APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | A. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): JUL 2 3 2018 | |-----|--| | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Taconic State Parkway Pudding Street Interchange; NAN-2016-01687 | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: , State: NY County/parish/borough: Putnam City: Putnam Valley Center coordinates of site (lat/long in degree decimal format): Lat. 41.429003° N, Long73.804412° W. Universal Transverse Mercator: Name of nearest waterbody: Roaring Brook Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Hudson River Name of watershed or Hydrologic Unit Code (HUC): 020301010102 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 2 May 2018 ☐ Field Determination. Date(s): 3 May 2018 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the ew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | are Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: 999 linear feet: width (ft) and/or acres. Wetlands: 7.21 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. #### SECTION III: CWA ANALYSIS #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. 1. TNW Identify TNW: Summarize rationale supporting determination: 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: Watershed size: 2.36 square miles Drainage area: Pick List Average annual rainfall: 51 inches Average annual snowfall: 36 inches ## (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through 2 tributaries before entering TNW. Project waters are 10-15 river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 10-15 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: No. . Identify flow route to TNW⁵: Roaring Brook and adjacent wetlands flow to Peekskill Hollw Creek which flows to the Hudson River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | Indutary stream order, it known. | |---------------|---| | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | | | Tributary properties with respect to top of bank (estimate): Average width: 20 feet Average depth: feet Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | though flow v | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Roaring Brook extended into floodplain at time of May 3, 2018 site visit was slow. Tributary geometry: Meandering Tributary gradient (approximate average slope): 1 % | | (c) | Flow: Tributary provides for: Seasonal flow Estimate average number of flow events in review area/year: 20 (or greater) Describe flow regime: Stream appears to have perennial flow. Other information on duration and volume: | | floodplain at | Surface flow is: Confined. Characteristics: Roaring Brook has defined channel but flow was also diffuse through time of May 3, 2018 site visit. | | | Subsurface flow: Unknown . Explain findings: Dye (or other) test performed: | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away
sediment deposition water staining other (list): Discontinuous OHWM. ⁷ Explain: | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: oil or scum line along shore objects fine shell or debris deposits (foreshore) physical markings/characteristics physical markings/characteristics tidal gauges other (list): Mean High Water Mark indicated by: survey to available datum; physical markings; vegetation lines/changes in vegetation types. | | | nemical Characteristics: laracterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: Roaring Brook conveys water from Roaring Brook Lake to Peekskill Creek. Lakefront is heavily developed buwater quality is unknown. | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. Identify specific pollutants, if known: | | (iv) | | ogical Characteristics. Channel supports (check all that apply): | |-------|----------|---------------|---| | | , | | Riparian corridor. Characteristics (type, average width): except for bend nearest Taconic State Parkway, the riparian | | com | | | ds 300 feet along most of project area. Wetland fringe. Characteristics: wetland fringe width from 70 feet to 350 feet. | | | | | Habitat for: | | | | | Federally Listed species. Explain findings: | | | | | Fish/spawn areas. Explain findings: | | | | | Other environmentally-sensitive species. Explain findings: | | | | | Aquatic/wildlife diversity. Explain findings: beaver dam on Roaring Brook below wetland A. | | 2. | Char | acte | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | Phy | sical Characteristics: | | | | | General Wetland Characteristics: | | | | . , | Properties: | | | | | Wetland size: avg: 0.9 acres | | | | | Wetland type. Explain: forested/scrub-shrub. American elm, red maple, ironwood dominant. | | | | | Wetland quality. Explain: Wetland appears to be mostly intact and of good quality except for those portions west- | | the T | acon | c St | ate Parkway which were severed by construction of the roadbed. | | | | | Project wetlands cross or serve as state boundaries. Explain: no. | | | | (b) | General Flow Relationship with Non-TNW: | | | | , | Flow is: Perennial flow. Explain: | | | | | the managing control of | | | | | Surface flow is: Confined | | | | | Characteristics: | | | | | Subsurface flow: Yes. Explain findings: . | | | | | Dye (or other) test performed: | | | | | | | | | (c) | Wetland Adjacency Determination with Non-TNW: | | | | | ☐ Directly abutting | | | | | Not directly abutting Not directly abutting | | | | | Discrete wetland hydrologic connection. Explain: Wetland I lies to the west of the TSP. outlet via highway | | storn | nwate | r sy | | | | | | ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: Wetland I originally part of Wetland A. Severed by roadbed | | | | | Separated by bernivolatier. Explain. We hand I originally part of we hand A. Severed by toldoed. | | | | (d) | Proximity (Relationship) to TNW | | | | | Project wetlands are 10-15 river miles from TNW. | | | | | Project waters are 10-15 aerial (straight) miles from TNW. | | | | | Flow is from: Wetland to navigable waters. | | | | | Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Che | emical Characteristics: | | | | | racterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed | | | | | characteristics; etc.). Explain: | | | | Ider | atify specific pollutants, if known: | | | | т. | | | | (m) | | logical Characteristics. Wetland supports (check all that apply): | | | | | Riparian buffer. Characteristics (type, average width): Wetland serves as riparian buffer to Roaring Brook. | | | | | Vegetation type/percent cover. Explain: Wetland type is forested and scrub-shrub.
Habitat for: | | | | ш | Federally Listed species. Explain findings: | | | | | Fish/spawn areas. Explain findings: | | | | | Other environmentally-sensitive species. Explain findings: | | | | | Aquatic/wildlife diversity. Explain findings: beaver dam on Roaring Brook, below Wetland A. | | | <u> </u> | | | | 3. | | | eristics of all wetlands adjacent to the tributary (if any) | | | | | wetland(s) being considered in the cumulative analysis: 5 proximately (4.4) acres in total are being considered in the cumulative analysis. | | | | 4 4 PL | rominatory (1.17 across in rotal are configurated in the culturative altarysis. | For each wetland, specify the following: | Directly abuts? (Y/N) | | Size (in acres) | Directly abuts? (Y/N) | Size (in acres) | |-----------------------|---|-----------------|-----------------------|-----------------| | Wetland A | Y | 3.25 | | | | Wetland B | Y | 0.55 | | | | | | | | | | Wetland C | Y | 0.10 | | | | Wetland K | Y | 0.37 | | | | Wetland L | N | 0.15 | | | Summarize overall biological, chemical and physical functions being performed: The Roaring Brook Lake drainage area feeds Roaring Brook which flows to the PeekSkill Creek. The riparian buffer of Roaring Brook features a forested/scrub-shrub wetland fringe, sustained in-part by a beaver dam below Wetland A. Given the slow, diffuse flow of water through the Roaring Brook floodplain, the Roaring Brook-adjacent wetlands likely trap sediment and debris while serving as a source of leaf-litter to downstream water courses. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The primary resources in the JD area are an RPW and abutting wetland. However, there is also a non-RPW secondary channel which flows from a culvert under the NY State Thruway and disspates in the NW corner of the wetland. The ordinary high water mark of this non-RPW is defined by absense of vegetation and significant sediment deposition and sorting. - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Wetland L was likely originally part of a continuous wetland expanse with Wetland A. It has since been severed by construction of the Taconic State Parkway roadbed. It is fed by runoff from a concave hill-side feature and discharges to the TSP stormwater system. This wetland likely serves to attenuate peak storm discharge for its catchment. # D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): 1. TNWs and Adjacent Wetlands. Check all that apply and
provide size estimates in review area: | | ☐ TNWs: linear feet width (ft), Or, acres. ☐ Wetlands adjacent to TNWs: acres. | |----|--| | 2. | RPWs that flow directly or indirectly into TNWs. ☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Persistent perennial stream evident on aerial imagery from multiple years. ☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 267 linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. ☑ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. ☑ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: See Part D(2) above and NYSDOT "Jurisdictional Determination Plan" (May 2017). ☐ Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | 5. | Provide acreage estimates for jurisdictional wetlands in the review area: 4.27 acres. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetlands in the review area: 0.15 acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | Impoundments of jurisdictional waters. As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | See Footnote # 3. To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. | Е. | ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |----|---| | | Identify water body and summarize rationale supporting determination: | | | | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SE | CTION IV: DATA SOURCES. | | | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: NYSDOT drawing "Jurisictional Determination Plan" (May 2017). Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: | | | National wetlands inventory map(s). Cite name: | ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | State/Local wetland inventory map(s): | |-------------|---| | | FEMA/FIRM maps: . | | | 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) | | | Photographs: Aerial (Name & Date): | | | or Other (Name & Date): | | | Previous determination(s). File no. and date of response letter: | | | Applicable/supporting case law: | | | Applicable/supporting scientific literature: | | \boxtimes | Other information (please specify): elevation data-derived stream network. | ## B. ADDITIONAL COMMENTS TO SUPPORT JD: ## APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SEC | CTION I: BACKGROUND INFORMATION | |------------
--| | A. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): JUL 2 3 2018 | | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Taconic State Parkway Pudding Street Interchange; NAN-2016-1687 | | C . | PROJECT LOCATION AND BACKGROUND INFORMATION: , State: NY County/parish/borough: Putnam City: Putnam Valley Center coordinates of site (lat/long in degree decimal format): Lat. 41.429003° N, Long73.804412° W. Universal Transverse Mercator: Name of nearest waterbody: Roaring Brook Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Hudson River Name of watershed or Hydrologic Unit Code (HUC): 020301010102 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): Office (Desk) Determination. Date: 2 May 2018 Field Determination. Date(s): 3 May 2018 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the lew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: 999 linear feet: width (ft) and/or acres. Wetlands: 7.21 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). 3 Supporting documentation is presented in Section III.F. #### SECTION III: CWA ANALYSIS #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. ## 1. TNW Identify TNW: Summarize rationale supporting determination: ## 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW #### (i) General Area Conditions: Watershed size: 2.36 square miles Drainage area: Pick List Average annual rainfall: 51 inches Average annual snowfall: 36 inches ## (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through 3 tributaries before entering TNW. Project waters are 10-15 river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 10-15 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: No. . Identify flow route to TNW⁵: Roaring Brook and adjacent wetlands flow to Peekskill Hollw Creek which flows to the Hudson River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | | Tributary stream order, if known: | |-------|-----|--| | | | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | | | | Tributary properties with respect to top of bank (estimate): Average width: 5 feet Average depth: feet Average side slopes: Pick List. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Relatively straight Tributary gradient (approximate average slope): 12 % | | | (c) | Flow: Tributary provides for: Ephemeral flow Estimate average number of flow events in review area/year: Pick List Describe flow regime: Environmental Specialist for applicant describes flow as ephemeral. Other information on duration and volume: Surface flow is: Confined. Characteristics: Subsurface flow: Unknown. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment deposition leaf litter disturbed or washed away sediment deposition water staining water staining other (list): Discontinuous OHWM. ⁷ Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: Mean High Water Mark indicated by: survey to available datum; physical markings/characteristics physical
markings/characteristics vegetation lines/changes in vegetation types. | | (iii) | Ch | emical Characteristics: aracterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc. Explain: Unknown. Small rainage area entirely undeveloped except for two road crossings- entify specific pollutants, if known: | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. Tibid. | | | iological Characteristics. Channel supports (check all that apply): ☐ Riparian corridor. Characteristics (type, average width): Intact except for parallel adjacent roadbed (Pudding St.) ☐ Wetland fringe. Characteristics: Three wetlands adjacent (one in project area). ☐ Habitat for: ☐ Federally Listed species. Explain findings: ☐ Fish/spawn areas. Explain findings: ☐ Other environmentally-sensitive species. Explain findings: ☐ Aquatic/wildlife diversity. Explain findings: | |----|-------|--| | 2. | Char | acteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | | Physical Characteristics: a) General Wetland Characteristics: Properties: Wetland size: avg: 0.52 acres Wetland type. Explain: Wetlands G and H forested. Wetland J types PFO, PSS and PEM. | | | | Wetland quality. Explain: Wetland J was created to mitigate impacts for a 1995 highway project. Project wetlands cross or serve as state boundaries. Explain: no. | | | (| b) General Flow Relationship with Non-TNW: Flow is: Ephemeral flow. Explain: | | | | Surface flow is: Confined Characteristics: | | | | Subsurface flow: Unknown . Explain findings: Dye (or other) test performed: | | | (| wetland Adjacency Determination with Non-TNW: □ Directly abutting □ Not directly abutting □ Discrete wetland hydrologic connection. Explain: □ Ecological connection. Explain: □ Separated by berm/barrier. Explain: | | | (| d) Proximity (Relationship) to TNW Project wetlands are 10-15 river miles from TNW. Project waters are 10-15 aerial (straight) miles from TNW. Flow is from: Wetland to navigable waters. | | | • | Estimate approximate location of wetland as within the Pick List floodplain. | | | · ´ | Chemical Characteristics: Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: (dentify specific pollutants, if known: | | | ` ′ ' | Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Wetland serves as riparian buffer to UNT Reach 1. Vegetation type/percent cover. Explain: Wetland type is forested, scrub-shrub and emergent. Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | | acteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: 3 Approximately (1.6.) acres in total are being considered in the cumulative analysis | For each wetland, specify the following: | Directly abuts? (Y/N) Wetland J Y Wetland H Y | <u>Size (in acres)</u>
1.20
0.04 | Directly abuts? (Y/N) | Size (in acres) | |---|--|-----------------------|-----------------| | Wetland G Y | 0.38 | | | Summarize overall biological, chemical and physical functions being performed: UNT to Roaring Brook, Reach 1, is an ephemeral channel, running parallel to Pudding St. west of the Taconic State Parkway, with seasonally saturated adjacent PFO, PSS and PEM wetlands. The largest of these wetlands (Wetland J) sits immediately south of the Pudding Street Taconic State Parkway interchange. This wetland was created to mitigate wetland loss from a 1995 highway project. The wetland outlet is via 24" culvert under the TSP that discharges directly to Wetland A, adjacent to Roaring Brook. Wetland J likely serves to trap sediment and contaminants in storm runoff from Pudding Street. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL | |----|---| | | THAT APPLY): | | 1. | TNWs and Adjacent Wetlands | . Check all that | apply and provide size estimates in review area | : | |----|----------------------------|------------------|---|---| | | ☐ TNWs: linear feet | width (ft), Or, | acres. | | | | Wetlands adjacent to TNWs: | acres. | | | 2. RPWs that flow directly or indirectly into TNWs. | | □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |----|---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: 298 linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: | | 4. | Wetlands directly abutting an RPW that
flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: 1.6 acres. | | 7. | Impoundments of jurisdictional waters. ⁹ As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DF | OLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, EGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY | E. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. 10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: | |---------------------------|---| | | Other factors. Explain: | | | Identify water body and summarize rationale supporting determination: | | | | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). | | | Other non-wetland waters: acres. Identify type(s) of waters: | | | Wetlands: acres. | | | | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | | | $\underline{\mathbf{SE}}$ | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: NYSDOT drawing "Jurisictional Determination Plan" (May 2017). Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. | | | ☐ Office does not concur with data sheets/delineation report. ☐ Data sheets prepared by the Corps: ☐ Corps navigable waters' study: ☐ U.S. Geological Survey Hydrologic Atlas: ☐ USGS NHD data. | | | USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: National wetlands inventory map(s). Cite name: State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: ☐ Aerial (Name & Date): or ☐ Other (Name & Date): | | | Previous determination(s). File no. and date of response letter: . | |-------------|--| | | Applicable/supporting case law: | | | Applicable/supporting scientific literature: | | \boxtimes | Other information (please specify): elevation data-derived stream network. | # B. ADDITIONAL COMMENTS TO SUPPORT JD: ## APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SEC
A. | CTION I: BACKGROUND INFORMATION REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): JUL 2 3 2018 | |-----------|--| | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Taconic State Parkway Pudding Street Interchange; NAN-2016-1687 | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: , State: NY County/parish/borough: Putnam City: Putnam Valley Center coordinates of site (lat/long in degree decimal format): Lat. 41.429003° N, Long73.804412° W. Universal Transverse Mercator: Name of nearest waterbody: Roaring Brook Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Hudson River Name of watershed or Hydrologic Unit Code (HUC): 020301010102 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 2 May 2018 ☐ Field Determination. Date(s): 3 May 2018 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the lew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | are Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): ¹ ☐ TNWs, including territorial seas ☐ Wetlands adjacent to TNWs ☐ Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs ☐ Non-RPWs that flow directly or indirectly into TNWs ☐ Wetlands directly abutting RPWs that
flow directly or indirectly into TNWs ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs ☐ Impoundments of jurisdictional waters ☐ Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: 999 linear feet: width (ft) and/or acres. Wetlands: 7.21 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): | | | Non-regulated waters/wetlands (check if applicable):³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. #### SECTION III: CWA ANALYSIS #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. #### 1. TNW Identify TNW: Summarize rationale supporting determination: ## 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW #### (i) General Area Conditions: Watershed size: 2.36 square miles Drainage area: Pick List Average annual rainfall: 51 inches Average annual snowfall: 36 inches ## (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through 3 tributaries before entering TNW. Project waters are 10-15 river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 10-15 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: No. . Identify flow route to TNW⁵: Roaring Brook and adjacent wetlands flow to Peekskill Hollw Creek which flows to the Hudson River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | (b) General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | |--| | Tributary properties with respect to top of bank (estimate): Average width: 5 feet Average depth: feet Average side slopes: Pick List. | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other Explain: | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Relatively straight Tributary gradient (approximate average slope): | | (c) Flow: Tributary provides for: Ephemeral flow Estimate average number of flow events in review area/year: Pick List Describe flow regime: Environmental Specialist for applicant describes flow as ephemeral. Flow observed during May 3, 2018 site visit. Other information on duration and volume: | | Surface flow is: Confined. Characteristics: Channel appears to have formed at toe of slope of north-bound Taconic State Parkway roadbed. Reach 2 discharges through 18" culvert to Reach 3. | | Subsurface flow: Unknown . Explain findings: Dye (or other) test performed: | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. ⁷ Explain: | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: Mean High Water Mark indicated by: survey to available datum; survey to available datum; physical markings; physical markings/characteristics vegetation lines/changes in vegetation types. | | (iii) Chemical Characteristics: Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: Unknown. Identify specific pollutants, if known: | Tributary stream order, if known: ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. Third. | | (11) | | Riparian corridor. Characteristics (type, average width): Riparian corridor narrow. Confined to median of Taconic State | |------|--------|------------------------|---| | Parl | cway | | ling Street interchange. | | | • | | Wetland fringe. Characteristics: Two wetlands adjacent (one in project area). | | | | | Habitat for: | | | | | Federally Listed species. Explain findings: | | | | | Fish/spawn areas. Explain findings: | | | | | Other environmentally-sensitive species. Explain findings: | | | | | Aquatic/wildlife diversity. Explain findings: | | 2. | Cha | ract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | Phy | sical Characteristics: | | | | (a) | General Wetland Characteristics: | | | | | Properties: | | | | | Wetland size: avg: 0.82 acres | | | | | Wetland type. Explain: Wetland E forested and I emergent. | | | 1 1' 1 | | Wetland quality. Explain: Wetland I was created to mitigate impacts for a 1995 highway project. Success of wetland | | esta | blish | ment | questionable at southern end of wetland I. | | | | | Project wetlands cross or serve as state boundaries. Explain: no. | | | | (b) | General Flow Relationship with Non-TNW: | | | | () | Flow is: Ephemeral flow. Explain: | | | | | ence antique en en el ma | | | | • | Surface flow is: Confined | | | | | Characteristics: | | | | | Subsurface flow: Unknown. Explain findings: | | | | | Dye (or other) test performed: | | | | | | | | | (c) | Wetland Adjacency Determination with Non-TNW: | | | | | ☐ Directly abutting | | | | | Not directly abutting | | | | | Discrete wetland hydrologic connection. Explain: | | | | | Ecological connection. Explain: | | | | | Separated by berm/barrier. Explain: | | | | (4) | Descriptive (Palationship) to TNW | | | | (a) | Proximity (Relationship) to TNW
Project wetlands are 10-15 river miles from TNW. | | | | | Project waters are 10-15 aerial (straight) miles from TNW. | | | | | Flow is from: Wetland to navigable waters. | | | | | Estimate approximate location of wetland as within the Pick List floodplain. | | | | | | | | (ii) | | emical Characteristics: | | | | Cha | aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed | | | | | characteristics; etc.). Explain: | | | | Ide | ntify specific pollutants, if known: | | | Giii |) Rio | logical Characteristics. Wetland supports (check all that apply): | | | (111 | | Riparian buffer. Characteristics (type, average width): Wetland serves as riparian buffer to UNTs Reach 2 and 3. | | | | $\overline{\boxtimes}$ | Vegetation type/percent cover. Explain: Wetland type is forested and emergent. | | | | | Habitat for: | | | | | Federally Listed species. Explain findings: | | | | | Fish/spawn areas. Explain findings: | | | | | Other environmentally-sensitive species. Explain findings: | | | | | Aquatic/wildlife diversity. Explain findings: . | | 3. | Ch | araci | teristics of all wetlands adjacent to the tributary (if any) | | J. | CII | | wetland(s) being considered in the cumulative analysis: 2 | | | | | proximately (0.91) acres in total are being considered in the cumulative analysis. | | | | - T | · · · · · · · · · · · · · · · · · · · | For each wetland, specify the following: | Directly abuts? (Y/N) | Size (in acres) | Directly abuts? (Y/N) | Size (in acres) | |-----------------------|-----------------|-----------------------|-----------------| | Wetland E Y | 0.06 | | | | Wetland I Y | 0.85 | | | Summarize overall biological, chemical and physical functions being performed: UNTs to Roaring Brook, Reach 2 and 3, are ephemeral channels, with adjacent seasonally saturated adjacent PFO PEM wetlands. The largest of these wetlands (Wetland I) sits immediately west of the Taconic State Parkway. This wetland was created to mitigate wetland loss from a 1995 highway project. Wetland establishment success at the southern end of Wetland I is questionable. The wetland I outlet is through a 24" culvert under the TSP that discharges directly to Wetland E, which drains through Reach 2, which flows through an 18" culvert into Reach 3 which either disapates in Wetland B or flows directly into Roaring Brook offsite. Wetlands I and E likely serve to trap sediment and contaminants in storm runoff from the Taconic State Parkway. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT | 「WATERS/WETLANDS ARE | (CHECK ALL | |----|--|----------------------|------------| | | THAT APPLY): | • | | | TNWs and Adjacent Wetlands. | Check all that apply and provide size estimates in review area: | | |------------------------------|---|--| | TNWs: linear feet | width (ft), Or, acres. | | | ☐ Wetlands adjacent to TNWs: | acres. | | 2. RPWs that flow directly or indirectly into TNWs. | | □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |----|---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: 178 linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: 0.91 acres. | | 7. | Impoundments of jurisdictional waters. As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE | OLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, EGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY ICH WATERS (CHECK ALL THAT APPLY):10 |
E. ⁸ See Footnote # 3. 9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. 10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |------------|--| | Ide | ntify water body and summarize rationale supporting determination: | | Pro | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | | ON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | fac | wide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR tors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional gment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | ovide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such adding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | SECTI | ON IV: DATA SOURCES. | | and
Pla | PORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked it requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: NYSDOT drawing "Jurisictional Determination in" (May 2017). Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: National wetlands inventory map(s). Cite name: State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date): | | | Previous determination(s). File no. and date of response letter: . | |-------------|--| | | Applicable/supporting case law: | | | Applicable/supporting scientific literature: | | \boxtimes | Other information (please specify): elevation data-derived stream network. | ## B. ADDITIONAL COMMENTS TO SUPPORT JD: ## APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SEC
A. | CTION I: BACKGROUND INFORMATION REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): JUL 2 3 2018 | |-----------|--| | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Taconic State Parkway Pudding Street Interchange; NAN-2016-1687 | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: , State: NY County/parish/borough: Putnam City: Putnam Valley Center coordinates of site (lat/long in degree decimal format): Lat. 41.429003° N, Long73.804412° W. Universal Transverse Mercator: Name of nearest waterbody: Roaring Brook Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Hudson River Name of watershed or Hydrologic Unit Code (HUC): 020301010102 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 2 May 2018 ☐ Field Determination. Date(s): 3 May 2018 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the ew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: 999 linear feet: width (ft) and/or acres. Wetlands: 7.21 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): | | | Non-regulated waters/wetlands (check if applicable):³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: | 2 ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). 3 Supporting documentation is presented in Section III.F. ## **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. #### 1. TNW Identify TNW: Summarize rationale supporting determination: #### 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": #### CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY); This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the
standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW #### (i) General Area Conditions: Watershed size: 2.36 square miles Drainage area: Pick List Average annual rainfall: 51 inches Average annual snowfall: 36 inches ## (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. Tributary flows through 3 tributaries before entering TNW. Project waters are 10-15 river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 10-15 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: No. . Identify flow route to TNW⁵: Roaring Brook and adjacent wetlands flow to Peekskill Hollw Creek which flows to the Hudson River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | |--------------------|--| | | Tributary properties with respect to top of bank (estimate): Average width: 5 feet Average depth: feet Average side slopes: Pick List. | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Meandering Tributary gradient (approximate average slope): % | | (e)
May 3, 2018 | Tributary provides for: Ephemeral flow Estimate average number of flow events in review area/year: Pick List Describe flow regime: Environmental Specialist for applicant describes flow as ephemeral. Flow observed during | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment deposition multiple observed or predicted flow events abrupt change in plant community Discontinuous OHWM. ⁷ Explain: | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | Ch | nemical Characteristics: aracterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: Unknown. entify specific pollutants, if known: | Tributary stream order, if known: ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. Tibid. | | (14) | | Riparian corridor. Characteristics (type, average width): Riparian corridor narrow. Confined to median of Taconic Stat | |-----|------|-------------|---| | Par | kway | | ling Street interchange. | | | | \boxtimes | Wetland fringe. Characteristics: One wetland adjacent (one in project area). | | | | | Habitat for: | | | | | Federally Listed species. Explain findings: . | | | | | Fish/spawn areas. Explain findings: | | | | | Other environmentally-sensitive species. Explain findings: | | | | | Aquatic/wildlife diversity. Explain findings: | | 2. | Ch | aract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | Phy | vsical Characteristics: | | | `` | | General Wetland Characteristics: | | | | | Properties: | | | | | Wetland size: avg: 0.13 acres | | | | | Wetland type. Explain: Wetland F is forested. | | | | | Wetland quality. Explain: . Project wetlands cross or serve as state boundaries. Explain: no. | | | | | Project wetlands cross of serve as state boundaries. Explaint, no. | | | | (b) | General Flow Relationship with Non-TNW: | | | | ` , | Flow is: Ephemeral flow. Explain: | | | | | | | | | | Surface flow is: Confined | | | | | Characteristics: | | | | | Subsurface flow: Unknown. Explain findings: . | | | | | Dye (or other) test performed: . | | | | | | | | | (c) | Wetland Adjacency Determination with Non-TNW: | | | | | Directly abutting | | | | | Not directly abutting | | | | | ☐ Discrete wetland hydrologic connection. Explain: ☐ Ecological connection. Explain: | | | | | Separated by berm/barrier. Explain: | | | | | | | | | (d) | Proximity (Relationship) to TNW | | | | | Project wetlands are 10-15 river miles from TNW. | | | | | Project waters are 10-15 aerial (straight) miles from TNW. | | | | | Flow is from: Wetland to navigable waters. | | | | | Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Ch | emical Characteristics: | | | (-) | | aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed | | | | | characteristics; etc.). Explain: | | | | Ide | ntify specific pollutants, if known: | | | (:: | 2\ D2. | I air I Change to wint in Wedland summants (about all that analy) | | | (H | и ви
 X | ological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Wetland serves as riparian buffer to UNTs Reach 4, 5 and 6. | | | | × | Vegetation type/percent cover. Explain: Wetland type is forested. | | | | Ħ | Habitat for: | | | | _ | Federally Listed species. Explain findings: . | | | | | Fish/spawn areas. Explain findings: | | | | | Other environmentally-sensitive species. Explain findings: | | | | | Aquatic/wildlife diversity. Explain findings: . | | 3. | CL | araz | teristics of all wetlands adjacent to the tributary (if any) | | J, | CI | | wetland(s) being considered in the cumulative analysis: 1 | | | | | proximately (0.13) acres in total are being considered in the cumulative analysis. | For each wetland, specify the following: Directly abuts? (Y/N) Size (in acres) Wetland F Y Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: UNTs to Roaring Brook, Reach 4, 5 and 6, are ephemeral channels, with adjacent seasonally saturated adjacent PFO wetland. This adjacent wetland (Wetland F) lies within the median of the Taconic State Parkway. UNT Reach 4 disapates in Wetland F which drains through UNT Reach 5, which is carried through a 24" culvert to Reach 6. Wetland F likely serves to trap sediment and contaminants in storm runoff from the Taconic State Parkway. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a
significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS | . THE SUBJECT | WATERS/WET | LANDS ARE | (CHECK ALL | |----|---|---------------|------------|-----------|------------| | | THAT APPLY): | | | | | | ١. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: | |----|--| | | TNWs: linear feet width (ft), Or, acres. | | | Wetlands adjacent to TNWs: acres. | | | · | | 2. | RPWs that flow directly or indirectly into TNWs. | | | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that | | | tributary is perennial: | | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |----|---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: 228 linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: 0.13 acres. | | 7. | Impoundments of jurisdictional waters. ⁹ As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE | DLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. | E. ⁸See Footnote # 3. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | ☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. ☐ which are or could be used for industrial purposes by industries in interstate commerce. ☐ Interstate isolated waters. Explain: ☐ Other factors. Explain: | |-----------|--| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). | | | Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | / | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area
that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | <u>SE</u> | CTION IV: DATA SOURCES. | | | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: NYSDOT drawing "Jurisictional Determination Plan" (May 2017). Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. | | | □ Data sheets prepared by the Corps: □ Corps navigable waters' study: □ U.S. Geological Survey Hydrologic Atlas: □ USGS NHD data. | | | USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: National wetlands inventory map(s). Cite name: State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: ☐ Aerial (Name & Date): or ☐ Other (Name & Date): | | | Previous determination(s). File no. and date of response letter: Applicable/supporting case law: Applicable/supporting scientific literature: | Other information (please specify): elevation data-derived stream network. # B. ADDITIONAL COMMENTS TO SUPPORT JD: # APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | | CTION I: BACKGROUND INFORMATION DEPORT COMPLETION DATE FOR APPROVED HIDISDICTIONAL DETERMINATION (ID): JUL 2 3 2018 | |-----|--| | A. | REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): | | В. | DISTRICT OFFICE, FILE NAME, AND NUMBER: Taconic State Parkway Pudding Street Interchange; NAN-2016-1687 | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: , State: NY County/parish/borough: Putnam City: Putnam Valley Center coordinates of site (lat/long in degree decimal format): Lat. 41.429003° N, Long73.804412° W. Universal Transverse Mercator: Name of nearest waterbody: Roaring Brook Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Hudson River Name of watershed or Hydrologic Unit Code (HUC): 020301010102 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 2 May 2018 ☐ Field Determination. Date(s): 3 May 2018 | | | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the ew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | are Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: 999 linear feet: width (ft) and/or acres. Wetlands: 7.21 acres. | | | c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: | Boxes checked below shall be supported by completing the appropriate sections in Section III below. For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. #### **SECTION III: CWA ANALYSIS** ## A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. #### 1. TNW Identify TNW: Summarize rationale supporting determination: ## 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": #### B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW #### (i) General Area Conditions: Watershed size: 2.36 square miles Drainage area: Pick List Average annual rainfall: 51 inches Average annual snowfall: 36 inches ## (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through 3 tributaries before entering TNW. Project waters are 10-15 river miles from TNW. Project waters are 1 (or less) river miles from RPW. Project waters are 10-15 aerial (straight) miles from TNW. Project waters are 1 (or less) aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: No. . Identify flow route to TNW⁵: Roaring Brook and adjacent wetlands flow to Peekskill Hollw Creek which flows to the Hudson River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | | Tributary stream order, if known: | |-------|-----
---| | | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | | | | Tributary properties with respect to top of bank (estimate): Average width: 5 feet Average depth: feet Average side slopes: Pick List. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Meandering Tributary gradient (approximate average slope): | | | (c) | Flow: Tributary provides for: Ephemeral flow Estimate average number of flow events in review area/year: Pick List Describe flow regime: Environmental Specialist for applicant describes flow as ephemeral. Other information on duration and volume: | | | | Surface flow is: Confined. Characteristics: | | | | Subsurface flow: Unknown. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting sediment sorting sediment deposition multiple observed or predicted flow events abrupt change in plant community other (list): Discontinuous OHWM. ⁷ Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | (iii) | Cha | emical Characteristics:
aracterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.)
Explain: Unknown.
ntify specific pollutants, if known: | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | \boxtimes | ological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Riparian corridor narrow significant where stream enters ut blunted where UNT Reach 7 emerges from 36" culvert under north-bound Taconic State Parkway roadbed. | |-------|-------------|--| | | \boxtimes | Wetland fringe. Characteristics: One wetland adjacent (one in project area). | | | L | Habitat for: | | | | Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: | | | | Other environmentally-sensitive species. Explain findings: | | | | Aquatic/wildlife diversity. Explain findings: | | 2. C | harac | teristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | (i) |) Pb | ysical Characteristics: | | ` ` ` | | General Wetland Characteristics: | | | | Properties: | | | | Wetland size: avg: 0.19 acres | | | | Wetland type. Explain: Wetland F is forested. | | | | Wetland quality. Explain: | | | | Project wetlands cross or serve as state boundaries. Explain: no. | | | (b) | General Flow Relationship with Non-TNW: | | | (0, | Flow is: Ephemeral flow . Explain: | | | | The state of s | | | | Surface flow is: Confined | | | | Characteristics: | | | | | | | | Subsurface flow: Unknown. Explain findings: | | | | Dye (or other) test performed: | | | (c) | Wetland Adjacency Determination with Non-TNW: | | | .(0) | Directly abutting | | | | Not directly abutting | | | | Discrete wetland hydrologic connection. Explain: | | | | Ecological connection. Explain: | | | | Separated by berm/barrier. Explain: | | | | | | | (d | Proximity (Relationship) to TNW | | | | Project wetlands are 10-15 river miles from TNW. Project waters are 10-15 aerial (straight) miles from TNW. | | | | Flow is from: Wetland to navigable waters. | | | | Estimate approximate location of wetland as within the Pick List floodplain. | | | | Tr. | | (i | ii) Cl | nemical Characteristics: | | | Cl | aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed | | | | characteristics; etc.). Explain: | | | Id | entify specific pollutants, if known: | | , | 2225 TD2 | A 3. 101 4 32 W A 1 4 (1 1. B.) 4 15 | | (| ш) ы
 | ological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Wetland serves as riparian buffer to UNT Reach 7. | | | | Vegetation type/percent cover. Explain: Wetland type is forested. | | | F | Habitat for: | | | _ | Federally Listed species. Explain findings: | | | | Fish/spawn areas. Explain findings: | | | | Other environmentally-sensitive species. Explain findings: | | | | Aquatic/wildlife diversity. Explain findings: | | , , | 71 | 4 | | 3. C | | reristics of all wetlands adjacent to the tributary (if any) l wetland(s) being considered in the cumulative analysis: 1 | | | | proximately (0.19) acres in total are being considered in the cumulative analysis | For each wetland, specify the following: Directly abuts? (Y/N) Wetland D Y Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: UNT to Roaring Brook, Reach 7, is an ephemeral channel, with adjacent PFO wetland. This adjacent wetland (Wetland D) is likely a contiguous part of the larger Wetland A/B complex. This potential connection lies offsite and could not be confirmed. Wetland D likely serves to trap sediment and contaminants in storm runoff from the Taconic State Parkway. #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in
combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK | ALL | |----|---|-----| | | THAT APPLY): | | | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: | |----|--| | | TNWs: linear feet width (ft), Or, acres. | | | Wetlands adjacent to TNWs: acres. | | 2. | RPWs that flow directly or indirectly into TNWs. | | | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that | | | tributary is perennial: | | | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |----------|---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: 28 linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: 0.19 acres. | | 7. | Impoundments of jurisdictional waters. As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE
SU | OLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, CGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CCH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. | E. See Footnote # 3. To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | ☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. ☐ which are or could be used for industrial purposes by industries in interstate commerce. ☐ Interstate isolated waters. Explain: ☐ Other factors. Explain: | |-----------|---| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | <u>SE</u> | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: NYSDOT drawing "Jurisictional Determination Plan" (May 2017). Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. | | | □ Data sheets prepared by the Corps: □ Corps navigable waters' study: □ U.S. Geological Survey Hydrologic Atlas: □ USGS NHD data. | | | USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation:
National wetlands inventory map(s). Cite name: State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: ☐ Aerial (Name & Date): or ☐ Other (Name & Date): Previous determination(s). File no. and date of response letter: Applicable/supporting case law: | | | Applicable/supporting scientific literature: | Other information (please specify): elevation data-derived stream network. # B. ADDITIONAL COMMENTS TO SUPPORT JD: