.8	N	0.54	1	mg/kg	09/20/06	17:46
5) Beryllium	0.77		0.22	1	mg/kg	09/20/06	17:46
6) Cadmium	0.47	JB	0.65	1	mg/kg	09/20/06	17:46
7) Calcium	37800		109	1	mg/kg	09/20/06	17:46
8) Chromium	23.8		0.54	1	mg/kg	09/20/06	17:46
9) Cobalt	15.6		0.54	1	mg/kg	09/20/06	17:46
10) Copper	44.7	В	1.1	1	mg/kg	09/20/06	17:46
11) Iron	35400		16.3	1	mg/kg	09/20/06	17:46
12) Lead	17.2		1.1	1	mg/kg	09/21/06	16:21
13) Magnesium	8670	В	27.2	1	mg/kg	09/20/06	17:46
14) Manganese	497		0.54	1	mg/kg	09/20/06	17:46
15) Nickel	35.1	В	1.1	1	mg/kg	09/20/06	17:46
16) Potassium	2460	N	27.2	1	mg/kg	09/20/06	17:46
17) Selenium	BQL	U	2.2	1	mg/kg	09/20/06	17:46
18) Silver	BQL	U	0.54	1	mg/kg	09/20/06	17:46
19) Thallium	1.1	J	3.3	1	mg/kg	09/20/06	17:46
20) Vanadium	27.6	NB	1.1	1	mg/kg	09/20/06	17:46
21) Zinc	93.8	•	2.2	1	mg/kg	09/20/06	17:46

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-AOI5-001

Sample Date/Time:

09/11/2006 15:10

Receipt Date/Time:

09/12/2006 10:00

Prepared Date/Time:

09/18/2006 19:00

Sample Matrix:

SOIL

Lab Sample ID:

609051-001-001-1/1

Percent Moisture:

18.8

Preparation Method:

SW7471_DIG

Analytical Method:

SW7471A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Mercury	0.038	J	0.039	1	mg/kg	09/19/06	17:02

Client Name:

Shaw E&I, Inc

50.40

Client Sample ID: Sample Date/Time: DS-AOI5-001

09/11/2006 15:10

Receipt Date/Time:

09/12/2006 10:00

Prepared Date/Time:

09/14/2006 14:00

Sample Matrix:

•

SOIL

Lab Sample ID:

609051-001-001-1/1

Percent Moisture:

18.8

Preparation Method:

SW7470A_DIG

Analytical Method:

SW7471A_TCLP

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	,	
1) Mercury	BQL	U	2	1	ug/L	09/14/06	20:05	-

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-AOI5-001

Lab Sample ID:

609051-001-001-1/1

Sample Date/Time:

09/11/2006 15:10

Percent Moisture:

18.8

Receipt Date/Time:

09/12/2006 10:00

Preparation Method:

NA

Prepared Date/Time:

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analysis Date/Time	
1) Percent Solids	81	1.0	1	%	09/13/06 15:27	_

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DS-AOI5-001

Lab Sample ID:

609051-001-001-1/1

Sample Date/Time:

09/11/2006 15:10

Percent Moisture:

18.8

Receipt Date/Time:

09/12/2006 10:00

Preparation Method:

SW7.3_EXT

Prepared Date/Time:

09/14/2006 08:00

Analytical Method:

SW9014R

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Cyanide, Reactive	BQL	U	0.020	1	mg/kg	09/14/06	14:00

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-AOI5-001

Sample Date/Time:

09/11/2006 15:10

Receipt Date/Time: Prepared Date/Time:

09/12/2006 10:00

Sample Matrix: Lab Sample ID: SOIL

609051-001-001-1/1

Percent Moisture:

18.8

Preparation Method:

NA

Analytical Method:

SW9034R

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	,
1) Sulfide, Reactive	110		9.6	1	mg/kg	09/14/06	10:00

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-AOI5-001

Sample Date/Time:

09/11/2006 15:10

Receipt Date/Time:

09/12/2006 10:00

Prepared Date/Time:

Sample Matrix:

SOIL

Lab Sample ID:

609051-001-001-1/1

Percent Moisture:

NA

Preparation Method:

NA

Analytical Method:

SW1010

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Flash Point	BQL U	100	1	DC	09/12/06	00:00

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-AOI5-001 DL

Sample Date/Time:

09/11/2006 15:10

Receipt Date/Time:

09/12/2006 10:00

Prepared Date/Time:

09/18/2006 00:00

Sample Matrix:

Lab Sample ID:

609051-001-001-1/1 DL

Percent Moisture:

18.8

SOIL

Preparation Method:

SW3550

Analytical Method:

SW8081A

# Parameter	Reported Result	Q		Reporting Limit	Dil Fact	Units	Analy Date/	
1) 4,4-DDD	270			21	10	ug/kg	09/19/06	20:59
2) 4,4-DDE	BQL	U		21	10	ug/kg	09/19/06	20:59
3) 4,4-DDT	BQL	U		21	10	ug/kg	09/19/06	20:59
4) Aldrin	BQL	U		21	10	ug/kg	09/19/06	20:59
5) Alpha-BHC	BQL	U		21	10	ug/kg	09/19/06	20:59
6) Beta-BHC	BQL	U		21	10	ug/kg	09/19/06	20:59
7) Chlordane	BQL	U		410	10	ug/kg	09/19/06	20:59
8) Delta-BHC	BQL	U		21	10	ug/kg	09/19/06	20:59
9) Dieldrin	BQL	U		21	10	ug/kg	09/19/06	20:59
10) Endosulfan I	BQL	U		21	10	ug/kg	09/19/06	20:59
11) Endosulfan II	BQL	Ų		21	10	ug/kg	09/19/06	20:59
12) Endosulfan Sulfate	BQL	U		21	10	ug/kg	09/19/06	20:59
13) Endrin	BQL	U		21	10	ug/kg	09/19/06	20:59
14) Gamma-BHC (Lindane)	BQL	U		21	10	ug/kg	09/19/06	20:59
15) Heptachlor	BQL	U		21	10	ug/kg	09/19/06	20:59
16) Heptachlor Epoxide	BQL	U		21	10	ug/kg	09/19/06	20:59
17) Methoxychlor	BQL	U		21	10	ug/kg	09/19/06	20:59
# Surrogate Parameter	Percent Recovery		Control Limits		Dil Fact		Analy Date/]	
18) Decachlorobiphenyl	122 %		36 - 120	- -	10		09/19/06	20:59
19) Decachlorobiphenyl	179 %		36 - 120		10		09/19/06	20:59
20) Tetrachloro-m-xylene	485 %		36 - 120		10		09/19/06	20:59
21) Tetrachloro-m-xylene	140 %		36 - 120		10		09/19/06	20:59

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-AOI5-001

Sample Date/Time:

09/11/2006 15:10

Receipt Date/Time:

09/12/2006 10:00

Prepared Date/Time:

09/18/2006 07:54

Sample Matrix:

Lab Sample ID:

609051-001-002-1/1

Percent Moisture:

18.8

SOIL

Preparation Method:

SW3550

Analytical Method:

SW8082

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) PCB-1016	BQL	U	21	1	ug/kg	09/20/06	07:20
2) PCB-1221	BQL	.U	21	1	ug/kg	09/20/06	07:20
3) PCB-1232	BQL	U	21	1	ug/kg	09/20/06	07:20
4) PCB-1242	BQL	U	21	1	ug/kg	09/20/06	07:20
5) PCB-1248	BQL	U	21	1	ug/kg	09/20/06	07:20
6) PCB-1254	BQL	U	21	1	ug/kg	09/20/06	07:20
7) PCB-1260	BQL	U	21	1	ug/kg	09/20/06	07:20
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
8) Decachlorobiphenyl	33 %	30 - 144		1		09/20/06	07:20
9) Decachlorobiphenyl	40 %	30 - 144		1		09/20/06	07:20
0) Tetrachloro-m-xylene	80 %	49 - 133		1		09/20/06	07:20
11) Tetrachloro-m-xylene	33 %	49 - 133		1		09/20/06	07:20

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-AOI5-001

Sample Date/Time:

09/11/2006 15:10

Receipt Date/Time:

09/12/2006 10:00

Prepared Date/Time:

09/13/2006 00:00

Sample Matrix:

ample Matrix.

SOIL

Lab Sample ID:

609051-001-003-1/1

Percent Moisture:

18.8

Preparation Method:

SW3010A

Analytical Method:

SW6010B_TCLP

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Arsenic	BQL	U	200	1	ug/L	09/14/06	18:23
2) Barium	BQL	U	1000	1	ug/L	09/14/06	18:23
3) Beryllium	BQL	U	20	1	ug/L	09/14/06	18:23
4) Cadmium	BQL	U	60	1	ug/L	09/14/06	18:23
5) Chromium	BQL	U	50	1	ug/L	09/14/06	18:23
6) Lead	BQL	U	100	1	ug/L	09/14/06	18:23
7) Selenium	BQL	U	200	1	ug/L	09/14/06	18:23
8) Silver	BQL	U	50	1	ug/L	09/14/06	18:23

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-AOI5-001ABC

Sample Date/Time:

09/11/2006 15:10

Receipt Date/Time:

09/12/2006 10:00

Sample Matrix:

WATER

Lab Sample ID:

609051-002-004-1/1

Percent Moisture:

NA

Preparation Method:

SW5030B

Receipt Date/Time. 09/12/2000 10:00		r reparation ivi	iethod. Sv	40000B			
Prepared Date/Time: 09/13/2006 06:11		Analytical Met	hod: SV	/8260B ₋	_TCLP		
# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1-Dichloroethene	BQL	U	100	10	ug/L	09/13/06	13:44
2) 1,2-Dichloroethane	BQL	U	100	10	ug/L	09/13/06	13:44
3) 2-Butanone	BQL	U	100	10	ug/L	09/13/06	13:44
4) Benzene	BQL	U	100	10	ug/L	09/13/06	13:44
5) Carbon Tetrachloride	BQL	U	100	10	ug/L	09/13/06	13:44
6) Chlorobenzene	BQL	U	100	10	ug/L	09/13/06	13:44
7) Chloroform	15	J	100	10	ug/L	09/13/06	13:44
8) Tetrachloroethylene	BQL	U	100	10	ug/L	09/13/06	13:44
9) Trichloroethene	BQL	U	100	10	ug/L	09/13/06	13:44
10) Vinyl Chloride	13	J	100	10	ug/L	09/13/06	13:44
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
11) 1,2-Dichlorobenzene-d4	101 %	64 - 132		10		09/13/06	13:44
12) 1,2-Dichloroethane-d4	88 %	70 - 120		10		09/13/06	13:44
13) 4-Bromofluorobenzene	90 %	75 - 120		10		09/13/06	13:44
14) Toluene-D8	100 %	85 - 120		10		09/13/06	13:44

Client Name:

Shaw E&I, Inc.

Client Sample ID: Sample Date/Time: DS-AOI5-001ABC

Receipt Date/Time:

09/11/2006 15:10

09/12/2006 10:00

Prepared Date/Time:

Sample Matrix:

SOIL

Lab Sample ID:

609051-002-004-1/1

Percent Moisture:

24.91

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Percent Solids	75	1.0	1	%	09/21/06	12:49

Client Name:

Shaw E&I, Inc

Client Sample ID:

DS-AOI5-001ABCDL

Sample Date/Time:

09/11/2006 15:10

Receipt Date/Time:

09/12/2006 10:00

Prepared Date/Time:

09/18/2006 09:53

Sample Matrix:

SOIL

Lab Sample ID:

609051-002-004-1/1DL

Percent Moisture:

NA

Preparation Method:

SW5030B

Analytical Method:

SW8260B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL	U	25	5	ug/kg	09/18/06	18:22
2) 1,1,2,2-Tetrachloroethane	BQL	U	25	5	ug/kg	09/18/06	18:22
3) 1,1,2-Trichloroethane	BQL	U	25	5	ug/kg	09/18/06	18:22
4) 1,1-Dichloroethane	BQL	U	25	5	ug/kg	09/18/06	18:22
5) 1,1-Dichloroethene	BQL	U	25	5	ug/kg	09/18/06	18:22
6) 1,2-Dichlorobenzene	BQL	U	25	5	ug/kg	09/18/06	18:22
7) 1,2-Dichloroethane	BQL	U	25	5	ug/kg	09/18/06	18:22
8) 1,4-Dichlorobenzene	BQL	U	25	5	ug/kg	09/18/06	18:22
9) 2-Butanone	BQL	U	50	. 5	ug/kg	09/18/06	18:22
10) 4-Methyl-2-Pentanone	BQL	U	50	5	ug/kg	09/18/06	18:22
11) Acetone	BQL	U	50	5	ug/kg	09/18/06	18:22
12) Benzene	7.3	J	25	5	ug/kg	09/18/06	18:22
13) Bromomethane	BQL	U	50	5	ug/kg	09/18/06	18:22
14) Carbon Disulfide	BQL	U	25	5	ug/kg	09/18/06	18:22
15) Carbon Tetrachloride	BQL	U	25	5	ug/kg	09/18/06	18:22
16) Chlorobenzene	BQL	U	25	5	ug/kg	09/18/06	18:22
17) Chloroethane	BQL	U	50	5	ug/kg	09/18/06	18:22
18) Chloroform	BQL	U	25	5	ug/kg	09/18/06	18:22
19) Chloromethane	BQL	U	50	5	ug/kg	09/18/06	18:22
20) Dibromochloromethane	BQL	U	25	5	ug/kg	09/18/06	18:22
21) Ethylbenzene	150		25	5	ug/kg	09/18/06	18:22
22) Freon 113	BQL	U	25	5	ug/kg	09/18/06	18:22
23) Methylene Chloride	BQL	U	50	5	ug/kg	09/18/06	18:22
24) Styrene	BQL	Ų	25	5	ug/kg	09/18/06	18:22
25) Tetrachloroethylene	BQL	Ų	25	5	ug/kg	09/18/06	18:22
26) Toluene	41		25	5	ug/kg	09/18/06	18:22
27) Trichloroethene	BQL	U	25	5	ug/kg	09/18/06	18:22
28) Vinyl Chloride	BQL	U	50	5	ug/kg	09/18/06	18:22

Client Name:

Shaw E&I, Inc.

Sample Matrix:

SOIL

Client Sample ID:

DS-AOI5-001ABCDL

Lab Sample ID:

609051-002-004-1/1DL

ug/kg

09/18/06

18:22

Sample Date/Time:

09/11/2006 15:10

Percent Moisture:

NA

Receipt Date/Time:

09/12/2006 10:00

Preparation Method:

SW5030B

Prepared Date/Time:

09/18/2006 09:53

Analytical Method:

SW8260B

5

29) Xylenes, Total

1800

25

# Surrogate Parameter	Percent Recovery	Control Limits	Dil Fact	Analysis Date/Time		
30) 1,2-Dichlorobenzene-d4	66 %	65 - 123	5	09/18/06 18:22		
31) 1,2-Dichloroethane-d4	89 %	65 - 125	5	09/18/06 18:22		
32) 4-Bromoffuorobenzene	134 %	85 - 120	5	09/18/06 18:22		
33) Toluene-D8	113 %	85 - 115	5	09/18/06 18:22		

GPL Laboratories, LLLP

Qualifier Definitions

Shaw E&I, Inc.

Work Order: 609051

All Departments

- U Indicates that the compound was analyzed for but not detected
- BQL Below Quantitation Limit

Organics

- B Indicates that the analyte was found in the associated blank as well as in the sample
- D Indicates that the analyte was reported from a diluted analysis
- E Indicates that the concentration detected exceeded the calibration range of the instrument
- J Value is less than the reporting limit but greater than the MDL
- P Indicates that there is greater than 25% difference for detected pesticide/Arochlor results between the two GC columns

Metals

- J Indicates that the reported value was less than the reporting limit but greater than or equal to the IDL/MDL
- E Indicates that the reported value is estimated because of the possible presence of interference (i.e. the serial dilution not within control limits)
- H Indicates that the element was found in the associated blank as well as in the sample and the value is greater than or equal to the reporting limit
- D Indicates that the analyte was reported from a diluted analysis
- N Spiked sample recovery not within control limits
- * Duplicate analysis not within control limits

Shaw E&I, Inc

SDG: 609051

Shaw E&I, Inc

SDG: 609051

Shaw E&I, Inc

SDG: 609051

Shaw E&I, Inc

SDG: 609051

GPL Luboratories, LLLP

The first of the second of the			
	-igun SAMPLE REGER		
W.C. No. 609051	Carrier Name:		
Ciert Name: Share		sed tr) 3y: (~(109/12/06 nitals Jato	
Date Received: 09/12/06	Traject.	mais Jaio -	
Time tecahed 5:70	Site:		
Hesewed By: Chris	VOA Holding B	bank I.O. Not	
AirbiliManRest Present?	AFA WO	Tro Blanks No. of Scis	YES YO
No. J139 039 9775		Field 9!anks: No. of Sets	
Shipping Container in Good Condition?	<u> _</u>	Field Duplicate: No. of Sets VISA/SC: No of Sets	<u> </u>
Custody Seals Tragert on Stripping Container? Condition: Broken	,	VCA Vigis Have Zero Headspace? find lamaller or greater than x Green P	ren (hen cordinants)
intack-dated and signed		Preservatives Added to Sample? pl Check Required?	
Usage of Tarrier Svicent Lyte		Performed By?	
Chain-of-Custody Presint P	<i>¥</i>	Ica Presem in Shipping Container?	
Cire n-of-Custody Agenes with Sample Labels?	<u></u>	Containor # Temp. Contain	леге Тэпр
Chair-ol-Custocy Signed?	<u> </u>	***************************************	and a second
recking Present in Shipping Container? Type of Packing Babble Cont	<u> </u>		
Curiody seals on Sample Bottles? Condition: Good Broken	👱		Men 3 40-260 € 1
"otal Number of Sample Botles 6			
Total Number of Semples 4			
Sa−o≥s irladi?	<u> </u>		A CONTRACTOR OF THE PARTY OF TH
Sufficient Sample Volume for inflexted Test?	<u> </u>	= oject Manager Contacted* Name: 1764	
		793 Santactou 09/12/06	
ary MC response must be detailed in the comment should be marked N/A/	ill welednotbes st	ion s are not apolicable to particular somp	ies or corrada, trey
CHOIFN'S: Client marked or	e of aur	Temperature Blanks	to a tries
64 to It has a quarter	buch of	air at the ton and	· ir · · · · · ·
preserved. Per Cheut Mrs. the trips blank her no b	علوسه عد	you recived is for which	wind protiling.
the trips blank her me be	Genish unhn	very. Messe delete it to	en the order"
	Checklis	of Completed By: Charis Lyon	**************************************
		Date. 0 9/12/05	
		•	

SOP No: F.2V15

Shaw Environmental & Infrastructure, Inc.

Data Usability Report

16406 U.S. Route 224 East • Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER:

PROJECT NAME:

Tom Mathison

USACE-Schenectady LABOR

09/19/2006

LABORATORY SDG: GPL-609092

SAMPLE RECEIPT DATE:

The Findlay Ohio Applied Sciences Group has performed a QA evaluation of the data report from GPL Laboratories, LLLP, Frederick, MD. The results are for samples collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table.

Sample Summary Table								
Sample Number	Collection Date	Matrix	Analysis Requested					
EX-AOI5-001, EX-AOI5-002	09/18/2006	Soil	Target Metals SW-6010B/ 7471A					
EX-AOI5-003, EX-AOI5-004			SVOCs-SW8270C					
EX-AOI5-005, EX-AOI5-006			VOCs-SW8260B					
EX-AOI5-007, EX-AOI5-008			Pesticides-SW8081A					
EX-AOI5-009, EX-AOI5-010								

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and was received having a temperature of 2°C upon opening. The Trip Blank was written on the COC but not present in the cooler. The laboratory provided an electronic copy of the data within the specified turn around time. The following describes the overall QA/QC indicators.

VOC Analysis in Soil by 8260B

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs.

Method Blanks: The method blank results are below reporting limits for the target analytes in all analysis sets

LCS: The LCS recoveries are within acceptance criteria for the target analytes in all analysis sets.

MS/MSD: The QC Matrix recovery and precision performance, using sample EX-AOI5-001, is within acceptance limits for all compounds.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be utilized with confidence. One sample EX-AOI-004, contained elevated concentrations of chloroform, requiring dilution. Data users should be cautioned to utilize the chloroform value from the diluted analysis (EX-AOI5-004DL).

SVOC Analysis in Soil by 8270C

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs.

Method Blanks: The method blank results are below reporting limits for the target analytes

LCS: The LCS recoveries are within acceptance criteria for the spiked analytes. The laboratory did not perform spiking for all analytes, using the method-specified short-list spiking solution

MS/MSD: The QC Matrix recovery and precision performance, using sample EX-AOI5-001 is within acceptance limits for all spiked compounds.

Surrogates: The recovery of the three lowest boiling point surrogates is slightly below the acceptance criteria in sample EX-AOI5-002. This may suggest loss of the lower-boiling analytes due to over-concentration. However, since the recoveries for all three are with five-percent of the low limit, the data has been accepted. All other surrogate recoveries are within acceptable criteria.

Reported results should be utilized with confidence.

Pesticide Analysis in Soil by SW-8081A

The GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples were high for some analytes. No analytes were detected in the samples. No qualification necessary.

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

QC Matrix: The MS/MSD recoveries, sample EX-AOI5-001, were within control limits for both precision and accuracy.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be acted upon without reservation.

Metals Analysis in Soil by SW6010B and SW7471A

The ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements. All instrument interference check samples were within control limits. The initial and continuing calibration check samples were within control limits. The initial calibration blank results were below reporting limits.

Method Blanks: The method blank results are below reporting limits.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

MS/MSD: The MS/MSD recoveries and precision, sample EX-AOI5-001, are within acceptance limits for all analytes with native concentrations less than 4X the spike level. Three analytes (aluminum, calcium, and potassium) were present at large concentrations in the unspiked sample rendering the QC Matrix data invalid.

Reported results should be utilized with confidence

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

Guy Gallello Jr.-Project Chemist

11/10/206

Analytical Report For 609092

for

Shaw E&I, Inc

Project Manager: Guy Gallello

Project Name: SAD-AOC2

GPLLaboratories

GPL Laboratories, LLLP certifies that the test results meet all requirements of the NELAC Standards unless otherwise noted.

Reviewed By, Project Manager Approved By, Laboratory Director

Case Narrative

Shaw E&I, Inc SAD-AOC2

Work Order: 609092

Reviewed by Patricia Huebschman on 10-10-2006

The Case Narrative, Chain of Custody, Sample Receipt Checklist, and the cover page of the Sample Analysis Report, are integral parts of GPL Laboratories' report package. If you did not receive all of these documents, please contact GPL immediately.

Sample Receipt

Ten soil samples were received on 09/19/2006. The samples were delivered by UPS. Sample receipt conditions and temperatures are documented on the Sample Receipt checklist.

Sample Analysis

Samples were prepared and analyzed by GPL using the analytical methodologies indicated on the Sample Analysis Summary Report. In some chromatographic analyses, manual integration is used instead of automated integration because it produces more accurate results. All manual integrations are denoted on the sample quantitation report. Analysis results and limits for soil are reported on a dry weight basis unless otherwise specified on the report.

Volatiles

Ten soil samples were analyzed for volatile organic compounds using SW846 method 8260B.

The samples were analyzed within holding time.

All internal standard responses and surrogate recoveries were within the QC limits.

Matrix spike and matrix spike duplicate analyses were performed on sample EX-AOI5-001. Except for compounds 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, Styrene, and Total Xylenes, all spike recoveries and RPD's were within the QC limits.

Two laboratory control samples were analyzed along with the sample batches. All spike recoveries were within the QC limits.

Manual integration was performed on some peaks that were improperly integrated by the software. The manually integrated compounds are designated by an "m" next to the area of the quantitation report, and chromatograms for these compounds were submitted with the package.

<u>Semivolatiles</u>

Ten soil samples were extracted using SW846 methods 3550B . These sample were analyzed for semi-volatile organic compounds using method 8270C.

All extraction and analysis holding times were met.

Nitrobenzene-d5, 2-Fluorophenol, Phenol-d5 and 2-Fluorobiphenyl surrogate recoveries, for sample EX-AO15-002, were slightly lower than the QC limits, the sample was re-injected as a corrective action with similar results and the re-injected sample is included in the pakage for documentation purposes.

The rest of the surrogate recoveries were within the QC limits.

A matrix spike and duplicate analyses were performed on sample EX-AO15-001. All spike recoveries were within the QC limits.

A laboratory control sample was extracted and analyzed with this batch. All spike recoveries were within the QC limits.

Pesticides

Ten soil samples were extracted and analyzed for Pesticide compounds using the EPA method 8081A.

All surrogate recoveries were well within the QC limits.

A laboratory control sample was extracted and analyzed along with batch. All recoveries were within the QC limits

A matrix spike and matrix spike duplicate analyses were performed for sample EAO15-001. All other spike recoveries were well within the QC limits, except for heptachlor Epoxide. The recovery for this compound was lower than the QC limit.

Manual integration was performed on some peaks that were improperly integrated by the software. The manually integrated compounds are designated by an "m" next to the area of the quantitation report.

Metals

Ten soil samples were analyzed for HSL metals (except sodium) by EPA SW846 methods.

On form one, the software flags all results for specific elements with a B qualifier if they have a result above two times the MDL and less than ½ the reporting limit for a continuing calibration blank, initial calibration blank or interference check solution A.

A matrix spike and matrix spike duplicate were performed on sample EX-AO15-001 for all required analytes. A serial dilution was also performed for ICP analytes. The matrix spike and matrix spike duplicate were outside of the control limits for antimony, barium and potassium; all associated data were flagged with an "N". A post digestion analytical spike was performed within 20% of the true value except barium. Post digestion analytical spike failed for barium. No control limits were applied to the matrix spike and matrix spike duplicate for aluminum, calcium, iron, magnesium, and manganese due to an insignificant spike addition. The RPD, for matrix spike recoveries, was outside of the control limits for calcium; all associated data were flagged with an "*". The serial dilution was outside of the control limits for beryllium; all associated data were flagged with an "E".

Calibration standards are verified against independent check standards purchased from a commercial vendor of environmental standards.

All GPL QA/QC criteria were met with the exceptions of those mentioned above.

Reviewed By,

Project Manager

Approved By

Laboratory Director

GPL Laboratories, LLLP

Sample Summary Report

Shaw E&I, Inc

Work Order: 609092

Client Sample ID	Lab Sample ID	Analytical Method	Matrix	Date Sampled	Date Recieved
EX-AOI5-001	609092-001-001-1/2	SW8260B	SOIL	09/18/2006	09/19/2006
	609092-001-014-1/2	SW8270C			
•	609092-001-014-1/2	SW8081A			
	609092-001-012-1/2	SW6010B			
	609092-001-012-1/2	SW7471A			
	609092-001-013-2/2	CLP_SOLIDS			
EX-AOI5-002	609092-002-003-1/1	SW8260B	SOIL	09/18/2006	09/19/2006
	609092-002-025-1/1	SW8270C			
	609092-002-025-1/1	SW8081A			
	609092-002-016-1/1	SW6010B			
	609092-002-016-1/1	SW7471A			
	609092-002-016-1/1	CLP_SOLIDS			
EX-AOI5-003	609092-003-004-1/1	SW8260B	SOIL	09/18/2006	09/19/2006
	609092-003-026-1/1	SW8270C			
	609092-003-026-1/1	SW8081A			
•	609092-003-017-1/1	SW6010B			
	609092-003-017-1/1	SW7471A			
	609092-003-017-1/1	CLP_SOLIDS			
EX-AOI5-004	609092-004-005-1/1	SW8260B	SOIL	09/18/2006	09/19/2006
	609092-004-027-1/1	SW8270C			
	609092-004-027-1/1	SW8081A	-		
	609092-004-018-1/1	SW6010B			
	609092-004-018-1/1	SW7471A			
	609092-004-018-1/1	CLP_SOLIDS			
EX-AOI5-004DL	609092-004-005-1/1DL	SW8260B	SOIL	09/18/2006	09/19/2006
EX-AOI5-005	609092-005-006-1/1	SW8260B	SOIL	09/18/2006	09/19/2006
	609092-005-028-1/1	SW8270C			
	609092-005-028-1/1	SW8081A		•	
	609092-005-019-1/1	SW6010B			
	609092-005-019-1/1	SW7471A			
	609092-005-019-1/1	CLP_SOLIDS			
EX-AOI5-006	609092-006-007-1/1	SW8260B	SOIL	09/18/2006	09/19/2006
	609092-006-029-1/1	SW8270C			

GPL Laboratories, LLLP 7210A Corporate CT, Frederick, MD 21703 Tel. (301)694-5310 Fax (301)620-0731 Page 4 of 91 Printed: 10/10/06 Version 2.4.2 (Build 0)

GPL Laboratories, LLLP

Sample Summary Report

Shaw E&I, Inc

Work Order: 609092

Client Sample ID	Lab Sample ID	Analytical Method	Matrix	Date Sampled	Date Recieved
	609092-006-029-1/1	SW8081A			
	609092-006-020-1/1	SW6010B			
	609092-006-020-1/1	SW7471A			
:	609092-006-020-1/1	CLP_SOLIDS			
EX-AOI5-007	609092-007-008-1/1	SW8260B	SOIL	09/18/2006	09/19/2006
	609092-007-030-1/1	SW8270C			
•	609092-007-030-1/1	SW8081A			
•	609092-007-021-1/1	SW6010B			
	609092-007-021-1/1	SW7471A			
	609092-007-021-1/1	CLP_SOLIDS			
EX-AOI5-008	609092-008-009-1/1	SW8260B	SOIL	09/18/2006	09/19/2006
	609092-008-031-1/1	SW8270C			
	609092-008-031-1/1	SW8081A			
•	609092-008-022-1/1	SW6010B			
	609092-008-022-1/1	SW7471A			
	609092-008-022-1/1	CLP_SOLIDS			
EX-AOI5-009	609092-009-010-1/1	SW8260B	SOIL	09/18/2006	09/19/2006
	609092-009-032-1/1	SW8270C			
	609092-009-032-1/1	SW8081A			
	609092-009-023-1/1	SW6010B			
	609092-009-023-1/1	SW7471A			
	609092-009-023-1/1	CLP_SOLIDS			
EX-AOI5-010	609092-010-011-1/1	SW8260B	SOIL	09/18/2006	09/19/2006
	609092-010-033-1/1	SW8270C			
	609092-010-033-1/1	SW8081A			
•	609092-010-024-1/1	SW6010B			
	609092-010-024-1/1	SW7471A			
	609092-010-024-1/1	CLP_SOLIDS			

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

15.22

Client Sample ID:

EX-AOI5-001

Lab Sample ID:

609092-001-001-1/2

Sample Date/Time:

09/18/2006 13:20

Percent Moisture:

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW5030B

Prepared Date/Time:

09/25/2006 08:22

Analytical Method:

SW8260B

1) 1,1,1-Trichloroethane	# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
3 1,1,2-Trichloroethane	1) 1,1,1-Trichloroethane	BQL	U	5.9	1	ug/kg	09/25/06	11:43
4) 1, 1-Dichloroethane BQL U 5.9 1 ug/kg 09/25/06 11:43 5) 1, 1-Dichloroethene BQL U 5.9 1 ug/kg 09/25/06 11:43 6) 1,2-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 7) 1,2-Dichloroethane BQL U 5.9 1 ug/kg 09/25/06 11:43 8) 1,3-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 9) 1,4-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 10) 2-Butanone BQL U 12 1 ug/kg 09/25/06 11:43 11) 4-Methyl-2-Pentanone BQL U 12 1 ug/kg 09/25/06 11:43 12) Acetone BQL U 12 1 ug/kg 09/25/06 11:43 13) Benzene BQL U 5.9 1 ug/kg 09/25/06 11:43 14) Bromomethane BQL U 5.9 1	2) 1,1,2,2-Tetrachloroethane	BQL	U	5.9	1	ug/kg	09/25/06	11:43
5) 1,1-Dichloroethene BQL U 5.9 1 ug/kg 09/25/06 11:43 6) 1,2-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 7) 1,2-Dichloroethane BQL U 5.9 1 ug/kg 09/25/06 11:43 8) 1,3-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 9) 1,4-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 10) 2-Butanone BQL U 12 1 ug/kg 09/25/06 11:43 11) 4-Methyl-2-Pentanone BQL U 12 1 ug/kg 09/25/06 11:43 11) 4-Methyl-2-Pentanone BQL U 12 1 ug/kg 09/25/06 11:43 11) 4-Methyl-2-Pentanone BQL U 12 1 ug/kg 09/25/06 11:43 12) Acetone BQL U 12 1 ug/kg 0	3) 1,1,2-Trichloroethane	BQL	U	5.9	1	ug/kg	09/25/06	11:43
BQL U S.9 1 ug/kg 09/25/06 11/43 13/4 13	4) 1,1-Dichloroethane	BQL	U	5.9	1	ug/kg	09/25/06	11:43
7) 1,2-Dichloroethane BQL U 5.9 1 ug/kg 09/25/06 11.43 8) 1,3-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11.43 9) 1,4-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11.43 10) 2-Butanone BQL U 12 1 ug/kg 09/25/06 11.43 11) 4-Methyl-2-Pentanone BQL U 12 1 ug/kg 09/25/06 11.43 12) Acetone BQL U 12 1 ug/kg 09/25/06 11.43 13) Benzene BQL U 5.9 1 ug/kg 09/25/06 11.43 14) Bromomethane BQL U 5.9 1 ug/kg 09/25/06 11.43 15) Carbon Disulfide BQL U 5.9 1 ug/kg 09/25/06 11.43 16) Carbon Tetrachloride BQL U 5.9 1 ug/kg 09/25/06 11.43 17) Chlorobenzene BQL U 5.9 1 <t< td=""><td>5) 1,1-Dichloroethene</td><td>BQL</td><td>U</td><td>5.9</td><td>1</td><td>ug/kg</td><td>09/25/06</td><td>11:43</td></t<>	5) 1,1-Dichloroethene	BQL	U	5.9	1	ug/kg	09/25/06	11:43
8) 1,3-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 9) 1,4-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 10) 2-Butanone BQL U 12 1 ug/kg 09/25/06 11:43 11) 4-Methyl-2-Pentanone BQL U 12 1 ug/kg 09/25/06 11:43 12) Acetone BQL U 12 1 ug/kg 09/25/06 11:43 13) Benzene BQL U 5.9 1 ug/kg 09/25/06 11:43 14) Bromomethane BQL U 5.9 1 ug/kg 09/25/06 11:43 15) Carbon Disulfide BQL U 5.9 1 ug/kg 09/25/06 11:43 16) Carbon Tetrachloride BQL U 5.9 1 ug/kg 09/25/06 11:43 17) Chlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroform BQL U 5.9 1 ug/kg	6) 1,2-Dichlorobenzene	BQL	U	5.9	1	ug/kg	09/25/06	11:43
9) 1,4-Dichlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 10) 2-Butanone BQL U 12 1 ug/kg 09/25/06 11:43 11) 4-Methyl-2-Pentanone BQL U 12 1 ug/kg 09/25/06 11:43 12) Acetone BQL U 12 1 ug/kg 09/25/06 11:43 13) Benzene BQL U 5.9 1 ug/kg 09/25/06 11:43 14) Bromomethane BQL U 5.9 1 ug/kg 09/25/06 11:43 15) Carbon Disulfide BQL U 5.9 1 ug/kg 09/25/06 11:43 16) Carbon Tetrachloride BQL U 5.9 1 ug/kg 09/25/06 11:43 17) Chlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 20) Chloromethane BQL U 5.9 1 ug/kg	7) 1,2-Dichloroethane	BQL	U	5.9	1	ug/kg	09/25/06	11:43
10) 2-Butanone BQL U 12 1 ug/kg 09/25/06 11:43 11) 4-Methyl-2-Pentanone BQL U 12 1 ug/kg 09/25/06 11:43 12) Acetone BQL U 12 1 ug/kg 09/25/06 11:43 13) Benzene BQL U 5.9 1 ug/kg 09/25/06 11:43 14) Bromomethane BQL U 5.9 1 ug/kg 09/25/06 11:43 15) Carbon Disulfide BQL U 5.9 1 ug/kg 09/25/06 11:43 16) Carbon Tetrachloride BQL U 5.9 1 ug/kg 09/25/06 11:43 17) Chlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 19) Chloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg <td>8) 1,3-Dichlorobenzene</td> <td>BQL</td> <td>U</td> <td>5.9</td> <td>1</td> <td>ug/kg</td> <td>09/25/06</td> <td>11:43</td>	8) 1,3-Dichlorobenzene	BQL	U	5.9	1	ug/kg	09/25/06	11:43
11) 4-Methyl-2-Pentanone BQL U 12 1 ug/kg 09/25/06 11:43 12) Acetone BQL U 12 1 ug/kg 09/25/06 11:43 13) Benzene BQL U 5.9 1 ug/kg 09/25/06 11:43 14) Bromomethane BQL U 12 1 ug/kg 09/25/06 11:43 15) Carbon Disulfide BQL U 5.9 1 ug/kg 09/25/06 11:43 16) Carbon Tetrachloride BQL U 5.9 1 ug/kg 09/25/06 11:43 17) Chlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 19) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 20) Chloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg <td>9) 1,4-Dichlorobenzene</td> <td>BQL</td> <td>U</td> <td>5.9</td> <td>1</td> <td>ug/kg</td> <td>09/25/06</td> <td>11:43</td>	9) 1,4-Dichlorobenzene	BQL	U	5.9	1	ug/kg	09/25/06	11:43
12) Acetone BQL U 12 1 ug/kg 09/25/06 11:43 13) Benzene BQL U 5.9 1 ug/kg 09/25/06 11:43 14) Bromomethane BQL U 12 1 ug/kg 09/25/06 11:43 15) Carbon Disulfide BQL U 5.9 1 ug/kg 09/25/06 11:43 16) Carbon Tetrachloride BQL U 5.9 1 ug/kg 09/25/06 11:43 17) Chlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroethane BQL U 5.9 1 ug/kg 09/25/06 11:43 19) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 20) Chloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg	10) 2-Butanone	BQL	U	12	1	ug/kg	09/25/06	11:43
13) Benzene BQL U 5.9 1 ug/kg 09/25/06 11:43 14) Bromomethane BQL U 12 1 ug/kg 09/25/06 11:43 15) Carbon Disulfide BQL U 5.9 1 ug/kg 09/25/06 11:43 16) Carbon Tetrachloride BQL U 5.9 1 ug/kg 09/25/06 11:43 17) Chlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroethane BQL U 5.9 1 ug/kg 09/25/06 11:43 19) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 20) Chloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 23) Freon 113 BQL U 5.9 1 ug/kg	11) 4-Methyl-2-Pentanone	BQL	U	12	1	ug/kg	09/25/06	11:43
14) Bromomethane BQL U 12 1 ug/kg 09/25/06 11:43 15) Carbon Disulfide BQL U 5.9 1 ug/kg 09/25/06 11:43 16) Carbon Tetrachloride BQL U 5.9 1 ug/kg 09/25/06 11:43 17) Chlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroethane BQL U 5.9 1 ug/kg 09/25/06 11:43 19) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 20) Chloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 23) Freon 113 BQL U 5.9 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg	12) Acetone	BQL	U	12	1	ug/kg	09/25/06	11:43
15) Carbon Disulfide BQL U 5.9 1 ug/kg 09/25/06 11:43 16) Carbon Tetrachloride BQL U 5.9 1 ug/kg 09/25/06 11:43 17) Chlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroethane BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroethane BQL U 5.9 1 ug/kg 09/25/06 11:43 19) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 20) Chloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 23) Freon 113 BQL U 5.9 1 ug/kg 09/25/06 11:43 24) Methylene Chloride BQL U 5.9 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug/kg 09/25/06 11:43	13) Benzene	BQL	U	5.9	1	ug/kg	09/25/06	11:43
16) Carbon Tetrachloride BQL U 5.9 1 ug/kg 09/25/06 11:43 17) Chlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroethane BQL U 12 1 ug/kg 09/25/06 11:43 19) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 20) Chloromethane BQL U 12 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 23) Freon 113 BQL U 5.9 1 ug/kg 09/25/06 11:43 24) Methylene Chloride BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug	14) Bromomethane	BQL	U	12	1	ug/kg	09/25/06	11:43
17) Chlorobenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 18) Chloroethane BQL U 12 1 ug/kg 09/25/06 11:43 19) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 20) Chloromethane BQL U 12 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 23) Freon 113 BQL U 5.9 1 ug/kg 09/25/06 11:43 24) Methylene Chloride BQL U 5.9 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug/kg	15) Carbon Disulfide	BQL	U	5.9	1	ug/kg	09/25/06	11:43
18) Chloroethane BQL U 12 1 ug/kg 09/25/06 11:43 19) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 20) Chloromethane BQL U 12 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 23) Freon 113 BQL U 5.9 1 ug/kg 09/25/06 11:43 24) Methylene Chloride BQL U 5.9 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug/kg 09/25/06 11:43	16) Carbon Tetrachloride	BQL	U	5.9	1	ug/kg	09/25/06	11:43
19) Chloroform BQL U 5.9 1 ug/kg 09/25/06 11:43 20) Chloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 23) Freon 113 BQL U 5.9 1 ug/kg 09/25/06 11:43 24) Methylene Chloride BQL U 5.9 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene	17) Chlorobenzene	BQL	U	5.9	1	ug/kg	09/25/06	11:43
20) Chloromethane BQL U 12 1 ug/kg 09/25/06 11:43 21) Dibromochloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 23) Freon 113 BQL U 5.9 1 ug/kg 09/25/06 11:43 24) Methylene Chloride BQL U 12 1 ug/kg 09/25/06 11:43 24) Methylene Chloride BQL U 5.9 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug/kg 09/25/06 11:43	18) Chloroethane	BQL	U	12	1	ug/kg	09/25/06	11:43
21) Dibromochloromethane BQL U 5.9 1 ug/kg 09/25/06 11:43 22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 23) Freon 113 BQL U 5.9 1 ug/kg 09/25/06 11:43 24) Methylene Chloride BQL U 12 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug/kg 09/25/06 11:43	19) Chloroform	BQL	U	5.9	1	ug/kg	09/25/06	11:43
22) Ethylbenzene BQL U 5.9 1 ug/kg 09/25/06 11:43 23) Freon 113 BQL U 5.9 1 ug/kg 09/25/06 11:43 24) Methylene Chloride BQL U 12 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug/kg 09/25/06 11:43	20) Chloromethane	BQL	U	12	1	ug/kg	09/25/06	11:43
23) Freon 113 BQL U 5.9 1 ug/kg 09/25/06 11:43 24) Methylene Chloride BQL U 12 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug/kg 09/25/06 11:43	21) Dibromochloromethane	BQL	U	5.9	1	ug/kg	09/25/06	11:43
24) Methylene Chloride BQL U 12 1 ug/kg 09/25/06 11:43 25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug/kg 09/25/06 11:43	22) Ethylbenzene	BQL	U	5.9	1	ug/kg	09/25/06	11:43
25) Styrene BQL U 5.9 1 ug/kg 09/25/06 11:43 26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug/kg 09/25/06 11:43	23) Freon 113	BQL	U	5.9	1	ug/kg	09/25/06	11:43
26) Tetrachloroethylene BQL U 5.9 1 ug/kg 09/25/06 11:43 27) Toluene BQL U 5.9 1 ug/kg 09/25/06 11:43	24) Methylene Chloride	BQL	U	12	1	ug/kg	09/25/06	11:43
27) Toluene BQL U 5.9 1 ug/kg 09/25/06 11:43	25) Styrene	BQL	U	5.9	1	ug/kg	09/25/06	11:43
	26) Tetrachloroethylene	BQL	U	5.9	1	ug/kg	09/25/06	11:43
28) Trichloroethene BQL U 5.9 1 ug/kg 09/25/06 11:43	27) Toluene	BQL	Ų	5.9	1	ug/kg	09/25/06	11:43
	28) Trichloroethene	BQL	U	5.9	1	ug/kg	09/25/06	11:43

Page 6 of 91 Printed: 10/10/06

Client Name:	Shaw E&I, Inc		Sample Matrix:	SC	OIL			
Client Sample ID:	EX-AOI5-001		Lab Sample ID:	60	9092-00	1-001-1	/2	
Sample Date/Time:	09/18/2006 13:20		Percent Moisture:	15	.22			
Receipt Date/Time:	09/19/2006 14:12		Preparation Metho	od: SV	V5030B			
Prepared Date/Time:	09/25/2006 08:22		Analytical Method	: SV	V8260B			
29) Vinyl Chloride		BQL	U	12	1	ug/kg	09/25/06	11:43
30) Xylenes, Total		2.0	J	5.9	1	ug/kg	09/25/06	11:43
31) trans-1,2-dichloroe	thene	BQL	U	5.9	1	ug/kg	09/25/06	11:43
# Surrogate Paramet	ter .	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
32) 1,2-Dichlorobenzei	ne-d4	98 %	65 - 123		1		09/25/06	11:43
33) 1,2-Dichloroethane	e-d4	83 %	65 - 125		1		09/25/06	11:4
34) 4-Bromofluorobenz	zene	111 %	85 - 120		1		09/25/06	11:43
35) Toluene-D8		90 %	85 - 115		1		09/25/06	11:43

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-001

Sample Date/Time:

09/18/2006 13:20

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/23/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609092-001-012-1/2

Percent Moisture:

15.22

Preparation Method:

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum	15600		18.9	1	mg/kg	09/25/06	17:44
2) Antimony	0.33	JŃ	1.9	1	mg/kg	09/25/06	17:44
3) Arsenic	8.0		1.9	1	mg/kg	09/25/06	17:44
4) Barium	71.7	N	0.47	1	mg/kg	09/25/06	17:44
5) Beryllium	0.75	ΕB	0.19	1	mg/kg	09/25/06	17:44
6) Cadmium	0.39	JB	0.57	1	mg/kg	09/25/06	17:44
7) Calcium	13800	*	94.4	1	mg/kg	09/25/06	17:44
8) Chromium	23.3		0.47	1	mg/kg	09/25/06	17:44
9) Cobalt	14.2	В	0.47	1	mg/kg	09/25/06	17:44
10) Copper	36.3	В	0.94	1	mg/kg	09/25/06	17:44
11) Iron	33900	В	14.2	1	mg/kg	09/25/06	17:44
12) Lead	19.9		0.94	1	mg/kg	09/25/06	17:44
13) Magnesium	6660	В	23.6	1	mg/kg	09/25/06	17:44
14) Manganese	659	В	0.47	1	mg/kg	09/25/06	17:44
15) Nickel	30.6		0.94	1	mg/kg	09/25/06	17:44
16) Potassium	1890	NB	23.6	1	mg/kg	09/25/06	17:44
17) Selenium	BQL	U	1.9	1	mg/kg	09/25/06	17:44
18) Silver	BQL	U	0.47	1	mg/kg	09/25/06	17:44
19) Thallium	0.98	J	2.8	1	mg/kg	09/25/06	17:44
20) Vanadium	28.2	В	0.94	1	mg/kg	09/25/06	17:44
21) Zinc	87.3		1.9	1	mg/kg	09/25/06	17:44

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-001

Sample Date/Time:

09/18/2006 13:20

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 21:00

Sample Matrix:

.

SOIL

Lab Sample ID:

609092-001-012-1/2

Percent Moisture:

15.22

Preparation Method:

SW7471_DIG

Analytical Method:

SW7471A

# Parameter	Reported	Reporting D	oil	Analysis
	Result Q	Limit Fa	act Units	Date/Time
1) Mercury	0.039	0.039	1 mg/kg	09/23/06 16:22

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AO15-001

Lab Sample ID:

609092-001-013-2/2

Sample Date/Time:

09/18/2006 13:20

Percent Moisture:

15.22

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

NΑ

Prepared Date/Time:

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analys Date/T	
1) Percent Solids	85	1.0	1	%	09/22/06	15:27

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-001

Lab Sample ID:

609092-001-014-1/2

Sample Date/Time:

09/18/2006 13:20

Percent Moisture:

Receipt Date/Time:

09/19/2006 14:12

15.22

Prepared Date/Time:

09/22/2006 13:02

Preparation Method:

SW3550

Analytical Method:

SW8270C

	Reported		Reporting	Dil		Analy	/sis
# Parameter	Result	Q	Limit	Fact	Units	Date/	
1) 2,4,5-Trichlorophenol	BQL	U	390	1	ug/kg	09/25/06	11:05
2) 2,4-Dichlorophenol	BQL	U	390	1	ug/kg	09/25/06	11:05
3) 2,4-Dinitrophenol	BQL	U	790	1	ug/kg	09/25/06	11:05
4) 2,6-Dinitrotoluene	BQL	U	390	1	ug/kg	09/25/06	11:05
5) 2-Chlorophenol	BQL	U	390	1	ug/kg	09/25/06	11:05
6) 2-Methylnaphthalene	BQL	U	390	1	ug/kg	09/25/06	11:05
7) 2-Nitroaniline	BQL	U	390	1	ug/kg	09/25/06	11:05
8) 2-Nitrophenol	BQL	U	390	1	ug/kg	09/25/06	11:05
9) 2-methylphenol	BQL	U	390	1	ug/kg	09/25/06	11:05
10) 3,3-Dichlorobenzidine	BQL	U	790	1	ug/kg	09/25/06	11:05
11) 3-Nitroaniline	BQL	U	390	1	ug/kg	09/25/06	11:05
12) 4-Chloroaniline	BQL	U	390	1	ug/kg	09/25/06	11:05
13) 4-Nitroaniline	BQL	U	390	1	ug/kg	09/25/06	11:05
14) 4-Nitrophenol	BQL	U	790	1	ug/kg	09/25/06	11:05
15) 4-chloro-3-methylphenol	BQL	U	390	1	ug/kg	09/25/06	11:05
16) 4-methylphenol	BQL	U	390	1	ug/kg	09/25/06	11:05
17) Acenaphthene	BQL	U	390	1	ug/kg	09/25/06	11:05
18) Acenaphthylene	BQL	U	390	1	ug/kg	09/25/06	11:05
19) Aniline (Phenylamine, Aminobenzene)	BQL	U	390	1	ug/kg	09/25/06	11:05
20) Anthracene	BQL	U	390	1	ug/kg	09/25/06	11:05
21) Benzo(a)anthracene	BQL	U	390	1	ug/kg	09/25/06	11:05
22) Benzo(a)pyrene	BQL	U	390	1	ug/kg	09/25/06	11:05
23) Benzo(b)fluoranthene	BQL	U	390	1	ug/kg	09/25/06	11:05
24) Benzo(g,h,i)perylene	BQL	U	390	1	ug/kg	09/25/06	11:05
25) Benzo(k)fluoranthene	BQL	U	390	1	ug/kg	09/25/06	11:05
26) Benzoic Acid	BQL	U	790	1	ug/kg	09/25/06	11:05
27) Benzyl Butyl Phthalate	BQL	U	390	1	ug/kg	09/25/06	11:05
28) Chrysene	BQL	U	390	1	ug/kg	09/25/06	11:05

Page 11 of 91

		i many troat out	Times y Troport					
Client Name:	Shaw E&I, Inc		Sample Matrix:	S	OIL			
Client Sample ID:	EX-AOI5-001		Lab Sample ID:	6	09092-00	1-014-1	/2	
Sample Date/Time:	09/18/2006 13:20		Percent Moisture:	1	5.22			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method	: S	W3550			
Prepared Date/Time:	09/22/2006 13:02		Analytical Method:	S	W8270C			
29) Dibenz(a,h)Anthra	cene	BQL	U	390	1	ug/kg	09/25/06	11:05
30) Dibenzofuran		BQL	U	390	1	ug/kg	09/25/06	11:05
31) Diethyl Phthalate		BQL	Ü	390	1	ug/kg	09/25/06	11:05
32) Dimethyl Phthalate	e	BQL	U	390	1	ug/kg	09/25/06	11:05
33) Fluoranthene		BQL	U	390	1	ug/kg	09/25/06	11:05
34) Fluorene	**.	BQL	U	390	1	ug/kg	09/25/06	11:05
35) Hexachlorobenzer	ne .	BQL	U	390	1	ug/kg	09/25/06	11:05
36) Indeno(1,2,3-c,d)F	yrene	BQL	U	390	1	ug/kg	09/25/06	11:05
37) Isophorone	to the second se	BQL	U	390	1	ug/kg	09/25/06	11:05
38) Naphthalene		BQL	U	390	1	ug/kg	09/25/06	11:05
39) Nitrobenzene		BQL	· U	390	1	ug/kg	09/25/06	11:05
40) Pentachloropheno	1	BQL	U	790	1	ug/kg	09/25/06	11:05
41) Phenanthrene	·	BQL	U	390	1	ug/kg	09/25/06	11:05
42) Phenol		BQL	U	390	1	ug/kg	09/25/06	11:05
43) Pyrene		BQL	U	390	1	ug/kg	09/25/06	11:05
44) bis(2-ethylhexyl) p	hthalate	BQL	U	390	1	ug/kg	09/25/06	11:05
45) di-n-Butyl Phthalat	e	160	J	390	1	ug/kg	09/25/06	11:05
46) di-n-Octyl Phthalat	te	BQL	U	390	1	ug/kg	09/25/06	11:05
# Surrogate Parame	ter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
47) 2,4,6-Tribromophe	enol	100 %	35 - 125		1		09/25/06	11:05
48) 2-Fluorobiphenyl		86 %	45 - 105		1		09/25/06	11:05
49) 2-Fluorophenol		75 %	35 - 105		1		09/25/06	11:05
50) Nitrobenzene-d5		77 %	35 - 100		1		09/25/06	11:05
51) Phenol-d5		75 %	40 - 100		1		09/25/06	11:05
52) p-Terphenyl-d14		120 %	30 - 125		1		09/25/06	11:05

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-001

Lab Sample ID:

609092-001-014-1/2

Sample Date/Time:

09/18/2006 13:20

Percent Moisture:

15.22

Receipt Date/Time:

09/19/2006 14:12

SW3550

Prepared Date/Time:

09/22/2006 00:00

Preparation Method:

Analytical Method:

SW8081A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 4,4-DDD	3.2		2.0	1	ug/kg	09/25/06	07:15
2) 4,4-DDE	BQL	U	2.0	1	ug/kg	09/25/06	07:15
3) 4,4-DDT	0.52	J	2.0	1	ug/kg	09/25/06	07:15
4) Aldrin	BQL	U	2.0	1	ug/kg	09/25/06	07:15
5) Alpha-BHC	BQL	U	2.0	1	ug/kg	09/25/06	07:15
6) Beta-BHC	BQL	U	2.0	1	ug/kg	09/25/06	07:15
7) Chlordane	BQL	U	39	1	ug/kg	09/25/06	07:15
8) Delta-BHC	BQL	U	2.0	1	ug/kg	09/25/06	07:15
9) Dieldrin	BQL	U	2.0	1	ug/kg	09/25/06	07:15
10) Endosulfan I	BQL	U	2.0	1	ug/kg	09/25/06	07:15
11) Endosulfan II	BQL	U	2.0	1	ug/kg	09/25/06	07:15
12) Endosulfan Sulfate	BQL	U	2.0	1	ug/kg	09/25/06	07:15
13) Endrin	BQL	U	2.0	1	ug/kg	09/25/06	07:15
14) Gamma-BHC (Lindane)	BQL	U	2.0	1	ug/kg	09/25/06	07:15
15) Heptachlor	BQL	U	2.0	1	ug/kg	09/25/06	07:15
16) Heptachlor Epoxide	BQL	U	2.0	1	ug/kg	09/25/06	07:15
17) Methoxychlor	BQL	U	2.0	1	ug/kg	09/25/06	07:15
	Percent	Control		Dil		Analy	
# Surrogate Parameter	Recovery	Limits		Fact		Date/	-
18) Decachlorobiphenyl	86 %	36 - 120		1		09/25/06	07:15
19) Decachlorobiphenyl	80 %	36 - 120		,1		09/25/06	07:15
20) Tetrachloro-m-xylene	77 %	36 - 120		1		09/25/06	07:15
21) Tetrachloro-m-xylene	70 %	36 - 120		1		09/25/06	07:15

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-002

Lab Sample ID:

609092-002-003-1/1

Sample Date/Time:

09/18/2006 13:35

Percent Moisture:

8.41

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW5030B

Prepared Date/Time:

09/26/2006 09:00

Analytical Method: SW8260B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL	U	5.5	1	ug/kg	09/26/06	11:42
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.5	1	ug/kg	09/26/06	11:42
3) 1,1,2-Trichloroethane	BQL	U	5.5	1	ug/kg	09/26/06	11:42
4) 1,1-Dichloroethane	BQL	U	5.5	1	ug/kg	09/26/06	11:42
5) 1,1-Dichloroethene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
6) 1,2-Dichlorobenzene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
7) 1,2-Dichloroethane	BQL	U	5.5	1	ug/kg	09/26/06	11:42
8) 1,3-Dichlorobenzene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
9) 1,4-Dichlorobenzene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
10) 2-Butanone	BQL	U	11	1	ug/kg	09/26/06	11:42
11) 4-Methyl-2-Pentanone	BQL	U	11	1	ug/kg	09/26/06	11:42
12) Acetone	BQL	U	11	1	ug/kg	09/26/06	11:42
13) Benzene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
14) Bromomethane	BQL	U	11	1	ug/kg	09/26/06	11:42
15) Carbon Disulfide	BQL	U	5.5	1	ug/kg	09/26/06	11:42
16) Carbon Tetrachloride	BQL	U	5.5	1	ug/kg	09/26/06	11:42
17) Chlorobenzene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
18) Chloroethane	BQL	U	11	1	ug/kg	09/26/06	11:42
19) Chloroform	3.5	J	5.5	1	ug/kg	09/26/06	11:42
20) Chloromethane	BQL	U	11	1	ug/kg	09/26/06	11:42
21) Dibromochloromethane	BQL	U	5.5	1	ug/kg	09/26/06	11:42
22) Ethylbenzene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
23) Freon 113	BQL	U	5.5	1	ug/kg	09/26/06	11:42
24) Methylene Chloride	BQL	U	11	1	ug/kg	09/26/06	11:42
25) Styrene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
26) Tetrachloroethylene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
27) Toluene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
28) Trichloroethene	BQL	U	5.5	1	ug/kg	09/26/06	11:42

	· · · · · · · · · · · · · · · · · · ·							
Client Name:	Shaw E&I, Inc		Sample Matrix:	S	OIL			
Client Sample ID:	EX-AOI5-002		Lab Sample ID:	60	9092-00	2-003-1	/1	
Sample Date/Time:	09/18/2006 13:35		Percent Moisture	e: 8.	41			
Receipt Date/Time:	09/19/2006 14:12		Preparation Meth	nod: S\	N5030B			
Prepared Date/Time:	09/26/2006 09:00		Analytical Metho	d: S\	N8260B			
29) Vinyl Chloride		BQL	. U	11	1	ug/kg	09/26/06	11:42
30) Xylenes, Total		BQL	. U	5.5	1	ug/kg	09/26/06	11:42
31) trans-1,2-dichloroe	ethene	BQL	U	5.5	1	ug/kg	09/26/06	11:42
£								
# Surrogate Parame	ter ·	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
32) 1,2-Dichlorobenze	ne-d4	102 %	65 - 123		1		09/26/06	11:42
33) 1,2-Dichloroethane	e-d4	86 %	65 - 125		1		09/26/06	11:42
34) 4-Bromofluorobenz	zene	115 %	85 - 120		1		09/26/06	11:42
35) Toluene-D8		94 %	85 - 115	-	1		09/26/06	11:42

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-002

Sample Date/Time:

09/18/2006 13:35

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/23/2006 00:00

Sample Matrix:

Lab Sample ID:

609092-002-016-1/1

Percent Moisture:

8.41

SOIL

Preparation Method:

SW3050B

Analytical Method:

SW6010B

# D	Reported	_	Reporting	Dil		Analy	
# Parameter	Result	Q	Limit	Fact	Units	Date/	Time
1) Aluminum	14000	В	18	1	mg/kg	09/25/06	18:51
2) Antimony	0.31	JN	1.8	1	mg/kg	09/25/06	18:51
3) Arsenic	8.0		1.8	1	mg/kg	09/25/06	18:51
4) Barium	92.7	N	0.45	1	mg/kg	09/25/06	18:51
5) Beryllium	0.73	EB	0.18	1	mg/kg	09/25/06	18:51
6) Cadmium	0.35	JB	0.54	1	mg/kg	09/25/06	18:51
7) Calcium	49100	*	90.2	1	mg/kg	09/25/06	18:51
8) Chromium	21.1		0.45	1	mg/kg	09/25/06	18:51
9) Cobalt	13.4	В	0.45	1	mg/kg	09/25/06	18:51
10) Copper	42.3	В	0.9	1	mg/kg	09/25/06	18:51
11) Iron	29800	В	13.5	1	mg/kg	09/25/06	18:51
12) Lead	13.2		0.9	1	mg/kg	09/25/06	18:51
13) Magnesium	8150	В	22.6	1	mg/kg	09/25/06	18:51
14) Manganese	860	В	0.45	1	mg/kg	09/25/06	18:51
15) Nickel	34.8		0.9	1	mg/kg	09/25/06	18:51
16) Potassium	2230	NB	22.6	1	mg/kg	09/25/06	18:51
17) Selenium	BQL	U	1.8	1	mg/kg	09/25/06	18:51
18) Silver	BQL	U	0.45	1	mg/kg	09/25/06	18:51
19) Thallium	0.86	J	2.7	1	mg/kg	09/25/06	18:51
20) Vanadium	24.2	В	. 0.9	1	mg/kg	09/25/06	18:51
21) Zinc	78.0		1.8	1	mg/kg	09/25/06	18:51

Client Name:

Shaw E&I, Inc

EX-AOI5-002

Client Sample ID: Sample Date/Time:

09/18/2006 13:35

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 21:00

Sample Matrix:

SOIL

Lab Sample ID:

609092-002-016-1/1

Percent Moisture:

8.41

Preparation Method:

SW7471_DIG

Analytical Method:

SW7471A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Mercury	0.018	J	0.034	1	mg/kg	09/23/06	16:28

Client Name:

Shaw E&I, Inc

EX-AOI5-002

Sample Date/Time:

Client Sample ID:

09/18/2006 13:35

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

Sample Matrix:

SOIL

Lab Sample ID:

609092-002-016-1/1

Percent Moisture:

8.41

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/T	
1) Percent Solids	92	1.0	1	%	09/22/06	15:27

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

8.41

Client Sample ID:

EX-AOI5-002

Lab Sample ID:

609092-002-025-1/1

Sample Date/Time:

09/18/2006 13:35

Percent Moisture:

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW3550

Prepared Date/Time:

09/22/2006 13:02

Analytical Method:

SW8270C

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 2,4,5-Trichlorophenol	BQL	U	360	1	ug/kg	09/25/06	13:13
2) 2,4-Dichlorophenol	BQL	U	360	1	ug/kg	09/25/06	13:13
3) 2,4-Dinitrophenol	BQL	U	730	1	ug/kg	09/25/06	13:13
4) 2,6-Dinitrotoluene	BQL	U	360	1	ug/kg	09/25/06	13:13
5) 2-Chlorophenol	BQL	U	360	1	ug/kg	09/25/06	13:13
6) 2-Methylnaphthalene	BQL	U	360	1	ug/kg	09/25/06	13:13
7) 2-Nitroaniline	BQL	U	360	1	ug/kg	09/25/06	13:13
8) 2-Nitrophenol	BQL	U	360	1	ug/kg	09/25/06	13:13
9) 2-methylphenol	BQL	U	360	1	ug/kg	09/25/06	13:13
10) 3,3-Dichlorobenzidine	BQL	U	730	1	ug/kg	09/25/06	13:13
11) 3-Nitroaniline	BQL	U	360	1	ug/kg	09/25/06	13:13
12) 4-Chloroaniline	BQL	U	360	1	ug/kg	09/25/06	13:13
13) 4-Nitroaniline	BQL	U	360	1	ug/kg	09/25/06	13:13
14) 4-Nitrophenol	BQL	U	730	1	ug/kg	09/25/06	13:13
15) 4-chloro-3-methylphenol	BQL	U	360	1	ug/kg	09/25/06	13:13
16) 4-methylphenol	BQL	U	360	1	ug/kg	09/25/06	13:13
17) Acenaphthene	BQL	U	360	1	u g/kg	09/25/06	13:13
18) Acenaphthylene	BQL	U	360	1	ug/kg	09/25/06	13:13
19) Aniline (Phenylamine, Aminobenzene)	BQL	U	360	1	ug/kg	09/25/06	13:13
20) Anthracene	BQL	U	360	1	ug/kg	09/25/06	13:13
21) Benzo(a)anthracene	BQL	U	360	1	ug/kg	09/25/06	13:13
22) Benzo(a)pyrene	BQL	U	360	1	ug/kg	09/25/06	13:13
23) Benzo(b)fluoranthene	BQL	U	360	1	ug/kg	09/25/06	13:13
24) Benzo(g,h,i)perylene	BQL	U	360	1	ug/kg	09/25/06	13:13
25) Benzo(k)fluoranthene	BQL	U	360	1	ug/kg	09/25/06	13:13
26) Benzoic Acid	BQL	U	730	1	ug/kg	09/25/06	13:13
27) Benzyl Butyl Phthalate	BQL	U	360	1	ug/kg	09/25/06	13:13
28) Chrysene	BQL	U	360	1	ug/kg	09/25/06	13:13

		7 titaly tiodi Od	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					,
Client Name:	Shaw E&I, Inc		Sample Matrix:	5	SOIL			
Client Sample ID:	EX-AOI5-002		Lab Sample ID:	6	09092-00	/1		
Sample Date/Time:	09/18/2006 13:35		Percent Moisture:	8	3.41			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method	: 8	SW3550			
Prepared Date/Time:	09/22/2006 13:02		Analytical Method:	S	SW8270C			
29) Dibenz(a,h)Anthra	cene	BQL	U	360	1	ug/kg	09/25/06	13:13
30) Dibenzofuran		BQL	U	360	1	ug/kg	09/25/06	13:13
31) Diethyl Phthalate		BQL	U	360	1	ug/kg	09/25/06	13:13
32) Dimethyl Phthalate	•	BQL	.U	360	1	ug/kg	09/25/06	13:13
33) Fluoranthene		BQL	U	360	1	ug/kg	09/25/06	13:13
34) Fluorene		BQL	U	360	1	ug/kg	09/25/06	13;13
35) Hexachlorobenzer	ne	BQL	U	360	1	ug/kg	09/25/06	13:13
36) Indeno(1,2,3-c,d)P	yrene	BQL	Ų	360	1	ug/kg	09/25/06	13:13
37) Isophorone		BQL	U	360	1	ug/kg	09/25/06	13:13
38) Naphthalene		BQL	U	360	1	ug/kg	09/25/06	13:13
39) Nitrobenzene		BQL	U	360	1	ug/kg	09/25/06	13:13
40) Pentachlorophenol	[·	BQL	U	730	1	ug/kg	09/25/06	13:13
41) Phenanthrene		BQL	U	360	1	ug/kg	09/25/06	13:13
42) Phenol		BQL	U	360	1	ug/kg	09/25/06	13:13
43) Pyrene		BQL	U	360	1	ug/kg	09/25/06	13:13
14) bis(2-ethylhexyl) pl	hthalate	BQL	U	360	1	ug/kg	09/25/06	13:13
45) di-n-Butyl Phthalat	e	120	J	360	1	ug/kg	09/25/06	13:13
46) di-n-Octyl Phthalat	e	BQL	U	360	1	ug/kg	09/25/06	13:13
# Surrogate Parame	ter	Percent Recovery	Control Limits		Dil Fact		Analy Date/1	
47) 2,4,6-Tribromophe	nol	49 %	35 - 125		1		09/25/06	13:13
18) 2-Fluorobiphenyl		38 %	45 - 105		1		09/25/06	13:13
19) 2-Fluorophenol		31 %	35 - 105		1		09/25/06	13:13
50) Nitrobenzene-d5		32 %	35 - 100		1		09/25/06	13:13
51) Phenol-d5		33 %	40 - 100		1		09/25/06	13:13
52) p-Terphenyl-d14		59 %	30 - 125		- 1		09/25/06	13:13

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-002

Sample Date/Time:

09/18/2006 13:35

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609092-002-025-1/1

Percent Moisture:

8.41

Preparation Method:

SW3550

Analytical Method:

SW8081A

•							
# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 4,4-DDD	BQL	U	1.8	1	ug/kg	09/25/06	01:47
2) 4,4-DDE	BQL	U	1.8	1	ug/kg	09/25/06	01:47
3) 4,4-DDT	BQL	U	1.8	1	ug/kg	09/25/06	01:47
4) Aldrin	BQL	U	1.8	1	ug/kg	09/25/06	01:47
5) Alpha-BHC	BQL	U	1.8	1	ug/kg	09/25/06	01:47
6) Beta-BHC	BQL	U	1.8	1	ug/kg	09/25/06	01:47
7) Chlordane	BQL	U	36	1	ug/kg	09/25/06	01:47
8) Delta-BHC	BQL	U	1.8	1	ug/kg	09/25/06	01:47
9) Dieldrin	BQL	U	1.8	1	ug/kg	09/25/06	01:47
10) Endosulfan I	BQL	U	1.8	1	ug/kg	09/25/06	01:47
11) Endosulfan II	BQL	U	1.8	1	ug/kg	09/25/06	01:47
12) Endosulfan Sulfate	BQL	U	1.8	1	ug/kg	09/25/06	01:47
13) Endrin	BQL	U	1.8	1	ug/kg	09/25/06	01:47
14) Gamma-BHC (Lindane)	0.64	J	1.8	1	ug/kg	09/25/06	01:47
15) Heptachlor	BQL	U	1.8	1	ug/kg	09/25/06	01:47
16) Heptachlor Epoxide	BQL	U	1.8	1	ug/kg	09/25/06	01:47
17) Methoxychlor	BQL	U	1.8	1	ug/kg	09/25/06	01:47
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
18) Decachlorobiphenyl	89 %	36 - 120		1		09/25/06	01:47
19) Decachlorobiphenyl	85 %	36 - 120		1		09/25/06	01:47
20) Tetrachloro-m-xylene	77 %	36 - 120		1		09/25/06	01:47
21) Tetrachloro-m-xylene	70 %	36 - 120		1		09/25/06	01:47

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

13.35

Client Sample ID:

EX-AOI5-003

Lab Sample ID:

609092-003-004-1/1

Sample Date/Time:

09/18/2006 14:50

Percent Moisture:

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW5030B

Prepared Date/Time:

09/25/2006 08:22

Analytical Method:

SW8260B

	Reported		Reporting	Δnalv	nalysis		
# Parameter	Result	Q	Limit	Dil Fact	Units	Date/	
1) 1,1,1-Trichloroethane	BQL	U	5.8	1	ug/kg	09/25/06	13:33
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.8	1	ug/kg	09/25/06	13:33
3) 1,1,2-Trichloroethane	BQL	U	5.8	1	ug/kg	09/25/06	13:33
4) 1,1-Dichloroethane	BQL	U	5.8	1	ug/kg	09/25/06	13:33
5) 1,1-Dichloroethene	BQL	U	5.8	1	ug/kg	09/25/06	13:33
6) 1,2-Dichlorobenzene	BQL	U	5.8	1 .	ug/kg	09/25/06	13:33
7) 1,2-Dichloroethane	BQL	U	5.8	1	ug/kg	09/25/06	13:33
8) 1,3-Dichlorobenzene	BQL	U	5.8	1	ug/kg	09/25/06	13:33
9) 1,4-Dichlorobenzene	BQL	U	5.8	1	ug/kg	09/25/06	13:33
10) 2-Butanone	BQL	U	12	1	ug/kg	09/25/06	13:33
11) 4-Methyl-2-Pentanone	BQL	U	12	1	ug/kg	09/25/06	13:33
12) Acetone	BQL	U	12	1	ug/kg	09/25/06	13:33
13) Benzene	BQL	U	5.8	1	ug/kg	09/25/06	13:33
14) Bromomethane	BQL	U	12	1	ug/kg	09/25/06	13:33
15) Carbon Disulfide	BQL	U	5.8	1	ug/kg	09/25/06	13:33
16) Carbon Tetrachloride	BQL	U	5.8	1	ug/kg	09/25/06	13:33
17) Chlorobenzene	BQL	U	5.8	1	ug/kg	09/25/06	13:33
18) Chloroethane	BQL	U	12	1	ug/kg	09/25/06	13:33
19) Chloroform	65		5.8	1	ug/kg	09/25/06	13:33
20) Chloromethane	BQL	U	12	1	ug/kg	09/25/06	13:33
21) Dibromochloromethane	BQL	U	5.8	1	ug/kg	09/25/06	13:33
22) Ethylbenzene	BQL	U	5.8	1	ug/kg	09/25/06	13:33
23) Freon 113	BQL	U	5.8	1	ug/kg	09/25/06	13:33
24) Methylene Chloride	BQL	U	12	1	ug/kg	09/25/06	13:33
25) Styrene	BQL	U	5.8	1	ug/kg	09/25/06	13:33
26) Tetrachloroethylene	BQL	U	5.8	1	ug/kg	09/25/06	13:33
27) Toluene	BQL	U	5.8	1	ug/kg	09/25/06	13:33
28) Trichloroethene	BQL	U	5.8	1	ug/kg	09/25/06	13:33

Client Name:	Shaw E&I, Inc		Sample Matrix:	S	OIL			
Client Sample ID:	EX-AOI5-003		Lab Sample ID:	60	9092-00	3-004-1	/1	
Sample Date/Time:	09/18/2006 14:50		Percent Moisture:	13	3.35			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method:	SI	N5030B			
Prepared Date/Time:	09/25/2006 08:22		Analytical Method:	SI	W8260B			
29) Vinyl Chloride		BQL	U	12	1	ug/kg	09/25/06	13:33
30) Xylenes, Total		BQL	U	5.8	1	ug/kg	09/25/06	13:33
31) trans-1,2-dichloroe	ethene	BQL	U	5.8	1	ug/kg	09/25/06	13:33
:								
# Surrogate Parame	ter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
32) 1,2-Dichlorobenze	ne-d4	99 %	65 - 123		1		09/25/06	13:33
33) 1,2-Dichloroethane	e-d4	85 %	65 - 125		1		09/25/06	13:33
34) 4-Bromofluoroben:	zene	109 %	85 - 120		1		09/25/06	13:33
35) Toluene-D8		91 %	85 - 115		1		09/25/06	13:33

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-003

Sample Date/Time:

09/18/2006 14:50

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/23/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609092-003-017-1/1

Percent Moisture:

13.35

Preparation Method:

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum	15300	В	19.2	1	mg/kg	09/25/06	18:59
2) Antimony	0.51	JN	1.9	1	mg/kg	09/25/06	18:59
3) Arsenic	6.9		1.9	1	mg/kg	09/25/06	18:59
4) Barium	61.8	N	0.48	1	mg/kg	09/25/06	18:59
5) Beryllium	0.77	EB	0.19	1	mg/kg	09/25/06	18:59
6) Cadmium	0.30	JB	0.58	1	mg/kg	09/25/06	18:59
7) Calcium	20700	*	96.2	1	mg/kg	09/25/06	18:59
8) Chromium	24.0		0.48	1	mg/kg	09/25/06	18:59
9) Cobalt	13.7	В	0.48	1	mg/kg	09/25/06	18:59
10) Copper	38.6	В	0.96	1	mg/kg	09/25/06	18:59
11) Iron	32900	В	14.4	1	mg/kg	09/25/06	18:59
12) Lead	16.5		0.96	1	mg/kg	09/25/06	18:59
13) Magnesium	9090	В	24	1	mg/kg	09/25/06	18:59
14) Manganese	492	В	0.48	1	mg/kg	09/25/06	18:59
15) Nickel	33.8		0.96	1	mg/kg	09/25/06	18:59
16) Potassium	2300	NB	24	1	mg/kg	09/25/06	18:59
17) Selenium	BQL	U	1.9	1	mg/kg	09/25/06	18:59
18) Silver	BQL	U	0.48	1	mg/kg	09/25/06	18:59
19) Thallium	 1.3	J	2.9	1	mg/kg	09/25/06	18:59
20) Vanadium	26.8	В	0.96	1	mg/kg	09/25/06	18:59
21) Zinc	85.3		1.9	1	mg/kg	09/25/06	18:59

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-003

Lab Sample ID:

609092-003-017-1/1

Sample Date/Time:

09/18/2006 14:50

Percent Moisture:

13.35

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW7471_DIG

Prepared Date/Time:

09/22/2006 21:00

Analytical Method:

SW7471A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Mercury	0.037	J	0.038	1	mg/kg	09/23/06	16:31

Version 2.4.2 (Build 0)

Client Name:

Shaw E&I, Inc

EX-AOI5-003

Sample Date/Time:

Client Sample ID:

09/18/2006 14:50

Receipt Date/Time: Prepared Date/Time:

09/19/2006 14:12

Lab Sample ID:

Sample Matrix:

609092-003-017-1/1

Percent Moisture:

13.35

SOIL

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Percent Solids	87	1.0	1	%	09/22/06	15:27

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-003

Lab Sample ID:

609092-003-026-1/1

Sample Date/Time:

09/18/2006 14:50

Percent Moisture:

13.35

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

Prepared Date/Time:

09/22/2006 13:02

SW3550

Analytical Method:

SW8270C

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 2,4,5-Trichlorophenol	BQL	U	390	1	ug/kg	09/25/06	17:32
2) 2,4-Dichlorophenol	BQL	U	390	1	ug/kg	09/25/06	17:32
3) 2,4-Dinitrophenol	BQL	U	770	1	ug/kg	09/25/06	17:32
4) 2,6-Dinitrotoluene	BQL	U	390	1	ug/kg	09/25/06	17:32
5) 2-Chlorophenol	BQL	U	390	1	ug/kg	09/25/06	17:32
6) 2-Methylnaphthalene	BQL	U	390	1	ug/kg	09/25/06	17:32
7) 2-Nitroaniline	BQL	U	390	1	ug/kg	09/25/06	17:32
8) 2-Nitrophenol	BQL	U	390	1	ug/kg	09/25/06	17:32
9) 2-methylphenol	BQL	U	390	1	ug/kg	09/25/06	17:32
10) 3,3-Dichlorobenzidine	BQL	U	770	1	ug/kg	09/25/06	17:32
11) 3-Nitroaniline	BQL	U	390	1	ug/kg	09/25/06	17:32
12) 4-Chloroaniline	BQL	U	390	1	ug/kg	09/25/06	17:32
13) 4-Nitroaniline	BQL	U	390	1	ug/kg	09/25/06	17:32
14) 4-Nitrophenol	BQL	U	770	1	ug/kg	09/25/06	17:32
15) 4-chloro-3-methylphenol	BQL	U	390	1	ug/kg	09/25/06	17:32
16) 4-methylphenol	BQL	U	390	1	ug/kg	09/25/06	17:32
17) Acenaphthene	BQL	U	390	1	ug/kg	09/25/06	17:32
18) Acenaphthylene	BQL	U	390	1	ug/kg	09/25/06	17:32
19) Aniline (Phenylamine, Aminobenzene)	BQL	U	390	1	ug/kg	09/25/06	17:32
20) Anthracene	BQL	U	390	1	ug/kg	09/25/06	17:32
21) Benzo(a)anthracene	BQL	U	390	1	ug/kg	09/25/06	17:32
22) Benzo(a)pyrene	BQL	U	390	1	ug/kg	09/25/06	17:32
23) Benzo(b)fluoranthene	BQL	Ü	390	1	ug/kg	09/25/06	17:32
24) Benzo(g,h,i)perylene	BQL	U	390	1	ug/kg	09/25/06	17:32
25) Benzo(k)fluoranthene	BQL	U	390	1	ug/kg	09/25/06	17:32
26) Benzoic Acid	BQL	U	770	1	ug/kg	09/25/06	17:32
27) Benzyl Butyl Phthalate	BQL	U	390	1	ug/kg	09/25/06	17:32
28) Chrysene	BQL	U	390	1	ug/kg	09/25/06	17:32

Olicant Manager	Ob		0 1 11 11					
Client Name:	Shaw E&I, Inc		Sample Matrix:		SOIL			
Client Sample ID:	EX-AOI5-003		Lab Sample ID:		609092-00	3-026-1	/1	
Sample Date/Time:	09/18/2006 14:50	•	Percent Moisture:		13.35			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method	d:	SW3550			
Prepared Date/Time:	09/22/2006 13:02		Analytical Method:		SW8270C			
29) Dibenz(a,h)Anthra	cene	BQL	U	390) 1	ug/kg	09/25/06	17:32
30) Dibenzofuran		BQL	U	390) 1	ug/kg	09/25/06	17:32
31) Diethyl Phthalate		BQL	U	390	1	ug/kg	09/25/06	17:32
32) Dimethyl Phthalate		BQL	U	390	1	ug/kg	09/25/06	17:32
33) Fluoranthene		BQL	U	390	1	ug/kg	09/25/06	17:32
34) Fluorene		BQL	U	390	1	ug/kg	09/25/06	17:32
35) Hexachlorobenzer	ne	BQL	U	390	1	ug/kg	09/25/06	17:32
36) Indeno(1,2,3-c,d)P	yrene	BQL	U	390	.1	ug/kg	09/25/06	17:32
37) Isophorone		BQL	U	390	1	ug/kg	09/25/06	17:32
38) Naphthalene		BQL	U	390	1	ug/kg	09/25/06	17:32
39) Nitrobenzene		BQL	U	390	1	ug/kg	09/25/06	17:32
40) Pentachloropheno	<u> </u>	BQL	U	770	1	ug/kg	09/25/06	17:32
41) Phenanthrene		BQL	U	390	1	ug/kg	09/25/06	17:32
42) Phenol		BQL	U	390	1	ug/kg	09/25/06	17:32
43) Pyrene		BQL	U	390	1	ug/kg	09/25/06	17:32
44) bis(2-ethylhexyl) pl	hthalate	BQL	U	390	1	ug/kg	09/25/06	17:32
45) di-n-Butyl Phthalat	е	160	J	390	1	ug/kg	09/25/06	17:32
46) di-n-Octyl Phthalat	e	BQL	U	390	1	ug/kg	09/25/06	17:32
# Surrogate Parame	ter	Percent Recovery	Control Limits		Dil Fact	-	Analy Date/1	
47) 2,4,6-Tribromophe	nol	96 %	35 - 125		1		09/25/06	17:32
18) 2-Fluorobiphenyl		89 %	45 - 105		1		09/25/06	17:32
19) 2-Fluorophenol		73 %	35 - 105		1		09/25/06	17:32
50) Nitrobenzene-d5		77 %	35 - 100		1		09/25/06	17:32
51) Phenol-d5		71 %	40 - 100		1		09/25/06	17:32
52) p-Terphenyl-d14		112 %	30 - 125		1		09/25/06	17:32

Client Name:

Shaw E&I, Inc

EX-AOI5-003

Sample Matrix: Lab Sample ID: SOIL

Client Sample ID:

609092-003-026-1/1

Sample Date/Time:

09/18/2006 14:50

Percent Moisture:

13.35

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW3550

Prepared Date/Time:

09/22/2006 00:00

Analytical Method:

SW8081A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Anal <u>y</u> Date/	
1) 4,4-DDD	12	Р	1.9	1	ug/kg	09/25/06	02:17
2) 4,4-DDE	BQL	U	1.9	1	ug/kg	09/25/06	02:17
3) 4,4-DDT	34	Р	1.9	1	ug/kg	09/25/06	02:17
4) Aldrin	BQL	U	1.9	1	ug/kg	09/25/06	02:17
5) Alpha-BHC	BQL	U	1.9	1	ug/kg	09/25/06	02:17
6) Beta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	02:17
7) Chlordane	BQL	U	38	1	ug/kg	09/25/06	02:17
8) Delta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	02:17
9) Dieldrin	14	P	1.9	1	ug/kg	09/25/06	02:17
10) Endosulfan I	BQL	U	1.9	1	ug/kg	09/25/06	02:17
11) Endosulfan II	BQL	U	1.9	1	ug/kg	09/25/06	02:17
12) Endosulfan Sulfate	BQL	U	1.9	1	ug/kg	09/25/06	02:17
13) Endrin	BQL	U	1.9	1	ug/kg	09/25/06	02:17
14) Gamma-BHC (Lindane)	BQL	U	1.9	1	ug/kg	09/25/06	02:17
15) Heptachlor	BQL	U	1.9	1	ug/kg	09/25/06	02:17
16) Heptachlor Epoxide	BQL	U	1.9	1	ug/kg	09/25/06	02:17
17) Methoxychlor	7.9	P	1.9	1	ug/kg	09/25/06	02:17
# Surrogate Parameter	Percent Recovery	Control Limits	•	Dil Fact		Analy Date/	
18) Decachlorobiphenyl	93 %	36 - 120		1		09/25/06	02:17
19) Decachlorobiphenyl	98 %	36 - 120		1		09/25/06	02:17
20) Tetrachloro-m-xylene	88 %	36 - 120		1		09/25/06	02:17

21) Tetrachloro-m-xylene

02:17

09/25/06

91%

36 - 120

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-004

Lab Sample ID:

609092-004-005-1/1

Sample Date/Time:

09/18/2006 16:05

11.78

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW5030B

Prepared Date/Time: 09/25/2006 08:22 Analytical Method:

Percent Moisture:

SW8260B

# Parameter 1) 1,1,1-Trichloroethane 2) 1,1,2,2-Tetrachloroethane	Reported Result BQL BQL		Reporting Limit 5.7	Dil Fact	Units	Analy Date/	
			5.7				
2) 1,1,2,2-Tetrachloroethane	BQL		J	· 1	ug/kg	09/25/06	14:09
		U	5.7	1	ug/kg	09/25/06	14:09
3) 1,1,2-Trichloroethane	BQL	U	5.7	1	ug/kg	09/25/06	14:09
4) 1,1-Dichloroethane	BQL	U	5.7	1	ug/kg	09/25/06	14:09
5) 1,1-Dichloroethene	BQL	U	5.7	1	ug/kg	09/25/06	14:09
6) 1,2-Dichlorobenzene	BQL	U	5.7	1	ug/kg	09/25/06	14:09
7) 1,2-Dichloroethane	BQL	U	5.7	1	ug/kg	09/25/06	14:09
8) 1,3-Dichlorobenzene	BQL	U	5.7	1	ug/kg	09/25/06	14:09
9) 1,4-Dichlorobenzene	BQL	U	5.7	1	ug/kg	09/25/06	14:09
10) 2-Butanone	BQL	U	11	1	ug/kg	09/25/06	14:09
11) 4-Methyl-2-Pentanone	BQL	U	11	1	ug/kg	09/25/06	14:09
12) Acetone	BQL	U	11	1	ug/kg	09/25/06	14:09
13) Benzene	BQL	U	5.7	1	ug/kg	09/25/06	14:09
14) Bromomethane	BQL	U	11	1	ug/kg	09/25/06	14:09
15) Carbon Disulfide	BQL	U	5.7	1	ug/kg	09/25/06	14:09
16) Carbon Tetrachloride	BQL	U	5.7	1	ug/kg	09/25/06	14:09
17) Chlorobenzene	BQL	U	5.7	1	ug/kg	09/25/06	14:09
18) Chioroethane	BQL	U	11	1	ug/kg	09/25/06	14:09
19) Chloroform	320	E	5.7	1	ug/kg	09/25/06	14:09
20) Chloromethane	BQL	U	11	1	ug/kg	09/25/06	14:09
21) Dibromochloromethane	BQL	U	5.7	1	ug/kg	09/25/06	14:09
22) Ethylbenzene	BQL	U	5.7	1	ug/kg	09/25/06	14:09
23) Freon 113	BQL	U	5.7	1	ug/kg	09/25/06	14:09
24) Methylene Chloride	BQL	U	11	1	ug/kg	09/25/06	14:09
25) Styrene	BQL	U	5.7	1	ug/kg	09/25/06	14:09
26) Tetrachioroethylene	BQL	U	5.7	1	ug/kg	09/25/06	14:09
27) Toluene	BQL	U	5.7	1	ug/kg	09/25/06	14:09
28) Trichloroethene	BQL	U	5.7	1	ug/kg	09/25/06	14:09

Client Name:	Shaw E&I, Inc		San	nple Matrix:	S	OIL			
Client Sample ID:	EX-AOI5-004		Lab	Sample ID:	6	09092-00	4-005-1	/1	
Sample Date/Time:	09/18/2006 16:05		Perd	cent Moisture:	1	1.78			
Receipt Date/Time:	09/19/2006 14:12		Prep	paration Method:	S	W5030B			
Prepared Date/Time:	09/25/2006 08:22		Ana	lytical Method:	S	W8260B			
29) Vinyl Chloride		BQL	. U	* "	11	1	ug/kg	09/25/06	14:09
30) Xylenes, Total		BQL	. U		5.7	1	ug/kg	09/25/06	14:09
31) trans-1,2-dichloroe	ethene	BQL	U		5.7	1	ug/kg	09/25/06	14:09
# Surrogate Parame	ter	Percent Recovery		Control Limits		Dil Fact		Analy Date/	
32) 1,2-Dichlorobenze	ne-d4	106 %		65 - 123		. 1		09/25/06	14:09
33) 1,2-Dichloroethane	e-d4	89 %		65 - 125		1		09/25/06	14:09
34) 4-Bromofluoroben	zene	112 %		85 - 120		1		09/25/06	14:09
35) Toluene-D8		93 %		85 - 115		1		09/25/06	14.09

Client Name:

Shaw E&I, Inc

EX-AOI5-004DL

Client Sample ID: Sample Date/Time:

09/18/2006 16:05

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/26/2006 09:00

Sample Matrix:

Lab Sample ID:

609092-004-005-1/1DL

Percent Moisture:

11.78

SOIL

Preparation Method:

SW5030B

Analytical Method:

SW8260B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL	U	28	5	ug/kg	09/26/06	11:05
2) 1,1,2,2-Tetrachloroethane	BQL	U	28	5	ug/kg	09/26/06	11:05
3) 1,1,2-Trichloroethane	BQL	U	28	5	ug/kg	09/26/06	11:05
4) 1,1-Dichloroethane	BQL	U	28	5	ug/kg	09/26/06	11:05
5) 1,1-Dichloroethene	BQL	U	28	5	ug/kg	09/26/06	11:05
6) 1,2-Dichlorobenzene	BQL	U	28	5	ug/kg	09/26/06	11:05
7) 1,2-Dichloroethane	BQL	U	28	5	ug/kg	09/26/06	11:05
8) 1,3-Dichlorobenzene	BQL	U	28	5	ug/kg	09/26/06	11:05
9) 1,4-Dichlorobenzene	BQL	U	28	5	ug/kg	09/26/06	11:05
10) 2-Butanone	BQL	U	57	5	ug/kg	09/26/06	11:05
11) 4-Methyl-2-Pentanone	BQL	U	57	5	ug/kg	09/26/06	11:05
12) Acetone	BQL	U	57	5	ug/kg	09/26/06	11:05
13) Benzene	BQL	U	28	5	ug/kg	09/26/06	11:05
14) Bromomethane	BQL	U	57	5	ug/kg	09/26/06	11:05
15) Carbon Disulfide	BQL	U	28	5	ug/kg	09/26/06	1 1:05
16) Carbon Tetrachloride	BQL	U	28	5	ug/kg	09/26/06	11:05
17) Chlorobenzene	BQL	U	28	5	ug/kg	09/26/06	11:05
18) Chloroethane	BQL	U	57	5	ug/kg	09/26/06	11:05
19) Chloroform	380		28	5	ug/kg	09/26/06	11:05
20) Chloromethane	BQL	U	57	5	ug/kg	09/26/06	11:05
21) Dibromochloromethane	BQL	U	28	5	ug/kg	09/26/06	11:05
22) Ethylbenzene	BQL	U	28	5	ug/kg	09/26/06	11:05
23) Freon 113	BQL	U	28	5	ug/kg	09/26/06	11:05
24) Methylene Chloride	BQL	U	57	5	ug/kg	09/26/06	11:05
25) Styrene	BQL	U	28	5	ug/kg	09/26/06	11:05
26) Tetrachloroethylene	BQL	U	28	5	ug/kg	09/26/06	11:05
27) Toluene	BQL	U	28	5	ug/kg	09/26/06	11:05
28) Trichloroethene	BQL	U	28	5	ug/kg	09/26/06	11:05

Client Name:	Shaw E&I, Inc		Sample Matrix:	SC) L				
Client Sample ID:	EX-AOI5-004DL		Lab Sample ID:		609092-004-005-1/1DL				
Sample Date/Time:	09/18/2006 16:05		Percent Moisture:	11.	78				
Receipt Date/Time:	09/19/2006 14:12	Preparation Method:		SW5030B					
Prepared Date/Time:	09/26/2006 09:00	Analytical Method:			SW8260B				
29) Vinyl Chloride		BQL	U	57	5	ug/kg	09/26/06	11:05	
30) Xylenes, Total		BQL	U	28	5	ug/kg	09/26/06	11:0	
31) trans-1,2-dichloroe	thene	BQL	U	28	5	ug/kg	09/26/06	11:05	
# Surrogate Parame	ter	Percent Recovery	Control Limits		Dil Fact		Analy Date/		
32) 1,2-Dichlorobenzei	ne-d4	101 %	65 - 123	•	5		09/26/06	11:0	
33) 1,2-Dichloroethane	e-d4	83 %	65 - 125		5		09/26/06	11:05	
34) 4-Bromofluorobenz	ene	110 %	85 - 120		5		09/26/06	11:05	
35) Toluene-D8		92 %	85 - 115		5		09/26/06	11:05	

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

11.78

Client Sample ID:

EX-AO15-004

Lab Sample ID:

609092-004-018-1/1

Sample Date/Time:

09/18/2006 16:05

Receipt Date/Time:

09/19/2006 14:12

Percent Moisture:

....

Prepared Date/Time:

09/23/2006 00:00

Preparation Method:

SW3050B

Analytical Method:

SW6010B

f i		Reported		Reporting	Dil		Analy	/sis
# Parameter		Result	Q	Limit	Fact	Units	Date/	
1) Aluminum		16500	В	18.4	1	mg/kg	09/25/06	19:07
2) Antimony		BQL	UN	1.8	1	mg/kg	09/25/06	19:07
3) Arsenic	• .	9.4		1.8	1	mg/kg	09/25/06	19:07
4) Barium		81.5	N	0.46	1	mg/kg	09/25/06	19:07
5) Beryllium		0.87	EB	0.18	1	mg/kg	09/25/06	19:07
6) Cadmium		0.18	JB	0.55	1	mg/kg	09/25/06	19:07
7) Calcium		8330	*	92.2	1	mg/kg	09/25/06	19:07
8) Chromium	·	26.4		0.46	1	mg/kg	09/25/06	19:07
9) Cobalt		15.7	В	0.46	1	mg/kg	09/25/06	19:07
10) Copper		45.2	В	0.92	1	mg/kg	09/25/06	19:07
11) Iron		36300	В	13.8	1	mg/kg	09/25/06	19:07
12) Lead		23.0		0.92	1	mg/kg	09/25/06	19:07
13) Magnesium		7920	В	23	1	mg/kg	09/25/06	19:07
14) Manganese		703	В	0.46	1	mg/kg	09/25/06	19:07
15) Nickel		36.8		0.92	1	mg/kg	09/25/06	19:07
16) Potassium		2040	NB	23	1	mg/kg	09/25/06	19:07
17) Selenium		BQL	U	1.8	1	mg/kg	09/25/06	19:07
18) Silver		BQL	U	0.46	1	mg/kg	09/25/06	19:07
19) Thallium		1.7	J	2.8	1	mg/kg	09/25/06	19:07
20) Vanadium		28.5	В	0.92	1	mg/kg	09/25/06	19:07
21) Zinc		95.6		1.8	1	mg/kg	09/25/06	19:07
	The second secon							

Version 2.4.2 (Build 0)

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-004

Lab Sample ID:

609092-004-018-1/1

Sample Date/Time:

09/18/2006 16:05

Percent Moisture:

11.78

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW7471_DIG

Prepared Date/Time:

09/22/2006 21:00

Analytical Method:

SW7471A

Parameter Reported Result

Reporting Dil Limit Fact

Units

Analysis Date/Time

1) Mercury

0.039

Q

0.036

1

mg/kg 09/23/06

16:33

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-004

Lab Sample ID:

609092-004-018-1/1

Sample Date/Time:

09/18/2006 16:05 09/19/2006 14:12 Percent Moisture:

11.78

Receipt Date/Time: Prepared Date/Time:

Preparation Method:

NΑ

Analytical Method:

CLP_SOLIDS

1) Percent Solids		· .	88	<u>.</u>	1.0	1	%	09/22/06	15:27
# Parameter			Result Q		Limit	Fact	Units	•	
			Reported		Reporting	Dil		Anal	veie

Client Name:

Shaw E&I, Inc

EX-AOI5-004

Client Sample ID: Sample Date/Time:

09/18/2006 16:05

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 13:02

Sample Matrix:

Lab Sample ID:

609092-004-027-1/1

Percent Moisture:

11.78

SOIL

Preparation Method:

SW3550

Analytical Method:

SW8270C

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) 2,4,5-Trichlorophenol	BQL	U	380	1	ug/kg	09/25/06	18:16
2) 2,4-Dichlorophenol	BQL	U	380	1	ug/kg	09/25/06	18:16
3) 2,4-Dinitrophenol	BQL	U	760	1	ug/kg	09/25/06	18:16
4) 2,6-Dinitrotoluene	BQL	U	380	1	ug/kg	09/25/06	18:16
5) 2-Chlorophenol	BQL	U	380	1	ug/kg	09/25/06	18:16
6) 2-Methylnaphthalene	BQL	U	380	1	ug/kg	09/25/06	18:16
7) 2-Nitroaniline	BQL	U	380	1	ug/kg	09/25/06	18:16
8) 2-Nitrophenol	BQL	U	380	1	ug/kg	09/25/06	18:16
9) 2-methylphenol	BQL	U	380	1	ug/kg	09/25/06	18:16
10) 3,3-Dichlorobenzidine	BQL	U	760	1	ug/kg	09/25/06	18:16
11) 3-Nitroaniline	BQL	U	380	1 .	ug/kg	09/25/06	18:16
12) 4-Chloroaniline	BQL	U	380	1	ug/kg	09/25/06	18:16
13) 4-Nitroaniline	BQL	U	380	1	ug/kg	09/25/06	18:16
14) 4-Nitrophenol	BQL	U	760	1	ug/kg	09/25/06	18:16
15) 4-chloro-3-methylphenol	BQL	U	380	1	ug/kg	09/25/06	18:16
16) 4-methylphenol	BQL	U	380	1	ug/kg	09/25/06	18:16
17) Acenaphthene	BQL	U	380	1	ug/kg	09/25/06	18:16
18) Acenaphthylene	BQL	U	380	1	ug/kg	09/25/06	18:16
19) Aniline (Phenylamine, Aminobenzene)	BQL	U	380	1	ug/kg	09/25/06	18:16
20) Anthracene	BQL	U	380	1	ug/kg	09/25/06	18:16
21) Benzo(a)anthracene	BQL	U	380	1	ug/kg	09/25/06	18:16
22) Benzo(a)pyrene	BQL	U	380	1	ug/kg	09/25/06	18:16
23) Benzo(b)fluoranthene	BQL	U	380	1	ug/kg	09/25/06	18:16
24) Benzo(g,h,i)perylene	BQL	U	380	1	ug/kg	09/25/06	18:16
25) Benzo(k)fluoranthene	BQL	,U	380	1	ug/kg	09/25/06	18:16
26) Benzoic Acid	BQL	U	760	1	ug/kg	09/25/06	18:16
27) Benzyl Butyl Phthalate	BQL	U	380	1	ug/kg	09/25/06	18:16
28) Chrysene	BQL	U	380	1	ug/kg	09/25/06	18:16

Client Name:	Shaw E&I, Inc		Sample Matrix:	S	OIL			
Client Sample ID:	EX-AOI5-004		Lab Sample ID:	60	09092-00	4-027-1	/1	
Sample Date/Time:	09/18/2006 16:05		Percent Moisture:	11	1.78			
Receipt Date/Time:	09/19/2006 14:12	·	Preparation Method:	SI	W3550			
Prepared Date/Time:	09/22/2006 13:02		Analytical Method:	SI	W8270C			
29) Dibenz(a,h)Anthrad	cene	BQL	U	380	1	ug/kg	09/25/06	18:16
30) Dibenzofuran		BQL	U	380	1	ug/kg	09/25/06	18:16
31) Diethyl Phthalate		BQL	U	380	1	ug/kg	09/25/06	18:16
32) Dimethyl Phthalate		BQL	U	380	1	ug/kg	09/25/06	18:16
33) Fluoranthene		BQL	U	380	1	ug/kg	09/25/06	18:16
34) Fluorene		BQL	U	380	1	ug/kg	09/25/06	18:16
35) Hexachlorobenzen	e	BQL	U	380	1	ug/kg	09/25/06	18:16
36) Indeno(1,2,3-c,d)P	yrene	BQL	U	380	1	ug/kg	09/25/06	18:16
37) Isophorone		BQL	U	380	1	ug/kg	09/25/06	18:16
88) Naphthalene		BQL	U	380	1	ug/kg	09/25/06	18:16
39) Nitrobenzene		BQL	U	380	1	ug/kg	09/25/06	18:16
l0) Pentachlorophenol		BQL	U	760	1	ug/kg	09/25/06	18:16
11) Phenanthrene		BQL	U	380	1	ug/kg	09/25/06	18:16
12) Phenol		BQL	U	380	1	ug/kg	09/25/06	18:16
13) Pyrene		BQL	U	380	1	ug/kg	09/25/06	18:16
14) bis(2-ethylhexyl) pł	nthalate	BQL	U	380	1	ug/kg	09/25/06	18:16
15) di-n-Butyl Phthalate	9	170	J	380	1	ug/kg	09/25/06	18:16
16) di-n-Octyl Phthalate	9	BQL	U	380	1	ug/kg	09/25/06	18:16
# Surrogate Paramet	er	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
17) 2,4,6-Tribromopher	nol	90 %	35 - 125		1		09/25/06	18:16
l8) 2-Fluorobiphenyl		74 %	45 - 105		1		09/25/06	18:16
9) 2-Fluorophenol		65 %	35 - 105		1		09/25/06	18:16
50) Nitrobenzene-d5		67 %	35 - 100		1		09/25/06	18:16
51) Phenol-d5		66 %	40 - 100		1		09/25/06	18:16
52) p-Terphenyl-d14		96 %	30 - 125		1		09/25/06	18:16

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-004

Sample Date/Time:

09/18/2006 16:05

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 00:00

Sample Matrix:

٠.

Lab Sample ID:

609092-004-027-1/1

Percent Moisture:

11.78

SOIL

Preparation Method:

SW3550

Analytical Method:

SW8081A

1

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 4,4-DDD	BQL	U	1.9	1	ug/kg	09/25/06	02:47
2) 4,4-DDE	BQL	U	1.9	1	ug/kg	09/25/06	02:47
3) 4,4-DDT	BQL	U	1.9	1	ug/kg	09/25/06	02:47
4) Aldrin	BQL	U	1.9	,1	ug/kg	09/25/06	02:47
5) Alpha-BHC	BQL	U	1.9	1	ug/kg	09/25/06	02:47
6) Beta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	02:47
7) Chlordane	BQL	U	38	1	ug/kg	09/25/06	02:47
8) Delta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	02:47
9) Dieldrin	BQL	U	1.9	1	ug/kg	09/25/06	02:47
10) Endosulfan I	BQL	U	1.9	1	ug/kg	09/25/06	02:47
11) Endosulfan II	BQL	U	1.9	1	ug/kg	09/25/06	02:47
12) Endosulfan Sulfate	BQL	U	1.9	1	ug/kg	09/25/06	02:47
13) Endrin	BQL	U	1.9	1	ug/kg	09/25/06	02:47
14) Gamma-BHC (Lindane)	BQL	U	1.9	1	ug/kg	09/25/06	02:47
15) Heptachlor	BQL	U	1.9	1	ug/kg	09/25/06	02:47
16) Heptachlor Epoxide	BQL	U	1.9	1	ug/kg	09/25/06	02:47
17) Methoxychlor	BQL	U	1.9	1	ug/kg	09/25/06	02:47
	Percent	Control		Dil		Anah	voio.
# Surrogate Parameter	Recovery	Limits	•	Fact		Analy Date/	
18) Decachlorobiphenyl	84 %	36 - 120)	1		09/25/06	02:47
19) Decachlorobiphenyl	80 %	36 - 120)	1		09/25/06	02:47

20) Tetrachloro-m-xylene

21) Tetrachloro-m-xylene

02:47

02:47

09/25/06

09/25/06

79 %

79 %

36 - 120

36 - 120

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-005

Sample Date/Time:

09/18/2006 13:45

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/26/2006 09:00

Sample Matrix:

ampio matrix.

Lab Sample ID:

609092-005-006-1/1

Percent Moisture:

9.97

SOIL

Preparation Method:

SW5030B

Analytical Method:

SW8260B

ical Method: SVV8260

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL	U	5.6	1	ug/kg	09/26/06	12:18
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.6	1	ug/kg	09/26/06	12:18
3) 1,1,2-Trichloroethane	BQL	U	5.6	1	ug/kg	09/26/06	12:18
4) 1,1-Dichloroethane	BQL	U	5.6	1	ug/kg	09/26/06	12:18
5) 1,1-Dichloroethene	BQL	Ü	5.6	1	ug/kg	09/26/06	12:18
6) 1,2-Dichlorobenzene	BQL	U	5.6	1	ug/kg	09/26/06	12:18
7) 1,2-Dichloroethane	BQL	U	5.6	1	ug/kg	09/26/06	12:18
8) 1,3-Dichlorobenzene	BQL	U	5.6	1	ug/kg	09/26/06	12:18
9) 1,4-Dichlorobenzene	BQL	U	5.6	1	ug/kg	09/26/06	12:18
10) 2-Butanone	BQL	U	11	1	ug/kg	09/26/06	12:18
11) 4-Methyl-2-Pentanone	BQL	U	11	1	ug/kg	09/26/06	12:18
12) Acetone	BQL	U	11	1	ug/kg	09/26/06	12:18
13) Benzene	BQL	U	5.6	1	ug/kg	09/26/06	12:18
14) Bromomethane	BQL	U	11	1	ug/kg	09/26/06	12:18
15) Carbon Disulfide	BQL	U	5.6	1	ug/kg	09/26/06	12:18
16) Carbon Tetrachloride	BQL	Ų	5.6	1	ug/kg	09/26/06	12:18
17) Chlorobenzene	BQL	U	5.6	1 .	ug/kg	09/26/06	12:18
18) Chloroethane	BQL	Ü	11	1	ug/kg	09/26/06	12:18
19) Chloroform	BQL	U	5.6	1	ug/kg	09/26/06	12:18
20) Chloromethane	BQL	U	11	1	ug/kg	09/26/06	12:18
21) Dibromochloromethane	BQL	U	5.6	1	ug/kg	09/26/06	12:18
22) Ethylbenzene	BQL	U	5.6	1	ug/kg	09/26/06	12:18
23) Freon 113	BQL	U	5.6	1	ug/kg	09/26/06	12:18
24) Methylene Chloride	BQL	U	11	1	ug/kg	09/26/06	12:18
25) Styrene	BQL	U	5.6	1	ug/kg	09/26/06	12:18
26) Tetrachloroethylene	BQL	Ų	5.6	1	ug/kg	09/26/06	12:18
27) Toluene	BQL	U	5.6	1	ug/kg	09/26/06	12:18
28) Trichloroethene	BQL	U	5.6	1	ug/kg	09/26/06	12:18

Client Name:	Shaw E&I, Inc		Sam	ple Matrix:	S	OIL			
Client Sample ID:	EX-AOI5-005		Lab :	Sample ID:	60	9092-00	5-006-1	/1	
Sample Date/Time:	09/18/2006 13:45		Perc	ent Moisture:	9.	97			
Receipt Date/Time:	09/19/2006 14:12		Prep	aration Method:	SI	N5030B			
Prepared Date/Time:	09/26/2006 09:00		Anal	ytical Method:	SI	W8260B			
29) Vinyl Chloride		BQL	. U		11	1	ug/kg	09/26/06	12:18
30) Xylenes, Total		BQL	. U		5.6	1	ug/kg	09/26/06	12:1
31) trans-1,2-dichloroe	ethene	BQL	U		5.6	1	ug/kg	09/26/06	12:18
# Surrogate Parame	ter	Percent Recovery		Control Limits		Dil Fact		Analy Date/	
32) 1,2-Dichlorobenze	ne-d4	107 %		65 - 123		1		09/26/06	12:18
33) 1,2-Dichloroethane	e-d4	87 %		65 - 125		• 1		09/26/06	12:18
34) 4-Bromofluorobenz	zene	115 %		85 - 120		1		09/26/06	12:1
35) Toluene-D8		94 %	•	85 - 115		1		09/26/06	12:1

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-005

Lab Sample ID:

609092-005-019-1/1

Sample Date/Time: Receipt Date/Time: 09/18/2006 13:45

Percent Moisture:

Preparation Method:

9.97

09/19/2006 14:12

SW3050B

Prepared Date/Time: 09/23/2006 00:00 Analytical Method:

SW6010B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Aluminum	18600	В	19	1	mg/kg	09/25/06	19:16
2) Antimony	0.41	JN	1.9	1	mg/kg	09/25/06	19:16
3) Arsenic	11.4		1.9	1	mg/kg	09/25/06	19:16
4) Barium	110	N	0.47	1	mg/kg	09/25/06	19:16
5) Beryllium	1.1	EB	0.19	1	mg/kg	09/25/06	19:16
6) Cadmium	0.27	JB	0.57	1	mg/kg	09/25/06	19:16
7) Calcium	4390	*	94.9	1	mg/kg	09/25/06	19:16
8) Chromium	26.6		0.47	1	mg/kg	09/25/06	19:16
9) Cobalt	19.4	В	0.47	1	mg/kg	09/25/06	19:16
10) Copper	49.9	В	0.95	1	mg/kg	09/25/06	19:16
11) Iron	38300	В	14.2	1	mg/kg	09/25/06	19:16
12) Lead	23.9		0.95	1	mg/kg	09/25/06	19:16
13) Magnesium	6550	В	23.7	1	mg/kg	09/25/06	19:16
14) Manganese	916	В	0.47	1	mg/kg	09/25/06	19:16
15) Nickel	41.8		0.95	1	mg/kg	09/25/06	19:16
16) Potassium	2040	NB	23.7	1	mg/kg	09/25/06	19:16
17) Selenium	BQL	U	1.9	1	mg/kg	09/25/06	19:16
18) Silver	BQL	U	0.47	1	mg/kg	09/25/06	19:16
19) Thallium	1.4	J	2.8	1	mg/kg	09/25/06	19:16
20) Vanadium	31.0	В	0.95	1	mg/kg	09/25/06	19:16
21) Zinc	104		1.9	1	mg/kg	09/25/06	19:16

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-005

Lab Sample ID:

609092-005-019-1/1

Sample Date/Time:

09/18/2006 13:45

Percent Moisture:

9.97

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW7471_DIG

Prepared Date/Time:

09/22/2006 21:00

Analytical Method:

SW7471A

Reported Parameter Result

Q

Reporting Limit

Dil Fact

Analysis Units

Date/Time

1) Mercury

0.036

0.033

mg/kg 1

09/23/06

16:35

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-005

Lab Sample ID:

609092-005-019-1/1

Sample Date/Time:

09/18/2006 13:45

Percent Moisture:

9.97

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

Prepared Date/Time:

Analytical Method:

NA

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/≀	
1) Percent Solids	90	1.0	1	%	09/22/06	15:27

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-005

Sample Date/Time:

09/18/2006 13:45

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 13:02

Sample Matrix:

: SOIL

Lab Sample ID:

609092-005-028-1/1

Percent Moisture:

9.97

Preparation Method:

SW3550

Analytical Method:

SW8270C

1) 2,4,5-Trichlorophenol BQL U 370 1 ug/kg 09/25/06 18:58 2) 2,4-Dichlorophenol BQL U 370 1 ug/kg 09/25/06 18:58 3) 2,4-Dinitrophenol BQL U 370 1 ug/kg 09/25/06 18:58 4) 2,6-Dinitrotoluene BQL U 370 1 ug/kg 09/25/06 18:58 5) 2-Chlorophenol BQL U 370 1 ug/kg 09/25/06 18:58 6) 2-Methylnaphthalene BQL U 370 1 ug/kg 09/25/06 18:58 6) 2-Methylnaphthalene BQL U 370 1 ug/kg 09/25/06 18:58 8) 2-Nitroanilline BQL U 370 1 ug/kg 09/25/06 18:58 9) 2-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 10) 3,3-Dichlorobenzidine BQL U 370 1 ug/kg 09/25/06 18:58 11) 3-Nitroanilline BQL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroanilline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroanilline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroanilline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroanilline BQL U 370 1 ug/kg 09/25/06 18:58 14) 4-Nitrophenol BQL U 370 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 17) Acenaphthene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(a)phrene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)phrene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)phrene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(a)phrene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(a)phrene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(a)phrene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(a)phrene BQL	# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
3) 2,4-Dinitrophenol BGL U 740 1 ug/kg 09/25/06 18:58 4) 2,6-Dinitrotoluene BGL U 370 1 ug/kg 09/25/06 18:58 5) 2-Chlorophenol BQL U 370 1 ug/kg 09/25/06 18:58 6) 2-Methylnaphthalene BQL U 370 1 ug/kg 09/25/06 18:58 7) 2-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 8) 2-Nitrophenol BQL U 370 1 ug/kg 09/25/06 18:58 9) 2-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 10) 3,3-Dichlorobenzidine BQL U 370 1 ug/kg 09/25/06 18:58 11) 3-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline BQL U 370 1 <th>1) 2,4,5-Trichlorophenol</th> <th>BQL</th> <th>U</th> <th>370</th> <th>1</th> <th>ug/kg</th> <th>09/25/06</th> <th>18:58</th>	1) 2,4,5-Trichlorophenol	BQL	U	370	1	ug/kg	09/25/06	18:58
A 2,6-Dinitrotoluene BQL U 370 1 ug/kg 09/25/06 18:58 5 2-Chlorophenol BQL U 370 1 ug/kg 09/25/06 18:58 6 2-Methylnaphthalene BQL U 370 1 ug/kg 09/25/06 18:58 7 2-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 8 2-Nitrophenol BQL U 370 1 ug/kg 09/25/06 18:58 9 2-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 9 2-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 10 3,3-Dichlorobenzidine BQL U 370 1 ug/kg 09/25/06 18:58 11 3-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 12 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13 4-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 14 4-Nitrophenol BQL U 370 1 ug/kg 09/25/06 18:58 15 4-chloro-3-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 17 Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19 Anilline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 19 Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 20 Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 21 Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 22 Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 23 Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24 Benzo(c)Acid BQL U 370 1 ug/kg 09/25/06 18:58 25 Benzo(c)Acid BQL U 370 1 ug/kg 09/25/06 18:58 25 Benzo(c)Acid BQL U 370 1 ug/kg 09/25/06 18:58 27 Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58 28 Benzolc Acid BQL U 370 1 ug/kg 09/25/06 18:58 28 Benzolc Acid BQL U 370 1 ug/kg 09/25/06 18:58 29	2) 2,4-Dichlorophenol	BQL	U	370	1	ug/kg	09/25/06	18:58
5) 2-Chlorophenol BQL U 370 1 ug/kg 09/25/06 18:58 6) 2-Methylnaphthalene BQL U 370 1 ug/kg 09/25/06 18:58 7) 2-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 8) 2-Nitrophenol BQL U 370 1 ug/kg 09/25/06 18:58 9) 2-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 10) 3,3-Dichlorobenzidine BQL U 370 1 ug/kg 09/25/06 18:58 11) 3-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol BQL U 370	3) 2,4-Dinitrophenol	BQL	U	740	1	ug/kg	09/25/06	18:58
6) 2-Methylnaphthalene BQL U 370 1 ug/kg 09/25/06 18:58 7) 2-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 8) 2-Nitrophenol BQL U 370 1 ug/kg 09/25/06 18:58 9) 2-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 10) 3,3-Dichlorobenzidine BQL U 370 1 ug/kg 09/25/06 18:58 11) 3-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 14) 4-Nitrophenol BQL U 370 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol BQL U 370	4) 2,6-Dinitrotoluene	BQL	U	370	1	ug/kg	09/25/06	18:58
7) 2-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 8) 2-Nitrophenol BQL U 370 1 ug/kg 09/25/06 18:58 9) 2-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 10) 3,3-Dichlorobenzidine BQL U 370 1 ug/kg 09/25/06 18:58 11) 3-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 14) 4-Nitrophenol BQL U 370 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol BQL U 370 1 ug/kg 09/25/0	5) 2-Chlorophenol	BQL	U	370	1	ug/kg	09/25/06	18:58
8) 2-Nitrophenol 8 QL U 370 1 ug/kg 09/25/06 18:58 10) 3,3-Dichlorobenzidine 8QL U 370 1 ug/kg 09/25/06 18:58 11) 3-Nitroaniline 8QL U 370 1 ug/kg 09/25/06 18:58 11) 3-Nitroaniline 8QL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline 8QL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline 8QL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline 8QL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline 8QL U 370 1 ug/kg 09/25/06 18:58 14) 4-Nitrophenol 8QL U 370 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol 8QL U 370 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol 8QL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol 8QL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol 8QL U 370 1 ug/kg 09/25/06 18:58 17) Acenaphthene 8QL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene 8QL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Anlline (Phenylamine, Aminobenzene) 8QL U 370 1 ug/kg 09/25/06 18:58 19) Anlline (Phenylamine, Aminobenzene) 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(a)nthracene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(a)pyrene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(a)pyrene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluoranthene 8QL U 370 1 ug/kg 09/25/06 18:58 19) Benzo(b)fluo	6) 2-Methylnaphthalene	BQL	U	370	1	ug/kg	09/25/06	18:58
9) 2-methylphenol BQL U 740 1 ug/kg 09/25/06 18:58 10) 3,3-Dichlorobenzidine BQL U 740 1 ug/kg 09/25/06 18:58 11) 3-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 14) 4-Nitrophenol BQL U 740 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 17) Acenaphthene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 20) Anthracene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzo(c)Acid BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzo(c)Acid BQL U 370 1 ug/kg 09/25/06 18:58 27) Benzol Acid BQL U 370 1 ug/kg 09/25/06 18:58 27) Benzol Butyl Phthalate	7) 2-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	18:58
10) 3,3-Dichlorobenzidine BQL U 740 1 ug/kg 09/25/06 18:58 11) 3-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 14) 4-Nitrophenol BQL U 740 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 17) Acenaphthene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 20) Anthracene BQL U 370<	8) 2-Nitrophenol	BQL	U	370	1	ug/kg	09/25/06	18:58
11) 3-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 12) 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 14) 4-Nitrophenol BQL U 740 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 17) Acenaphthene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 20) Anthracene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 27) Benzol BQL U 370 1 ug/kg 09/25/06 18:58 27) Benzol BQL U 370 1 ug/kg 09/25/06 18:58 28)	9) 2-methylphenol	BQL	U	370	1	ug/kg	09/25/06	18:58
12) 4-Chloroaniline BQL U 370 1 ug/kg 09/25/06 18:58 13) 4-Nitroaniline BQL U 370 1 ug/kg 09/25/06 18:58 14) 4-Nitrophenol BQL U 740 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 17) Acenaphthene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 20) Anthracene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 27) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58	10) 3,3-Dichlorobenzidine	BQL	U	740	1	ug/kg	09/25/06	18.58
13) 4-Nitroaniline 14) 4-Nitrophenol 15) 4-chloro-3-methylphenol 16) 4-methylphenol 17) Acenaphthene 18	11) 3-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	18:58
14) 4-Nitrophenol BQL U 740 1 ug/kg 09/25/06 18:58 15) 4-chloro-3-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 17) Acenaphthene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 20) Anthracene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U	12) 4-Chloroaniline	BQL	U	370	1	ug/kg	09/25/06	18:58
15) 4-chloro-3-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 17) Acenaphthene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 20) Anthracene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U 370 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate	13) 4-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	18:58
16) 4-methylphenol BQL U 370 1 ug/kg 09/25/06 18:58 17) Acenaphthene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 20) Anthracene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U	14) 4-Nitrophenol	BQL	U	740	1	ug/kg	09/25/06	18:58
17) Acenaphthene BQL U 370 1 ug/kg 09/25/06 18:58 18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 20) Anthracene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U 370 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	15) 4-chloro-3-methylphenol	BQL	U	370	1	ug/kg	09/25/06	18:58
18) Acenaphthylene BQL U 370 1 ug/kg 09/25/06 18:58 19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 20) Anthracene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U 370 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	16) 4-methylphenol	BQL	U	370	1	ug/kg	09/25/06	18:58
19) Aniline (Phenylamine, Aminobenzene) BQL U 370 1 ug/kg 09/25/06 18:58 20) Anthracene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U 370 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	17) Acenaphthene	BQL	U	370	1	ug/kg	09/25/06	18:58
20) Anthracene BQL U 370 1 ug/kg 09/25/06 18:58 21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U 370 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	18) Acenaphthylene	BQL	U	370	1	ug/kg	09/25/06	18:58
21) Benzo(a)anthracene BQL U 370 1 ug/kg 09/25/06 18:58 22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U 740 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	19) Aniline (Phenylamine, Aminobenzene)	BQL	U	370	1	ug/kg	09/25/06	18:58
22) Benzo(a)pyrene BQL U 370 1 ug/kg 09/25/06 18:58 23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U 740 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	20) Anthracene	BQL	U	370	1	ug/kg	09/25/06	18:58
23) Benzo(b)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U 740 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	21) Benzo(a)anthracene	BQL	U	370	1	ug/kg	09/25/06	18:58
24) Benzo(g,h,i)perylene BQL U 370 1 ug/kg 09/25/06 18:58 25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U 740 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	22) Benzo(a)pyrene	BQL	U	370	1	ug/kg	09/25/06	18:58
25) Benzo(k)fluoranthene BQL U 370 1 ug/kg 09/25/06 18:58 26) Benzoic Acid BQL U 740 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	23) Benzo(b)fluoranthene	BQL	U	370	1	ug/kg	09/25/06	18:58
26) Benzoic Acid BQL U 740 1 ug/kg 09/25/06 18:58 27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	24) Benzo(g,h,i)perylene	BQL	U	370	1	ug/kg	09/25/06	18:58
27) Benzyl Butyl Phthalate BQL U 370 1 ug/kg 09/25/06 18:58	25) Benzo(k)fluoranthene	BQL	U	370	1	ug/kg	09/25/06	18:58
	26) Benzoic Acid	BQL	U	740	1	ug/kg	09/25/06	18:58
28) Chrysene BQL U 370 1 ug/kg 09/25/06 18:58	27) Benzyl Butyl Phthalate	BQL	U	370	1	ug/kg	09/25/06	18:58
	28) Chrysene	BQL	U	370	1	ug/kg	09/25/06	18:58

Client Name:	Shaw E&I, Inc		Sample Matrix:	SO	ΙL			
Client Sample ID:	EX-AOI5-005		Lab Sample ID:	609	9092-00	5 - 028-1	/1	
Sample Date/Time:	09/18/2006 13:45		Percent Moisture:	9.9	7			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method:	: SW	/3550			
Prepared Date/Time:	09/22/2006 13:02		Analytical Method:	SW	/8270C			,
29) Dibenz(a,h)Anthrad	cene	BQL	U	370	1	ug/kg	09/25/06	18:58
30) Dibenzofuran	•	BQL	ប	370	1	ug/kg	09/25/06	18:58
31) Diethyl Phthalate		BQL	U	370	1	ug/kg	09/25/06	18:58
32) Dimethyl Phthalate		BQL	U	370	1	ug/kg	09/25/06	18:58
33) Fluoranthene		BQL	U	370	1	ug/kg	09/25/06	18:58
34) Fluorene		BQL	U	370	1	ug/kg	09/25/06	18:58
35) Hexachlorobenzen	e	BQL	U	370	1	ug/kg	09/25/06	18:58
36) Indeno(1,2,3-c,d)P	yrene	BQL	U	370	1	ug/kg	09/25/06	18.58
37) Isophorone		BQL	U	370	1.	ug/kg	09/25/06	18:58
38) Naphthalene		BQL	U	370	1	ug/kg	09/25/06	18:58
39) Nitrobenzene		BQL	U	370	1	ug/kg	09/25/06	18:58
10) Pentachlorophenol		BQL	U	740	1	ug/kg	09/25/06	18:58
11) Phenanthrene		BQL	U	370	1	ug/kg	09/25/06	18:58
12) Phenol		BQL	U	370	1	ug/kg	09/25/06	18:58
43) Pyrene		BQL	U	370	1	ug/kg	09/25/06	18:58
14) bis(2-ethylhexyl) ph	nthalate	BQL	U	370	1	ug/kg	09/25/06	18:58
15) di-n-Butyl Phthalate	e	93	J	370	1	ug/kg	09/25/06	18:58
l6) di-n-Octyl Phthalate	e	BQL	U	370	1	ug/kg	09/25/06	18:58
# Surrogate Paramet	er	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
47) 2,4,6-Tribromopher	nol	95 %	35 - 125		1		09/25/06	18:58
l8) 2-Fluorobiphenyl	•	80 %	45 - 105		1		09/25/06	18:58
9) 2-Fluorophenol		72 %	35 - 105		1		09/25/06	18:58
(0) Nitrobenzene-d5		72 %	35 - 100		1		09/25/06	18:58
51) Phenol-d5		74 %	40 - 100		1		09/25/06	18:58
52) p-Terphenyl-d14		112 %	30 - 125		1		09/25/06	18:58
-								

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-005

Sample Date/Time:

09/18/2006 13:45

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609092-005-028-1/1

Percent Moisture:

9.97

Preparation Method:

SW3550

Analytical Method:

SW8081A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 4,4-DDD	0.38	J	1.9	1	ug/kg	09/25/06	03:16
2) 4,4-DDE	BQL	U	1.9	. 1	ug/kg	09/25/06	03:16
3) 4,4-DDT	1.4	JP	1.9	1	ug/kg	09/25/06	03:16
4) Aldrin	BQL	U	1.9	1	ug/kg	09/25/06	03:16
5) Alpha-BHC	BQL	U	1.9	1	ug/kg	09/25/06	03:16
6) Beta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	03:16
7) Chlordane	BQL	U	37	1	ug/kg	09/25/06	03:16
8) Delta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	03:16
9) Dieldrin	BQL	U	1.9	1	ug/kg	09/25/06	03:16
10) Endosulfan l	BQL	U	1.9	1	ug/kg	09/25/06	03:16
11) Endosulfan II	BQL	U	1.9	1	ug/kg	09/25/06	03:16
12) Endosulfan Sulfate	BQL	U	1.9	1	ug/kg	09/25/06	03:16
13) Endrin	BQL	U	1.9	1	ug/kg	09/25/06	03:16
14) Gamma-BHC (Lindane)	BQL	U	1.9	1	ug/kg	09/25/06	03:16
15) Heptachlor	BQL	U	1.9	1	ug/kg	09/25/06	03:16
16) Heptachlor Epoxide	BQL	U	1.9	1	ug/kg	09/25/06	03:16
17) Methoxychlor	BQL	U	1.9	1	ug/kg	09/25/06	03:16
# Surrogate Parameter	Percent Recovery	Control Limits	·	Dil Fact		Analy Date/	
18) Decachlorobiphenyl	90 %	36 - 120		1		09/25/06	03:16
19) Decachlorobiphenyl	89 %	36 - 120		1		09/25/06	03:16
20) Tetrachloro-m-xylene	88 %	36 - 120		1		09/25/06	03:16
21) Tetrachloro-m-xylene	84 %	36 - 120		1		09/25/06	03:16

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-006

Sample Date/Time:

09/18/2006 13:55

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/25/2006 08:22

Sample Matrix:

SOIL

Lab Sample ID:

609092-006-007-1/1

Percent Moisture:

8.39

Preparation Method:

SW5030B

Analytical Method:

SW8260B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL	U	5.5	1	ug/kg	09/25/06	16:35
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.5	1	ug/kg	09/25/06	16:35
3) 1,1,2-Trichloroethane	BQL	U	5.5	1	ug/kg	09/25/06	16:35
4) 1,1-Dichloroethane	BQL	U	5.5	1	ug/kg	09/25/06	16:35
5) 1,1-Dichloroethene	BQL	U	5.5	1	ug/kg	09/25/06	16:35
6) 1,2-Dichlorobenzene	BQL	U	5.5	1	ug/kg	09/25/06	16:35
7) 1,2-Dichloroethane	BQL	U	5.5	1	ug/kg	09/25/06	16:35
8) 1,3-Dichlorobenzene	BQL	U	5.5	. 1	ug/kg	09/25/06	16:35
9) 1,4-Dichlorobenzene	BQL	U	5.5	. 1	ug/kg	09/25/06	16:35
10) 2-Butanone	BQL	U	11	1	ug/kg	09/25/06	16:35
11) 4-Methyl-2-Pentanone	BQL	U	11	1	ug/kg	09/25/06	16:35
12) Acetone	BQL	U	11	1	ug/kg	09/25/06	16:35
13) Benzene	1.5	J	5.5	1	ug/kg	09/25/06	16:35
14) Bromomethane	BQL	U	11	1	ug/kg	09/25/06	16:35
15) Carbon Disulfide	BQL	U	5.5	1	ug/kg	09/25/06	16:35
16) Carbon Tetrachloride	BQL	U	5.5	1	ug/kg	09/25/06	16:35
17) Chlorobenzene	BQL	U	5.5	1	ug/kg	09/25/06	16:35
18) Chloroethane	BQL	U,	11	1	ug/kg	09/25/06	16:35
19) Chloroform	2.1	j	5.5	1	ug/kg	09/25/06	16:35
20) Chloromethane	BQL	U	11	1	ug/kg	09/25/06	16:35
21) Dibromochloromethane	BQL	U	5.5	1	ug/kg	09/25/06	16:35
22) Ethylbenzene	7.8		5.5	1	ug/kg	09/25/06	16:35
23) Freon 113	BQL	U	5.5	1	ug/kg	09/25/06	16:35
24) Methylene Chloride	BQL	U	11	1	ug/kg	09/25/06	16:35
25) Styrene	BQL	U	5.5	1	ug/kg	09/25/06	16:35
26) Tetrachloroethylene	BQL	U	5.5	1	ug/kg	09/25/06	16:35
27) Toluene	5.8		5.5	1	ug/kg	09/25/06	16:35
28) Trichloroethene	BQL	U	5.5	1	ug/kg	09/25/06	16:35

Client Name:	Shaw E&I, Inc		Sample Matrix:	S	OIL			•
Client Sample ID:	EX-AOI5-006		Lab Sample ID:	60	9092-00	06-007-1	/1	
Sample Date/Time:	09/18/2006 13:55		Percent Moisture:	8.	39			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method	: SI	N5030B			
Prepared Date/Time:	09/25/2006 08:22		Analytical Method:	SI	/ 8260B			
29) Vinyl Chloride		BQL	U	11	1	ug/kg	09/25/06	16:35
30) Xylenes, Total		23		5.5	1	ug/kg	09/25/06	16:35
31) trans-1,2-dichloroe	thene	BQL	U	5.5	1	ug/kg	09/25/06	16:35
# Surrogate Paramet	ter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
32) 1,2-Dichlorobenzer	ne-d4	101 %	65 - 123		1		09/25/06	16:35
33) 1,2-Dichloroethane	-d4	82 %	65 - 125		1		09/25/06	16:35
34) 4-Bromofluorobenz	rene	108 %	85 - 120		1		09/25/06	16:35
35) Toluene-D8	•	88 %	85 - 115		1		09/25/06	16:35

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-006

Sample Date/Time:

09/18/2006 13:55

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/23/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609092-006-020-1/1

Percent Moisture:

8.39

Preparation Method:

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum	15400	В	18.5	1	mg/kg	09/25/06	19:24
2) Antimony	0.47	JN	1.9	1	mg/kg	09/25/06	19:24
3) Arsenic	9.8		1.9	1	mg/kg	09/25/06	19:24
4) Barium	75.5	N	0.46	1	mg/kg	09/25/06	19:24
5) Beryllium	0.82	EB	0.19	1	mg/kg	09/25/06	19:24
6) Cadmium	0.28	JB	0.56	1	mg/kg	09/25/06	19:24
7) Calcium	18900	*	92.5	1	mg/kg	09/25/06	19:24
8) Chromium	24.1		0.46	1	mg/kg	09/25/06	19:24
9) Cobalt	16.0	В	0.46	1	mg/kg	09/25/06	19:24
10) Copper	44.7	В	0.93	1	mg/kg	09/25/06	19:24
11) Iron	35100	В	13.9	1	mg/kg	09/25/06	19:24
12) Lead	16.3	•	0.93	1	mg/kg	09/25/06	19:24
13) Magnesium	8520	В	23.1	1	mg/kg	09/25/06	19:24
14) Manganese	581	В	0.46	1	mg/kg	09/25/06	19:24
15) Nickel	38.7		0.93	1	mg/kg	09/25/06	19:24
16) Potassium	2220	NB	23.1	1	mg/kg	09/25/06	19:24
17) Selenium	BQL	U	1.9	1	mg/kg	09/25/06	19:24
18) Silver	BQL	U	0.46	1	mg/kg	09/25/06	19:24
19) Thallium	1.3	J	2.8	1	mg/kg	09/25/06	19:24
20) Vanadium	26.7	В	0.93	1	mg/kg	09/25/06	19:24
21) Zinc	95.6		1.9	1	mg/kg	09/25/06	19:24

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-006

Lab Sample ID:

609092-006-020-1/1

Sample Date/Time:

09/18/2006 13:55

Percent Moisture:

8.39

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW7471_DIG

Prepared Date/Time:

09/22/2006 21:00

Analytical Method:

SW7471A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Mercury	0.031	J	0.032	1	mg/kg	09/23/06	16:38

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-006

Lab Sample ID:

609092-006-020-1/1

Sample Date/Time:

09/18/2006 13:55

Percent Moisture:

8.39

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

NA

Prepared Date/Time:

Analytical Method:

CLP_SOLIDS

# Parameter	Result Q	Limit	Fact	Units	Date/T	
# Devember	Reported	Reporting Limit	Dil Fact	Unite	Analy:	

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-006

Sample Date/Time:

09/18/2006 13:55

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 13:02

Sample Matrix:

SOIL

Lab Sample ID:

609092-006-029-1/1

Percent Moisture:

8.39

Preparation Method:

Analytical Method:

SW3550

SW8270C

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 2,4,5-Trichlorophenol	BQL	U	360	1	ug/kg	09/25/06	19:41
2) 2,4-Dichlorophenol	BQL	U	360	1	ug/kg	09/25/06	19:41
3) 2,4-Dinitrophenol	BQL	U	730	1	ug/kg	09/25/06	19:41
4) 2,6-Dinitrotoluene	BQL	U	360	1	ug/kg	09/25/06	19:41
5) 2-Chlorophenol	BQL	U	360	1	ug/kg	09/25/06	19:41
6) 2-Methylnaphthalene	BQL	U	360	1	ug/kg	09/25/06	19:41
7) 2-Nitroaniline	BQL	U	360	1	ug/kg	09/25/06	19:41
8) 2-Nitrophenol	BQL	U	360	1	ug/kg	09/25/06	19:41
9) 2-methylphenol	BQL	U	360	1	ug/kg	09/25/06	19:41
10) 3,3-Dichlorobenzidine	BQL	U	730	1	ug/kg	09/25/06	19:41
11) 3-Nitroaniline	BQL	U	360	1	ug/kg	09/25/06	19:41
12) 4-Chloroaniline	BQL	U	360	1	ug/kg	09/25/06	19:41
13) 4-Nitroaniline	BQL	U	360	1	ug/kg	09/25/06	19:41
14) 4-Nitrophenol	BQL	U	730	1	ug/kg	09/25/06	19:41
15) 4-chloro-3-methylphenol	BQL	U	360	1	ug/kg	09/25/06	19:41
16) 4-methylphenol	BQL	U	360	1	ug/kg	09/25/06	19:41
17) Acenaphthene	BQL	U	360	1	ug/kg	09/25/06	19:41
18) Acenaphthylene	BQL	U	360	1	ug/kg	09/25/06	19:41
19) Aniline (Phenylamine, Aminobenzene)	BQL	U	360	1	ug/kg	09/25/06	19:41
20) Anthracene	BQL	U	360	1	ug/kg	09/25/06	19:41
21) Benzo(a)anthracene	BQL	U	360	1	ug/kg	09/25/06	19:41
22) Benzo(a)pyrene	BQL	U	360	1	ug/kg	09/25/06	19:41
23) Benzo(b)fluoranthene	BQL	U	360	1	ug/kg	09/25/06	19:41
24) Benzo(g,h,i)perylene	BQL	U	360	1	ug/kg	09/25/06	19:41
25) Benzo(k)fluoranthene	BQL	U	360	1	ug/kg	09/25/06	19:41
26) Benzoic Acid	BQL	U	730	1	ug/kg	09/25/06	19:41
27) Benzyl Butyl Phthalate	BQL	U	360	1	ug/kg	09/25/06	19:41
28) Chrysene	BQL	U	360	1	ug/kg	09/25/06	19:41

		Analytical Sul	ппату кероп					
Client Name:	Shaw E&I, Inc		Sample Matrix:	SC	OIL			
Client Sample ID:	EX-AOI5-006		Lab Sample ID:	60	9092-00	6-029-1	/1	
Sample Date/Time:	09/18/2006 13:55		Percent Moisture:	8.3	39			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method	d: SV	N3550			
Prepared Date/Time:	09/22/2006 13:02		Analytical Method:	SV	V8270C			
29) Dibenz(a,h)Anthra	cene	BQL	U	360	1	ug/kg	09/25/06	19:41
30) Dibenzofuran		BQL	U	360	1	ug/kg	09/25/06	19:41
31) Diethyl Phthalate		BQL	U	360	1	ug/kg	09/25/06	19:41
32) Dimethyl Phthalate		BQL	U	360	1	ug/kg	09/25/06	19:41
33) Fluoranthene		BQL	Ù	360	1	ug/kg	09/25/06	19:41
34) Fluorene		BQL	U	360	1	ug/kg	09/25/06	19:41
35) Hexachlorobenzer	ne	BQL	U	360	1	ug/kg	09/25/06	19:41
36) Indeno(1,2,3-c,d)P	yrene	BQL	U	360	1	ug/kg	09/25/06	19:41
37) Isophorone		BQL	U	360	1	ug/kg	09/25/06	19:41
38) Naphthalene		BQL	U	360	1	ug/kg	09/25/06	19:41
39) Nitrobenzene		BQL	U	360	1	ug/kg	09/25/06	19:41
40) Pentachloropheno	I	BQL	U	730	1	ug/kg	09/25/06	19:41
41) Phenanthrene		BQL	U	360	1	ug/kg	09/25/06	19:41
42) Phenol		BQL	U	360	1	ug/kg	09/25/06	19:41
43) Pyrene		BQL	U	360	1	ug/kg	09/25/06	19:41
44) bis(2-ethylhexyl) p	hthalate	150	J	360	1	ug/kg	09/25/06	19:41
45) di-n-Butyl Phthalat	e .	66	J	360	1	ug/kg	09/25/06	19:41
46) di-n-Octyl Phthalat	e .	BQL	U	360	1	ug/kg	09/25/06	19:41
# Surrogate Parame	ter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
47) 2,4,6-Tribromophe	nol .	100 %	35 - 125		1		09/25/06	19:41
48) 2-Fluorobiphenyl	•	86 %	45 - 105		1		09/25/06	19:41
49) 2-Fluorophenol		72 %	35 - 105		1		09/25/06	19:41
50) Nitrobenzene-d5		75 %	35 - 100		1		09/25/06	19:41
51) Phenol-d5		74 %	40 - 100		1		09/25/06	19:4
52) p-Terphenyl-d14		110 %	30 - 125		1		09/25/06	19:41

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-006

Sample Date/Time:

09/18/2006 13:55

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 00:00

Sample Matrix:

itrix:

SOIL

Lab Sample ID:

609092-006-029-1/1

Percent Moisture:

8.39

Preparation Method:

SW3550

Analytical Method:

SW8081A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 4,4-DDD	BQL	U	1.8	1	ug/kg	09/25/06	03:46
2) 4,4-DDE	BQL	U	1.8	1	ug/kg	09/25/06	03:46
3) 4,4-DDT	1.9	Р	1.8	1	ug/kg	09/25/06	03:46
4) Aldrin	BQL	U	1.8	1	ug/kg	09/25/06	03:46
5) Alpha-BHC	BQL	U	1.8	1	ug/kg	09/25/06	03:46
6) Beta-BHC	BQL	U	1.8	1	ug/kg	09/25/06	03:46
7) Chlordane	BQL	U	36	1	ug/kg	09/25/06	03:46
8) Delta-BHC	BQL	U	1.8	1	ug/kg	09/25/06	03:46
9) Dieldrin	BQL	U	1.8	1	ug/kg	09/25/06	03:46
10) Endosulfan I	BQL	U	1.8	1	ug/kg	09/25/06	03:46
11) Endosulfan II	BQL	U	1.8	1	ug/kg	09/25/06	03:46
12) Endosulfan Sulfate	BQL	U	1.8	1	ug/kg	09/25/06	03:46
13) Endrin	BQL	U	1.8	1	ug/kg	09/25/06	03:46
14) Gamma-BHC (Lindane)	BQL	U	1.8	1	ug/kg	09/25/06	03:46
15) Heptachlor	BQL	U	1.8	1	ug/kg	09/25/06	03:46
16) Heptachlor Epoxide	BQL	U	1.8	1	ug/kg	09/25/06	03:46
17) Methoxychlor	BQL	U	1.8	1	ug/kg	09/25/06	03:46
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
18) Decachlorobiphenyl	84 %	36 - 120	,	1		09/25/06	03:46
19) Decachlorobiphenyl	78 %	36 - 120		1		09/25/06	03:46
20) Tetrachloro-m-xylene	97 %	36 - 120		1		09/25/06	03:46

21) Tetrachloro-m-xylene

03:46

09/25/06

110 %

36 - 120

1

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-007

Lab Sample ID:

609092-007-008-1/1

Sample Date/Time:

09/18/2006 14:10

Percent Moisture:

8.8

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW5030B

Prepared Date/Time:

09/25/2006 08:22

Analytical Method:

SW8260B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL	U	5.5	1	ug/kg	09/25/06	17:12
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.5	1	ug/kg	09/25/06	17:12
3) 1,1,2-Trichloroethane	BQL	U	5.5	1	ug/kg	09/25/06	17:12
4) 1,1-Dichloroethane	BQL	U	5.5	1	ug/kg	09/25/06	17:12
5) 1,1-Dichloroethene	BQL	U	5.5	1	ug/kg	09/25/06	17:12
6) 1,2-Dichlorobenzene	BQL	U	5.5	1	ug/kg	09/25/06	17:12
7) 1,2-Dichloroethane	BQL	U	5.5	1	ug/kg	09/25/06	17:12
8) 1,3-Dichlorobenzene	BQL	U	5.5	1	ug/kg	09/25/06	17:12
9) 1,4-Dichlorobenzene	BQL	U	5.5	1	ug/kg	09/25/06	17:12
10) 2-Butanone	BQL	U	11	1	ug/kg	09/25/06	17:12
11) 4-Methyl-2-Pentanone	BQL	U	11	1	ug/kg	09/25/06	17:12
12) Acetone	BQL	U ·	11	1	ug/kg	09/25/06	17:12
13) Benzene	BQL	U	5.5	1	ug/kg	09/25/06	17:12
14) Bromomethane	BQL	U	11	1	ug/kg	09/25/06	17:12
15) Carbon Disulfide	BQL	U	5.5	1	ug/kg	09/25/06	17:12
16) Carbon Tetrachloride	BQL	U	5.5	1	ug/kg	09/25/06	17:12
17) Chlorobenzene	BQL	U	5.5	1	ug/kg	09/25/06	17:12
18) Chloroethane	BQL	Ų .	11	1	ug/kg	09/25/06	17:12
19) Chloroform	2.1	J	5.5	1	ug/kg	09/25/06	17:12
20) Chloromethane	BQL	U	11	1	ug/kg	09/25/06	17:12
21) Dibromochloromethane	BQL	U	5.5	1	ug/kg	09/25/06	17:12
22) Ethylbenzene	5.0	J	5.5	1	ug/kg	09/25/06	17:12
23) Freon 113	BQL	U	5.5	1	ug/kg	09/25/06	17:12
24) Methylene Chloride	BQL	U	11	1	ug/kg	09/25/06	17:12
25) Styrene	BQL	U	5.5	1	ug/kg	09/25/06	17:12
26) Tetrachloroethylene	BQL	U	5.5	1	ug/kg	09/25/06	17:12
27) Toluene	BQL	U	5.5	1	ug/kg	09/25/06	17:12
28) Trichloroethene	BQL	U	5.5	1	ug/kg	09/25/06	17:12

Client Name:	Shaw E&I, Inc		Sample Matrix:	SO	OIL			
Client Sample ID:	EX-AOI5-007		Lab Sample ID:			07-008-1	/1	
•	09/18/2006 14:10		Percent Moisture:	8.8		77 000 1	, 1	
Sample Date/Time:								
Receipt Date/Time:	09/19/2006 14:12		Preparation Method		V5030B			
Prepared Date/Time:	09/25/2006 08:22		Analytical Method:	SI	V8260B			
29) Vinyl Chloride		BQL	U	11	1	ug/kg	09/25/06	17:12
30) Xylenes, Total		11		5.5	1	ug/kg	09/25/06	17:1
31) trans-1,2-dichloroe	ethene	BQL	U	5.5	1	ug/kg	09/25/06	17:13
# Surrogate Parame	ter :	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
32) 1,2-Dichlorobenze	ne-d4	105 %	65 - 123		1		09/25/06	17:1:
33) 1,2-Dichloroethane	e-d4	88 %	65 - 125		1	•	09/25/06	17:13
34) 4-Bromofluoroben	zene	110 %	85 - 120		1		09/25/06	17:12
35) Toluene-D8		92 %	85 - 115		1		09/25/06	17:12

Client Name:

Shaw E&I, Inc.

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-007

Lab Sample ID:

609092-007-021-1/1

Sample Date/Time:

09/18/2006 14:10

Percent Moisture:

8.8

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW3050B

Prepared Date/Time:

09/23/2006 00:00

Analytical Method:

SW6010B

•								
		Reported		Reporting	Dil		Analy	
# Parameter		Result	Q	Limit	Fact	Units	Date/	Time
1) Aluminum		15400	В	18	1	mg/kg	09/25/06	20:17
2) Antimony		BQL	UN	1.8	1	mg/kg	09/25/06	20:17
3) Arsenic		10.2		1.8	1	mg/kg	09/25/06	20:17
4) Barium		79.6	N	0.45	1	mg/kg	09/25/06	20:17
5) Beryllium		0.86	EB	0.18	1	mg/kg	09/25/06	20:17
6) Cadmium		0.26	JB	0.54	1	mg/kg	09/25/06	20:17
7) Calcium		24700	*	89.9	1	mg/kg	09/25/06	20:17
8) Chromium		24.3		0.45	1	mg/kg	09/25/06	20:17
9) Cobalt	·	18.9	В	0.45	1	mg/kg	09/25/06	20:17
10) Copper		47.5	В	0.9	1	mg/kg	09/25/06	20:17
11) Iron		35100	В	13.5	1	mg/kg	09/25/06	20:17
12) Lead	•	19.9		0.9	1	mg/kg	09/25/06	20:17
13) Magnesium		9320	В	22.5	1	mg/kg	09/25/06	20:17
14) Manganese		898	В	0.45	1	mg/kg	09/25/06	20:17
15) Nickel		39.7		0.9	1	mg/kg	09/25/06	20:17
16) Potassium	·	2340	NB	22.5	1	mg/kg	09/25/06	20:17
17) Selenium		BQL	U	1.8	1	mg/kg	09/25/06	20:17
18) Silver		BQL	U	0.45	1	mg/kg	09/25/06	20:17
19) Thallium		1.4	J	2.7	1	mg/kg	09/25/06	20:17
20) Vanadium		27.0	В.	0.9	1	mg/kg	09/25/06	20:17
21) Zinc		102		1.8	1	mg/kg	09/25/06	20:17

Client Name:

Shaw E&I, Inc

SOIL

Client Sample ID:

EX-AOI5-007

Sample Matrix: Lab Sample ID:

609092-007-021-1/1

Sample Date/Time:

09/18/2006 14:10

Percent Moisture:

8.8

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW7471_DIG

Prepared Date/Time:

09/22/2006 21:00

Analytical Method:

SW7471A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Mercury	0.028	J	0.035	1	mg/kg	09/23/06	16:44

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-007

Lab Sample ID:

609092-007-021-1/1

Sample Date/Time:

09/18/2006 14:10

Percent Moisture:

8.8

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

NA

Prepared Date/Time:

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/T	
1) Percent Solids	91	1.0	1	%	09/22/06	15:27

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-007

Lab Sample ID:

609092-007-030-1/1

Sample Date/Time:

09/18/2006 14:10

Percent Moisture:

8.8

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW3550

Prepared Date/Time:

09/22/2006 13:02

Analytical Method:

SW8270C

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 2,4,5-Trichlorophenol	BQL	U	370	1	ug/kg	09/25/06	20:24
2) 2,4-Dichlorophenol	BQL	U	370	1	ug/kg	09/25/06	20:24
3) 2,4-Dinitrophenol	BQL	U	730	1	ug/kg	09/25/06	20:24
4) 2,6-Dinitrotoluene	BQL	U	370	1	ug/kg	09/25/06	20:24
5) 2-Chlorophenol	BQL	U	370	1	ug/kg	09/25/06	20:24
6) 2-Methylnaphthalene	BQL	Ų	370	1	ug/kg	09/25/06	20:24
7) 2-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	20:24
8) 2-Nitrophenol	BQL	U	370	1	ug/kg	09/25/06	20:24
9) 2-methylphenol	BQL	U	370	1	ug/kg	09/25/06	20:24
10) 3,3-Dichlorobenzidine	BQL	U	730	1	ug/kg	09/25/06	20:24
11) 3-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	20:24
12) 4-Chloroaniline	BQL	U	370	1	ug/kg	09/25/06	20:24
13) 4-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	20:24
14) 4-Nitrophenol	BQL	Ų	730	1	ug/kg	09/25/06	20:24
15) 4-chloro-3-methylphenol	BQL	Ų	370	1	ug/kg	09/25/06	20:24
16) 4-methylphenol	BQL	U	370	1	ug/kg	09/25/06	20:24
17) Acenaphthene	BQL	U	370	1	ug/kg	09/25/06	20:24
18) Acenaphthylene	BQL	U	370	1	ug/kg	09/25/06	20:24
19) Aniline (Phenylamine, Aminobenzene)	BQL	U	370	1	ug/kg	09/25/06	20:24
20) Anthracene	BQL	U	370	1	ug/kg	09/25/06	20:24
21) Benzo(a)anthracene	BQL	U	370	1	ug/kg	09/25/06	20:24
22) Benzo(a)pyrene	BQL	U	370	1	ug/kg	09/25/06	20:24
23) Benzo(b)fluoranthene	BQL	U	370	1	ug/kg	09/25/06	20:24
24) Benzo(g,h,i)perylene	BQL	U	370	1	ug/kg	09/25/06	20:24
25) Benzo(k)fluoranthene	BQL	U	370	1	ug/kg	09/25/06	20:24
26) Benzoic Acid	BQL	U	730	1	ug/kg	09/25/06	20:24
27) Benzyl Butyl Phthalate	BQL	U	370	1	ug/kg	09/25/06	20:24
28) Chrysene	BQL	U	370	1	ug/kg	09/25/06	20:24

Page 61 of 91

www.gplab.com

Client Name:	Shaw E&I, Inc		Sample Matrix:	S	OIL			
Client Sample ID:	EX-AOI5-007		Lab Sample ID:	60	9092-00	7-030-1	/1	
Sample Date/Time:	09/18/2006 14:10		Percent Moisture:	8.	8			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method	: SI	N3550			
Prepared Date/Time:	09/22/2006 13:02		Analytical Method:	SI	W8270C			
29) Dibenz(a,h)Anthra	cene	BQL	U	370	1	ug/kg	09/25/06	20:24
30) Dibenzofuran		BQL	U	370	1	ug/kg	09/25/06	20:24
31) Diethyl Phthalate		BQL	U	370	1	ug/kg	09/25/06	20:24
32) Dimethyl Phthalate	•	BQL	U	370	1	ug/kg	09/25/06	20:24
33) Fluoranthene		BQL	U	370	1	ug/kg	09/25/06	20:24
34) Fluorene		BQL	U	370	1	ug/kg	09/25/06	20:24
35) Hexachlorobenzer	ne	BQL	U	370	1	ug/kg	09/25/06	20:24
36) Indeno(1,2,3-c,d)P	yrene	BQL	U	370	1	ug/kg	09/25/06	20:24
37) Isophorone		BQL	U	370	1	ug/kg	09/25/06	20:24
38) Naphthalene		BQL	U .	370	1	ug/kg	09/25/06	20:24
39) Nitrobenzene		BQL	U	370	1	ug/kg	09/25/06	20:24
40) Pentachloropheno	1	BQL	U	730	1	ug/kg	09/25/06	20:24
41) Phenanthrene		BQL	U	370	1	ug/kg	09/25/06	20:24
42) Phenol		BQL	U	370	1	ug/kg	09/25/06	20:24
43) Pyrene		BQL	U	370	1	ug/kg	09/25/06	20:24
44) bis(2-ethylhexyl) p	hthalate	BQL	U	370	1	ug/kg	09/25/06	20:24
45) di-n-Butyl Phthalat	e	96	J	370	1	ug/kg	09/25/06	20:24
46) di-n-Octyl Phthalat	re	BQL	U	370	1	ug/kg	09/25/06	20:24
# Surrogate Parame	ter .	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
47) 2,4,6-Tribromophe	nol	97 %	35 - 125		1		09/25/06	20:24
18) 2-Fluorobiphenyl		80 %	45 - 105		1		09/25/06	20:24
19) 2-Fluorophenol		70 %	35 - 105		1		09/25/06	20:24
50) Nitrobenzene-d5		71 %	35 - 100		1		09/25/06	20:24
51) Phenol-d5		71 %	40 - 100		1		09/25/06	20:24
52) p-Terphenyl-d14	·	106 %	30 - 125		1		09/25/06	20:24

Client Name:

Shaw E&I, Inc

Sample Matrix: Lab Sample ID: SOIL

Client Sample ID:

EX-AOI5-007

609092-007-030-1/1

Sample Date/Time:

09/18/2006 14:10

Percent Moisture:

8.8

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW3550

Prepared Date/Time:

09/22/2006 00:00

Analytical Method:

SW8081A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 4,4-DDD	BQL	U	1.8	1	ug/kg	09/25/06	04:16
2) 4,4-DDE	BQL	U	1.8	1	ug/kg	09/25/06	04:16
3) 4,4-DDT	BQL	U	1.8	1	ug/kg	09/25/06	04:16
4) Aldrin	BQL	U	1.8	1	ug/kg	09/25/06	04:16
5) Alpha-BHC	BQL	U	1.8	1	ug/kg	09/25/06	04:16
6) Beta-BHC	BQL	U	1.8	1	ug/kg	09/25/06	04:16
7) Chlordane	BQL	U	37	1	ug/kg	09/25/06	04:16
8) Delta-BHC	BQL	U	1.8	1	ug/kg	09/25/06	04:16
9) Dieldrin	BQL	U	1.8	1	ug/kg	09/25/06	04:16
10) Endosulfan I	BQL	U	1.8	1	ug/kg	09/25/06	04:16
11) Endosulfan II	BQL	U	1.8	1	ug/kg	09/25/06	04:16
12) Endosulfan Sulfate	BQL	U -	1.8	1	ug/kg	09/25/06	04:16
13) Endrin	BQL	U	1.8	1	ug/kg	09/25/06	04:16
14) Gamma-BHC (Lindane)	BQL	U	1.8	1	ug/kg	09/25/06	04:16
15) Heptachlor	BQL	U	1.8	1	ug/kg	09/25/06	04:16
16) Heptachlor Epoxide	BQL	U	1.8	1	ug/kg	09/25/06	04:16
17) Methoxychlor	BQL	U	1.8	1	ug/kg	09/25/06	04:16
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
18) Decachlorobiphenyl	94 %	36 - 120		1		09/25/06	04:16
19) Decachlorobiphenyl	98 %	36 - 120		1		09/25/06	04:16
20) Tetrachloro-m-xylene	89 %	36 - 120		1		09/25/06	04:16
21) Tetrachloro-m-xylene	91 %	36 - 120		1		09/25/06	04:16

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-008

Sample Date/Time:

09/18/2006 16:15

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/25/2006 08:22

Sample Matrix:

SOIL

Lab Sample ID:

609092-008-009-1/1

Percent Moisture:

10.06

Preparation Method:

SW5030B

Analytical Method:

SW8260B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL		5.6	1	ug/kg	09/25/06	14:46
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.6	1	ug/kg	09/25/06	14:46
3) 1,1,2-Trichloroethane	BQL	U	5.6	1	ug/kg	09/25/06	14:46
4) 1,1-Dichloroethane	BQL	U	5.6	1	ug/kg	09/25/06	14:46
5) 1,1-Dichloroethene	BQL	U	5.6	1	ug/kg	09/25/06	14:46
6) 1,2-Dichlorobenzene	BQL	U	5.6	1	ug/kg	09/25/06	14:46
7) 1,2-Dichloroethane	BQL	U	5.6	1	ug/kg	09/25/06	14:46
8) 1,3-Dichlorobenzene	BQL	U	5.6	1	ug/kg	09/25/06	14:46
9) 1,4-Dichlorobenzene	BQL	U	5.6	1	ug/kg	09/25/06	14:46
10) 2-Butanone	BQL	U	11	1	ug/kg	09/25/06	14:46
11) 4-Methyl-2-Pentanone	BQL	U	11	,1	ug/kg	09/25/06	14:46
12) Acetone	BQL	U	11	1	ug/kg	09/25/06	14:46
13) Benzene	6.7		5.6	1	ug/kg	09/25/06	14:46
14) Bromomethane	BQL	U	11	1	ug/kg	09/25/06	14:46
15) Carbon Disulfide	7.6		5.6	1	ug/kg	09/25/06	14:46
16) Carbon Tetrachloride	BQL	U	5.6	1	ug/kg	09/25/06	14:46
17) Chlorobenzene	BQL	U	5.6	1	ug/kg	09/25/06	14:46
18) Chloroethane	BQL	U	11	1	ug/kg	09/25/06	14:46
19) Chloroform	3.3	J	5.6	1	ug/kg	09/25/06	14:46
20) Chloromethane	BQL	U	11	1	ug/kg	09/25/06	14:46
21) Dibromochloromethane	BQL	U	5.6	1	ug/kg	09/25/06	14:46
22) Ethylbenzene	7.5		5.6	1	ug/kg	09/25/06	14:46
23) Freon 113	BQL	U	5.6	1	ug/kg	09/25/06	14:46
24) Methylene Chloride	BQL	U	11	1	ug/kg	09/25/06	14:46
25) Styrene	BQL	U	5.6	1	ug/kg	09/25/06	14:46
26) Tetrachloroethylene	BQL	U	5.6	1	ug/kg	09/25/06	14:46
27) Toluene	2.6	J ·	5.6	1	ug/kg	09/25/06	14:46
28) Trichloroethene	BQL	U	5.6	1	ug/kg	09/25/06	14:46

Client Name:	Shaw E&I, I	nc		Sample Matrix:	SC	IL			
Client Sample ID:	EX-AOI5-00)8		Lab Sample ID:	609	9092-00	8-009-1	/1	
Sample Date/Time:	09/18/2006	16:15		Percent Moisture:	10.	.06			
Receipt Date/Time:	09/19/2006	14:12		Preparation Method	: SV	√5030B			
Prepared Date/Time:	09/25/2006	08:22		Analytical Method:	sv	V8260B			
29) Vinyl Chloride			BQL	U	11	1	ug/kg	09/25/06	14:46
30) Xylenes, Total		-	35		5.6	1	ug/kg	09/25/06	14:46
31) trans-1,2-dichloroe	thene	·	BQL	U	5.6	1	ug/kg	09/25/06	14:46
# Surrogate Parameter			Percent Recovery	Control Limits		Dil Fact		Analy Date/	
32) 1,2-Dichlorobenzer	ne-d4		97 %	65 - 123		1	· · ·	09/25/06	14:46
33) 1,2-Dichloroethane	-d4		85 %	65 - 125		1		09/25/06	14:46
34) 4-Bromofluorobenz	ene		106 %	85 - 120		1		09/25/06	14:46
35) Toluene-D8			89 %	85 - 115		1		09/25/06	14:46

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-008

Lab Sample ID:

609092-008-022-1/1

Sample Date/Time:

09/18/2006 16:15

Percent Moisture:

10.06

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

Prepared Date/Time: 09/23/2006 00:00

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum	15500	В	18.4	1	mg/kg	09/25/06	20:25
2) Antimony	BQL	UN	1.8	1	mg/kg	09/25/06	20:25
3) Arsenic	9.0		1.8	1	mg/kg	09/25/06	20:25
4) Barium	79.3	N	0.46	1	mg/kg	09/25/06	20:25
5) Beryllium	0.82	EB	0.18	1	mg/kg	09/25/06	20:25
6) Cadmium	0.26	JB	0.55	1	mg/kg	09/25/06	20:25
7) Calcium	26800	*	91.9	1	mg/kg	09/25/06	20:25
8) Chromium	24.2		0.46	1	mg/kg	09/25/06	20:25
9) Cobalt	17.3	В	0.46	1	mg/kg	09/25/06	20:25
10) Copper	46.1	В	0.92	1	mg/kg	09/25/06	20:25
11) Iron	34300	В	13.8	1	mg/kg	09/25/06	20:25
12) Lead	16.9		0.92	1	mg/kg	09/25/06	20:25
13) Magnesium	8910	В	23	1	mg/kg	09/25/06	20:25
14) Manganese	724	В	0.46	1	mg/kg	09/25/06	20:25
15) Nickel	38.0		0.92	1	mg/kg	09/25/06	20:25
16) Potassium	2320	NB	23	1	mg/kg	09/25/06	20:25
17) Selenium	BQL	U	1.8	1	mg/kg	09/25/06	20:25
18) Silver	BQL	U	0.46	1	mg/kg	09/25/06	20:25
19) Thallium	1.3	J	2.8	1	mg/kg	09/25/06	20:25
20) Vanadium	26.9	В	0.92	1	mg/kg	09/25/06	20:25
21) Zinc	97.9		1.8	1	mg/kg	09/25/06	20:25

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

10.06

Client Sample ID:

EX-AOI5-008

Lab Sample ID:

609092-008-022-1/1

Sample Date/Time:

09/18/2006 16:15

Percent Moisture:

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

Prepared Date/Time:

09/22/2006 21:00

SW7471_DIG

Analytical Method:

SW7471A

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy: Date/T	
1) Mercury	0.043	0.034	1	mg/kg	09/23/06	16:46

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-008

Sample Date/Time:

09/18/2006 16:15

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

Sample Matrix:

·

SOIL

Lab Sample ID:

609092-008-022-1/1

Percent Moisture:

10.06

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units _.	Analy Date/	,
1) Percent Solids	90	1.0	1	%	09/22/06	15:27

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-008

Lab Sample ID:

609092-008-031-1/1

Sample Date/Time:

09/18/2006 16:15

Percent Moisture:

10.06

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW3550

Prepared Date/Time:

09/22/2006 13:02

Analytical Method:

SW8270C

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 2,4,5-Trichlorophenol	BQL	U	370	1	ug/kg	09/25/06	21:06
2) 2,4-Dichlorophenol	BQL	U	370	1	ug/kg	09/25/06	21:06
3) 2,4-Dinitrophenol	BQL	U	740	1	ug/kg	09/25/06	21:06
4) 2,6-Dinitrotoluene	BQL	U	370	1	ug/kg	09/25/06	21:06
5) 2-Chlorophenol	BQL	U	370	1	ug/kg	09/25/06	21:06
6) 2-Methylnaphthalene	BQL	U	370	1	ug/kg	09/25/06	21:06
7) 2-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	21:06
8) 2-Nitrophenol	BQL	U	370	1	ug/kg	09/25/06	21:06
9) 2-methylphenol	BQL	U	370	. 1	ug/kg	09/25/06	21:06
10) 3,3-Dichlorobenzidine	BQL	U	740	1	ug/kg	09/25/06	21:06
11) 3-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	21:06
12) 4-Chloroaniline	BQL	U	370	1	ug/kg	09/25/06	21:06
13) 4-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	21:06
14) 4-Nitrophenol	BQL	U	740	1	ug/kg	09/25/06	21:06
15) 4-chloro-3-methylphenol	BQL	U	370	1	ug/kg	09/25/06	21:06
16) 4-methylphenol	BQL	U	370	1	ug/kg	09/25/06	21:06
17) Acenaphthene	BQL	U	370	1	ug/kg	09/25/06	21:06
18) Acenaphthylene	BQL	U	370	1	ug/kg	09/25/06	21:06
19) Aniline (Phenylamine, Aminobenzene)	BQL	U	370	1	ug/kg	09/25/06	21:06
20) Anthracene	BQL	U	370	1	ug/kg	09/25/06	21:06
21) Benzo(a)anthracene	BQL	U	370	1	ug/kg	09/25/06	21:06
22) Benzo(a)pyrene	BQL	U	370	1	ug/kg	09/25/06	21:06
23) Benzo(b)fluoranthene	BQL	U	370	1	ug/kg	09/25/06	21:06
24) Benzo(g,h,i)perylene	BQL	U	370	1	ug/kg	09/25/06	21:06
25) Benzo(k)fluoranthene	BQL	U	370	1	ug/kg	09/25/06	21:06
26) Benzoic Acid	BQL	U	740	1	ug/kg	09/25/06	21:06
27) Benzyl Butyl Phthalate	BQL	U	370	1	ug/kg	09/25/06	21:06
28) Chrysene	BQL	U	370	1	ug/kg	09/25/06	21:06

Client Name:	Shaw E&I, Inc		Sample Matrix:	S	OIL			
Client Sample ID:	EX-A015-008		Lab Sample ID:	6	09092-00	8-031-1	/1	
Sample Date/Time:	09/18/2006 16:15		Percent Moisture:	10	0.06			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method:	: S	W3550			
Prepared Date/Time:	09/22/2006 13:02		Analytical Method:	S	W8270C			
29) Dibenz(a,h)Anthrad	cene ·	BQL	U	370	1	ug/kg	09/25/06	21:06
30) Dibenzofuran		BQL	U	370	1	ug/kg	09/25/06	21:06
31) Diethyl Phthalate		BQL	U	370	1	ug/kg	09/25/06	21:06
32) Dimethyl Phthalate		BQL	U	370	1	ug/kg	09/25/06	21:06
33) Fluoranthene		BQL	U	370	1	ug/kg	09/25/06	21:06
34) Fluorene		BQL	U	370	1	ug/kg	09/25/06	21:06
35) Hexachlorobenzen	e	BQL	U	370	1	ug/kg	09/25/06	21:06
36) Indeno(1,2,3-c,d)P	yrene	BQL	U	370	1	ug/kg	09/25/06	21:06
37) Isophorone		BQL	U	370	1	ug/kg	09/25/06	21:06
38) Naphthalene		BQL	U	370	1	ug/kg	09/25/06	21:06
39) Nitrobenzene	. •	BQL	U	370	1	ug/kg	09/25/06	21:06
40) Pentachlorophenol		BQL	U	740	1	ug/kg	09/25/06	21:06
41) Phenanthrene	•	BQL	U	370	1	ug/kg	09/25/06	21:06
42) Phenol		BQL	U	370	1	ug/kg	09/25/06	21:06
43) Pyrene		BQL	U	370	1	ug/kg	09/25/06	21:06
44) bis(2-ethylhexyl) pł	nthalate	37	J	370	1	ug/kg	09/25/06	21:06
45) di-n-Butyl Phthalate	•	86	J	370	1	ug/kg	09/25/06	21:06
46) di-n-Octyl Phthalate	9	BQL	U	370	. 1	ug/kg	09/25/06	21:06
# Surrogate Paramet	er	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
47) 2,4,6-Tribromophei	nol	100 %	35 - 125		1		09/25/06	21:06
48) 2-Fluorobiphenyl		77 %	45 - 105		1		09/25/06	21:06
49) 2-Fluorophenol		68 %	35 - 105		1		09/25/06	21:06
50) Nitrobenzene-d5		70 %	35 - 100		1		09/25/06	21:0
51) Phenol-d5		71 %	40 - 100		1		09/25/06	21:0
52) p-Terphenyl-d14		101 %	30 - 125		1		09/25/06	21:0

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-008

Sample Date/Time:

09/18/2006 16:15

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609092-008-031-1/1

Percent Moisture:

10.06

Preparation Method:

SW3550

Analytical Method:

SW8081A

	Reported		Reporting	Dil		Analy	reie
# Parameter	Result	Q	Limit	Fact	Units	Date/	
1) 4,4-DDD	0.39	J	1.9	1	ug/kg	09/25/06	04:40
2) 4,4-DDE	BQL	U	1.9	1	ug/kg	09/25/06	04:4
3) 4,4-DDT	BQL	U	1.9	1	ug/kg	09/25/06	04:4
4) Aldrin	BQL	U	1.9	1	ug/kg	09/25/06	04:4
5) Alpha-BHC	BQL	U	1.9	1	ug/kg	09/25/06	04:4
6) Beta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	04:4
7) Chlordane	BQL	U	37	1	ug/kg	09/25/06	04:4
8) Delta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	04:4
9) Dieldrin	BQL	U	1.9	1	ug/kg	09/25/06	04:4
0) Endosulfan I	BQL	U	1.9	1	ug/kg	09/25/06	04:4
1) Endosulfan II	BQL	U	1.9	1	ug/kg	09/25/06	04:4
12) Endosulfan Sulfate	BQL	U	1.9	1	ug/kg	09/25/06	04:4
13) Endrin	BQL	U	1.9	1	ug/kg	09/25/06	04:4
14) Gamma-BHC (Lindane)	BQL	· U	1.9	1	ug/kg	09/25/06	04:4
15) Heptachlor	BQL	U	1.9	. 1	ug/kg	09/25/06	04:4
16) Heptachlor Epoxide	BQL	U	1.9	1	ug/kg	09/25/06	04:4
17) Methoxychlor	BQL	U	1.9	1	ug/kg	09/25/06	04:4
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
18) Decachlorobiphenyl	92 %	36 - 120		1		09/25/06	04:4
19) Decachlorobiphenyl	89 %	36 - 120		1		09/25/06	04:4
20) Tetrachloro-m-xylene	83 %	36 - 120		1		09/25/06	04:4
21) Tetrachloro-m-xylene	86 %	36 - 120		1		09/25/06	04:4

Client Name:

Shaw E&I, Inc.

Client Sample ID:

EX-AOI5-009

Sample Date/Time:

09/18/2006 16:20

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/25/2006 08:22

Sample Matrix:

SOIL

Lab Sample ID:

609092-009-010-1/1

Percent Moisture:

10.35

Preparation Method:

SW5030B

Analytical Method:

SW8260B

	Reported		Reporting	Dil		Anal	voio
# Parameter	Result	Q	Limit	Fact	Units	Date/	
1) 1,1,1-Trichloroethane	BQL	U	5.6	.1	ug/kg	09/25/06	15:22
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.6	1	ug/kg	09/25/06	15:22
3) 1,1,2-Trichloroethane	BQL	U	5.6	1	ug/kg	09/25/06	15:22
4) 1,1-Dichloroethane	BQL	U	5.6	1	ug/kg	09/25/06	15:22
5) 1,1-Dichloroethene	BQL	U	5.6	1	ug/kg	09/25/06	15:22
6) 1,2-Dichlorobenzene	BQL	U	5.6	1	ug/kg	09/25/06	15:22
7) 1,2-Dichloroethane	BQL	U	5.6	1	ug/kg	09/25/06	15:22
8) 1,3-Dichlorobenzene	BQL	U	5.6	1	ug/kg	09/25/06	15:22
9) 1,4-Dichlorobenzene	BQL	U	5.6	1	ug/kg	09/25/06	15:22
10) 2-Butanone	BQL	U	11	1	ug/kg	09/25/06	15:22
11) 4-Methyl-2-Pentanone	BQL	U	11	1	ug/kg	09/25/06	15:22
12) Acetone	BQL	U	11	1	ug/kg	09/25/06	15:22
13) Benzene	9.6		5.6	1	ug/kg	09/25/06	15:22
14) Bromomethane	BQL	U	11	1	ug/kg	09/25/06	15:22
15) Carbon Disulfide	BQL	U	5.6	1	ug/kg	09/25/06	15:22
16) Carbon Tetrachloride	BQL	U	5.6	1	ug/kg	09/25/06	15:22
17) Chlorobenzene	BQL	U	5.6	1	ug/kg	09/25/06	15:22
18) Chloroethane	BQL	U	11	1	ug/kg	09/25/06	15:22
19) Chloroform	3.8	J	5.6	1	ug/kg	09/25/06	15:22
20) Chloromethane	BQL	U	11	1	ug/kg	09/25/06	15:22
21) Dibromochloromethane	BQL	U	5.6	1	ug/kg	09/25/06	15:22
22) Ethylbenzene	7.5		5.6	1	ug/kg	09/25/06	15:22
23) Freon 113	BQL	U	5.6	1	ug/kg	09/25/06	15:22
24) Methylene Chloride	BQL	U	11	1	ug/kg	09/25/06	15:22
25) Styrene	BQL	U	5.6	1	ug/kg	09/25/06	15:22
26) Tetrachloroethylene	BQL	U	5.6	1	ug/kg	09/25/06	15:22
27) Toluene	4.7	J	5.6	1	ug/kg	09/25/06	15:22
28) Trichloroethene	BQL	U	5.6	1	ug/kg	09/25/06	15:22

Page 72 of 91

Client Name:	Shaw E&I, Inc		Sample Matrix:	S	OIL					
Client Sample ID:	EX-AOI5-009		Lab Sample ID:	60	9092-00	9-010-1	′ 1			
Sample Date/Time: 09/18/2006 16:20 Receipt Date/Time: 09/19/2006 14:12		Percent Moisture:			10.35					
			Preparation Method	d: S\	N5030B					
Prepared Date/Time:	09/25/2006 08:22		Analytical Method:	SI	/ /8260B					
29) Vinyl Chloride		BQL	U	11	1	ug/kg	09/25/06	15:22		
30) Xylenes, Total		38		5.6	1	ug/kg	09/25/06	15:22		
31) trans-1,2-dichloroe	ethene	BQL	U	5.6	1	ug/kg	09/25/06	15:22		
# Surrogate Parame	ter	Percent Recovery	Control Limits		Dil Fact		Analysis Date/Time			
32) 1,2-Dichlorobenze	ne-d4	103 %	65 - 123		1		09/25/06	15:22		
33) 1,2-Dichloroethane	e-d4	85 %	65 - 125		1		09/25/06	15:22		
34) 4-Bromofluorobena	zene	106 %	85 - 120		1		09/25/06	15:22		
35) Toluene-D8		90 %	85 - 115		1		09/25/06	15:22		

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-009

Lab Sample ID: Percent Moisture: 609092-009-023-1/1

Sample Date/Time:

09/18/2006 16:20

10.35

Receipt Date/Time:

09/19/2006 14:12

SW3050B

Preparation Method:

Prepared Date/Time:

09/23/2006 00:00

Analytical Method:

SW6010B

# Parameter		Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Aluminum		15200	В	18.3	1	mg/kg	09/25/06	20:34
2) Antimony	•	0.25	JN	1.8	1	mg/kg	09/25/06	20:34
3) Arsenic		9.2		1.8	1	mg/kg	09/25/06	20:34
4) Barium	•	76.4	N	0.46	1	mg/kg	09/25/06	20:34
5) Beryllium		0.81	EB	0.18	1	mg/kg	09/25/06	20:34
6) Cadmium		0.31	JB	0.55	1	mg/kg	09/25/06	20:34
7) Calcium		25500	*	91.4	1	mg/kg	09/25/06	20:34
8) Chromium		23.7		0.46	1	mg/kg	09/25/06	20:34
9) Cobalt		15.2	В	0.46	1	mg/kg	09/25/06	20:34
10) Copper		47.3	В	0.91	1	mg/kg	09/25/06	20:34
11) Iron		34500	В	13.7	1	mg/kg	09/25/06	20:34
12) Lead	,	15.9		0.91	1	mg/kg	09/25/06	20:34
13) Magnesium		9190	В	22.9	1	mg/kg	09/25/06	20:34
14) Manganese		648	В	0.46	1	mg/kg	09/25/06	20:34
15) Nickel		36.1		0.91	1	mg/kg	09/25/06	20:34
16) Potassium		2240	NB	22.9	1	mg/kg	09/25/06	20:34
17) Selenium		BQL	Ų	1.8	1	mg/kg	09/25/06	20:34
18) Silver		BQL	U	0.46	1	mg/kg	09/25/06	20:34
19) Thallium		2.0	J	2.7	1	mg/kg	09/25/06	20:34
20) Vanadium		26.4	В	0.91	1	mg/kg	09/25/06	20:34
21) Zinc		100		1.8	1	mg/kg	09/25/06	20:34
•						0 0		

Client Name:

Shaw E&I, Inc

SOIL

Client Sample ID:

EX-AOI5-009

Sample Matrix: Lab Sample ID:

609092-009-023-1/1

Sample Date/Time:

09/18/2006 16:20

Percent Moisture:

10.35

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW7471_DIG

Prepared Date/Time:

09/22/2006 21:00

Analytical Method:

SW7471A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Mercury	0.032	J	0.036	1	mg/kg	09/23/06	16:48

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-009

Lab Sample ID:

609092-009-023-1/1

Sample Date/Time:

09/18/2006 16:20

Percent Moisture:

10.35

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

NA

Prepared Date/Time:

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/	,
1) Percent Solids	90	1.0	1	%	09/22/06	15:27

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-009

Lab Sample ID:

609092-009-032-1/1

Sample Date/Time:

09/18/2006 16:20

Percent Moisture:

10.35

Receipt Date/Time:

09/19/2006 14:12

SW3550

Prepared Date/Time:

09/22/2006 13:02

Preparation Method:

Analytical Method:

SW8270C

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 2,4,5-Trichlorophenol	BQL	U	370	1	ug/kg	09/25/06	21:49
2) 2,4-Dichlorophenol	BQL	U	370	1	ug/kg	09/25/06	21:49
3) 2,4-Dinitrophenol	BQL	U	740	1	ug/kg	09/25/06	21:49
4) 2,6-Dinitrotoluene	BQL	U	370	1	ug/kg	09/25/06	21:49
5) 2-Chlorophenol	BQL	U	370	1	ug/kg	09/25/06	21:49
6) 2-Methylnaphthalene	BQL	U	370	1	ug/kg	09/25/06	21:49
7) 2-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	21:49
8) 2-Nitrophenol	BQL	U	370	1	ug/kg	09/25/06	21:49
9) 2-methylphenol	BQL	U	370	1	ug/kg	09/25/06	21:49
10) 3,3-Dichlorobenzidine	BQL	U	740	1	ug/kg	09/25/06	21:49
11) 3-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	21:49
12) 4-Chloroaniline	BQL	U	370	1	ug/kg	09/25/06	21:49
13) 4-Nitroaniline	BQL	U	370	1	ug/kg	09/25/06	21:49
14) 4-Nitrophenol	BQL	U	740	1	ug/kg	09/25/06	21:49
15) 4-chloro-3-methylphenol	BQL	U	370	1	ug/kg	09/25/06	21:49
16) 4-methylphenol	BQL	U	370	1	ug/kg	09/25/06	21:49
17) Acenaphthene	BQL	U	370	1	ug/kg	09/25/06	21:49
18) Acenaphthylene	BQL	U	370	1	ug/kg	09/25/06	21:49
19) Aniline (Phenylamine, Aminobenzene)	BQL	U	370	1	ug/kg	09/25/06	21:49
20) Anthracene	BQL	U	370	1	u g /kg	09/25/06	21:49
21) Benzo(a)anthracene	BQL	U	370	1	ug/kg	09/25/06	21:49
22) Benzo(a)pyrene	BQL	U	370	1	ug/kg	09/25/06	21:49
23) Benzo(b)fluoranthene	BQL	U	370	1	ug/kg	09/25/06	21:49
24) Benzo(g,h,i)perylene	BQL	U	370	1	ug/kg	09/25/06	21:49
25) Benzo(k)fluoranthene	BQL	U	370	1	ug/kg	09/25/06	21:49
26) Benzoic Acid	BQL	U	740	1	ug/kg	09/25/06	21:49
27) Benzyl Butyl Phthalate	BQL	U	370	1	ug/kg	09/25/06	21:49
28) Chrysene	BQL	U	370	1	ug/kg	09/25/06	21:49

Page 77 of 91

Client Name:	Shaw E&I, Inc		Sample Matrix:		SOIL			
Client Sample ID:	EX-AOI5-009		Lab Sample ID:		609092-009	-032-1	/1	
Sample Date/Time:	09/18/2006 16:20		Percent Moisture:		10.35			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method:	:	SW3550			
Prepared Date/Time:	09/22/2006 13:02		Analytical Method:		SW8270C			
29) Dibenz(a,h)Anthrac	cene	BQL	U	370) 1	ug/kg	09/25/06	21:49
80) Dibenzofuran		BQL	U	370	1	ug/kg	09/25/06	21:49
31) Diethyl Phthalate		BQL	U	370	1	ug/kg	09/25/06	21:49
32) Dimethyl Phthalate		BQL	U	370	1	ug/kg	09/25/06	21:49
33) Fluoranthene		BQL	U	370	1	ug/kg	09/25/06	21:49
34) Fluorene		BQL	U	370	1	ug/kg	09/25/06	21:49
35) Hexachlorobenzen	е	BQL	U	370	1	ug/kg	09/25/06	21:49
36) Indeno(1,2,3-c,d)Py	/rene	BQL	U	370	1	ug/kg	09/25/06	21:49
37) Isophorone		BQL	U	370	1	ug/kg	09/25/06	21:49
88) Naphthalene		BQL	U	370	1	ug/kg	09/25/06	21:49
9) Nitrobenzene		BQL	U	370	1	u g /kg	09/25/06	21:49
0) Pentachlorophenol		BQL	U	740	1	ug/kg	09/25/06	21:49
1) Phenanthrene		BQL	U	370	1	ug/kg	09/25/06	21:49
2) Phenol		BQL	U	370	1	ug/kg	09/25/06	21:49
3) Pyrene		BQL	U	370	1	ug/kg	09/25/06	21:49
4) bis(2-ethylhexyl) ph	thalate	BQL	U	370	1	ug/kg	09/25/06	21:49
5) di-n-Butyl Phthalate	•	260	J	370	1 (ug/kg	09/25/06	21:49
6) di-n-Octyl Phthalate		BQL	U	370	1	ug/kg	09/25/06	21:49
# Surrogate Paramete	er	Percent Recovery	Control Limits		Dil Fact		Analy Date/1	
7) 2,4,6-Tribromophen	ol	99 %	35 - 125	-	1		09/25/06	21:49
8) 2-Fluorobiphenyl		79 %	45 - 105		1		09/25/06	21:49
9) 2-Fluorophenol		69 %	35 - 105		1		09/25/06	21:49
0) Nitrobenzene-d5		71 %	35 - 100		1		09/25/06	21:49
1) Phenol-d5		71 %	40 - 100		1		09/25/06	21:49
2) p-Terphenyl-d14		105 %	30 - 125				09/25/06	21:49

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-009

Sample Date/Time:

09/18/2006 16:20

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/22/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

609092-009-032-1/1

Percent Moisture:

10.35

Preparation Method:

SW3550

Analytical Method:

SW8081A

1

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Anal Date/	
1) 4,4-DDD	BQL	U	1.9	1	ug/kg	09/25/06	05:16
2) 4,4-DDE	BQL	U	1.9	1	ug/kg	09/25/06	05:16
3) 4,4-DDT	BQL	U	1.9	1	ug/kg	09/25/06	05:16
4) Aldrin	BQL	U	1.9	1	ug/kg	09/25/06	05:16
5) Alpha-BHC	BQL	U	1.9	1	ug/kg	09/25/06	05:16
6) Beta-BHC	BQL	Ù	1.9	1	ug/kg	09/25/06	05:16
7) Chlordane	BQL	U	37	1	ug/kg	09/25/06	05:16
8) Delta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	05:16
9) Dieldrin	BQL	U	1.9	1	ug/kg	09/25/06	05:16
10) Endosulfan I	BQL	U	1.9	1	ug/kg	09/25/06	05:16
11) Endosulfan II	BQL	U	1.9	1	ug/kg	09/25/06	05:16
12) Endosulfan Sulfate	BQL	U	1.9	1	ug/kg	09/25/06	05:16
13) Endrin	BQL	U	1.9	1	ug/kg	09/25/06	05:16
14) Gamma-BHC (Lindane)	BQL	U	1.9	1	ug/kg	09/25/06	05:16
15) Heptachlor	BQL	U	1.9	1	ug/kg	09/25/06	05:16
16) Heptachlor Epoxide	BQL	U	1.9	1	ug/kg	09/25/06	05:16
17) Methoxychlor	BQL	U	1.9	1	ug/kg	09/25/06	05:16
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
18) Decachlorobiphenyl	105 %	36 - 120		1		09/25/06	05:16
19) Decachlorobiphenyl	100 %	36 - 120		1		09/25/06	05:16

20) Tetrachloro-m-xylene

21) Tetrachloro-m-xylene

05:16

05:16

09/25/06

09/25/06

97 %

89 %

36 - 120

36 - 120

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-010

Sample Date/Time:

09/18/2006 16:40

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

09/25/2006 08:22

Sample Matrix:

Lab Sample ID:

609092-010-011-1/1

Percent Moisture:

11.76

SOIL

Preparation Method:

SW5030B

Analytical Method:

SW8260B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL	U	5.7	1	ug/kg	09/25/06	15:59
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.7	1	ug/kg	09/25/06	15:59
3) 1,1,2-Trichloroethane	BQL	U	5.7	1	ug/kg	09/25/06	15:59
4) 1,1-Dichloroethane	BQL	U	5.7	1	ug/kg	09/25/06	15:59
5) 1,1-Dichloroethene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
6) 1,2-Dichlorobenzene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
7) 1,2-Dichloroethane	BQL	U	5.7	1	ug/kg	09/25/06	15:59
8) 1,3-Dichlorobenzene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
9) 1,4-Dichlorobenzene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
10) 2-Butanone	BQL	U	11	1	ug/kg	09/25/06	15:59
11) 4-Methyl-2-Pentanone	BQL	U	11	1	ug/kg	09/25/06	15:59
12) Acetone	BQL	U	11	1	ug/kg	09/25/06	15:59
13) Benzene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
14) Bromomethane	BQL	U	11	1	ug/kg	09/25/06	15:59
15) Carbon Disulfide	BQL	U	5.7	1	ug/kg	09/25/06	15:59
16) Carbon Tetrachloride	BQL	U	5.7	1	ug/kg	09/25/06	15:59
17) Chlorobenzene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
18) Chloroethane	BQL	U	11	1	ug/kg	09/25/06	15:59
19) Chloroform	4.1	J	5.7	1	ug/kg	09/25/06	15:59
20) Chloromethane	BQL	U	11	1	ug/kg	09/25/06	15:59
21) Dibromochloromethane	BQL	U	5.7	1	ug/kg	09/25/06	15:59
22) Ethylbenzene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
23) Freon 113	BQL	U	5.7	1	ug/kg	09/25/06	15:59
24) Methylene Chloride	BQL	U	11	1	ug/kg	09/25/06	15:59
25) Styrene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
26) Tetrachloroethylene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
27) Toluene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
28) Trichloroethene	BQL	U	5.7	1	ug/kg	09/25/06	15:59

Client Name:	Shaw E&I, Inc		Sample Matrix:	S	OIL			
Client Sample ID:	EX-AOI5-010		Lab Sample ID:	60	9092-01	0-011-1	/1	
Sample Date/Time:	09/18/2006 16:40		Percent Moisture:	11	1.76			
Receipt Date/Time:	09/19/2006 14:12		Preparation Method	: SI	N5030B			
Prepared Date/Time:	09/25/2006 08:22		Analytical Method:	SI	N8260B			
29) Vinyl Chloride		BQL	U	11	1	ug/kg	09/25/06	15:59
30) Xylenes, Total		BQL	U	5.7	1	ug/kg	09/25/06	15:59
31) trans-1,2-dichloroe	thene	BQL	U	5.7	1	ug/kg	09/25/06	15:59
# Surrogate Parame	ter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
32) 1,2-Dichlorobenzei	ne-d4	99 %	65 - 123		1		09/25/06	15:59
33) 1,2-Dichloroethane	-d4	91 %	65 - 125		1		09/25/06	15:59
34) 4-Bromofluorobenz	ene	110 %	85 - 120		1		09/25/06	15:59

91 %

85 - 115

35) Toluene-D8

09/25/06

15:59

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-010

Lab Sample ID:

609092-010-024-1/1

Sample Date/Time:

09/18/2006 16:40

Percent Moisture:

11.76

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW3050B

Prepared Date/Time:

09/23/2006 00:00

Analytical Method:

SW6010B

# Parameter	•	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum		16100	В	19.4	1	mg/kg	09/25/06	20:42
2) Antimony		BQL	UN	1.9	1	mg/kg	09/25/06	20:42
3) Arsenic		8.2		1.9	1	mg/kg	09/25/06	20:42
4) Barium		73.0	N	0.48	1	mg/kg	09/25/06	20:42
5) Beryllium		0.80	EB	0.19	1	mg/kg	09/25/06	20:42
6) Cadmium		0.17	JB	0.58	1	mg/kg	09/25/06	20:42
7) Calcium	٠	8970	*	96.9	1	mg/kg	09/25/06	20:42
8) Chromium		22.9		0.48	1	mg/kg	09/25/06	20:42
9) Cobalt		15.1	В	0.48	1	mg/kg	09/25/06	20:42
10) Copper		36.3	В	0.97	1	mg/kg	09/25/06	20:42
11) Iron	•	33200	В	14.5	1	mg/kg	09/25/06	20:42
12) Lead		19.0		0.97	1	mg/kg	09/25/06	20:42
13) Magnesium		6730	В	24.2	1	mg/kg	09/25/06	20:42
14) Manganese		688	В	0.48	1	mg/kg	09/25/06	20:42
15) Nickel		32.3		0.97	1	mg/kg	09/25/06	20:42
16) Potassium	•	1810	NB	24.2	1	mg/kg	09/25/06	20:42
17) Selenium		BQL	U	1.9	1	mg/kg	09/25/06	20:42
18) Silver		BQL	U	0.48	1	mg/kg	09/25/06	20:42
19) Thallium		1.0	J	2.9	1	mg/kg	09/25/06	20:42
20) Vanadium	e e	28.1	В	0.97	1	mg/kg	09/25/06	20:42
21) Zinc		86.8		1.9	1	mg/kg	09/25/06	20:42

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-010

Lab Sample ID:

609092-010-024-1/1

Sample Date/Time:

09/18/2006 16:40

Percent Moisture:

11.76

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW7471_DIG

Prepared Date/Time:

09/22/2006 21:00

Analytical Method:

SW7471A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/T	
1) Mercury	0.028	J	0.034	1	mg/kg	09/23/06	16:51

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-010

Sample Date/Time:

09/18/2006. 16:40

Receipt Date/Time:

09/19/2006 14:12

Prepared Date/Time:

Sample Matrix:

auix.

Lab Sample ID:

609092-010-024-1/1

Percent Moisture:

11.76

SOIL

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analys Date/Ti	
1) Percent Solids	88	1.0	1	%	09/22/06	15:27

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-010

Lab Sample ID:

609092-010-033-1/1

Sample Date/Time:

09/18/2006 16:40

Percent Moisture:

11.76

Receipt Date/Time:

09/19/2006 14:12

Preparation Method:

SW3550

Prepared Date/Time:

09/22/2006 13:02

Analytical Method:

SW8270C

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 2,4,5-Trichlorophenol	BQL	U	380	1	ug/kg	09/25/06	22:31
2) 2,4-Dichlorophenol	BQL	U	380	. 1	ug/kg	09/25/06	22:31
3) 2,4-Dinitrophenol	BQL	U	760	1	ug/kg	09/25/06	22:31
4) 2,6-Dinitrotoluene	BQL	U	380	1	ug/kg	09/25/06	22:31
5) 2-Chlorophenol	BQL	U	380	1	ug/kg	09/25/06	22:31
6) 2-Methylnaphthalene	BQL	U	380	1	ug/kg	09/25/06	22:31
7) 2-Nitroaniline	BQL	U	380	1	ug/kg	09/25/06	22:31
8) 2-Nitrophenol	BQL	U	380	. 1	ug/kg	09/25/06	22:31
9) 2-methylphenol	BQL	U	380	1	ug/kg	09/25/06	22:31
10) 3,3-Dichlorobenzidine	BQL	Ų	760	1	ug/kg	09/25/06	22:31
11) 3-Nitroaniline	BQL	U	380	1	ug/kg	09/25/06	22:31
12) 4-Chloroaniline	BQL	U	380	1	ug/kg	09/25/06	22:31
13) 4-Nitroaniline	BQL	U	380	1	ug/kg	09/25/06	22:31
14) 4-Nitrophenol	BQL	U	760	1	ug/kg	09/25/06	22:31
15) 4-chloro-3-methylphenol	BQL	U	380	1	ug/kg	09/25/06	22:31
16) 4-methylphenol	BQL	U	380	1	ug/kg	09/25/06	22:31
17) Acenaphthene	BQL	U	380	1 .	ug/kg	09/25/06	22:31
18) Acenaphthylene	BQL	U	. 380	1	ug/kg	09/25/06	22:31
19) Aniline (Phenylamine, Aminobenzene)	BQL	U	380	1	ug/kg	09/25/06	22:31
20) Anthracene	BQL	U	380	1	ug/kg	09/25/06	22:31
21) Benzo(a)anthracene	BQL	U	380	1	ug/kg	09/25/06	22:31
22) Benzo(a)pyrene	BQL	U	380	1	ug/kg	09/25/06	22:31
23) Benzo(b)fluoranthene	BQL	Ü	380	1	ug/kg	09/25/06	22:31
24) Benzo(g,h,i)perylene	BQL	U	380	1	ug/kg	09/25/06	22:31
25) Benzo(k)fluoranthene	BQL	U	380	1	ug/kg	09/25/06	22:31
26) Benzoic Acid	BQL	U	760	1	ug/kg	09/25/06	22:31
27) Benzyl Butyl Phthalate	BQL	U	380	1	ug/kg	09/25/06	22:31
28) Chrysene	BQL	U	380	1	ug/kg	09/25/06	22:31

Version 2.4.2 (Build 0)

	· ·	•	, ,					
lient Name:	Shaw E&I, Inc		Sample Matrix:		SOIL			
lient Sample ID:	EX-AOI5-010		Lab Sample ID:	6	309092-010	D-033 - 1	/1	
ample Date/Time:	09/18/2006 16:40		Percent Moisture:	•	11.76			
eceipt Date/Time:	09/19/2006 14:12		Preparation Method:	: 5	SW3550			
repared Date/Time:	09/22/2006 13:02		Analytical Method:	5	SW8270C			
9) Dibenz(a,h)Anthrad	cene	BQL	U	380	1	ug/kg	09/25/06	22:31
0) Dibenzofuran		BQL	U	380	1	ug/kg	09/25/06	22:3
1) Diethyl Phthalate	•	BQL	U	380	1	ug/kg	09/25/06	22:3
2) Dimethyl Phthalate	;	BQL	U	380	1	ug/kg	09/25/06	22:3
3) Fluoranthene		BQL	U	380	1	ug/kg	09/25/06	22:31
4) Fluorene		BQL	U	380	1	ug/kg	09/25/06	22:31
5) Hexachlorobenzen	e	BQL	U	380	1	ug/kg	09/25/06	22:31
6) Indeno(1,2,3-c,d)P	yrene	BQL	U	380	1	ug/kg	09/25/06	22:3
7) Isophorone		BQL	U	380	1	ug/kg	09/25/06	22:31
8) Naphthalene		BQL	U	380	1	ug/kg	09/25/06	22:3
9) Nitrobenzene		BQL	U	380	1	ug/kg	09/25/06	22:31
0) Pentachlorophenol		BQL	U	760	1	ug/kg	09/25/06	22:31
1) Phenanthrene		BQL	U	380	1	ug/kg	09/25/06	22:31
2) Phenol		BQL	U	380	1	ug/kg	09/25/06	22:31
3) Pyrene		BQL	U	380	1	ug/kg	09/25/06	22:31
4) bis(2-ethylhexyl) ph	nthalate	BQL	U	380	1	ug/kg	09/25/06	22:31
5) di-n-Butyl Phthalate	e	140	J	380	1	ug/kg	09/25/06	22:31
6) di-n-Octyl Phthalate	е	BQL	U	380	1	ug/kg	09/25/06	22:31
Surrogate Paramet	er	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
7) 2,4,6-Tribromopher	nol	106 %	35 - 125		1		09/25/06	22:31
8) 2-Fluorobiphenyl		85 %	45 - 105		1		09/25/06	22:31
9) 2-Fluorophenol		74 %	35 - 105		1		09/25/06	22:31
0) Nitrobenzene-d5		75 %	35 - 100		1		09/25/06	22:3
1) Phenol-d5		76 %	40 - 100		1		09/25/06	22:3
.,		70 70	-10 100		•		00,20,00	22.0

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-010

Sample Date/Time:

09/18/2006 16:40

Receipt Date/Time: Prepared Date/Time: 09/19/2006 14:12

09/22/2006 00:00

Sample Matrix:

Lab Sample ID:

609092-010-033-1/1

Percent Moisture:

11.76

SOIL

Preparation Method:

SW3550

Analytical Method:

SW8081A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Anal _y Date/	
1) 4,4-DDD	BQL	U	1.9	1	ug/kg	09/25/06	05:45
2) 4,4-DDE	BQL	U	1.9	1	ug/kg	09/25/06	05:45
3) 4,4-DDT	BQL	U	1.9	1	ug/kg	09/25/06	05:45
4) Aldrin	BQL	U	1.9	1	ug/kg	09/25/06	05:45
5) Alpha-BHC	BQL	U	1.9	1	ug/kg	09/25/06	05:45
6) Beta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	05:45
7) Chlordane	BQL	U	38	1	ug/kg	09/25/06	05:45
8) Delta-BHC	BQL	U	1.9	1	ug/kg	09/25/06	05:45
9) Dieldrin	BQL	U	1.9	1	ug/kg	09/25/06	05:45
10) Endosulfan I	BQL	U	1.9	1	ug/kg	09/25/06	05:45
11) Endosulfan II	BQL	U	1.9	1	ug/kg	09/25/06	05:45
12) Endosulfan Sulfate	BQL	U	1.9	1	ug/kg	09/25/06	05:45
13) Endrin	BQL	U	1.9	1	ug/kg	09/25/06	05:45
14) Gamma-BHC (Lindane)	BQL	U	1.9	1	ug/kg	09/25/06	05:45
15) Heptachlor	BQL	U	1.9	1	ug/kg	09/25/06	05:45
16) Heptachlor Epoxide	BQL	U	1.9	1	ug/kg	09/25/06	05:45
17) Methoxychlor	BQL	U	1.9	1	ug/kg	09/25/06	05:45
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
18) Decachlorobiphenyl	77 %	36 - 120		1		09/25/06	05:45
19) Decachlorobiphenyl	81 %	36 - 120		1		09/25/06	05:45
20) Tetrachloro-m-xylene	75 %	36 - 120		1		09/25/06	05:45
21) Tetrachloro-m-xylene	77 %	36 - 120		1		09/25/06	05:45

GPL Laboratories, LLLP

Qualifier Definitions

Shaw E&I, Inc

Work Order: 609092

All Departments

- U Indicates that the compound was analyzed for but not detected
- BQL Below Quantitation Limit

Organics

- B Indicates that the analyte was found in the associated blank as well as in the sample
- D Indicates that the analyte was reported from a diluted analysis
- E Indicates that the concentration detected exceeded the calibration range of the instrument
- J Value is less than the reporting limit but greater than the MDL
- P Indicates that there is greater than 25% difference for detected pesticide/Arochlor results between the two GC columns

Metals

- J Indicates that the reported value was less than the reporting limit but greater than or equal to the IDL/MDL
- E Indicates that the reported value is estimated because of the possible presence of interference (i.e. the serial dilution not within control limits)
- H Indicates that the element was found in the associated blank as well as in the sample and the value is greater than or equal to the reporting limit
- D Indicates that the analyte was reported from a diluted analysis
- N Spiked sample recovery not within control limits
- * Duplicate analysis not within control limits

Chain of Custody

Shaw E&I, Inc

SDG: 609092

8					***************************************		CLENT	HoleD	- 54	See S	1 10								Date:Time	60;03 63/60		Ten Co	
***************************************					900	294	78	Display Holi	5474441325 1159	Costact	\$ \$ \$ \$ \$								Received for Laboratory By:	<u> </u>			
eferences	1	1		The state of the s															Received for	\$ \$	And M.		***************************************
Centrack de Illing Reference							を受	×	×	人	y .	×	X	X	X	Á	٨				Shipper:	**************************************	G.P. W.O. 609092
Directoryan Corn leedersk MDERES Sallyksester Fas (sal) 62-077	ようとして		Sei /		1000		No.	メメ	X X	义 义	义. 义.	X N	<u>入</u> 义	بر بر	义 义	メスト	<u>メ</u> <u> </u>		Pelinquiethed By:		Date/Time Shi	Lats Commentin	G.P. W.C
Sheet The sheet	nd Time	airen /	1900	1.00.7	Andrew Control	\	2003 2004	<u>بر</u> بر	У. Х.	メード	<u>ኑ</u>	メール	メメ	X X	, Х.	Х. , х	X j.						
	5 Turnament Time	ref Certaivers	Curtaine 708	Preserve	Type of	Arabje.	Scriperis ritials	У. - -	メ	¥	<u>y</u> .	Х 	. }	<u> </u>	3	<u>%</u>	×	233	Received By:		Recoived By:	Raceivosi By:	***************************************
S, LLLP	T ACT #	\$, Vio	4 63.4	45860	30	HTTPH HTTPH KBBIX	Ĭ Ŝ		******	19						. p -23 ₃	136	7-	17.00		Date Time Rx	
KATORIE	100 / NO	Contract of the second	Cal Cartello	おさみ	HO V	09-51	Date Surgest	15 cm 1320	1355	14%C	18/18	(345)	33	1400	1615	059)	100 CONT.	\\\>\		N.	Š	Ö	
GPL LABORATORIES, LLLP	Project Cartel Nat Dougt	OIL CINEL	Send Freuw To Cal Col	Mires 1629, 25 at 174 get	Findley	2.018. 4/4-1	J I/OI elcrusa	28 EX- HEE-CON P. 18-54 18-20	アンシュニット・13	SX-4025-03	Fy-4045-00H	5K- ACE: 8-CO.5	3074DY-X3	(X. AO ZSWY)	EX-ALEGENS	1 grants 2014-X3	Cx-/family-sig	1	Polinquistad Dy.	No.i	Actinquicated By:	Rainguishad By:	
G	E	iš.	8	13	<u> </u>	Å.			ک	Š	1	**	څ	٢	ಪ	చ	ও		čč	- Fig.	<u> </u>	Į čč]

Chain of Custody

Shaw E&I, Inc

SDG: 609092

Chain of Custody

Shaw E&I, Inc

SDG: 609092

GPL Laboratories, LLLP

5	Fgus AMPI 5 RECEIPT		
W.O. No. 1 12092	Carrier Name 1	<u> 185</u>	
Client Name: Sta	Precered (Lagge	d Ir; 3y <u>(/ L: 03/13/06</u> ničes Cate	
Date Received: 09/10/06	Project:	niGas Cet⇒/ '	
Time Received: 10:00	Sile:	53.3 6 6 6/4	
Reselved By: Chris	VCA Helding 313	nk .3. No:	
Airtill Vanitas: Present?	YES, NO	Trip Blarks: No. of Sets	YES NO
No. J159 039 978 4		Field Blanks; No. of Sets Toulip. Stank: Yo. of Sets	
Shipping Container In Good Condition?	<u> </u>	Field Cuplicate: No. or Sets	
Custody Saxts Present on Shap no Conteiner? Condition: Broken	7 20	VOA Visia Have Zero Hoarispace? If no, smaller of greater, then a Groo	r Pes (see ixamile":s)
thet-not deted or signed	1.	Preservativos Added to Sample? ph Oljeck Required?	
Isage of Temper Evident Type		Performed By?	
Chair car-Costocy Physical?	× _	lee Present in Shipping Consiner?	<u> </u>
Chair-of-Custory Agrees with Semple Jacobs?		Contenent Torro. Co	nainer# Trop
Chair-of-Custocy Signed?		,	
Facking Present in Spigging Container? Nyce of Packing Spigging Container?		,	× (been see ex
Custody seels on Samola Epitids? Condition: Good anoxen			
Total Number of Sample Bothes 33		Mar + married married married married and married marr	
"clai Number of Samples 10			
Samples Insact?	<u> </u>	a se individualist	
Sufficient Sample Volume for Indicated Test?	<u> </u>	Project Manager Contactes? Name 1145. Date Contention: 07118/06	••
Any NO response must be detailed in the comments should be matter RAM	sazion below, l' .(yns are no: 300 Kable to partcular Si	Mudies of Coldans, may
COMMONIS No Trip Blank was	recived	** Nedabishindanin variance * 4 13d attribute date of transport	

Met designations :	**************************************		*
Management and the second seco	*************************		
- C	من ينس	Completed By Ching L	Yous _
	Gheckie:		<u> </u>
		UE:8:_Q.7/19/06	

SCP No.: F.2V15

Shaw Environmental & Infrastructure, Inc.

Data Validation Report

16406 U.S. Route 224 East * Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER: PROJECT NAME:

Tom Mathison

USACE-Schenectady

SAMPLE RECEIPT DATE:

10/07/2006 GPL-610040

LABORATORY SDG:

The Findlay Ohio Federal Technical Services Group has performed a QA evaluation of the data report from GPL Laboratories, LLLP, Frederick, MD. The results are for samples collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table.

Sample Summary Table										
Sample Number	Collection Date	Matrix	Analysis Requested							
EX-AOI5-001A, EX-AOI5-002A EX-AOI5-005A, EX-AOI5-006A EX-AOI5-007A, EX-AOI5-008A EX-AOI5-010A	10/06/2006	Soil	Target Metals SW-6010B/ 7471A							
EX-AOI5-003A DUP100606	10/06/2006	Soil	Target Metals SW-6010B/ 7471A Total VOC-SW8260B Pesticides-Sw-8081A							
EX-AOI5-004A	10/06/2006	Soil	Target Metals SW-6010B/ 7471A Total VOC-SW8260B							

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and was received having a temperature of 2°C upon opening. The Trip Blank was written on the COC but not present in the cooler. The laboratory provided an electronic copy of the data within the specified turn around time. The following describes the overall QA/QC indicators.

Pesticide Analysis in Soil by SW-8081A

The GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples were high for some analytes. No analytes were detected in the samples. No qualification necessary.

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

QC Matrix: The MS/MSD recoveries were within control limits for both precision and accuracy.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be acted upon without reservation.

VOC Analysis in Soil by 8260B

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs.

Method Blanks: The method blank results are below reporting limits for the target analytes

LCS: The LCS recoveries are within acceptance criteria for the target analytes, indicative of acceptable method accuracy and verifying proper instrument control.

MS/MSD: The QC Matrix recovery and precision performance, using sample EX-AOI5-003A, is within acceptance limits for all compounds.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be utilized with confidence.

Metals Analysis in Soil by SW6010B and SW7471A

The ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements. All instrument interference check samples were within control limits. The initial and continuing calibration check samples were within control limits. The initial calibration blank results were below reporting limits.

Method Blanks: The method blank results are below reporting limits.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

MS/MSD: The MS/MSD recoveries and precision are within acceptance limits for all analytes with native concentrations less than 4X the spike level. Three analytes (aluminum, calcium, and potassium) were present at large concentrations in the unspiked sample rendering the QC Matrix data invalid.

Reported results should be utilized with confidence

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

Analytical Report For 610040

for

Shaw E&I, Inc

Project Manager: Guy Gallello

Project Name: SAD-AOC2

GPLLaboratories

GPL Laboratories, LLLP certifies that the test results meet all requirements of the NELAC Standards unless otherwise noted.

Reviewed By, Project Manager

Approved By, Laboratory Director

Case Narrative

Shaw E&I, Inc SAD-AOC2

Work Order: 610040

Reviewed by Patricia Huebschman on 11-03-2006

The Case Narrative, Chain of Custody, Sample Receipt Checklist, and the cover page of the Sample Analysis Report, are integral parts of GPL Laboratories' report package. If you did not receive all of these documents, please contact GPL immediately.

Sample Receipt

Eleven soil samples were received on 10/07/2006. The samples were delivered by UPS. Sample receipt conditions and temperatures are documented on the Sample Receipt checklist.

Sample Analysis

Samples were prepared and analyzed by GPL using the analytical methodologies indicated on the Sample Analysis Summary Report. In some chromatographic analyses, manual integration is used instead of automated integration because it produces more accurate results. All manual integrations are denoted on the sample quantitation report. Analysis results and limits for soil are reported on a dry weight basis unless otherwise specified on the report.

Volatiles

Three soil samples were analyzed for volatile organic compounds using SW846 method 8260B.

The samples were analyzed within the holding time.

The internal standard responses and surrogate recoveries were within the QC limits.

The matrix spike and matrix spike duplicate analyses were performed on sample EX-AOIS-003A. All spike recoveries and RPD's were within the QC limits.

A laboratory control sample was analyzed along with the samples batch. All spike recoveries were within the QC limits.

Manual integration was performed on some peaks that were improperly integrated by the software. The manually integrated compounds are designated by an "m" next to the area of the quantitation report, and chromatograms for these compounds were submitted with the package.

<u>Pesticides</u>

Two soil samples were extracted and analyzed for Pesticide compounds using the EPA method 8081A...

All surrogate recoveries were well within the QC limits.

The matrix spike and matrix spike duplicate analyses were performed for sample EX-AOI5-003A. All spike recoveries were well within the QC limits.

A laboratory control sample was extracted and analyzed along with the batch. All recoveries were within the QC limits.

Metals

Ten soil samples were analyzed for HSL metals (except sodium) by EPA SW846 methods.

On form one, The software flags all results for specific elements with a B qualifier if they have a result above two times the MDL and less than ½ the reporting limit for a continuing calibration blank, initial calibration blank or interference check solution A.

A matrix spike and matrix spike duplicates were performed on sample EX-AO15-003A for all required analytes. A serial dilution was also performed for ICP analytes. The matrix spike and matrix spike duplicates were outside of the control limits for antimony, barium, potassium, and vanadium; all associated data were flagged with an "N". A post digestion analytical spike was performed within 15% of the true value, except for barium and vanadium. The post digestion analytical spike failed for barium and vanadium. No control limits were applied to the matrix spike for aluminum, calcium, iron, and magnesium; matrix spike duplicate for aluminum, calcium, iron, and manganese due to an insignificant spike addition.

Calibration standards are verified against independent check standards purchased from a commercial vendor of environmental standards.

All GPL QA/QC criteria were met with the exceptions of those mentioned above.

Reviewed Bv.

Project Manager

Approved By,

Laboratory Director

GPL Laboratories, LLLP

Sample Summary Report

Shaw E&I, Inc

Work Order: 610040

Client Sample ID	Lab Sample ID	Analytical Method	Matrix	Date Sampled	Date Recieved
DUP10606	610040-011-015-1/1	SW8260B	SOIL	10/06/2006	10/07/2006
	610040-011-012-1/3	SW8081A			
· ·	610040-011-012-1/3	SW6010B			
	610040-011-012-1/3	SW7471A			
	610040-011-012-1/3	CLP_SOLIDS			
EX-AOI5-001A	610040-001-001-1/1	SW6010B	SOIL	10/06/2006	10/07/2006
	610040-001-001-1/1	SW7471A			
	610040-001-001-1/1	CLP_SOLIDS			
EX-AOI5-002A	610040-002-002-1/1	SW6010B	SOIL	10/06/2006	10/07/2006
	610040-002-002-1/1	SW7471A			
	610040-002-002-1/1	CLP_SOLIDS			
EX-A015-003A	610040-003-029-1/3	SW8260B	SOIL	10/06/2006	10/07/2006
	610040-003-020-1/9	SW8081A			
	610040-003-020-1/9	SW6010B			
	610040-003-020-1/9	SW7471A			
	610040-003-020-1/9	CLP_SOLIDS			
EX-A015-004A	610040-004-019-1/1	SW8260B	SOIL	10/06/2006	10/07/2006
	610040-004-017-1/2	SW6010B			
	610040-004-017-1/2	SW7471A			
	610040-004-017-1/2	CLP_SOLIDS			
EX-AOI5-005A	610040-005-003-1/1	SW6010B	SOIL	10/06/2006	10/07/2006
	610040-005-003-1/1	SW7471A			
	610040-005-003-1/1	CLP_SOLIDS			
EX-AOI5-006A	610040-006-004-1/2	SW6010B	SOIL	10/06/2006	10/07/2006
	610040-006-004-1/2	SW7471A			
	610040-006-004-1/2	CLP_SOLIDS			
EX-AOI5-007A	610040-007-006-1/2	SW6010B	SOIL	10/06/2006	10/07/2006
	610040-007-006-1/2	SW7471A			
	610040-007-006-1/2	CLP_SOLIDS			
EX-AOI5-008A	610040-008-008-1/2	SW6010B	SOIL	10/06/2006	10/07/2006
	610040-008-008-1/2	SW7471A			
	610040-008-008-1/2	CLP_SOLIDS			

GPL Laboratories, LLLP 7210A Corporate CT, Frederick, MD 21703 Tel. (301)694-5310 Fax (301)620-0731

Page 4 of 47 Printed: 11/3/06 Version 2.4.2 (Build 0)

GPL Laboratories, LLLP

Sample Summary Report

Shaw E&I, Inc

Work Order: 610040

Client Sample ID	Lab Sample ID	Analytical Method	Matrix	Date Sampled	Date Recieved
EX-AOI5-010A	610040-009-010-1/2	SW6010B	SOIL	10/06/2006	10/07/2006
	610040-009-010-1/2	SW7471A			
	610040-009-010-1/2	CLP_SOLIDS			

Client Name:

Shaw E&I, Inc

EX-AOI5-001A

Client Sample ID:

10/06/2006 13:00

Sample Date/Time: Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/10/2006 00:00

Sample Matrix:

Lab Sample ID:

610040-001-001-1/1

Percent Moisture:

12.89

SOIL

Preparation Method:

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum	16700	19	1	mg/kg	10/11/06	16:55
2) Antimony	0.68 JNB	1.9	1	mg/kg	10/11/06	16:55
3) Arsenic	13.2 B	1.9	1	mg/kg	10/11/06	16:55
4) Barium	77.8 NB	0.47	1	mg/kg	10/11/06	16:55
5) Beryllium	0.83 B	0.19	1	mg/kg	10/11/06	16:55
6) Cadmium	0.65 B	0.57	1	mg/kg	10/11/06	16:55
7) Calcium	21400	94.9	1	mg/kg	10/11/06	16:55
8) Chromium	23.6	0.47	1	mg/kg	10/11/06	16:55
9) Cobalt	14.9 B	0.47	1	mg/kg	10/11/06	16:55
10) Copper	40.0 B	0.95	1	mg/kg	10/11/06	16:55
11) Iron	35300 B	14.2	1	mg/kg	10/11/06	16:55
12) Lead	16.7 B	0.95	1	mg/kg	10/11/06	16:55
13) Magnesium	8080 B	23.7	1	mg/kg	10/11/06	16:55
14) Manganese	903 B	0.47	1	mg/kg	10/11/06	16:55
15) Nickel	34.5 B	0.95	1	mg/kg	10/11/06	16:55
16) Potassium	2070 N	23.7	1	mg/kg	10/11/06	16:55
17) Selenium	0.43 J	1.9	1	mg/kg	10/12/06	15:16
18) Silver	BQL U	0.47	1	mg/kg	10/12/06	15:16
19) Thallium	0.83 J	2.8	1	mg/kg	10/11/06	16:55
20) Vanadium	27.3 NB	0.95	1	mg/kg	10/11/06	16:55
21) Zinc	94.0	1.9	1	mg/kg	10/11/06	16:55

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-001A

Lab Sample ID:

610040-001-001-1/1

Sample Date/Time:

10/06/2006 13:00

Percent Moisture:

12.89

Receipt Date/Time:
Prepared Date/Time:

10/07/2006 11:00 10/11/2006 23:40 Preparation Method:

SW7471_DIG

Analytical Method:

SW7471A

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analysi Date/Tir	
1) Mercury	0.041	0.025	1	mg/kg	10/12/06	13:44

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-001A

Sample Date/Time:

10/06/2006 13:00

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

Lab Sample ID:

SOIL

Sample Matrix:

610040-001-001-1/1

Percent Moisture:

12.89

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Percent Solids	87	1.0	1	%	10/11/06	14:06

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-002A

Sample Date/Time:

10/06/2006 13:10

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time: 10

10/10/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

610040-002-002-1/1

Percent Moisture:

12.79

Preparation Method:

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum	16300	19.1	1	mg/kg	10/11/06	17:03
2) Antimony	0.48 JNB	1.9	1	mg/kg	10/11/06	17:03
3) Arsenic	13.3 В	1.9	1	mg/kg	10/11/06	17:03
4) Barium	72.1 NB	0.48	1	mg/kg	10/11/06	17:03
5) Beryllium	0.88 B	0.19	1	mg/kg	10/11/06	17:03
6) Cadmium	0.62 B	0.57	1	mg/kg	10/11/06	17:03
7) Calcium	3300	95.6	1	mg/kg	10/11/06	17:03
8) Chromium	23.9	0.48	1	mg/kg	10/11/06	17:03
9) Cobalt	17.3 B	0.48	1	mg/kg	10/11/06	17:03
10) Copper	45.4 B	0.96	1	mg/kg	10/11/06	17:03
11) Iron	37700 B	14.3	1	mg/kg	10/11/06	17:03
12) Lead	19.2 B	0.96	1	mg/kg	10/11/06	17:03
13) Magnesium	7940 B	23.9	1	mg/kg	10/11/06	17:03
14) Manganese	752 B	0.48	1	mg/kg	10/11/06	17:03
15) Nickel	41.0 B	0.96	1	mg/kg	10/11/06	17:03
16) Potassium	2040 N	23.9	1	mg/kg	10/11/06	17:03
17) Selenium	0.82 J	1.9	1	mg/kg	10/12/06	15:24
18) Silver	BQL U	0.48	1	mg/kg	10/12/06	15:24
19) Thallium	0.51 J	2.9	1	mg/kg	10/11/06	17:03
20) Vanadium	26.8 NB	0.96	1	mg/kg	10/11/06	17:03
21) Zinc	94.5	1.9	1	mg/kg	10/11/06	17:03

Client Name:

Shaw E&I, Inc.

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-002A

Lab Sample ID:

610040-002-002-1/1

Sample Date/Time:

10/06/2006 13:10

Percent Moisture:

Receipt Date/Time:

10/07/2006 11:00

12.79

Prepared Date/Time:

10/11/2006 23:40

Preparation Method:

SW7471_DIG

Analytical Method:

SW7471A

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analys Date/Ti	
1) Mercury	0.039	0.027	1	mg/kg	10/12/06	13:46

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-002A

Sample Date/Time:

10/06/2006 13:10

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

Sample Matrix:

SOIL

Lab Sample ID:

610040-002-002-1/1

Percent Moisture:

12.79

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Result Q	Limit	Fact	Units	,	
# Parameter	Reported	Reporting Limit	Dil Fact	1 Inite	Analysis Date/Time	

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-003A

Lab Sample ID:

610040-003-020-1/9

Sample Date/Time: Receipt Date/Time:

10/06/2006 14:00

Percent Moisture:

9.18

Prepared Date/Time:

10/07/2006 11:00

Preparation Method:

SW3550

10/09/2006 00:00

Analytical Method:

SW8081A

1

1

1

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Anal _y Date/	
1) 4,4-DDD	BQL	U	1.8	1	ug/kg	10/12/06	11:58
2) 4,4-DDE	BQL	U	1.8	1	ug/kg	10/12/06	11:58
3) 4,4-DDT	BQL	U	1.8	1	ug/kg	10/12/06	11:58
4) Aldrin	BQL	U	1.8	1	ug/kg	10/12/06	11:58
5) Alpha-BHC	BQL	U	1.8	1	ug/kg	10/12/06	11:58
6) Beta-BHC	BQL	U	1.8	1	ug/kg	10/12/06	11:58
7) Chlordane	BQL	U	37	1	ug/kg	10/12/06	11:58
8) Delta-BHC	BQL	U	1.8	1	ug/kg	10/12/06	11:58
9) Dieldrin	BQL	U	1.8	1	ug/kg	10/12/06	11:58
10) Endosulfan I	BQL	U	1.8	1	ug/kg	10/12/06	11:58
11) Endosulfan II	BQL	U	1.8	1	ug/kg	10/12/06	11:58
12) Endosulfan Sulfate	BQL	U	1.8	1	ug/kg	10/12/06	11:58
13) Endrin	BQL	U	1.8	1	ug/kg	10/12/06	11:58
14) Gamma-BHC (Lindane)	BQL	U	1.8	1	ug/kg	10/12/06	11:58
15) Heptachlor	BQL	U	1.8	1	ug/kg	10/12/06	11:58
16) Heptachlor Epoxide	BQL	U	1.8	1	ug/kg	10/12/06	11:58
17) Methoxychlor	BQL	U	1.8	1	ug/kg	10/12/06	11:58
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/T	
18) Decachlorobiphenyl	89 %	36 - 120		1		10/12/06	11:58

19) Decachlorobiphenyl

20) Tetrachloro-m-xylene

21) Tetrachloro-m-xylene

11:58

11:58

11:58

10/12/06

10/12/06

10/12/06

89 %

81 %

83 %

36 - 120

36 - 120

36 - 120

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-003A

Sample Date/Time:

10/06/2006 14:00

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/10/2006 00:00

Sample Matrix:

campic matrix.

Lab Sample ID:

SOIL

610040-003-020-1/9

Percent Moisture:

9.18

Preparation Method:

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum	15800		18.4	1	mg/kg	10/11/06	17:11
2) Antimony	0.49	JNB	1.8	1	mg/kg	10/11/06	17:11
3) Arsenic	11.9	В	1.8	1	mg/kg	10/11/06	17:11
4) Barium	78.2	NB	0.46	1	mg/kg	10/11/06	17:11
5) Beryllium	0.84	В	0.18	1	mg/kg	10/11/06	17:11
6) Cadmium	0.70	В	0.55	1	mg/kg	10/11/06	17:11
7) Calcium	31300		91.8	1	mg/kg	10/11/06	17:11
8) Chromium	23.1		0.46	1	mg/kg	10/11/06	17:11
9) Cobalt	15.1	В	0.46	1	mg/kg	10/11/06	17:11
10) Copper	40.3	В	0.92	1	mg/kg	10/11/06	17:11
11) Iron	35200	В	13.8	1	mg/kg	10/11/06	17:11
12) Lead	15.8	В	0.92	1	mg/kg	10/11/06	17:11
13) Magnesium	8910	В	22.9	1	mg/kg	10/11/06	17:11
14) Manganese	801	В	0.46	1	mg/kg	10/11/06	17:11
15) Nickel	40.0	В	0.92	1	mg/kg	10/11/06	17:11
16) Potassium	2050	N	22.9	1	mg/kg	10/11/06	17:11
17) Selenium	0.46	J	1.8	1	mg/kg	10/12/06	15:32
18) Silver	BQL	U	0.46	1	mg/kg	10/12/06	15:32
19) Thallium	0.57	J	2.8	1	mg/kg	10/11/06	17:11
20) Vanadium	25.7	NB	0.92	1	mg/kg	10/11/06	17:11
21) Zinc	85.8		1.8	1	mg/kg	10/11/06	17:11

Client Name:

Shaw E&I, Inc.

Client Sample ID:

EX-AOI5-003A

Sample Date/Time:

10/06/2006 14:00

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/11/2006 23:40

Sample Matrix:

SOIL

Lab Sample ID:

610040-003-020-1/9

Percent Moisture:

9.18

Preparation Method:

SW7471_DIG

Analytical Method:

SW7471A

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Mercury	0.030 J	0.034	1	mg/kg	10/12/06	13:48

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-003A

Sample Date/Time:

10/06/2006 14:00

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

Sample Matrix:

Lab Sample ID:

610040-003-020-1/9

Percent Moisture:

9.18

SOIL

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analysis Date/Time	
1) Percent Solids	91	1.0	1	%	10/11/06 14:	:06

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-003A

Sample Date/Time:

10/06/2006 14:00

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/10/2006 07:09

Sample Matrix:

SOIL

Lab Sample ID:

610040-003-029-1/3

Percent Moisture:

9.18

Preparation Method:

SW5030B

Analytical Method:

SW8260B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL	U	5.5	1	ug/kg	10/10/06	09:22
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.5	1	ug/kg	10/10/06	09:22
3) 1,1,2-Trichloroethane	BQL	U	5.5	1	ug/kg	10/10/06	09:22
4) 1,1-Dichloroethane	BQL	U	5.5	1	ug/kg	10/10/06	09:22
5) 1,1-Dichloroethene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
6) 1,2-Dichlorobenzene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
7) 1,2-Dichloroethane	BQL	U	5.5	1	ug/kg	10/10/06	09:22
8) 1,3-Dichlorobenzene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
9) 1,4-Dichlorobenzene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
10) 2-Butanone	BQL	U	11	1	ug/kg	10/10/06	09:22
11) 4-Methyl-2-Pentanone	BQL	U	11	1	ug/kg	10/10/06	09:22
12) Acetone	BQL	U	11	1	ug/kg	10/10/06	09:22
13) Benzene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
14) Bromomethane	BQL	U	11	1	ug/kg	10/10/06	09:22
15) Carbon Disulfide	BQL	U	5.5	1	ug/kg	10/10/06	09:22
16) Carbon Tetrachloride	BQL	U	5.5	1	ug/kg	10/10/06	09:22
17) Chlorobenzene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
18) Chloroethane	BQL	U	11	1	ug/kg	10/10/06	09:22
19) Chloroform	BQL	U	5.5	1	ug/kg	10/10/06	09:22
20) Chloromethane	BQL	U	11	1	ug/kg	10/10/06	09.22
21) Dibromochloromethane	BQL	U	5.5	1	ug/kg	10/10/06	09:22
22) Ethylbenzene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
23) Methylene Chloride	BQL	U	11	1	ug/kg	10/10/06	09:22
24) Styrene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
25) Tetrachloroethylene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
26) Toluene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
27) Trichloroethene	BQL	U	5.5	1	ug/kg	10/10/06	09:22
28) Vinyl Chloride	BQL	U	11	1	ug/kg	10/10/06	09:22

Client Name:	ient Name: Shaw E&I, Inc		Sample Matrix:	S	OIL	<u>.</u>					
Client Sample ID:	EX-A015-003A	/2006 14:00 Percent Moisture:		61	610040-003-029-1/3						
Sample Date/Time:	10/06/2006 14:00			9.	9.18						
Receipt Date/Time:	10/07/2006 11:00			: S\	N5030B						
Prepared Date/Time:	10/10/2006 07:09		Analytical Method:		V8260B						
29) Xylenes, Total		BQL	U	5.5	1	ug/kg	10/10/06	09:22			
30) trans-1,2-dichloroe	thene	BQL	U	5.5	1	ug/kg	10/10/06	09:22			
# Surrogate Parame	ter	Percent Recovery	Control Limits		Dil Fact		Analy Date/				
31) 1,2-Dichlorobenzei	ne-d4	107 %	65 - 123		1		10/10/06	09:22			
32) 1,2-Dichloroethane	e-d4	89 %	65 - 125		1		10/10/06	09:22			
33) 4-Bromofluorobenz	zene	110 %	85 - 120		1		10/10/06	09:22			
34) Toluene-D8		90 %	85 - 115		1		10/10/06	09:22			

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-004A

Lab Sample ID:

610040-004-017-1/2

Sample Date/Time:

10/06/2006 14:10

Percent Moisture:

Receipt Date/Time:

10/07/2006 11:00

11.45

Prepared Date/Time:

Preparation Method: SW3050B

10/10/2006 00:00

Analytical Method:

SW6010B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum	16400	В	18.2	1	mg/kg	10/11/06	18:10
2) Antimony	0.78	JNB	1.8	1	mg/kg	10/11/06	18:10
3) Arsenic	11.2	В	1.8	1	mg/kg	10/11/06	18:10
4) Barium	76.7	NB	0.46	1	mg/kg	10/11/06	18:10
5) Beryllium	0.89	В	0.18	1	mg/kg	10/11/06	18:10
6) Cadmium	0.72	В	0.55	1	mg/kg	10/11/06	18:10
7) Calcium	12500		91.1	1	mg/kg	10/11/06	18:10
8) Chromium	24.0		0.46	1	mg/kg	10/11/06	18:10
9) Cobalt	16.3	В	0.46	1	mg/kg	10/11/06	18:10
10) Copper	45.3	В	0.91	1	mg/kg	10/11/06	18:10
11) Iron	37100	В	13.7	1	mg/kg	10/11/06	18:10
12) Lead	17.7	В	0.91	1	mg/kg	10/11/06	18:10
13) Magnesium	8440	В	22.8	1	mg/kg	10/11/06	18:10
14) Manganese	662	В	0.46	1	mg/kg	10/11/06	18:10
15) Nickel	36.2	В	0.91	1	mg/kg	10/11/06	18:10
16) Potassium	1990	N	22.8	1	mg/kg	10/11/06	18:10
17) Selenium	0.63	J	1.8	1	mg/kg	10/12/06	16:12
18) Silver	BQL	U	0.46	1	mg/kg	10/12/06	16:12
19) Thallium	0.64	J	2.7	1	mg/kg	10/11/06	18:10
20) Vanadium	26.1	NB	0.91	1	mg/kg	10/11/06	18:10
21) Zinc	103		1.8	1	mg/kg	10/11/06	18:10

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-004A

Lab Sample ID:

610040-004-017-1/2

Sample Date/Time:

10/06/2006 14:10

Percent Moisture:

11.45

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/11/2006 23:40

Preparation Method:

SW7471_DIG

Analytical Method:

SW7471A

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/T	
1) Mercury	0.042	0.029	1	mg/kg	10/12/06	13:51

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-004A

Sample Date/Time:

10/06/2006 14:10

Receipt Date/Time:

Prepared Date/Time:

10/07/2006 11:00

Percent Moisture:

Sample Matrix:

Lab Sample ID:

SOIL

11.45

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

610040-004-017-1/2

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/T	
1) Percent Solids	88	1.0	1	%	10/11/06	14:06

Client Name:

Client Sample ID:

Shaw E&I, Inc

EX-AOI5-004A

10/06/2006 14:10

Receipt Date/Time: Prepared Date/Time:

Sample Date/Time:

10/07/2006 11:00

10/10/2006 07:09

Sample Matrix:

SOIL

Lab Sample ID:

610040-004-019-1/1

Percent Moisture:

11.45

Preparation Method:

SW5030B

Analytical Method:

SW8260B

•							
# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL	U	5.6	1	ug/kg	10/10/06	16:09
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.6	1	ug/kg	10/10/06	16:09
3) 1,1,2-Trichloroethane	BQL	U	5.6	1	ug/kg	10/10/06	16:09
4) 1,1-Dichloroethane	BQL	U	5.6	1	ug/kg	10/10/06	16:09
5) 1,1-Dichloroethene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
6) 1,2-Dichlorobenzene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
7) 1,2-Dichloroethane	BQL	U	5.6	1	ug/kg	10/10/06	16:09
8) 1,3-Dichlorobenzene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
9) 1,4-Dichlorobenzene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
10) 2-Butanone	BQL	U	11	1	ug/kg	10/10/06	16:09
11) 4-Methyl-2-Pentanone	BQL	U	11	1	ug/kg	10/10/06	16:09
12) Acetone	BQL	U	11	1	ug/kg	10/10/06	16:09
13) Benzene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
14) Bromomethane	BQL	U	11	1	ug/kg	10/10/06	16:09
15) Carbon Disulfide	BQL	U	5.6	1	ug/kg	10/10/06	16:09
16) Carbon Tetrachloride	BQL	U	5.6	1	ug/kg	10/10/06	16:09
17) Chlorobenzene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
18) Chloroethane	BQL	U	11	1	ug/kg	10/10/06	16:09
19) Chloroform	4.8	J	5.6	1	ug/kg	10/10/06	16:09
20) Chloromethane	BQL	U	11	1	ug/kg	10/10/06	16:09
21) Dibromochloromethane	BQL	U	5.6	1	ug/kg	10/10/06	16:09
22) Ethylbenzene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
23) Methylene Chloride	BQL	U	11	1	ug/kg	10/10/06	16:09
24) Styrene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
25) Tetrachloroethylene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
26) Toluene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
27) Trichloroethene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
28) Vinyl Chloride	BQL	U	11	1	ug/kg	10/10/06	16:09

Client Name:	Shaw E&I, Inc		Sample Matrix:	S	OIL			
Client Sample ID:	EX-AOI5-004A		Lab Sample ID:	61	0040-00	04 - 019-1	/1	
Sample Date/Time:	10/06/2006 14:10		Percent Moisture:	11	.45			
Receipt Date/Time:	10/07/2006 11:00		Preparation Method	: SV	V5030B			
Prepared Date/Time:	10/10/2006 07:09		Analytical Method:	SV	V8260B			
29) Xylenes, Total		BQL	U	5.6	1	ug/kg	10/10/06	16:09
30) trans-1,2-dichloroe	thene	BQL	U	5.6	1	ug/kg	10/10/06	16:09
# Surrogate Parame	ter	Percent Recovery	Control Limits		Dil Fact		Analy Date/	
31) 1,2-Dichlorobenze	ne-d4	109 %	65 - 123		1		10/10/06	16:09
32) 1,2-Dichloroethane	e-d4	95 %	65 - 125		1		10/10/06	16:09
33) 4-Bromofluorobenz	ene	115 %	85 - 120		1		10/10/06	16:09
34) Toluene-D8		92 %	85 - 115		1		10/10/06	16:09

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-005A

Sample Date/Time:

10/06/2006 13:15

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/10/2006 00:00

Sample Matrix:

Lab Sample ID:

610040-005-003-1/1

Percent Moisture:

11.93

SOIL

Preparation Method:

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Aluminum	15900	В	17.7	1	mg/kg	10/11/06	18:18
2) Antimony	0.21	JNB	1.8	1	mg/kg	10/11/06	18:18
3) Arsenic	8.7	В	1.8	1	mg/kg	10/11/06	18:18
4) Barium	181	NB	0.44	1	mg/kg	10/11/06	18:18
5) Beryllium	0.80	В	0.18	1	mg/kg	10/11/06	18:18
6) Cadmium	0.86	В	0.53	1	mg/kg	10/11/06	18:18
7) Calcium	36300		88.7	1	mg/kg	10/11/06	18:18
8) Chromium	22.3		0.44	1	mg/kg	10/11/06	18:18
9) Cobalt	11.8	В	0.44	1	mg/kg	10/11/06	18:18
10) Copper	35.9	В	0.89	1	mg/kg	10/11/06	18:18
11) Iron	33700	В	13.3	1	mg/kg	10/11/06	18:18
12) Lead	20.4	В	0.89	1	mg/kg	10/11/06	18:18
13) Magnesium	6960	В	22.2	1	mg/kg	10/11/06	18:18
14) Manganese	642	В	0.44	1	mg/kg	10/11/06	18:18
15) Nickel	33.2	В	0.89	1	mg/kg	10/11/06	18:18
16) Potassium	1640	N	22.2	1	mg/kg	10/11/06	18:18
17) Selenium	0.80	J	1.8	1	mg/kg	10/12/06	16:20
18) Silver	BQL	U	0.44	1	mg/kg	10/12/06	16:20
19) Thallium	0.38	J	2.7	1	mg/kg	10/11/06	18:18
20) Vanadium	25.6	NB	0.89	1	mg/kg	10/11/06	18:18
21) Zinc	111		1.8	1	mg/kg	10/11/06	18:18

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-005A

Sample Date/Time:

10/06/2006 13:15

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/11/2006 23:40

Sample Matrix:

SOIL

Lab Sample ID:

610040-005-003-1/1

Percent Moisture:

11.93

Preparation Method:

Analytical Method:

SW7471A

SW7471_DIG

# Parameter 1) Mercury		Result Q 0.049	Limit 0.036	Fact	Units ma/ka	Date/Time
		Reported	Reporting	Dil		Analysis

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-005A

Sample Date/Time:

10/06/2006 13:15

Receipt Date/Time:

Prepared Date/Time:

10/07/2006 11:00

Sample Matrix: Lab Sample ID: SOIL

610040-005-003-1/1

Percent Moisture:

11.93

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analys Date/Tii	
1) Percent Solids	88	1.0	1	%	10/11/06	14:06

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-006A

Sample Date/Time:

10/06/2006 13:20

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/10/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

610040-006-004-1/2

Percent Moisture:

12.81

Preparation Method:

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum	14900	В	17	1	mg/kg	10/11/06	18:26
2) Antimony	0.44	JNB	1.7	1	mg/kg	10/11/06	18:26
3) Arsenic	9.3	В	1.7	1	mg/kg	10/11/06	18:26
4) Barium	78.6	NB	0.42	1	mg/kg	10/11/06	18:26
5) Beryllium	0.79	В	0.17	1	mg/kg	10/11/06	18:26
6) Cadmium	0.69	В	0.51	1	mg/kg	10/11/06	18:26
7) Calcium	28800		85	1	mg/kg	10/11/06	18:26
8) Chromium	21.4		0.42	1	mg/kg	10/11/06	18:26
9) Cobalt	13.8	В	0.42	1	mg/kg	10/11/06	18:26
10) Copper	39.5	В	0.85	1	mg/kg	10/11/06	18:26
11) Iron	33900	В	12.7	1	mg/kg	10/11/06	18:26
12) Lead	15.0	В	0.85	1	mg/kg	10/11/06	18:26
13) Magnesium	10100	В	21.2	1	mg/kg	10/11/06	18:26
14) Manganese	710	В	0.42	1	mg/kg	10/11/06	18:26
15) Nickel	34.7	В	0.85	1	mg/kg	10/11/06	18:26
16) Potassium	2110	N	21.2	1	mg/kg	10/11/06	18:26
17) Selenium	0.63	J	1.7	1	mg/kg	10/12/06	16:28
18) Silver	BQL	U	0.42	1	mg/kg	10/12/06	16:28
19) Thallium	0.32	J	2.5	1	mg/kg	10/11/06	18:26
20) Vanadium	24.6	NB	0.85	1	mg/kg	10/11/06	18:26
21) Zinc	88.5		1.7	1	mg/kg	10/11/06	18:26

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-006A

Lab Sample ID:

610040-006-004-1/2

Sample Date/Time:

10/06/2006 13:20

Percent Moisture:

12.81

Receipt Date/Time:

10/07/2006 11:00

Preparation Method:

SW7471_DIG

Prepared Date/Time: 10/11/2

10/11/2006 23:40

Analytical Method:

SW7471A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Mercury	0.031	J	0.038	1	mg/kg	10/12/06	13:55

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-006A

Sample Date/Time:

Receipt Date/Time: Prepared Date/Time: 10/07/2006 11:00

10/06/2006 13:20

Sample Matrix:

SOIL

Lab Sample ID:

610040-006-004-1/2

Percent Moisture:

12.81

Preparation Method:

NΑ

AnalyticaLMethod:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analysi Date/Tir	
1) Percent Solids	87	1.0	1	%	10/11/06	14:06

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-007A

Lab Sample ID:

610040-007-006-1/2

Sample Date/Time:

10/06/2006 13:40

Percent Moisture:

Receipt Date/Time:

10/07/2006 11:00

Preparation Method:

7.92

Prepared Date/Time:

10/10/2006 00:00

SW3050B

Analytical Method:

SW6010B

# Parameter	Reported Result O	Reporting Limit	Dil	11. 7	Analy	
			Fact	Units	Date/	
1) Aluminum	15100 B	17.1	1	mg/kg	10/11/06	18:34
2) Antimony	0.63 JNB	1.7	1	mg/kg	10/11/06	18:34
3) Arsenic	9.1 B	1.7	1	mg/kg	10/11/06	18:34
4) Barium	79.3 NB	0.43	1	mg/kg	10/11/06	18:34
5) Beryllium	0.81 B	0.17	1	mg/kg	10/11/06	18:34
6) Cadmium	0.78 B	0.51	1	mg/kg	10/11/06	18:34
7) Calcium	23600	85.5	1	mg/kg	10/11/06	18:34
8) Chromium	22.0	0.43	1	mg/kg	10/11/06	18:34
9) Cobalt	15.6 B	0.43	1	mg/kg	10/11/06	18:34
10) Copper	40.3 B	0.86	1	mg/kg	10/11/06	18:34
11) Iron	32700 B	12.8	1	mg/kg	10/11/06	18:34
12) Lead	16.2 B	0.86	1	mg/kg	10/11/06	18:34
13) Magnesium	8480 B	21.4	1	mg/kg	10/11/06	18:34
14) Manganese	679 B	0.43	1	mg/kg	10/11/06	18:34
15) Nickel	35.6 B	0.86	1	mg/kg	10/11/06	18:34
16) Potassium	2150 N	21.4	1	mg/kg	10/11/06	18:34
17) Selenium	0.44 J	1.7	1	mg/kg	10/12/06	16:55
18) Silver	BQL U	0.43	1	mg/kg	10/12/06	16:55
19) Thallium	0.50 J	2.6	1	mg/kg	10/11/06	18:34
20) Vanadium	24.8 NB	0.86	1	mg/kg	10/11/06	18:34
21) Zinc	92.0	1.7	1	mg/kg	10/11/06	18:34

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-007A

Lab Sample ID:

610040-007-006-1/2

Sample Date/Time:

10/06/2006 13:40

Percent Moisture:

7.92

Receipt Date/Time:

10/07/2006 11:00

Preparation Method:

Prepared Date/Time:

10/11/2006 23:40

SW7471_DIG

Analytical Method:

SW7471A

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Mercury	0.041	0.033	1	mg/kg	10/12/06	13:57

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-AOI5-007A

Lab Sample ID:

610040-007-006-1/2

Sample Date/Time:

10/06/2006 13:40

Percent Moisture:

7.92

Receipt Date/Time:

10/07/2006 11:00

Preparation Method:

NA

Prepared Date/Time:

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Percent Solids	92	1.0	1	%	10/11/06	14:06

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-008A

Sample Date/Time:

10/06/2006 14:15

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/10/2006 00:00

Sample Matrix:

Lab Sample ID:

SOIL

Percent Moisture:

12.89

Preparation Method:

SW3050B

610040-008-008-1/2

Analytical Method: SW6010B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Aluminum	15800	В	18.4	1	mg/kg	10/11/06	19:24
2) Antimony	0.39	JNB	1.8	1	mg/kg	10/11/06	19:24
3) Arsenic	9.9		1.8	1	mg/kg	10/11/06	19:24
4) Barium	97.4	NB	0.46	1	mg/kg	10/11/06	19:24
5) Beryllium	0.84	В	0.18	1	mg/kg	10/11/06	19:24
6) Cadmium	0.81	В	0.55	1	mg/kg	10/11/06	19:24
7) Calcium	28700		91.8	1	mg/kg	10/11/06	19:24
8) Chromium	23.0		0.46	1	mg/kg	10/11/06	19:24
9) Cobalt	15.4	В	0.46	1	mg/kg	10/11/06	19:24
10) Copper	44.0	В	0.92	1	mg/kg	10/11/06	19:24
11) Iron	35300	В	13.8	1	mg/kg	10/11/06	19:24
12) Lead	17.2	В	0.92	1	mg/kg	10/11/06	19:24
13) Magnesium	9120	В	23	1	mg/kg	10/11/06	19:24
14) Manganese	646	В	0.46	1	mg/kg	10/11/06	19:24
15) Nickel	36.9	В	0.92	1	mg/kg	10/11/06	19:24
16) Potassium	2300	N	23	1	mg/kg	10/11/06	19:24
17) Selenium	0.58	J	1.8	1	mg/kg	10/12/06	17:03
18) Silver	BQL	U	0.46	1	mg/kg	10/12/06	17:03
19) Thallium	BQL	Ü	2.8	1	mg/kg	10/11/06	19:24
20) Vanadium	25.7	NB	0.92	1	mg/kg	10/11/06	19:24
21) Zinc	92.4		1.8	1	mg/kg	10/11/06	19:24

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

EX-A015-008A

Lab Sample ID:

610040-008-008-1/2

Sample Date/Time:

10/06/2006 14:15

Percent Moisture:

12.89

Receipt Date/Time:

10/07/2006 11:00

Preparation Method:

Prepared Date/Time:

10/11/2006 23:40

SW7471_DIG

Analytical Method:

SW7471A

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Mercury	0.023	J	0.037	1	mg/kg	10/12/06	13:59

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-008A

Sample Date/Time:

10/06/2006 14:15

Receipt Date/Time:

Prepared Date/Time:

10/07/2006 11:00

Sample Matrix:

SOIL

Lab Sample ID:

610040-008-008-1/2

Percent Moisture:

12.89

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/1	
1) Percent Solids	87	1.0	1	%	10/11/06	14:06

Version 2.4.2 (Build 0)

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-010A

Sample Date/Time:

10/06/2006 15:00

Receipt Date/Time: Prepared Date/Time:

10/07/2006 11:00

10/10/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

610040-009-010-1/2

Percent Moisture:

13.35

Preparation Method:

SW3050B

Analytical Method:

SW6010B

	_						
# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) Aluminum	15800	В	18	1	mg/kg	10/11/06	19:32
2) Antimony	0.58	JNB	1.8	1	mg/kg	10/11/06	19:32
3) Arsenic	9.3		1.8	1	mg/kg	10/11/06	19:32
4) Barium	133	NB	0.45	1	mg/kg	10/11/06	19:32
5) Beryllium	0.80	В	0.18	1	mg/kg	10/11/06	19:32
6) Cadmium	0.66	В	0.54	1	mg/kg	10/11/06	19:32
7) Calcium	22900		90.2	1	mg/kg	10/11/06	19:32
8) Chromium	21.6		0.45	1	mg/kg	10/11/06	19:32
9) Cobait	14.6	В	0.45	1	mg/kg	10/11/06	19:32
10) Copper	36.3	В	0.9	1	mg/kg	10/11/06	19:32
11) Iron	32400	В	13.5	1	mg/kg	10/11/06	19:32
12) Lead	16.7	В	0.9	1	mg/kg	10/11/06	19:32
13) Magnesium	7120	В	22.5	1	mg/kg	10/11/06	19:32
14) Manganese	622	В	0.45	1	mg/kg	10/11/06	19:32
15) Nickel	31.7	В	0.9	1	mg/kg	10/11/06	19:32
16) Potassium	1870	N	22.5	1	mg/kg	10/11/06	19:32
17) Selenium	0.84	j	1.8	1	mg/kg	10/12/06	17:11
18) Silver	BQL	U	0.45	1	mg/kg	10/12/06	17:11
19) Thallium	0.66	J	2.7	1	mg/kg	10/11/06	19:32
20) Vanadium	26.0	NB	0.9	1	mg/kg	10/11/06	19:32
21) Zinc	95.9		1.8	1	mg/kg	10/11/06	19:32
				•	2,179	10, 11,00	10.02

Client Name:

Shaw E&I, Inc

EX-AOI5-010A

Client Sample ID: Sample Date/Time:

10/06/2006 15:00

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/11/2006 23:40

Sample Matrix:

SOIL

Lab Sample ID:

610040-009-010-1/2

Percent Moisture:

13.35

Preparation Method:

Analytical Method:

SW7471_DIG

SW7471A

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analy Date/∃	
1) Mercury	0.026 J	0.032	1	mg/kg	10/12/06	14:01

Client Name:

Shaw E&I, Inc

Client Sample ID:

EX-AOI5-010A

Sample Date/Time:

10/06/2006 15:00

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

Sample Matrix:

SOIL

Lab Sample ID:

610040-009-010-1/2

Percent Moisture:

13.35

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result Q	Reporting Limit	Dil Fact	Units	Analysi Date/Tir	
1) Percent Solids	87	1.0	1	%	10/11/06	14:06

Client Name:

Shaw E&I, Inc

Client Sample ID:

DUP10606

Sample Date/Time:

10/06/2006 00:00

Receipt Date/Time:

10/07/2006 11:00

Prepared Date/Time:

10/09/2006 00:00

Sample Matrix:

SOIL

Lab Sample ID:

610040-011-012-1/3

Percent Moisture:

8.76

Preparation Method:

SW3550

Analytical Method:

SW8081A

							-
# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Anal Date/	
1) 4,4-DDD	BQL	U	1.8	1	ug/kg	10/12/06	00:28
2) 4,4-DDE	BQL	U	1.8	1	ug/kg	10/12/06	00:28
3) 4,4-DDT	BQL	U	1.8	1	ug/kg	10/12/06	00:28
4) Aldrin	BQL	U	1.8	1	ug/kg	10/12/06	00:28
5) Alpha-BHC	BQL	U	1.8	1	ug/kg	10/12/06	00:28
6) Beta-BHC	BQL	U	1.8	1	ug/kg	10/12/06	00:28
7) Chlordane	BQL	U	37	1	ug/kg	10/12/06	00:28
8) Delta-BHC	BQL	U	1.8	1	ug/kg	10/12/06	00:28
9) Dieldrin	BQL	U	1.8	1	ug/kg	10/12/06	00:28
10) Endosulfan I	BQL	U	1.8	1	ug/kg	10/12/06	00:28
11) Endosulfan II	BQL	U	1.8	1	ug/kg	10/12/06	00:28
12) Endosulfan Sulfate	BQL	U	1.8	1	ug/kg	10/12/06	00:28
13) Endrin	BQL	U	1.8	1	ug/kg	10/12/06	00:28
14) Gamma-BHC (Lindane)	BQL	U	1.8	1	ug/kg	10/12/06	00:28
15) Heptachlor	BQL	U	1.8	1	ug/kg	10/12/06	00:28
16) Heptachlor Epoxide	BQL	U	1.8	1	ug/kg	10/12/06	00:28
17) Methoxychlor	BQL	U	1.8	1	ug/kg	10/12/06	00:28
# Surrogate Parameter	Percent Recovery	Control Limits		Dil Fact		Analy Date/T	
18) Decachlorobiphenyl	103 %	36 - 120		1		10/12/06	00:28
19) Decachlorobiphenyl	102 %	36 - 120		1		10/12/06	00:28
20) Tetrachloro-m-xylene	87 %	36 - 120		1		10/12/06	00:28
21) Tetrachloro-m-xylene	93 %	36 - 120		1		10/12/06	00:28
•							

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DUP10606

Lab Sample ID:

610040-011-012-1/3

Sample Date/Time:

10/06/2006 00:00

Percent Moisture:

8.76

Receipt Date/Time:

10/07/2006 11:00

Preparation Method:

SW3050B

Prepared Date/Time:

10/10/2006 00:00

Analytical Method:

SW6010B

# Parameter		Reported Result	Repor Q Lim		Units	Analy Date/	
1) Aluminum		15700	B 17	7 1	mg/kg	10/11/06	19:40
2) Antimony		0.88 J	NB 1	8 1	mg/kg	10/11/06	19:40
3) Arsenic		10.0	1	8 1	mg/kg	10/11/06	19:40
4) Barium		81.7 N	IB 0.4	4 1	mg/kg	10/11/06	19:40
5) Beryllium		0.83	B _. 0.1	8 1	mg/kg	10/11/06	19:40
6) Cadmium		0.88	B 0.5	3 1	mg/kg	10/11/06	19:40
7) Calcium		34900	88	4 1	mg/kg	10/11/06	19:40
8) Chromium		22.7	0.4	4 1	mg/kg	10/11/06	19:40
9) Cobalt		16.7	B 0.4	4 1	mg/kg	10/11/06	19:40
10) Copper		43.2	B 0.8	8 1	mg/kg	10/11/06	19:40
11) Iron		35000	B 13.	3 1	mg/kg	10/11/06	19:40
12) Lead	· .	16.0	B 0.8	8 1	mg/kg	10/11/06	19:40
13) Magnesium		8750	B 22.	1 1	mg/kg	10/11/06	19:40
14) Manganese	•	945	B 0.4	4 1	mg/kg	10/11/06	19:40
15) Nickel		42.1	B 0.8	8 1	mg/kg	10/11/06	19:40
16) Potassium		2050	N 22.	1 1	mg/kg	10/11/06	19:40
17) Selenium		0.68	J 1.	8 1	mg/kg	10/12/06	17:19
18) Silver		BQL	J 0.4	4 1	mg/kg	10/12/06	17:19
19) Thallium		0.44	J 2.	7 1	mg/kg	10/11/06	19:40
20) Vanadium		25.3 N	IB 0.8	8 1	mg/kg	10/11/06	19:40
21) Zinc		93.9	1.	8 1	mg/kg	10/11/06	19:40
					_		

Client Name:

Shaw E&I, Inc.

Sample Matrix: Lab Sample ID: SOIL

Client Sample ID:

DUP10606

610040-011-012-1/3

Sample Date/Time:

10/06/2006 00:00

Percent Moisture:

8.76

Receipt Date/Time:

10/07/2006 11:00

Preparation Method:

SW7471_DIG

Prepared Date/Time:

10/11/2006 23:40

Analytical Method:

SW7471A

Parameter

Reported Result Q

Reporting Limit

Dil Fact Units

Analysis Date/Time

1) Mercury

0.045

0.034

1 mg/kg 10/12/06

14:03

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DUP10606

Lab Sample ID:

610040-011-012-1/3

Sample Date/Time:

10/06/2006 00:00

Percent Moisture:

Receipt Date/Time:

10/07/2006 11:00

8.76

Prepared Date/Time:

Preparation Method:

NA

Analytical Method:

CLP_SOLIDS

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	

Client Name:

Shaw E&I, Inc

Sample Matrix:

SOIL

Client Sample ID:

DUP10606

Lab Sample ID:

Percent Moisture:

610040-011-015-1/1

Sample Date/Time:

10/06/2006 00:00

8.76

Receipt Date/Time:

10/07/2006 11:00

Preparation Method:

SW5030B

Prepared Date/Time:

10/10/2006 07:09

Analytical Method:

SW8260B

# Parameter	Reported Result	Q	Reporting Limit	Dil Fact	Units	Analy Date/	
1) 1,1,1-Trichloroethane	BQL	U	5.5	1	ug/kg	10/10/06	16:46
2) 1,1,2,2-Tetrachloroethane	BQL	U	5.5	1	ug/kg	10/10/06	16:46
3) 1,1,2-Trichloroethane	BQL	Ų	5.5	1	ug/kg	10/10/06	16:46
4) 1,1-Dichloroethane	BQL	U	5.5	1	ug/kg	10/10/06	16:46
5) 1,1-Dichloroethene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
6) 1,2-Dichlorobenzene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
7) 1,2-Dichloroethane	BQL	U	5.5	1	ug/kg	10/10/06	16:46
8) 1,3-Dichlorobenzene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
9) 1,4-Dichlorobenzene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
10) 2-Butanone	BQL	U	11	1	ug/kg	10/10/06	16:46
11) 4-Methyl-2-Pentanone	BQL	U	11	1	ug/kg	10/10/06	16:46
12) Acetone	BQL	U	11	1	ug/kg	10/10/06	16:46
13) Benzene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
14) Bromomethane	BQL	U	11	1	ug/kg	10/10/06	16:46
15) Carbon Disulfide	BQL	U	5.5	1	ug/kg	10/10/06	16:46
16) Carbon Tetrachloride	BQL	U	5.5	1	ug/kg	10/10/06	16:46
17) Chlorobenzene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
18) Chloroethane	BQL	U	11	1	ug/kg	10/10/06	16:46
19) Chloroform	BQL	U	5.5	1	ug/kg	10/10/06	16:46
20) Chloromethane	BQL	U	11	1	ug/kg	10/10/06	16:46
21) Dibromochloromethane	BQL	Ü	5.5	1	ug/kg	10/10/06	16:46
22) Ethylbenzene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
23) Methylene Chloride	BQL	U	11	1	ug/kg	10/10/06	16:46
24) Styrene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
25) Tetrachloroethylene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
26) Toluene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
27) Trichloroethene	BQL	U	5.5	1	ug/kg	10/10/06	16:46
28) Vinyl Chloride	BQL	U	11	1	ug/kg	10/10/06	16:46

Client Name:	Shaw E&I, Inc		Samp	ole Matrix:	S	OIL			
Client Sample ID:	DUP10606		Lab S	Sample ID:	6	10040-01	1-015-1	/1	
Sample Date/Time:	10/06/2006 00:00		Perce	ent Moisture:	8.	76			
Receipt Date/Time:	10/07/2006 11:00		Prepa	aration Method:	S	W5030B			
Prepared Date/Time:	10/10/2006 07:09		Analy	tical Method:	S	W8260B			
29) Xylenes, Total		BQL	U		5.5	1	ug/kg	10/10/06	16:46
30) trans-1,2-dichloroe	thene	BQL	U		5.5	1	ug/kg	10/10/06	16:46
# Surrogate Parame	ter	Percent Recovery		Control Limits		Dil Fact		Analy Date/	
31) 1,2-Dichlorobenzei	ne-d4	107 %		65 - 123	•	1		10/10/06	16:46
32) 1,2-Dichloroethane	e-d4	94 %		65 - 125		1		10/10/06	16:46
33) 4-Bromofluorobenz	zene	114 %	i	85 - 120		1		10/10/06	16:46
34) Toluene-D8	. **	90 %		85 - 115		1		10/10/06	16:46

GPL Laboratories, LLLP

Qualifier Definitions

Shaw E&I, Inc.

Work Order: 610040

All Departments

- U Indicates that the compound was analyzed for but not detected
- BQL Below Quantitation Limit

Organics

- B Indicates that the analyte was found in the associated blank as well as in the sample
- D Indicates that the analyte was reported from a diluted analysis
- E Indicates that the concentration detected exceeded the calibration range of the instrument
- J Value is less than the reporting limit but greater than the MDL
- P Indicates that there is greater than 25% difference for detected pesticide/Arochlor results between the two GC columns

Metals

- J Indicates that the reported value was less than the reporting limit but greater than or equal to the IDL/MDL
- E Indicates that the reported value is estimated because of the possible presence of interference (i.e. the serial dilution not within control limits)
- H Indicates that the element was found in the associated blank as well as in the sample and the value is greater than or equal to the reporting limit
- D Indicates that the analyte was reported from a diluted analysis
- N Spiked sample recovery not within control limits
- * Duplicate analysis not within control limits

Chain of Custody

Shaw E&I, Inc

SDG: 610040

÷			y	****	Λ	***********			TAKE.				182	72.2	1	Ta. 2					····		•	.,	.,	
·		Reliktalished By:		Halirquisted By:	1	Holinquist au Ex:	MPIGGOR	No. St. Del. N.	The same	かんないかん	SK-ACT-STANSA	K-NOS-COVA	V-3017 - 2504-13	Charactery A	W. 42. 2. 20.10	*** 4100 X	War-wardy B	Ex har a rough to be co	Sample 1:4	Prone: 4/9	1	Address 1640	Send Rasus or	Dere Shar Conformation	さべらんかんながら	GPL LABORATORIES, LLLP
		-		*	(<			_				L.	-				naxe Surplad	されて 一ちが	Tive lay	X	STATE OF	1	1	ORA
		Da	-	D _a	桑	 ~ \frac{2}{3}	i	1		$\frac{8}{2}$	11.15	1840	320	12/2	Z O	S	30	2000	Senta S	-6080	OH:	なりと	Cour Conide 110	S. C. C.	ري لا	ORIE
		DataTirle		Dalwitune	Jac	Contribus -		答	4					_				ŝ	AUTON Spilless	8	の対象を行	する かたする かのか	0		1 1	S, LL
		Received By		Received By:	SAN	-Ka pawedan-													Cartio's		Ş	*			हेता श	7
		<u> </u>		7%		**	X		*	×	X	×	Ж	×	×	×	χ.	ж.	V2.	No.	Type or	Used Virtue	Corrainer Type	Voi Contanars	Tunsaind Time	
		:					X	×	*						×	×			Carried Contraction of the Contr	*	<u> </u>	1200	T-ype /	()ars	d Ime	
	Ţ.	<u> </u>		2		A.F.	×		*							×			\$ \$ \$ \$	No. No.		K	ĺ,	N	2	Market Ma
G .	F	Comme		Day Timo		Relinquishos By			4										79	***		X	<u> </u>		13/4/	North und XVI Alec-Avius Alec' Cur, Ymerou Tree of the Course
Ö.	6	Į,		reciding		, By:						[-		_				1		¥			J.	, , , , , , , , , , , , , , , , , , ,
G.P. W.O. 6/0040	recioned 121 K)														-]	-		***		\			¥	Cariqut &Biling Felowace
1	OB	-		¥		Re				-	1							**************************************							7	g Felesate
	4	1		\$₹ 6:	THE	Received for					1	1						1								5
	Š			-	Q	ing Contention Joy												\dashv		•					/	
	ř.	7				Y BY										3		1	1	0 S	200	100		1	,	<u></u>
	らい。			1/83	78	- Jagg	4	,				-	***************************************			なる人など			COMMENTS	***	**G	7/6				
	v		-(n. min i n. m		で表	Tma .			•										통 ^기				_	_		ਵੋਂ

Chain of Custody

Shaw E&I, Inc

SDG: 610040

Chain of Custody

Shaw E&I, Inc

SDG: 610040

GPL Laboratories, LLLP

	Figu			
Promoter	SAMPLE STOTA	-1 (1969-1961) 13- 6 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
we re [chootes -	Carries Masse	<u> </u>		
Client Name:	Prepared \$ 20	ceut tri) Dy: <u>UD/</u>	ध्वाधि	
a o r o o o o o o o o o o o o o o o o o	Project:	nitiale Dare	1 " E	
The Receiver 10 Mars	કાં.૯:	ne e major e la la la la la la la la la la la la la		
Received by: 100	40A Naichin S	isnk .D. \o:	***************************************	
	YE'S NO			YES NO
Airt. /Monifost Frogent?		Tro B'snks: No of Set [Pelit Terror No. ::I Se	<u>a</u>	
NG.	•	Equic Eark No. c' Sa	15	The state of
		ine d'unione Vo. ci :	Sets	
Sidipping Contactor in Good Condition?		M3/M5D: No of Sets	*	
Custony Sunty Prosent on Objecting Conts.ner?		VCA Vas Hava Zorc H	carleduce?	
Condition: Broken		It is a smaller or greates	into i Green Pas	(E-re-resments)
micro-not dated to signed		Preserveliums Addied K	Sample?	
	*******	th Chota Requirec?		
Usaga of Tamper Evicent Type		Padorned By7	name.	
Chain-cfCustocy Present?		toe Present in Shipping	Conts.rer:	八音(京文)
Chain-of-Quatody Agrees with Bampic Luceon		Container# Te	TIE Conteiner	y lenc.
Clear-of-Gustopy Signed?		1 2	* *	
Pitcking Proport in 6h oping Comminer? Tyte or "soding	Market			any and a superior
Custody spals on Gample Bottles? Condition: Good Gudes:			Control of the property of the second	in the state of th
Pats: Number of Sample Tokles 80		a > 4 - a as sawain and and and and and and and and and an		******
"Itel Number of Samples 10.			***************************************	······································
Son plus Filter?	_	- e		
Suffic ant Sample Vocume for Indicated Test [©]	ALEXANDER (*	Project Menager Content	nei?	
	Andrew	Name.	I SECTION	
•		Dato Contexted.	-0/4/-6	L ,
Any MO resonasa mum no cobileo in the oxinmert should so maixed N/A/	is scolor boyu 🗗	धा त वस्त्रीत्तर इस त्यर शास्त्र	port cidar sacr; 'sa i	da casa canta, Busy
CONVENTS NO Trip Blank	. sabië tri	erioned (led we do	RIOH OF H
Something of the same of the s	7. 0.4402	and the state of t	THE THE	· character
- · ·	•		***************************************	
White the community of				
		14 2000	***************************************	200 2 % SHF4000
	9\\$comp14 =	it Completed By:	1125	
	Check.a	n -vesibacion não	مرار والورد والم	-)
		Calo	10/4/5	<u> </u>
0			J. * J.	

SCP No. F.2V17

Shaw Environmental & Infrastructure, Inc.

Data Usability Report

16406 U.S. Route 224 East • Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER:

Tom Mathison

SAMPLE RECEIPT DATE:

09/07/2006

PROJECT NAME:

USACE-Schenectady

LABORATORY SDG:

060908001

The Findlay Ohio Applied Sciences Group has performed a QA evaluation of the data report from Adirondack Environmental Services, Inc., Albany, NY. The results are for samples collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table below.

	Sample Summa	ry Table	
Sample Number	Collection Date	Matrix	Analysis Requested
EX-F-23; EX-F-24; EX-F-25;	09/07/2006	Soil	Target Metals SW-6010B/ 7471A
EX-F-26; EX-F-27			VOCs-SW8260B

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and was received having an ambient temperature of 26°C upon opening the sample cooler. The Trip Blank was written on the COC and was present in the cooler. The laboratory provided an electronic copy of the data within the specified turn around time. The following describes the overall QA/QC indicators.

VOC Analysis in Soil by 8260B

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs.

Method Blank: The LCB contained no reported analytes at a concentration above the RL/PQL

LCS: The LCS recoveries are within acceptance criteria for the target analytes in all analysis sets.

MS/MSD: The QC Matrix recovery and precision performance, using sample EX-F-23, is within acceptance limits for all compounds.

Surrogates: All surrogate recoveries are within acceptable criteria.

Trip Blank: The Trip Blank results are below the Practical Quantitation Limit (PQL) for the target analytes with the following exception: $5.6~\mu g/L$ methylene chloride. The PQL for methylene chloride is $5\mu g/L$. There appears to be a possible methylene chloride contamination in all samples. The concentration of methylene chloride ranges from 6 to $10~\mu g/Kg$. It is possible that a majority of this contamination could be attributed to the laboratory since the contamination is present in every sample and the detected concentrations are very similar. Since the TAGM 4046 RSCO for this analyte is 100 ug/Kg and is significantly above the apparent contamination response no affect on data usability or need for qualification has resulted.

Reported results can be utilized with confidence. Data users should be cautioned to not utilize the methylene chloride for the reasons stated in the VOC Trip Blank QA/QC review.

Metals Analysis in Soil by SW6010B and SW7471A

The ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements. All instrument interference check samples were within control limits with the exceptions noted in the discussion below. The initial and continuing calibration check samples were not reported. The initial calibration blank results were below reporting limits.

Method Blanks: The method blank results are below reporting limits.

LCS: The LCS recoveries are within acceptance criteria for the target analytes with the following exception: Lead % recovery was flagged with an "S" at 124% with a result of $95\mu g/g$ for a spiked value of $76.8 \mu g/g$.

QC Matrix: The MS recovery and precision for sample EX-F-23, are within acceptance limits for all analytes for which the native concentration was less then 4X the spike concentration except for antimony (47.7%R) and silver (50..1%R) and lead (134%R). The high bias in the lead values has no bearing on data usability. The antimony concentrations are significantly above the TAGM 4046 RSCO's in all samples resulting in no effect on data usability from the potential low bias for this analyte. The duplicate precision met all criteria.

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, for the intended project decision-making process.

Guy Gallello, Jr. - Project Chemist

Data

Experience is the solution

314 North Pearl Street ♦ Albany, New York 12207 (800) 848-4983 ♦ (518) 434-4546 ♦ Fax (518) 434-0891

November 21, 2006

Guy Gallello Shaw Environmental & Infrastructure 16406 US Route 224 East Findlay, OH 45840

TEL: (419) 425-6080

FAX: (419) 425-6085

RE: Schenectady Army Depot

Dear Guy Gallello:

Adirondack Environmental Services, Inc received 6 samples on 9/7/2006 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

ELAP#: 10709 AIHA#: 100307

Work Order No: 060908001

PO#: 212830 OP

Christopher Hess QA Manager

G. Gallello - FAX

R - RPD outside accepted recovery limits

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Collection Date: 9/7/2006 Project: Schenectady Army Depot **Lab Sample ID:** 060908001-001

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/8/	2006)					
Aluminum	8500	21.7		μg/g-dry	1	9/8/2006 12:45:00 PM
Antimony	7.9	13.0	JS	μg/g-dry	1	9/8/2006 12:45:00 PM
Arsenic	< 1.08	1.08		μg/g-dry	1	9/8/2006 12:45:00 PM
Barium	42.9	2.17		μg/g-dry	1	9/8/2006 12:45:00 PM
Beryllium	0.40	1.08	J	μg/g-dry	1	9/8/2006 12:45:00 PM
Cadmium	< 1.08	1.08		μg/g-dry	1	9/8/2006 12:45:00 PM
Calcium	19900	108		μg/g-dry	1	9/8/2006 12:45:00 PM
Chromium	14.3	1.08		μg/g-dry	1	9/8/2006 12:45:00 PM
Cobalt	12.7	10.8		μg/g-dry	1	9/8/2006 12:45:00 PM
Copper	23.0	1.08		μg/g-dry	1	9/8/2006 12:45:00 PM
Iron	15900	10.8		μg/g-dry	1	9/8/2006 12:45:00 PM
Lead	< 1.08	1.08		μg/g-dry	1	9/8/2006 12:45:00 PM
Magnesium	7490	108		μg/g-dry	1	9/8/2006 12:45:00 PM
Manganese	444	2.17	s	μg/g-dry	1	9/8/2006 12:45:00 PM
Nickel	1.7	10.8	J	μg/g-dry	1	9/8/2006 12:45:00 PM
Potassium	1230	108		μg/g-dry	1	9/8/2006 12:45:00 PM
Selenium	< 1.08	1.08		μg/g-dry	1	9/8/2006 12:45:00 PM
Silver	< 4.33	4.33	s	μg/g-dry	1	9/8/2006 12:45:00 PM
Sodium	136	108		μg/g-dry	1	9/8/2006 12:45:00 PM
Thallium	< 2.17	2.17	s	μg/g-dry	1	9/8/2006 12:45:00 PM
Vanadium	10.8	10.8		μg/g-dry	1	9/8/2006 12:45:00 PM
Zinc	54.0	2.17		μg/g-dry	1	9/8/2006 12:45:00 PM
MERCURY SW7471A (Prep: SW7471A - 9/8/	2006)					Analyst: KH
Mercury	< 0.217	0.217		μg/g-dry	1	9/8/2006
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 11	11		μg/Kg-dry	1	9/8/2006 1:58:00 PM
Bromomethane	< 11	11		μg/Kg-dry	1	9/8/2006 1:58:00 PM
Vinyl chloride	< 11	11		μg/Kg-dry	1	9/8/2006 1:58:00 PM
Chloroethane	< 11	11		μg/Kg-dry	1	9/8/2006 1:58:00 PM
Methylene chloride	10	5		μg/Kg-dry	1	9/8/2006 1:58:00 PM
Acetone	< 11	11		μg/Kg-dry	1	9/8/2006 1:58:00 PM
Carbon disulfide	< 5	5		μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,1-Dichloroethene	< 5	5		μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,1-Dichloroethane	< 5	5		μg/Kg-dry	1	9/8/2006 1:58:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-23

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot Lab Sample ID: 060908001-001

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
trans-1,2-Dichloroethene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
cis-1,2-Dichloroethene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Chloroform	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,2-Dichloroethane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
2-Butanone	120	11	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,1,1-Trichloroethane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Carbon tetrachloride	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Bromodichloromethane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,2-Dichloropropane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
cis-1,3-Dichloropropene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Trichloroethene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Dibromochloromethane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,1,2-Trichloroethane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Benzene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
trans-1,3-Dichloropropene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Bromoform	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
4-Methyl-2-pentanone	< 11	11	μg/Kg-dry	1	9/8/2006 1:58:00 PM
2-Hexanone	< 11	11	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Tetrachloroethene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,1,2,2-Tetrachloroethane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Toluene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Chlorobenzene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Ethylbenzene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Styrene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
m,p-Xylene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
o-Xylene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Methyl tert-butyl ether	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Dichlorodifluoromethane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Methyl Acetate	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Trichlorofluoromethane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Cyclohexane	< 11	11	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Methyl Cyclohexane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,2-Dibromoethane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,3-Dichlorobenzene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
Isopropylbenzene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,4-Dichlorobenzene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,2-Dichlorobenzene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-23

Collection Date: 9/7/2006

R - RPD outside accepted recovery limits

 $\ensuremath{\mathsf{T}}$ - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot Lab Sample ID: 060908001-001

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL Qı	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
1,2,4-Trichlorobenzene	< 5	5	μg/Kg-dry	1	9/8/2006 1:58:00 PM
MOISURE CONTENT D2216					Analyst: RC
Percent Moisture	7.6	1.0	wt%	1	9/8/2006

Date: 21-Nov-06

Client Sample ID: EX-F-23
Collection Date: 9/7/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: EX-F-24

Collection Date: 9/7/2006

Lab Sample ID: 060908001-002

Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A - 9/8/20	06)					Analyst: SM
•	11300	25.7		uala day	1	9/8/2006 1:20:00 PM
Aluminum	85.3	15.4	s	μg/g-dry	1	9/8/2006 1:20:00 PM
Antimony Arsenic	< 1.28	1.28	3	µg/g-dry µg/g-dry	1	9/8/2006 1:20:00 PM
Barium	3070	2.57		μg/g-dry μg/g-dry	1	9/8/2006 1:20:00 PM
	0.68	1.28	J		1	9/8/2006 1:20:00 PM
Beryllium	0.00	1.28	J	μg/g-dry	1	9/8/2006 1:20:00 PM
Cadmium	3860	1.28	J	μg/g-dry	1	9/8/2006 1:20:00 PM
Calcium				μg/g-dry	1	
Chromium	25.9	1.28		μg/g-dry		9/8/2006 1:20:00 PM
Cobalt	316	12.8		μg/g-dry	1	9/8/2006 1:20:00 PM
Copper	32.7	1.28		μg/g-dry · ·	1	9/8/2006 1:20:00 PM
Iron	20800	128		µg/g-dry	10	9/8/2006 1:40:00 PM
Lead	< 1.28	1.28		µg/g-dry	1	9/8/2006 1:20:00 PM
Magnesium	5790	128	_	µg/g-dry	1	9/8/2006 1:20:00 PM
Manganese	287	2.57	S	μg/g-dry	1	9/8/2006 1:20:00 PM
Nickel	2.5	12.8	J	μg/g-dry	1	9/8/2006 1:20:00 PM
Potassium	925	128		μg/g-dry	1	9/8/2006 1:20:00 PM
Selenium	< 1.28	1.28		μg/g-dry	1	9/8/2006 1:20:00 PM
Silver	< 5.13	5.13	S	μg/g-dry	1	9/8/2006 1:20:00 PM
Sodium	170	128		µg/g-dry	1	9/8/2006 1:20:00 PM
Thallium	< 2.57	2.57	S	μg/g-dry	1	9/8/2006 1:20:00 PM
Vanadium	15.6	12.8		μg/g-dry	1	9/8/2006 1:20:00 PM
Zinc	1040	2.57		μg/g-dry	1	9/8/2006 1:20:00 PM
MERCURY SW7471A (Prep: SW7471A - 9/8/20	06)					Analyst: KH
Mercury	< 0.257	0.257		μg/g-dry	1	9/8/2006
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 13	13		μg/Kg-dry	1	9/8/2006 6:02:00 PM
Bromomethane	< 13	13		μg/Kg-dry	1	9/8/2006 6:02:00 PM
Vinyl chloride	< 13	13		μg/Kg-dry	1	9/8/2006 6:02:00 PM
Chloroethane	< 13	13		μg/Kg-dry	1	9/8/2006 6:02:00 PM
Methylene chloride	8	6		μg/Kg-dry	1	9/8/2006 6:02:00 PM
Acetone	16	13		μg/Kg-dry	1	9/8/2006 6:02:00 PM
Carbon disulfide	< 6	6		μg/Kg-dry	1	9/8/2006 6:02:00 PM
1,1-Dichloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 6:02:00 PM
· * · · · · · · · · · · · · · · · · · ·	-	•				

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

PO#: 212830 OP

Client Sample ID: EX-F-24

Collection Date: 9/7/2006

Lab Sample ID: 060908001-002

Date: 21-Nov-06

Matrix: SOIL

Analyses	Result	PQL	Qual U	nits	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
trans-1,2-Dichloroethene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
cis-1,2-Dichloroethene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Chloroform	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
1,2-Dichloroethane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
2-Butanone	< 13	13	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
1,1,1-Trichloroethane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Carbon tetrachloride	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Bromodichloromethane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
1,2-Dichloropropane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
cis-1,3-Dichloropropene	< 6	6		g/Kg-dry	1	9/8/2006 6:02:00 PM
Trichloroethene	< 6	6		g/Kg-dry	1	9/8/2006 6:02:00 PM
Dibromochloromethane	< 6	6		g/Kg-dry	1	9/8/2006 6:02:00 PM
1,1,2-Trichloroethane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Benzene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
trans-1,3-Dichloropropene	< 6	6	μg	g/Kg-dry	1	9/8/2006 6:02:00 PM
Bromoform	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
4-Methyl-2-pentanone	< 13	13	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
2-Hexanone	< 13	13	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Tetrachloroethene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
1,1,2,2-Tetrachloroethane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Toluene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Chlorobenzene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Ethylbenzene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Styrene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
m,p-Xylene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
o-Xylene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Methyl tert-butyl ether	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Dichlorodifluoromethane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Methyl Acetate	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Trichlorofluoromethane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Cyclohexane	< 13	13	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Methyl Cyclohexane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
1,2-Dibromoethane	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
1,3-Dichlorobenzene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
Isopropylbenzene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
1,4-Dichlorobenzene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM
1,2-Dichlorobenzene	< 6	6	μ	g/Kg-dry	1	9/8/2006 6:02:00 PM

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: EX-F-24

Collection Date: 9/7/2006

Lab Sample ID: 060908001-002

Matrix: SOIL

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane	< 6	6	μg/Kg-dry	1	9/8/2006 6:02:00 PM
1,2,4-Trichlorobenzene	< 6	6	μg/Kg-dry	1	9/8/2006 6:02:00 PM
MOISURE CONTENT D2216					Analyst: RC
Percent Moisture	22.1	1.0	wt%	1	9/8/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot Lab Sample ID: 060908001-003

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/8/2	2006)					
Aluminum	10400	22.6		μg/g-dry	1	9/8/2006 1:27:00 PM
Antimony	34.4	13.6	S	μg/g-dry	1	9/8/2006 1:27:00 PM
Arsenic	0.91	1.13	J	μg/g-dry	1	9/8/2006 1:27:00 PM
Barium	721	2.26		μg/g-dry	1	9/8/2006 1:27:00 PM
Beryllium	0.73	1.13	J	μg/g-dry	1	9/8/2006 1:27:00 PM
Cadmium	< 1.13	1.13		μg/g-dry	1	9/8/2006 1:27:00 PM
Calcium	19800	113		μg/g-dry	1	9/8/2006 1:27:00 PM
Chromium	19.3	1.13		μg/g-dry	1	9/8/2006 1:27:00 PM
Cobalt	81.7	11.3		μg/g-dry	1	9/8/2006 1:27:00 PM
Copper	28.3	1.13		μg/g-dry	1	9/8/2006 1:27:00 PM
Iron	17000	11.3		μg/g-dry	1	9/8/2006 1:27:00 PM
Lead	< 1.13	1.13		μg/g-dry	1	9/8/2006 1:27:00 PM
Magnesium	8530	113		μg/g-dry	1	9/8/2006 1:27:00 PM
Manganese	497	2.26	s	μg/g-dry	1	9/8/2006 1:27:00 PM
Nickel	2.9	11.3	J	μg/g-dry	1	9/8/2006 1:27:00 PM
Potassium	1590	113		μg/g-dry	1	9/8/2006 1:27:00 PM
Selenium	< 1.13	1.13		μg/g-dry	1	9/8/2006 1:27:00 PM
Silver	< 4.52	4.52	s	μg/g-dry	1	9/8/2006 1:27:00 PM
Sodium	207	113		μg/g-dry	1	9/8/2006 1:27:00 PM
Thallium	< 2.26	2.26	s	μg/g-dry	1	9/8/2006 1:27:00 PM
Vanadium	14.3	11.3		μg/g-dry	1	9/8/2006 1:27:00 PM
Zinc	428	2.26		μg/g-dry	1	9/8/2006 1:27:00 PM
MERCURY SW7471A (Prep: SW7471A - 9/8/:	2006)					Analyst: KH
Mercury	< 0.226	0.226		μg/g-dry	1	9/8/2006
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 11	11		μg/Kg-dry	1	9/8/2006 2:28:00 PM
Bromomethane	< 11	11		μg/Kg-dry	1	9/8/2006 2:28:00 PM
Vinyl chloride	< 11	11		μg/Kg-dry	1	9/8/2006 2:28:00 PM
Chloroethane	< 11	11		μg/Kg-dry	1	9/8/2006 2:28:00 PM
Methylene chloride	10	6		μg/Kg-dry	1	9/8/2006 2:28:00 PM
Acetone	15	11		μg/Kg-dry	1	9/8/2006 2:28:00 PM
Carbon disulfide	< 6	6		μg/Kg-dry	1	9/8/2006 2:28:00 PM
1,1-Dichloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 2:28:00 PM
1,1-Dichloroethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:28:00 PM

Qualifiers:

Date: 21-Nov-06

Client Sample ID: EX-F-25

Collection Date: 9/7/2006

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

 $[\]boldsymbol{B}$ - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual Uni	its	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
trans-1,2-Dichloroethene	< 6	6	μg/ŀ	(g-dry	1	9/8/2006 2:28:00 PM
cis-1,2-Dichloroethene	< 6	6	μg/k	(g-dry	1	9/8/2006 2:28:00 PM
Chloroform	< 6	6	μg/ŀ	(g-dry	1	9/8/2006 2:28:00 PM
1,2-Dichloroethane	< 6	6	μg/ŀ	(g-dry	1	9/8/2006 2:28:00 PM
2-Butanone	< 11	11	μg/k	(g-dry	1	9/8/2006 2:28:00 PM
1,1,1-Trichloroethane	< 6	6		Kg-dry	1	9/8/2006 2:28:00 PM
Carbon tetrachloride	< 6	6		(g-dry	1	9/8/2006 2:28:00 PM
Bromodichloromethane	< 6	6	μg/ł	(g-dry	1	9/8/2006 2:28:00 PM
1,2-Dichloropropane	< 6	6	μg/ł	(g-dry	1	9/8/2006 2:28:00 PM
cis-1,3-Dichloropropene	< 6	6	μg/ł	(g-dry	1	9/8/2006 2:28:00 PM
Trichloroethene	< 6	6	μg/ł	(g-dry	1	9/8/2006 2:28:00 PM
Dibromochloromethane	< 6	6	μg/ł	(g-dry	1	9/8/2006 2:28:00 PM
1,1,2-Trichloroethane	< 6	6	μg/ŀ	Kg-dry	1	9/8/2006 2:28:00 PM
Benzene	< 6	6	μg/ŀ	Kg-dry	1	9/8/2006 2:28:00 PM
trans-1,3-Dichloropropene	< 6	6	μg/ŀ	(g-dry	1	9/8/2006 2:28:00 PM
Bromoform	< 6	6	μg/ł	<g-dry< td=""><td>1</td><td>9/8/2006 2:28:00 PM</td></g-dry<>	1	9/8/2006 2:28:00 PM
4-Methyl-2-pentanone	< 11	11	μg/ł	<g-dry< td=""><td>1</td><td>9/8/2006 2:28:00 PM</td></g-dry<>	1	9/8/2006 2:28:00 PM
2-Hexanone	< 11	11	μg/ł	<g-dry< td=""><td>1</td><td>9/8/2006 2:28:00 PM</td></g-dry<>	1	9/8/2006 2:28:00 PM
Tetrachloroethene	< 6	6	μg/ł	Kg-dry	1	9/8/2006 2:28:00 PM
1,1,2,2-Tetrachloroethane	< 6	6	μg/ŀ	<g-dry< td=""><td>1</td><td>9/8/2006 2:28:00 PM</td></g-dry<>	1	9/8/2006 2:28:00 PM
Toluene	< 6	6	μg/ŀ	Kg-dry	1	9/8/2006 2:28:00 PM
Chlorobenzene	< 6	6	μg/ł	<g-dry< td=""><td>1</td><td>9/8/2006 2:28:00 PM</td></g-dry<>	1	9/8/2006 2:28:00 PM
Ethylbenzene	< 6	6	μg/ŀ	<g-dry< td=""><td>1</td><td>9/8/2006 2:28:00 PM</td></g-dry<>	1	9/8/2006 2:28:00 PM
Styrene	< 6	6	μg/ł	Kg-dry	1	9/8/2006 2:28:00 PM
m,p-Xylene	< 6	6	μg/ł	Kg-dry	1	9/8/2006 2:28:00 PM
o-Xylene	< 6	6	μg/ł	Kg-dry	1	9/8/2006 2:28:00 PM
Methyl tert-butyl ether	< 6	6	μg/ł	Kg-dry	1	9/8/2006 2:28:00 PM
Dichlorodifluoromethane	< 6	6	μg/ł	Kg-dry	1	9/8/2006 2:28:00 PM
Methyl Acetate	< 6	6	μg/l	Kg-dry	1	9/8/2006 2:28:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6	μg/l	Kg-dry	1	9/8/2006 2:28:00 PM
Trichlorofluoromethane	< 6	6	μg/l	Kg-dry	1	9/8/2006 2:28:00 PM
Cyclohexane	< 11	11	μg/ŀ	Kg-dry	1	9/8/2006 2:28:00 PM
Methyl Cyclohexane	< 6	6	μg/l	Kg-dry	1	9/8/2006 2:28:00 PM
1,2-Dibromoethane	< 6	6	μg/l	Kg-dry	1	9/8/2006 2:28:00 PM
1,3-Dichlorobenzene	< 6	6	μg/l	≺g-dry	1	9/8/2006 2:28:00 PM
Isopropylbenzene	< 6	6	μg/l	Kg-dry	1	9/8/2006 2:28:00 PM
1,4-Dichlorobenzene	< 6	6	μg/ł	Kg-dry	1	9/8/2006 2:28:00 PM
1,2-Dichlorobenzene	< 6	6	μg/l	Kg-dry	1	9/8/2006 2:28:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-25

Collection Date: 9/7/2006

Lab Sample ID: 060908001-003

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 9 of 18

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

060908001

Project:

Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: EX-F-25

Collection Date: 9/7/2006

Lab Sample ID: 060908001-003

Matrix: SOIL

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane	< 6	6	μg/Kg-dry	1	9/8/2006 2:28:00 PM
1,2,4-Trichlorobenzene	< 6	6	μg/Kg-dry	1	9/8/2006 2:28:00 PM
MOISURE CONTENT D2216					Analyst: RC
Percent Moisture	11.5	1.0	wt%	1	9/8/2006

R - RPD outside accepted recovery limits

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot Lab Sample ID: 060908001-004

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/8/20	06)					
Aluminum	11700	23.6		μg/g-dry	1	9/8/2006 1:28:00 PM
Antimony	24.5	14.2	s	μg/g-dry	1	9/8/2006 1:28:00 PM
Arsenic	< 1.18	1.18		μg/g-dry	1	9/8/2006 1:28:00 PM
Barium	46.5	2,36		μg/g-dry	1	9/8/2006 1:28:00 PM
Beryllium	0.70	1.18	J	μg/g-dry	1	9/8/2006 1:28:00 PM
Cadmium	< 1.18	1.18		μg/g-dry	1	9/8/2006 1:28:00 PM
Calcium	2630	118		µg/g-dry	1	9/8/2006 1:28:00 PM
Chromium	19.8	1.18		μg/g-dry	1	9/8/2006 1:28:00 PM
Cobalt	17.3	11.8		μg/g-dry	1	9/8/2006 1:28:00 PM
Copper	34.3	1.18		μg/g-dry	1	9/8/2006 1:28:00 PM
Iron	17000	11.8		μg/g-dry	1	9/8/2006 1:28:00 PM
Lead	< 1.18	1.18		µg/g-dry	1	9/8/2006 1:28:00 PM
Magnesium	5230	118		µg/g-dry	1	9/8/2006 1:28:00 PM
Manganese	130	2.36	S	µg/g-dry	1	9/8/2006 1:28:00 PM
Nickel	11	11.8	J	μg/g-dry	1	9/8/2006 1:28:00 PM
Potassium	1040	118		μg/g-dry	1	9/8/2006 1:28:00 PM
Selenium	< 1.18	1.18		μg/g-dry	1	9/8/2006 1:28:00 PM
Silver	< 4.72	4.72	S	μg/g-dry	1	9/8/2006 1:28:00 PM
Sodium	72	118	J	μg/g-dry	1	9/8/2006 1:28:00 PM
Thallium	< 2.36	2.36	S	μg/g-dry	1	9/8/2006 1:28:00 PM
Vanadium	16.3	11.8		μg/g-dry	1	9/8/2006 1:28:00 PM
Zinc	79.3	2.36		μg/g-dry	1	9/8/2006 1:28:00 PM
MERCURY SW7471A						Analyst: KH
(Prep: SW7471A - 9/8/20)06)					
Mercury	< 0.236	0.236		μg/g-dry	1	9/8/2006
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 12	12		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Bromomethane	< 12	12		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Vinyl chloride	< 12	12		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Chloroethane	< 12	12		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Methylene chloride	7	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Acetone	< 12	12		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Carbon disulfide	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,1-Dichloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,1-Dichloroethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-26

Collection Date: 9/7/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 11 of 18

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot Lab Sample ID: 060908001-004

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
trans-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
cis-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Chloroform	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,2-Dichloroethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
2-Butanone	< 12	12		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,1,1-Trichloroethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Carbon tetrachloride	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Bromodichloromethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,2-Dichloropropane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
cis-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Trichloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Dibromochloromethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,1,2-Trichloroethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Benzene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
trans-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Bromoform	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
4-Methyl-2-pentanone	< 12	12		μg/Kg-dry	1	9/8/2006 2:59:00 PM
2-Hexanone	< 12	12		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Tetrachloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,1,2,2-Tetrachloroethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Toluene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Chlorobenzene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Ethylbenzene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Styrene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
m,p-Xylene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
o-Xylene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Methyl tert-butyl ether	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Dichlorodifluoromethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Methyl Acetate	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Trichlorofluoromethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Cyclohexane	< 12	12		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Methyl Cyclohexane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,2-Dibromoethane	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,3-Dichlorobenzene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
Isopropylbenzene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,4-Dichlorobenzene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,2-Dichlorobenzene	< 6	6		μg/Kg-dry	1	9/8/2006 2:59:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-26

Collection Date: 9/7/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: EX-F-26 **Collection Date:** 9/7/2006

Lab Sample ID: 060908001-004

Matrix: SOIL

Analyses	Result	PQL Qu	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane	< 6	6	μg/Kg-dry	1	9/8/2006 2:59:00 PM
1,2,4-Trichlorobenzene	< 6	6	μg/Kg-dry	1	9/8/2006 2:59:00 PM
MOISURE CONTENT D2216					Analyst: RC
Percent Moisture	15.3	1.0	wt%	1	9/8/2006

R - RPD outside accepted recovery limits

 $[\]boldsymbol{T}$ - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot Lab Sample ID: 060908001-005

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9	/8/2006)					
Aluminum	7090	22.2		μg/g-dry	1	9/8/2006 1:31:00 PM
Antimony	16.5	13.3	s	μg/g-dry	1	9/8/2006 1:31:00 PM
Arsenic	< 1.11	1.11		μg/g-dry	1	9/8/2006 1:31:00 PM
Barium	52.6	2.22		μg/g-dry	1	9/8/2006 1:31:00 PM
Beryllium	0.34	1.11	J	μg/g-dry	1	9/8/2006 1:31:00 PM
Cadmium	< 1.11	1.11		μg/g-dry	1	9/8/2006 1:31:00 PM
Calcium	14600	111		μg/g-dry	1	9/8/2006 1:31:00 PM
Chromium	12.1	1.11		μg/g-dry	1	9/8/2006 1:31:00 PM
Cobalt	11.8	11.1		μg/g-dry	1	9/8/2006 1:31:00 PM
Copper	18.8	1.11		μg/g-dry	1	9/8/2006 1:31:00 PM
Iron	12700	11.1		μg/g-dry	1	9/8/2006 1:31:00 PM
Lead	< 1.11	1.11		μg/g-dry	1	9/8/2006 1:31:00 PM
Magnesium	5960	111		μg/g-dry	1	9/8/2006 1:31:00 PM
Manganese	371	2.22	s	μg/g-dry	1	9/8/2006 1:31:00 PM
Nickel	2.0	11.1	J	μg/g-dry	1	9/8/2006 1:31:00 PM
Potassium	995	111		μg/g-dry	1	9/8/2006 1:31:00 PM
Selenium	< 1.11	1.11		μg/g-dry	1	9/8/2006 1:31:00 PM
Silver	< 4.44	4.44	s	μg/g-dry	1	9/8/2006 1:31:00 PM
Sodium	100	111	J	µg/g-dry	1	9/8/2006 1:31:00 PM
Thallium	< 2.22	2.22	S	μg/g-dry	1	9/8/2006 1:31:00 PM
Vanadium	9.2	11.1	J	μg/g-dry	1	9/8/2006 1:31:00 PM
Zinc	76.3	2.22		μg/g-dry	1	9/8/2006 1:31:00 PM
MERCURY SW7471A (Prep: SW7471A - 9	/8/2006)					Analyst: KH
Mercury	< 0.222	0.222		μg/g-dry	1	9/8/2006
VOLATILE ORGANICS SW82601	3					Analyst: ML
Chloromethane	< 11	11		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Bromomethane	< 11	11		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Vinyl chloride	< 11	11		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Chloroethane	< 11	11		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Methylene chloride	6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Acetone	10	11	J	μg/Kg-dry	1	9/8/2006 3:29:00 PM
Carbon disulfide	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,1-Dichloroethene	< 6	6		µg/Kg-dry	1	9/8/2006 3:29:00 PM
1,1-Dichloroethane	< 6	6		µg/Kg-dry	1	9/8/2006 3:29:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-27

Collection Date: 9/7/2006

R - RPD outside accepted recovery limits

 \boldsymbol{T} - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 14 of 18

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot Lab Sample ID: 060908001-005

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
trans-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
cis-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Chloroform	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,2-Dichloroethane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
2-Butanone	< 11	11		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,1,1-Trichloroethane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Carbon tetrachloride	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Bromodichloromethane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,2-Dichloropropane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
cis-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Trichloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Dibromochloromethane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,1,2-Trichloroethane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Benzene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
trans-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Bromoform	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
4-Methyl-2-pentanone	< 11	11		μg/Kg-dry	1	9/8/2006 3:29:00 PM
2-Hexanone	< 11	11		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Tetrachloroethene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,1,2,2-Tetrachloroethane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Toluene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Chlorobenzene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Ethylbenzene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Styrene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
m,p-Xylene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
o-Xylene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Methyl tert-butyl ether	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Dichlorodifluoromethane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Methyl Acetate	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Trichlorofluoromethane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Cyclohexane	< 11	11		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Methyl Cyclohexane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,2-Dibromoethane	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,3-Dichlorobenzene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
Isopropylbenzene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,4-Dichlorobenzene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,2-Dichlorobenzene	< 6	6		μg/Kg-dry	1	9/8/2006 3:29:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-27

Collection Date: 9/7/2006

R - RPD outside accepted recovery limits

 $\label{thm:total-cond} T\mbox{--} Tentitively\ Identified\ Compound-Estimated\ Conc.$

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: EX-F-27

Collection Date: 9/7/2006

Lab Sample ID: 060908001-005

Matrix: SOIL

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane	< 6	6	μg/Kg-dry	1	9/8/2006 3:29:00 PM
1,2,4-Trichlorobenzene	< 6	6	μg/Kg-dry	1	9/8/2006 3:29:00 PM
MOISURE CONTENT D2216					Analyst: RC
Percent Moisture	10	1.0	wt%	1	9/8/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 16 of 18

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot Lab Sample ID: 060908001-006

PO#: 212830 OP Matrix: WATER

Analyses	Result	PQL	Qual 1	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 10	10	1	ug/L	1	9/8/2006 5:32:00 PM
Bromomethane	< 10	10	ļ	ug/L	1	9/8/2006 5:32:00 PM
Vinyl chloride	< 10	10	ŀ	μg/L	1	9/8/2006 5:32:00 PM
Chloroethane	< 10	10	ļ	μg/L	1	9/8/2006 5:32:00 PM
Methylene chloride	5.6	5.0	ļ	µg/L	1	9/8/2006 5:32:00 PM
Acetone	< 10	10	ı	μg/L	1	9/8/2006 5:32:00 PM
Carbon disulfide	< 5.0	5.0	ı	µg/L	1	9/8/2006 5:32:00 PM
1,1-Dichloroethene	< 5.0	5.0	ŀ	µg/L	1	9/8/2006 5:32:00 PM
1,1-Dichloroethane	< 5.0	5.0	ļ	µg/L	1	9/8/2006 5:32:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	I	μg/L	1	9/8/2006 5:32:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	ŀ	μg/L	1	9/8/2006 5:32:00 PM
Chloroform	< 5.0	5.0	1	μg/L	1	9/8/2006 5:32:00 PM
1,2-Dichloroethane	< 5.0	5.0	ı	μg/L	1	9/8/2006 5:32:00 PM
2-Butanone	< 10	10	ı	μg/L	1	9/8/2006 5:32:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	ı	μg/L	1	9/8/2006 5:32:00 PM
Carbon tetrachloride	< 5.0	5.0	ı	µg/L	1	9/8/2006 5:32:00 PM
Bromodichloromethane	< 5.0	5.0	1	μg/L	1	9/8/2006 5:32:00 PM
1,2-Dichloropropane	< 5.0	5.0	1	μg/L	1	9/8/2006 5:32:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	1	μg/L	1	9/8/2006 5:32:00 PM
Trichloroethene	< 5.0	5.0		μg/L	1	9/8/2006 5:32:00 PM
Dibromochloromethane	< 5.0	5.0	ı	μg/L	1	9/8/2006 5:32:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	ı	μg/L	1	9/8/2006 5:32:00 PM
Benzene	< 5.0	5.0		μg/L	1	9/8/2006 5:32:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	ı	μg/L	1	9/8/2006 5:32:00 PM
Bromoform	< 5.0	5.0	ı	μg/L	1	9/8/2006 5:32:00 PM
4-Methyl-2-pentanone	< 10	10	1	μg/L	1	9/8/2006 5:32:00 PM
2-Hexanone	< 10	10	1	μg/L	1	9/8/2006 5:32:00 PM
Tetrachloroethene	< 5.0	5.0		μg/L	1	9/8/2006 5:32:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0		μg/L	1	9/8/2006 5:32:00 PM
Toluene	< 5.0	5.0	1	μg/L	1	9/8/2006 5:32:00 PM
Chlorobenzene	< 5.0	5.0	1	μg/L	1	9/8/2006 5:32:00 PM
Ethylbenzene	< 5.0	5.0	1	μg/L	1	9/8/2006 5:32:00 PM
Styrene	< 5.0	5.0	1	μg/L	1	9/8/2006 5:32:00 PM
m,p-Xylene	< 5.0	5.0		μg/L	1	9/8/2006 5:32:00 PM
o-Xylene	< 5.0	5.0	1	μg/L	1	9/8/2006 5:32:00 PM
Methyl tert-butyl ether	< 5.0	5.0	1	µg/L	1	9/8/2006 5:32:00 PM
Dichlorodifluoromethane	< 10	10	1	μg/L	1	9/8/2006 5:32:00 PM
Methyl Acetate	< 5.0	5.0	1	μg/L	1	9/8/2006 5:32:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: Trip BlankCollection Date: 9/7/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 17 of 18

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: Trip Blank

Collection Date: 9/7/2006

Lab Sample ID: 060908001-006

Matrix: WATER

Analyses	Result	PQL Qı	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	9/8/2006 5:32:00 PM
Cyclohexane	< 10	10	μg/L	1	9/8/2006 5:32:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	9/8/2006 5:32:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	9/8/2006 5:32:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	9/8/2006 5:32:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	9/8/2006 5:32:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	9/8/2006 5:32:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	9/8/2006 5:32:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	9/8/2006 5:32:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	9/8/2006 5:32:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	9/8/2006 5:32:00 PM

 $[\]ensuremath{B}\xspace$ - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 $[\]ensuremath{\mathsf{T}}$ - Tentitively Identified Compound-Estimated Conc.

Shaw Environmental & Infrastructure 060908001 CLIENT:

Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

Date: 20-Nov-06

BatchID: 12183

MBLK	SeqNo: 413144			PrepDate:9/8/2006 8:		TestNo: SW7471A	1A	RunNo: 37023	
	Samp ID: MB-12183			PrepRef:(SW7471A)		Units: µg/g	Anal	Analysis Date: 9/8/2006	
Analyte Mercury		Result < 0.0200	POL 0.0200	SPK value SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
MBLK	SeqNo: 413154 Samp ID: MB-12183			PrepDate:9/8/2006 8: PrepRef:(SW7471A)		TestNo: SW7471A Units: µg/g		RunNo: 37023 Analysis Date: 9/8/2006	
Analyte Mercury		Result < 0.0200	POL 0.0200	SPK value SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
rcs	SeqNo: 413145 Samp ID: LCS-12183			PrepDate:9/8/2006 8: PrepRef:(SW7471A)		TestNo: SW7471A Units: µg/g		RunNo: 37023 Analysis Date: 9/8/2006	
Analyte Mercury		Result 4.075	POL 0.200	SPK value SPK Ref Val 3.6 0	<u>%REC</u> 113	LowLimit HighLimit 68.1 131.9	RPD Ref Val	%RPD RPDLimit 0	Qual
rcs	SeqNo: 413155 Samp ID: LCS-12183			PrepDate:9/8/2006 8: PrepRef:(SW7471A)		TestNo: SW7471A Units: µg/g	-	RunNo: 37023 Analysis Date: 9/8/2006	
Analyte Mercury		Result 3.525	POL 1.00	SPK value SPK Ref Val 3.6 0	%REC 97.9	LowLimit HighLimit 68.1 131.9	RPD Ref Val	%RPD RPDLimit 0	Qual
MS	SeqNo: 413152 Samp ID: 060906042-001A			PrepDate:9/8/2006 8: PrepRef:(SW7471A)		TestNo: SW7471A Units: µg/g	~	RunNo: 37023 Analysis Date: 9/8/2006	
Analyte Mercury		Result 0.088	POL 0.0200	SPK value SPK Ref Val 0.1	%REC 88	LowLimit HighLimit 74.4 123	RPD Ref Val	%RPD RPDLimit 0	Qual
MS	SeqNo: 413157 Samp ID: 060908001-001A (EX-F-23)	-F-23)		PrepDate:9/8/2006 8: PrepRef:(SW7471A)		TestNo: SW7471A Units: µg/g-dry	-	RunNo: 37023 Analysis Date: 9/8/2006	
Analyte Mercury		Result 0.9473	PQL 0.217	SPK value SPK Ref Val 1.083 0	<u>%REC</u> 87.5	LowLimit HighLimit 74.4 123	RPD Ref Val	%RPD RPDLimit 0	Qual

J - Analyte detected below quantitation limits Qualifiers:

S - Spike Recovery outside accepted recovery limits ND - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page 1 of 9

Page 2 of 9

B - Analyte detected in the associated Method Blank

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: 12183

DUP	SeqNo: 413151			Prep	PrepDate:9/8/2006 8:		TestNc	TestNo: SW7471A	đ	RunNo: 37023	7023	
	Samp ID: 060906042-001A			PrepRef:	ef:		Units:	Units: µg/g	Anal	Analysis Date: 9/	9/8/2006	
Analyte Mercury		Result < 0.0200	POL 0.0200	SPK value 0	SPK value SPK Ref Val 0	%REC 0	%REC LowLimit HighLimit 0 0		RPD Ref Val	%RPD 0	%RPD RPDLimit 0 20.8	Qual
DUP	SeqNo: 413167 Samp ID: 060908001-001A			PrepDate PrepRef:	PrepDate:9/8/2006 8: PrepRef:		TestNc Units:	FestNo: SW7471A Units: µg/g-dry		RunNo: 37023 Analysis Date: 9/8/2006	7023 8/2006	
Analyte Mercury		Result < 0.217	POL 0.217	SPK value 0	SPK value SPK Ref Val 0	<u>%REC</u>	%REC LowLimit HighLimit 0 0		RPD Ref Val 0	%RPD 0	%RPD RPDLimit 0 20.8	Qual

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

ANALYTICAL QC SUMMARY REPORT

Work Order: 060908001

Shaw Environmental & Infrastructure

CLIENT:

Project: Schenectady Army Depot

BatchID: 12193

MBLK	SeqNo: 413187			PrepDate:	ä		Test	TestNo: SW6010B)B	RunNo: 37	37026	
	Samp ID: MBLK			PrepRef:	PrepRef:(SW3050A)		Unit	Units: µg/g		Anaiysis Date: 9/8	9/8/2006	
Analyte		Result	Pal	SPK value SF	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	ш	< 20.0	20.0									
Antimony	Á	0.772	12.0									7
Arsenic		< 1.00	1.00									
Barium		0.126	2.00									٦
Beryllium	E	< 1.00	1.00									
Cadmium	n.	0.002	1.00									٦
Calcium		< 100	100									
Chromium	ш	< 1.00	1.00									
Cobalt		0.038	10.0									<u>_</u>
Copper		< 1.00	1.00									
Iron		< 10.0	10.0									
Lead		< 1.00	1.00									
Magnesium	ium	1.42	100									ت-
Manganese	ese	< 2.00	2.00									
Nickel		0.05	10.0									٦
Potassium	ı	< 100	100									
Selenium	E	< 1.00	1.00									
Silver		< 4.00	4.00									
Sodium		< 100	100									
Thallium	_	0.01	2.00									7
Vanadium	E	< 10.0	10.0									
Zinc		< 2.00	2.00									
rcs	SeqNo: 413188			PrepDate:	'n		Test	TestNo: SW6010B)B	RunNo: 37	37026	
	Samp ID: LCS-S			PrepRef:	PrepRef:(SW3050A)		Unii	Units: µg/g	Anal	Analysis Date: 9/8	9/8/2006	
Analyte		Result	Pal	SPK value SF	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	ш	5743	20.0	7590	0	7.5.7	57.8	142.3	0	0		
Antimony	ý	88.88	12.0	77.5	0.772	114	1.3	223.2	0	0		
Arsenic		77.97	1.00	80.9	0	96.4	79.7	120.3	0	0		
Barium		156.1	2.00	156	0.126	100	82.1	117.9	0	0		
Beryllium	L	151.1	1.00	143	0	106	81.8	118.2	0	0		
Cadmium	ш	237.3	1.00	233	0.002	102	80.7	118.9	0	0	•	

Page 3 of 9

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Shaw Environmental & Infrastructure CLIENT:

Work Order:

060908001 Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: 12193

90	OCTOR SINCE		4000						1	
3	Sequo: 413188		rieppale	ı i		Test	TestNo: SW6010B			
	Samp ID: LCS-S		PrepRef	PrepRef:(SW3050A)		Unii	Units: µg/g	Ā	Analysis Date: 9/8/2006	9
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPD	RPDLimit Qual
Calcium	4412	100	4320	0	102	79.2	120.8	0	0	
Chromium	m 57.15	1.00	8.09	0	94	78.5	121.4	0	0	
Cobalt	75.99	10.0	68.6	0.038	111	81.8	118.2	0	0	
Copper	129	1.00	131	0	98.5	82.4	117.6	0	0	
ron	8980	10.0	14400	0	62.4	51.5	148.6	0	0	
Lead	95.3	1.00	76.8	0	124	90.0	119.5	0	0	S
Magnesium	um 1895	100	2220	1.42	85.3	77	123	0	0	
Manganese	sse 291.3	2.00	304	0	92.8	79.9	120.1	0	0	
Nickel	43.4	10.0	49.6	0.05	87.4	81.5	118.5	0	0	
Potassium	m 2067	100	2380	0	86.8	71.4	128.6	0	0	
Seleníum	٦2.84	1.00	82.9	0	87.9	75.5	124.2	0	0	
Silver	65.47	4.00	80	0	81.8	61.3	138.8	0	0	
Sodium	480.6	100	456	0	105	55.7	144.3	0	0	
Thallium	175	2.00	158	0.01	111	75.3	124.7	0	0	
Vanadium	m 56.85	10.0	72.4	0	78.5	71.4	128.5	0	0	
Zinc	114.1	2.00	116	0	98.3	78	121.6	0	0	
MS	SeqNo: 413191		PrepDat	PrepDate:9/8/2006 1		Test	TestNo: SW6010B		RunNo: 37026	
	Samp ID: 060908001-001A (EX-F-23)		PrepRef	PrepRef:(SW3050A)		Cnit	Units: µg/g-dry		Analysis Date: 9/8/2006	9
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	WRPD RPD	RPDLimit Qual
Aluminum	m 9102	21.7	433	8498	140	75	125	0	0	S
Antimony	y 59.47	13.0	108.3	7.875	47.7	75	125	0	0	S
Arsenic	7.676	1.08	8.661	0	88.6	75	125	0	0	
Barium	461	2.17	433	42.95	96.5	75	125	0	0	
Beryllium	11.19	1.08	10.83	0.4049	93.6	75	125	0	0	
Cadmium	n 9.442	1.08	10.83	0	87.2	75	125	0	0	
Chromium	m 56.32	1.08	43.3	14.26	97.1	75	125	0	0	
Cobalt	140.8	10.8	108.3	12.67	118	75	125	0	0	
Copper	71.9	1.08	54.13	23.03	90.3	75	125	0	0	
Iron	16520	10.8	216.5	15850	311	75	125	0	0	S
Lead	5.818	1.08	4.33	0	134	75	125	0		S
Manganese	sse 591.1	2.17	108.3	443.6	136	75	125	0	0	တ
Qualifiers:	s: ND - Not Detected at the Reporting Limit	A DANALANDA AND AND AND AND AND AND AND AND AND	S - Spike	S - Spike Recovery outside accepted recovery limits	accepted reco	overy limits	14	3 - Analyte dete	B - Analyte detected in the associated Method Blank	ethod Blank
	J - Analyte detected below quantitation limits	ıits	R - RPD	R - RPD outside accepted recovery limits	recovery limit					Page 4 of 9

ANALYTICAL QC SUMMARY REPORT

BatchID: 12193

CLIENT: Shaw Environmental & Infrastructure Work Order: 060908001

Project: Schenectady Army Depot

MS	SeqNo: 413191		PrepDate	PrepDate:9/8/2006 1		Tes	TestNo: SW6010B	0B	RunNo: 37026	7026	
	Samp ID: 060908001-001A (EX-F-23)		PrepRef:(PrepRef:(SW3050A)		ก	Units: µg/g-dry		Analysis Date: 9/	9/8/2006	
Analyte	Result	POL	SPK value SP	SPK Ref Val	%REC	LowLimit	WREC LowLimit HighLimit	RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Nickel	101	10.8	108.3	1.672	91.7	75	125	0	0		
Selenium	n 2.226	1.08	2.165	0	103	75	125	0	0		
Silver	5.428	4.33	10.83	0	50.1	75	125	0	0		S
Thallium	8.102	2.17	10.83	0	74.8	75	125	0	0		S
Vanadium	m 111.2	10.8	108.3	10.82	92.7	75	125	0	0		
Zinc	178.4	2.17	108.3	53.97	115	75	125	0	0		
DUP	SeoNo: 413190		PrenDate:			F	Totalo: Ownordor		90000	20.06	

<u></u>	SeqNo: 413190			PrepDate	Date:		Tes	TestNo: SW6010B	JB	RunNo: 3	37026	
	Samp ID: 060908001-001A			PrepRef:	Ref:		n	Units: µg/g-dry		Analysis Date: 9/	9/8/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	ц.	8455	21.7	0	0	0	0	0	8498	0.510	20	
Antimony		6.526	13.0	0	0	0	0	0	7.875	0	17.2	
Arsenic		-0.3594	1.08	0	0	0	0	0	0	0	15.3	
Barium		42.91	2.17	0	0	0	0	0	42.95	0.0807	17.8	
Beryllium	_	0.4222	1.08	0	0	0	0	0	0.4049	0	11.5	
Cadmium	_	-0.3443	1.08	0	0	0	0	0	0	0	15.4	
Calcium		19930	108	0	0	0	0	0	19850	0.369	20	
Chromium	E	14.56	1.08	0	0	0	0	0	14.26	2.06	20	
Cobalt		13.06	10.8	0	0	0	0	0	12.67	3.01	18.9	
Copper		22.42	1.08	0	0	0	0	0	23.03	2.68	20	
Iron		15950	10.8	0	0	0	0	0	15850	0.613	16.4	
Lead		-3.891	1.08	0	0	0	0	0	0	0	20	
Magnesium	mr.	7486	108	0	0	0	0	0	7490	0.0533	20	
Manganese	Se	461.9	2.17	0	0	0	0	0	443.6	4.05	20	
Nickel		2.154	10.8	0	0	0	0	0	1.672	0	16.5	
Potassium	Ε	1222	108	0	0	0	0	0	1233	0.883	20	
Selenium	-	-24.48	1.08	0	0	0	0	0	0	0	20	
Silver		-3.324	4.33	0	0	0	0	0	0	0	10.3	
Sodium		127.4	108	0	0	0	0	0	135.8	6.33	21.2	
Thallium		-1.126	2.17	0	0	0	0	0	0	0	23.1	
Vanadium	L L	7	10.8	0	0	0	0	0	10.82	1.69	11.5	
Zinc		56.92	2.17	0	0	0	0	0	53.97	5.33	20.4	
Qualifiers:	s: ND - Not Detected at the Reporting Limit	Reporting Limit		S - Sp	S - Spike Recovery outside accepted recovery limits	le accepted reco	overy limits		3 - Analyte detec	B - Analyte detected in the associated Method Blank	ited Method Bl	ank

Page 5 of 9

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: R37012

No.	700077										
	Seqino: 412994					TestN	TestNo: SW8260B	8	RunNo: 3	37012	
J,	Samp ID: VBLK					Units	Units: µg/Kg	Analys	Analysis Date: 9/	9/8/2006	
Analyte		Result	POL	SPK value SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	oroethane	< 5.0	5.0								
1,1,2,2-Tetr	1,1,2,2-Tetrachloroethane	< 5.0	5.0								
1,1,2-Trichlo	1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0								
1,1,2-Trichloroethane	oroethane	< 5.0	5.0								
1,1-Dichloroethane	pethane	< 5.0	5.0								
1,1-Dichloroethene	oethene	< 5.0	5.0								
1,2,4-Trichlo	1,2,4-Trichlorobenzene	< 5.0	5.0								
1,2-Dibromo	1,2-Dibromo-3-chloropropane	< 5.0	5.0								
1,2-Dibromoethane	pethane	< 5.0	5.0								
1,2-Dichlorobenzene	benzene	< 5.0	5.0								
1,2-Dichloroethane	oethane	< 5.0	5.0								
1,2-Dichloropropane	ppropane	< 5.0	5.0								
1,3-Dichlorobenzene	benzene	< 5.0	5.0								
1,4-Dichlorobenzene	benzene	< 5.0	5.0								
2-Butanone		< 10	10								
2-Hexanone	(1)	< 10	10								
4-Methyl-2-pentanone	pentanone	< 10	10								
Acetone		< 10	10								
Benzene		< 5.0	5.0								
Bromodichle	Bromodichloromethane	< 5.0	5.0								
Bromoform		< 5.0	5.0								
Bromomethane	ane	< 10	10								
Carbon disulfide	ılfide	< 5.0	5.0								
Carbon tetrachloride	achloride	< 5.0	5.0								
Chlorobenzene	ene	< 5.0	5.0								
Chloroethane	e.	< 10	10								
Chloroform		< 5.0	5.0								
Chloromethane	ane	< 10	10								
cis-1,2-Dichloroethene	lloroethene	< 5.0	5.0								
cis-1,3-Dich	cis-1,3-Dichloropropene	< 5.0	5.0								
Cyclohexane	Φ	< 10	10								
Dibromochl	Dibromochloromethane	< 5.0	5.0								
Qualifiers:	ND - Not Detected at the Reporting Limit	sporting Limit		S - Spike Recovery outside accepted recovery limits	accepted reco	very limits	B	B - Analyte detected in the associated Method Blank	in the associa	ted Method Bi	ank
	J - Analyte detected below quantitation limits	quantitation limits		R - RPD outside accepted recovery limits	ecovery limits					Page 6 of 9	6 Ju 5
	•	•		,	•					, ,9,, ,	, 5

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: R37012

MBI K Section 412004					ļ			1	
					Tes	TestNo: SW8260B	0B	RunNo: 37012	
Samp ID: VBLK					Un	Units: µg/Kg	Ana	Analysis Date: 9/8/2006	6
Analyte	Result	PQL	SPK value SPK Ref Val	'al %REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Limit Qual
Dichlorodifluoromethane	< 5.0	5.0							
Ethylbenzene	< 5.0	5.0							
Isopropylbenzene	< 5.0	5.0							
m,p-Xylene	< 5.0	5.0							
Methyl Acetate	< 5.0	5.0							
Methyl Cyclohexane	< 5.0	5.0							
Methyl tert-butyl ether	< 5.0	5.0							
Methylene chloride	< 5.0	5.0							
o-Xylene	< 5.0	5.0							
Styrene	< 5.0	5.0							
Tetrachloroethene	< 5.0	5.0							
Toluene	< 5.0	5.0							
trans-1,2-Dichloroethene	< 5.0	5.0							
trans-1,3-Dichloropropene	< 5.0	5.0							
Trichloroethene	< 5.0	5.0							
Trichlorofluoromethane	< 5.0	5.0							
Vinyl chloride	< 10	10							
Surr: 1,2-Dichloroethane-d4	49.52	5.0	50	66 0	9 64.8	130	0	0	
Surr: 4-Bromofluorobenzene	53.5	5.0	50	0 107	7 76.8	122	0	0	
Surr: Toluene-d8	54.16	5.0	50	0 108	8 78.5	120	0	0	
LCS SeqNo: 413299					Tes	TestNo: SW8260B	0B	RunNo: 37012	
Samp ID: VMSB					S	Units: µg/Kg			60
Analyte	Result	Par	SPK value SPK Ref Val	'al %REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Limit Qual
1,1-Dichloroethene	56.77	5.0	50	0 114	4 43.3	147	0	0	
Benzene	59	5.0	20	0 118	8 68.7	140	0	0	
Chlorobenzene	62.99	5.0	50	0 126	6 64.5	141	0	0	
Toluene	61.76	5.0	50	0 124	4 60.2	143	0	0	
Trichloroethene	57.07	5.0	20	0 114	4 62.2	142	0	0	
Surr: 1,2-Dichloroethane-d4	40.84	5.0	20	0 81.7	7 64.8	130	0	0	
Surr: 4-Bromofluorobenzene	47.14	5.0	50	0 94.3	3 76.8	122	0	0	
Surr: Toluene-d8	48.32	5.0	50	9.96 0	6 78.5	120	0	0	
Qualifiers: ND - Not Detected at the Reporting Limit	he Reporting Limit		S - Spike Recovery	- Spike Recovery outside accepted recovery limits	ecovery limits		B - Analyte detecte	B - Analyte detected in the associated Method Blank	thod Blank
J - Analyte detected be	J - Analyte detected below quantitation limits		R - RPD outside accepted recovery limits	cepted recovery lin	nits				Page 7 of 9

Page 8 of 9

Shaw Environmental & Infrastructure CLIENT:

ANALYTICAL QC SUMMARY REPORT

BatchID: R37012

060908001 Work Order:

Project:

Schenectady Army Depot

MS	SeqNo: 413276						Tes	TestNo: SW8260B	0B	RunNo: 37012	7012	
	Samp ID: 060908001-001A (EX-F-23)	X-F-23)					'n	Units: µg/Kg-dry		Analysis Date: 9	9/8/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichl	1,1-Dichloroethene	61.88	5.4	54.13	0	114	43.3	147	0	0		
Benzene		69.81	5.4	54.13	0	129	68.7	140	0	0		
Chlorobenzene	nzene	70.78	5.4	54.13	0	131	64.5	141	0	0		
Toluene		73.97	5.4	54.13	0	137	60.2	143	0	0		
Trichloroethene	ethene	64.85	5.4	54.13	0	120	62.2	142	0	0		
Surr: 1	Surr: 1,2-Dichloroethane-d4	50.71	5.4	54.13	0	93.7	64.8	130	0	0		
Surr: 4	Surr: 4-Bromofluorobenzene	54.65	5.4	54.13	0	101	76.8	122	0	0		
Surr: 1	Surr: Toluene-d8	61.85	5.4	54.13	0	114	78.5	120	0	0		
MSD	SeqNo: 413298						Tesi	TestNo: SW8260B	.0B	RunNo: 3	37012	
	Samp ID: 060908001-001A (EX-F-23)	X-F-23)					Un	Units: µg/Kg-dry		Analysis Date: 9/	9/8/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichl	1,1-Dichloroethene	55.07	5.4	54.13	0	102	43.3	147	61.88	11.6	30	
Benzene		65.94	5.4	54.13	0	122	68.7	140	69.81	5.70	30	
Chlorobenzene	nzene	69.13	5.4	54.13	0	128	64.5	141	70.78	2.36	27.9	
Toluene		69.89	5.4	54.13	0	127	60.2	143	73.97	7,40	30	
Trichloroethene	ethene	9.09	5.4	54.13	0	112	62.2	142	64.85	6.78	22	
Surr: 1	Surr: 1,2-Dichloroethane-d4	44.59	5.4	54.13	0	82.4	64.8	130	0	0	0	
Surr: 4	Surr: 4-Bromofluorobenzene	48.74	5.4	54.13	0	06	76.8	122	0	0	0	
Surr: 1	Surr: Toluene-d8	57.35	5.4	54.13	0	106	78.5	120	0	0	0	

ND - Not Detected at the Reporting Limit Qualifiers:

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908001

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: R37024

DUP	SeqNo: 413168						TestNo: D2216	16	Rui	RunNo: 37	37024	
	Samp ID: 060908001-001A						Units: wt%		Analysis Date:	٥,	3/8/2006	
Analyte Percent N	<u>alyte</u> arcent Moisture	Result 7.919	<u>PQL</u> 1.00	SPK value 0	SPK Ref Val	%REC 0	LowLimit HighLimit 0	0	RPD Ref Val 7.628	%RPD 3.74	RPDLimit 0	Qual

Qualifiers:

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

Experience is the solution

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:		Address:							***************************************	
Class	Environmental	Address: Project Name (Location Former-Schtal PON	Fil	rdlay	0	hio				
Send Report To:	Gullello Client Fax No:	Project Name (Location)	1		Sam	plers	: (Na	ymes)	,
Cray	Gullello	Forma-Schtd	y K	rpny	Depot		M	-1	asti	5,
Client Phone No:	Client Fax No:	P0,10	lumber	://	v	Sam	plers	: (Si	gnature	<u>}</u>
			T							
AES Sample Number	Client Sample Identification	& Location		Date impled	Time A=a.m. P=p.m.	Sampl Matrix	문	Grab	Number of Cont's	Analysis Required
001	EX-F-23 W	/ms/mad	9/	7/06	1920 A	Soil			K.	8260, TAL medis+Ha
002	Ex-F-24	C .			1540 B				2	
	Cy-F- 25				1545 A			_	て	
004	Cx-F-26	1000010101010101010101010101010101010101			1535 B				2	
005	Ex-F-27 Trip Blank			<u> </u>	Mas B	1			2	
006	Trip Blank		1	$V_{}$		the				8560
	·				A P					
					A P					
					AP					
			J		А					
					P A					
					P A					
					P					
					Р					
					A P					
AES Work Orde	r #:	CC Report	t To / S	pecial Ins	structions/R	emarks:				
	908001									
Turnaround Tim										
X 1 Day	□ 3 Day □ Normal									
2 Day	□ 5 Day	clie	~ \	in.						
Relinquished by	: (Signature)	Received								Date/Time
1/100	17									
Relinquished by	r: (Signature)	Received	by: (Si	ignature)						Date/Time
Relinquished by	r: (Signature)	Received 26,	for Lai	boratory b	y: 8 5	ul	Qe	2		9/7/06 5:40
26,	Temperature	Pro	PERLY	Preservei)				RECEIVE	D WITHIN HOLDING TIMES
1	mbient or Chilled	No.	Y	N				_1-	. (y N
Notes:		Notes:					N	otes	:	

WHITE - Lab Copy

YELLOW - Sampler Copy

PINK - Generator Copy

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All Services rendered by **Adirondack Environmental Services**, **Inc.** are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services**, **Inc.** report regarding said work or such claim shall be deemed as irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind **Adirondack Environmental Services, Inc.** unless in writing and signed by a Director of **Adirondack Environmental Services. Inc.**
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and **Adirondack Environmental Services, Inc.** is not responsible for the accuracy of this information.

Shaw Environmental & Infrastructure, Inc.

Data Usability Report

16406 U.S. Route 224 East • Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER:

Tom Mathison

SAMPLE RECEIPT DATE:

09/07/2006

PROJECT NAME:

USACE-Schenectady

LABORATORY SDG:

060908068

The Findlay Ohio Applied Sciences Group has performed a QA evaluation of the data report from Adirondack Environmental Services, Inc., Albany, NY. The results are for samples collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table below.

The state of the s	Sample Summa	ıry Table	
Sample Number	Collection Date	Matrix	Analysis Requested
EX-F-28; EX-F-29; EX-F-30	09/08/2006	Soil	Target Metals SW-6010B/ 7471A
			VOCs-SW8260B

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and was received having a chilled temperature of 9°C upon opening the sample cooler. The Trip Blank was neither present in the cooler nor written on the chain of custody. The laboratory provided an electronic copy of the data within the specified turn around time. The following describes the overall QA/QC indicators.

VOC Analysis in Soil by 8260B

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs.

Trip Blank: A trip blank was not taken.

Method Blank: The method blank results are below the Practical Quantitation Limit (PQL) for the target analytes in all analysis sets.

LCS: The LCS recoveries are within acceptance criteria for the target analytes in all analysis sets with the following exceptions: 1,2,4-trichlorobenzene % recovery was flagged with an "S" at 141% with a result of 70.72 μg/Kg and for a spiked value of 76.8 μg/Kg; 1,2-dichlorobenzene % recovery was flagged with an "S" at 118% with a result of 59.06 μg/Kg and for a spiked value of 50 μg/Kg: 1,3-dichlorobenzene % recovery was flagged with an "S" at 116% with a result of 57.81 μg/Kg and for a spiked value of 50 μg/Kg.

MS/MSD: The QC Matrix recovery and precision performance, using sample 060907004-001A, is within acceptance limits for all compounds with the following exception:

MS: 1,3-dichlorobenzene % recovery was flagged with an "S" at 116% with a result of 57.81 μ g/Kg and for a spiked value of 50 μ g/Kg

MSD: 2-hexanone % recovery was flagged with an "R" as being outside of the accepted recovery limits

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results can be utilized with confidence.

Metals Analysis in Soil by SW6010B and SW7471A

The ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements. All instrument interference check samples were within control limits with the exceptions noted in the discussion below. The initial and continuing calibration check samples were not reported. The initial calibration blank results were below reporting limits.

Method Blanks: The method blank results are below reporting limits.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

MS: The MS recovery and precision for sample EX-F-28, are within acceptance limits for all analytes with native concentrations less than 4X the spiked level. Three analytes (aluminum, barium and iron) were present at large concentrations in the unspiked sample rendering the QC Matrix data invalid.

Reported results should be utilized with confidence.

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, for the intended project decision-making process.

ames D. Hawkins

Chemist

130/06 Date

Experience is the solution

314 North Pearl Street ♦ Albany, New York 12207 (800) 848-4983 ♦ (518) 434-4546 ♦ Fax (518) 434-0891

November 21, 2006

Guy Gallello Shaw Environmental & Infrastructure 16406 US Route 224 East Findlay, OH 45840

> TEL: (419) 425-6080 FAX: (419) 425-6085

RE: Schenectady Army Depot

Former Schenectady Army Depot

Dear Guy Gallello:

Adirondack Environmental Services, Inc received 3 samples on 9/8/2006 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

ELAP#: 10709 AIHA#: 100307

Work Order No: 060908068

PO#: 212830 OP

Christopher Hess QA Manager

G. Gallello - FAX

S - Spike Recovery outside accepted recovery limits

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Collection Date: 9/8/2006 **Project:** Schenectady Army Depot Lab Sample ID: 060908068-001

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/11/2	2006)					
Aluminum	12000	24.4		μg/g-dry	1	9/11/2006 8:56:00 AM
Antimony	4.5	14.7	J	μg/g-dry	1	9/11/2006 8:56:00 AM
Arsenic	1.44	1.22	s	μg/g-dry	1	9/11/2006 8:56:00 AM
Barium	111	2.44		μg/g-dry	1	9/11/2006 8:56:00 AM
Beryllium	1.1	1.22	J	μg/g-dry	1	9/11/2006 8:56:00 AM
Cadmium	< 1.22	1.22		μg/g-dry	1	9/11/2006 8:56:00 AM
Calcium	1450	122		μg/g-dry	1	9/11/2006 8:56:00 AM
Chromium	18.8	1.22		μg/g-dry	1	9/11/2006 8:56:00 AM
Cobalt	15.8	12.2	s	μg/g-dry	1	9/11/2006 8:56:00 AM
Copper	25.3	1.22		μg/g-dry	1	9/11/2006 8:56:00 AM
Iron	19400	12.2		μg/g-dry	1	9/11/2006 8:56:00 AM
Lead	< 1.22	1.22		μg/g-dry	1	9/11/2006 8:56:00 AM
Magnesium	3630	122		μg/g-dry	1	9/11/2006 8:56:00 AM
Manganese	97.4	2.44		μg/g-dry	1	9/11/2006 8:56:00 AM
Nickel	< 12.2	12.2		μg/g-dry	1	9/11/2006 8:56:00 AM
Potassium	518	122		μg/g-dry	1	9/11/2006 8:56:00 AM
Selenium	< 1.22	1.22		μg/g-dry	1	9/11/2006 8:56:00 AM
Silver	< 4.89	4.89	s	μg/g-dry	1	9/11/2006 8:56:00 AM
Sodium	275	122		μg/g-dry	1	9/11/2006 8:56:00 AM
Thallium	< 2.44	2.44	s	μg/g-dry	1	9/11/2006 8:56:00 AM
Vanadium	19.3	12.2		μg/g-dry	1	9/11/2006 8:56:00 AM
Zinc	48.8	2.44		μg/g-dry	1	9/11/2006 8:56:00 AM
MERCURY SW7471A (Prep: SW7471A - 9/11/	2006)					Analyst: KH
Mercury	< 0.244	0.244		μg/g-dry	1	9/11/2006
OLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 12	12		μg/Kg-dry	1	9/11/2006
Bromomethane	< 12	12		μg/Kg-dry	1	9/11/2006
Vinyl chloride	< 12	12		μg/Kg-dry	1	9/11/2006
Chloroethane	< 12	12		μg/Kg-dry	1	9/11/2006
Methylene chloride	6	6		µg/Kg-dry	1	9/11/2006
Acetone	< 12	12		μg/Kg-dry	1	9/11/2006
Carbon disulfide	< 6	6		μg/Kg-dry	1	9/11/2006
1,1-Dichloroethene	< 6	6		μg/Kg-dry	1	9/11/2006
1,1-Dichloroethane	< 6	6		μg/Kg-dry	1	9/11/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-28

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 2 of 10

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Project: Schenectady Army Depot

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
trans-1,2-Dichloroethene	< 6	6	μg/Kg-dry	1	9/11/2006
cis-1,2-Dichloroethene	< 6	6	μg/Kg-dry	1	9/11/2006
Chloroform	< 6	6	μg/Kg-dry	1	9/11/2006
1,2-Dichloroethane	< 6	6	μg/Kg-dry	1	9/11/2006
2-Butanone	< 12	12	μg/Kg-dry	1	9/11/2006
1,1,1-Trichloroethane	< 6	6	μg/Kg-dry	1	9/11/2006
Carbon tetrachloride	< 6	6	μg/Kg-dry	1	9/11/2006
Bromodichloromethane	< 6	6	μg/Kg-dry	1	9/11/2006
1,2-Dichloropropane	< 6	6	μg/Kg-dry	1	9/11/2006
cis-1,3-Dichloropropene	< 6	6	μg/Kg-dry	1	9/11/2006
Trichloroethene	< 6	6	μg/Kg-dry	1	9/11/2006
Dibromochloromethane	< 6	6	μg/Kg-dry	1	9/11/2006
1,1,2-Trichloroethane	< 6	6	μg/Kg-dry	1	9/11/2006
Benzene	< 6	6	μg/Kg-dry	1	9/11/2006
trans-1,3-Dichloropropene	< 6	6	μg/Kg-dry	1	9/11/2006
Bromoform	< 6	6	μg/Kg-dry	1	9/11/2006
4-Methyl-2-pentanone	< 12	12	μg/Kg-dry	1	9/11/2006
2-Hexanone	< 12	12	μg/Kg-dry	1	9/11/2006
Tetrachloroethene	< 6	6	μg/Kg-dry	1	9/11/2006
1,1,2,2-Tetrachloroethane	< 6	6	μg/Kg-dry	1	9/11/2006
Toluene	< 6	6	μg/Kg-dry	1	9/11/2006
Chlorobenzene	< 6	6	μg/Kg-dry	1	9/11/2006
Ethylbenzene	< 6	6	μg/Kg-dry	1	9/11/2006
Styrene	< 6	6	μg/Kg-dry	1	9/11/2006
m,p-Xylene	< 6	6	μg/Kg-dry	1	9/11/2006
o-Xylene	< 6	6	μg/Kg-dry	1	9/11/2006
Methyl tert-butyl ether	< 6	6	μg/Kg-dry	1	9/11/2006
Dichlorodifluoromethane	< 6	6	μg/Kg-dry	1	9/11/2006
Methyl Acetate	< 6	6	μg/Kg-dry	1	9/11/2006
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6	μg/Kg-dry	1	9/11/2006
Trichlorofluoromethane	< 6	6	μg/Kg-dry	1	9/11/2006
Cyclohexane	< 12	12	μg/Kg-dry	1	9/11/2006
Methyl Cyclohexane	< 6	6	μg/Kg-dry	1	9/11/2006
1,2-Dibromoethane	< 6	6	μg/Kg-dry	1	9/11/2006
1,3-Dichlorobenzene	< 6	6	μg/Kg-dry	1	9/11/2006
Isopropylbenzene	< 6	6	μg/Kg-dry	1	9/11/2006
1,4-Dichlorobenzene	< 6	6	μg/Kg-dry	1	9/11/2006
1,2-Dichlorobenzene	< 6	6	μg/Kg-dry	1	9/11/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-28 **Collection Date:** 9/8/2006

Lab Sample ID: 060908068-001

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 3 of 10

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: EX-F-28

Collection Date: 9/8/2006

Lab Sample ID: 060908068-001

Matrix: SOIL

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane	< 6	6	μg/Kg-dry	1	9/11/2006
1,2,4-Trichlorobenzene	< 6	6	μg/Kg-dry	1	9/11/2006
PH SW9045B					Analyst: LS
рН	5.6	1.0	pH Units	1	9/11/2006
MOISURE CONTENT D2216					Analyst: PL
Percent Moisture	18.2	1.0	wt%	1	9/9/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Schenectady Army Depot **Project:**

PO#: 212830 OP

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/11/20	006)					
Aluminum	11200	25.3		μg/g-dry	1	9/11/2006 9:26:00 AM
Antimony	7.7	15.2	J	μg/g-dry	1	9/11/2006 9:26:00 AN
Arsenic	< 1.27	1.27	s	μg/g-dry	1	9/11/2006 9:26:00 AM
Barium	53.2	2.53		μg/g-dry	1	9/11/2006 9:26:00 AM
Beryllium	0.41	1.27	J	μg/g-dry	1	9/11/2006 9:26:00 AN
Cadmium	< 1.27	1.27		μg/g-dry	1	9/11/2006 9:26:00 AM
Calcium	1440	127		μg/g-dry	1	9/11/2006 9:26:00 AM
Chromium	19.8	1.27		μg/g-dry	1	9/11/2006 9:26:00 AM
Cobalt	19.2	12.7	S	μg/g-dry	1	9/11/2006 9:26:00 AN
Copper	19.4	1.27		μg/g-dry	1	9/11/2006 9:26:00 AN
Iron	20000	12.7		μg/g-dry	1	9/11/2006 9:26:00 AN
Lead	< 1.27	1.27		μg/g-dry	1	9/11/2006 9:26:00 AN
Magnesium	4230	127		μg/g-dry	1	9/11/2006 9:26:00 AN
Manganese	91.9	2.53		μg/g-dry	1	9/11/2006 9:26:00 AN
Nickel	2.4	12.7	J	μg/g-dry	1	9/11/2006 9:26:00 AN
Potassium	1080	127		μg/g-dry	1	9/11/2006 9:26:00 AN
Selenium	< 1.27	1,27		μg/g-dry	1	9/11/2006 9:26:00 AN
Silver	< 5.06	5.06	s	μg/g-dry	1	9/11/2006 9:26:00 AN
Sodium	70	127	J	μg/g-dry	1	9/11/2006 9:26:00 AN
Thallium	< 2.53	2.53	s	μg/g-dry	1	9/11/2006 9:26:00 AN
Vanadium	14.4	12.7		μg/g-dry	1	9/11/2006 9:26:00 AN
Zinc	69.1	2.53		μg/g-dry	1	9/11/2006 9:26:00 AN
MERCURY SW7471A						Analyst: K H
(Prep: SW7471A - 9/11/2	006)					
Mercury	< 0.253	0.253		μg/g-dry	1	9/11/2006
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 13	13		μg/Kg-dry	1	9/11/2006
Bromomethane	< 13	13		μg/Kg-dry	1	9/11/2006
Vinyl chloride	< 13	13		μg/Kg-dry	1	9/11/2006
Chloroethane	< 13	13		μg/Kg-dry	1	9/11/2006
Methylene chloride	8	6		μg/Kg-dry	1	9/11/2006
Acetone	13	13		μg/Kg-dry	1	9/11/2006
Carbon disulfide	< 6	6		μg/Kg-dry	1	9/11/2006
1,1-Dichloroethene	< 6	6		μg/Kg-dry	1	9/11/2006
·	- 0	_				0/44/0000

Qualifiers:

1,1-Dichloroethane

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

< 6

6

X - Value exceeds Maximum Contaminant Level

1 S - Spike Recovery outside accepted recovery limits

9/11/2006

Date: 21-Nov-06

Client Sample ID: EX-F-29

Collection Date: 9/8/2006

Lab Sample ID: 060908068-002

Matrix: SOIL

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

μg/Kg-dry

Page 5 of 10

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Project: Schenectady Army Depot Lab Sample ID: 060908068-002

PO#: 212830 OP **Matrix:** SOIL

Analyses	Result	PQL	Qual U	nits	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
trans-1,2-Dichloroethene	< 6	6	μς	g/Kg-dry	1	9/11/2006
cis-1,2-Dichloroethene	< 6	6	μί	g/Kg-dry	1	9/11/2006
Chloroform	< 6	6	μί	g/Kg-dry	1	9/11/2006
1,2-Dichloroethane	< 6	6	μ	g/Kg-dry	1	9/11/2006
2-Butanone	< 13	13	μί	g/Kg-dry	1	9/11/2006
1,1,1-Trichloroethane	< 6	6		g/Kg-dry	1	9/11/2006
Carbon tetrachloride	< 6	6	μ	g/Kg-dry	1	9/11/2006
Bromodichloromethane	< 6	6		g/Kg-dry	1	9/11/2006
1,2-Dichloropropane	< 6	6	μς	g/Kg-dry	1	9/11/2006
cis-1,3-Dichloropropene	< 6	6	μ	g/Kg-dry	1	9/11/2006
Trichloroethene	< 6	6	μς	g/Kg-dry	1	9/11/2006
Dibromochloromethane	< 6	6	μ	g/Kg-dry	1	9/11/2006
1,1,2-Trichloroethane	< 6	6	μį	g/Kg-dry	1	9/11/2006
Benzene	< 6	6	μί	g/Kg-dry	1	9/11/2006
trans-1,3-Dichloropropene	< 6	6	μί	g/Kg-dry	1	9/11/2006
Bromoform	< 6	6	μ	g/Kg-dry	1	9/11/2006
4-Methyl-2-pentanone	< 13	13	μ	g/Kg-dry	1	9/11/2006
2-Hexanone	< 13	13	μ	g/Kg-dry	1	9/11/2006
Tetrachloroethene	< 6	6		g/Kg-dry	1	9/11/2006
1,1,2,2-Tetrachloroethane	< 6	6	μί	g/Kg-dry	1	9/11/2006
Toluene	< 6	6	μί	g/Kg-dry	1	9/11/2006
Chlorobenzene	< 6	6	μί	g/Kg-dry	1	9/11/2006
Ethylbenzene	< 6	6	μί	g/Kg-dry	1	9/11/2006
Styrene	< 6	6	μί	g/Kg-dry	1	9/11/2006
m,p-Xylene	< 6	6	μί	g/Kg-dry	1	9/11/2006
o-Xylene	< 6	6	μ	g/Kg-dry	1	9/11/2006
Methyl tert-butyl ether	< 6	6	μί	g/Kg-dry	1	9/11/2006
Dichlorodifluoromethane	< 6	6	μί	g/Kg-dry	1	9/11/2006
Methyl Acetate	< 6	6	μί	g/Kg-dry	1	9/11/2006
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6	μί	g/Kg-dry	1	9/11/2006
Trichlorofluoromethane	< 6	6	μί	g/Kg-dry	1	9/11/2006
Cyclohexane	< 13	13	μί	g/Kg-dry	1	9/11/2006
Methyl Cyclohexane	< 6	6	μί	g/Kg-dry	1	9/11/2006
1,2-Dibromoethane	< 6	6	μί	g/Kg-dry	1	9/11/2006
1,3-Dichlorobenzene	< 6	6	μ	g/Kg-dry	1	9/11/2006
Isopropylbenzene	< 6	6	μί	g/Kg-dry	1	9/11/2006
1,4-Dichlorobenzene	< 6	6	μί	g/Kg-dry	1	9/11/2006
1,2-Dichlorobenzene	< 6	6	μ	g/Kg-dry	1	9/11/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

 \boldsymbol{B} - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-29

Collection Date: 9/8/2006

R - RPD outside accepted recovery limits

 $\ensuremath{\mathsf{T}}$ - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Project: Schenectady Army Depot

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL Qı	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane	< 6	6	μg/Kg-dry	1	9/11/2006
1,2,4-Trichlorobenzene	< 6	6	μg/Kg-dry	1	9/11/2006
PH SW9045B					Analyst: LS
рН	6.9	1.0	pH Units	1	9/11/2006
MOISURE CONTENT D2216					Analyst: PL
Percent Moisture	21.0	1.0	wt%	1	9/9/2006

Date: 21-Nov-06

Client Sample ID: EX-F-29

Collection Date: 9/8/2006

Lab Sample ID: 060908068-002

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Project: Schenectady Army Depot Lab Sample ID: 060908068-003

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
CP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/11/2	006)					•
Aluminum	7950	22.6		μg/g-dry	1	9/11/2006 9:32:00 AM
Antimony	4.7	13.6	J	μg/g-dry	1	9/11/2006 9:32:00 AM
Arsenic	1.0	1.13	JS	μg/g-dry	1	9/11/2006 9:32:00 AM
Barium	669	2.26		μg/g-dry	1	9/11/2006 9:32:00 AM
Beryllium	0.43	1.13	J	μg/g-dry	1	9/11/2006 9:32:00 AM
Cadmium	< 1.13	1.13		μg/g-dry	1	9/11/2006 9:32:00 AM
Calcium	27000	113		μg/g-dry	1	9/11/2006 9:32:00 AM
Chromium	13.6	1.13		μg/g-dry	1	9/11/2006 9:32:00 AM
Cobalt	73.9	11.3	s	μg/g-dry	1	9/11/2006 9:32:00 AM
Copper	16.4	1.13		μg/g-dry	1	9/11/2006 9:32:00 AM
Iron	16000	11.3		μg/g-dry	1	9/11/2006 9:32:00 AM
Lead	< 1.13	1.13		μg/g-dry	1	9/11/2006 9:32:00 AM
Magnesium	7230	113		μg/g-dry	1	9/11/2006 9:32:00 AM
Manganese	360	2.26		μg/g-dry	1	9/11/2006 9:32:00 AM
Nickel	< 11.3	11.3		μg/g-dry	1	9/11/2006 9:32:00 AM
Potassium	822	113		μg/g-dry	1	9/11/2006 9:32:00 AM
Selenium	< 1.13	1.13		μg/g-dry	1	9/11/2006 9:32:00 AM
Silver	< 4.52	4.52	S	μg/g-dry	1	9/11/2006 9:32:00 AM
Sodium	110	113	J	μg/g-dry	1	9/11/2006 9:32:00 AM
Thallium	< 2.26	2.26	s	μg/g-dry	1	9/11/2006 9:32:00 AM
Vanadium	9.3	11.3	J	μg/g-dry	1	9/11/2006 9:32:00 AM
Zinc	218	2.26		μg/g-dry	1	9/11/2006 9:32:00 AM
MERCURY SW7471A						Analyst: KH
(Prep: SW7471A - 9/11/2	006)					
Mercury	< 0.226	0.226		μg/g-dry	1	9/11/2006
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 11	11		μg/Kg-dry	1	9/11/2006
Bromomethane	< 11	11		μg/Kg-dry	1	9/11/2006
Vinyl chloride	< 11	11		μg/Kg-dry	1	9/11/2006
Chloroethane	< 11	11		μg/Kg-dry	1	9/11/2006
Methylene chloride	< 6	6		μg/Kg-dry	1	9/11/2006
Acetone	< 11	11		μg/Kg-dry	1	9/11/2006
Carbon disulfide	< 6	6		μg/Kg-dry	1	9/11/2006
1,1-Dichloroethene	< 6	6		μg/Kg-dry	1	9/11/2006
1,1-Dichloroethane	< 6	6		μg/Kg-dry	1	9/11/2006

 $\ Qualifiers:$

Date: 21-Nov-06

Client Sample ID: EX-F-30

Collection Date: 9/8/2006

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Project: Schenectady Army Depot Lab Sample ID: 060908068-003

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
trans-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/11/2006
cis-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/11/2006
Chloroform	< 6	6		μg/Kg-dry	1	9/11/2006
1,2-Dichloroethane	< 6	6		μg/Kg-dry	1	9/11/2006
2-Butanone	< 11	11		μg/Kg-dry	1	9/11/2006
1,1,1-Trichloroethane	< 6	6		μg/Kg-dry	1	9/11/2006
Carbon tetrachloride	< 6	6		μg/Kg-dry	1	9/11/2006
Bromodichloromethane	< 6	6		μg/Kg-dry	1	9/11/2006
1,2-Dichloropropane	< 6	6		μg/Kg-dry	1	9/11/2006
cis-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/11/2006
Trichloroethene	< 6	6		μg/Kg-dry	1	9/11/2006
Dibromochloromethane	< 6	6		μg/Kg-dry	1	9/11/2006
1,1,2-Trichloroethane	< 6	6		μg/Kg-dry	1	9/11/2006
Benzene	< 6	6		μg/Kg-dry	1	9/11/2006
trans-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/11/2006
Bromoform	< 6	6		μg/Kg-dry	1	9/11/2006
4-Methyl-2-pentanone	< 11	11		μg/Kg-dry	1	9/11/2006
2-Hexanone	< 11	11		μg/Kg-dry	1	9/11/2006
Tetrachloroethene	< 6	6		μg/Kg-dry	1	9/11/2006
1,1,2,2-Tetrachloroethane	< 6	6		μg/Kg-dry	1	9/11/2006
Toluene	< 6	6		μg/Kg-dry	1	9/11/2006
Chlorobenzene	< 6	6		μg/Kg-dry	1	9/11/2006
Ethylbenzene	< 6	6		μg/Kg-dry	1	9/11/2006
Styrene	< 6	6		μg/Kg-dry	1	9/11/2006
m,p-Xylene	< 6	6		μg/Kg-dry	1	9/11/2006
o-Xylene	< 6	6		μg/Kg-dry	1	9/11/2006
Methyl tert-butyl ether	< 6	6		μg/Kg-dry	1	9/11/2006
Dichlorodifluoromethane	< 6	6		μg/Kg-dry	1	9/11/2006
Methyl Acetate	< 6	6		μg/Kg-dry	1	9/11/2006
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6		μg/Kg-dry	1	9/11/2006
Trichlorofluoromethane	< 6	6		μg/Kg-dry	1	9/11/2006
Cyclohexane	< 11	11		μg/Kg-dry	1	9/11/2006
Methyl Cyclohexane	< 6	6		μg/Kg-dry	1	9/11/2006
1,2-Dibromoethane	< 6	6		μg/Kg-dry	1	9/11/2006
1,3-Dichlorobenzene	< 6	6		μg/Kg-dry	1	9/11/2006
Isopropylbenzene	< 6	6		μg/Kg-dry	1	9/11/2006
1,4-Dichlorobenzene	< 6	6		μg/Kg-dry	1	9/11/2006
1,2-Dichlorobenzene	< 6	6		μg/Kg-dry	1	9/11/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

 \boldsymbol{J} - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-30

Collection Date: 9/8/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 9 of 10

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: EX-F-30 Collection Date: 9/8/2006

Lab Sample ID: 060908068-003

Matrix: SOIL

Analyses	Result	PQL Qu	ial Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane	< 6	6	μg/Kg-dry	1	9/11/2006
1,2,4-Trichlorobenzene	< 6	6	μg/Kg-dry	1	9/11/2006
PH SW9045B					Analyst: LS
рН	7.6	1.0	pH Units	1	9/11/2006
MOISURE CONTENT D2216					Analyst: PL
Percent Moisture	11.5	1.0	wt%	1	9/9/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Shaw Environmental & Infrastructure 060908068 CLIENT:

Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT **BatchID:** 12202

Date: 20-Nov-06

MBLK	SeqNo: 413667		PrepDate:		TestNo: SW6010B	110B	RunNo: 37054	
	Samp ID: MBLK		PrepRef:(SW3050A)		Units: µg/g	Anal	Analysis Date: 9/11/2006	
Analyte	Result	IIt POL	SPK value SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Afuminum	m 5.932							٦
Antimony								7
Arsenic	< 1.1							
Barium	0.134	34 2.00						7
Beryllium								٦
Cadmium								7
Calcium	< 100							
Chromium								٦
Cobalt	0.016							٦
Copper	< 1.1	1.00						
Iron	0.23							7
Lead	0.1;	38 1.00						- >
Magnesium	um 0.926							~
Manganese	ese < 2.00							
Nickel								7
Potassium	m 0.55							٦
Selenium	n < 1.00							
Silver	< 4.00							
Sodium	< 100	00 100						
Thallium	< 2.00							
Vanadium	m 1.028							٦
Zinc	< 2.00	00 2.00						
							The state of the s	

SOT	LCS SeqNo: 413668			PrepDate:)ate:		Test	TestNo: SW6010B	08	RunNo: 37054	37054	
	Samp ID: LCS-S			PrepF	PrepRef:(SW3050A)		Ü	Units: µg/g	Anal	Analysis Date: 9/11/2006	9/11/2006	
Analyte		Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit	RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Aluminum	E	5051	20.0	7590	5.932	66.5	57.8	142.3	0	0		
Antimony	>	45.86	12.0	77.5	0.142	29	1.3	223.2	0	0		
Arsenic		75.52	1.00	80.9	0	93.3	79.7	120.3	0	0		
Barium		148.3	2.00	156	0.134	92	82.1	117.9	0	0		
Qualifiers:	rs: ND - Not Detected at the Reporting Limit	Reporting Limit		ds - S	S - Spike Recovery outside accepted recovery limits	accepted recc	very limits	_	B - Analyte detected in the associated Method Blank	d in the associ	ated Method B	lank

Page 1 of 13

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

BatchID: 12202

CLIENT: Shaw Environmental & Infrastructure Work Order: 060908068

Project: Schenectady Army Depot

SOT	SeqNo: 413668			PrepDate:			Test	TestNo: SW6010B	98	RunNo:	37054	
	Samp ID: LCS-S			PrepRef	PrepRef:(SW3050A)		U	Units: µg/g			9/11/2006	
Analyte		Result	Pal	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Beryllium		144.1	1.00	~	0.074	101	81.8	118.2	0	0		
Cadmium		223.5	1.00	233	0.006	95.9	80.7	118.9	0	0		
Calcium		4076	100	4320	0	94.3	79.2	120.8	0	0		
Chromium	E	56.36	1.00	8.09	0.152	92.5	78.5	121.4	0	0		
Cobalt		78.86	10.0	68.6	0.016	115	81.8	118.2	0	0		
Copper		128.2	1.00	131	0	97.9	82.4	117.6	0	0		
Iron		7869	10.0	14400	0.23	54.6	51.5	148.6	0	0		
Lead		82.09	1.00	76.8	0.138	107	80.6	119.5	0	0		
Magnesium	E	2175	100	2220	0.926	98	77	123	0	0		
Manganese	se	272.4	2.00	304	0	89.6	79.9	120.1	0	0		
Nickel		42.85	10.0	49.6	0.07	86.2	81.5	118.5	0	0		
Potassium	Д.	1909	100	2380	0.55	80.2	71.4	128.6	0	0		
Selenium		68.11	1.00	82.9	0	82.2	75.5	124.2	0	0		
Silver		63	4.00	80	0	78.7	61.3	138.8	0	0		
Sodium		457.8	100	456	0	100	55.7	144.3	0	0		
Thallium		163.8	2.00	158	0	104	75.3	124.7	0	0		
Vanadium	-	53.35	10.0	72.4	1.028	72.3	71.4	128.5	0	0		
Zinc		111	2.00	116	0	95.7	78	121.6	0	0		
MS	SeqNo: 413672			PrepDate:	e:		Tes	TestNo: SW6010B		RunNo:	37054	
	Samp ID: 060908068-001A (EX-F-28)	(-F-28)		PrepRef	PrepRef:(SW3050A)		n O	Units: µg/g-dry		Analysis Date: 9	9/11/2006	
Analyte	- A Comment of the Co	Result	PaL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	.	14170	24.4	489	11950	453	75	125	0	0		S
Antimony		167.4	14.7	122.2	4.531	133	75	125	0	0		S
Arsenic		6.665	1.22	9.78	1.44	53.4	75	125	0	0		S
Barium		617.9	2.44	489	111.2	104	75	125	0	0		
Beryllium		13.56	1.22	12.22	1.061	102	75	125	0	0		
Cadmium		11.08	1.22	12.22	0	90.7	75	125	0	0		
Chromium	L	71.24	1.22	48.9	18.77	107	75	125	0	0		
Cobalt		182.4	12.2	122.2	15.76	136	75	125	0	0		S
Copper		83.26	1.22	61.12	25.33	94.8	75	125	0	0		
Iron		21900	12.2	244.5	19440	1010	75	125	0	0		S

Page 2 of 13

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

ANALYTICAL QC SUMMARY REPORT

Shaw Environmental & Infrastructure 060908068 Schenectady Army Depot Work Order: CLIENT:

Project:

MS	SeqNo: 413672			PrepDate:			Test	TestNo: SW6010B	98	RunNo: 370	37054	•
	Samp ID: 060908068-001A (EX-F-28)	-28)		PrepRef:(PrepRef:(SW3050A)		Uni	Units: µg/g-dry		Analysis Date: 9/1	9/11/2006	
Analyte		Result	PQL	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		6.452	1.22	4.89	0	132	75	125	0	0		S
Manganese	esi	207.7	2.44	122.2	97.37	90.2	75	125	0	0		
Nickel		107.5	12.2	122.2	0	87.9	75	125	0	0		
Selenium		2.914	1.22	2.445	0	119	75	125	0	0		
Silver		6.09	4.89	12.22	0	49.8	75	125	0	0		s
Thallium		9.064	2.44	12.22	0	74.1	75	125	0	0		S
Vanadium	Ę	137.4	12.2	122.2	19.34	9.96	75	125	0	0		
Zinc		176.6	2.44	122.2	48.82	105	75	125	0	0		
DUP	SeqNo: 413671			PrepDate:			Test	TestNo: SW6010B)B	RunNo: 370	37054	
	Samp ID: 060908068-001A			PrepRef:			Uni	Units: µg/g-dry	-	Analysis Date: 9/1	9/11/2006	
Analyte		Result	PQL	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	и	11990	24.4	0	0	0	0	0	11950	0.340	20	
Antimony		2.692	14.7	0	0	0	0	0	4.531	0	17.2	
Arsenic		1.927	1.22	0	0	0	0	0	1.44	28.9	15.3	œ
Barium		112	2.44	0	0	0	0	0	111.2	0.743	17.8	
Beryllium		1.02	1.22	0	0	0	0	0	1.061	0	11.5	
Cadmium	-	-0.2029	1.22	0	0	0	0	0	0	0	15.4	
Calcium		1435	122	0	0	0	0	0	1448	0.897	20	
Chromium	The state of the s	18.83	1.22	0	0	0	0	0	18.77	0.325	20	
Cobalt		18.29	12.2	0	0	0	0	0	15.76	14.9	18.9	
Copper		23.99	1.22	0	0	0	0	0	25.33	5.44	20	
Iron		18900	12.2	0	0	0	0	0	19440	2.78	16.4	
Lead		-11.86	1.22	0	0	0	0	0	0	0	70	
Magnesium	m.	3601	122	0	0	0	0	0	3635	0.940	70	
Manganese	Se	113	2.44	0	0	0	0	0	97.37	14.9	20	
Nickel		-17.29	12.2	0	0	0	0	0	0	0	16.5	
Potassium	Ε	557.6	122	0	0	0	0	0	518.2	7.32	20	
Selenium		-34.5	1.22	0	0	0	0	0	0	0	20	
Silver		-3.655	4.89	0	0	0	0	0	0	0	10.3	
Sodium		270	122	0	0	0	0	0	274.7	1.72	21.2	
Thallium		-1.237	2.44	0	0	0	0	0	0	0	23.1	
Qualifiers:	s: ND - Not Detected at the Reporting Limit	orting Limit		S - Spike R	S - Spike Recovery outside accepted recovery limits	accepted reco	very limits	AND THE RESIDENCE OF THE PERSON OF THE PERSO	3 - Analyte dete	B - Analyte detected in the associated Method Blank	ed Method Bla	ink
	J - Analyte detected below quantitation limits	antitation limits		R - RPD or	R - RPD outside accepted recovery limits	ecovery limits	70				Page 3 of 13	of 13
											0	,

Page 4 of 13

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

Qualifiers:

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

DUP	SeqNo: 413671			PrepDate:	ate:		Tes	FestNo: SW6010B		• • •	37054	
	Samp ID: 060908068-001A			PrepRef:	lef:		ร	Jnits: µg/g-dry	Analy	Analysis Date: 9	1/1/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vanadium	F	19.55	12.2	0	0	0	0	0	19.34	1.1	11.5	
Zinc		48.51	2.44	0	0	0	0	0	48.82	0.623	20.4	

Page 5 of 13

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

Shaw Environmental & Infrastructure

Schenectady Army Depot

890806090

Work Order: CLIENT:

Project:

	A STATE OF THE PARTY OF THE PAR							***************************************		
MBLK	SeqNo: 413428			PrepDate:9/11/2006	5006	-	TestNo: SW7471A	71A	RunNo: 37044	
	Samp ID: MB-12204			PrepRef:(SW7471A)	71A)		Units: µg/g	Ana	Analysis Date: 9/11/2006	
Analyte Mercury		Result < 0.0200	PQL 0.0200	SPK value SPK Ref Val	Val %REC		LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
SOT	SeqNo: 413429 Samp ID: LCS-12204			PrepDate:9/11/2006 PrepRef:(SW7471A)	2006 71A)	 	TestNo: SW7471A Units: µg/g		RunNo: 37044 Analysis Date: 9/11/2006	
Analyte Mercury		Result 4.35	1.00	SPK value SPK Ref Val	<u>Val</u> <u>%REC</u> 0 121		LowLimit HighLimit 68.1 131.9	RPD Ref Val	%RPD RPDLimit 0	Qual
MS	SeqNo: 413436 Samp ID: 060908068-001A (EX-F-28)	(-F-28)		PrepDate:9/11/2006 PrepRef:(SW7471A)	2006 71A)		TestNo: SW7471A Units: µg/g-dry		RunNo: 37044 Analysis Date: 9/11/2006	
Analyte Mercury		Result 0.6601	PQL 0.244	SPK value SPK Ref Val 0.6112	<u>Val</u> <u>%REC</u> 0 108		LowLimit HighLimit 74.4 123	RPD Ref Val	%RPD RPDLimit 0	Qual
DUP	SeqNo: 413435 Samp ID: 060908068-001A			PrepDate:9/11/2006 PrepRef:	2006	 	TestNo: SW7471A Units: µg/g-dry		RunNo: 37044 Analysis Date: 9/11/2006	
Analyte Mercury		Result < 0.244	<u>POL</u> 0.244	SPK value SPK Ref Val 0	(LowLim 0	%REC LowLimit HighLimit 0 0	RPD Ref Val	%RPD RPDLimit 0 20.8	Qual

Page 6 of 13

B - Analyte detected in the associated Method Blank

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060908068

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: R37039

DUP	SeqNo: 413367						Test	TestNo: SW9045B		RunNo: 37039	.039	
	Samp ID: 060908068-001A						Unit	Units: pH Units		Analysis Date: 9/11/2006	11/2006	
Analyte		Result	POL	SPK value SPK Ref Val	PK Ref Val	%REC	LowLimit	WREC LowLimit HighLimit	RPD Ref Val	%RPD	%RPD RPDLimit	Qual
핊		5.7	1.00	0	0	0	0	0	5.6	1.77	3.24	
SOT	SeqNo: 413363						Test	TestNo: E150.1		RunNo: 37039	.039	
	Samp ID: LCS-R37039						Unit	Units: pH Units		Analysis Date: 9/11/2006	11/2006	
Analyte		Result	POL	SPK value SPK Ref Val	PK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit	RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Hd		7.54	1.00	7.54	0	100	92.6	102	0	0		

Qualifiers:

Shaw Environmental & Infrastructure CLIENT:

Work Order:

060908068 Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

7									1	
M BCK	SeqNo: 413519						TestNo: SW8260B		RunNo: 37048	
	Samp ID: MB-R37048						Units: µg/Kg		Analysis Date: 9/11/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC I	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Quai
Chloromethane	thane	< 10	10							
Bromomethane	thane	< 10	10							
Vinyl chloride	ride	< 10	10							
Chloroethane	ane	< 10	10							
Methylene chloride	e chloride	< 5.0	5.0							
Acetone		< 10	10							
Carbon disulfide	sulfide	< 5.0	5.0							
1,1-Dichlo	1,1-Dichloroethene	< 5.0	5.0							
1,1-Dichlo	1,1-Dichloroethane	< 5.0	5.0							
trans-1,2-	trans-1,2-Dichloroethene	< 5.0	5.0							
cis-1,2-Di	cis-1,2-Dichloroethene	< 5.0	5.0							
Chloroform	٤	< 5.0	5.0							
1,2-Dichloroethane	roethane	< 5.0	5.0							
2-Butanone	Э	< 10	10							
1,1,1-Trio	1,1,1-Trichloroethane	< 5.0	5.0							
Carbon te	Carbon tetrachloride	< 5.0	5.0							
Bromodic	Bromodichloromethane	< 5.0	5.0							
1,2-Dichlc	1,2-Dichloropropane	< 5.0	5.0							
cis-1,3-Di	cis-1,3-Dichloropropene	< 5.0	5.0							
Trichloroethene	sthene	< 5.0	5.0							
Dibromoc	Dibromochloromethane	< 5.0	5.0							
1,1,2-Trio	1,1,2-Trichloroethane	< 5.0	5.0							
Benzene		< 5.0	5.0							
trans-1,3-	trans-1,3-Dichloropropene	< 5.0	5.0							
Bromoform	ш	< 5.0	5.0							
4-Methyl-;	4-Methyl-2-pentanone	< 10	10							
2-Hexanone	ine	< 10	10							
Tetrachloroethene	roethene	< 5.0	5.0							
1,1,2,2-Te	1,1,2,2-Tetrachloroethane	< 5.0	5.0							
Toluene		< 5.0	5.0							
Chlorobenzene	nzene	< 5.0	5.0							
Ethylbenzene	zene	< 5.0	5.0							
Qualifiers:	s: ND - Not Detected at the Reporting Limit	the Reporting Limit		liqs - S	S - Spike Recovery outside accepted recovery limits	pted recov	very limits	B - Analyte detect	B - Analyte detected in the associated Method Blank	3lank
		J - Analyte detected below quantitation limits		R - RP	R - RPD outside accepted recovery limits	ary limits			Page 7 of 13	of 13
)	,

Shaw Environmental & Infrastructure 060908068 Schenectady Army Depot CLIENT:

Work Order:

Project:

ANALYTICAL QC SUMMARY REPORT

MBLK	SeqNo: 413519						Test	TestNo: SW8260B	98	RunNo: 370	37048	
	Samp ID: MB-R37048						C	Units: µg/Kg	Anal	Analysis Date: 9/1	9/11/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Styrene		< 5.0	5.0									
m,p-Xylene	əi	< 5.0	5.0									
o-Xylene		< 5.0	5.0									
Methyl ter	Methyl tert-butyl ether	< 5.0	5.0									
Dichlorod	Dichlorodifluoromethane	< 5.0	5.0									
Methyl Acetate	etate	< 5.0	5.0									
1,1,2-Tric	1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0									
Trichlorof	Trichlorofluoromethane	< 5.0	5.0									
Cyclohexane	ane	< 10	10									
Methyl Cy	Methyl Cyclohexane	< 5.0	5.0									
1,2-Dibro	1,2-Dibromoethane	< 5.0	5.0									
1,3-Dichlo	1,3-Dichlorobenzene	< 5.0	5.0									
Isopropylbenzene	oenzene	< 5.0	5.0									
1,2-Dichlo	1,2-Dichlorobenzene	< 5.0	5.0									
1,4-Dichk	1,4-Dichlorobenzene	< 5.0	5.0									
1,2-Dibro	1,2-Dibromo-3-chloropropane	< 5.0	5.0									
1,2,4-Tric	1,2,4-Trichlorobenzene	< 5.0	5.0									
Surr: 1	Surr: 1,2-Dichloroethane-d4	44.67	5.0	20	0	89.3	64.8	130	0	0		
Surr: 4	Surr: 4-Bromofluorobenzene	51.89	5.0	20	0	104	76.8	122	0	0		
Surr: T	Surr: Toluene-d8	50.52	5.0	20	0	101	78.5	120	0	0		
rcs	SeqNo: 413860						Test	TestNo: SW8260B	0B	RunNo: 37(37048	
	Samp ID: LCS050						n	Units: µg/Kg	Ana	Analysis Date: 9/1	9/11/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Tric	1,1,1-Trichloroethane	49.72	5.0	20	0	99.4	61.8	140	0	0		
1,1,2,2-To	1,1,2,2-Tetrachloroethane	68.54	5.0	50	0	137	49.9	147	0	0		
1,1,2-Tric	1,1,2-Trichloro-1,2,2-trifluoroethane	48.24	5.0	50	0	96.5	70	130	0	0		
1,1,2-Tric	1,1,2-Trichloroethane	51.95	5.0	20	0	104	57.2	150	0	0		
1,1-Dichl	1,1-Dichloroethane	50.98	2.0	90	0	102	6.99	133	0	0		
1,1-Dichl	1,1-Dichloroethene	47.32	5.0	20	0	94.6	43.3	147	0	0		
1,2,4-Tric	1,2,4-Trichlorobenzene	70.72	5.0	20	0	141	43	115	0	0		S
1,2-Dibro	1,2-Dibromoethane	54.95	5.0	20	0	110	80.6	142	0	0		
Qualifiers:	:: ND - Not Detected at the Reporting Limit	e Reporting Limit		S - Spil	S - Spike Recovery outside accepted recovery limits	accepted reco	overy limits		B - Analyte detected in the associated Method Blank	d in the associate	ed Method Bl	lank
	J - Analyte detected below quantitation limits	ow quantitation limits		R - RPJ	R - RPD outside accepted recovery limits	recovery limit	50				Page 8 of 13	of 13
											ŀ	

Shaw Environmental & Infrastructure 060908068

CLIENT: Work Order:

Project:

Schenectady Army Depot

OR1
0
EP
~
\geq
4
◀
\geq
\equiv
\geq
3
()
2
AL OC
CAL OC
ICAL OC
CAL
YTICAL
YTICAL
ALYTICAL
NALYTICAL
ALYTICAL
NALYTICAL

SOT	SeqNo: 413860						Test	TestNo: SW8260B	08	RunNo: 3	37048	
<i>(</i>)	Samp ID: LCS050						i	Units: µg/Kg			9/11/2006	
Analyte		Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichlorobenzene	benzene	59.06	5.0	50	0	118	75.6	110.4	0	0		S
1,2-Dichloroethane	ethane	64.55	5.0	50	0	129	63.6	137	0	0		
1,2-Dichloropropane	propane	47.05	5.0	50	0	94.1	66.4	141	0	0		
1,3-Dichlorobenzene	benzene	57.81	5.0	20	0	116	80	114	0	0		S
1,4-Dichlorobenzene	benzene	60.61	5.0	20	0	121	83	123	0	0		
2-Butanone		39.41	10	50	0	78.8	49.7	149	0	0		
2-Hexanone		44.37	10	50	0	88.7	71.3	156	0	0		
4-Methyl-2-pentanone	ventanone	52.7	10	50	0	105	31.4	184	0	0		
Acetone		43.48	10	50	0	87	09	130	0	0		
Benzene		50.4	5.0	50	0	101	68.7	140	0	0		
Bromodichloromethane	vomethane	49.86	5.0	50	0	266	62.5	141	0	0		
Bromoform		54.95	5.0	50	0	110	52.5	149	0	0		
Bromomethane	ane	33.92	10	20	0	67.8	35.7	177	0	0		
Carbon disulfide	Iffide	48.15	5.0	50	0	96.3	54.2	158	0	0		
Carbon tetrachloride	achloride	50.59	5.0	50	0	101	65.4	135	0	0		
Chlorobenzene	ene	55.61	5.0	50	0	#	64.5	141	0	0		
Chloroethane	9	35.46	10	50	0	70.9	52.5	151	0	0		
Chloroform		57.36	5.0	50	0	115	71.4	134	0	0		
cis-1,2-Dichloroethene	loroethene	46.35	5.0	50	0	92.7	51	133	0	0		
cis-1,3-Dich	cis-1,3-Dichloropropene	46.23	5.0	50	0	92.5	59.7	132	0	0		
Cyclohexane	Ф	46.22	10	50	0	92.4	70	130	0	0		
Dibromochloromethane	oromethane	54.27	5.0	50	0	109	60.4	143	0	0		
Ethylbenzene	9	53.56	5.0	50	0	107	65	131	0	0		
Isopropylbenzene	nzene	56.8	5.0	50	0	114	70	130	0	0		
m,p-Xylene		112.8	5.0	100	0	113	43.6	168	0	0		
Methyl Acetate	ate	49.29	5.0	50	0	98.6	50.1	150	0	0		
Methyl Cyclohexane	ohexane	47.57	5.0	50	0	95.1	68.1	148	0	0		
Methyl tert-butyl ether	outyl ether	43.17	5.0	50	0	86.3	60.3	138	0	0		
Methylene chloride	thloride	52.5	5.0	50	0	105	32.9	173	0	0		
o-Xylene		56	5.0	50	0	112	54.2	137	0	0		
Styrene		58.27	5.0	50	0	117	68.3	127	0	0		
Tetrachloroethene	athene	54.48	5.0	20	0	109	51.5	147	0	0		
Qualifiers:	ND - Not Detected at the Reporting Limit	Reporting Limit		S - Spi	- Spike Recovery outside accepted recovery limits	e accepted reco	overy limits		B - Analyte dete	B - Analyte detected in the associated Method Blank	ated Method B	lank
	J - Analyte detected below quantitation limits	w quantitation limits		R - RP	R - RPD outside accepted recovery limits	recovery limit	s				Page 9 of 13	of 13

Shaw Environmental & Infrastructure 060908068 CLIENT: Work Order: Project:

\sim
()
jaminaj L
K
⋖
MMARY REPORT
₹
7 2
\simeq
\smile
_
j
AL
CAL QC SUM
\mathbf{O}
\mathbf{O}
YTIC
LYTIC
YTIC
ALYTIC

LCS SeqNo: 413860						Test	TestNo: SW8260B	0B	RunNo:	37048	
Samp ID: LCS050						5	Units: µg/Kg	†	Analysis Date:	9/11/2006	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Va	II %RPD	RPDLimit	Qual
Toluene	52.37	5.0	50	0	105	60.2	143	_	0 0		
trans-1,2-Dichloroethene	45.2	5.0	50	0	90.4	63.8	128	,	0 0		
trans-1,3-Dichloropropene	46.51	5.0	20	0	93	58.3	131	_	0 0		
Trichloroethene	47.96	5.0	20	0	95.9	62.2	142	_		_	
Trichlorofluoromethane	37.98	5.0	50	0	92	53.7	152	_		_	
Surr: 1,2-Dichloroethane-d4	45.36	5.0	20	0	200.7	64.8	130	_		_	
Surr: 4-Bromofluorobenzene	52.43	5.0	50	0	105	76.8	122	_	0 0	_	
Surr: Toluene-d8	49.95	5.0	20	0	6.66	78.5	120	-	0 0		
MS SeqNo: 413858						Tesi	TestNo: SW8260B	0B	RunNo:	37048	
Samp ID: 060907004-001A						'n	Units: µg/Kg-dry		Analysis Date:	9/11/2006	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	al %RPD	RPDLimit	Qual
1,1,1-Trichloroethane	50.84	5.1	51.02	0	99.7	61.8	140	_	0 0		
1,1,2,2-Tetrachloroethane	65.33	5.1	51.02	0	128	49.9	147	_	0 0	_	
1,1,2-Trichloro-1,2,2-trifluoroethane	41.82	5.1	51.02	0	82	70	130	_	0 0		
1,1,2-Trichloroethane	49.17	5.1	51.02	0	96.4	57.2	150	-	0 0		
1,1-Dichloroethane	46.8	5.1	51.02	0	91.7	6.99	133	-	0 0	-	
1,1-Dichloroethene	43.43	5.1	51.02	0	85.1	43.3	147	_	0 0	_	
1,2,4-Trichlorobenzene	40.65	5.1	51.02	0	79.7	57.7	132	-	0 0	-	
1,2-Dibromoethane	49.83	5.1	51.02	0	97.7	70	130	_	0 0	-	
1,2-Dichlorobenzene	46.56	5.1	51.02	0	91.2	75.6	110.4	-	0	_	
1,2-Dichloroethane	55.56	5.1	51.02	0	109	63.6	137	-	0 0	-	
1,2-Dichloropropane	42.52	5.1	51.02	0	83.3	66.4	141	-	0 0	-	
1,3-Dichlorobenzene	40.68	5.1	51.02	0	79.7	80	114	-	0 0	_	S
1,4-Dichlorobenzene	42.91	5.1	51.02	0	84.1	83	123	-	0 0	•	
2-Butanone	44.8	10	51.02	0	87.8	75	125	_	0 0	-	
2-Hexanone	49.26	10	51.02	0	96.5	75	125	-	0 0	-	
4-Methyl-2-pentanone	60.29	10	51.02	0	118	31.4	184	-	0 0		
Acetone	52.54	10	51.02	0	103	75	125	1	0 0		
Benzene	47.82	5.1	51.02	0	93.7	68.7	140	-	0 0		
Bromodichloromethane	48.57	5.1	51.02	0	95.2	62.5	141	-	0 0	-	
Bromoform	52.08	5.1	51.02	0	102	52.5	149		o		
Qualifiers: ND - Not Detected at the Reporting Limit	e Reporting Limit	a a discassion proposition	S - Spi	S - Spike Recovery outside accepted recovery limits	e accepted rec	overy limits		B - Analyte de	B - Analyte detected in the associated Method Blank	riated Method E	Slank
J - Analyte detected below quantitation limits	ow quantitation limits		R - RP	R - RPD outside accepted recovery limits	recovery limit	Ş;				Page 10 of 13	of 13

ANALYTICAL QC SUMMARY REPORT

BatchID: R37048

Schenectady Army Depot Project:

890806090

Work Order: CLIENT:

Shaw Environmental & Infrastructure

UN

MS	SeqNo: 413858						Test	TestNo: SW8260B	<u>8</u>	RunNo: 37048	
	Samp ID: 060907004-001A						Units:	s: µg/Kg-dry		Analysis Date: 9/11/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Bromomethane	ethane	33.57	10	51.02	0	65.8	35.7	177	0	0	
Carbon disulfide	lisulfide	39.91	5.1	51.02	0	78.2	54.2	158	0	0	
Carbon te	Carbon tetrachloride	50.6	5.1	51.02	0	99.2	65.4	135	0	0	
Chlorobenzene	nzene	47.34	5.1	51.02	0	92.8	64.5	141	0	0	
Chloroethane	nane	33.68	10	51.02	0	99	52.5	151	0	0	
Chloroform	ш	50.75	5.1	51.02	0	99.5	71.4	134	0	0	
cis-1,2-D	cis-1,2-Dichloroethene	38.92	5.1	51.02	0	76.3	51	133	0	0	
cis-1,3-D	cis-1,3-Dichloropropene	39.61	5.1	51.02	0	77.6	29.7	132	0	0	
Cyclohexane	ane	41.7	10	51.02	0	81.7	20	130	0	0	
Dibromoc	Dibromochloromethane	51.74	5.1	51.02	0	101	60.4	143	0	0	
Ethylbenzene	zene	46.56	5.1	51.02	0	91.3	65	131	0	0	
Isopropylbenzene	benzene	48.13	5.1	51.02	0	94.3	20	130	0	0	
m,p-Xylene	пе	96.12	5.1	102	0	94.2	43.6	168	0	0	
Methyl Acetate	cetate	54.32	5.1	51.02	0	106	20	130	0	0	
Methyl C	Methyl Cyclohexane	36.76	5.1	51.02	0	72.1	70	130	0	0	
Methyl te	Methyl tert-butyl ether	44.22	5.1	51.02	0	86.7	75	125	0	0	
Methylen	Methylene chloride	52.01	5.1	51.02	6.627	88	32.9	173	0	0	
o-Xylene		49.31	5.1	51.02	0	96.7	54.2	137	0	0	
Styrene		48.29	5.1	51.02	0	94.6	68.3	127	0	0	
Tetrachlo	Tetrachloroethene	49.67	5.1	51.02	0	97,4	51.5	147	0	0	
Toluene		48.69	5.1	51.02	0	95.4	60.2	143	0	0	
trans-1,2	trans-1,2-Dichloroethene	37.4	5.1	51.02	0	73.3	63.8	128	0	0	
trans-1,3	trans-1,3-Dichloropropene	38.08	5.1	51.02	0	74.6	58.3	131	0	0	
Trichloroethene	ethene	42.73	5.1	51.02	0	83.7	62.2	142	0	0	
Trichlorol	Trichiorofluoromethane	36.22	5.1	51.02	0	71	53.7	152	0	0	
Surr: 1	Surr: 1,2-Dichloroethane-d4	41.71	5.1	51.02	0	81.7	64.8	130	0	0	
Surr: 4	Surr: 4-Bromofluorobenzene	43.07	5.1	51.02	0	84.4	76.8	122	0	0	
Surr: T	Surr: Toluene-d8	47,48	5.1	51.02	0	93.1	78.5	120	0	0	

ND - Not Detected at the Reporting Limit Qualifiers: Analyte

Samp ID: 060907004-001A

SeqNo: 413859

MSD

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Qual

RPDLimit

%RPD

RPD Ref Val

LowLimit HighLimit

%REC

SPK value SPK Ref Val

PQL

Analysis Date: 9/11/2006 RunNo: 37048

TestNo: SW8260B Units: µg/Kg-dry Page 11 of 13

ANALYTICAL QC SUMMARY REPORT

BatchID: R37048

Work Order: 060908068
Project: Schenectady Army Depot

Shaw Environmental & Infrastructure

CLIENT:

MSD	SeqNo: 413859						Test	TestNo: SW8260B	3B	RunNo: 3	37048	
	Samp ID: 060907004-001A						Uni	Units: µg/Kg-dry		Analysis Date: 9/	9/11/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Tric	1,1,1-Trichloroethane	48.93	5.1	51.02	0	95.9	61.8	140	50.84	3.83	14.7	
1,1,2,2-Te	1,1,2,2-Tetrachloroethane	52.81	5.1	51.02	0	104	49.9	147	65.33	21.2	32.8	
1,1,2-Tric	1,1,2-Trichloro-1,2,2-trifluoroethane	44.72	5.1	51.02	0	87.6	20	130	41.82	69.9	25.3	
1,1,2-Tric	1,1,2-Trichloroethane	49.09	5.1	51.02	0	96.2	57.2	150	49.17	0.176	15.1	
1,1-Dichlo	1,1-Dichloroethane	46	5.1	51.02	0	90.2	6.99	133	46.8	1.72	19.9	
1,1-Dichlc	1,1-Dichloroethene	43.86	5.1	51.02	0	86	43.3	147	43.43	0.980	30	
1,2,4-Tric	1,2,4-Trichlorobenzene	42.07	5.1	51.02	0	82.5	57.7	132	40.65	3.45	30	
1,2-Dibro	1,2-Dibromoethane	49.33	5.1	51.02	0	296.7	70	130	49.83	0.998	7.97	
1,2-Dichlo	1,2-Dichlorobenzene	47.9	5.1	51.02	0	93.9	75.6	110.4	46.56	2.84	33.4	
1,2-Dichk	1,2-Dichloroethane	56.8	5.1	51.02	0	111	63.6	137	55.56	2.22	19.5	
1,2-Dichk	1,2-Dichloropropane	43.19	5.1	51.02	0	84.6	66.4	141	42.52	1.55	7.26	
1,3-Dichlo	1,3-Dichlorobenzene	43.39	5.1	51.02	0	85	80	114	40.68	6.45	30	
1,4-Dichk	1,4-Dichlorobenzene	45.2	5.1	51.02	0	98.6	83	123	42.91	5.20	30	
2-Butanone	he	42.48	10	51.02	0	83.3	75	125	44.8	5.31	30	
2-Hexanone	ine	44.51	10	51.02	0	87.2	75	125	49.26	10.1	9.43	œ
4-Methyl-	4-Methyl-2-pentanone	53.78	10	51.02	0	105	31.4	184	60.29	11.4	30	
Acetone		49.01	10	51.02	0	96.1	75	125	52.54	6.95	30	
Benzene		48.91	5.1	51.02	0	62.6	68.7	140	47.82	2.25	30	
Bromodic	Bromodichloromethane	48.34	5.1	51.02	0	94.7	62.5	141	48.57	0.490	7.37	
Bromoform	ш	49.72	5.1	51.02	0	97.4	52.5	149	52.08	4.65	7.05	
Bromomethane	sthane	31.56	10	51.02	0	61.9	35.7	177	33.57	6.18	6.29	
Carbon disulfide	isulfide	41.87	5.1	51.02	0	82.1	54.2	158	39.91	4.78	20.4	
Carbon te	Carbon tetrachloríde	48.93	5.1	51.02	0	92.9	65.4	135	50.6	3.35	15.8	
Chlorobenzene	nzene	48.43	5.1	51.02	0	94.9	64.5	141	47.34	2.29	27.9	
Chloroethane	lane	32.61	10	51.02	0	63.9	52.5	151	33.68	3.24	19.6	
Chloroform	ш	50.78	5.1	51.02	0	99.5	71.4	134	50.75	0.0647	17.5	
cis-1,2-Di	cis-1,2-Dichloroethene	40.5	5.1	51.02	0	79.4	51	133	38.92	3.98	18.6	
cis-1,3-Di	cis-1,3-Dichloropropene	34.75	5.1	51.02	0	68.1	29.7	132	39.61	13.1	18	
Cyclohexane	ane	44.09	10	51.02	0	86.4	70	130	41.7	5.59	8.01	
Dibromoc	Dibromochloromethane	50.03	5.1	51.02	0	98.1	60.4	143	51.74	3.37	16.9	
Ethylbenzene	zene	48.56	5.1	51.02	0	95.2	65	131	46.56	4.20	30	
Isopropylbenzene	benzene	49.09	2.1	51.02	0	96.2	70	130	48.13	1.97	30	
Qualifiers:	s: ND - Not Detected at the Reporting Limit	Reporting Limit		S - Spik	S - Spike Recovery outside accepted recovery limits	le accepted recc	overy limits		B - Analyte detected in the associated Method Blank	ted in the associa	ited Method Bl	ank
	J - Analyte detected below quantitation limits	quantitation limits		R - RPI	R - RPD outside accepted recovery limits	recovery limit	s				Page 12 of 13	of 13
		•									-0	

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Shaw Environmental & Infrastructure CLIENT:

ANALYTICAL QC SUMMARY REPORT

BatchID: R37048

890806090 Work Order: Schenectady Army Depot Project:

MSD	SeqNo: 413859						Tes	TestNo: SW8260B	0B	RunNo:	37048	
	Samp ID: 060907004-001A						Un	Units: µg/Kg-dry		Analysis Date: 9	9/11/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ane	98.99	5.1	102	0	26	43.6	168	96.12	2.94	30	
Methyl Acetate	cetate	47.94	5.1	51.02	0	94	70	130	54.32	12.5	30	
Methyl C	Methyl Cyclohexane	41.7	5.1	51.02	0	81.7	70	130	36.76	12.6		ĸ
Methyl te	Methyl tert-butyl ether	43.3	5.1	51.02	0	84.9	75	125	44.22	2.12	33.8	
Methyler	Methylene chloride	50.08	5.1	51.02	6.627	85.2	32.9	173	52.01	3.79	16.2	
o-Xylene		48.83	5.1	51.02	0	95.7	54.2	137	49.31	0.986	30	
Styrene		50.71	5.1	51.02	0	99.4	68.3	127	48.29	4.89	10	
Tetrachl	Tetrachloroethene	50.08	5.1	51.02	0	98.2	51.5	147	49.67	0.817	23	
Toluene		48.58	5.1	51.02	0	95.2	60.2	143	48.69	0.222	30	
trans-1,2	trans-1,2-Dichloroethene	39.15	5.1	51.02	0	76.7	63.8	128	37.4	4.56	17.5	
trans-1,3	trans-1,3-Dichloropropene	35.47	5.1	51.02	0	69.5	58.3	131	38.08	7.12	4.05	
Trichloroethene	ethene	49.47	5.1	51.02	0	26	62.2	142	42.73	14.6	22	
Trichloro	Trichlorofluoromethane	34.44	5.1	51.02	0	67.5	53.7	152	36.22	5.04	3.27	
Surr:	Surr: 1,2-Dichloroethane-d4	42.56	5.1	51.02	0	83.4	64.8	130	0	0	0	
Surr: 4	Surr: 4-Bromofluorobenzene	45.93	5.1	51.02	0	06	76.8	122	0	0	0	
Surr:	Surr: Toluene-d8	48.7	5.1	51.02	0	95.5	78.5	120	0	0	0	

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

Experience is the solution

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:	(Environmuts)	Address: Find	a	1	, D	Н	10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10					
GV4	Gallello	Project Name (Location Femer Sch PO 1) lu	cle	idy	Army!)gp	+ Sam	plers	(N	ames)	am
Client Phone No	25-6060 Client Fax No:	P0 I	luml	ber:			-	Sam	plers	s: (Si	ignature	le
AES Sample Number	Client Sample Identification &	Location			ate ipled	Time A=a.r P=p.r	n.	Sampl Matrix	пр		Number of Cont's	Analysis Required
001	EX-F-28		9		06	1315	A P	5	Y		2	8260/TAL Models/Ha
002	EX-F-28 EX-F-29 EX-F-30		9	В	06	1345	- A P	5	X		Z	' ')
003	EX-F-30		9	8	06	1355	A P	S	٧		2	V
							A P					
							A P					
							A P					
							A P					
							A P					
					***************************************		A P					
							A P	***************************************				
							A P					
							A P					
							A P					
							A P					
AES Work Orde	<u>r#:</u>	CC Repor	t To	/ Sp	ecial In	struction	s/Re	marks:				
	08 068											
Turnaround Tim 1 Day 2 Day	e Request: 3 Day											
Relinquished by	: (Signature)	Received	by:	(Sigi	nature)							9/8/06 630
Relinquished by	: (Signature)	Received	by:	(Sigi	nature)	.e.:						Date/Time
Relinquished by	: (Signature)	Reseived	for I	abo	ratory I	īy:				· · · · · · · · · · · · · · · · · · ·		9181064;22
	TEMPERATURE nbient or Chille		PERL	y Pr	RESERVE	D			***************************************			D WITHIN HOLDING TIMES
Notes:	<u> </u>	Notes:							N	otes	·	

WHITE - Lab Copy

YELLOW - Sampler Copy

PINK - Generator Copy

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All Services rendered by **Adirondack Environmental Services**, **Inc.** are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services**, **Inc.** report regarding said work or such claim shall be deemed as irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and **Adirondack Environmental Services, Inc.** is not responsible for the accuracy of this information.

Shaw Environmental & Infrastructure, Inc.

Data Usability Report

16406 U.S. Route 224 East • Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER: PROJECT NAME:

Tom Mathison

USACE-Schenectady

SAMPLE RECEIPT DATE:

LABORATORY SDG:

09/11/2006

060911040

The Findlay Ohio Applied Sciences Group has performed a QA evaluation of the data report from Adirondack Environmental Laboratories, Inc. (AEL) in Albany, NY. The results are for samples collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table.

Sample Number	Sample Summa Collection Date	ry Table Matrix	Analysis Requested
EX-F-31, DUP8906, EX-F-32	09/09/2006	Soil	Target Metals SW-6010B/ 7471A VOCs-SW8260B

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and was received with an internal temperature of 4°C. Since the samples were collected on September 9th the reviewer can only assume that the samples were stored under ice until delivered to the laboratory. The laboratory provided a faxed preliminary report within the specified turn around time and a full data package at a later date. The following describes the overall QA/QC indicators.

VOC Analysis in Soil by 8260B

The laboratory report does not include any GC/MS tuning or calibration data. However, the Case Narrative states that all requirements were met.

Method Blanks: The method blank results are below reporting limits for all reported analytes

LCS: The LCS recoveries are within the laboratory established acceptance criteria for all analytes except dichlorodifluoromethane (%R-30.3). In addition, recoveries were low (<70%R), but within the lab limits for the purgeable gasses with %R values of 41.3-68.4. Each of these analytes either has no established TAGM 4046 limit or an action-level significantly above the reporting limit. In all cases, no significant effect on data usability has occurred.

MS/MSD: The QC Matrix recovery and precision performance, using a soil sample from another client's site is within the project acceptance limits for all compounds. However, since the spiked sample was not

from the AOC-2 site, the data is not site-specific and only indicates performance in a similar matrix. It should be noted that performance in the site matrix has been previously demonstrated.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be utilized with confidence.

Metals Analysis in Soil by SW6010B and SW7471A

Although the data package does not provide the calibration data, the Case Narrative states that the ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements.

Method Blanks: The method blank results are below reporting limits for all reported analytes.

LCS: The LCS recoveries are within laboratory acceptance criteria for the target analytes. Recovery of Antimony (53.9%R) and Vanadium (71.5%R) are low compared to the method range of 80-120%R for the LCS.

QC Matrix: The MS recoveries, using sample EX-F-31 are within acceptance limits for all analytes with native concentrations less than 4X the spike level, except for zinc at 17%R. Since the results in all samples for this analyte were above the TAGM 4046 limit, resulting in additional removal, there is no effect on data usability from the apparent low bias in the data

Reported results should be utilized with confidence

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

Guy Galledo, Jr.-Project Clemist

11/32/00/6

Experience is the solution

314 North Pearl Street ♦ Albany, New York 12207 (800) 848-4983 ♦ (518) 434-4546 ♦ Fax (518) 434-0891

November 21, 2006

Guy Gallello Shaw Environmental & Infrastructure 16406 US Route 224 East Findlay, OH 45840

TEL: (419) 425-6080

FAX: (419) 425-6085

RE: Schenectady Army Depot

SADVA

Dear Guy Gallello:

Adirondack Environmental Services, Inc received 3 samples on 9/11/2006 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

ELAP#: 10709 AIHA#: 100307

Work Order No: 060911040

PO#: 212830 OP

Christopher Hess

QA Manager

G. Gallello - FAX

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060911040

Project: Schenectady Army Depot Lab Sample ID: 060911040-001

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/12/2	006)					·
Aluminum	9350	22.3		μg/g-dry	1	9/12/2006 8:40:00 AM
Antimony	6.9	13.4	JS	μg/g-dry	1	9/12/2006 8:40:00 AM
Arsenic	2.19	1.11		μg/g-dry	1	9/12/2006 8:40:00 AM
Barium	454	2.23	s	µg/g-dry	1	9/12/2006 8:40:00 AM
Beryllium	0.43	1.11	j	μg/g-dry	1	9/12/2006 8:40:00 AM
Cadmium	< 1.11	1.11		μg/g-dry	1	9/12/2006 8:40:00 AM
Calcium	19500	111		μg/g-dry	1	9/12/2006 8:40:00 AM
Chromium	16.6	1.11		μg/g-dry	1	9/12/2006 8:40:00 AM
Cobalt	54.8	11.1		μg/g-dry	1	9/12/2006 8:40:00 AM
Copper	19.5	1.11		µg/g-dry	1	9/12/2006 8:40:00 AM
Iron	16400	11.1		μg/g-dry	1	9/12/2006 8:40:00 AM
Lead	< 1.11	1.11		μg/g-dry	1	9/12/2006 8:40:00 AM
Magnesium	6620	111		µg/g-dry	1	9/12/2006 8:40:00 AM
Manganese	487	2.23		µg/g-dry	1	9/12/2006 8:40:00 AM
Nickel	< 11.1	11.1		µg/g-dry	1	9/12/2006 8:40:00 AM
Potassium	1380	111		μg/g-dry	1	9/12/2006 8:40:00 AM
Selenium	< 1.11	1.11		µg/g-dry	1	9/12/2006 8:40:00 AM
Silver	< 4.46	4.46	s	µg/g-dry	1	9/12/2006 8:40:00 AM
Sodium	214	111		µg/g-dry	1	9/12/2006 8:40:00 AM
Thallium	< 2.23	2.23		μg/g-dry	1	9/12/2006 8:40:00 AM
Vanadium	11.3	11.1		µg/g-dry	1	9/12/2006 8:40:00 AM
Zinc	160	2.23	S	μg/g-dry	1	9/12/2006 8:40:00 AM
MERCURY SW7471A	006)					Analyst: KH
(Prep: SW7471A - 9/12/2 Mercury	006) < 0.111	0.111		µg/g-dry	1	9/12/2006
VOLATILE ORGANICS SW8260B	U 1171	0		F8.9)	,	Analyst: ML
VOLATILE ORGANICO OVOLOGO						7 thanyot. WE
Chloromethane	< 11	11		μg/Kg-dry	1	9/12/2006
Bromomethane	< 11	11		μg/Kg-dry	1	9/12/2006
Vinyl chloride	< 11	11		μg/Kg-dry	1	9/12/2006
Chloroethane	< 11	11		μg/Kg-dry	1	9/12/2006
Methylene chloride	< 6	6		μg/Kg-dry	1	9/12/2006
Acetone	< 11	11		μg/Kg-dry	1	9/12/2006
Carbon disulfide	< 6	6		μg/Kg-dry	1	9/12/2006
1,1-Dichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
1,1-Dichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006

Qualifiers:

Date: 21-Nov-06

Client Sample ID: EX-F-31

Collection Date: 9/9/2006

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

 $[\]ensuremath{B}\xspace$ – Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 $^{{\}sf T}$ - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060911040

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: EX-F-31

Collection Date: 9/9/2006

Lab Sample ID: 060911040-001

Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260E	i					Analyst: ML
trans-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
cis-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
Chloroform	< 6	6		μg/Kg-dry	1	9/12/2006
1,2-Dichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
2-Butanone	< 11	11		μg/Kg-dry	1	9/12/2006
1,1,1-Trichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Carbon tetrachloride	< 6	6		μg/Kg-dry	1	9/12/2006
Bromodichloromethane	< 6	6		μg/Kg-dry	1	9/12/2006
1,2-Dichloropropane	< 6	6		μg/Kg-dry	1	9/12/2006
cis-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/12/2006
Trichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
Dibromochloromethane	< 6	6		μg/Kg-dry	1	9/12/2006
1,1,2-Trichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Benzene	< 6	6		μg/Kg-dry	1	9/12/2006
trans-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/12/2006
Bromoform	< 6	6		μg/Kg-dry	1	9/12/2006
4-Methyl-2-pentanone	< 11	11		μg/Kg-dry	1	9/12/2006
2-Hexanone	< 11	11		μg/Kg-dry	1	9/12/2006
Tetrachloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
1,1,2,2-Tetrachloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Toluene	< 6	6		μg/Kg-dry	1	9/12/2006
Chlorobenzene	< 6	6		μg/Kg-dry	1	9/12/2006
Ethylbenzene	< 6	6		μg/Kg-dry	1	9/12/2006
Styrene	< 6	6		μg/Kg-dry	1	9/12/2006
m,p-Xylene	< 6	6		μg/Kg-dry	1	9/12/2006
o-Xylene	< 6	6		μg/Kg-dry	1	9/12/2006
Methyl tert-butyl ether	< 6	6		μg/Kg-dry	1	9/12/2006
Dichlorodifluoromethane	< 6	6	S	μg/Kg-dry	1	9/12/2006
Methyl Acetate	< 6	6		μg/Kg-dry	1	9/12/2006
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Trichlorofluoromethane	< 6	6		μg/Kg-dry	1	9/12/2006
Cyclohexane	< 11	11		μg/Kg-dry	1	9/12/2006
Methyl Cyclohexane	< 6	6		μg/Kg-dry	1	9/12/2006
1,2-Dibromoethane	< 6	6		μg/Kg-dry	1	9/12/2006
1,3-Dichlorobenzene	< 6	6	S	μg/Kg-dry	1	9/12/2006
Isopropylbenzene	< 6	6		μg/Kg-dry	1	9/12/2006
1,4-Dichlorobenzene	< 6	6	S	μg/Kg-dry	1	9/12/2006
1,2-Dichlorobenzene	< 6	6	S	μg/Kg-dry	1	9/12/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060911040

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: EX-F-31

Collection Date: 9/9/2006 **Lab Sample ID:** 060911040-001

Matrix: SOIL

Analyses	Result	PQL Qı	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane	< 6	6	μg/Kg-dry	1	9/12/2006
1,2,4-Trichlorobenzene	< 6	6	μg/Kg-dry	1	9/12/2006
PH SW9045B					Analyst: LS
pH	7.8	1.0	pH Units	1	9/12/2006
MOISURE CONTENT D2216					Analyst: RC
Percent Moisture	10.3	1.0	wt%	1	9/12/2006

R - RPD outside accepted recovery limits

 $[\]ensuremath{\mathsf{T}}$ - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060911040

Project: Schenectady Army Depot Lab Sample ID: 060911040-002

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/12/2	2006)					
Aluminum	11100	23.5		μg/g-dry	1	9/12/2006 9:10:00 AM
Antimony	8.5	14.1	JS	μg/g-dry	1	9/12/2006 9:10:00 AM
Arsenic	2.61	1.18		μg/g-dry	1	9/12/2006 9:10:00 AM
Barium	455	2.35	s	μg/g-dry	1	9/12/2006 9:10:00 AM
Beryllium	0.51	1.18	J	μg/g-dry	1	9/12/2006 9:10:00 AM
Cadmium	< 1.18	1.18		μg/g-dry	1	9/12/2006 9:10:00 AM
Calcium	22600	118		μg/g-dry	1	9/12/2006 9:10:00 AM
Chromium	20.2	1.18		μg/g-dry	1	9/12/2006 9:10:00 AM
Cobalt	59.8	11.8		μg/g-dry	1	9/12/2006 9:10:00 AM
Copper	25.9	1.18		μg/g-dry	1	9/12/2006 9:10:00 AM
Iron	19600	118		μg/g-dry	10	9/12/2006 9:23:00 AM
Lead	< 1.18	1.18		μg/g-dry	1	9/12/2006 9:10:00 AM
Magnesium	11700	118		μg/g-dry	1	9/12/2006 9:10:00 AM
Manganese	541	2.35		μg/g-dry	1	9/12/2006 9:10:00 AM
Nickel	< 11.8	11.8		μg/g-dry	1	9/12/2006 9:10:00 AM
Potassium	1760	118		μg/g-dry	1	9/12/2006 9:10:00 AM
Selenium	< 1.18	1.18		μg/g-dry	1	9/12/2006 9:10:00 AM
Silver	< 4.70	4.70	S	µg/g-dry	1	9/12/2006 9:10:00 AM
Sodium	220	118		μg/g-dry	1	9/12/2006 9:10:00 AM
Thallium	< 2.35	2.35		μg/g-dry	1	9/12/2006 9:10:00 AM
Vanadium	15.6	11.8		μg/g-dry	1	9/12/2006 9:10:00 AM
Zinc	165	2.35	S	μg/g-dry	1	9/12/2006 9:10:00 AM
MERCURY SW7471A						Analyst: KH
(Prep: SW7471A - 9/12/2	2006)					
Mercury	< 0.118	0.118		μg/g-dry	1	9/12/2006
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 12	12		μg/Kg-dry	1	9/12/2006
Bromomethane	< 12	12		μg/Kg-dry	1	9/12/2006
Vinyl chloride	< 12	12		μg/Kg-dry	1	9/12/2006
Chloroethane	< 12	12		μg/Kg-dry	1	9/12/2006
Methylene chloride	6	6		μg/Kg-dry	1	9/12/2006
Acetone	< 12	12		μg/Kg-dry	1	9/12/2006
Carbon disulfide	< 6	6		μg/Kg-dry	1	9/12/2006
1,1-Dichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
1,1-Dichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

 $\ensuremath{B}\xspace$ - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: DUP8906

Collection Date: 9/9/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 5 of 10

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060911040

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: DUP8906

Collection Date: 9/9/2006

Lab Sample ID: 060911040-002

Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
trans-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
cis-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
Chloroform	< 6	6		μg/Kg-dry	1	9/12/2006
1,2-Dichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
2-Butanone	< 12	12		μg/Kg-dry	1	9/12/2006
1,1,1-Trichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Carbon tetrachloride	< 6	6		μg/Kg-dry	1	9/12/2006
Bromodichloromethane	< 6	6		μg/Kg-dry	1	9/12/2006
1,2-Dichloropropane	< 6	6		μg/Kg-dry	1	9/12/2006
cis-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/12/2006
Trichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
Dibromochloromethane	< 6	6		μg/Kg-dry	1	9/12/2006
1,1,2-Trichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Benzene	< 6	6		μg/Kg-dry	1	9/12/2006
trans-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/12/2006
Bromoform	< 6	6		μg/Kg-dry	1	9/12/2006
4-Methyl-2-pentanone	< 12	12		μg/Kg-dry	1	9/12/2006
2-Hexanone	< 12	12		μg/Kg-dry	1	9/12/2006
Tetrachloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
1,1,2,2-Tetrachloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Toluene	< 6	6		μg/Kg-dry	1	9/12/2006
Chlorobenzene	< 6	6		μg/Kg-dry	1	9/12/2006
Ethylbenzene	< 6	6		μg/Kg-dry	1	9/12/2006
Styrene	< 6	6		μg/Kg-dry	1	9/12/2006
m,p-Xylene	< 6	6		μg/Kg-dry	1	9/12/2006
o-Xylene	< 6	6		μg/Kg-dry	1	9/12/2006
Methyl tert-butyl ether	< 6	. 6		μg/Kg-dry	1	9/12/2006
Dichlorodifluoromethane	< 6	6	S	μg/Kg-dry	1	9/12/2006
Methyl Acetate	< 6	6		μg/Kg-dry	1	9/12/2006
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Trichlorofluoromethane	< 6	6		μg/Kg-dry	1	9/12/2006
Cyclohexane	< 12	12		μg/Kg-dry	1	9/12/2006
Methyl Cyclohexane	< 6	6		μg/Kg-dry	1	9/12/2006
1,2-Dibromoethane	< 6	6		μg/Kg-dry	1	9/12/2006
1,3-Dichlorobenzene	< 6	6	S	μg/Kg-dry	1	9/12/2006
Isopropylbenzene	< 6	6		μg/Kg-dry	1	9/12/2006
1,4-Dichlorobenzene	< 6	6	S	μg/Kg-dry	1	9/12/2006
1,2-Dichlorobenzene	< 6	6	S	μg/Kg-dry	1	9/12/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

060911040

Project:

Schenectady Army Depot

PO#: 212830 OP

Date: 21-Nov-06

Client Sample ID: DUP8906

Collection Date: 9/9/2006

Lab Sample ID: 060911040-002

Matrix: SOIL

Analyses	Result	PQL Qu	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	< 6 < 6	6 6	μg/Kg-dry μg/Kg-dry	1 1	9/12/2006 9/12/2006
PH SW9045B					Analyst: LS
pH MOISURE CONTENT D2216	7.8	1.0	pH Units	1	9/12/2006 Analyst: RC
Percent Moisture	14.9	1.0	wt%	1	9/12/2006

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060911040

Project: Schenectady Army Depot Lab Sample ID: 060911040-003

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/1	2/2006)					•
Aluminum	14900	24.8		μg/g-dry	1	9/12/2006 9:18:00 AM
Antimony	< 14.9	14.9	s	μg/g-dry	1	9/12/2006 9:18:00 AM
Arsenic	< 1.24	1.24		μg/g-dry	1	9/12/2006 9:18:00 AM
Barium	511	2.48	s	μg/g-dry	1	9/12/2006 9:18:00 AM
Beryllium	0.67	1.24	J	μg/g-dry	1	9/12/2006 9:18:00 AM
Cadmium	< 1.24	1.24		μg/g-dry	1	9/12/2006 9:18:00 AM
Calcium	4300	124		μg/g-dry	1	9/12/2006 9:18:00 AM
Chromium	20.9	1.24		μg/g-dry	1	9/12/2006 9:18:00 AM
Cobalt	58.8	12.4		μg/g-dry	1	9/12/2006 9:18:00 AM
Copper	19.3	1.24		μg/g-dry	1	9/12/2006 9:18:00 AM
Iron	18600	12.4		μg/g-dry	1	9/12/2006 9:18:00 AM
Lead	< 1.24	1.24		μg/g-dry	1	9/12/2006 9:18:00 AM
Magnesium	4720	124		μg/g-dry	1	9/12/2006 9:18:00 AN
Manganese	228	2.48		μg/g-dry	1	9/12/2006 9:18:00 AM
Nickel	< 12.4	12.4		µg/g-dry	1	9/12/2006 9:18:00 AM
Potassium	1380	124		μg/g-dry	1	9/12/2006 9:18:00 AM
Selenium	< 1.24	1.24		μg/g-dry	1	9/12/2006 9:18:00 AM
Silver	< 4.97	4.97	s	μg/g-dry	1	9/12/2006 9:18:00 AN
Sodium	196	124		μg/g-dry	1	9/12/2006 9:18:00 AM
Thallium	< 2.48	2.48		μg/g-dry	1	9/12/2006 9:18:00 AM
Vanadium	18.5	12.4		μg/g-dry	1	9/12/2006 9:18:00 AM
Zinc	159	2.48	S	μg/g-dry	1	9/12/2006 9:18:00 AN
MERCURY SW7471A (Prep: SW7471A - 9/1)	2/2006)					Analyst: KH
Mercury	< 0.124	0.124		μg/g-dry	1	9/12/2006
VOLATILE ORGANICS SW8260B						Analyst: ML
Chloromethane	< 12	12		μg/Kg-dry	1	9/12/2006
Bromomethane	< 12	12		μg/Kg-dry	1	9/12/2006
Vinyl chloride	< 12	12		μg/Kg-dry	1	9/12/2006
Chloroethane	< 12	12		μg/Kg-dry	1	9/12/2006
Methylene chloride	11	6		μg/Kg-dry	1	9/12/2006
Acetone	< 12	12		μg/Kg-dry	1	9/12/2006
Carbon disulfide	< 6	6		μg/Kg-dry	1	9/12/2006
1,1-Dichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
1,1-Dichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006

 $\label{eq:Qualifiers:Qualifiers:} Qualifiers:$

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

 \boldsymbol{B} - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 21-Nov-06

Client Sample ID: EX-F-32

Collection Date: 9/9/2006

R - RPD outside accepted recovery limits

 $\label{thm:total_compound} T\mbox{-} Tentitively\ Identified\ Compound-Estimated\ Conc.$

E - Value above quantitation range

Page 8 of 10

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060911040

Project: Schenectady Army Depot Lab Sample ID: 060911040-003

PO#: 212830 OP **Matrix:** SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
trans-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
cis-1,2-Dichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
Chloroform	< 6	6		μg/Kg-dry	1	9/12/2006
1,2-Dichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
2-Butanone	< 12	12		μg/Kg-dry	1	9/12/2006
1,1,1-Trichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Carbon tetrachloride	< 6	6		μg/Kg-dry	1	9/12/2006
Bromodichloromethane	< 6	6		μg/Kg-dry	1	9/12/2006
1,2-Dichloropropane	< 6	6		μg/Kg-dry	1	9/12/2006
cis-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/12/2006
Trichloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
Dibromochloromethane	< 6	6		μg/Kg-dry	1	9/12/2006
1,1,2-Trichloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Benzene	< 6	6		μg/Kg-dry	1	9/12/2006
trans-1,3-Dichloropropene	< 6	6		μg/Kg-dry	1	9/12/2006
Bromoform	< 6	6		μg/Kg-dry	1	9/12/2006
4-Methyl-2-pentanone	< 12	12		μg/Kg-dry	1	9/12/2006
2-Hexanone	< 12	12		μg/Kg-dry	1	9/12/2006
Tetrachloroethene	< 6	6		μg/Kg-dry	1	9/12/2006
1,1,2,2-Tetrachloroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Toluene	< 6	6		μg/Kg-dry	1	9/12/2006
Chlorobenzene	< 6	6		μg/Kg-dry	1	9/12/2006
Ethylbenzene	< 6	6		μg/Kg-dry	1	9/12/2006
Styrene	< 6	6		μg/Kg-dry	1	9/12/2006
m,p-Xylene	< 6	6		μg/Kg-dry	1	9/12/2006
o-Xylene	< 6	6		μg/Kg-dry	1	9/12/2006
Methyl tert-butyl ether	< 6	6		μg/Kg-dry	1	9/12/2006
Dichlorodifluoromethane	< 6	6	S	μg/Kg-dry	1	9/12/2006
Methyl Acetate	< 6	6		μg/Kg-dry	1	9/12/2006
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6		μg/Kg-dry	1	9/12/2006
Trichlorofluoromethane	< 6	6		μg/Kg-dry	1	9/12/2006
Cyclohexane	< 12	12		μg/Kg-dry	1	9/12/2006
Methyl Cyclohexane	< 6	6		μg/Kg-dry	1	9/12/2006
1,2-Dibromoethane	< 6	6		μg/Kg-dry	1	9/12/2006
1,3-Dichlorobenzene	< 6	6	S	μg/Kg-dry	1	9/12/2006
Isopropylbenzene	< 6	6		μg/Kg-dry	1	9/12/2006
1,4-Dichlorobenzene	< 6	6	S	μg/Kg-dry	1	9/12/2006
1,2-Dichlorobenzene	< 6	6	s	μg/Kg-dry	1	9/12/2006

Qualifiers:

Date: 21-Nov-06

Client Sample ID: EX-F-32

Collection Date: 9/9/2006

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

 $[\]boldsymbol{B}$ - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 $^{{\}sf T}$ - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060911040

Project: Schenectady Army Depot

PO#: 212830 OP

Client Sample ID: EX-F-32

Collection Date: 9/9/2006

Lab Sample ID: 060911040-003

Date: 21-Nov-06

Matrix: SOIL

Analyses	Result	PQL Qı	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,2-Dibromo-3-chloropropane	< 6	6	μg/Kg-dry	1	9/12/2006
1,2,4-Trichlorobenzene	< 6	6	μg/Kg-dry	1	9/12/2006
PH SW9045B					Analyst: LS
pH	7.6	1.0	pH Units	1	9/12/2006
MOISURE CONTENT D2216					Analyst: RC
Percent Moisture	19.5	1.0	wt%	1	9/12/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Shaw Environmental & Infrastructure 060911040 CLIENT:

Schenectady Army Depot Project:

Work Order:

ANALYTICAL QC SUMMARY REPORT

Date: 21-Nov-06

Result POL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %REC LowLimit RPD Ref Val R	MBLK	SeqNo: 414283			PrepDate:	ate:		Test	TestNo: SW6010B	<u>B</u>	RunNo: 37094	37094	
Result POL SPK value SPK Ref Val %REC LowLimit HighLimit RDD Ref V SPK Ref Val RDD Ref V SPK		Samp ID: MBLK			PrepR	ef:(SW3050A)		Ë	ts: µg/g	Anal	Analysis Date:	9/12/2006	
3.994 20.0 1.00 12.0 1.00 1.00 0.096 2.00 0.096 1.00 0.007 1.00 0.07 1.	Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
yy < 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	Aluminun	-	3.994	20.0									7
C + 1.00 1.0	Antimony		< 12.0	12.0									
0.096 2.00	Arsenic		< 1.00	1.00									
March 0.056 1.00	Barium		0.098	2.00									7
1	Beryllium		0.056	1.00									– 7
1	Cadmiun		< 1.00	1.00									
um 0.24 1.00	Calcium		< 100	100									
0.002 10.0	Chromiur	£	0.24	1.00									7
ium	Cobalt		0.002	10.0									– 7
0.638 10.0 1.00	Copper		0.07	1.00									_
sium < 1.00 1.00 nese < 100 100 lum 0.04 2.00 n < 1.00 1.00 n < 1.00 1.00 n < 1.00 1.00 um < 2.00 2.00 um < 2.00 2.00 < 2.00 2.00 2.00 SeqNo: 414284 PrepRef:(SW3050A) Units: µg/g	Iron		0.638	10.0									¬
SeqNo: 414284 Supplemental	Lead		< 1.00	1.00									
SeqNo: 414284 Su0 PrepDate: TestNo: Sw6010B Samp ID: LCS-S PrepRef:(SW3050A) Units: µg/g	Magnesit	ur	< 100	100									
Companies Comp	Mangane	es	0.014	2.00									7
sium 0.23 100 um < 1.00 1.00 n	Nickel		< 10.0	10.0									
Namp D: LCS-S	Potassiui	E	0.23	100									7
Name 100	Selenium		< 1.00	1.00									
SeqNo: 414284 Samp ID: LCS-S	Silver		0.05	4.00									٦
SeqNo: 414284 PrepDate: PrepRef:(SW3050A) Units: µg/g	Sodium		< 100	100									
SeqNo: 414284 PrepDate: TestNo: Sw6010B PrepRef:(SW3050A) Units: µg/g	Thallium		< 2.00	2.00									
 < 2.00 SeqNo: 414284 Samp ID: LCS-S LCS-S Samp ID: LCS-S LCS-S Somp ID: LCS-S LCS-S LC	Vanadiur	u	0.122	10.0									٦
SeqNo: 414284 PrepDate: TestNo: SW6010B Samp ID: LCS-S Units: µg/g	Zinc		< 2.00	2.00									
PrepRef:(SW3050A) Units: µg/g	rcs	SeqNo: 414284			Prep□	ate:		Test	No: SW601	<u>8</u>	RunNo:	37094	
		Samp ID: LCS-S			PrepR	ef:(SW3050A)		Uni	ts: µg/g	Anal	Analysis Date:	9/12/2006	

3	LC3 SedNo: 414284		Prepuate:	Jale:		Tes	TestNo: SW6010B	0B	RunNo: 37094	7094	
	Samp ID: LCS-S		Prep	PrepRef:(SW3050A)		5	Units: µg/g	Anal	Analysis Date: 9/12/2006	/12/2006	
Analyte	Result	Pol	SPK value	SPK value SPK Ref Vai	%REC	LowLimit	%REC LowLimit HighLimit	RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Aluminum	n 5765	20.0	7590	3.994	75.9	57.8	142.3	0	0		
Antimony	y 41.8	12.0	77.5	0	53.9	1.3	223.2	0	0		
Arsenic	75.7	1.00	80.9	0	93.6	79.7	120.3	0	0		
Barium	151.3	2.00	156	0.098	26	82.1	117.9	0	0		
Qualifiers:	s: ND - Not Detected at the Reporting Limit	And Andrews Control of the Control o	dS - S	S - Spike Recovery outside accepted recovery limits	accepted reco	overy limits		B - Analyte detected in the associated Method Blank	d in the associa	ated Method Bi	ank
	J - Analyte detected below quantitation limits	mits	R - RI	R - RPD outside accepted recovery limits	recovery limit	SO				Page 1 of 13	of 13

ANALYTICAL QC SUMMARY REPORT

BatchID: 12216

Work Order: 060911040
Project: Schenectady Army Depot

Shaw Environmental & Infrastructure

CLIENT:

SOT	SeqNo: 414284			PrepDate:	'n		Tes	TestNo: SW6010B	OB OB	RunNo: 37094	
	Samp ID: LCS-S			PrepRef	PrepRef:(SW3050A)		un .	Units: µg/g			
Analyte		Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Beryllium	_	143.3	1.00	143	0.056	100	81.8	118.2	0	0	
Cadmium	_	225	1.00	233	0	9.96	80.7	118.9	0	0	
Calcium		4107	100	4320	0	95.1	79.2	120.8	0	0	
Chromium	Ę	29.7	1.00	8.09	0.24	92.9	78.5	121.4	0	0	
Cobalt		78.62	10.0	68.6	0.002	115	81.8	118.2	0	0	
Copper		125.3	1.00	131	0.07	92.6	82.4		0	0	
Iron		8089	10.0	14400	0.638	56.2	51.5	148.6	0	0	
Lead		69.79	1.00	76.8	0	88.1	80.6	_	0	0	
Magnesium	шr	1892	100	2220	0	85.2	77	123	0	0	
Manganese	ese	276.2	2.00	304	0.014	8.06		120.1	0	0	
Nickel		43.55	10.0	49.6	0	87.8			0	0	
Potassium	E	2078	100	2380	0.23	87.3			0	0	
Sefenium	_	68.9	1.00	82.9	0	83.1	75.5		0	0	
Silver		65.72	4.00	80	0.05	82.1			0	0	
Sodium		420.1	100	456	0	92.1	55.7	144.3	0	0	
Thallium		170.9	2.00	158	0	108	75.3	124.7	0	0	
Vanadium	L	51.86	10.0	72.4	0.122	71.5	71.4	128.5	0	0	
Zinc		113.5	2.00	116	0	97.8	78	121.6	0	0	

MS	SeqNo: 414287		PrepDat	PrepDate:9/12/2006		Tes	TestNo: SW6010B	0B	RunNo: 37094	
	Samp ID: 060911040-001A (EX-F-31)		PrepRei	PrepRef:(SW3050A)		็ว	Units: µg/g-dry		Analysis Date: 9/12/2006	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	m 11020	22.3	445.9	9347	376	75	125	0	0	S
Antimony	ly 156	13.4	111.5	6.943	134	75	125	0	0	S
Arsenic	10.37	1.1	8.919	2.185	91.8	75	125	0	0	
Barium	493.8	2.23	445.9	454.2	8.88	75	125	0	0	S
Beryllium	n 11.32	1.11	11.15	0.4281	97.7	75	125	0	0	
Cadmium	m 9.746	1.11	11.15	0	87.4	75	125	0	0	
Chromium	ım 62.31	1.11	44.59	16.57	103	75	125	0	0	
Cobalt	159.6	11.1	111.5	54.77	94	75	125	0	0	
Copper	74.1	1.1	55.74	19.51	97.9	75	125	0	0	
Iron	17750	11.1	223	16450	584	75	125	0	0	S
Qualifiers:	rs: ND - Not Detected at the Reporting Limit		S - Spike	S - Spike Recovery outside accepted recovery limits	accepted reco	overy limits		B - Analyte detected	B - Analyte detected in the associated Method Blank	Blank

Page 2 of 13

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Shaw Environmental & Infrastructure 060911040 Schenectady Army Depot

CLIENT: Work Order:

Project:

ANALYTICAL QC SUMMARY REPORT

MS	SeqNo: 414287		Ргер⊔аге	PrepDate:9/12/2006		Test	TestNo: SW6010B	10B	RunNo:	37094	
	Samp ID: 060911040-001A (EX-F-31)		PrepRef:	PrepRef:(SW3050A)		Uni	Units: µg/g-dry		Analysis Date:	9/12/2006	
Analyte	Result	PaL	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	II %RPD	PD RPDLimit	t Qual
Lead	4.511	1.11	4.459	0	101	75	125	•	0	0	
Manganese	ese 590.3	2.23	111.5	486.6	93	75	125		0	0	
Nickel	98.53	11.1	111.5	0	88.4	75	125	•	0	0	
Selenium	n 2.19	1.11	2.23	0	98.2	75	125		0	0	
Silver		4.46	11.15	0	55.2	75	125		0	0	S
Thallium	6.6	2.23	11.15	0	88.8	75	125		0	0	
Vanadium	m 115.7	11.1	111.5	11.26	93.7	75	125		0	0	
Zinc	179.2	2.23	111.5	160.2	17	75	125		0	0	S
DUP	SeqNo: 414286		PrepDate	PrepDate:9/12/2006		Test	TestNo: SW6010B	10B	RunNo:	37094	
	Samp ID: 060911040-001A		PrepRef:			n D	Units: µg/g-dry		Analysis Date:	9/12/2006	
Analyte	Result	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	al %RPD	PD RPDLimit	t Qual
Aluminum	m 9516	22.3	0	0	0	0	0	9347		1.79 20	0
Antimony	y 1.197	13.4	0	0	0	0	0	6.943	8	0 17.2	2
Arsenic	2.339	1.11	0	0	0	0	0	2.185		6.80 15.3	8
Barium	421.7	2.23	0	0	0	0	0	454.2		7.42 17.8	8
Beryllium		1.11	0	0	0	0	0	0.4281	-	0 11.5	5
Cadmium	m -0.1003	1.1	0	0	0	0	0		0	0 15.4	4
Calcium	19630	111	0	0	0	0	0	19510	0		0
Chromium		1.11	0	0	0	0	0	16.57		3.31 20	0
Cobalt	51.68	1.1	0	0	0	0	0	54.77		5.79 18.9	6
Copper	20.13	1.11	0	0	0	0	0	19.51		3.15 20	0
iron	16940	11.1	0	0	0	0	0	16450		2.94 16.4	4
Lead	-10.23	1.11	0	0	0	0	0		0	0 20	0
Magnesium	ium 6801	111	0	0	0	0	0	6621		2.67 20	0
Manganese	ese 491.5	2.23	0	0	0	0	0	486.6	90.999	99 20	0
Nickel	-6.511	11.1	0	0	0	0	0		0	0 16.5	5
Potassium		111	0	0	0	0	0	1381		3.74 20	0
Selenium	n -30.02	1.11	0	0	0	0	0		0	0 20	0
Silver	-2.656	4.46	0	0	0	0	0		0	0 10.3	3
Sodium	211.8	111	0	0	0	0	0	213.8	8 0.939	39 21.2	2
Thallium	-1.674	2.23	0	0	0	0	0		0	0 23.1	
Qualifiers:	rs: ND - Not Detected at the Reporting Limit		S - Spike F	S - Spike Recovery outside accepted recovery limits	accepted rec	overy limits	The same of the sa	B - Analyte det	tected in the ass	B - Analyte detected in the associated Method Blank	i Blank
	I - Anolyte detected below anantitation limits	ş	o Clay - A	R - RPD outside accented recovery limits	recovery limit	ş				Descri	Dans 2 of 13
	J - Dilaigic actions your years of	3	N - W - W	distay accepted	Total y min	3				Lake	01 10 01

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

S - Spike Recovery outside accepted recovery limits

Page 4 of 13

CLIENT: Shaw Environmental & Infrastructure

ANALYTICAL QC SUMMARY REPORT

BatchID: 12216

Work Order: 060911040

Project: Schenectady Army Depot

DUP	SeqNo: 414286			Prepl	PrepDate:9/12/2006		Test	FestNo: SW6010B	90	RunNo: 3	37094	
	Samp ID: 060911040-001A			PrepRef:	lef:		Uni	Units: µg/g-dry		Analysis Date: 9	9/12/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vanadium	E	12.04	11.1	0	0	0	0	0	11.26	6.64	11.5	
Zinc		154.3	2.23	0	0	0	0	0	160.2	3.75	20.4	

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060911040

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

MBLK	MBLK SeqNo: 414272			Prep[PrepDate:9/12/2006		Test	TestNo: SW7471A		RunNo: 3	37093	
	Samp ID: MB-12217			Prep	PrepRef:(SW7471A)		Oni	Units: µg/g	Ana	Analysis Date: 9/	9/12/2006	
Analyte Mercury		Result < 0.0200	POL 0.0200	SPK value	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit	RPD Ref Val	%RPD	%RPD RPDLimit	Qual
rcs	SeqNo: 414273 Samp ID: LCS-12217			Prep[PrepF	PrepDate:9/12/2006 PrepRef:(SW7471A)		Test	TestNo: SW7471A Units: µg/g	-	RunNo: 37093 Analysis Date: 9/12/20	37093 9/12/2006	
Analyte Mercury		Result 2.8	<u>POL</u> 1.00	SPK value 3.6	SPK value SPK Ref Val 3.6 0	<u>%REC</u> 77.8	LowLimit 68.1	%REC LowLimit HighLimit 77.8 68.1 131.9	RPD Ref Val 0	%RPD 0	%RPD RPDLimit 0	Qual

Page 6 of 13

B - Analyte detected in the associated Method Blank

Shaw Environmental & Infrastructure CLIENT:

060911040 Work Order: Schenectady Army Depot Project:

BatchID: R37066

ANALYTICAL QC SUMMARY REPORT

rcs	SeqNo: 413855						TestN	TestNo: SW9045B	<u>sa</u>	RunNo: 37066	
	Samp ID: LCS-R37066						Units	Units: pH Units		Analysis Date: 9/12/2006	
Analyte pH		Result 9.13	POL 1.00	SPK value 9.2	SPK value SPK Ref Val 9.2 0	<u>%REC</u> 99.2	LowLimit H 97.9	<u>lighLimit</u> 102	%REC LowLimit HighLimit RPD Ref Val 99.2 97.9 102 0	%RPD RPDLimit 0	Qual
rcs	SeqNo: 413878 Samp ID: LCS-R37066						TestN	TestNo: E150.1 Units: pH Units		RunNo: 37066 Analysis Date: 9/12/2006	
Analyte pH		Result 9.13	POL 1.00	SPK value 9.2	SPK value SPK Ref Val 9.2 0	%REC 99.2	%REC LowLimit HighLimit 99.2 95.6 102	lighLimit 102	RPD Ref Val	%RPD RPDLimit 0	t Qual

ANALYTICAL QC SUMMARY REPORT

BatchID: R37072

Shaw Environmental & Infrastructure 060911040 Work Order: CLIENT:

Project:

Schenectady Army Depot

MBLK	SeqNo: 414488						Tes	TestNo: SW8260B	0B	RunNo: 37	37072	
	Samp ID: VBLK						n	Units: µg/Kg	An	Analysis Date: 9/	9/12/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		< 5.0	5.0									
Ethylbenzene	zene	< 5.0	5.0									
Isopropylbenzene	benzene	< 5.0	5.0									
m,p-Xylene	ne	< 5.0	5.0									
Methyl te	Methyl tert-butyl ether	< 5.0	5.0									
o-Xylene		< 5.0	5.0									
Toluene		< 5.0	5.0									
Surr: 1	Surr: 1,2-Dichloroethane-d4	55.07	5.0	50	0	110	81.3	130	0	0		
Surr: 4	Surr: 4-Bromofluorobenzene	63.95	5.0	20	0	128	81.8	119	0	0		S
Surr: T	Surr: Toluene-d8	62.91	5.0	20	0	126	72.6	116	0	0		S
SOT	SeqNo: 414493						Tes	TestNo: SW8260B	0B	RunNo: 37	37072	
	Samp ID: LCS050						'n	Units: µg/Kg	An	Analysis Date: 9/	9/12/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Tric	1,1,1-Trichloroethane	56	5.0	50	0	112	61.8	140	0	0		
1,1,2,2-T	1,1,2,2-Tetrachloroethane	51.5	5.0	50	0	103	49.9	147	0	0		
1,1,2-Tric	I,1,2-Trichloroethane	51.74	5.0	50	0	103	57.2	150	0	0		
1,1-Dichl	,1-Dichloroethane	54.35	5.0	50	0	109	6.99	133	0	0		
1,1-Dichl	,1-Dichloroethene	44.35	5.0	50	0	88.7	43.3	147	0	0		
1,2,4-Tric	,2,4-Trichlorobenzene	56.68	0	50	0	113	43	115	0	0		
1,2-Dibro	,2-Dibromo-3-chloropropane	58.52	10	50	0	117	75.5	136	0	0		
1,2-Dichl	,2-Dichlorobenzene	48.49	5.0	50	0	26	75.6	110.4	0	0		
1,2-Dichl	,2-Dichloroethane	55.3	5.0	50	0	111	63.6	137	0	0		
1,2-Dichl	,2-Dichloropropane	51.98	5.0	50	0	104	66.4	141	0	0		
1,3-Dichl	,3-Dichlorobenzene	48.4	5.0	50	0	96.8	80	114	0	0		
1,4-Dichl	1,4-Dichlorobenzene	47.67	5.0	50	0	95.3	83	123	0	0		
2-Butanone	пе	40.81	10	50	0	81.6	49.7	149	0	0		
2-Hexanone	ne	51.06	10	50	0	102	71.3	156	0	0		
4-Methyl-	4-Methyl-2-pentanone	53.48	10	50	0	107	31.4	184	0	0		
Acetone		46.83	10	50	0	93.7	09	130	0	0		
Benzene		50.01	5.0	50	0	100	68.7	140	0	0		
Bromodic	Bromodichloromethane	56.44	5.0	20	0	113	62.5	141	0	0		
Qualifiers:	s: ND - Not Detected at the Reporting Limit	e Reporting Limit		S - Spi	S - Spike Recovery outside accepted recovery limits	e accepted rec	overy limits		B - Analyte detec	B - Analyte detected in the associated Method Blank	ted Method B	lank
	J - Analyte detected below quantitation limits	ow quantitation limits		R - RP	R - RPD outside accepted recovery limits	recovery limit	S				Page 7 of 13	of 13
											0	,

Page 8 of 13

B - Analyte detected in the associated Method Blank

Shaw Environmental & Infrastructure CLIENT:

060911040 Work Order: Project:

Schenectady Army Depot

BatchID: R37072

ANALYTICAL QC SUMMARY REPORT

SOT	SeqNo: 414493						Test	TestNo: SW8260B	JB	RunNo: 37072	37072	
	Samp ID: LCS050						u.	Units: µg/Kg	Ā	Analysis Date: 9	9/12/2006	
Analyte		Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	ш	58.06	5.0	50	0	116	52.5	149	0	0		
Bromomethane	ethane	34.37	10	50	0	68.7		177	0	0		
Carbon disulfide	lisulfide	48.26	5.0	50	0	96.5		158	0	0		
Carbon te	Carbon tetrachloride	55.77	5.0	50	0	112		135	0	0		
Chlorobenzene	inzene	49.82	5.0	20	0	9.66		141	0	0		
Chloroethane	hane	39.11	10	90	0	78.2		151	0	0		
Chloroform	Æ	57.9	5.0	50	0	116	71.4	134	0	0		
Chloromethane	ethane	26.98	10	50	0	54		178	0	0		
cis-1,2-D	cis-1,2-Dichloroethene	46.84	5.0	50	0	93.7		133	0	0		
cis-1,3-D	cis-1,3-Dichloropropene	47.12	5.0	20	0	94.2		132	0	0		
Dibromoc	Dibromochloromethane	57.13	5.0	20	0	114		143	0	0		
Dichlorod	Dichlorodifluoromethane	15.17	10	20	0	30.3	70		0	0		S
Ethylbenzene	zene	50.62	5.0	20	0	101		131	0	0		
Isopropyl	Isopropylbenzene	60.32	5.0	20	0	121		130	0	0		
m,p-Xylene	ñe	107.7	5.0	100	0	108		168	0	0		
Methyl te	Methyl tert-butyl ether	56.59	5.0	50	0	113		138	0	0		
Methylen	Methylene chloride	40.92	5.0	20	0	81.8		173	0	0		
o-Xylene		53.63	5.0	50	0	107			0	0		
Styrene		53.84	5.0	50	0	108		127	0	0		
Tetrachlo	Tetrachloroethene	52.43	5.0	50	0	105		147	0	0		
Toluene		50.84	5.0	50	0	102			0	0		
trans-1,2	trans-1,2-Dichloroethene	49.95	5.0	50	0	6.66	63.8	128	0	0		
trans-1,3	trans-1,3-Dichloropropene	47.5	5.0	50	0	95		131	0	0		
Trichloroethene	ethene	51.95	5.0	20	0	104		142	0	0		
Trichloro	Trichlorofluoromethane	41.77	5.0	50	0	83.5		152	0	0		
Vinyl chloride	oride	30.59	10	20	0	61.2	21.7	181	0	0		
Surr: 1	Surr: 1,2-Dichloroethane-d4	57.44	5.0	50	0	115		130	0	0		
Surr: 4	Surr: 4-Bromofluorobenzene	61.48	5.0	50	0	123		122	0	0		S
Surr: T	Surr: Toluene-d8	53.9	5.0	20	0	108		120	0	0		

ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits
Qualifiers:	

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

Shaw Environmental & Infrastructure 060911040 Schenectady Army Depot Work Order: CLIENT:

Project:

MS	SeqNo: 414491						Test	TestNo: SW8260B	0B	RunNo:	37072	
	Samp ID: 060905007-001A						Uni	Units: µg/Kg	4	Analysis Date:	9/12/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	al %RPD	D RPDLimit	Qual
1,1,1-Trich	1,1,1-Trichloroethane	4351	200	2000	0	87	61.8	140	•	0	0	
1,1,2,2-Tet	1,1,2,2-Tetrachloroethane	3801	200	2000	0	92	49.9	147	-	0	0	
1,1,2-Trich	,1,2-Trichloroethane	4006	200	2000	0	80.1	57.2	150	_	0	0	
1,1-Dichloroethane	oethane	5097	200	2000	0	102	6.99	133		0	0	
1,1-Dichloroethene	oethene	4035	200	2000	0	80.7	43.3	147		0	0	
1,2,4-Trich	i,2,4-Trichlorobenzene	4971	0	2000	0	99.4	43	115	~	0	0	
1,2-Dibrom	,2-Dibromo-3-chloropropane	5119	1000	2000	0	102	75.5	136	_	0	0	
1,2-Dichlorobenzene	obenzene	3989	200	2000	0	79.8	75.6	110.4	_	0	0	
1,2-Dichloroethane	oethane	5179	200	2000	0	104	63.6	137	_	0	0	
1,2-Dichloropropane	opropane	4095	200	2000	0	81.9	66.4	141	_	0	0	
1,3-Dichlor	,3-Dichlorobenzene	3811	200	2000	0	76.2	80	114	-	0	0	S
1,4-Dichlorobenzene	obenzene	3712	200	2000	0	74.2	83	123	_	0	0	S
2-Butanone	ď	3937	1000	2000	0	78.7	49.7	149	_	0	0	
2-Hexanone	v	4630	1000	2000	0	97.6	71.3	156	_	0	0	
4-Methyl-2-	4-Methyl-2-pentanone	3245	1000	2000	0	64.9	31.4	184	-	0	0	
Acetone		4675	1000	2000	0	93.5	90	130	_	0	0	
Benzene		3755	200	2000	0	75.1	68.7	140	_	0	0	
Bromodich	Bromodichloromethane	4610	200	2000	0	92.2	62.5	141	_	0	0	
Bromoform		4417	200	2000	0	88.3	52.5	149	-	0	0	
Bromomethane	hane	2458	1000	2000	0	49.2	35.7	177	-	0	0	
Carbon disulfide	ulfide	4185	200	2000	0	83.7	54.2	158	_	0	0	
Carbon tetrachloride	achloride	4589	200	2000	0	91.8	65.4	135	_	0	0	
Chlorobenzene	zene	3670	200	2000	0	73.4	64.5	141	-	0	0	
Chloroethane	ne	3120	1000	2000	0	62.4	52.5	151		0	0	
Chloroform		5421	200	2000	0	108	71.4	134	-	0	0	
Chloromethane	hane	2089	1000	5000	0	41.8	22.7	178	-	0	0	
cis-1,2-Dic	cis-1,2-Dichloroethene	4418	200	2000	0	88.4	51	133	-	0	0	
cis-1,3-Dic	cis-1,3-Dichloropropene	3610	200	2000	0	72.2	59.7	132	_	0	0	
Dibromoch	Dibromochloromethane	4660	200	2000	0	93.2	60.4	143	_	0	0	
Dichlorodif	Dichlorodifluoromethane	1215	1000	2000	0	24.3	20	130	_	0	0	S
Ethylbenzene	ine	4925	200	2000	1331	71.9	65	131	_	0	0	
Isopropylbenzene	enzene	4854	200	2000	441	88.3	20	130		0	0	
Qualifiers:	ND - Not Detected at the Reporting Limit	Reporting Limit		S - Spi	S - Spike Recovery outside accepted recovery limits	e accepted reco	overy limits		B - Analyte de	tected in the asso	B - Analyte detected in the associated Method Blank	3lank
	J - Analyte detected below quantitation limits	quantitation limits		R - RP	R - RPD outside accepted recovery limits	recovery limit	S				Page !	Page 9 of 13

ANALYTICAL QC SUMMARY REPORT

BatchID: R37072

Schenectady Army Depot Project:

060911040

Work Order: CLIENT:

Shaw Environmental & Infrastructure

			***************************************		***************************************	***************************************						
MS	SeqNo: 414491						Tes	TestNo: SW8260B	0B	RunNo: 37072	7072	
	Samp ID: 060905007-001A						Un	Units: µg/Kg	Anal	Analysis Date: 9.	9/12/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ine	8952	200	10000	655.4	83	43.6	168	0	0		
Methyl te	Methyl tert-butyl ether	5485	200	5000	0	110	60.3	138	0	0		
Methylen	Methylene chloride	3686	200	2000	0	73.7	32.9	173	0	0		
o-Xylene		4052	200	2000	0	81	54.2	137	0	0		
Styrene		3887	200	2000	0	7.77	68.3	127	0	0		
Tetrachlo	Tetrachloroethene	3862	200	2000	0	77.2	51.5	147	0	0		
Toluene		3350	200	2000	0	29	60.2	143	0	0		
trans-1,2	trans-1,2-Dichloroethene	4665	200	2000	0	93.3	63.8	128	0	0		
trans-1,3	trans-1,3-Dichloropropene	3547	200	2000	0	70.9	58.3	131	0	0		
Trichloroethene	ethene	4049	200	2000	0	81	62.2	142	0	0		
Trichloro	Trichlorofluoromethane	3476	200	2000	0	69.5	53.7	152	0	0		
Vinyl chloride	oride	1345	1000	2000	0	26.9	21.7	181	0	0		
Surr: 1	Surr: 1,2-Dichloroethane-d4	5774	200	2000	0	115	64.8	130	0	0		
Surr: 4	Surr: 4-Bromofluorobenzene	4896	200	2000	0	97.9	76.8	122	0	0		
Surr: 1	Surr: Toluene-d8	3624	200	2000	0	72.5	78.5	120	0	0		S
MSD	SeqNo: 414492						Test	TestNo: SW8260B		RunNo: 37072	7072	

MSD	SeqNo: 414492						Test	TestNo: SW8260B	0B	RunNo: 3	37072	
	Samp ID: 060905007-001A						Unit	Units: µg/Kg	Ana	Analysis Date: 9	9/12/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Tri	1,1,1-Trichloroethane	5130	200	2000	0	103	61.8	140	4351	16.4	30	
1,1,2,2-T	1,1,2,2-Tetrachloroethane	3696	200	2000	0	73.9	49.9	147	3801	2.82	30	
1,1,2-Tri	1,1,2-Trichloroethane	4677	200	2000	0	93.5	57.2	150	4006	15.5	30	
1,1-Dich	1,1-Dichloroethane	4914	200	2000	0	98.3	6.99	133	2097	3.66	30	
1,1-Dich	1,1-Dichloroethene	4031	200	2000	0	90.0	43.3	147	4035	0.0927	30	
1,2,4-Tri	1,2,4-Trichlorobenzene	4443	0	2000	0	88.9	43	115	4971	11.2	30	
1,2-Dibro	1,2-Dibromo-3-chloropropane	5011	1000	2000	0	100	75.5	136	5119	2.15	30	
1,2-Dich	1,2-Dichlorobenzene	3769	200	2000	0	75.4	75.6	110.4	3989	5.67	30	S
1,2-Dich	1,2-Dichloroethane	5012	200	5000	0	100	63.6	137	5179	3.27	30	
1,2-Dichi	1,2-Dichloropropane	4773	200	5000	0	95.5	66.4	141	4095	15.3	30	
1,3-Dich	1,3-Dichlorobenzene	3692	200	2000	0	73.8	88	114	3811	3.16	30	S
1,4-Dichi	1,4-Dichlorobenzene	3572	200	5000	0	71.4	83	123	3712	3.84	30	S
2-Butanone	ne	3633	1000	2000	0	72.7	49.7	149	3937	8.03	30	
Qualifiers:	s: ND - Not Detected at the Reporting Limit	he Reporting Limit	CONTRACTOR OF THE PARTY OF THE	S - Spi	S - Spike Recovery outside accepted recovery limits	e accepted recc	very limits	1	B - Analyte detected in the associated Method Blank	ed in the associa	ated Method B	lank
	J - Analyte detected below quantitation limits	low quantitation limits		R - RP	R - RPD outside accepted recovery limits	recovery limit	1 0				Page 10 of 13	of 13
)	,

Shaw Environmental & Infrastructure CLIENT:

060911040 Work Order:

Schenectady Army Depot Project:

\simeq
0
Ă
RET
\simeq
\geq
\simeq
$ \overline{} $
$\overline{}$
\leq
\geq
\rightarrow
.
ت
) () ()
AL OC
CAL OC
CA
CA
ICA
CA
ALYTICA
NLYTICA
ALYTICA

BatchID: R37072

MSD	SeqNo: 414492						Test!	TestNo: SW8260B	0B	RunNo: 3	37072	
<u> </u>	Samp ID: 060905007-001A						Unit	Units: µg/Kg	An	Analysis Date: 9/	9/12/2006	
Analyte		Result	PQL	SPK value SF	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Hexanone	<u>o</u>	6004	1000	2000	0	120	71.3	156	4630	25.8	30	
4-Methyl-2	4-Methyl-2-pentanone	3362	1000	2000	0	67.2	31.4	184	3245	3.57	30	
Acetone		4227	1000	2000	0	84.5	09	130	4675	10.1	30	
Benzene		4750	200	2000	0	95	68.7	140	3755	23.4	30	
Bromodich	Bromodichloromethane	5260	200	2000	0	105	62.5	141	4610	13.2	30	
Bromoform		4339	200	2000	0	86.8	52.5	149	4417	1.77	30	
Bromomethane	hane	2414	1000	2000	0	48.3	35.7	177	2458	1.78	30	
Carbon disulfide	ulfide	4403	200	2000	0	88.1	54.2	158	4185	5.09	30	
Carbon tetrachloride	rachloride	5461	200	2000	0	109	65.4	135	4589	17.4	30	
Chlorobenzene	zene	3719	200	2000	0	74.4	64.5	141	3670	1.33	30	
Chloroethane	ine	3152	1000	2000	0	63	52.5	151	3120	1.03	30	
Chloroform		5431	200	2000	0	109	71.4	134	5421	0.179	30	
Chloromethane	hane	1901	1000	2000	0	38	22.7	178	2089	9.44	30	
cis-1,2-Dic	cis-1,2-Dichloroethene	4468	200	2000	0	89.4	51	133	4418	1.13	30	
cis-1,3-Dic	cis-1,3-Dichloropropene	4119	200	2000	0	82.4	26.7	132	3610	13.2	30	
Dibromoch	Dibromochloromethane	4679	200	2000	0	93.6	60.4	143	4660	0.399	30	
Ethylbenzene	ine	5162	200	2000	1331	9.92	65	131	4925	4.70	30	
Isopropylbenzene	enzene	4846	200	2000	441	88.1	20	130	4854	0.169	30	
m,p-Xylene	a.	9130	200	10000	655.4	84.7	43.6	168	8952	1.97	30	
Methyl tert	Methyl tert-butyl ether	5619	200	2000	0	112	60.3	138	5485	2.41	30	
Methylene chloride	chloride	3614	200	2000	0	72.3	32.9	173	3686	1.97	30	
o-Xylene		4022	200	2000	0	80.4	54.2	137	4052	0.740	30	
Styrene		3913	200	2000	0	78.3	68.3	127	3887	0.673	30	
Tetrachloroethene	oethene	3835	200	2000	0	76.7	51.5	147	3862	0.692	30	
Toluene		4002	200	2000	0	80	60.2	143	3350	17.7	30	
trans-1,2-D	trans-1,2-Dichloroethene	4766	200	2000	0	95.3	63.8	128	4665	2.14	30	
trans-1,3-D	trans-1,3-Dichloropropene	4053	200	2000	0	81.1	58.3	131	3547	13.3	30	
Trichloroethene	hene	2060	200	2000	0	101	62.2	142	4049	22.2	30	
Trichloroflu	Trichlorofluoromethane	3372	200	2000	0	67.4	53.7	152	3476	3.04	30	
Vinyl chloride	ep.	1207	1000	2000	0	24.1	21.7	181	1345	10.8	30	
Surr: 1,2	Surr: 1,2-Dichloroethane-d4	5631	200	2000	0	113	64.8	130	0	0	0	
Surr: 4-E	Surr: 4-Bromofluorobenzene	4827	200	2000	0	96.5	76.8	122	0	0	0	
Qualifiers:	ND - Not Detected at the Reporting Limit	eporting Limit		S - Spike	S - Spike Recovery outside accepted recovery limits	accepted reco	very limits		B - Analyte detected in the associated Method Blank	ted in the associa	ited Method Bl	ank
	J - Analyte detected below quantitation limits	quantitation limits		R - RPD o	R - RPD outside accepted recovery limits	recovery limits					Page 11 of 13	of 13

Shaw Environmental & Infrastructure CLIENT:

ANALYTICAL QC SUMMARY REPORT

BatchID: R37072

Schenectady Army Depot Project:

060911040 Work Order:

MSD	SeqNo: 414492						TestNo: SW8260B	30B	RunNo: 37072	
	Samp ID: 060905007-001A						Units: µg/Kg	Ar	Analysis Date: 9/12/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	HighLir	RPD Ref V	%RPD RPDLim	Qual
Surr: 1	Surr: Toluene-d8	4456	200	2000	0	89.1	78.5 120	0	0 0	j
MBLK	SeqNo: 414002						TestNo: SW8260B	30B	RunNo: 37072	
	Samp ID: MB-R37072						Units: µg/Kg	Ar	Analysis Date: 9/12/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Chloromethane	ethane	< 10	10							
Bromomethane	ethane	< 10	10							
Vinyl chloride	oride	< 10	10							
Chloroethane	hane	< 10	10							
Methylen	Methylene chloride	< 5.0	5.0							
Acetone		< 10	10							
Carbon disulfide	iisulfide	< 5.0	5.0							
1,1-Dichl	1,1-Dichloroethene	< 5.0	5.0							
1,1-Dichl	1,1-Dichloroethane	< 5.0	5.0							
trans-1,2	trans-1,2-Dichloroethene	< 5.0	5.0							
cis-1,2-D	cis-1,2-Dichloroethene	< 5.0	5.0							
Chloroform	ш	< 5.0	5.0							
1,2-Dichl	1,2-Dichloroethane	< 5.0	5.0							
2-Butanone	ne	< 10	10							
1,1,1-Tric	1,1,1-Trichloroethane	< 5.0	5.0							
Carbon te	Carbon tetrachloride	< 5.0	5.0							
Bromodic	Bromodichloromethane	< 5.0	5.0							
1,2-Dichl	1,2-Dichloropropane	< 5.0	5.0							
cis-1,3-D	cis-1,3-Dichloropropene	< 5.0	5.0							
Trichloroethene	ethene	< 5.0	5.0							
Dibromoo	Dibromochloromethane	< 5.0	5.0							
1,1,2-Tric	1,1,2-Trichloroethane	< 5.0	5.0							
Benzene		< 5.0	5.0							
trans-1,3	trans-1,3-Dichloropropene	< 5.0	5.0							
Bromoform	ш	< 5.0	5.0							
4-Methyl-	4-Methyl-2-pentanone	< 10	10							
2-Hexanone	one	< 10	9							
Qualifiers:	s: ND - Not Detected at the Reporting Limit	Reporting Limit		S - Spi	S - Spike Recovery outside accepted recovery limits	accepted reco		B - Analyte detec	B - Analyte detected in the associated Method Blank	Slank
	J - Analyte detected below quantitation limits	quantitation limits		R - RP	R - RPD outside accepted recovery limits	covery limit	S		Page 12 of 13	? of 13

Page 13 of 13

Shaw Environmental & Infrastructure CLIENT:

060911040 Work Order:

Schenectady Army Depot Project:

BatchID: R37072

ANALYTICAL QC SUMMARY REPORT

MBLK	SeqNo: 414002						Test	TestNo: SW8260B	86	RunNo: 37072	620	
	Samp ID: MB-R37072						n C	Units: µg/Kg		Analysis Date: 9/7	9/12/2006	
Analyte		Result	POL	SPK value SPK F	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Tetrachlo	Tetrachloroethene	< 5.0	5.0									
1,1,2,2-Te	1,1,2,2-Tetrachloroethane	< 5.0	5.0									
Toluene		< 5.0	5.0									
Chlorobenzene	nzene	< 5.0	5.0									
Ethylbenzene	zene	< 5.0	5.0									
Styrene		< 5.0	5.0									
m,p-Xylene	пе	< 5.0	5.0									
o-Xylene		< 5.0	5.0									
Methyl ter	Methyl tert-butyl ether	< 5.0	5.0									
Dichlorod	Dichlorodifluoromethane	< 5.0	5.0									
Methyl Acetate	cetate	< 5.0	5.0									
1,1,2-Tric	1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0									
Trichlorof	Trichlorofluoromethane	< 5.0	5.0									
Cyclohexane	ane	< 10	10									
Methyl Cy	Methyl Cyclohexane	< 5.0	5.0									
1,2-Dibro	1,2-Dibromoethane	< 5.0	5.0									
1,3-Dichk	1,3-Dichlorobenzene	< 5.0	5.0									
Isopropylbenzene	benzene	< 5.0	5.0									
1,2-Dichk	1,2-Dichlorobenzene	< 5.0	5.0									
1,4-Dichk	1,4-Dichlorobenzene	< 5.0	5.0									
1,2-Dibro	1,2-Dibromo-3-chloropropane	< 5.0	5.0									
1,2,4-Tric	1,2,4-Trichlorobenzene	< 5.0	5.0									
Surr: 1	Surr: 1,2-Dichloroethane-d4	42.97	5.0	20	0	85.9	64.8	130	0	0		
Surr: 4	Surr: 4-Bromofluorobenzene	48.37	5.0	50	0	2.96	76.8	122	0	0		
Surr: T	Surr: Toluene-d8	57.35	5.0	50	0	115	78.5	120	0	0		

ND - Not Detected at the Reporting Limit	
Qualifiers: ND	

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

Experience is the solution

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:	aw Env.	Address:	15 Bt	72	y sas	+	
Send Report To:	q Gall 16 Client Fax No:	Project Name (Locatio	(7 u)		Samplers: (A Samplers: (S	lames) Le, l	101~
Client Phone No.	Client Fax No:	PO	Number:		Samplers: (S	ignature	LL
AES Sample Number	Client Sample Identification &	k Location	Date Sampled	Time A=a.m. P=p.m.	Sample Type Matrix G g g g	Number of Cont's	Analysis Required
001	Ex-F-31 Dup8906 Ex-F-32		9/9/06	1030 P	×	2	8260, TAL MILIS, Hay
002	Dup8906		9/9/06	- A P		Z	
003	EX-F-32	-	9/9/06	1315 A	\sim	7	V
				P			
				P			
				P			
				P			
				P			
				P			
				P			
				P			
				P			
				P A			
AES Work Orde	r #:	CC Repo	rt To / Special Ins	P tructions/Rer	marks:		
00	0911040						
Turnaround Time 1 Day 2 Day	e Request:						
Relinquished by	: (Signature)	Receive	d by: (Signature)				Date/Time
Relinquished by	: (Signature)	Receive	d by: (Signature)		Λ		Date/Time
Relinquished by	: (Signature)	Receive	d for Laboratory b	y: / _ /	Ly		9/11/06 U33
Ar Notes:	TEMPERATURE nbient or Chilled	Pri Notes:	PRESERVED Y N	J .	Notes	(MITHIN HOLDING TIMES Y N

WHITE - Lab Copy

YELLOW - Sampler Copy

PINK - Generator Copy

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All Services rendered by **Adirondack Environmental Services**, **Inc.** are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services**, **Inc.** report regarding said work or such claim shall be deemed as irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and **Adirondack Environmental Services, Inc.** is not responsible for the accuracy of this information.

Shaw Environmental & Infrastructure, Inc.

Data Usability Report

16406 U.S. Route 224 East • Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER: PROJECT MANAGER:

115215

Tom Mathison

SAMPLE RECEIPT

DATE:

09/12/2006

PROJECT NAME:

USACE-Schenectady

LABORATORY SDG:

AEL-060912037

The Findlay Ohio Applied Sciences Group has performed a QA evaluation of the data report from Adirondack Environmental Laboratories, Inc. (AEL) in Albany, NY. The results are for samples collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table.

	Sample Summa	ry Table	
Sample Number	Collection Date	Matrix	Analysis Requested
EX-AOI6001	09/12/2006	Soil	Target Metals SW-6010B/ 7471A
			SVOCs-SW8270C
	· ·		VOCs-SW8260B
			Pesticides-SW8081A
	1		Herbicides- SW8151A
			PCBs-SW8082

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and was received having a temperature of 4°C upon opening. The laboratory provided faxed preliminary data within the specified turn around time and submitted a hard copy Level II report at a later date. The following describes the overall QA/QC indicators.

VOC Analysis in Soil by 8260B

The GC/MS system was tuned and calibrated in accordance with method requirements. The integrity of the primary standards was validated through analysis of a second source standard. Calibration check samples verified instrument calibration and all analyses were performed within valid 12-hour tune clocks. The ISTD areas were within the required values for all analytical runs.

Method Blanks: The method blank results are below reporting limits for the target analytes in all analysis sets

LCS: The LCS recoveries are within laboratory acceptance criteria for all spiked target analytes. Recovery was below 50% for dichlordiflouromethane (30.3%R). However, since this compound has no established TAGM 4046 action-level no qualification is required.

MS/MSD: The QC Matrix recovery and precision performance, using a sample from another client site, is within laboratory acceptance limits for all compounds.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be utilized with confidence.

SVOC Analysis in Soil by 8270C

The laboratory report package does not provide instrument tuning or calibration information. However, based upon the Case Narrative the reviewer has assumed that the GC/MS system was tuned and calibrated in accordance with method requirements, all analyses were performed within valid 12-hour tune clocks, and the ISTD areas were within the required values for all analytical runs.

Method Blanks: The method blank results are below reporting limits for the target analytes

LCS: The LCS recoveries are within acceptance criteria for all spiked analytes.

MS/MSD: The QC Matrix recovery and precision performance, using the submitted sample is within acceptance limits for all spiked compounds.

Surrogates: All surrogate recoveries are within acceptable criteria for the sample and associated QC runs.

Reported results should be utilized with confidence.

Pesticide Analysis in Soil by SW-8081A

The laboratory report package does not provide instrument set-up or calibration information. However, based upon the Case Narrative the reviewer has assumed that the GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both the front and rear columns

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the spiked target analytes. The laboratory spiked with a mix containing a short list of analytes and did not provide data for all target compounds

QC Matrix: The MS/MSD recoveries, using the submitted, were within control limits for both precision and accuracy for all of the spiked analytes.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be acted upon without reservation.

PCB Analysis in Soil by SW-8082

The laboratory report package does not provide instrument set-up or calibration information. However, based upon the Case Narrative the reviewer has assumed that the GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements.

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The laboratory performs PCB and pesticide analysis in the same QC batch and does not independently spike PCB compounds. Data acceptance is therefore based upon the acceptable 8081A LCS recoveries.

QC Matrix: The MS/MSD recoveries, using the submitted sample, were within control limits for both precision and accuracy for all of the spiked analytes; which do not include a PCB arochlor mixture.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be acted upon without reservation.

Herbicide Analysis in Soil by SW-8151A

The laboratory report package does not provide instrument set-up or calibration information. However, based upon the Case Narrative the reviewer has assumed that the GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both the front and rear columns

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the spiked target analytes.

QC Matrix: The MS/MSD recoveries, using the submitted sample, were within control limits for both precision and accuracy for all of the spiked analytes.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be acted upon without reservation.

Metals Analysis in Soil by SW6010B and SW7471A

The laboratory data package does not provide instrument calibration data. However, based upon the Case Narrative the reviewer has assumed that the ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements.

Method Blanks: The method blank results are below reporting limits for all reported analytes.

LCS: The LCS recoveries are within laboratory acceptance criteria for the target analytes. It should be noted that recovery of Iron (51.7%) and Vanadium (74.2%) is below the method specified 80-120% range. Both of these analytes have TAGM 4046 limits significantly above the reporting limit and therefore no affect of data usability or qualification is warranted.

MS/MSD: The MS recoveries and duplicate precision, using the submitted sample, are within acceptance limits for all analytes with native concentrations less than 4X the spike level. Three analytes (aluminum, iron, and manganese) were present at large concentrations in the unspiked sample rendering the QC Matrix data invalid.

Reported results should be utilized with confidence

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

Guy Gallello, Jr.-Project Themist

Date

Experience is the solution

314 North Pearl Street ♦ Albany, New York 12207 (800) 848-4983 ♦ (518) 434-4546 ♦ Fax (518) 434-0891

September 14, 2006

Guy Gallello Shaw Environmental & Infrastructure 16406 US Route 224 East Findlay, OH 45840

TEL: (419) 425-6080

FAX: (419) 425-6085

RE: Schenectady Army Depot

Soil Analysis

Dear Guy Gallello:

Adirondack Environmental Services, Inc received 1 sample on 9/12/2006 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

ELAP#: 10709 AIHA#: 100307

Work Order No: 060912037

PO#: 212830 OP

Tara Daniels

Laboratory Manager

G. Gallello - FAX

R - RPD outside accepted recovery limits

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060912037

Collection Date: 9/12/2006 **Project:** Schenectady Army Depot **Lab Sample ID:** 060912037-001

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ORGANOCHLORINE PESTICIDES SV	V8081A		***************************************			Analyst: MG
(Prep: SW3545 - 9/12/20	006)					,
4,4´-DDD	< 3.7	3.7		μg/Kg-dry	1	9/13/2006 8:13:05 AM
4,4´-DDE	< 3.7	3.7	R	μg/Kg-dry μg/Kg-dry	1	9/13/2006 8:13:05 AM
4,4'-DDT	< 3.7	3.7		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Aldrin	< 1.9	1.9		μg/Kg-dry	1	9/13/2006 8:13:05 AM
alpha-BHC	< 1.9	1.9		μg/Kg-dry	1	9/13/2006 8:13:05 AM
alpha-Chlordane	< 1.9	1.9		μg/Kg-dry	1	9/13/2006 8:13:05 AM
beta-BHC	< 1.9	1.9		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Chlordane	< 190	190		μg/Kg-dry	1	9/13/2006 8:13:05 AM
delta-BHC	< 1.9	1.9		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Dieldrin	< 3.7	3.7		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Endosulfan I	< 1.9	1.9		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Endosulfan II	< 3.7	3.7		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Endosulfan sulfate	< 3.7	3.7		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Endrin	< 3.7	3.7		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Endrin aldehyde	< 3.7	3.7		µg/Kg-dry	1	9/13/2006 8:13:05 AM
Endrin ketone	< 3.7	3.7		μg/Kg-dry	1	9/13/2006 8:13:05 AM
gamma-BHC	< 1.9	1.9		μg/Kg-dry	1	9/13/2006 8:13:05 AM
gamma-Chlordane	< 1.9	1.9		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Heptachlor	< 1.9	1.9		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Heptachlor epoxide	< 1.9	1.9		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Methoxychlor	< 19	19		μg/Kg-dry	1	9/13/2006 8:13:05 AM
Toxaphene	< 190	190		μg/Kg-dry	1	9/13/2006 8:13:05 AM
POLYCHLORINATED BIPHENYLS SV	V8082					Analyst: MG
(Prep: SW3545 - 9/12/20	006)					•
Aroclor 1016	< 37	37		μg/Kg-dry	1	9/13/2006
Aroclor 1221	< 37	37		μg/Kg-dry	1	9/13/2006
Aroclor 1232	< 37	37		μg/Kg-dry	1	9/13/2006
Aroclor 1242	< 37	37		μg/Kg-dry	1	9/13/2006
Aroclor 1248	< 37	37		μg/Kg-dry	1	9/13/2006
Aroclor 1254	< 37	37		μg/Kg-dry	1	9/13/2006
Aroclor 1260	< 37	37		μg/Kg-dry	1	9/13/2006
CHLORINATED HERBICIDES SW815	1A					Analyst: MG
(Prep: SW8151 - 9/13/20						, araiyot. Wid
2,4-D	< 225	225		μg/Kg-dry	1	9/14/2006 8:00:55 AM
2,4,5-T	< 225	225		μg/Kg-dry	1	9/14/2006 8:00:55 AM
2,4,5-TP (Silvex)	4	225	J	μg/Kg-dry	1	9/14/2006 8:00:55 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 14-Sep-06

Client Sample ID: EX-AOI6-001

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060912037

Collection Date: 9/12/2006 Schenectady Army Depot Project: Lab Sample ID: 060912037-001

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9	9/13/2006)					•
Aluminum	16200	22.5		μg/g-dry	1	9/13/2006 1:16:00 PM
Antimony	15.6	13.5		μg/g-dry	1	9/13/2006 1:16:00 PM
Arsenic	1.57	1.12	S	µg/g-dry	1	9/13/2006 1:16:00 PM
Barium	60.9	2.25	_	μg/g-dry	1	9/13/2006 1:16:00 PM
Beryllium	0.55	1.12	J	μg/g-dry	1	9/13/2006 1:16:00 PM
Cadmium	< 1.12	1.12	_	μg/g-dry	1	9/13/2006 1:16:00 PM
Calcium	22400	112		μg/g-dry	1	9/13/2006 1:16:00 PM
Chromium	26.4	1.12		μg/g-dry	1	9/13/2006 1:16:00 PM
Cobalt	21.2	11.2		µg/g-dry	1	9/13/2006 1:16:00 PM
Copper	36.7	1.12		μg/g-dry	1	9/13/2006 1:16:00 PM
Iron	15800	112		μg/g-dry	10	9/13/2006 2:22:00 PM
Lead	< 1.12	1.12		μg/g-dry	1	9/13/2006 1:16:00 PM
Magnesium	8550	112		μg/g-dry	1	9/13/2006 1:16:00 PM
Manganese	573	2.25		μg/g-dry	1	9/13/2006 1:16:00 PM
Nickel	< 11.2	11.2		μg/g-dry	1	9/13/2006 1:16:00 PM
Potassium	2320	112		μg/g-dry	1	9/13/2006 1:16:00 PM
Selenium	< 1.12	1.12	s	μg/g-dry	1	9/13/2006 1:16:00 PM
Silver	< 4.49	4.49	S	μg/g-dry	1	9/13/2006 1:16:00 PM
Sodium	249	112		μg/g-dry	1	9/13/2006 1:16:00 PM
Thallium	< 2.25	2.25		μg/g-dry	1	9/13/2006 1:16:00 PM
Vanadium	19.7	11.2		μg/g-dry	1	9/13/2006 1:16:00 PM
Zinc	86.2	2.25		μg/g-dry	1	9/13/2006 1:16:00 PM
//IERCURY SW7471A (Prep: SW7471A - 9	9/13/2006)					Analyst: KH
Mercury	< 0.112	0.112		μg/g-dry	1	9/13/2006
SEMI VOLATILE ORGANICS SV	V8270C					Analyst: MT
(Prep: SW3545 - 9)/12/2006)					
Phenol	< 370	370		μg/Kg-dry	1	9/13/2006 12:59:00 PM
Bis(2-chloroethyl)ether	< 370	370		μg/Kg-dry	1	9/13/2006 12:59:00 PM
2-Chlorophenol	< 370	370		μg/Kg-dry	1	9/13/2006 12:59:00 PM
1,3-Dichlorobenzene	< 370	370		μg/Kg-dry	1	9/13/2006 12:59:00 PM
1,4-Dichlorobenzene	< 370	370		μg/Kg-dry	1	9/13/2006 12:59:00 PM
1,2-Dichlorobenzene	< 370	370		μg/Kg-dry	1	9/13/2006 12:59:00 PM
2-Methylphenol	< 370	370		μg/Kg-dry	1	9/13/2006 12:59:00 PM
Bis(2-chloroisopropyl)ether	< 370	370		μg/Kg-dry	1	9/13/2006 12:59:00 PM
					•	

Qualifiers:

Date: 14-Sep-06

Client Sample ID: EX-AOI6-001

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060912037

Collection Date: 9/12/2006 Project: Schenectady Army Depot Lab Sample ID: 060912037-001

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
SEMI VOLATILE ORGANICS SW8: (Prep: SW3545 - 9/1:					Analyst: MT
N-Nitrosodi-n-propylamine	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Hexachloroethane	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Nitrobenzene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Isophorone	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2-Nitrophenol	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2,4-Dimethylphenol	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Bis(2-chloroethoxy)methane	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2,4-Dichlorophenol	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
1,2,4-Trichlorobenzene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Naphthalene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
4-Chloroaniline	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Hexachlorobutadiene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
4-Chloro-3-methylphenol	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2-Methylnaphthalene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Hexachlorocyclopentadiene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2,4,6-Trichlorophenol	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2,4,5-Trichlorophenol	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2-Chloronaphthalene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2-Nitroaniline	< 1900	1900	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Dimethyl phthalate	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Acenaphthylene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2,6-Dinitrotoluene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
3-Nitroaniline	< 1900	1900	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Acenaphthene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2,4-Dinitrophenol	< 1900	1900	μg/Kg-dry	1	9/13/2006 12:59:00 PM
4-Nitrophenol	< 1900	1900	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Dibenzofuran	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
2,4-Dinitrotoluene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Diethyl phthalate	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
4-Chlorophenyl phenyl ether	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Fluorene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
4-Nitroaniline	< 1900	1900	μg/Kg-dry	1	9/13/2006 12:59:00 PM
4,6-Dinitro-2-methylphenol	< 1900	1900	μg/Kg-dry	1	9/13/2006 12:59:00 PM
N-Nitrosodiphenylamine	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
4-Bromophenyl phenyl ether	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Hexachlorobenzene	< 1900	1900	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Pentachlorophenol	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Phenanthrene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 14-Sep-06

Client Sample ID: EX-AOI6-001

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060912037

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 14-Sep-06

Client Sample ID: EX-AOI6-001
Collection Date: 9/12/2006

Lab Sample ID: 060912037-001

Matrix: SOIL

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
SEMI VOLATILE ORGANICS SW82700	}				Analyst: MT
(Prep: SW3545 - 9/12/200	06)				
Anthracene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Carbazole	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Di-n-butyl phthalate	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Fluoranthene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Pyrene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Butyl benzyl phthalate	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
3,3'-Dichlorobenzidine	< 740	740	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Benz(a)anthracene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Chrysene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Bis(2-ethylhexyl)phthalate	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Di-n-octyl phthalate	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Benzo(b)fluoranthene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Benzo(k)fluoranthene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Benzo(a)pyrene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Indeno(1,2,3-cd)pyrene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Dibenz(a,h)anthracene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
Benzo(g,h,i)perylene	< 370	370	μg/Kg-dry	1	9/13/2006 12:59:00 PM
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 11	11	μg/Kg-dry	1	9/13/2006
Bromomethane	< 11	11	μg/Kg-dry	1	9/13/2006
Vinyl chloride	< 11	11	μg/Kg-dry	1	9/13/2006
Chloroethane	< 11	11	μg/Kg-dry	1	9/13/2006
Methylene chloride	< 6	6	μg/Kg-dry	1	9/13/2006
Acetone	< 11	11	μg/Kg-dry	1	9/13/2006
Carbon disulfide	< 6	6	μg/Kg-dry	1	9/13/2006
1,1-Dichloroethene	< 6	6	μg/Kg-dry	1	9/13/2006
1,1-Dichloroethane	< 6	6	μg/Kg-dry	1	9/13/2006
trans-1,2-Dichloroethene	< 6	6	μg/Kg-dry	1	9/13/2006
cis-1,2-Dichloroethene	< 6	6	μg/Kg-dry	1	9/13/2006
Chloroform	< 6	6	μg/Kg-dry	1	9/13/2006
1,2-Dichloroethane	< 6	6	μg/Kg-dry	1	9/13/2006
2-Butanone	< 11	11	μg/Kg-dry	1	9/13/2006
1,1,1-Trichloroethane	< 6	6	μg/Kg-dry	1	9/13/2006
Carbon tetrachloride	< 6	6	μg/Kg-dry	1	9/13/2006
	- 0	•	Party dry	•	0, 10,2000
Bromodichloromethane	< 6	6	μg/Kg-dry	1	9/13/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060912037

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 14-Sep-06

Client Sample ID: EX-AOI6-001 Collection Date: 9/12/2006

Lab Sample ID: 060912037-001

Matrix: SOIL

VOLATILE ORGANICS SW8260B					
VOLATILE ONGANICS SW0200B					Analyst: ML
cis-1,3-Dichloropropene	< 6	6	μg/Kg-dry	1	9/13/2006
Trichloroethene	< 6	6	μg/Kg-dry	1	9/13/2006
Dibromochloromethane	< 6	6	μg/Kg-dry	1	9/13/2006
1,1,2-Trichloroethane	< 6	6	μg/Kg-dry	1	9/13/2006
Benzene	< 6	6	μg/Kg-dry	1	9/13/2006
trans-1,3-Dichloropropene	< 6	6	μg/Kg-dry	1	9/13/2006
Bromoform	< 6	6	μg/Kg-dry	1	9/13/2006
4-Methyl-2-pentanone	< 11	11	μg/Kg-dry	1	9/13/2006
2-Hexanone	< 11	11	μg/Kg-dry	1	9/13/2006
Tetrachloroethene	< 6	6	μg/Kg-dry	1	9/13/2006
1,1,2,2-Tetrachloroethane	< 6	6	μg/Kg-dry	1	9/13/2006
Toluene	< 6	6	μg/Kg-dry	1	9/13/2006
Chlorobenzene	< 6	6	μg/Kg-dry	1	9/13/2006
Ethylbenzene	< 6	6	μg/Kg-dry	1	9/13/2006
Styrene	< 6	6	μg/Kg-dry	1	9/13/2006
m,p-Xylene	< 6	6	μg/Kg-dry	1	9/13/2006
o-Xylene	< 6	6	μg/Kg-dry	1	9/13/2006
Methyl tert-butyl ether	< 6	6	μg/Kg-dry	1	9/13/2006
Dichlorodifluoromethane	< 6	6	μg/Kg-dry	1	9/13/2006
Methyl Acetate	< 6	6	μg/Kg-dry	1	9/13/2006
1,1,2-Trichloro-1,2,2-trifluoroethane	< 6	6	μg/Kg-dry	1	9/13/2006
Trichlorofluoromethane	< 6	6	μg/Kg-dry	1	9/13/2006
Cyclohexane	< 11	11	μg/Kg-dry	1	9/13/2006
Methyl Cyclohexane	< 6	6	μg/Kg-dry	1	9/13/2006
1,2-Dibromoethane	< 6	6	μg/Kg-dry	1	9/13/2006
1,3-Dichlorobenzene	< 6	6	μg/Kg-dry	1	9/13/2006
Isopropylbenzene	< 6	6	μg/Kg-dry	1	9/13/2006
1,4-Dichlorobenzene	< 6	6	μg/Kg-dry	1	9/13/2006
1,2-Dichlorobenzene	< 6	6	μg/Kg-dry	1	9/13/2006
1,2-Dibromo-3-chloropropane	< 6	6	μg/Kg-dry	1	9/13/2006
1,2,4-Trichlorobenzene	< 6	6	μg/Kg-dry	1	9/13/2006
PH SW9045B					Analyst: LS
рН	7.9	1.0	pH Units	1	9/13/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 $\ensuremath{\mathsf{T}}$ - Tentitively Identified Compound-Estimated Conc.

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

060912037

Project:

Schenectady Army Depot

PO#: 212830 OP

Date: 14-Sep-06

Client Sample ID: EX-AOI6-001

Collection Date: 9/12/2006

Lab Sample ID: 060912037-001

Matrix: SOIL

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
MOISURE CONTENT D2216					Analyst: KF
Percent Moisture	11.0	1.0	wt%	1	9/12/2006

X - Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

CLIENT:

ANALYTICAL QC SUMMARY REPORT

BatchID: 12223

Date: 21-Nov-06

Work Order:

Schenectady Army Depot Project:

Shaw Environmental & Infrastructure 060912037

MBLK	SeqNo: 414603			PrepDate:9/12/2006	900;	Te	TestNo: SW8270C	ည	RunNo: 3	37128	
	Samp ID: MB-12223			PrepRef:(SW3545)	45)	٦	Units: µg/Kg	An	Analysis Date: 9	9/13/2006	
Analyte		Result	PQL	SPK value SPK Ref Val	Val %REC	LowLimit	HighLimit	RPD Ref Vai	%RPD	RPDLimit	Qual
1,2,4-Trich	1,2,4-Trichlorobenzene	< 330	330								
1,2-Dichlor	1,2-Dichlorobenzene	< 330	330								
1,3-Dichlor	1,3-Dichlorobenzene	< 330	330								
1,4-Dichlor	1,4-Dichlorobenzene	< 330	330								
2,4,5-Trich	2,4,5-Trichlorophenol	< 330	330								
2,4,6-Trich	2,4,6-Trichlorophenol	< 330	330								
2,4-Dichlorophenol	rophenol	< 330	330								
2,4-Dimethylphenol	nylphenol	< 330	330								
2,4-Dinitrophenol	phenol	< 1700	1700								
2,4-Dinitrotoluene	toluene	< 330	330								
2,6-Dinitrotoluene	toluene	< 330	330								
2-Chlorona	2-Chloronaphthalene	< 330	330								
2-Chlorophenol	nenol	< 330	330								
2-Methylna	2-Methylnaphthalene	< 330	330								
2-Methylphenol	nenol	< 330	330								
2-Nitroaniline	ine	< 1700	1700								
2-Nitrophenol	nol	< 330	330								
3,3'-Dichlc	3,3'-Dichlorobenzidine	099 >	099								
3-Nitroaniline	ine	< 1700	1700								
4,6-Dinitro	4,6-Dinitro-2-methylphenol	< 1700	1700								
4-Bromopł	4-Bromophenyl phenyl ether	< 330	330								
4-Chloro-3	4-Chloro-3-methylphenol	< 330	330								
4-Chloroaniline	illine	< 330	330								
4-Chloropt	4-Chlorophenyl phenyl ether	< 330	330								
4-Methylphenol	nenol	< 330	330								
4-Nitroaniline	ine	< 1700	1700								
4-Nitrophenol	nol	< 1700	1700								
Acenaphthene	lene	< 330	330								
Acenaphthylene	ıylene	< 330	330								
Anthracene	Φ	< 330	330								
Benz(a)anthracene	thracene	< 330	330								

Page 1 of 27

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Shaw Environmental & Infrastructure 060912037 CLIENT:

Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

MBIK	SedNo: 414603			PrenDate	PrenDate:9/12/2006		Toot) CONTO			27400	
	2001-1-1000						estiv	estivo. SW6Z/UC			07170	
	Samp ID: MB-12223			PrepRef	PrepRef:(SW3545)		Units	Units: µg/Kg	Analy	Analysis Date: 9	9/13/2006	
Analyte		Result	POL	SPK value S	SPK Ref Val	%REC L	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(a)pyrene	yrene	< 330	330									
Benzo(b)flı	Benzo(b)fluoranthene	< 330	330									
Benzo(g,h,i)perylene	i)perylene	< 330	330									
Benzo(k)flu	Benzo(k)fluoranthene	< 330	330									
Bis(2-chlor	Bis(2-chloroethoxy)methane	< 330	330									
Bis(2-chlor	Bis(2-chloroethyl)ether	< 330	330									
Bis(2-chlor	Bis(2-chforoisopropyl)ether	< 330	330									
Bis(2-ethyli	Bis(2-ethylhexyl)phthalate	< 330	330									
Butyl benzy	Butyl benzyl phthalate	< 330	330									
Carbazole		< 330	330									
Chrysene		< 330	330									
Dibenz(a,h	Dibenz(a,h)anthracene	< 330	330									
Dibenzofuran	an	< 330	330									
Diethyl phthaiate	haiate	< 330	330									
Dimethyl phthalate	hthalate	< 330	330									
Di-n-butyl phthalate	ohthalate	< 330	330									
Di-n-octyl phthalate	ohthalate	< 330	330									
Fluoranthene	ne	< 330	330									
Fluorene		< 330	330									
Hexachlorobenzene	benzene	< 1700	1700									
Hexachlorobutadiene	obutadiene	< 330	330									
Hexachlord	Hexachlorocyclopentadiene	< 330	330									
Hexachloroethane	bethane	< 330	330									
Indeno(1,2	Indeno(1,2,3-cd)pyrene	< 330	330									
Isophorone	(1)	< 330	330									
Naphthalene	96	< 330	330									
Nitrobenzene	ne	< 330	330									
N-Nitrosod	N-Nitrosodi-n-propylamine	< 330	330									
N-Nitrosod	N-Nitrosodiphenylamine	< 330	330									
Pentachlorophenol	ophenol	< 330	330									
Phenanthrene	ene	< 330	330									
Phenol		< 330	330									
Qualifiers:	ND - Not Detected at the Reporting Limit	eporting Limit		S - Spike	S - Spike Recovery outside accepted recovery limits	ted recove	ery limits		B - Analyte detected in the associated Method Blank	in the associ	ated Method B	lank
	J - Analyte detected below quantitation limits	quantitation limits		R - RPD	R - RPD outside accepted recovery limits	ry limits					Page 2 of 27	of 27
											ŀ	

Shaw Environmental & Infrastructure CLIENT:

Work Order:

060912037 Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

MBLK	SeqNo: 414603			Prep	PrepDate:9/12/2006		Tes	TestNo: SW8270C		RunNo:	37128	
	Samp ID: MB-12223			Prep	PrepRef:(SW3545)		ว็	Units: µg/Kg	∢.	Analysis Date: (9/13/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Va	I %RPD	RPDLimit	Qual
Pyrene		< 330	330									
Surr: 2	Surr: 2,4,6-Tribromophenol	1605	330	3333	0	48.2	19.1	99.1	0	0		
Surr: 2	Surr: 2-Fluorobiphenyl	1421	330	1667	0	85.2	52.1	126	0	0		
Surr: 2	Surr: 2-Fluorophenol	1808	330	3333	0	54.2	25.6	96.3	0	0		
Surr: 4	Surr: 4-Terphenyl-d14	1430	330	1667	0	85.8	49.5	137	0	0		
Surr: N	Surr: Nitrobenzene-d5	1135	330	1667	0	68.1	25.8	119	0	0		
Surr: F	Surr: Phenol-d5	1808	330	3333	0	54.2	18.4	101	0	0		
rcs	SeqNo: 417974			Prep	PrepDate:9/12/2006		Tes	TestNo: SW8270C		RunNo:	37417	
	Samp ID: LCS-12223			Prep	PrepRef:(SW3545)		'n	Units: µg/Kg	ď	Analysis Date: 9	9/22/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	I %RPD	RPDLimit	Qual
1,2,4-Tric	1,2,4-Trichlorobenzene	1893	330	3333	0	56.8	36.4	123	0	0		
1,2-Dichl	1,2-Dichlorobenzene	1779	330	3333	0	53.4	46.7	83.5	0	0		
1,3-Dichl	1,3-Dichlorobenzene	1717	330	3333	0	51.5	39.7	85.3	0	0		
1,4-Dichl	1,4-Dichlorobenzene	1769	330	3333	0	53.1	40.3	120	0	0		
2,4,5-Tric	2,4,5-Trichlorophenol	1694	330	3333	0	50.8	39.1	116	0	0		
2,4,6-Tric	2,4,6-Trichlorophenol	2635	330	3333	0	79.1	24.4	130	0	0		
2,4-Dichl	2,4-Dichlorophenol	2173	330	3333	0	65.2	27.8		0	0		
2,4-Dime	2,4-Dimethylphenol	2408	330	3333	0	72.3	35.8	125	0	0		
2,4-Dinitrophenol	ophenol	1283	1700	3333	0	38.5	10.5	•	0	0		7
2,4-Dinitrotoluene	otoluene	1802	330	3333	0	54.1	22.3	121	0	0		
2,6-Dinitrotoluene	otoluene	2225	330	3333	0	9.99	50.9	121	0	0		
2-Chloror	2-Chloronaphthalene	2107	330	3333	0	63.2	44	105	0	0		
2-Chlorophenol	ohenol	2051	330	3333	0	61.5	27	123	0	0		
2-Methylr	2-Methyinaphthalene	1933	330	3333	0	58	51	97.6	0	0		
2-Methylphenol	henol	2303	330	3333	0	69.1	32.2	100	0	0		
2-Nitroaniline	iline	2162	1700	3333	0	64.9	38.2	121	0	0		
2-Nitrophenol	enol	1971	330	3333	0	59.1	37.5	109	0	0		
3-Nitroaniline	iline	2025	1700	3333	0	60.8	51.8	121	0	0		
4,6-Dinitr	4,6-Dinitro-2-methylphenol	1620	1700	3333	0	48.6	12.8	128	0	0		7
4-Bromop	4-Bromophenyl phenyl ether	2145	330	3333	0	64.4	40.8	124	0	0		
4-Chloro-	4-Chloro-3-methylphenol	2228	330	3333	0	66.8	47.7	115	0	0		
Qualifiers:	s: ND - Not Detected at the Reporting Limit	Reporting Limit		S - Sp	S - Spike Recovery outside accepted recovery limits	le accepted rec	overy limits	The same of the sa	B - Analyte dete	B - Analyte detected in the associated Method Blank	iated Method B	lank
	J - Analyte detected below quantitation limits	w quantitation limits		R - RI	R - RPD outside accepted recovery limits	l recovery limit	Ş				Dage 3 of 27	7C JO
				1			2				1 uge 1	0) 4.1

Page 4 of 27

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Shaw Environmental & Infrastructure CLIENT:

ANALYTICAL QC SUMMARY REPORT

BatchID: 12223

060912037 Work Order: Schenectady Army Depot Project:

SOT	SeqNo: 417974			PrepD	PrepDate:9/12/2006		Tes	TestNo: SW8270C	00	RunNo: 37417	
	Samp ID: LCS-12223			PrepR	PrepRef:(SW3545)		- L	Units: µg/Kg	Anal	Analysis Date: 9/22/2006	(
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	mit Qual
4-Chloroaniline	aniline	1959	330	3333	0	58.8	32.8	99.2	0	0	
4-Chloro	4-Chlorophenyl phenyl ether	2105	330	3333	0	63.1	50.7	104	0	0	
4-Methylphenol	iphenol	2076	330	3333	0	62.3	39.3	87.4	0	0	
4-Nitroaniline	niline	2087	1700	3333	0	62.6	-22.1	123	0	0	
4-Nitrophenol	henol	2423	1700	3333	0	72.7	19.8	116	0	0	
Acenaphthene	hthene	2156	330	3333	0	64.7	32.8	113	0	0	
Acenaphthylene	hthylene	2110	330	3333	0	63.3	48.9	106	0	0	
Anthracene	ene	1933	330	3333	0	58	53.8	113	0	0	
Benz(a)a	Benz(a)anthracene	2606	330	3333	0	78.2	52.2	119	0	0	
Benzo(a)pyrene	() pyrene	2305	330	3333	0	69.2	22	108	0	0	
Benzo(b)	Benzo(b)fluoranthene	2445	330	3333	0	73.4	45.7	113	0	0	
Benzo(g,	Benzo(g,h,i)perylene	2025	330	3333	0	60.7	54.9	105	0	0	
Benzo(k)	Benzo(k)fluoranthene	1754	330	3333	0	52.6	38.2	111	0	0	
Bis(2-chl	Bis(2-chloroethoxy)methane	1983	330	3333	0	59.5	35.2	101	0	0	
Bis(2-chl	Bis(2-chloroethyl)ether	2138	330	3333	0	64.2	24.7	96.8	0	0	
Bis(2-chl	Bis(2-chloroisopropyl)ether	1966	330	3333	0	29	12.1	98.8	0	0	
Bis(2-eth	Bis(2-ethylhexyl)phthalate	2312	330	3333	0	69.4	34.9	152	0	0	
Butyl ber	Butyl benzyl phthalate	2318	330	3333	0	9.69	40.7	152	0	0	
Carbazole)le	3001	330	3333	0	06	41.9	111	0	0	
Chrysene	91	2245	330	3333	0	67.4	55.3	112	0	0	
Dibenz(a	Dibenz(a,h)anthracene	1992	330	3333	0	59.8	46.3	118	0	0	
Dibenzofuran	ıfuran	2068	330	3333	0	62.1	46.3	98.1	0	0	
Diethyl p	Diethyl phthalate	2099	330	3333	0	63	52.2	107	0	0	
Dimethyl	Dimethyl phthalate	2061	330	3333	0	61.8	53.5	104	0	0	
Di-n-but	Di-n-butyl phthalate	2045	330	3333	0	61.3	49.8	125	0	0	
Di-n-octy	Di-n-octyl phthalate	2115	330	3333	0	63.4	52.8	143	0	0	
Fluoranthene	thene	2053	330	3333	0	61.6	49.6	7	0	0	
Fluorene	a)	2199	330	3333	0	99	46.2	111	0	0	
Hexachlc	Hexachlorobenzene	2193	1700	3333	0	65.8	50.3	114	0	0	
Hexachlc	Hexachlorobutadiene	1828	330	3333	0	54.9	44.6	97.3	0	0	
Hexachlc	Hexachlorocyclopentadiene	1789	330	3333	0	53.7	31.2	96	0	0	
Hexachir	Hexachloroethane	1768	330	3333	0	53.1	38.9	92.9	0	С	

Shaw Environmental & Infrastructure 060912037 Schenectady Army Depot CLIENT:

Work Order:

Project:

ANALYTICAL QC SUMMARY REPORT

2	A TOTAL			Gaord	Drop Date: 0/4 9/9006	T						
3	Sequo: 41/9/4			riehr	die. 3/ 12/2000		Les	TestNo: SW8270C			3/41/	
	Samp ID: LCS-12223			PrepR	PrepRef:(SW3545)		'n	Units: µg/Kg	4	Analysis Date: 9	9/22/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	II %RPD	RPDLimit	Qual
Indeno(1	Indeno(1,2,3-cd)pyrene	2420	330	3333	0	72.6	51.6	112	J	0 0		
Isophorone	ne	2002	330	3333	0	60.1	56	06)	0 0		
Naphthalene	ene	2042	330	3333	0	61.3	47.2	9.96	0	0 0		
Nitrobenzene	zene	1948	330	3333	0	58.4	40.5	110	0	0		
N-Nitrosc	N-Nitrosodi-n-propylamine	2103	330	3333	0	63.1	33.3	117	J	0 0		
N-Nitrosc	N-Nitrosodiphenylamine	2790	330	3333	0	83.7	47	135)	0 0		
Pentachl	Pentachlorophenol	1788	330	3333	0	53.7	o	103)	0 0		
Phenanthrene	rene	2452	330	3333	0	73.6	49.2	112	J	0 0		
Phenol		2195	330	3333	0	62.9	23.1	110	J	0 0		
Pyrene		2463	330	3333	0	73.9	61	142)	0 0		
Surr: 2	Surr: 2,4,6-Tribromophenol	2148	330	3333	0	64.4	-1.76	130)	0 0		
Surr: 2	Surr: 2-Fluorobiphenyl	1448	330	1667	0	86.8	30.6	125)	0 0		
Surr: 2	Surr: 2-Fluorophenol	1930	330	3333	0	57.9	-8.37	9.69)	0 0		
Surr: 4	Surr: 4-Terphenyl-d14	1663	330	1667	0	99.8	30.4	152)	0 0		
Surr: №	Surr: Nitrobenzene-d5	1319	330	1667	0	79.1	18.1	115)	0 0		
Surr: F	Surr: Phenol-d5	2024	330	3333	0	2.09	-8.45	50.2)	0 0		S
MS	SeqNo: 417976			PrepC	PrepDate:9/12/2006		Tes	TestNo: SW8270C	၂၀	RunNo:	37417	
	Samp ID: 060912037-001A (EX-AOI6-001)	(EX-A016-001)		PrepR	PrepRef:(SW3545)		n	Units: µg/Kg-dry		Analysis Date: 9	9/22/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	II %RPD	RPDLimit	Qual
1,2,4-Tric	1,2,4-Trichlorobenzene	1856	370	3745	0	49.6	32.5	112	_	0 0		
1,2-Dichl	1,2-Dichlorobenzene	1779	370	3745	0	47.5	26.1	103	_	0 0		
1,3-Dichl	1,3-Dichlorobenzene	2970	370	3745	0	79.3	25.7	97.3)	0 0		
1,4-Dichl	1,4-Dichlorobenzene	1503	370	3745	0	40.1	28.2	100)	0 0		
2,4,5-Tric	2,4,5-Trichlorophenol	1743	370	3745	0	46.6	22.8)	0 0		
2,4,6-Tric	2,4,6-Trichlorophenol	2293	370	3745	0	61.2	30.5		_	0 0		
2,4-Dichl	2,4-Dichlorophenol	2003	370	3745	0	53.5	30.6		_	0 0		
2,4-Dime	2,4-Dimethylphenol	2313	370	3745	0	61.8	43.2		_	0 0		
2,4-Dinitrophenol	rophenol	746.4	1900	3745	0	19.9	-13.7	v)	0 0		_
2,4-Dinitr	2,4-Dinitrotoluene	1823	370	3745	0	48.7	14.3		_	0 0		
2,6-Dinitr	2,6-Dinitrotoluene	1865	370	3745	0	49.8	54.2		_	0 0		S
2-Chloro	2-Chloronaphthalene	2011	370	3745	0	53.7	43	103	<u> </u>	0 0		
Qualifiers:	s: ND - Not Detected at the Reporting Limit	he Reporting Limit		S - Spi	S - Spike Recovery outside accepted recovery limits	e accepted reco	overy limits	pained	3 - Analyte det	B - Analyte detected in the associated Method Blank	ated Method B	lank
	J - Analyte detected be	J - Analyte detected below quantitation limits		R - RP	R - RPD outside accepted recovery limits	recovery limit	s				Page 5 of 27	of 27

ANALYTICAL QC SUMMARY REPORT

Work Order: 060912037

Shaw Environmental & Infrastructure

CLIENT:

Project: Schenectady Army Depot

BatchID: 12223

MS	SeqNo: 417976			PrepDa	PrepDate:9/12/2006		Sel	TestNo: SW8270C	ا ان	RunNo:	37417	
	Samp ID: 060912037-001A (EX-AOI6-001)	(EX-AOI6-001)		PrepRe	PrepRef:(SW3545)		5 5	Units: µg/Kg-dry			9/22/2006	
Analyte		Result	Pal	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Va	al %RPD	RPDLimit	Qual
2-Chlorophenol	henol	2050	370		0	54.7	19.9	87.7		0 0		
2-Methyln	2-Methylnaphthalene	2295	370	3745	0	61.3	37.5	101		0 0		
2-Methylphenol	henoi	2514	370	3745	0	67.1	35.8	97.6		0 0		
2-Nitroaniline	lline	2045	1900	3745	0	54.6	17.8	138		0 0		
2-Nitrophenol	loue	2034	370	3745	0	54.3	39.1	104		0 0		
3-Nitroaniline	lline	1917	1900	3745	0	51.2	18.2	140		0 0		
4,6-Dinitr	4,6-Dinitro-2-methylphenol	1905	1900	3745	0	50.9	-10.3	114		0		
4-Bromop	4-Bromophenyl phenyl ether	2112	370	3745	0	56.4	59.8	111		0 0		S
4-Chloro-	4-Chloro-3-methylphenol	2166	370	3745	0	57.8	31.5	115		0 0		
4-Chloroaniline	ıniline	1807	370	3745	0	48.2	12.3	96.5		0 0		
4-Chlorop	4-Chlorophenyl phenyl ether	2023	370	3745	0	54	56.8	100		0	_	S
4-Methylphenol	henol	2144	370	3745	0	57.3	25.1	89.8		0	_	
4-Nitroaniline	Iline	2561	1900	3745	0	68.4	31.5	88.1		0		
4-Nitrophenol	enol	2303	1900	3745	0	61.5	0.303	111		0		
Acenaphthene	hene	2105	370	3745	0	56.2	29.1	120		0		
Acenaphthylene	thylene	2040	370	3745	0	54.5	43.3	104		0 0		
Anthracene	he	2062	370	3745	0	55.1	50.5	108		0		
Benz(a)aı	Benz(a)anthracene	2360	370	3745	0	63	53.6	112		0		
Benzo(a)pyrene	pyrene	2281	370	3745	0	6.09	55.1	97.5		0		
Benzo(b)	Benzo(b)fluoranthene	2412	370	3745	0	64.4	36.6	111		0		
Benzo(g,	Benzo(g,h,i)perylene	2058	370	3745	0	52	45.5	95.4		0		
Benzo(k)	Benzo(k)fluoranthene	1973	370	3745	0	52.7	42.5	103		0		
Bis(2-chlo	Bis(2-chloroethoxy)methane	1853	370	3745	0	49.5	30.8	105		0		
Bis(2-chlc	Bis(2-chloroethyl)ether	2076	370	3745	0	55.4	22.2	105		0 0	_	
Bis(2-chlc	Bis(2-chloroisopropyl)ether	1987	370	3745	0	53.1	31.5	105		0 0		
Bis(2-eth)	Bis(2-ethylhexyl)phthalate	2199	370	3745	0	58.7	62.4	126		0 0		S
Butyl ben	Butyl benzyl phthalate	2251	370	3745	0	60.1	67.2	131		0 0		S
Carbazole	on.	3198	370	3745	0	85.4	48	110		0 0		
Chrysene		2254	370	3745	0	60.2	55.8	107		0 0		
Dibenz(a,	Dibenz(a,h)anthracene	2102	370	3745	0	56.1	23.7	116		0 0		
Dibenzofuran	ıran	1957	370	3745	0	52.3	53.6	92.4		0 0	_	S
Diethyl phthalate	nthalate	1928	370	3745	0	51.5	45.6	99.3		0 0		
Qualifiers:	s: ND - Not Detected at the Reporting Limit	the Reporting Limit		S - Spike	S - Spike Recovery outside accepted recovery limits	e accepted rec	overy limits		B - Analyte de	B - Analyte detected in the associated Method Blank	siated Method E	lank

Page 6 of 27

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Shaw Environmental & Infrastructure 060912037 Schenectady Army Depot CLIENT:

Work Order:

Project:

ANALYTICAL QC SUMMARY REPORT

MS	SeqNo: 417976			PrepD	PrepDate:9/12/2006		Tes	TestNo: SW8270C	00	RunNo:	37417	
	Samp ID: 060912037-001A (EX-AOI6-001)	EX-AOI6-001)		PrepR	PrepRef:(SW3545)		'n	Units: µg/Kg-dry		Analysis Date:	9/22/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Va	al %RPD	RPDLimit	Qual
Dimethyl	Dimethyl phthalate	1907	370	3745	0	50.9	8.16	113		0		
Di-n-buty	Di-n-butyl phthalate	2016	370	3745	0	53.8	30.1	144		0 0	_	
Di-n-octy	Di-n-octyl phthalate	2139	370	3745	0	57.1	29	125		0 0		
Fluoranthene	nene	2119	370	3745	0	56.6	25.9	86		0 0		
Fluorene		2177	370	3745	0	58.1	23.6	104		0 0		
Hexachlc	Hexachlorobenzene	2486	1900	3745	0	66.4	51.9	6.96		0 0		
Hexachlo	Hexachlorobutadiene	1793	370	3745	0	47.9	32	101		0 0		
Hexachlo	Hexachlorocyclopentadiene	1800	370	3745	0	48.1	2.7	111		0 0		
Hexachlc	Hexachloroethane	1707	370	3745	0	45.6	29.3	98.9		0 0		
Indeno(1	Indeno(1,2,3-cd)pyrene	2046	370	3745	0	54.6	38.3	103		0 0		
Isophorone	пе	1863	370	3745	0	49.7	41.3	100		0 0		
Naphthalene	lene	2135	370	3745	0	25	6.75	117		0 0		
Nitrobenzene	zene	1844	370	3745	0	49.2	31.5	109		0 0		
N-Nitrosc	N-Nitrosodi-n-propylamine	2227	370	3745	0	59.5	12.2	122		0 0	-	
N-Nitrosc	N-Nitrosodiphenylamine	2743	370	3745	0	73.2	39.9	156		0 0		
Pentachl	Pentachlorophenol	2012	370	3745	0	53.7	-2.6	123		0 0		
Phenanthrene	hrene	2209	370	3745	0	29	48.8	112		0 0		
Phenol		2450	370	3745	0	65.4	-1,55	90.4		0 0	•	
Pyrene		2426	370	3745	0	64.8	39.1	137		0 0	•	
Surr: 2	Surr: 2,4,6-Tribromophenol	2194	370	3745	0	58.6	-1.76	130		0 0	-	
Surr: 2	Surr: 2-Fluorobiphenyl	1363	370	1873	0	72.8	30.6	125		0 0		
Surr: 2	Surr: 2-Fluorophenol	2503	370	3745	0	66.8	-8.37	9.69		0 0	0	
Surr: 4	Surr: 4-Terphenyl-d14	1633	370	1873	0	87.2	30.4	152		0 0	0	
Surr: 1	Surr: Nitrobenzene-d5	1227	370	1873	0	65.5	18.1	115			0	
Surr: F	Surr: Phenol-d5	2063	370	3745	0	55.1	-8.45	50.2		0	0	S
MSD	SeqNo: 417977			PrepD	PrepDate:9/12/2006		Tes	TestNo: SW8270C) 00.	RunNo:	37417	
	Samp ID: 060912037-001A (EX-AOI6-001)	EX-AOI6-001)		PrepR	PrepRef:(SW3545)		ร	Units: µg/Kg-dry	-	Analysis Date:	9/22/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Va	al %RPD	RPDLimit	Qual
1,2,4-Tri	1,2,4-Trichlorobenzene	2003	370	3745	0	53.5	32.5	112	1856	6 7.61		
1,2-Dichi	1,2-Dichlorobenzene	1617	370	3745	0	43.2	26.1	103	1779	9.53		
1,3-Dich	I,3-Dichlorobenzene	2336	370	3745	0	62.4	25.7	97.3	2970	0 23.9	0 6	
Qualifiers:	s: ND - Not Detected at the Reporting Limit	Reporting Limit		S - Spil	S - Spike Recovery outside accepted recovery limits	accepted rec	overy limits		B - Analyte de	B - Analyte detected in the associated Method Blank	ciated Method E	llank
	I - Analyte detected below quantitation limits	w quantitation limits		R - RP	R - RPD outside accepted recovery limits	recovery limit	Š				Page 7 of 27	, of 27
				:			ì.				1 uBc ;	(4 f)

ANALYTICAL QC SUMMARY REPORT

12223

BatchID:

Shaw Environmental & Infrastructure 060912037 Work Order: CLIENT:

Project:

Schenectady Army Depot

MSD	SeqNo: 417977			PrepDa	PrepDate:9/12/2006		Test	TestNo: SW8270C	2	RunNo: 3	37417	***************************************
	Samp ID: 060912037-001A (EX-AOI6-001)	(EX-AOI6-001)		PrepRe	PrepRef:(SW3545)		Uni	Units: µg/Kg-dry		Analysis Date: 9	9/22/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,4-Dichl	1,4-Dichlorobenzene	1425	370	3745	0	38	28.2	100	1503	5.35	0	
2,4,5-Tric	2,4,5-Trichlorophenol	2213	370	3745	0	59.1	22.8	120	1743	23.7	0	
2,4,6-Tric	2,4,6-Trichlorophenol	2462	370	3745	0	65.7	30.5	118	2293	7.12	0	
2,4-Dichl	2,4-Dichlorophenol	2389	370	3745	0	63.8	30.6	110	2003	17.6	0	
2,4-Dime	2,4-Dimethylphenol	2749	370	3745	0	73.4	43.2	113	2313	17.2	0	
2,4-Dinitrophenol	ophenol contract of the contra	1018	1900	3745	0	27.2	-13.7	62.3	746.4	0	0	7
2,4-Dinitrotoluene	otoluene	2132	370	3745	0	56.9	14.3	127	1823	15.6	0	
2,6-Dinitrotoluene	otoluene	2249	370	3745	0	09	54.2	101	1865	18.7	0	
2-Chloror	2-Chloronaphthalene	2234	370	3745	0	59.7	43	103	2011	10.5	0	
2-Chlorophenol	ohenol	2018	370	3745	0	53.9	19.9	87.7	2050	1.58	0	
2-Methylr	2-Methylnaphthalene	2528	370	3745	0	67.5	37.5	101	2295	99.6	0	
2-Methylphenol	phenol	2267	370	3745	0	60.5	35.8	97.6	2514	10.3	0	
2-Nitroaniline	illine	2389	1900	3745	0	63.8	17.8	138	2045	15.5	0	
2-Nitrophenol	enol	2030	370	3745	0	54.2	39.1	104	2034	0.221	0	
3-Nitroaniline	illine	2351	1900	3745	0	62.8	18.2	140	1917	20.3	0	
4,6-Dinitr	4,6-Dinitro-2-methylphenol	1968	1900	3745	0	52.6	-10.3	114	1905	3.27	0	
4-Bromop	4-Bromophenyl phenyl ether	2325	370	3745	0	62.1	59.8	111	2112	9.64	0	
4-Chloro-	4-Chloro-3-methylphenol	2556	370	3745	0	68.3	31.5	115	2166	16.5	0	
4-Chloroaniline	aniline	2113	370	3745	0	56.4	12.3	96.5	1807	15.6	0	
4-Chlorop	4-Chlorophenyl phenyl ether	2221	370	3745	0	59.3	56.8	100	2023	9.34	0	
4-Methylpheno	phenol	2133	370	3745	0	25	25.1	86.8	2144	0.525	0	
4-Nitroaniline	iline	2944	1900	3745	0	78.6	31.5	88.1	2561	13.9	0	
4-Nitrophenol	enol	2451	1900	3745	0	65.4	0.303	111	2303	6.21	0	
Acenaphthene	thene	2203	370	3745	0	58.8	29.1	120	2105	4.56	0	
Acenaphthylene	thylene	2252	370	3745	0	60.1	43.3	104	2040	9.90	0	
Anthracene	ne	2330	370	3745	0	62.2	50.5	108	2062	12.2	0	
Benz(a)a	Benz(a)anthracene	2570	370	3745	0	68.6	53.6	112	2360	8.54	0	
Benzo(a)pyrene	pyrene	2491	370	3745	0	66.5	55.1	97.5	2281	8.81	0	
Benzo(b)	Benzo(b)fluoranthene	2735	370	3745	0	73	36.6	11	2412	12.6	0	
Benzo(g,	Benzo(g,h,i)perylene	2144	370	3745	0	57.3	45.5	95.4	2058	4.08	0	
Benzo(k);	Benzo(k)fluoranthene	2355	370	3745	0	67.9	42.5	103	1973	17.6	0	
Bis(2-chk	Bis(2-chloroethoxy)methane	2106	370	3745	0	56.2	30.8	105	1853	12.8	0	
												- La company de la company de

Page 8 of 27

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

ANALYTICAL QC SUMMARY REPORT

Shaw Environmental & Infrastructure CLIENT:

060912037 Schenectady Army Depot Work Order:

Project:

MSD	SeqNo: 417977			PrepD	PrepDate:9/12/2006		Test	TestNo: SW8270C	၁၉	RunNo: 3	37417	
	Samp ID: 060912037-001A (EX-AOI6-001)	, (EX-AOI6-001)		PrepR	PrepRef:(SW3545)		Units:	ts: µg/Kg-dry	·	Analysis Date: 9	9/22/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bis(2-chlc	Bis(2-chloroethyl)ether	1865	370	3745	0	49.8	22.2	105	2076	10.7	0	
Bis(2-chlc	Bis(2-chloroisopropyl)ether	1857	370	3745	0	49.6	31.5	105	1987	6.74	0	
Bis(2-eth)	Bis(2-ethylhexyl)phthalate	2394	370	3745	0	63.9	62.4	126	2199	8.50	0	
Butyl ben:	Butyl benzyl phthalate	2486	370	3745	0	66.4	67.2	131	2251	9.91	0	S
Carbazole	ø	3329	370	3745	0	88.9	48	110	3198	4.01	0	
Chrysene		2468	370	3745	0	62.9	55.8	107	2254	9.08	0	
Dibenz(a,	Dibenz(a,h)anthracene	2102	370	3745	0	56.1	23.7	116	2102	0.0178	0	
Dibenzofuran	ıran	2263	370	3745	0	60.4	53.6	92.4	1957	14.5	0	
Diethyl phthalate	nthalate	2212	370	3745	0	59.1	45.6	99.3	1928	13.7	0	
Dimethyl	Dimethyl phthalate	2145	370	3745	0	57.3	8.16	113	1907	11.8	0	
Di-n-butyl	Di-n-butyl phthalate	2159	370	3745	0	57.6	30.1	144	2016	6.85	0	
Di-n-octyl	Di-n-octyl phthalate	2518	370	3745	0	67.2	29	125	2139	16.3	0	
Fluoranthene	ene	2190	370	3745	0	58.5	25.9	86	2119	3.30	0	
Fluorene		1445	370	3745	0	38.6	23.6	104	2177	40.4	0	
Hexachlo	Hexachlorobenzene	2442	1900	3745	0	65.2	51.9	6.96	2486	1.79	0	
Hexachlo	Hexachlorobutadiene	1960	370	3745	0	52.3	32	101	1793	8.92	0	
Hexachlo	Hexachlorocyclopentadiene	1561	370	3745	0	41.7	2.7	11	1800	14.2	0	
Hexachloroethane	roethane	1504	370	3745	0	40.2	29.3	98.9	1707	12.6	0	
Indeno(1,	Indeno(1,2,3-cd)pyrene	2096	370	3745	0	26	38.3	103	2046	2.42	0	
Isophorone	ЭС	2123	370	3745	0	29.7	41.3	100	1863	13.0	0	
Naphthalene	ene	1875	370	3745	0	50.1	6.75	117	2135	13.0	0	
Nitrobenzene	ene	2066	370	3745	0	55.2	31.5	109	1844	11.3	0	
N-Nitroso	N-Nitrosodi-n-propylamine	1853	370	3745	0	49.5	12.2	122	2227	18.3	0	
N-Nitroso	N-Nitrosodiphenylamine	3063	370	3745	0	81.8	39.9	156	2743	11.0	0	
Pentachlc	Pentachlorophenol	2186	370	3745	0	58.4	-2.6	123	2012	8.26	0	
Phenanthrene	ırene	2496	370	3745	0	9.99	48.8	112	2209	12.2	0	
Phenol		1869	370	3745	0	49.9	-1.55	90.4	2450	26.9	0	
Pyrene		2636	370	3745	0	70.4	39.1	137	2426	8.30	0	
Surr: 2,	Surr: 2,4,6-Tribromophenol	2316	370	3745	0	61.8	-1.76	130	0	0	0	
Surr: 2-	Surr: 2-Fluorobiphenyl	1478	370	1873	0	78.9	30.6	125	0	0	0	
Surr: 2-	Surr: 2-Fluorophenol	2246	370	3745	0	09	-8.37	9.69	0	0	0	
Surr: 4	Surr: 4-Terphenyl-d14	1738	370	1873	0	92.8	30.4	152	0	0	0	
Qualifiers:	s: ND - Not Detected at the Reporting Limit	the Reporting Limit		S - Spil	S - Spike Recovery outside accepted recovery limits	accepted reco	very limits		3 - Analyte detec	B - Analyte detected in the associated Method Blank	ated Method Bl	ank
	J - Analyte detected b	J - Analyte detected below quantitation limits		R - RP	R - RPD outside accepted recovery limits	recovery limits					Page 9 of 27	of 27

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060912037

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: 12223

MSD	MSD SeqNo: 417977			PrepDa	repDate:9/12/2006		Tes	TestNo: SW8270C	၁၀	RunNo:	37417	
	Samp ID: 060912037-001A (EX-AOI6-001)	16-001)		PrepRe	repRef:(SW3545)		nn	Jnits: µg/Kg-dry	1	Analysis Date:	3/22/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr:	Surr: Nitrobenzene-d5	1324	370	1873	0	70.7	18.1	115	0	0	0	
Surr:	surr: Phenol-d5	1843	370	3745	0	49.2	-8.45	50.2	0	0	0	

J - Analyte detected below quantitation limits

Shaw Environmental & Infrastructure 060912037

CLIENT: Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

MBLK	SegNo. 414609			Pren	PrenDate:9/12/2006		F	Ale: Claroop	4 4	1	27400	
	, title			1			- es	LESTING: SW8081A			671	
Sa	Samp ID: MB-12227			PrepF	PrepRef:(SW3545)		รี	Units: µg/Kg	Ana	Analysis Date: 9	9/13/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4,4'-DDD		< 3.3	3.3									
4,4'-DDE		< 3.3	3.3									
4,4'-DDT		< 3.3	3.3									
Aldrin		< 1.7	1.7									
alpha-BHC		< 1.7	1.7									
alpha-Chlordane	ane	< 1.7	1.7									
beta-BHC		< 1.7	1.7									
Chlordane		< 170	170									
delta-BHC		< 1.7	1.7									
Dieldrin		< 3.3	3.3									
Endosulfan I		< 1.7	1.7									
Endosulfan II		< 3.3	3.3									
Endosulfan sulfate	ulfate	< 3.3	3.3									
Endrin		< 3.3	3.3									
Endrin aldehyde	de	< 3.3	3.3									
Endrin ketone	ď.	< 3.3	3.3									
gamma-BHC		< 1.7	1.7									
gamma-Chlordane	dane	< 1.7	1.7									
Heptachlor		< 1.7	1.7									
Heptachlor epoxide	ooxide	< 1.7	1.7									
Methoxychlor		< 17	17									
Toxaphene		< 170	170									
Surr: Decad	Surr: Decachlorobiphenyl	27.9	0	40		69.8	49.6	137	0	0		
Surr: Tetrac	Surr: Tetrachloro-m-xylene	23.6	0	40	0	59	44.7	148	0	0		
FCS Se	SeqNo: 414610			PrepL	PrepDate:9/12/2006		Test	TestNo: SW8081A	1A	RunNo: 3	37129	
Sa	Samp ID: LCS-12227			PrepF	PrepRef:(SW3545)		n	Units: µg/Kg		Analysis Date: 9.	9/13/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4,4'-DDT		35.1	3.3	50	0	70.2	38.3	128	0	0		
Aldrin		20	1.7	25	0	80	52.7	132	0	0		
Dieldrin		44.6	3.3	50		89.2	57.9	130	0	0		
Endrin		47.2	3.3	20	0	94.4	61.5	129	0	0		
Qualifiers:	ND - Not Detected at the Reporting Limit	he Reporting Limit	Vol. 100 AUG TO THE TOTAL	idS - Spi	S - Spike Recovery outside accepted recovery limits	accepted rec	overy limits		B - Analyte detected in the associated Method Blank	ed in the associa	ated Method E	3lank
	J - Analyte detected be	J - Analyte detected below quantitation limits		R - RF	R - RPD outside accepted recovery limits	recovery limit	s				Page 11 of 27	of 27

Shaw Environmental & Infrastructure CLIENT:

060912037 Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: 12227

CS	SeqNo: 414610			PrepL	PrepDate:9/12/2006		Test	TestNo: SW8081A	ΙĄ	RunNo: 3	37129	
	Samp ID: LCS-12227			PrepF	PrepRef:(SW3545)		Uni	Units: µg/Kg	Ans	Analysis Date: 9/	9/13/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
gamma-BHC	3HC	15.9	1.7	25	0	63.6	58.2	124	0	0		
Heptachlor	or	21.2	1.7	25	0	84.8	61.3	127	0	0		
Surr: L	Surr: Decachlorobiphenyl	10.5	0	10	0	105	49.6	137	0	0		
Surr: 1	Surr: Tetrachloro-m-xylene	7.4	0	10	0	74	44.7	148	0	0		
MS	SeqNo: 414612			PrepL	PrepDate:9/12/2006		Test	TestNo: SW8081A	1A	RunNo: 3	37129	
	Samp ID: 060912037-001A (EX-AOI6-001)	x-AOI6-001)		PrepF	PrepRef:(SW3545)		Uni	Units: µg/Kg-dry		Analysis Date: 9/	9/13/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4,4'-DDT		58.88	3.7	112.4	0	52.4	32	128	0	0		
Aldrín		45.96	1.9	56.18	0	81.8	30.8	120	0	0		
Dieldrin		97.53	3.7	112.4	0	86.8	53.4	127	0	0		
Endrin		101.7	3.7	112.4	0	90.5	51.5	122	0	0		
gamma-BHC	знс	23.82	1.9	56.18	0	42.4	28.2	128	0	0		
Heptachlor	or	49.89	1.9	56.18	0	88.8	42.7	115	0	0		
Surr: L	Surr: Decachlorobiphenyl	42.47	0	44.94	0	94.5	49.6	137	0	0		
Surr: 1	Surr: Tetrachloro-m-xylene	30.9	0	44.94	0	68.8	44.7	148	0	0		
MSD	SeqNo: 414613			PrepL	PrepDate:9/12/2006		Test	TestNo: SW8081A	TA T	RunNo: 3	37129	
	Samp ID: 060912037-001A (EX-AOI6-001)	x-AOI6-001)		PrepF	PrepRef:(SW3545)		Uni	Units: µg/Kg-dry		Analysis Date: 9/	9/13/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4,4'-DDT		73.6	3.7	112.4	0	65.5	32	128	58.88	22.2	40	
Aldrin		44.83	1.9	56.18	0	79.8	30.8	120	45.96	2.48	34.2	
Dieldrin		93.93	3.7	112.4	0	83.6	53.4	127	97.53	3.76	40	
Endrin		101.2	3.7	112.4	0	90.1	51.5	122	101.7	0.443	36.8	
gamma-BHC	SHC	31.8	1.9	56.18	0	56.6	28.2	128	23.82	28.7	40	
Heptachlor	or	47.98	1.9	56.18	0	85.4	42.7	115	49.89	3.90	39.1	
Surr: [Surr: Decachlorobiphenyl	43.93	0	44.94	0	97.8	49.6	137	0	0	30	
Surr: 1	Surr: Tetrachloro-m-xylene	32.81	0	44.94	0	73	44.7	148	0	0	30	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 12 of 27

Page 13 of 27

B - Analyte detected in the associated Method Blank

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060912037

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: 12227

MBLK	MBLK SeqNo: 414616			PrepDai	PrepDate:9/12/2006		Tes	TestNo: SW8082	2	RunNo: 37	37129	
	Samp ID: MB-12227			PrepRei	PrepRef:(SW3545)		Un	Units: µg/Kg	Analy	Analysis Date: 9/13/2006	13/2006	
Analyte		Result	PQL	SPK value SPK Ref Val	PK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit	RPD Ref Vai	%RPD	%RPD RPDLimit	Qual
Aroclor 1016	016	< 33	33									
Arocior 1221	221	< 33	33									
Aroclor 1232	232	< 33	33									
Aroclor 1242	242	< 33	33									·
Aroclor 1248	248	< 33	33									
Aroclor 1254	254	< 33	33									
Aroclor 1260	260	< 33	33									
Surr: [Surr: Decachlorobiphenyl	27.9	0	40	0	69.8	48.1	152	0	0		

ND - Not Detected at the Reporting Limit	
Qualifiers:	

J - Analyte detected below quantitation limits

Shaw Environmental & Infrastructure 060912037 CLIENT:

Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: 12231

MBLK	SenNo: 414562			PrepDate:		ToetNo.	ToefNo: SM6040B		BubNo: 37124	
	Samp ID: MBLK			PrepRef:(SW3050A)		Units: µg/g	g/g/g			
Analyte		Result	PoL	SPK value SPK Ref Val	%REC	LowLimit Hig	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum		6.65	20.0							J
Antimony		0.75	12.0							-)
Arsenic		< 1.00	1.00							
Barium		0.084	2.00							7
Beryllium		0.034	1.00							7
Cadmium		< 1.00	1.00							
Calcium		< 100	100							
Chromium	c	< 1.00	1.00							
Cobalt		0.001466	10.0							7
Copper		0.114	1.00							ŋ
Iron		0.754	10.0							7
Lead		< 1.00	1.00							
Magnesium	ш	0.44	100							7
Manganese	se	0.01	2.00							 >
Nickel		< 10.0	10.0							
Potassium	Ľ	0.148	100							~
Selenium		< 1.00	1.00							
Silver		0.474	4.00							7
Sodium		< 100	100							
Thallium		< 2.00	2.00							
Vanadium	_	0.462	10.0							 >
Zinc		< 2.00	2.00							
MBLK	SeqNo: 415215			PrepDate:		TestNo:	TestNo: SW6010B	m	RunNo: 37182	
	Samp ID: MBLK			PrepRef:(SW3050A)		Units: µg/g	6/6rl	Anal	Analysis Date: 9/14/2006	
Analyte		Result	POL	SPK value SPK Ref Val	%REC	LowLimit Hig	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Antimony	-	0.7.15	3.00							ם ס
Arsenic		< 0.250	0.250							
Barium		0.0355	0.500							<u>.</u> .
Beryllium		< 0.250	0.250							
Cadmium		< 0.250	0.250							

Page 14 of 27

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Shaw Environmental & Infrastructure 060912037CLIENT:

Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

MB! K	7.00.00			Capa			Programme and the second			1	
į	Sedivo: 415215			riepuale.	Ď.		Test	TestNo: SW6010B	90	RunNo: 37182	
	Samp ID: MBLK			PrepRei	PrepRef:(SW3050A)		Uni	Units: µg/g	Anal	Analysis Date: 9/14/2006	90
Analyte		Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Limit Qual
Calcium		0.013	25.0								7
Chromium	L L	< 0.250	0.250								
Cobalt		0.0005	2.50								7
Copper		0.054	0.250								- "
Iron		0.2105	2.50								7
Lead		< 0.250	0.250								
Magnesium	m.	< 25.0	25.0								
Manganese	Se	0.0005	0.500								7
Nickel		0.008	2.50								ی
Potassium	E	0.145	25.0								٦
Selenium		< 0.250	0.250								
Silver		0.069	1.00								7
Sodium		< 25.0	25.0								
Thallium		< 0.500	0.500								
Vanadium	c	0.0915	2.50								٦
Zinc		< 0.500	0.500								
85	ComMo: 444E62			Orong O	2					- 1	
2	Seque 414303			יוקטרמ	ij		Test	TestNo: SW6010B	98	RunNo: 37124	
	Samp ID: LCS-S			PrepRet	PrepRef:(SW3050A)		Uni	Units: µg/g	Anal	Analysis Date: 9/13/2006	90
Analyte		Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Limit Qual
Aluminum	E	6054	20.0	7590	6.65	79.7	57.8	142.3	0	0	
Antimony		64.02	12.0	77.5	0.75	81.6	1.3	223.2	0	0	
Arsenic		75.08	1.00	80.9	0	92.8	79.7	120.3	0	0	
Barium		149.9	2.00	156	0.084	96	82.1	117.9	0	0	
Beryllium	_	142.9	1.00	143	0.034	99.9	81.8	118.2	0	0	
Cadmium	_	223.7	1.00	233	0	96	80.7	118.9	0	0	
Calcium		4107	100	4320	0	95.1	79.2	120.8	0	0	
Chromium	Ę	55.15	1.00	8.09	0	90.7	78.5	121.4	0	0	
Cobalt		78.84	10.0	68.6	0.001466	115	81.8	118.2	0	0	
Copper		128.6	1.00	131	0.114	98.1	82.4	117.6	0	0	
Iron		7446	10.0	14400	0.754	51.7	51.5	148.6	0	0	
Lead		78.66	1.00	76.8	0	102	80.6	119.5	0	0	
Qualifiers:	s: ND - Not Detected at the Reporting Limit	Reporting Limit		S - Spike	S - Spike Recovery outside accepted recovery limits	accepted reco	very limits	I	3 - Analyte detecte	B - Analyte detected in the associated Method Blank	ethod Blank
	J - Analyte detected below quantitation limits	w quantitation limits		R - RPD	R - RPD outside accepted recovery limits	ecovery limíts	70			Pa	Page 15 of 27

Shaw Environmental & Infrastructure 060912037 Work Order: CLIENT:

ANALYTICAL QC SUMMARY REPORT

12231

BatchID:

Schenectady Army Depot Project:

rcs

Analyte

RPDLimit 9/13/2006 RunNo: 37124 %RPD 000000000 Analysis Date: 00000 RPD Ref Val TestNo: SW6010B 118.5 120.1 HighLimit Units: µg/g 79.9 81.5 LowLimit 89.8 86.1 93 %REC PrepRef:(SW3050A) 0.01 SPK Ref Val PrepDate: 49.6 304 SPK value 2.00 100 1913 273 46.13 Result Samp ID: LCS-S SeqNo: 414563 Manganese Magnesium

Qua

0

128.5

124.7

75.3 71.4

101

158 72.4

0.462

10.0

54.16

Vanadium

Zinc

Thallium Sodium

110.2

55.7

102

0.474

80 456

100 1.00 4.00 100 2.00

466.9

159.1

82.9

121.6

128.6

71.4

90.5 86.1 82.8

0.148

2380

2153 71.36 66.75

Potassium

Nickel

Selenium

Silver

124.2 138.8 144.3

75.5 61.3

SOT	SeqNo: 415216			PrepDate:	te:		Test	TestNo: SW6010B	0B	RunNo: 37	37182	
	Samp ID: LCS-S			PrepRe	PrepRef:(SW3050A)		Uni	Units: µg/g	An	Analysis Date: 9/	9/14/2006	
Analyte		Result	POL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	ε	5710	5.00	7590	0.715	75.2	57.8	142.3	0	0		
Antimony	^	34.81	3.00	77.5	0.1075	44.8	1.3	223.2	0	0		
Arsenic		70.22	0.250	80.9	0	86.8	79.7	120.3	0	0		
Barium		151.1	0.500	156	0.0355	6.96	82.1	117.9	0	0		
Beryllium	c	139.5	0.250	143	0	97.6	81.8	118.2	0	0		
Cadmium	Ľ.	214.2	0.250	233	0	91.9	80.7	118.9	0	0		
Calcium		4108	25.0	4320	0.013	95.1	79.2	120.8	0	0		
Chromium	E	56.31	0.250	8.09	0	97.6	78.5	121.4	0	0		
Cobalt		77.56	2.50	68.6	0.0005	113	81.8	118.2	0	0		
Copper		129.4	0.250	131	0.054	98.8	82.4	117.6	0	0		
lron		7330	2.50	14400	0.2105	50.9	51.5	148.6	0	0		S
Lead		61.15	0.250	76.8	0	79.6	80.6	119.5	0	0		S
Magnesium	mn,	1848	25.0	2220	0	83.3	7.7	123	0	0		
Manganese	əse	258.5	0.500	304	0.0005	85	79.9	120.1	0	0		
Nickel		45.64	2.50	49.6	0.008	92	81.5	118.5	0	0		
Potassium	Œ.	2158	25.0	2380	0.145	90.7	71.4	128.6	0	0		
Selenium	c	65.53	0.250	82.9	0	79	75.5	124.2	0	0		
Silver		82.44	1.00	80	0.069	103	61.3	138.8	0	0		
Qualifiers:	rs: ND - Not Detected at the Reporting Limit	he Reporting Limit	0.0000000000000000000000000000000000000	S - Spike	S - Spike Recovery outside accepted recovery limits	accepted reco	overy limits		B - Analyte detec	B - Analyte detected in the associated Method Blank	ited Method B	ank

Page 16 of 27

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Shaw Environmental & Infrastructure 060912037 Schenectady Army Depot CLIENT:

Work Order:

Project:

ANALYTICAL QC SUMMARY REPORT

rcs	SegNo: 415216			PrenDate:	ite:		T C	Totalio: eMenand	0.5	Dundlo: 37	37180	
)) 	Seq. 4.32.10						lesi	NO: SWOUL			701	
	Samp ID: LCS-S			PrepRe	PrepRef:(SW3050A)		Uni	Units: µg/g	Ans	Analysis Date: 9/	9/14/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sodium		466.7	25.0	456	0	102	55.7	144.3	0	0		
Thallium		154	0.500	158	0	97.5	75.3	124.7	0	0		
Vanadium	Ę	54.18	2.50	72.4	0.0915	74.7	71.4	128.5	0	0		
Zinc		105.2	0.500	116	0	200.7	78	121.6	0	0		
MS	SeqNo: 414566			PrepDe	PrepDate:9/13/2006		Test	TestNo: SW6010B)B	RunNo: 37	37124	
	Samp ID: 060912037-001A (EX-AOI6-001)	AOI6-001)		PrepRe	PrepRef:(SW3050A)		Uni	Units: µg/g-dry	-	Analysis Date: 9/	9/13/2006	
Analyte		Result	PaL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	_	13680	22.5	449.4	16170	-554	75	125	0	0		S
Antimony		117.3	13.5	112.4	15.58	90.5	75	125	0	0		
Arsenic		8.265	1.12	8.989	1.571	74.5	75	125	0	0		S
Barium		516.3	2.25	449.4	60.87	101	75	125	0	0		
Beryllium		12.47	1.12	11.24	0.5528	106	75	125	0	0		
Cadmium		10.51	1.12	11.24	0	93.6	75	125	0	0		
Chromium	E	69.67	1.12	44.94	26.4	96.3	75	125	0	0		
Cobalt		169.3	11.2	112.4	21.22	132	75	125	0	0		S
Copper		87.68	1.12	56.18	36.67	8.06	75	125	0	0		
Iron		23470	11.2	224.7	26160	-1200	75	125	0	0		S
Lead		5.335	1.12	4.494	0	119	75	125	0	0		
Manganese	sse	619.4	2.25	112.4	573	41.4	75	125	0	0		S
Nickel		111.4	11.2	112.4	0	99.2	75	125	0	0		
Selenium	_	1.667	1.12	2.247	0	74.2	75	125	0	0		S
Silver		6.472	4.49	11.24	0	9.73	75	125	0	0		S
Thallium		8.458	2.25	11.24	0	75.3	75	125	0	0		
Vanadium	Ę	131.1	11.2	112.4	19.71	99.1	75	125	0	0		
Zinc		196.2	2.25	112.4	86.18	6.79	75	125	0	0		
DUP	SeqNo: 414565			PrepDa	PrepDate:9/13/2006		Test	TestNo: SW6010B	B	RunNo: 37	37124	
	Samp ID: 060912037-001A			PrepRef:	ef:		Units:	ts: µg/g-dry		Analysis Date: 9/	9/13/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	۴	16030	22.5	0	0	0	0	0	16170	0.861	20	
Oualifiers:	s: ND - Not Detected at the Reporting Limit	oorting Limit	A. L. A. L.	S - Spik	- Spike Recovery outside accepted recovery limits	accepted recc	very limits		3 - Analyte detec	B - Analyte detected in the associated Method Blank	ted Method B	ank
,		antitation limits		R - RPI	R - RPD outside accepted recovery limits	recovery limits					Page 17 of 27	of 27

Shaw Environmental & Infrastructure 060912037CLIENT:

Work Order:

Schenectady Army Depot **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: 12231

DUP	SeaNo: 414565			PrepD	PrepDate:9/13/2006		Test	TestNo: SW6010B	0B	RunNo:	37124	
	Samp ID: 060912037-001A			PrepRef:	ef:		S n	Units: µg/g-dry			9/13/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	>	10.36	13.5	0	0	0	0	0	15.58	0	17.2	
Arsenic	•	1.29	1.12	0	0	0	0	0	1.571	19.6	15.3	œ
Barium		60.02	2.25	0	0	0	0	0	60.87	1.41	17.8	
Beryllium	£	0.5663	1.12	0	0	0	0	0	0.5528	0	11.5	
Cadmium	Е	-0.4382	1.12	0	0	0	0	0	0	0	15.4	
Calcium		22410	112	0	0	0	0	0	22370	0.191	20	
Chromium	E	26.94	1.12	0	0	0	0	0	26.4	2.04	20	
Cobalt		21.24	11.2	0	0	0	0	0	21.22	0.106	18.9	
Copper		36.89	1.12	0	0	0	0	0	36.67	0.617	20	
Lead		-20.14	1.12	0	0	0	0	0	0	0	20	
Magnesium	m <u>n</u>	8504	112	0	0	0	0	0	8552	0.565		
Manganese	ese	574.9	2.25	0	0	0	0	0	573	0.336	20	
Nickel		-7.681	11.2	0	0	0	0	0	0	0	16.5	
Potassium	Εŗ	2261	112	0	0	0	0	0	2321	2.62	20	
Selenium	E	-43.66	1.12	0	0	0	0	0	0	0	20	
Silver	′	-4.193	4.49	0	0	0	0	0	0	0	10.3	
Sodium		236.3	112	0	0	0	0	0	249.5	5.40	21.2	
Thallium		-2.948	2.25	0	0	0	0	0	0	0		
Vanadium	E	18.73	11.2	0	0	0	0	0	19.71	5.13		
Zinc		86.47	2.25	0	0	0	0	0	86.18	0.344	20.4	
DUP	SeqNo: 414568			PrepL	PrepDate:9/13/2006		Tes	TestNo: SW6010B	0B	RunNo:	37124	
	Sema ID: 060043037 0044			DranBaf	ρf.			Inite: Ind/a-dry		Analysis Date:	9/13/2006	

	Samp ID: 060912037-001A			PrepRef:	lef:		5	Juits: µg/g-dry		Analysis Date: 9/13/2006	3/13/2006
Analyte		Result 16120	POL 112	SPK value	SPK Ref Val	<u>%REC</u>	LowLimit HighLimit	<u>HighLimit</u> 0	RPD Ref Val	%RPD 2.32	RPDLimit 16.4
5		02101	7	•	•	•	•	•		i	

Qual

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060912037

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: 12232

MRIK				0.00016170.0100000					
MDEN	SeqNO: 41454/			Preplate:9/13/2000		TestNo: SW7471A	1A	RunNo: 37121	
	Samp ID: MB-12232			PrepRef:(SW7471A)		Units: µg/g	Ana	Analysis Date: 9/13/2006	
Analyte Mercury		Result < 0.0400	POL 0.0400	SPK value SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
MBLK	SeqNo: 415010			PrepDate:9/13/2006		TestNo: SW7471A	1A	RunNo: 37154	
	Samp ID: MB-12232			PrepRef:(SW7471A)		Units: µg/g	Ana	Analysis Date: 9/14/2006	
Analyte Mercury		<u>Result</u> < 0.0400	PQL 0.0400	SPK value SPK Ref Val	<u>%REC</u>	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
rcs	SeqNo: 414548			PrepDate:9/13/2006		TestNo: SW7471A	1A	RunNo: 37121	
	Samp ID: LCS-12232			PrepRef:(SW7471A)		Units: µg/g	Ana	Analysis Date: 9/13/2006	
Analyte Mercury		Result 3.925	POL 1.00	SPK value SPK Ref Val 3.6 0	<u>%REC</u> 109	LowLimit HighLimit 68.1 131.9	RPD Ref Val	%RPD RPDLimit 0	Qual
SOT	SeqNo: 415011			PrepDate:9/13/2006		TestNo: SW7471A	1A	RunNo: 37154	
	Samp ID: LCS-12232			PrepRef:(SW7471A)		Units: µg/g	Ana	Analysis Date: 9/14/2006	
Analyte Mercury		Result 3.8	POL 1.00	SPK value SPK Ref Val 3.6 0	%REC 106	LowLimit HighLimit 68.1 131.9	RPD Ref Val	%RPD RPDLimit 0	Qual
MS	SeqNo: 414551		ţ	PrepDate:9/13/2006		TestNo: SW7471A	1A	RunNo: 37121	
	Samp ID: 060912037-001A (EX-AOI6-001)	X-AOI6-001)		PrepRef:(SW7471A)		Units: µg/g-dry		Analysis Date: 9/13/2006	
Analyte Mercury		Result 0.9494	PQL 0.112	SPK value SPK Ref Val 1.124 0	<u>%REC</u> 84.5	LowLimit HighLimit 74.4 123	RPD Ref Val	%RPD RPDLimit 0	Qual
MS	SeqNo: 415024			PrepDate:9/13/2006		TestNo: SW7471A	1A	RunNo: 37154	
	Samp ID: 060913042-006A			PrepRef:(SW7471A)		Units: µg/g-dry		Analysis Date: 9/14/2006	
Analyte Mercury		Result 0.8432	PQL 0.119	SPK value SPK Ref Val 1.188 0	%REC 71	LowLimit HighLimit 74.4 123	RPD Ref Val	%RPD RPDLimit 0	<u>Qual</u> S

Qualifiers: ND - Not Detected at the Reporting Limit
J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 19 of 27

Work Order: 060912037

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: 12232

DUP	SeqNo: 414550			Prept	PrepDate:9/13/2006		TestNo:	TestNo: SW7471A		RunNo: 37121	'121	
	Samp ID: 060912037-001A			PrepRef:	ef:		Units:	Units: µg/g-dry	Ana	Analysis Date: 9/	9/13/2006	
Analyte Mercury		Result < 0.112	PQL 0.112	SPK value 0	SPK value SPK Ref Val 0	%REC 0	%RECLowLimitHighLimitRPD Ref Val000	<u>thLimit</u> <u>I</u>	Ref Val	%RPD 0	%RPD RPDLimit 0 20.8	Qual
DUP	SeqNo: 415023 Samp ID: 060913042-006A			PrepDate PrepRef:	PrepDate:9/13/2006 PrepRef:		TestNo: Units:	TestNo: SW7471A Units: µg/g-dry		RunNo: 37154 Analysis Date: 9/14/20	37154 9/14/2006	
Analyte Mercury		Result < 0.119	<u>POL</u> 0.119	SPK value 0	SPK value SPK Ref Val 0	%REC 0	%REC LowLimit HighLimit 0 0	<u>thLimit</u> <u>I</u>	RPD Ref Val	%RPD 0	%RPD RPDLimit 0 20.8	Qual

Work Order: 060912037

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: 12253

mblk	SeqNo: 415105			PrepD	PrepDate:9/14/2006		Test	TestNo: SW8151A	∢	RunNo: 37148	
	Samp ID: mb-12253			PrepR	PrepRef:(SW8151)		Unit	Units: µg/Kg	Ana	Analysis Date: 9/14/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
2,4,5-1		< 200	700								
2,4,5-TP (Silvex)	(Silvex)	< 200	200								
2,4-D		< 200	200								
Surr: 2	Surr: 2,4 Dichlorophenyl acetic acid	415.5	0	200	0	83.1	62.2	145	0	0	
SOI	SeqNo: 415106			PrepD	PrepDate:9/14/2006		Test	TestNo: SW8151A	A	RunNo: 37148	
	Samp ID: Ics-12253			PrepR	PrepRef:(SW8151)		Unit	Units: µg/Kg	Ane	Analysis Date: 9/14/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	-lighLimit	RPD Ref Val	%RPD RPDLimit	Qual
2,4,5-T		106.2	200	100	0	106	80.3	119	0	0	7
2,4,5-TP (Silvex)	(Silvex)	104.2	200	100	0	104	82.9	116	0	0	
2,4-D		495.4	200	200	0	99.1	70.2	131	0	0	
Surr: 2	Surr: 2,4 Dichlorophenyl acetic acid	449.7	0	200	0	89.9	62.2	145	0	0	
ms	SeqNo: 415110			PrepD	PrepDate:9/13/2006		Test	TestNo: SW8151A	Α	RunNo: 37148	
	Samp ID: 060912037-001A (EX-AOI6-001)	AOI6-001)		PrepRe	PrepRef:(SW8151)		Unit	Units: µg/Kg-dry		Analysis Date: 9/14/2006	
Analyte		Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
2,4,5-T		106.9	225	112.4	0	95.2	90	140	0	0	_
2,4,5-TP (Silvex)	(Silvex)	112.6	225	112.4	3.764	96.9	90	140	0	0	7
2,4-D		546	225	561.8	0	97.2	90	140	0	0	
Surr: 2	Surr: 2,4 Dichlorophenyl acetic acid	505.4	0	561.8	0	90	62.2	145	0	0	

J - Analyte detected below quantitation limits

Work Order: 060912037

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: R37101

rcs	SeqNo: 414358						Test	FestNo: E150.1		RunNo: 3	37101	
	Samp ID: LCS-R37101	,					Unit	Units: pH Units	4	Analysis Date: 9,	9/13/2006	
Analyte pH		Result 8.62	POL 1.00	SPK value 8.66	SPK Ref Val	%REC 99.5	LowLimit 195.6	HighLimit 102	RPD Ref Val	%RPD 0	RPDLimit	Qual

J - Analyte detected below quantitation limits

Page 22 of 27

Page 23 of 27

B - Analyte detected in the associated Method Blank

Shaw Environmental & Infrastructure CLIENT:

060912037 Work Order: Schenectady Army Depot Project:

BatchID: R37108

ANALYTICAL QC SUMMARY REPORT

DUP	SeqNo: 414421						TestNo: D2216	D2216		RunNo: 37108	108	
	Samp ID: 060912037-001A						Units: wt%	wt%	Analy	Analysis Date: 9/12/2006	2/2006	
Analyte Percent	<u>nalyte</u> Percent Moisture	Result 10.56	PQL 1.00	SPK value 0	SPK value SPK Ref Val 0	%REC 0	%RECLowLimitHighLimit000		RPD Ref Val	<u>%RPD</u> 4.11	RPDLimit Qual 0	Qual
DUP	SeqNo: 414467						TestNo: D2216	D2216		RunNo: 37108	108	
	Samp ID: 060906054-005A						Units: wt%	wt%	Analy	Analysis Date: 9/12/2006	2/2006	
Analyte Percent	Analyte Percent Moisture	Result 88.5	PQL 1.00	SPK value 0	SPK value SPK Ref Val 0	<u>%REC</u>	%REC LowLimit HighLimit 0 0 0 0	hLimit 0	RPD Ref Val 88.5	<u>%RPD</u> 0	%RPD RPDLimit 0 0	Qual

Qualifiers:

Shaw Environmental & Infrastructure 060912037 CLIENT:

Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R37117

MBLK	SeqNo: 414496						Test	TestNo: SW8260B	0B	RunNo: 37117		
	Samp ID: MB-R37117						Cni	Units: µg/Kg			9/13/2006	
Analyte		Result	POL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	RPDLimit	Qual
Chloromethane	ane	< 10	10									
Bromomethane	ane	< 10	10									
Vinyl chloride	je.	< 10	10									
Chloroethane	91	< 10	10									
Methylene chloride	thloride	< 5.0	5.0									
Acetone		< 10	10									
Carbon disulfide	ılfide	< 5.0	5.0									
1,1-Dichloroethene	ethene	< 5.0	5.0									
1,1-Dichloroethane	ethane	< 5.0	5.0									
trans-1,2-Di	trans-1,2-Dichloroethene	< 5.0	5.0									
cis-1,2-Dichloroethene	loroethene	< 5.0	5.0									
Chloroform		< 5.0	5.0									
1,2-Dichloroethane	ethane	< 5.0	5.0									
2-Butanone		< 10	10									
1,1,1-Trichloroethane	proethane	< 5.0	5.0									
Carbon tetrachloride	achloride	< 5.0	5.0									
Bromodichloromethane	oromethane	< 5.0	5.0									
1,2-Dichloropropane	propane	< 5.0	5.0									
cis-1,3-Dich	cis-1,3-Dichloropropene	< 5.0	2.0									
Trichloroethene	ene	< 5.0	5.0									
Dibromochk	Dibromochloromethane	< 5.0	5.0									
1,1,2-Trichloroethane	oroethane	< 5.0	5.0									
Benzene		< 5.0	5.0									
trans-1,3-Di	trans-1,3-Dichloropropene	< 5.0	5.0									
Bromoform		< 5.0	5.0									
4-Methyl-2-pentanone	pentanone	< 10	10									
2-Hexanone		< 10	10									
Tetrachloroethene	ethene	< 5.0	5.0									
1,1,2,2-Tetra	1,1,2,2-Tetrachloroethane	< 5.0	5.0									
Toluene		< 5.0	5.0									
Chlorobenzene	ene	< 5.0	5.0									
Ethylbenzene	91	< 5.0	5.0									
Qualifiers:	ND - Not Detected at the Reporting Limit	Reporting Limit		S - Spike	S - Spike Recovery outside accepted recovery limits	ccepted reco	very limits		B - Analyte detected in the associated Method Blank	in the associated	Method Bla	ınk
	J - Analyte detected below quantitation limits	w quantitation limits		R - RPD	R - RPD outside accepted recovery limits	overy limits					Page 24 of 27	of 27

Shaw Environmental & Infrastructure 060912037 CLIENT:

Work Order:

Schenectady Army Depot **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R37117

MBLK	SeqNo: 414496						Tes	TestNo: SW8260B	3B	RunNo:	37117	
	Samp ID: MB-R37117						n	Units: µg/Kg	Ana	Analysis Date: 9	9/13/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Styrene		< 5.0	5.0									
m,p-Xylene	e	< 5.0	5.0									
o-Xylene	ď.	< 5.0	5.0									
Methyl te	Methyl tert-butyl ether	< 5.0	5.0									
Dichloro	Dichlorodifluoromethane	< 5.0	5.0									
Methyl Acetate	Acetate	< 5.0	5.0									
1,1,2-Tri	1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0									
Trichlorc	Trichlorofluoromethane	< 5.0	5.0									
Cyclohexane	xane	< 10	10									
Methyl C	Methyl Cyclohexane	< 5.0	5.0									
1,2-Dibre	1,2-Dibromoethane	< 5.0	5.0									
1,3-Dich	1,3-Dichlorobenzene	< 5.0	5.0									
Isopropy	Isopropylbenzene	< 5.0	5.0									
1,2-Dich	1,2-Dichlorobenzene	< 5.0	5.0									
1,4-Dich	1,4-Dichlorobenzene	< 5.0	5.0									
1,2-Dibr	1,2-Dibromo-3-chloropropane	< 5.0	5.0									
1,2,4-Tri	1,2,4-Trichlorobenzene	< 5.0	5.0									
Surr:	Surr: 1,2-Dichloroethane-d4	48.02	5.0	20		96	64.8	130	0	0		
Surr:	Surr: 4-Bromofluorobenzene	48.98	2.0	50		98	76.8	122	0	0		
Surr:	Surr: Toluene-d8	47.74	5.0	20	0	95.5	78.5	120	0	0		
MBLK	SeqNo: 414519						Tes	TestNo: SW1311/8260	1/8260	RunNo:	37117	
	Samp ID: MB-12222						n	Units: µg/L	Ana	Analysis Date: 9	9/13/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr:	Surr: 1,2-Dichloroethane-d4	1053	0	850	0	124	62.7	138	0	0		
Surr:	Surr: 4-Bromofluorobenzene	940.1	0	820	0	111	65	133	0	0		
Surr:	Surr: Toluene-d8	1011	0	850	0	119	20	141	0	0		
CS	SeqNo: 414842						 Tes	TestNo: SW1311/8260	1/8260	RunNo:	37117	
	Samp ID: LCS050						-5	Units: µg/L	Ana	Analysis Date: 9	9/13/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Qualifiers:	rs: ND - Not Detected at the Reporting Limit	e Reporting Limit		dS - S	S - Spike Recovery outside accepted recovery limits	accepted reco	overy limits		B - Analyte detected in the associated Method Blank	ed in the associ	ated Method E	3lank
	J - Analyte detected below quantitation limits	ow quantitation limits		R - RP	R - RPD outside accepted recovery limits	recovery limit	S				Page 25 of 27	of 27

Shaw Environmental & Infrastructure CLIENT:

060912037 Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R37117

rcs	SeqNo: 414842						TestN	TestNo: SW1311/8260	/8260	RunNo: 37117	
	Samp ID: LCS050						Units	Units: µg/L	Ana	Analysis Date: 9/13/2006	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	lighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Surr: 1	Surr: 1,2-Dichloroethane-d4	49.15	0	20	0	98.3	62.7	138	0	0	
Surr: 4	Surr: 4-Bromofluorobenzene	54.76	0	50	0	110	65	133	0	0	
Surr: 1	Surr: Toluene-d8	52.11	0	20	0	104	20	141	0	0	
MS	SeqNo: 414840	The second secon					TestN	TestNo: SW1311/8260	/8260	RunNo: 37117	
	Samp ID: 060912007-001A						Units	Units: µg/L	Ana	Analysis Date: 9/13/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	lighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Surr: 1	Surr: 1,2-Dichloroethane-d4	8.769	0	850	0	82.1	62.7	138	0	0	
Surr: 4	Surr: 4-Bromofluorobenzene	732.9	0	850	0	86.2	92	133	0	0	
Surr: 1	Surr: Toluene-d8	747.5	0	850	0	87.9	20	141	0	0	
MSD	SeqNo: 414841						TestN	TestNo: SW1311/8260	/8260	RunNo: 37117	
	Samp ID: 060912007-001A						Units	Units: µg/L	Ana	Analysis Date: 9/13/2006	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	lighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Surr: 1	Surr: 1,2-Dichloroethane-d4	718.2	0	820	0	84.5	62.7	138	0	0 0	
Surr: 4	Surr: 4-Bromofluorobenzene	726.3	0	850	0	85.4	65	133	0	0 0	
Surr: 1	Surr: Toluene-d8	775.7	0	850	0	91.3	70	141	0	0 0	

J - Analyte detected below quantitation limits

Page 27 of 27

B - Analyte detected in the associated Method Blank

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060912037

Project: Schenectady Army Depot

BatchID: R37148

ANALYTICAL QC SUMMARY REPORT

Qual 04 04 0 **RPDLimit** Analysis Date: 9/14/2006 RunNo: 37148 %RPD 8.26 0 0 0 546 106.9 112.6 RPD Ref Val TestNo: SW8151A Units: µg/Kg-dry 140 140 145 LowLimit HighLimit 90 106 97.3 103 %REC 3.764 SPK Ref Val 112.4 112.4 561.8 561.8 SPK value PQL 225 225 225 0 Samp ID: 060912037-001A (EX-AOI6-001) 109.3 119.3 593 564.4 Result Surr: 2,4 Dichlorophenyl acetic acid SeqNo: 415111 2,4,5-TP (Silvex) 2,4,5-T MSD Analyte 2,4-D

nits
ery lir
ecov.
pted 1
accept
utside
ery o
Recov
pike I
S-S

ND - Not Detected at the Reporting Limit
J - Analyte detected below quantitation limits

Qualifiers:

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

Experience is the solution

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:	C was n	antal A	ddress:	400	EV AA		71	0.	- 1				
Soud Banart To	Environ M	[8/0 /4/]	(W	(CO	US Rt.	2	24	Za-	7-	Momoo			
Sena Report 10	Callello		Tojeci Name Salas raj	(Lucanon)	01. / Da-c	+ 1	07	₹ Samμ	ners:	semes) :	1		
Client Phone No	· · · · · · · · · · · · · · · · · · ·	Client Fax No:	XN GV E >	PO N	mpor Dego	7 77	UYE	Samo	//·	(Sidnate	<u>\$ /</u>		
	25-6080	ondik i ax No.		I O N	uninci.			Gamp	1013.	As -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
(61-1	13-608					Tim	e T	Sample	Tyne	Numb	ar		
AES Sample Number	Samı	Client ole Identification &	Location		Date Sampled	A=a. P=p.	m.	Matrix	Comp	등 Cont		Analysis Req Pesticodo Metals	uired
001	EX-A01	-6-mal			9/1406	1330	A (6) <	Sec. 1		¥ 4	2006	Pesticidi Model	Harbicid
\bigcirc	CX 7101	- 6 001			4.700	1370	A	OII			1, 517	THETELIS	* 75, >V
							P						
							Α						
							P						
							A						
							A						
				······································			Р					***************************************	
							A						
							P						
							P						
							Α						
						<u> </u>	Р						
							A P						
			***************************************				Α						
			······································				Р						
							P						
							A						
							Р						
							A P						
						-	A		\dashv				
							Р						
AES Work Orde	er #:			CC Report	To / Special Ins	truction	ıs/Ren	narks:					
	112037	•			Gray				EC M	RL	, ne	thod #	-15
Turnaround Tim	•												
≯ 1 Day		Normal											
☐ 2 Day	□ 5 Day												
-	-			Danning!	un (Cinnatura)					~	-	Dete /T'	
Relinquished by	y: (Signature)	1		Keceivea i	oy: (Signature)							Date/Tim	е
Relinquished b	y: (Signature)	***************************************		Received I	oy: (Signature)		***************************************					Date/Tim	е
Relinquished b	y: (Signature)			Received 1	or Laboratory b	y: <i>[</i>				_	0/	Date/Tim	e >< > ^
	Terren			Page	FDI / Para		_	$\overline{}$	_	n	<u> 41</u>	12106	5,51
	TEMPERATURE			PHOP	ERLY PRESERVED	i				MECE	VED WITH	IN HOLDING TII	VIES
l	mbjent or (Chi	lled			N						\mathcal{U}	N	
Notes:	1		Notes	:					No	otes:		······································	

WHITE - Lab Copy

YELLOW - Sampler Copy

PINK - Generator Copy

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All Services rendered by **Adirondack Environmental Services**, **Inc.** are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services**, **Inc.** report regarding said work or such claim shall be deemed as irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and **Adirondack Environmental Services, Inc.** is not responsible for the accuracy of this information.

Shaw Environmental & Infrastructure, Inc.

Data Usability Report

16406 U.S. Route 224 East • Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER:

Tom Mathison

SAMPLE RECEIPT DATE:

09/13/2006

PROJECT NAME:

USACE-SAD-AOC-2

LABORATORY SDG:

060913042

The Findlay Ohio Applied Sciences Group has performed a QA evaluation of the data report from Adirondack Environmental Laboratories, Inc. (AEL) in Albany, NY. The results are for samples collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table.

	Sample Summa	**************************************	
Sample Number	Collection Date	Matrix	Analysis Requested
EX-F-24A, EX-F-25A, EX-F-27A	09/13/2006	Soil	Target Metals SW-6010B/7471A
EX-F-30A, EX-F-31A, EX-F-32A			

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and was hand delivered containing ice within hours of sample collection. The laboratory provided a faxed preliminary report within the specified turn around time and a full data package at a later date. The following describes the overall QA/QC indicators.

Metals Analysis in Soil by SW6010B and SW7471A

Although the data package does not provide the calibration data, the Case Narrative states that the ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements.

Method Blanks: The method blank results are below reporting limits for all reported analytes.

LCS: The LCS recoveries are within laboratory acceptance criteria for the target analytes. Recovery of Iron (51.7%R) and Vanadium (74.1%R) are low compared to the method range of 80-120%R for the LCS.

QC Matrix: The MS recoveries and duplicate precision, using sample EX-F-32A for Mercury are within acceptance limits. A sample from another client site was used for the QC Matrix analyses for the ICP metals and all analytes with native concentrations less than 4X the spike level were within limits as was the duplicate precision.

Reported results should be utilized with confidence

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

Guy Gallelle, Jr.-Project Chemist

130/2006

Experience is the solution

314 North Pearl Street ♦ Albany, New York 12207 (800) 848-4983 ♦ (518) 434-4546 ♦ Fax (518) 434-0891

September 14, 2006

Guy Gallello Shaw Environmental & Infrastructure 16406 US Route 224 East Findlay, OH 45840

TEL: (419) 425-6080

FAX: (419) 425-6085

RE: Schenectady Army Depot

Area F

Dear Guy Gallello:

Adirondack Environmental Services, Inc received 6 samples on 9/13/2006 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

ELAP#: 10709 AIHA#: 100307

Work Order No: 060913042

PO#: 212830 OP

Christopher Hess QA Manager

G. Gallello - FAX

R - RPD outside accepted recovery limits

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060913042

Project: Schenectady Army Depot

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
CP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/13	3/2006)					•
Aluminum	11800	21.6		μg/g-dry	1	9/13/2006 3:16:00 PM
Antimony	< 13.0	13.0		μg/g-dry	1	9/13/2006 3:16:00 PM
Arsenic	1.66	1.08	S	μg/g-dry	1	9/13/2006 3:16:00 PM
Barium	103	2.16		μg/g-dry	1	9/13/2006 3:16:00 PM
Beryllium	0.55	1.08	J	μg/g-dry	1	9/13/2006 3:16:00 PM
Cadmium	< 1.08	1.08		μg/g-dry	1	9/13/2006 3:16:00 PM
Calcium	23800	108		µg/g-dry	1	9/13/2006 3:16:00 PM
Chromium	21.6	1.08		µg/g-dry	1	9/13/2006 3:16:00 PM
Cobalt	23.9	10.8	S	μg/g-dry	1	9/13/2006 3:16:00 PM
Copper	35.5	1.08		μg/g-dry	1	9/13/2006 3:16:00 PM
Iron	32600	108		μg/g-dry	10	9/13/2006 3:42:00 PM
Lead	< 1.08	1.08		µg/g-dry	1	9/13/2006 3:16:00 PM
Magnesium	9770	108		μg/g-dry	1	9/13/2006 3:16:00 PM
Manganese	548	2.16		µg/g-dry	1	9/13/2006 3:16:00 PM
Nickel	< 10.8	10.8		µg/g-dry	1	9/13/2006 3:16:00 PM
Potassium	1320	108		μg/g-dry	1	9/13/2006 3:16:00 PM
Selenium	< 1.08	1.08	S	μg/g-dry	1	9/13/2006 3:16:00 PM
Silver	< 4.33	4.33	S	μg/g-dry	1	9/13/2006 3:16:00 PM
Sodium	672	108		μg/g-dry	1	9/13/2006 3:16:00 PM
Thallium	< 2.16	2.16		μg/g-dry	1	9/13/2006 3:16:00 PM
Vanadium	13.4	10.8		μg/g-dry	1	9/13/2006 3:16:00 PM
Zinc	74.1	2.16		μg/g-dry	1	9/13/2006 3:16:00 PM
MERCURY SW7471A						Analyst: KH
(Prep: SW7471A - 9/13	/2006)					
Mercury	< 0.108	0.108	S	μg/g-dry	1	9/14/2006
OISURE CONTENT D2216						Analyst: RC
Percent Moisture	7.6	1.0		wt%	1	9/13/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 14-Sep-06

Client Sample ID: EX-F-24A

Collection Date: 9/13/2006

Lab Sample ID: 060913042-001

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060913042

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 14-Sep-06

Client Sample ID: EX-F-25A

Collection Date: 9/13/2006

Lab Sample ID: 060913042-002

Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A - 9/1;	3/2006)					Analyst: SM
Aluminum	5340	20.5			4	0/40/0000 0-04-00 004
Antimony	5340 < 13.5	22.5 13.5		μg/g-dry	1	9/13/2006 3:21:00 PM
Arsenic	< 13.5 1.76	1.12	0	μg/g-dry	1	9/13/2006 3:21:00 PM
Barium	42.4		S	μg/g-dry	1	9/13/2006 3:21:00 PM
Beryllium	42.4 0.28	2.25 1.12	J	μg/g-dry	1 1	9/13/2006 3:21:00 PM
Cadmium	0.28 < 1.12	1.12	J	μg/g-dry	•	9/13/2006 3:21:00 PM
Calcium	10400	1.12		μg/g-dry	1	9/13/2006 3:21:00 PM
Chromium	10400	1.12		μg/g-dry	1 1	9/13/2006 3:21:00 PM
Cobalt	10.2	11.2		μg/g-dry	1	9/13/2006 3:21:00 PM 9/13/2006 3:21:00 PM
	19.8	1.12	s	μg/g-dry	1	
Copper Iron	14700	11.2	5	μg/g-dry	1	9/13/2006 3:21:00 PM 9/13/2006 3:21:00 PM
Lead	< 1.12	1.12		μg/g-dry	1	9/13/2006 3:21:00 PM 9/13/2006 3:21:00 PM
	4660	1.12		μg/g-dry		
Magnesium	334			μg/g-dry	1	9/13/2006 3:21:00 PM
Manganese Nickel	> 354 < 11.2	2.25		μg/g-dry	1	9/13/2006 3:21:00 PM
Potassium	< 11.2 545	11.2		μg/g-dry	1	9/13/2006 3:21:00 PM
		112	_	μg/g-dry	1	9/13/2006 3:21:00 PM
Selenium	< 1.12	1.12	S	μg/g-dry	1	9/13/2006 3:21:00 PM
Silver	< 4.50	4.50	S	μg/g-dry	1	9/13/2006 3:21:00 PM
Sodium	633	112		μg/g-dry	1	9/13/2006 3:21:00 PM
Thallium	< 2.25	2.25		μg/g-dry	1	9/13/2006 3:21:00 PM
Vanadium	5.2	11.2	J	µg/g-dry	1	9/13/2006 3:21:00 PM
Zinc	28.8	2.25		μg/g-dry	1	9/13/2006 3:21:00 PM
MERCURY SW7471A	2/2006					Analyst: KH
(Prep: SW7471A - 9/1	3/2006)					
Mercury	< 0.112	0.112	S	μg/g-dry	1	9/14/2006
MOISURE CONTENT D2216						Analyst: RC
Percent Moisture	11.1	1.0		wt%	1	9/13/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060913042

Collection Date: 9/13/2006 Project: Schenectady Army Depot **Lab Sample ID:** 060913042-003

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
CP METALS SW6010B (Prep: SW3050A - 9/1;	2/2006 \					Analyst: SM
` '	3/2006)					
Aluminum	7320	21.9		µg/g-dry	1	9/13/2006 3:26:00 PM
Antimony	< 13.1	13.1		µg/g-dry	1	9/13/2006 3:26:00 PM
Arsenic	< 1.10	1.10	S	μg/g-dry	1	9/13/2006 3:26:00 PM
Barium	246	2.19		μg/g-dry	1	9/13/2006 3:26:00 PM
Beryllium	0.35	1.10	J	μg/g-dry	1	9/13/2006 3:26:00 PM
Cadmium	< 1.10	1.10		μg/g-dry	1	9/13/2006 3:26:00 PM
Calcium	20000	110		μg/g-dry	1	9/13/2006 3:26:00 PM
Chromium	13.2	1.10		μg/g-dry	1	9/13/2006 3:26:00 PM
Cobalt	32.1	11.0	S	μg/g-dry	1	9/13/2006 3:26:00 PM
Copper	22.8	1.10		μg/g-dry	1	9/13/2006 3:26:00 PM
Iron	16600	11.0		μg/g-dry	1	9/13/2006 3:26:00 PM
Lead	< 1.10	1.10		µg/g-dry	1	9/13/2006 3:26:00 PM
Magnesium	7080	110		μg/g-dry	1	9/13/2006 3:26:00 PM
Manganese	397	2.19		μg/g-dry	1	9/13/2006 3:26:00 PM
Nickel	< 11.0	11.0		μg/g-dry	1	9/13/2006 3:26:00 PM
Potassium	791	110		μg/g-dry	1	9/13/2006 3:26:00 PM
Selenium	< 1.10	1.10	S	μg/g-dry	1	9/13/2006 3:26:00 PM
Silver	< 4.38	4.38	S	μg/g-dry	1	9/13/2006 3:26:00 PM
Sodium	652	110		μg/g-dry	1	9/13/2006 3:26:00 PM
Thallium	< 2.19	2.19		μg/g-dry	1	9/13/2006 3:26:00 PM
Vanadium	9.1	11.0	J	μg/g-dry	1	9/13/2006 3:26:00 PM
Zinc	45.1	2.19		μg/g-dry	1	9/13/2006 3:26:00 PM
MERCURY SW7471A						Analyst: KH
(Prep: SW7471A - 9/13	3/2006)					
Mercury	< 0110	0.110	S	µg/g-dry	1	9/14/2006
MOISURE CONTENT D2216						Analyst: RC
Percent Moisture	8.7	1.0		wt%	1	9/13/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 14-Sep-06

Client Sample ID: EX-F-30A

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060913042

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 14-Sep-06

Client Sample ID: EX-F-27A

Collection Date: 9/13/2006

Lab Sample ID: 060913042-004

Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B	2/2022					Analyst: SM
(Prep: SW3050A - 9/1	3/2006)					
Aluminum	9790	24.0		μg/g-dry	1	9/13/2006 3:30:00 PM
Antimony	0.26	14.4	J	μg/g-dry	1	9/13/2006 3:30:00 PM
Arsenic	0.18	1.20	JS	μg/g-dry	1	9/13/2006 3:30:00 PM
Barium	29.5	2.40		μg/g-dry	1	9/13/2006 3:30:00 PM
Beryllium	0.54	1.20	J	μg/g-dry	1	9/13/2006 3:30:00 PM
Cadmium	< 1.20	1.20		μg/g-dry	1	9/13/2006 3:30:00 PM
Calcium	2500	120		μg/g-dry	1	9/13/2006 3:30:00 PM
Chromium	18.0	1.20		μg/g-dry	1	9/13/2006 3:30:00 PM
Cobalt	33.0	12.0	S	μg/g-dry	1	9/13/2006 3:30:00 PM
Copper	42.2	1.20		μg/g-dry	1	9/13/2006 3:30:00 PM
Iron	27100	120		μg/g-dry	10	9/13/2006 4:07:00 PM
Lead	< 1.20	1.20		μg/g-dry	1	9/13/2006 3:30:00 PM
Magnesium	4680	120		μg/g-dry	1	9/13/2006 3:30:00 PM
Manganese	222	2.40		μg/g-dry	1	9/13/2006 3:30:00 PM
Nickel	6.7	12.0	J	μg/g-dry	1	9/13/2006 3:30:00 PM
Potassium	710	120		μg/g-dry	1	9/13/2006 3:30:00 PM
Selenium	< 1.20	1.20	S	μg/g-dry	1	9/13/2006 3:30:00 PM
Silver	< 4.80	4.80	S	μg/g-dry	1	9/13/2006 3:30:00 PM
Sodium	724	120		μg/g-dry	1	9/13/2006 3:30:00 PM
Thallium	< 2.40	2.40		μg/g-dry	1	9/13/2006 3:30:00 PM
Vanadium	13.8	12.0		μg/g-dry	1	9/13/2006 3:30:00 PM
Zinc	88.3	2.40		μg/g-dry	1	9/13/2006 3:30:00 PM
MERCURY SW7471A (Prep: SW7471A - 9/1:	3/2006)					Analyst: KH
Mercury	< 0.120	0.120	s	μg/g-dry	1	9/14/2006
MOISURE CONTENT D2216						Analyst: RC
Percent Moisture	16.6	1.0		wt%	1	9/13/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 $\ensuremath{\mathsf{T}}$ - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060913042

Collection Date: 9/13/2006 Project: Schenectady Army Depot Lab Sample ID: 060913042-005

PO#: 212830 OP Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/13	3/2006)					
Aluminum	11200	22.0		μg/g-dry	1	9/13/2006 3:34:00 PM
Antimony	< 13.2	13.2		μg/g-dry	1	9/13/2006 3:34:00 PM
Arsenic	0.52	1.10	JS	μg/g-dry	1	9/13/2006 3:34:00 PM
Barium	113	2.20		μg/g-dry	1	9/13/2006 3:34:00 PM
Beryllium	0.60	1.10	J	μg/g-dry	1	9/13/2006 3:34:00 PM
Cadmium	< 1.10	1.10		μg/g-dry	1	9/13/2006 3:34:00 PM
Calcium	23500	110		μg/g-dry	1	9/13/2006 3:34:00 PM
Chromium	19.9	1.10		μg/g-dry	1	9/13/2006 3:34:00 PM
Cobalt	24.0	11.0	S	μg/g-dry	1	9/13/2006 3:34:00 PM
Copper	32.4	1.10		μg/g-dry	1	9/13/2006 3:34:00 PM
Iron	28400	110		μg/g-dry	10	9/13/2006 4:11:00 PM
Lead	< 1.10	1.10		μg/g-dry	1	9/13/2006 3:34:00 PM
Magnesium	9190	110		μg/g-dry	1	9/13/2006 3:34:00 PM
Manganese	520	2.20		μg/g-dry	1	9/13/2006 3:34:00 PM
Nickel	0.23	11.0	J	μg/g-dry	1	9/13/2006 3:34:00 PM
Potassium	1280	110		μg/g-dry	1	9/13/2006 3:34:00 PM
Selenium	< 1.10	1.10	s	μg/g-dry	1	9/13/2006 3:34:00 PM
Silver	< 4.39	4.39	s	μg/g-dry	1	9/13/2006 3:34:00 PM
Sodium	708	110		μg/g-dry	1	9/13/2006 3:34:00 PM
Thallium	< 2.20	2.20		μg/g-dry	1	9/13/2006 3:34:00 PM
Vanadium	12.9	11.0		µg/g-dry	1	9/13/2006 3:34:00 PM
Zinc	63.8	2.20		μg/g-dry	1	9/13/2006 3:34:00 PM
MERCURY SW7471A						Analyst: KH
(Prep: SW7471A - 9/13	3/2006)					
Mercury	< 0.110	0.110	S	μg/g-dry	1	9/14/2006
MOISURE CONTENT D2216						Analyst: RC
Percent Moisture	8.9	1.0		wt%	1	9/13/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Date: 14-Sep-06

Client Sample ID: EX-F-31A

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT: Shaw Environmental & Infrastructure

Work Order: 060913042

Project: Schenectady Army Depot

PO#: 212830 OP

Date: 14-Sep-06

Client Sample ID: EX-F-32A

Collection Date: 9/13/2006

Lab Sample ID: 060913042-006

Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
CP METALS SW6010B						Analyst: SM
(Prep: SW3050A - 9/13	3/2006)					
Aluminum	12700	23.8		μg/g-dry	1	9/13/2006 3:38:00 PM
Antimony	< 14.3	14.3		μg/g-dry	1	9/13/2006 3:38:00 PM
Arsenic	0.12	1.19	JS	μg/g-dry	1	9/13/2006 3:38:00 PM
Barium	62.3	2.38		µg/g-dry	1	9/13/2006 3:38:00 PM
Beryllium	0.99	1.19	J	μg/g-dry	1	9/13/2006 3:38:00 PM
Cadmium	< 1.19	1.19		μg/g-dry	1	9/13/2006 3:38:00 PM
Calcium	3320	119		μg/g-dry	1	9/13/2006 3:38:00 PM
Chromium	21.0	1.19		μg/g-dry	1	9/13/2006 3:38:00 PM
Cobalt	14.9	11.9	S	µg/g-dry	1	9/13/2006 3:38:00 PM
Copper	42.4	1.19		μg/g-dry	1	9/13/2006 3:38:00 PM
Iron	24900	119		µg/g-dry	10	9/13/2006 4:15:00 PM
Lead	< 1.19	1.19		μg/g-dry	1	9/13/2006 3:38:00 PM
Magnesium	5380	119		μg/g-dry	1	9/13/2006 3:38:00 PM
Manganese	117	2.38		μg/g-dry	1	9/13/2006 3:38:00 PM
Nickel	< 11.9	11.9		μg/g-dry	1	9/13/2006 3:38:00 PM
Potassium	702	119		μg/g-dry	1	9/13/2006 3:38:00 PM
Selenium	< 1.19	1.19	s	μg/g-dry	1	9/13/2006 3:38:00 PM
Silver	< 4.75	4.75	S	μg/g-dry	1	9/13/2006 3:38:00 PM
Sodium	676	119		μg/g-dry	1	9/13/2006 3:38:00 PM
Thallium	< 2.38	2.38		μg/g-dry	1	9/13/2006 3:38:00 PM
Vanadium	14.9	11.9		μg/g-dry	1	9/13/2006 3:38:00 PM
Zinc	64.0	2.38		μg/g-dry	1	9/13/2006 3:38:00 PM
MERCURY SW7471A						Analyst: KH
(Prep: SW7471A - 9/13	/2006)					
Mercury	< 0.119	0.119	s	μg/g-dry	1	9/14/2006
NOISURE CONTENT D2216						Analyst: RC
Percent Moisture	15.8	1.0		wt%	1	9/13/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Shaw Environmental & Infrastructure 060913042 CLIENT:

Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

Date: 21-Nov-06

BatchID: 12231

MPIK	L								
	Sedino: 414362			Prepuate:		TestNo: SW6010B	0B	RunNo: 37124	-
	Samp ID: MBLK			PrepRef:(SW3050A)		Units: µg/g	Ana	Analysis Date: 9/13/2006	
Analyte		Result PC	POL	SPK value SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	ш	6.65	20.0						7
Antimony	χί	0.75	12.0						7
Arsenic		< 1.00	1.00						
Barium		0.084	2.00						
Beryllium	E	0.034	1.00						٦,
Cadmium	E	< 1.00	1.00						
Calcium	_	< 100	100						
Chromium	ur	< 1.00	1.00						
Cobalt	9	0.001466	10.0						7
Copper			1.00						7
Iron		0.754	10.0						۔
Lead		< 1.00	1.00						
Magnesium	ium	0.44	100						_
Manganese	ese	0.01	2.00						7
Nickel		< 10.0	10.0						
Potassium	mn.	0.148	100						7
Selenium	a	< 1.00 1.	1.00						
Silver		0.474 4.	4.00						
Sodium		< 100	100						
Thallium		< 2.00	2.00						
Vanadium	ш	0.462	10.0						7
Zinc		< 2.00 2.	2.00						
MBLK	SeqNo: 415215	**************************************		PrepDate:	Yellow the second secon	TestNo: SW6010B	0B	RunNo: 37182	
	Samp ID: MBLK			PrepRef:(SW3050A)		Units: µg/g		Analysis Date: 9/14/2006	

MBLK	SeqNo: 415215		PrepDate:		Tes	TestNo: SW6010B	0B	RunNo: 37182	37182	
	Samp ID: MBLK		PrepRef:(SW3050A)		'n	Units: µg/g	Ana	Analysis Date: 9/14/2006	9/14/2006	
Analyte	Result	POL	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	WREC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Aluminum	n 0.715	5.00								7
Antimony	0.1075	3.00								7
Arsenic	< 0.250	0.250								
Barium	0.0355	0.500								٦
Qualifiers:	s: ND - Not Detected at the Reporting Limit		S - Spike Recovery outside accepted recovery limits	ccepted reco	very limits	protect.	B - Analyte detected in the associated Method Blank	ed in the assoc	iated Method Bl	ank
	J - Analyte detected below quantitation limits		R - RPD outside accepted recovery limits	covery limits					Page 1 of 7	. of 7

Work Order: 060913042

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: 12231

MBI K Soalo: 445245			DranDate:	ţo.							
			יופטור			Test	TestNo: SW6010B	98	RunNo: 377	37182	
Samb ID: MBLK			PrepRe	PrepRef:(SW3050A)		Uni	Units: µg/g	Ans	Analysis Date: 9/1	9/14/2006	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	WRPD	RPDLimit	Qual
Beryllium	< 0.250	0.250									
Cadmium	< 0.250	0.250									
Calcium	0.013	25.0									
Chromium	< 0.250	0.250									
Cobalt	0.0005	2.50									7
Copper	0.054	0.250									7
Iron	0.2105	2.50									7
Lead	< 0.250	0.250									
Magnesium	< 25.0	25.0									
Manganese	0.0005	0.500									_
Nickel	0.008	2.50									<u>_</u>
Potassium	0.145	25.0									- >
Selenium	< 0.250	0.250									
Silver	0.069	1.00									7
Sodium	< 25.0	25.0									
Thallium	< 0.500	0.500									
Vanadium	0.0915	2.50									7
Zinc	< 0.500	0.500									
LCS SeqNo: 414563			PrepDate:	ıte:		Test	TestNo: SW6010B	8	RunNo: 37	37124	
Samp ID: LCS-S			PrepRe	PrepRef:(SW3050A)		Uni	Units: µg/g	Ani	Analysis Date: 9/1	9/13/2006	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	6054	20.0	7590	6.65	79.7	57.8	142.3	0	0		
Antimony	64.02	12.0	77.5	0.75	81.6	5.3	223.2	0	0		
Arsenic	75.08	1.00	80.9	0	92.8	79.7	120.3	0	0		
Barium	149.9	2.00	156	0.084	96	82.1	117.9	0	0		
Beryllium	142.9	1.00	143	0.034	6.66	81.8	118.2	0	0		
Cadmium	223.7	1.00	233	0	96	80.7	118.9	0	0		
Calcium	4107	100	4320	0	95.1	79.2	120.8	0	0		
Chromium	55.15	1.00	8.09	0	2.06	78.5	121.4	0	0		
Cobalt	78.84	10.0	9.89	0.001466	115	81.8	118.2	0	0		
Copper	128.6	1.00	131	0.114	98.1	82.4	117.6	0	0		

Page 2 of 7

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

ANALYTICAL QC SUMMARY REPORT

BatchID: 12231

060913042 Work Order:

Shaw Environmental & Infrastructure

CLIENT:

Schenectady Army Depot Project:

rcs	SeqNo: 414563			PrepDate:	.;		Test	TestNo: SW6010B	98	RunNo: 37	37124	
	Samp ID: LCS-S			PrepRef	PrepRef:(SW3050A)		Unil	Units: µg/g		Analysis Date: 9/1	9/13/2006	
Analyte		Result	POL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Iron		7446	10.0	14400	0.754	51.7	51.5	148.6	0	0		
Lead		78.66	1.00	76.8	0	102	80.6	119.5	0	0		
Magnesium	un un	1913	100	2220	0.44	86.1	77	123	0	0		
Manganese	est	273	2.00	304	0.01	86.8	79.9	120.1	0	0		
Nickel		46.13	10.0	49.6	0	93	81.5	118.5	0	0		
Potassium	ш	2153	100	2380	0.148	90.5	71.4	128.6	0	0		
Selenium		71.36	1.00	82.9	0	86.1	75.5	124.2	0	0		
Silver		66.75	4.00	80	0.474	82.8	61.3	138.8	0	0		
Sodium		466.9	100	456	0	102	55.7	144.3	0	0		
Thallium		159.1	2.00	158	0	101	75.3	124.7	0	0		
Vanadium	E	54.16	10.0	72.4	0.462	74.2	71.4	128.5	0	0		
Zinc		110.2	2.00	116	0	95	78	121.6	0	0		
SOT	SeqNo: 415216			PrepDate:	e:		Test	TestNo: SW6010B	98	RunNo: 37	37182	
	Samp ID: LCS-S			PrepRef	PrepRef:(SW3050A)		Cni	Units: µg/g	An	Analysis Date: 9/1	9/14/2006	
Analyte		Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	L	5710	5.00	7590	0.715	75.2	57.8	142.3	0	0		
Antimony		34.81	3.00	77.5	0.1075	44.8	1.3	223.2	0	0		
Arsenic		70.22	0.250	80.9	0	86.8	79.7	120.3	0	0		
Barium		151.1	0.500	156	0.0355	96.9	82.1	117.9	0	0		
Beryllium		139.5	0.250	143	0	97.6	81.8	118.2	0	0		
Cadmium	ر	214.2	0.250	233	0	91.9	80.7	118.9	0	0		
Calcium		4108	25.0	4320	0.013	95.1	79.2	120.8	0	0		
Chromium	The state of the s	56.31	0.250	8.09	0	97.6	78.5	121.4	0	0		
Cobalt		77.56	2.50	9.89	0.0005	113	81.8	118.2	0	0		
Copper		129.4	0.250	131	0.054	98.8	82.4	117.6	0	0		
Iron		7330	2.50	14400	0.2105	50.9	51.5	148.6	0	0		S
Lead		61.15	0.250	76.8	0	79.6	9.08	119.5	0	0		S
Magnesium	ш	1848	25.0	2220	0	83.3	77	123	0	0		
Manganese	Se	258.5	0.500	304	0.0005	82	79.9	120.1	0	0		
Nickel		45.64	2.50	49.6	0.008	92	81.5	118.5	0	0		
Potassium	ш	2158	25.0	2380	0.145	90.7	71.4	128.6	0	0		
Qualifiers:	s: ND - Not Detected at the Reporting Limit	orting Limit	A STATE OF THE STA	S - Spike	S - Spike Recovery outside accepted recovery limits	accepted reco	very limits		3 - Analyte detec	B - Analyte detected in the associated Method Blank	ed Method Bl	ank
	J - Analyte detected below quantitation limits	antitation limits		R - RPD	R - RPD outside accepted recovery limits	ecovery limits					Page 3 of 7	of 7

ANALYTICAL QC SUMMARY REPORT

BatchID: 12231

060913042

Work Order: CLIENT:

Shaw Environmental & Infrastructure

Schenectady Army Depot Project:

SOT	SeqNo: 415216			PrepDate:	.; ;		Test	TestNo: SW6010B	0B	RunNo: 37182	82	
	Samp ID: LCS-S			PrepRef	PrepRef:(SW3050A)		n O	Units: µg/g		Analysis Date: 9/14	9/14/2006	
Analyte		Result	Pal	SPK value SI	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit	RPD Ref Val	%RPD R	RPDLimit	Qual
Selenium	F	65.53	0.250	82.9	0	62	75.5	124.2	0	0		
Silver		82.44	1.00	80	0.069	103	61.3	138.8	0	0		
Sodium		466.7	25.0	456	0	102	55.7	144.3	0	0		
Thallium		154	0.500	158	0	97.5	75.3	124.7	0	0		
Vanadium	Ε	54.18	2.50	72.4	0.0915	74.7	71.4	128.5	0	0		
Zinc		105.2	0.500	116	0	200.7	78	121.6	0	0		

MS	SeqNo: 414566			PrepD	PrepDate:9/13/2006		Test	TestNo: SW6010B	0B	RunNo: 37124	
	Samp ID: 060912037-001A			PrepR	PrepRef:(SW3050A)		Uni	Units: µg/g-dry		Analysis Date: 9/13/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	mit Qual
Aluminum	un un	13680	22.5	449.4	16170	-554	75	125	0	0	S
Antimony	ny	117.3	13.5	112.4	15.58	90.5	75	125	0	0	
Arsenic		8.265	1.12	8.989	1.571	74.5	75	125	0	0	S
Barium		516.3	2.25	449.4	60.87	101	75	125	0	0	
Berylliu	<u>E</u>	12.47	1.12	11.24	0.5528	106	75	125	0	0	
Cadmium	ш	10.51	1.12	11.24	0	93.6	75	125	0	0	
Chromium	m	69.67	1.12	44.94	26.4	96.3	75	125	0	0	
Cobalt		169.3	11.2	112.4	21.22	132	75	125	0	0	S
Copper		87.68	1.12	56.18	36.67	8.06	75	125	0	0	
Iron		23470	11.2	224.7	26160	-1200	75	125	0	0	S
Lead		5.335	1.12	4.494	0	119	75	125	0	0	
Manganese	nese	619.4	2.25	112.4	573	41.4	75	125	0	0	S
Nickel		111.4	11.2	112.4	0	99.2	75	125	0	0	
Selenium	ш	1.667	1.12	2.247	0	74.2	75	125	0	0	S
Silver		6.472	4.49	11.24	0	9'.29	75	125	0	0	S
Thallium	L L	8.458	2.25	11.24	0	75.3	75	125	0	0	
Vanadium	un	131.1	11.2	112.4	19.71	99.1	75	125	0	0	
Zinc		196.2	2.25	112.4	86.18	97.9	75	125	0	0	

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

B - Analyte detected in the associated Method Blank

Page 4 of 7

Shaw Environmental & Infrastructure CLIENT:

060913042 Work Order:

Schenectady Army Depot Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: 12231

DUP	SeqNo: 414565			PrepDa	PrepDate:9/13/2006		Test	TestNo: SW6010B)B	RunNo: 3	37124	
	Samp ID: 060912037-001A			PrepRef:	÷		Uni	Units: µg/g-dry			9/13/2006	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	٤	16030	22.5	0	0	0	0	0	16170	0.861	20	
Antimony	>	10.36	13.5	0	0	0	0	0	15.58	0	17.2	
Arsenic		1.29	1.12	0	0	0	0	0	1.571	19.6	15.3	œ
Barium		60.02	2.25	0	0	0	0	0	60.87	1.41	17.8	
Beryllium	–	0.5663	1.12	0	0	0	0	0	0.5528	0	11.5	
Cadmium	Ę	-0.4382	1.12	0	0	0	0	0	0	0	15.4	
Calcium		22410	112	0	0	0	0	0	22370	0.191	20	
Chromium	ш	26.94	1.12	0	0	0	0	0	26.4	2.04	20	
Cobalt		21.24	11.2	0	0	0	0	0	21.22	0.106	18.9	
Copper		36.89	1.12	0	0	0	0	0	36.67	0.617	20	
Lead		-20.14	1.12	0	0	0	0	0	0	0	20	
Magnesium	mn	8504	112	0	0	0	0	0	8552	0.565	20	
Manganese	ese	574.9	2.25	0	0	0	0	0	573	0.336	20	
Nickel		-7.681	11.2	0	0	0	0	0	0	0	16.5	
Potassium	ш	2261	112	0	0	0	0	0	2321	2.62	20	
Selenium	Ľ	-43.66	1.12	0	0	0	0	0	0	0	20	
Silver		-4.193	4.49	0	0	0	0	0	0	0	10.3	
Sodium		236.3	112	0	0	0	0	0	249.5	5.40	21.2	
Thallium		-2.948	2.25	0	0	0	0	0	0	0	23.1	
Vanadium	Е	18.73	11.2	0	0	0	0	0	19.71	5.13	11.5	
Zinc		86.47	2.25	0	0	0	0	0	86.18	0.344	20.4	
DUP	SeqNo: 414568			PrepDa	PrepDate:9/13/2006		Test	TestNo: SW6010B	BC	RunNo: 3	37124	
	Samp ID: 060912037-001A			PrepRef:	4.1		Uni	Units: µg/g-dry		Analysis Date: 9	9/13/2006	
Analyte Iron		Result 16120	<u>PQL</u> 112	SPK value S	SPK Ref Val	<u>%REC</u>	<u>LowLimit</u> 0	HighLimit 0	RPD Ref Val 15750	<u>%RPD</u> 2.32	RPDLimit 16.4	Qual

Qualifiers:	ND - Not Detected at the Reporting Limit	S - Spike Recovery outside accepted recovery limits	B - Analyte detected in tl
	J - Analyte detected below quantitation limits	R - RPD outside accepted recovery limits	

Page 5 of 7

Work Order: 060913042

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: 12232

N GW	L			0000/01/01/01				4	
MDLY	Seqino: 41454/			PrepDate:9/13/2006		TestNo: SW7471A	14	RunNo: 37121	
	Samp ID: MB-12232			PrepRef:(SW7471A)		Units: µg/g	Ana	Analysis Date: 9/13/2006	
Analyte Mercury		Result < 0.0400	PQL 0.0400	SPK value SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
MBLK	SeqNo: 415010 Samp ID: MB-12232			PrepDate:9/13/2006 PrepRef:(SW7471A)		TestNo: SW7471A Units: µg/g		RunNo: 37154 Analysis Date: 9/14/2006	
Analyte Mercury		Result < 0.0400	PQL 0.0400	SPK value SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
SOT	SeqNo: 414548 Samp ID: LCS-12232			PrepDate:9/13/2006 PrepRef:(SW7471A)		TestNo: SW7471A Units: µg/g		RunNo: 37121 Analysis Date: 9/13/2006	
Analyte Mercury		Result 3.925	PQL 1.00	SPK value SPK Ref Val 3.6 0	%REC 109	LowLimit HighLimit 68.1 131.9	RPD Ref Val	<u>%RPD</u> RPDLimit 0	Qual
SOT	SeqNo: 415011 Samp ID: LCS-12232			PrepDate:9/13/2006 PrepRef:(SW7471A)		TestNo: SW7471A Units: µg/g		RunNo: 37154 Analysis Date: 9/14/2006	
Analyte Mercury		Result 3.8	1.00	SPK value SPK Ref Val 3.6 0	%REC 106	LowLimit HighLimit 68.1 131.9	RPD Ref Val	<u>%RPD</u> <u>RPDLimit</u> 0	Qual
SE	SeqNo: 414551 Samp ID: 060912037-001A			PrepDate:9/13/2006 PrepRef:(SW7471A)		TestNo: SW7471A Units: µg/g-dry		RunNo: 37121 Analysis Date: 9/13/2006	
Analyte Mercury		Result 0.9494	<u>PQL</u> 0.112	SPK value SPK Ref Val 1.124 0	<u>%REC</u> 84.5	LowLimit HighLimit 74.4 123	RPD Ref Val	<u>%RPD</u> RPDLimit 0	Qual
MS	SeqNo: 415024 Samp ID: 060913042-006A (EX-F-32A)	(-F-32A)		PrepDate:9/13/2006 PrepRef:(SW7471A)		TestNo: SW7471A Units: µg/g-dry		RunNo: 37154 Analysis Date: 9/14/2006	
Analyte Mercury		Result 0.8432	POL 0.119	SPK value SPK Ref Val 1.188 0	<u>%REC</u> 71	LowLimit HighLimit 74.4 123	RPD Ref Val	%RPD RPDLimit 0	Qual S

Qualifiers: ND - Not Detected at the Reporting Limit
J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

repted recovery limits B - Analyte detected in the associated Method Blank

Page 6 of 7

Work Order: 060913042

Project: Schenectady Army Depot

ANALYTICAL QC SUMMARY REPORT

BatchID: 12232

DUP	SeqNo: 414550			Prepl	PrepDate:9/13/2006	900	T	TestNo: SW7471A	4	RunNo: 37121	7121	
	Samp ID: 060912037-001A	-		PrepRef:	Ref:		J	Units: µg/g-dry		Analysis Date: 9	9/13/2006	
Analyte Mercury		Result < 0.112	PQL 0.112	SPK value 0	SPK value SPK Ref Val	0	LowLimit (%REC LowLimit HighLimit RPD Ref Val 0 0 0 0	RPD Ref Val	<u>%RPD</u>	%RPD RPDLimit 0 20.8	Qual
DUP	SeqNo: 415023 Samp ID: 060913042-006A			PrepDate PrepRef:	PrepDate:9/13/2006 PrepRef:	900	Te	TestNo: SW7471A Units: µg/g-dry		RunNo: 37154 Analysis Date: 9/14/2006	17154	
Analyte Mercury		Result < 0.119	PQL 0.119	SPK value 0	SPK value SPK Ref Val 0		LowLimit	%REC LowLimit HighLimit 0 0 0	RPD Ref Val	%RPD 0	%RPD RPDLimit 0 20.8	Qual

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

Experience is the solution

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:		Address:								· · · · · · · · · · · · · · · · · · ·	
Shaw i	Environ mental Sallello : Client Fa			Findla V Dezot lumber:	Y . (74,	i 0				
Send Report To:	(11 11	Project Nan	ne (Location)) _	, ,	S	ample	ers: (N	ames)	(
Cruy (sallello	Schfol	1 Acm	y Dezo	+ Ara.	F	V	7.1	caylis		
Client Phóne No	Client Fa	x No:	P0 {\int	lumber: '		S	iample	ers: (S	ignature		
419-6	12, 600				Time	9.	ample 1	(UU)	Number		
AES Sample Number	Sample Identit	lient ication & Location		Date Sampled	A=a.m. P=p.m.	Mat	rix 2	Grab	of Cont's	Ana	alysis Required
001	EX-F-24 A	4		9-13-06	11/5 P	50	<i>i1</i>	X	/	TAL	metals
002	EX-F-251				//23 P			1			
003	EX- F-30 A	1			1/30 P	\coprod		X			
004	EX- F-27/	4			1138 A			X			***************************************
005	EX- F-311	9			1135 P			X			
004	(X- F-27, (X- F-3), (X- F-32,	A		V	1/47 A			X	V	4	/
				-	A P						
					A P						
					A P						
					A P						
					A P	1					
	,				A P	1					
					A						
					A			-			
AES Work Orde	r #:		CC Report	To / Special Ins		emar	ks:				
00	00913042										
Turnaround Time	·										
X 1 Day	□ 3 Day □ Norm □ 5 Day	al									
Relinquished by	: (Signature)		Received	by: (Signature)		***********				[Date/Time
Relinquished by	: (Signature)		Received	by: (Signature)			7 			[Date/Time
Relinquished by	: (Signature)		Received	for Laboratory t	y:	A	—— U —			41,21	Date/Time
	Temperature		Prop	PERLY PRESERVE		· X	1		Receive	WITHIN HO	
Ar Notes:	nbient or Chilled	5°C) Note	es:	<u> </u>		-		Notes		Y	N
	WHITE - Lab Conv		VELLOW	- Sampler Con						norator Con	

Adirondack Environmental Services, Inc.

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All Services rendered by **Adirondack Environmental Services**, **Inc.** are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services**, **Inc.** report regarding said work or such claim shall be deemed as irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and **Adirondack Environmental Services, Inc.** is not responsible for the accuracy of this information.

Shaw Environmental & Infrastructure, Inc.

Data Validation Report

16406 U.S. Route 224 East • Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER: PROJECT NAME:

Tom Mathison

USACE-Schenectady

SAMPLE RECEIPT DATE:

10/04/2006

LABORATORY SDG:

AEL-061004063

The Findlay Ohio Federal Technical Services Group has performed a QA evaluation of the data report from GPL Laboratories, LLLP, Frederick, MD. The results are for [1] soil/waste sample collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The sample was analyzed for the parameters listed in the Sample Summary Table.

	Sample Summ	ary Table	
Sample Number	Collection Date	Matrix	Analysis Requested
DS-AOI5-002	09/07/2006	Soil	TCLP VOC-SW1311/8260B
			TCLP SW-1311
			TCLP Pest – SW-8081A,
			TCLP Herb – SW-8151A,
			TCLP SVOC-SW-8270C
			TCLP Metals – SW-6010B/ 7471A,
	1		TPH-DRO/GRO SW8015M
			Reactive Cyanide - SW-9014R,
			Reactive Sulfide – SW-9034R,
			Total PCB – SW-8082,
			pH – SW-9045C,
			Paint Filter - SW-9095A, and
			Flashpoint – SW-1010

The sample was received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and was delivered to the laboratory within one hour of sample collection. Therefore the laboratory noted receipt temperature of 22 degrees C has no bearing on data usability. The laboratory provided faxed preliminary data within the specified turn around time and a hard copy Level II report at a later date. The following describes the overall QA/QC indicators.

TCLP Pesticide Analysis in Soil by SW-1311/8081A

The laboratory report does not provide the actual GC calibration information. However, based upon the Case Narrative the reviewer has assumed that the GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns.

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

QC Matrix: The MS/MSD recoveries, using the sample, were low for endrin and heptachlor epoxide with poor precision. These compounds were not found to be present in the actual soils and the SW-1311 method only requires recovery adjustment to the results if the analytes are a known concern. Therefore, the poor matrix performance for these compounds has no affect on data usability.

Surrogates: All surrogate recoveries are within acceptable criteria. This is indicative of acceptable method extraction and maintaining instrument control throughout the analytical sequence.

Reported results should be acted upon without reservation.

PCB Analysis in Soil by SW8082

The laboratory report does not provide the actual GC calibration information. However, based upon the Case Narrative the reviewer has assumed that the GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns.

The method blank results are below reporting limits for the target analytes. The laboratory does not independently spike with an Arochlor mixture and performs PCB analysis as an extension of its 8081A method. However, since one of the surrogates is actually a PCB (decachlorobiphenyl), confidence in the data can be gained from the surrogate performance which is acceptable for the sample and associated QC runs

The reported results should be utilized with confidence.

TCLP Herbicide Analysis in Soil by SW1311/8151A

The laboratory report does not provide the actual GC calibration information. However, based upon the Case Narrative the reviewer has assumed that the GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements for both front and rear columns.

Method Blank: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the target analytes, indicative of acceptable method accuracy and verifying proper instrument control.

MS/MSD: The QC Matrix recoveries and MSD precision, using the submitted sample, are within acceptance limits.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be utilized with confidence.

TCLP SVOC Analysis in Soil by SW1311/8270C

The laboratory report does not provide the actual GC calibration information. However, based upon the Case Narrative the reviewer has assumed that the GC/MS system was tuned and calibrated in accordance with method requirements and all analyses were performed within valid 12-hour tune clocks.

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the spiked target analytes. There is no recovery data for pyridine. This analyte has a very high TCLP limit and is often reported without batch-specific QC

MS/MSD: The QC Matrix recovery and precision, using the leachate from another client sample, is within acceptance limits for all spiked TCLP target compounds. The laboratory did not spike pyridine

Surrogates: Surrogate recoveries are acceptable for the sample and QC runs.

Reported results should be utilized with confidence.

TCLP VOC Analysis in Soil by SW1311/8260B

The laboratory report does not provide the actual GC calibration information. However, based upon the Case Narrative the reviewer has assumed that the GC/MS system was tuned and calibrated in accordance with method requirements and all analyses were performed within valid 12-hour tune clocks.

Method Blanks: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

QC Matrix: The QC Matrix recovery and precision is based upon performance in a another client site matrix. All analytes yielded acceptable recovery and precision.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be utilized with confidence.

TCLP Metals Analysis in Soil by SW1311/6010B and SW7471A

The laboratory report does not provide the actual GC calibration information. However, based upon the Case Narrative the reviewer has assumed that the ICP and CVAA systems were calibrated for the target analytes in accordance with method requirements.

Method Blanks: The method blank results are below reporting limits.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

QC Matrix: The MS recoveries and duplicate precision, performed using another client sample, are within acceptance limits.

Reported results should be utilized with confidence

TPH (DRO/GRO) Analysis in Soil by SW8015M

The laboratory report does not provide the actual GC calibration information. However, based upon the Case Narrative the reviewer has assumed that the GC system was calibrated for the target analytes and surrogate compounds in accordance with method requirements.

Method Blank: The method blank results are below reporting limits for the target analytes.

LCS: The LCS recoveries are within acceptance criteria for the target analytes.

QC Matrix: The MS recoveries and MSD precision, using another client sample, are within acceptance limits.

Surrogates: All surrogate recoveries are within acceptable criteria.

Reported results should be utilized with confidence.

General Chemistry

A positive control check of the Flashpoint tester was within limits and LCS recoveries for all spiked compounds were within control limits. No duplicate samples were performed

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

Guy Gallello Jr.-Project Chemist

Experience is the solution

314 North Pearl Street ◆ Albany, New York 12207 (800) 848-4983 ◆ (518) 434-4546 ◆ Fax (518) 434-0891

October 10, 2006

Guy Gallello Shaw Environmental & Infrastructure 16406 US Route 224 East Findlay, OH 45840

TEL: (419) 425-6080 FAX: (419) 425-6085

RE: Schenectady Army Depot

Soil Analysis

Dear Guy Gallello:

Adirondack Environmental Services, Inc received 1 sample on 10/4/2006 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

ELAP#: 10709 AIHA#: 100307

Work Order No: 061004063

PO#: 212830 OP

Tara Daniels

Laboratory Manager

G. Gallello - FAX

Guy Gallello - FAX

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

061004063

Project:

Schenectady Army Depot

PO#: 212830 OP

Date: 10-Oct-06

Client Sample ID: DS-AOI5-002

Collection Date: 10/4/2006

Lab Sample ID: 061004063-001

Matrix: SOIL

Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
GASOLINE AND	DIESEL RANGE ORGAN	CS SW80)15M				Analyst: MG	
TPH (Diesel)		< 12	12	J	µg/g-dry	1	10/5/2006 4:56:02 PM	
TPH (Gasoline)		< 12	12		μg/g-dry	1	10/5/2006 4:56:02 PM	
POLYCHLORIN	ATED BIPHENYLS SW80	182					Analyst: KF	
	rep: SW3545 - 10/5/2006						Analyst. KF	
Aroclor 1016	•	, < 38	20					
Aroclor 1221		< 38	38		µg/Kg-dry	1	10/6/2006 12:20:06 AM	
Aroclor 1232		< 38	38 38		ug/Kg-dry	1	10/6/2006 12:20:06 AM	
Aroclor 1242		< 38	38		ug/Kg-dry	1	10/6/2006 12:20:06 AM	
Aroclor 1248		< 38	38		ug/Kg-dry	1	10/6/2006 12:20:06 AM	
Aroclor 1254		< 38	38		ug/Kg-dry	1	10/6/2006 12:20:06 AN	
Aroclor 1260		< 38	38		ug/Kg-dry	1	10/6/2006 12:20:06 AM	
		\ 30	30	ŀ	ug/Kg-dry	1	10/6/2006 12:20:06 AM	
	IDES SW1311/8151 pp: SW8150B - 10/6/2006)					Analyst: MG	
2,4,5-TP (Silvex)	-TCLP	< 0.05	0.05	r	ng/L	1	10/6/2006 7:39:47 PM	
2,4-D-TCLP		< 0.50	0.50		ng/L	1	10/6/2006 7:39:47 PM	
(CLP LEACHED SW1311/8 Prep: E608 - 10/5/2006						Analyst: KF	
Chlordane-TCLP		< 0.005	0.005	п	ng/L	1	10/6/2006 12:20:06 AN	
Endrin-TCLP		< 0.005	0.005	n	ng/L	1	10/6/2006 12:20:06 AN	
gamma-BHC(Line		< 0.005	0.005	п	ng/L	1	10/6/2006 12:20:06 AN	
Heptachlor epoxi		< 0.005	0.005	n	ng/L	1	10/6/2006 12:20:06 AN	
Heptachlor-TCLP		< 0.005	0.005	n	ng/L	1	10/6/2006 12:20:06 AN	
Methoxychlor-TC		< 0.050	0.050	n	ng/L	1	10/6/2006 12:20:06 AN	
Toxaphene-TCLF		< 0.050	0.050	n	ng/L	1	10/6/2006 12:20:06 AN	
CLP MERCUR (Pre	Y SW1311/7470A p: SW7470A - 10/6/2006)					Analyst: KH	
Mercury-TCLP		< 0.020	0.020	n	ng/L	1	10/6/2006	
CLP METALS (Pr	- ICP SW1311/6010A rep: SW1311 - 10/5/2006)					Analyst: SM	
Arsenic-TCLP	·	< 0.05	0.05	n	ng/L	1	10/6/2006 3:45:00 PM	
Barium-TCLP		0.12	0.10	n	ng/L	1	10/6/2006 3:45:00 PM	
Cadmium-TCLP		< 0.05	0.05		ng/L	1	10/6/2006 3:45:00 PM	
Chromium-TCLP		< 0.05	0.05		ng/L	1	10/6/2006 3:45:00 PM	
	ND - Not Detected at the Reporti	ng Limit		S	Spike Recovery	outside acce	pted recovery limits	
Qualifiers:	cos = costa at the response	ected at the Reporting Limit tected below quanititation limits			S - Spike Recovery outside accepted recovery limits			
Qualifiers:	J - Analyte detected below quantit							
Qualifiers:	•		Blank	R -	RPD outside ac	cepted recov		

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

061004063

Project:

Schenectady Army Depot

PO#: 212830 OP

Date: 10-Oct-06

Client Sample ID: DS-AOI5-002

Collection Date: 10/4/2006

Lab Sample ID: 061004063-001

Matrix: SOIL

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
TCLP METALS - ICP SW1311/6	010A				Analyst: SM
(Prep: SW1311 - 1	0/5/2006)				
Lead-TCLP	< 0.05	0.05	mg/L	1	10/6/2006 3:45:00 PM
Selenium-TCLP	< 0.05	0.05	mg/L	1	10/6/2006 3:45:00 PM
Silver-TCLP	< 0.10	0.10	mg/L	1	10/6/2006 3:45:00 PM
TCLP-SEMIVOLATILES SW1311	1/8270C				Analyst MAC
(Prep: SW3510/E625 - 1					Analyst: MG
1,4-Dichlorobenzene -TCLP	< 25	25	μg/L	1	10/10/2006 12:10:00 PM
2,4,5-Trichlorophenol-TCLP	< 25	25	μg/L	1	10/10/2006 12:10:00 PM
2,4,6-Trichlorophenol-TCLP	< 25	25	μg/L	1	10/10/2006 12:10:00 PM
2,4-Dinitrotoluene-TCLP	< 25	25	μg/L	1	10/10/2006 12:10:00 PM
Cresols, Total-TCLP	< 25	25	μg/L	1	10/10/2006 12:10:00 PM
Hexachlorobenzene-TCLP	< 25	25	μg/L	1	10/10/2006 12:10:00 PM
Hexachlorobutadiene-TCLP	< 25	25	μg/L	1	10/10/2006 12:10:00 PM
Hexachloroethane-TCLP	< 25	25	μg/L	1	10/10/2006 12:10:00 PM
Nitrobenzene-TCLP	< 25	25	μg/L	1	10/10/2006 12:10:00 PM
Pentachlorophenol-TCLP	< 120	120	μg/L	1	10/10/2006 12:10:00 PM
Pyridine-TCLP	< 25	25	µg/L	1	10/10/2006 12:10:00 PM
TCLP VOLATILES SW1311/8260)				Analyst: ML
1,1-Dichloroethene-TCLP	< 5	5	μg/L	1	10/E/0006 E-07-00 DM
1,2-Dichloroethane-TCLP	< 5	5	μg/L	1	10/5/2006 5:37:00 PM
1,4-Dichlorobenzene-TCLP	< 5	5	μg/L	1	10/5/2006 5:37:00 PM
2-Butanone-TCLP	< 10	10	μg/L	1	10/5/2006 5:37:00 PM
Benzene-TCLP	< 5	5	μg/L	1 1	10/5/2006 5:37:00 PM
Carbon tetrachloride-TCLP	< 5	5		•	10/5/2006 5:37:00 PM
Chlorobenzene-TCLP	< 5	5	μg/L	1 1	10/5/2006 5:37:00 PM
Chloroform-TCLP	< 5	5	μg/L	1	10/5/2006 5:37:00 PM
Tetrachloroethene-TCLP	< 5	5	µg/L	-	10/5/2006 5:37:00 PM
Trichloroethene-TCLP	< 5	5 5	μg/L	1	10/5/2006 5:37:00 PM
Vinyl chloride-TCLP	< 10	10	μg/L μg/ L	1 1	10/5/2006 5:37:00 PM 10/5/2006 5:37:00 PM
FLASH POINT ASTM_D93-02A			₩ 9 / -		Analyst: PL
Floring Doing					
Flash Point	> 200	60	°F	1	10/6/2006
PH SW9045B					Analyst: LS

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 $\ensuremath{\mathrm{T}}$ - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 3 of 4

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

061004063

Project:

Schenectady Army Depot

PO#: 212830 OP

Date: 10-Oct-06

Client Sample ID: DS-AOI5-002

Collection Date: 10/4/2006

Lab Sample ID: 061004063-001

Matrix: SOIL

Analyses	Result	PQL Qual	Units	DF	Date Analyzed
PH SW9045B					Analyst: LS
рН	7.8	1.0	pH Units	1	10/6/2006
MOISURE CONTENT D2216					Analyst: PL
Percent Moisture	13.3	1.0	wt%	1	10/10/2006
CYANIDE, REACTIVE SW7.3.3.2 (Prep: E335.3 - 10/4/206	06)				Analyst: RC
Reactive Cyanide	< 1.0	1.0	μg/g	1	10/4/2006
REACTIVE SULFIDE SW7.3.4.2					Analyst: RC
Reactive Sulfide	< 10	10	µg/g	1	10/4/2006
REACTIVITY SW846 7.3.3					Analyst: RC
Reactivity No.	n Reactive	0		1	10/4/2006

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

Experience is the solution

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:			Address		research lab			= IIIy S		ions to e	- Invironmental	concerns	
Shai	N Environ	1 mental	Froject Name	ndla	y oh	0							
ort Bonnet In-	•		Project Name	(Location	1)	f.				: (Names)		······································	
Client Phone No	Gallello	Client Fax No:	>chtol	/ ///	Mumber	07		C	M. Paglisi Samplers: (Signaluse)				
419-42	5-6080	ORGINE I AX NO.			y Oh my Deza Number:		,	Samp	piers:	(Signatur	<u> </u>	* *	
AES Sample Number	Sai	Client	& Location		Date Sampled	Tin A=a, P=p.		Sampl Matrix		Number of Cont's	Analy	sis Required	
001	DS-AC	T5-00	2		10-4-06	1430	T A	Goil	V	4	FUITCLE TPH-01	PCB,	7-7
	ν.						A				1 44-01	KO/GIKO	LC
			<u> </u>				P						
		:				<u> </u>	P						
•			·				P		_ .				
	<u> </u>					- 1	P						
		· · · · · · · · · · · · · · · · · · ·	·				A P		. [
							A						
							Α						
				<u></u>		-	P A		-			<u> </u>	
		<u> </u>			. 1		P A	•	+			·	
No.						<u> </u>	P A		-				
÷							P						
			· .				A P					.%	
							A P					· · ·	
					.*		A						
AES Work Order	#:		1,	CC Report	To / Special Ins	truction	P P	arko:					
066	0406.	3	1	Fa	11 TC1P	~ M	s/nen } ∤∢	IS, I	05	t. , h	erb, Voc	's Suo	15
urnaround Time		· · · · · · · · · · · · · · · · · · ·		7	11 TC1P	1	100	٠. ٠	145	+. 10	artine r	ranida	10
□ 1 Day	3 Day	□ Normal	77	and animal of	-11 - 61	4/ F	(PL)	70	,,,,	(/ ()	s.	700.00	77417
☐ 2 Day	□ 5 Day												
elinquished by:	(Signature)		ŀ	Received E	y: (Signature)					***	Date	/Time	_
elinquished by:	(Signature)	·	F	Received b	ıy: (Signature)					i	Date	/Ţime	
						- -							
elinquished by:	(Signature)		F	Received f	or Laboratory by	r:				·	I O / (L f)	Time	7.0
The second second second	TEMPERATURE		18 188 1	PROP	ERLY PRESERVED	<u>ر</u>				Recenter	WITHIN HOLDIN	CTIMES	<u> </u>
(m	bient) or Chi	Led	10141	(/ (v) N		2			RECEIVE	MILLIN LIOTORY	O (THATES	
Nates:	121		Notes:	* *	<u> </u>				Not	es:	<u> </u>	J. J. C.	
	WHITE - Lab	Сору	Cal.	YELLOW	- Sampler Copy					PINK - Ge	nerator Copy	The second	

Adirondack Environmental Services, Inc.

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All Services rendered by **Adirondack Environmental Services**, **Inc.** are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the Adirondack Environmental Services, Inc. report regarding said work or such claim shall be deemed as irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and Adirondack Environmental Services, Inc. is not responsible for the accuracy of this information.

Shaw Environmental & Infrastructure, Inc.

Data Usability Report

16406 U.S. Route 224 East * Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER:

Tom Mathison

RECEIPT DATE:

10/04/2006

PROJECT NAME:

USACE-Schenectady

LABORATORY SDG:

AEL-061004064

The Findlay Ohio Applied Sciences Group has performed a QA evaluation of the data report from Adirondack Environmental Laboratories, Inc. (AEL) in Albany, NY. The results are for samples collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table.

	Sample Summa	ry Table	
Sample Number	Collection Date	Matrix	Analysis Requested
DS-AOI5-003 and DS-AOI5-004	10/04/2006	Soil	Reactive Sulfide

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and the samples were delivered to the laboratory within one hour of collection. Thus, the internal cooler temperature of 22 degrees C has no bearing on data usability. The laboratory provided faxed preliminary data within the specified turn around time and submitted a hard copy Level II report at a later date. The following describes the overall QA/QC indicators.

Reactive Sulfide by SW-846 7.3.4.2

The laboratory data package does not provide calibration data. However, based upon the Case Narrative the reviewer has assumed that the method was properly set-up and calibrated. The method blank results are below reporting limits for all reported analytes. The LCS recovery is within acceptance criteria. This particular method does not require a QC Matrix spike and since the samples were both BRL no duplicate was performed

Reported results should be utilized with confidence

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

Guy Gallello, Jr.-Project Chemist

17/1/206 Date

Experience is the solution

314 North Pearl Street ◆ Albany, New York 12207 (800) 848-4983 ◆ (518) 434-4546 ◆ Fax (518) 434-0891

October 05, 2006

Guy Gallello Shaw Environmental & Infrastructure 16406 US Route 224 East Findlay, OH 45840

TEL: (419) 425-6080

FAX: (419) 425-6085

RE: Schenectady Army Depot

Soil Analysis

Dear Guy Gallello:

Adirondack Environmental Services, Inc received 2 samples on 10/4/2006 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Tara Daniels

Laboratory Manager

G. Gallello - FAX

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits, Estimated

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Work Order No: 061004064

PO#: 212830 OP

ELAP#: 10709 AIHA#: 100307

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 1 of 2

Date: 05-Oct-06

CLIENT:

Shaw Environmental & Infrastructure

Project:

Schenectady Army Depot

LabWork Order: 061004064

PO#: 212830 OP

Lab SampleID:

061004064-001

Collection Date: 10/4/2006

Client Sample ID:

DS-AOI5-003

Matrix: SOIL

Analyses

Result

PQL Qual Units

DF

Date Analyzed

Analyst: RC

Analyst: RC

REACTIVE SULFIDE SW7.3.4.2

µg/g

Reactive Sulfide

< 10

10

10/4/2006

Lab SampleID:

061004064-002

Collection Date: 10/4/2006

Client Sample ID:

Analyses

DS-AOI5-004

PQL Qual Units

Matrix: SOIL

DF

1

Date Analyzed

REACTIVE SULFIDE SW7.3.4.2

Reactive Sulfide

< 10

Result

10

μg/g

1

10/4/2006

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits, Estimated

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 2 of 2

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

Experience is the solution

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:		Address:	1.						
Shaw	Environmental	Project Name (Location Show you possess Property / PO N	May (This)				
Send Report To:	Sa Halla	Project Name (Location	dem i	\	· +-	Samp		Names)	· 10.5
Client Phone No	Sallello Client Fax No:	PON	lumber:	Je ge	<i>,</i> ,	Sami	olers: (/. / G Signature	aglisi
	25-6080						1	M	lov
AES Sample Number	Client Sample Identification &	Location	Date Sampled	Time A=a.ı P=p.ı	n. 🗆	Sample Matrix	e Type	Number of Cont's	Analysis Required
001	DS-AOT5-CO3		10-4-06	MLK	A P	Seil	X	1	reactive sulfide
002	DS-A0I5-004		10-4-06	\5W	A P		X	- 1	reactive Sulfide
		`			A P		•		
Segui.					A				
					A P				
				35.50	A P				
	· ·				A P				
					Α				
in the		·			P A				
					P A				
1,00					P A				
	.*				P A				
					P A		_		
					P A				
LATO Mark Onto					P				
AES Work Orde	Y04064	CC Report	To / Special Ins	iruction	s/Hen	narks:			
Turnaround Time 1 Day 2 Day	e Request:		241	hr.		T,	A		
Relinquished by	(Signature)	Received	by: (Signature)						Date/Time
Relinquished by	r: (Signature)	Received	by: (Signature)						Date/Time
Relinquished by	: (Signature)	Received	for Labo <u>ratory</u> by	j: 	-	-			10141063,26
(Ai	Temperature nbient) of Chilled	Prop	PERLY PRESERVED					RECEIVE	D WITHIN HOLDING TIMES
Notes:	J 11(Notes:					Note	s:	

WHITE - Lab Copy

YELLOW - Sampler Copy

PINK - Generator Copy

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All Services rendered by **Adirondack Environmental Services**, **Inc.** are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services**, **Inc.** report regarding said work or such claim shall be deemed as irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and **Adirondack Environmental Services, Inc.** is not responsible for the accuracy of this information.

Shaw Environmental & Infrastructure, Inc.

Data Usability Report

16406 U.S. Route 224 East • Findlay, Ohio 45840

Findlay Ohio Office - Federal Technical Services

PROJECT NUMBER:

115215

PROJECT MANAGER:

Tom Mathison

RECEIPT DATE:

10/18/2006

PROJECT NAME:

USACE-Schenectady

LABORATORY SDG:

AEL-061018045

The Findlay Ohio Applied Sciences Group has performed a QA evaluation of the data report from Adirondack Environmental Laboratories, Inc. (AEL) in Albany, NY. The results are for samples collected at the Former Schenectady Army Depot (AOC 2), Voorheesville Area, New York by on-site Shaw E & I personnel. The samples were analyzed for the parameters listed in the Sample Summary Table.

Sample Summary Table									
Sample Number	Collection Date	Matrix	Analysis Requested						
EX-AOI5-001B, EX-AOI5-002B	10/18/2006	Soil	Select Target Metals SW-6010B						
EX-AOI5-003B, EX-AOI5-004B									
EX-AOI5-005B, EX-AOI5-006B									
EX-AOI5-007B, EX-AOI5-008B									
EX-AOI5-010B, EX-AOI5-012									

All samples were received at the laboratory intact and sample analyses were performed within the required holding times. The cooler was submitted with chain-of-custody forms and the samples were delivered on ice to the laboratory within one hour of packaging. Thus, the internal cooler temperature of 17 degrees C has no bearing on data usability. The laboratory provided faxed preliminary data within the specified turn around time and submitted a hard copy Level II report at a later date. The following describes the overall QA/QC indicators.

Select Metals Analysis in Soil by SW6010B

The laboratory data package does not provide instrument calibration data. However, based upon the Case Narrative the reviewer has assumed that the ICP was calibrated for the target analytes in accordance with method requirements. This particular set of samples was submitted for determination of three metals-aluminum, iron, and nickel.

Method Blanks: The method blank results are below reporting limits for all reported analytes.

LCS: The LCS recoveries are within laboratory acceptance criteria for the target analytes. It should be noted that recovery of Iron (51.7%) is below the method specified 80-120% range. This analyte has a TAGM 4046 limit significantly above the reporting limit and therefore no affect of data usability or qualification is warranted.

MS/MSD: The MS recoveries and duplicate precision, using the submitted sample, are within acceptance limits for all analytes with native concentrations less than 4X the spike level. Two of the selected analytes (aluminum and iron) were present at large concentrations in the unspiked sample rendering the QC Matrix data invalid.

Reported results should be utilized with confidence

Summary of Analysis

The overall Quality Control data provided in the laboratory report is representative of adequate method accuracy and precision with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

Experience is the solution

314 North Pearl Street ♦ Albany, New York 12207 (800) 848-4983 ♦ (518) 434-4546 ♦ Fax (518) 434-0891

October 19, 2006

Guy Gallello Shaw Environmental & Infrastructure 16406 US Route 224 East Findlay, OH 45840

TEL: (419) 425-6080 FAX: (419) 425-6085

RE: Army Depot

Schenectady Army Depot

Dear Guy Gallello:

Adirondack Environmental Services, Inc received 10 samples on 10/18/2006 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

ELAP#: 10709 AIHA#: 100307

Work Order No: 061018045

Christopher Hess QA Manager

Guy Gallello - FAX

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

061018045

Project:

Army Depot

PO#:

Client Sample ID: EX-AOI5-001B

Date: 19-Oct-06

Collection Date: 10/18/2006

Lab Sample ID: 061018045-001

Matrix: SOIL

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A - 10	0/19/2006)				Analyst: SM
Aluminum	10200	60.2	μg/g-dry	10	10/19/2006 4:58:00 PM
Iron	21500	30.1	μg/g-dry	10	10/19/2006 4:58:00 PM
Nickel	7.02	3.01	μg/g-dry	1	10/19/2006 3:37:00 PM
MOISURE CONTENT D2216		•			Analyst: PL
Percent Moisture	16.9	1.0	wt%	1	10/19/2006

- X Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

Date: 19-Oct-06

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

061018045

Project:

PO#:

Army Depot

Collection Date: 10/18/2006 **Lab Sample ID:** 061018045-002

Client Sample ID: EX-AOI5-002B

Matrix: SOIL

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A - 1	0/19/2006)				Analyst: SM
Aluminum	10300	57.1	μg/g-dry	10	10/19/2006 5:07:00 PM
Iron	22000	28.6	μg/g-dry	10	10/19/2006 5:07:00 PM
Nickel	4.92	2.86	µg/g-dry	1	10/19/2006 3:46:00 PM
MOISURE CONTENT D2216					Analyst: PL
Percent Moisture	12.5	1.0	wt%	1	10/19/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Date: 19-Oct-06

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

061018045

Project:

Army Depot

PO#:

Client Sample ID: EX-AOI5-003B

Collection Date: 10/18/2006

Lab Sample ID: 061018045-003

Matrix: SOIL

Analyses	Result	PQL Qu	ıal Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A - 10/	19/2006)				Analyst: SM
Aluminum	24300	56.9	μg/g-dry	10	10/19/2006 5:15:00 PM
Iron	44700	28.4	μg/g-dry	10	10/19/2006 5:15:00 PM
Nickel	5.90	2.84	μg/g-dry	1	10/19/2006 3:50:00 PM
MOISURE CONTENT D2216					Analyst: PL
Percent Moisture	12.1	1.0	wt%	. 1	10/19/2006

- R RPD outside accepted recovery limits
- \ensuremath{T} Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

CLIENT: Work Order:

061018045

Project:

Army Depot

PO#:

Shaw Environmental & Infrastructure

Client Sample ID: EX-AOI5-004B Collection Date: 10/18/2006

Date: 19-Oct-06

Lab Sample ID: 061018045-004

Matrix: SOIL

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A - 10	/19/2006)				Analyst: SM
Aluminum	18900	54.4	μg/g-dry	10	10/19/2006 5:27:00 PM
lron	30400	27.2	µg/g-dry	10	10/19/2006 5:27:00 PM
Nickel	13.1	2.72	μg/g-dry	1	10/19/2006 4:09:00 PM
MOISURE CONTENT D2216					Analyst: PL
Percent Moisture	8.1	1.0	wt%	· 1	10/19/2006

- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

Date: 19-Oct-06

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

061018045

Project:

Army Depot

PO#:

Client Sample ID: EX-AOI5-005B Collection Date: 10/18/2006

Lab Sample ID: 061018045-005

Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A - 10/	9/2006)					Analyst: SM
Aluminum	16200	59.7		μg/g-dry	10	10/19/2006 5:36:00 PM
Iron	29400	29.8		µg/g-dry	10	10/19/2006 5:36:00 PM
Nickel	9.00	2.98		µg/g-dry	1	10/19/2006 4:13:00 PM
MOISURE CONTENT D2216						Analyst: PL
Percent Moisture	16.2	1.0		wt%	1	10/19/2006

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Date: 19-Oct-06

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

061018045

Project:

PO#:

Percent Moisture

Army Depot

Collection Date: 10/18/2006

Client Sample ID: EX-AOI5-006B

Lab Sample ID: 061018045-006

10/19/2006

Matrix: SOIL

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A -	10/19/2006)				Analyst: SM
Aluminum	15500	56.4	μg/g-dry	10	10/19/2006 5:40:00 PM
Iron	30400	28.2	μg/g-dry	10	10/19/2006 5:40:00 PM
Nickel	8.10	2.82	μg/g-dry	- 1	10/19/2006 4:23:00 PM
MOISURE CONTENT D2216		•			Analyst: PL

1.0

11.3

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

Date: 19-Oct-06

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

061018045

Project:

Army Depot

PO#:

Client Sample ID: EX-AOI5-007B

Collection Date: 10/18/2006

Lab Sample ID: 061018045-007

Matrix: SOIL

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A - 10/	19/2006)				Analyst: SM
Aluminum	15800	56.3	μg/g-dry	10	10/19/2006 5:43:00 PM
Iron	29700	28.2	μg/g-dry	10	10/19/2006 5:43:00 PM
Nickel	6.69	2.82	μg/g-dry	1	10/19/2006 4:27:00 PM
MOISURE CONTENT D2216					Analyst: PL
Percent Moisture	11.2	1.0	wt%	1	10/19/2006

X - Value exceeds Maximum Contaminant Level

T - Tentitively Identified Compound-Estimated Conc.

R - RPD outside accepted recovery limits

Date: 19-Oct-06

CLIENT:

Shaw Environmental & Infrastructure

Work Order:

061018045

Project:

Army Depot

PO#:

Client Sample ID: EX-AOI5-008B

Collection Date: 10/18/2006

Lab Sample ID: 061018045-008

Matrix: SOIL

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A - 16	0/19/2006)				Analyst: SM
Aluminum	15800	57.1	μg/g-dry	10	10/19/2006 5:54:00 PM
Iron	31500	28.5	μg/g-dry	10	10/19/2006 5:54:00 PM
Nickel	5.07	2.85	μg/g-dry	1	10/19/2006 4:45:00 PM
MOISURE CONTENT D2216					Analyst: PL
Percent Moisture	12.4	1.0	wt%	1	10/19/2006

- X Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- $\ensuremath{\mathsf{T}}$ Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

CLIENT:

Shaw Environmental & Infrastructure

Work Order: Project:

061018045 Army Depot

PO#:

Client Sample ID: EX-AOI5-010B Collection Date: 10/18/2006 Lab Sample ID: 061018045-009

Date: 19-Oct-06

Matrix: SOIL

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW3050A -	10/19/2006)				Analyst: SM
Aluminum	10300	57.9	μg/g-dry	- 10	10/19/2006 5:58:00 PM
Iron	18600	29.0	μg/g-dry	10	10/19/2006 5:58:00 PM
Nickel	< 2.90	2.90	μg/g-dry	1	10/19/2006 4:51:00 PM
MOISURE CONTENT D2216					Analyst: PL
Percent Moisture	13.7	1.0	wt%	1	10/19/2006

- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

CLIENT: Shaw Environmental & Infrastructure

Work Order: Project:

061018045 Army Depot

PO#:

Client Sample ID: EX-AOI5-012 Collection Date: 10/18/2006 Lab Sample ID: 061018045-010

Date: 19-Oct-06

Matrix: SOIL

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
ICP METALS SW6010B (Prep: SW305	50A - 10/19/2006)				Analyst: SM
Aluminum	12600	57.3	μg/g-dry	10	10/19/2006 6:01:00 PM
Iron	26000	28.7	μg/g-dry	1,0	10/19/2006 6:01:00 PM
Nickel	7.59	2.87	μg/g-dry	1	10/19/2006 4:54:00 PM
MOISURE CONTENT D2	2216				Analyst: PL
Percent Moisture	12.8	1.0	wt%	1	10/19/2006

- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

Experience is the solution

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:	Address:							-		
Shaw Envilon mental Findley Ohio Send Report To: Project Name (Location) Samplers: (Names)										
Send Report To:	end Report To: Project Name (Location)				Sam	Samplers: (Names)				
Gray	my Gallella Schtde Amil			Desot M. Puls.						
					Samplers: (Signature)					
419-42	419-425-6080 m/hi									
AES Sample Number	Cilent Sample Identification & Location		Date Sampled	Tim A=a.ı P=p.ı	m. [Sampi Matrix	₽ 4	Number of Cont's	Analysis Required	
P 01	EX-AOI 5-001B		10-18-06	11.00	Ø P	5)	1	metals - Ni, Fe, ALONY	
,	EX-AOT 5-002B		ė.	1130	Ø P			1		
	EX-4015-003B (M	15/msD)		11:35				3		
004	EX- 4015- 0048	,		1150	A P			/		
00.5	EX-AOI5-005B	7.7		1155				/		
است	CX-AOT 5-006B			1203	(A) P			1		
007	8X-4015- 207B		1 11	סגו	A C		$\perp \!\!\! \perp$	/		
	(X-4015-108B		1	ひど	Ď.			1		
009	EX ADI5-010B			1224	Ő			1		
010	EX-AOI5-012			מסכן	A D			1	V	
					A P					
			, ·		P					
	en en en en en en en en en en en en en e		,		A P					
			A.		A P					
AES Work Order #: CC Report To / Special-Instructions/Remarks:										
0/6/0/8045										
Turnaround Nime Request:										
X 1 Day □ 3 Day □ Normal										
□ 2 Day □ 5 Day										
Relinquished by: (Signature). Receive		Received by	eceived by: (Signature) Date/Time							
Received by: (Signature) Received by:			(O:	. *						
Received		neceived D	eived by: (Signature) Date/Time							
Relinquished by: (Signature) Received		Received fo	ved for Laboratory by:						10/18/04 12 59	
TEMPERATURE PROPERTY PRESERVED					/	RECEIVED WITHIN HOLDING TIMES				
Ambient or Chilled 17°C Notes:				Y N						
1144901	Notes: Notes:					Notes:				
	= = vohj	· · · · · · · · · · · · · · · · · · ·	eauthiet cohi				i	iikn - ue	NELGIAL CANA	

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All Services rendered by **Adirondack Environmental Services**, **Inc.** are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services**, **Inc.** report regarding said work or such claim shall be deemed as irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind Adirondack Environmental Services, Inc. unless in writing and signed by a Director of Adirondack Environmental Services, Inc.
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and Adirondack Environmental Services, Inc. is not responsible for the accuracy of this information.