

Harlem River Shore Based Measures Actionable Element

Feasibility Design Memorandum

DRAFT

New York – New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study

June 2025

Table of Contents

1	Pro	ject Overview	7
	1.1	Introduction	7
	1.2	Study Location	7
	1.3	NYNJHAT Study Context	8
	1.4	Readers Guide	9
2	Dat	a Collection and Data Gap1	0
	2.1	General Site Data	0
	2.2	Site-Specific Data	0
	2.3	Site Observations	1
	2.4	Geotechnical Data Collection1	2
	2.5	Data Gap1	2
3	Sho	ore Based Measures for Harlem River	6
	3.1	Alignment Refinement	6
	3.2	Alignment Description	6
4	Eng	gineering Analysis1	9
	4.1	Basis of Design	9
	4.2	Geotechnical Analysis	9
	4.3	Coastal Analysis	3
	4.3	.1 Tidal Datums	3
	4.3	.2 Extreme Water Levels and Waves	3
	4.3	.3 Freeboard Analysis	5
	4.3	.4 Wave Loads Analysis	5
	4.4	Structural Analysis	6
	4.4	.1 Floodwall	7
	4.4	.2 Vehicular Floodgate	7
	4.4	.3 Anchored Combiwall	8
	4.4	.4 Tunnel Span	9
	4.5	Design Summary	0
5	Qu	antity Take Offs	3
	5.1	Introduction	3
	5.2	Inventory of SBMs for Harlem River Actionable Element	3
	5.3	Quantity Take-offs	4
6	Des	sign Summary and Next Steps	5
		New York - New Jersey Harbor and Tributari Coastal Storm Risk Management Feasibility Stui	ES DY
Ju	ne 2025	2 Harlem River Actionable Flement Feasibility Design Mer	no

6.1	Su	mmary	35
6.2	Ree	commendations for Next Steps	35
6.2	2.1	Studies and Data Collection:	35
6.2	2.2	Recommendations for Further Design Refinements of the East Harlem SBMs	36
Referen	ices		38
Append	lices.		. 39

List of Figures

Figure 1-1: Area of Study showing the 100-year Return period Flood Extents	7
Figure 1-2: East Harlem SBM (northern section of the reach) from the Tentatively Selected	
Plan (TSP)	8
Figure 3-1: Harlem River SBM Alignment as Actionable Element	17
Figure 4-1: "Bedrock-Surface Elevation and Overburden Thickness Maps of the Five	
Boroughs, New York City, New York," Data Report 1176, USGS (DeMott,	
Stumm, & Finkelstein, 2023).	20
Figure 4-2: Seaward design soil profiles	21
Figure 4-3: Location of NACCS Save Points with extreme Water Level statistics	24

List of Tables

Table 2-1: Harlem River Greenway Reports and brief description	11
Table 2-2: Engineering Data Gaps for Harlem River Actionable Element	13
Table 3-1: Summary of measures along Harlem River SBM Alignment as Actionable	
Element	18
Table 4-1: "No bedrock" design profile soil parameters	22
Table 4-2: "High bedrock" design profile soil parameters	22
Table 4-3: Fill design soil parameters	22
Table 4-4: Tidal datums for Harlem SBM relative to NAVD88	23
Table 4-5: Coastal Basis of Design Parameters	25
Table 4-6: Calculated Wave Loads on different East Harlem SBM Alignment sections	26
Table 4-7: Summary of CSRM Measures along East Harlem SBM Alignment identified as	
Actionable Element	31
Table 5-1: Detailed inventory of SBMs for Harlem River Actionable Element	33
Table 6-1: Detailed Design Items to be Considered During Next Phases of the Study	37

List of Appendices

Appendix 1.	Excerpts from TSP
Appendix 2.	Maps of Project Area
Appendix 3.	Structural Sections/Plans
Appendix 4.	Coastal Analysis
Appendix 5.	QTO
Appendix 6.	Cost Engineering

Glossary

Term/Acronym	Expanded	Definition	
Actionable Element Site		Location where a measure has been identified	
ADCIRC	Advanced Circulation Model		
AEP	Annual Exceedance Probability	The probability that at least one event in excess of a particular magnitude will occur in any given year	
СЕМ	Coastal Engineering Manual		
СРТ	Cone Penetration Test		
CSO	Combined Sewage Outfalls		
CSRM	Coastal Storm Risk Management		
DEP	Department of Environmental Protection		
EurOtop	European Overtopping Manual		
EAS	Environmental Assessment Statement		
Elevation		The height of an object relative to an established datum such as mean sea level	
ERDC	Engineering Research and Development Center		
FSR	Feasibility Study Report		
GIS	Geographic Information System		
HRM	Harlem River Drive		
LiDAR	Light Detection and Ranging		
МННЖ	Mean Higher High Water	The average of the higher high-water height each tidal day observed over AdH simulation period	
MLLW	Mean Lower Low Water	The average of the lower low water height each tidal day observed over AdH simulation period	
MSL	Mean Sea Level		
МТА	Metropolitan Transportation Authority		
NACCS	North Atlantic Comprehensive Coastal Study		
NAN	North Atlantic Division – New York District		
NAVD88	North American Vertical Datum of 1988	The vertical control datum established in 1991 by the minimum- constraint adjustment of the Canadian-Mexican-United States leveling observations	
NFS	Non-Federal Sponsor		

Expanded	Definition
National Oceanic and Atmospheric	
Administration	
New York (State)	
New York City	
New York City Department of	
Environmental Protection	
New York City Economic	
Development Corporation	
New York City Transit	
New York New Jersey Harbor and	
Tributaries	
New York New Jersey Harbor and	
Tributaries Study	
Pre-Construction Engineering and	
Design	
Quantity Take Off	
Residual Risk Features	
Shore-Based Measure	On-land perimeter measures such as
	levees, floodwalls, dunes,
	promenades, etc., that are
	constructed to impede coastal storm
	surge
State Pollutant Discharge	
Elimination System	
Standard Penetration Test	
	Broader NY NJHAIS
Standy state spectral Waye	Comprehensive Plan Area
Still Water Level	Average water surface elevation at
	any instant, excluding local variation
	due to waves and wave set-up, but
	including the effects of tides, storm
Tentativaly Salastad Dian	surges and long period seicnes
I entatively Selected Plan	
United States Army Corps of Engineers	
Englicers	The amount of water flowing over
	the crest of a coastal structure such
	as a seawall, a dike, a breakwater
	due to wave action
	ExpandedNational Oceanic and AtmosphericAdministrationNew York (State)New York CityNew York City Department ofEnvironmental ProtectionNew York City EconomicDevelopment CorporationNew York New Jersey Harbor and TributariesNew York New Jersey Harbor and Tributaries StudyPre-Construction Engineering and DesignQuantity Take Off

1 Project Overview

1.1 Introduction

The New York-New Jersey Harbor and Tributaries Feasibility Study (NYNJHATS) was conducted to determine the feasibility of coastal storm risk management (CSRM) in the NJNYHAT study area and to recommend a plan that contributes to community and environmental resilience. The study developed a Tentatively Selected Plan (TSP) which identified various reaches of Shore Based Measures (SBMs), Residual Risk Features (RRFs), and Storm Surge Barriers (USACE, 2022).

The purpose of this report is to take a closer look at an area that has been identified as an Actionable Element. Specifically, the alignment and structural sections of the East Harlem SBM reach of the TSP from the Macombs Dam Bridge to the south end of Highbridge Park will be reevaluated and refined. The refined design will be used to inform a Class 4 cost estimate. The engineering analyses are at the same level of design maturity as the TSP but based on site specific information.

1.2 Study Location

The East Harlem SBM reach of the TSP spans from Carl Shurz Park to Highbridge Park, in New York City, refer to the Engineering Appendix (Appendix B) of the Feasibility Study Report (USACE, 2022). The focus of this study is to address the flooding in the area surrounding Fredrick Douglass Blvd, as indicated in the yellow dashed box in Figure 1-1 below. The section of the East Harlem SBM alignment of the TSP within the study area is shown in Figure 1-2 below.

Figure 1-1: Area of Study showing the 100-year Return period Flood Extents

Figure 1-2: East Harlem SBM (northern section of the reach) from the Tentatively Selected Plan (TSP)

The East Harlem SBM measure types along this portion of the TSP alignment include a large floodwall, medium floodwall, seawall, and deployable vehicular gates (see Appendix 1 for map of alignment from the TSP). The floodwalls are composed of an inverted T-shape reinforced concrete structure with a 4-foot-thick base, battered H-piles and a vertical steel sheet pile cut-off wall. The large and medium floodwall are differentiated by their stem heights. The seawall is a composite structure and comprises of a rubble mound structure and an H-pile supported T-shape reinforced concrete floodwall with a vertical sheet pile cut-off wall. The vehicular gate is a deployable flood barrier across a road which allows for unimpeded access across the alignment during day-to-day operations. Details of these structures can be found in Appendix B of the 2022 Feasibility Study Report (FSR) (USACE, 2022).

1.3 NYNJHAT Study Context

A limited series of reasonable and conceptually generic structural measures to provide flood risk reduction were developed prior to release of the 2022 report (USACE, 2022). As noted earlier, these structural measures are referred to as East Harlem SBMs and include typical structures like floodwalls and levees. The focus of this study is more narrow, spanning approximately 4,000ft of shoreline, and the design and measure types will be more specific to the site conditions. Nonetheless, to achieve a class 4 cost estimate, the design is still conceptual in nature, with substantial lack of technical information. While certain major construction elements are defined, there is still substantial uncertainty relative to some major construction components and the

DRAFT

description of the project will rely, in part, on assumptions. Ultimately it is the intent to progress this concept design later this year to achieve a class 3 cost estimate.

1.4 Readers Guide

The following sections will provide a brief overview of relevant site-specific information and any data gaps identified (Section 2.5). The modified alignment specific to the Harlem River Actionable Element is presented in Section 3. Section 4 includes the design development narrative, with quantity take-offs (QTOs) presented in Section 5. Final conclusions and recommendations for the next steps are included in Section 6.

2 Data Collection and Data Gap

2.1 General Site Data

The study team relied on previously collected NYNJHAT Study data for a general description and characterization of the project area (NYC tax lot data, open space, streets, etc. as available on NYC Open Data) as well as waterfront structure categorization as provided by New York City Economic Development Corporation (NYCEDC) (see maps in Appendix 2). Bathymetric Data from 2024 was obtained from U.S. Army Corps of Engineers' (USACE) NAN channel survey conditions for the Harlem River (see Appendix 2). Topography data in the form of Digital Elevation Models and LiDAR (U.S. Geological Survey, 2014) was used to assess the needed size of a CSRM intervention, e.g., the height above existing grade. No detailed information for buried utilities within the project area was available at the time of the study. There are 4 DEP CSO outfalls discharging into the Harlem River along this alignment per the NY States CSO inventory (New York State, 2025). Outfalls identified have the following SPDES ID: NY0026131-046, NY0026131-047, NY0026131-048 and NY0026131-050. Details of size and invert of each outfall are unknown. The NOAA nautical chart 12342 identifies the river area spanning about 200 yards south and north of around the Macombs Dam Bridge as a "Cable Area". This appears to relate to power and control cables for the Macombs Dam Bridge. However, based on charted utilities mapped in support of a proposed cable project along the Harlem River, these cables appear to run from the center of the bridge to the eastern bank of the river thereby without apparent conflict with the Harlem River Actionable Element alignment. Details on any subaqueous utility crossings are unknown at this time. Lastly, subway tunnels are situated underneath the Harlem River within the study area. This set of tunnels is referred to as the 155th Street Subway. Given the historic nature of the tunnels (construction 1929), some general engineering information could be retrieved, but is very limited.

2.2 Site-Specific Data

The Non-Federal Sponsor (NFS) has provided reports related to the Harlem River Greenway. NYC agencies are proposing the development and improvement of the Manhattan Greenway along the Harlem River (Harlem River Greenway). That proposed project would complete a missing link of the Greenway on Manhattan's eastside and activate a vacant waterfront area in the East Harlem neighborhood. The proposed project would also repair or replace damaged bulkheads to ensure the longevity of the Greenway. Construction drawings and geotechnical engineering reports in support of subproject 2 and subproject 3 of the Greenway project contain useful data to obtain an understanding of geotechnical soil properties as well as some other site characteristics. A brief overview of the relevant related reports is tabulated below (Table 2-1). Apart from geotechnical information, the Greenway plans also provided an approximation of the NYCT Easement for the 155th Street subway tunnel. Use of the information from these reports is further detailed in the following sections, specifically Section 2.4 and 4.2.

Name	Description	Filename
EAS 13 November 2020	City Environmental Quality Review - Environmental Assessment Statement for the Greenway Project	20SBS006M_Complete EAS_11.13.20.pdf
Geotechnical Engineering Report for Manhattan Green Way – Harlem River - Subproject 3 9 March 2021	Report presents the results of the geotechnical engineering study for the proposed Sub-Project 3 of the Manhattan Greenway – Harlem River project, in Manhattan, New York	2021-03-09 - MGHR SP3 Geotechnical Engineering Report_Sealed (1).pdf
Manhattan Green Way – Harlem River - Subproject 3 September 1 st , 2022	100% Construction Drawings for Subproject 3	Manhattan Greenway SP3 100_CD Drawings - 2022-09- 02.pdf
Geotechnical Data Report for Manhattan Green Way – Harlem River - Subproject 2 5 April 2023	Geotechnical data report presents the results of the geotechnical subsurface evaluation for the proposed Subproject 2 portion of the Manhattan Greenway – Harlem River project, in Manhattan, New York.	2023-04-05 - MGHR SP2 - Geotechnical Data Report.pdf
Manhattan Green Way – Harlem River - Subproject 2 September 1 st 2022	100% Construction Drawings for Subproject 2	Manhattan Greenway SP2 100_CD Drawings - 2022-09- 01.pdf
Harlem River Greenway Project Cost Estimate November 2 nd 2023	Construction Cost for Manhattan Greenway – Harlem River. Total construction cost inclusive of sub projects 1, 2 and 3.	2023-11-02 MGHR IFB Estimate Summary.pdf

Table 2-1: Harlem River Greenway Reports and brief description

2.3 Site Observations

A site visit on foot was performed on April 14, 2025, to complete general reconnaissance of the area of interest. The site visit focused on the waterfront area north of 150th Street up to the northern extent of Rangel Houses. During the site visit both an alignment along the Harlem River, similar to the East Harlem SBM included in the TSP, as well as an alternate alignment that would run west of the Harlem River Drive (HRD) were cursorily explored and kept in mind when making site condition observations. Due to limited direct access to the waterfront, observations were mainly done from the Macombs Dam Bridge. Site visit observations were further supplemented with available aerial imagery and oblique aerial photography from sources such as Google and Bing Maps.

2.4 Geotechnical Data Collection

The Geotechnical Engineering Report for Manhattan Greenway – Harlem River (Sub-Project 3) prepared by Langan Engineers and dated 9 March 2021 was the predominant geotechnical data resource used for preliminary design. This geotechnical data report contains the results of five (5) in-water and one (1) on-land geotechnical borings along the Harlem River between the East 155th and Swindler's Cove. Three (3) of these in-water borings fall approximately within the current limits of the project study area. As detailed in Section 4.2, these borings were used to inform the conceptual design of the measures discussed herein. No laboratory analysis was conducted on soil samples collected as part of this project. Laboratory data is required to confirm visual soil classification conducted during drilling, to characterize soil type and behavior, and to provide engineering design are limited in nature, and additional geotechnical investigations including soil sampling and laboratory analysis should be conducted within the project limits.

The Geotechnical Data Report for Manhattan Greenway – Harlem River (Subproject 2) prepared by Langan Engineers and dated 5 April 2023 was also reviewed. This project scope covers the existing Harlem River Park from East 132nd Street to East 145th Street. This geotechnical data report contains the results of three (3) in-water and thirty-eight (38) on-land geotechnical borings along the Harlem River. Laboratory analyses were conducted on collected soil samples, and the laboratory data was submitted as part of the geotechnical report. While this data was reviewed during design, the borings and laboratory analysis conducted as part of this project fall outside of the area of interest for the current design and therefore are considered limited.

2.5 Data Gap

As stated earlier, no site-specific data collection campaign was completed. The study team relied on publicly available data and data collected for other projects in the study area that was provided by the NFS. The data available is sufficient to generate a conceptual design and provide a class 4 cost estimate. However, to further the level of design maturity and provide a class 3 cost estimate during the next phase of the project, additional data will need to be collected. Data gaps have been identified. Table 2-2 summarizes the primary data gaps from an engineering and design perspective, and the potential impact on the project design progression. The list in Table 2-2 is not anticipated to be all inclusive or comprehensive as it is anticipated that additional data in accordance with local, state and federal regulations and non-engineering disciplines may also be required.

Category	Data Gap	Impact	Action Step
Geotechnical Information	Detailed Subsurface Exploration	Lack of soil borings and laboratory testing data will require conservative design assumptions (i.e., weak soil parameters), potentially increasing the size and cost of structure in this reach. Lack of understanding as to the variability of bedrock (depth to bedrock, rock quality, and rock composition) impacts selected foundation type and size, likewise impacting cost of structure and selected construction	Obtain detailed geotechnical information from other projects within direct vicinity, or complete project specific geotechnical investigation including CPTs, SPTs, boreholes with soil sampling and rock coring, and laboratory testing. Geophysical testing to understand depth to rock along the line of protection may also be recommended.
Utilities (storm water)	Storm water infrastructure mapping is not available	The need for, size and details of outfall penetrations through the alignment is not well defined. Conservative assumptions can be made but large contingencies around this item remain.	Obtain storm water infrastructure as-built records, digital infrastructure files and other pertinent storm water data.
Utilities (subaqueous cables	Type(s) and size of cabled utilities at or below riverbed have not been identified	The need for, size and details of utility crossing is not well defined. Conservative assumptions can be made but large contingencies around this item remain	Complete utility survey. Obtain as-builts or record drawings.

Table 2-2: Engineering Data Gaps for Harlem River Actionable Element

Category	Data Gap	Impact	Action Step
Utilities (other)	Utility surveys are not available	Impacts to existing utilities and/or need for relocation of utilities is largely undefined. Although it is generally believed that few utilities are present within the footprint of the proposed (seaward) alignment, conservative assumptions will need to be made and contingencies are high.	Complete utility survey. Obtain as-builts or record drawings.
Record Drawings of Infrastructure	Record drawings of existing infrastructure (e.g., HRD, 155 th Street subway Tunnel, Macombs Dam Bridge, and the MTA 148 th Street Yard)	The CSRM alignment will be constructed in close proximity to the existing infrastructure. To avoid conflicts and interference with existing civil works construction drawings or as-builts are needed.	Obtain record drawings
Other Environmental	Tree Survey is missing	Lack of tree survey leads to an assumption that no major trees are affected.	Complete tree survey to better estimate impacts to and need of removal of trees.
Real Estate	No parcel investigations were completed along alignment	Construction easements and any possible limitations imposed during construction may affect project design	Complete preliminary easement mapping and identify real estate data needs
Topography & Bathymetry	Surveyed topographic information.	Surveyed topographic elevations are needed for the next phase of design. Especially elevations of grades where overhead obstructions are present (next to or under HRD) lead to assumptions that need to be verified.	Obtain topographic survey.

Category	Data Gap	Impact	Action Step
Coastal	Information on design	Design wave	Complete wave
Hydrodynamic	wave characteristics is	characteristics kept	modeling to establish
Models	sparse within the	uniform for the entire	design wave
	Harlem River.	alignment based on	characteristics.
		conservative assumptions.	
		Spatially more refined	
		design wave information	
		could provide more	
		economical design.	

3 Shore Based Measures for Harlem River

3.1 Alignment Refinement

Following site visits and discussion between USACE and the NFS, the East Harlem SBM alignment was agreed upon to run for the majority along the banks of the Harlem River. The following is a brief overview of changes and characteristics of the East Harlem SBM alignment that will be further studied and designed as the Harlem River Actionable Element:

- The alignment was limited to the northern end of the East Harlem SBM alignment as shown in the TSP (USACE, 2022).
- The alignment would approximately extend from the MTA Facility (148th Street Yard) to the northern end of Rangel Houses
- The alignment would tie in to natural high ground at either end (Elevation 15.6 ft NAVD88 or greater)
- Four (4) principal measure types will be utilized within this alignment and include
 - A floodwall: conventional CSRM measure constructed on land and in locations where spaces are constraint
 - An anchored combiwall: a CSRM measure that would be built in the water and function as seawall, combiwall is short for combination wall
 - A vehicular gate: a conventional CSRM measure to allow for vehicles to pass during normal day-to-day conditions, but keep floodwaters at bay when closed, and
 - A special measure that would be a continuation of the combi-wall but is specifically designed to span the subway tunnel and not to impose any loads on it.

3.2 Alignment Description

The Harlem River Actionable Element alignment, shown in Figure 3-1 and summarized in Table 3-1 below, can be described as follows: Starting from the southern end, a conventional floodwall structure will be used to start at "high ground" and run to a point where currently a vehicular gate is located on the MTA facility. As part of the alignment, a new vehicular floodgate structure is proposed in that location. This gate structure then ties to the anchored combiwall, which will function as CSRM measure, that will run along the western bank of the Harlem River. This measure will be the same for the entire, approximately 3600 ft, run along the Harlem River with the exception of where the alignment crosses the MTA tunnel. At the northern end, the alignment will cross the Harlem River drive, again utilizing a conventional vehicular flood gate. This gate will abut the earthen embankment which is the start of the elevated south-bound HRD. On the west side of the earthen embankment, the alignment will continue, consisting of a conventional floodwall, and run another approximately 200 ft north before, at its terminus, tying in to natural high ground.

Figure 3-1: Harlem River SBM Alignment as Actionable Element

Reach ID	Measure Type	Measure Length (ft)	Measure Description
1	Floodwall	80	Conventional Floodwall to start the alignment and tie-in the alignment to high ground
2	Vehicular Gate	40	Gate to allow vehicular access to the MTA Facility along the waterfront
3	Anchored Combiwall	3,637	CSRM Measure along the Harlem River
	Tunnel Span	155	A site-specific design will be needed to span the tunnel
4	Vehicular Gate	40	Gate to allow uninterrupted vehicular traffic on north bound HRD
5	Floodwall	238	Conventional floodwall to tie-in the alignment to natural high ground

Table 3-1: Summary of measures along Harlem River SBM Alignment as Actionable Element

4 Engineering Analysis

The following sections describe the engineering analyses performed as part of this study.

4.1 Basis of Design

The basis of design of the engineering analyses performed is as documented for the NYNJHAT Study (USACE, 2022), unless otherwise noted in the sections below.

4.2 Geotechnical Analysis

Design soil profiles were developed based on review of Langan's geotechnical report, "Geotechnical Engineering Report for Manhattan Greenway – Harlem River (Sub-Project 3)" dated 9 March 2021 (Langan, 2021). Five (x5) in-water borings and one (x1) on-land boring were conducted along the Harlem River between East 155th and Swindler's Cove. The in-water borings were drilled to depths between 27 and 96.5 ft below the mudline, and the on-land boring was drilled to a depth of 127 ft below ground surface. No laboratory analyses were conducted on the boring soil samples. Subsequently, the geotechnical design profiles were based on the visual soil classification and standard penetration test (SPT) blow counts noted in the boring logs.

The depth to bedrock, as well as the composition of the bedrock, varies along Harlem River within the project limits. Figure 4-1 below shows the depth to bedrock varying from ~ 0 to 150 ft within the project reach. Bedrock was encountered as shallow as 17 ft below the mudline in boring SP3-04(W). Land boring SP3-07 was drilled to 127 ft below ground surface without encountering bedrock. The bedrock encountered in the borings was described as schist, micaceous schist, and light gray granite.

Figure 4-1: "Bedrock-Surface Elevation and Overburden Thickness Maps of the Five Boroughs, New York City, New York," Data Report 1176, USGS (DeMott, Stumm, & Finkelstein, 2023).

To account for the variability of the bedrock depth in the design, a "high bedrock" and "no bedrock" profile were developed. The "no bedrock" profile was based on boring SP3-03, where bedrock was not encountered. The "high bedrock" profile was based on boring SP3-04, where bedrock was encountered 17 ft below the mudline. See Langan, 2021, for details on the borings. The design soil profiles and design parameters are displayed in Figure 4-2, and Table 4-1 and Table 4-2 below.

			No Bedroc	k			н	igh Bedroo	k		
			SP3-03(W)				SP3-04(W)			
EI (ft,	Soil Type	v (ncf)		Su (nef)**	au (pci)	SoilType	v (ncf)		Su (nef)**	au (psi)	
-20	Johnype	100 f	φ (ueg)	0 (psi)	qu (psi)	Son type	y (pci/	ψ (ueg)	Su (psi)	qu (psi)	Clav
-21				-							Silt
-22							110	0)		Sandy Silt
-23											Sand
-24		120	25								Gravel
-25											Decomposed Rock
-26											Bedrock
-28											
-29							120	30)		
-30		105		250							
-31							135	27			
-32											
-33		120	30								
-34											
-36											
-37											
-38											
-39											
-40							145	40			
-41											
-42											
-44											
-45											
-46											
-47											
-48											
-49		115		2000							
-50											
-52											
-53											
-54											
-55											
-56											
-57											
-59											
-60											
-61											
-62											
-63											
-64											
-65											
-67											
-68											
-69											
-70											
-71											
-72											
-74											
-75											
-76											
-77											
-78											
-79											
-80											
-81											
-83											
-84		135	27								
-85											
-86											
-87											
-88											
-89											
-91											
-92											

Figure 4-2: Seaward design soil profiles

No Bedrock Profile (SP3-03 (W))											
Layer Name	Top of layer El	Layer Thickness (ft)	γ (pcf)	φ' (deg)	Su (psf)						
Silt	-20	4	100								
Sand with Silt	-24	6	120	25							
Silt	-30	3	105		250						
Sand	-33	16	120	30							
Clay	-49	35	115		2000						
Decomposed Rock	-84		135	27							

Table 4-1: "No bedrock" design profile soil parameters

Table 4-2: "High bedrock" design profile soil parameters

High Bedrock Profile (SP3-04 (W))											
Layer Name	Top of layer El	Layer Thickness (ft)	γ (pcf)	φ' (deg)	Su (psf)						
Silt	-23	6	110								
Sand	-29	2	120	30							
Decomposed Rock	-31	9	135	27							
Bedrock	-40		145	40							

To ensure the seaward structure designs can accommodate both high and low bedrock, both profiles should be used during design.

Only one soil boring was collected on the landward side as part of Manhattan Greenway – Harlem River (Sub-Project 3), boring SP3-07. The first approximately 24 ft of soil below ground surface was classified as "uncontrolled fill." Generic fill design parameters were developed based on the SPT blow counts, as shown in the Table 4-3 below. It is assumed that hydraulic fill will be placed behind the combination wall from the mudline to an elevation of approximately +7 ft NAVD88. The properties specified in the Table 4-3 below assume a loosely placed clean sand hydraulic fill.

Table 4-3: F	ll design	ı soil parar	neters
--------------	-----------	--------------	--------

Fill										
Layer Name	Top of layer El	Layer Thickness (ft)	γ (pcf)	φ' (deg)	Su (psf)					
On-land Fill	Varies	Varies	120	30						
Hydraulic Fill	7	Varies	105	28						

The depth to bedrock on the landward side of the proposed flood risk reduction alignment is also highly variable. Subsequently, the "no bedrock" and "high bedrock" profiles should also be used for the landward structures. To account for the additional placed fill landward, fill with soil parameters as detailed above should be considered overlaying the above soil profiles, up to the existing ground surface elevation.

4.3 Coastal Analysis

4.3.1 Tidal Datums

Tidal datums at the Harlem River Actionable Element were extracted using NOAA's Vertical Datum Transformation (VDATUM 4.7) tool (Office of Coast Survey, 2025). The local tidal levels relative to the NAVD88 geoid are shown in Table 4-4.

Table 4-4: Tidal datums for Harlem River Actionable Element relative to NAVD88

Datum	Elevation relative to NAVD88 (ft)
Mean Higher High Water (MHHW)	+2.30
Mean High Water (MHW)	+2.02
Local Mean Sea Level (MSL)	-0.11
Mean Low Water (MLW)	-2.32
Mean Lower Low Water (MLLW)	-2.49

4.3.2 Extreme Water Levels and Waves

Site-specific coastal input parameters for this project location were developed based on data from the North Atlantic Comprehensive Coastal Study (NACCS). The NACCS data compiled as part of the Coastal Hazard System (CHS) by the USACE Engineering Research and Development Center (ERDC) is based on a statistical analysis of model outputs from the simulation of a large set of historical and synthetic storms using ADCIRC (for storm surge) and STWAVE (for nearshore waves). Figure 4-3 shows the locations of available Save Points with calculated statistics for extreme water levels. The water levels were extracted from the closest available data point to the alignment at Save Point ID 11882. Wave-height statistics were not available at all the locations however, and the locations with available wave statistics are highlighted in blue.

Locations of NACCS Save Points relative to Harlem SBM

Figure 4-3: Location of NACCS Save Points with extreme Water Level statistics

Projected sea level rise up to the year 2095 based on the USACE Intermediate projection at the Battery, NY (i.e., 2.2 ft) was added to the NACCS water level statistics to obtain the design water levels (USACE, 2022).

Extreme wave-height statistics for this project location are based on NACCS outputs a little over half a mile south of the alignment at Save Point ID 4400. These results may be further corroborated or updated based on a more detailed (higher resolution) site-specific modeling study during the subsequent design phase. As such, these wave data may be expected to be somewhat conservative as they may not sufficiently account for the local bathymetry along the alignment. Model outputs from the NACCS simulated storm set were analyzed to obtain the most commonly co-occurring Peak Wave Periods corresponding to the tabulated wave-heights for each scenario.

The coastal basis of design parameters consisting of the water-levels and wave characteristics are shown in Table 4-5.

Return Period (yrs)	Scenario	Design Still Water Level (ft, NAVD88) ¹	Significant wave height (ft)	Peak wave period (s)	Top of Wall Elevation (ft, NAVD88)
10	10-year	9.4	2.71	2.7	17.5
100	100-year	12.2	2.97	2.7	17.5
500	Extreme	15.3	3.16	2.7	17.5
750	Unusual	16.2	3.20	2.7	17.5

Table 4-5: Coastal Basis of Design Parameters

Note 1: Water Levels include SLC to the end of the 50-year planning horizon.

4.3.3 Freeboard Analysis

The required freeboard for the Harlem River Actionable Element feature was estimated based on a 1 liter per second per meter threshold at 90% statistical confidence limit, identical to prior analyses of the Draft report (USACE, 2022). A probabilistic approach was applied using the equations for overtopping from the EurOtop II manual, which also specifies mean and standard deviation of overtopping coefficients. For the design coastal input parameters at the 100-year conditions for the Harlem River Actionable Element, this resulted in a calculated freeboard (above the Stillwater elevation) of 5 feet.

This freeboard was then added to the 100-year design still water elevation to calculate the minimum required top of wall elevation. Rounding up to the nearest half a foot level, this leads to a top of wall elevation of 17.5 ft NAVD88,

4.3.4 Wave Loads Analysis

For wave loads, separate analyses were conducted for the section of the alignment in water and the floodwall or vehicular gate sections at the northern and southern ends of the alignment. Following guidance from the Coastal Engineering Manual (CEM), the type of wave loads on the structure was first analyzed and determined to be classified as "non-impact" based on the normalized incident wave height criteria. Therefore, the modified Goda method was used for the wave load calculation for each of these sections. The results of the wave load analysis are presented in Table 4-6.

Section	RP	Top of Wall	Assumed Mudline Elevation	Pressure p1 (at SWL)	Pressure p3 (at bottom)	Pressure p4 (top of wall)	Resultant Horizontal Force	Resultant Force Elevation
	years	ft, NAVD88	ft, NAVD88	lb/sqft	lb/sqft	lb/sqft	Kips/ft	ft, NAVD88
In Water	10	17.5	-20.0	175.0	2.0	0.0	3.2	1.7
In Water	100	17.5	-20.0	191.0	2.0	55.0	3.8	3.6
In Water	500	17.5	-20.0	204.0	1.0	147.0	4.0	4.7
In Water	750	17.5	-20.0	206.0	1.0	173.0	4.0	4.9
North Tie-in	10	17.5	+7.0	274.0	221.0	0.0	1.5	10.3
North Tie-in	100	17.5	+7.0	233.0	140.0	67.0	1.8	11.9
North Tie-in	500	17.5	+7.0	218.0	90.0	158.0	1.7	12.9
North Tie-in	750	17.5	+7.0	217.0	79.0	182.0	1.6	13.0
South Tie-in	10	17.5	-2.0	178.0	48.0	0.0	1.9	7.0
South Tie-in	100	17.5	-2.0	192.0	34.0	55.0	2.3	9.0
South Tie-in	500	17.5	-2.0	204.0	22.0	147.0	2.3	10.2
South Tie-in	750	17.5	-2.0	206.0	19.0	173.0	2.3	10.4

 Table 4-6: Calculated Wave Loads on different Harlem River Actionable Element

 Alignment sections

4.4 Structural Analysis

As presented earlier, the Harlem River Actionable Element alignment has three (3) typical measures to provide flood risk reduction: 1) floodwall, 2) vehicular flood gate and 3) anchored combiwall. However, due to the presence of the 155th Street subway tunnel, a special tunnel spanning structure is proposed for that area. Through high-level concept design iterations and design analyses a structural design for each measure type was converged upon. Design for the project is still in the early stage, and the designs are conceptual in nature but with sufficient design maturity to achieve a class 4 cost estimate (USACE, 2016). The following sections briefly describe the structural design of each measure.

4.4.1 Floodwall

Floodwall systems are independent, single purpose structures that aim to provide flood risk reduction. A floodwall is typically a reinforced concrete structure supported on steel piles, which can incorporate a steel sheet pile cut-off wall as a seepage control measure.

The reinforced concrete structure consists of a concrete stem and base slab that form an inverted T and is supported on pairs of battered micropiles. Due to the limited overhead clearance and space available, micropiles were used in the design. A micropile is a small diameter, drilled and grouted non-displacement pile that is typically reinforced. They can be installed by methods that cause minimal disturbance to adjacent structures and where access is limited. A sheet pile is included to provide for seepage cut-off. For the floodwall, the approximate existing ground elevation was assumed to be + 5 feet NAVD88. With a crest elevation of +17.5 ft NAVD88, the reveal height of the wall is 12.5 feet. Pile design depends on design loads and soil parameters. For this study, soil characteristics as described in Section 4.2 were used.

The floodwalls are located in a relatively protected area away from the water's edge and as such not designed for vessel impact load. The structural design of the floodwall has been performed in accordance with EM 1110-2-2502 Floodwalls and other Hydraulic Retaining Walls (USACE, 2022) and FHWA Micropile Design and Construction Manual.

A typical cross-section for the floodwall is shown in Appendix 3.

4.4.2 Vehicular Floodgate

4.4.2.1 Structural Design

Vehicular floodgates are deployable flood barriers added to a line of coastal storm damage risk reduction, across a road or driveway, which allows for unimpeded access across the alignment during normal day-to-day conditions. Deployable floodgates can be either manually or automatically operated; however, the prototypical deployable floodgate developed for this study is designed to be manually operated to be consistent with assumptions made previously (USACE, 2022). Manually operated gates require operation personnel to physically go to the location of the gate and close it during impending storm conditions. The gate will then be locked into place to prevent tampering with.

Both swing gates and roller gates were considered initially, the choice of gate type depends on the orientation and space available. In general, a roller gate can slide into place along a track and a swing gate is supported on one side by the top and bottom hinges attached to a support structure. Due to space constraints and the relatively large span needed to cross the HRD a roller gate was selected.

For the roller gate, the approximate existing ground elevation was assumed to be +5 feet NAVD88. With a crest elevation of +17.5 feet NAVD88, the reveal height of the gate is 12.5 feet. When not in use, the roller gate will be stored in the gate monolith adjacent to the gate structure. Due to the housing needed for the gate, the top of the monolith is greater in height at El. +19 feet.

The roller gate is mainly comprised of horizontal and vertical steel structural members, intermediate diagonal steel braces, steel face plates, caster assemblies and track with seal. The diagonal steel braces were provided due to the relatively large span (42 feet). These braces will need to be put in place during deployment of the gate.

The reinforced concrete gate storage monolith is shaped like an inverted T. A slot is provided in the stem wall for the gate storage. Both the monolith and gate structures were designed to be supported on pairs of battered micropiles to minimize disturbance to adjacent structures. Pile design depends on design loads and soil parameters. For this study, soil characteristics as described in Section 4.2 were used. A sheet pile is included to provide for seepage cut-off.

The cross-section and plan of the typical vehicular floodgate (roller gate) and the adjacent monolith is shown in Appendix 3.

The vehicular gate is located in a relatively sheltered area away from the coastal edge or behind the anchored combiwall, hence it is not designed for vessel impact load. The structural design of the vehicular floodgate has been performed in accordance with EM 1110-2-2502 Floodwalls and other Hydraulic Retaining Walls (USACE, 2022) and FHWA Micropile Design and Construction Manual.

4.4.2.2 Vehicular Floodgate closure frequency

The traffic volume on the Harlem River Drive is high. With a floodgate across the HRD, the closure frequency, i.e., the expected average reoccurrence of operations to close the gate, could be a concern as it would impact traffic on a major artery in Harlem. To assess the average recurrence interval of floodgate closure a preliminary closure frequency analysis was conducted. This analysis is documented in Appendix 4. Based on this analysis, the estimated average closure interval for the vehicular gate over its service life would range between 3.6 years in 2045 to 1.4 years by the end of service life in 2095 if the closure criterion is set to a +7.0ft NAVD88.

4.4.3 Anchored Combiwall

The anchored combiwall is an in-water floodwall that aims to provide flood risk reduction. A combined wall system is composed of the king pile and a pair of intermediary sheet piles. The intermediary sheet piles serve as seepage cutoff and transfer the water and soil pressures to the king piles, which are steel pipe piles and carry most of the load. A concrete cap ties the vertical and battered piles together. The concrete cap is shaped as a wall with a concrete stem and base slab that form an L. Additional steel pipe braces were designed to provide support to the concrete cap wall.

The anchored combiwall is designed to have a crest elevation of +17.5 feet NAVD88. The approximate existing mudline was assumed to be El. -20 feet and is representative of the average conditions along the alignment. The bottom of the concrete base slab of the cap is at El. 5 feet and is above Mean Higher High Water. Backfill is placed behind the anchored combiwall up to an elevation of +7 feet NAVD88.

The anchored combi wall has been designed in accordance with EM 1110-2-3402 Barge Impact Forces for Hydraulic Structures (USACE, 2022), EM 1110-2-2502 Floodwalls and other Hydraulic Retaining Walls (USACE, 2022) and EM 1110-2-2906 Design of Pile Foundations (USACE, 1991).

The cross-section of the anchored combiwall is shown in Appendix 3.

4.4.4 Tunnel Span

New York City Transit (NYCT) B and D subway tunnels cross the Harlem River to connect Manhattan and The Bronx within the project area. Based on available data (see Section 2) the tunnels are approximately 600ft north of the Macombs Dam Bridge. The top of the tunnels and base of the rail are at about 25ft and 35ft below the HRD, respectively. The tunnel infrastructure consists of three individual 17ft-diameter subway tubes that are horizontally spaced approximately 25ft on center. The HRD above the tunnel is a pile supported platform structure.

Special design considerations will need to be accounted for since the CSRM alignment crosses the MTA tunnel infrastructure. MTA provides a series of general notes for proposed projects in adjacency to their infrastructure (MTA Construction and Development, 2022). The following is a description of the conceptual design for the flood risk management measure that will span the tunnel.

The approximate 100-ft wide tunnel span structure comprises a steel truss and two steel jacket structures which will support the truss on either side of the tunnel. The approximate existing mudline, on top of the tunnel, was assumed to be El. -18.5 feet. The truss and the jacket structures were designed to have a crest elevation of +17.5 feet NAVD88. The jacket structure is a steel frame supported on Sixteen battered steel pipe piles which are rock-socketed at the bottom. The piles were located and battered in a way that they will not encroach the existing subway tunnel and a skin plate attached to the exterior perimeter of the truss will provide the water barrier up to the elevation of +17.5 feet. Steel sheet piling connects the ends of the tunnel barrier structure to the anchored combiwall to provide continuity.

To prevent seepage below the bottom of the truss, seepage control measures such as installing vertical steel sheet piles from the bottom of the skin plate to the tunnel crown, or pressure grouting can be implemented to cut off potential flow paths and maintain the continuity of the barrier.

The tunnel span has been designed in accordance with EM 1110-2-3402 Barge Impact Forces for Hydraulic Structures (USACE, 2022), EM 1110-2-2502 Floodwalls and other Hydraulic Retaining Walls (USACE, 2022) and EM 1110-2-2906 Design of Pile Foundations (USACE, 1991).

The cross-section and plan of the tunnel span are shown in Appendix 3.

4.5 Design Summary

A brief overview of the Harlem River Actionable Element alignment, the structural characteristics and engineering challenges is presented in the following Table 4-7. The list of challenges is not intended to be complete and all-inclusive but instead highlights some of the perceived main challenges that would need further study in future phases of design. The data is a summary of data presented within the preceding sections. Reveal heights as reported in the Table 4-7 below are based on the established +17.5 ft NAVD88 crest elevation, average existing ground elevations, or in the case of seaward structures a mulline elevation of -20ft NAVD88.

Reach ID	Measure Type	Measure Length (ft)	Reveal Height (ft)	Detailed Measure Description	Engineering Design Challenges
1	Floodwall	80	12.5	Conventional Floodwall at the south end provides tie-in to natural high ground. Replace existing MTA floodwall with a new design to meet NYNJHAT Study design crest elevation. Foundation on micropiles	Space constraints for construction, limited overhead clearances due to presence of overhead HRD roadway and existing flood risk reduction infrastructure. Conceptual design includes micropiles as foundation piles.
2	Vehicular Flood Gate	40	12.5	Gate to allow vehicular access across the MTA Facility. Replace existing MTA vehicular gate with new design to meet NYNJHAT Study design crest elevation	Similar as above.
3A	Anchored Combiwall	2232	37.5	Combi wall with batter piles (36-inch diameter pipe piles with NZ19 sheets and 30-inch diameter batter piles) with concrete monolith on top that functions as floodwall along the Harlem River. Hydraulic fill will be placed behind the structure at locations where there is currently no land/fill.	With the mudline at approximately - 20 ft NAVD88 and crest at +17.5ft NAVD88 the structure will have a large unsupported height where design loads primarily will act on the upper portion. Interference with other infrastructure (pile supported HRD, Macombs Dam Bridge etc.) will need to be evaluated in future phases.

Table 4-7: Summary of CSRM Measures along Harlem River Actionable Element Alignment identified as Actionable Element

New York - New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study

3B	Tunnel Span	155	33.5	Special purpose structure. Two piers (jacket structures) support a truss with skin plate that will function as floodwall to span the MTA tunnel below the Harlem River bed.	115 th street subway tunnel may not be impacted per MTA guidelines. Clear span across the tunnel and offsets are needed. Poor soil conditions in combination with the high design loads result in a complex and, comparatively large CSRM structure. Transitions and connections to prevent seepage ¹ will be complex given the geometry and unknown location of tunnel cover.
3 C	Anchored Combiwall	1405	37.5	Same structure as reach 3A	See reach 3A above
4	Vehicular Flood Gate	40	12.5	Gate to allow uninterrupted vehicular traffic on north bound HRD. Same structure as reach 2	Gate storage and abutment of the vehicular gate immediately adjacent to highway with high traffic volume combined with space constraints will pose design challenges. Due to large span gate will likely need intermediate support posts. Further gate type evaluations needed prior to design progression.
5	Floodwall	238	12.5	Conventional floodwall to tie-in the alignment to natural high ground	Need to tie in to south bound abutment and adequacy for flood risk reduction will need further investigation.

Note:

1. Seepage is allowed but should be minimized to meet design criteria

5 Quantity Take Offs

5.1 Introduction

The previous section presented the preliminary designs for the measures developed under this study. Due to the large area covered by Harlem River Actionable Element alignment, limitations in the available data and study intent, the design for the Harlem River Actionable Element is preliminary in nature yet sufficient to establish a quantity take-off (QTO) of construction materials (material tonnage etc.). The preliminary designs of the measures presented and the alignment location, allow for an inventory of the structural measures and a quantity take off to support cost estimating. The inventory is separated into two data sets:

- 1) Inventory of number and length of SBMs.
- 2) Quantity take-off per SBM and

These two data sets are then used to complete cost estimates for the project. The reader is referred to Appendix 5 for Quantity Take Offs and to Appendix 6 for construction cost estimates.

5.2 Inventory of SBMs for Harlem River Actionable Element

An inventory of measure types is shown in Table 5-1. This table includes measure lengths in feet for the floodwall and anchored combiwall and measure counts for the deployable feature (vehicular gate) and the floodwall that spans the MTA tunnel. Measure counts were added for these features since cost estimates were performed per individual structure (otherwise per linear distance for the remaining features).

Measure Type	Measure Length (ft)	Count (-)	Reach ID(s)	Notes
Floodwall	318		1,5	Total length of North and South Floodwall combined
Vehicular Gate		2	2,4	Unique features, count provided instead of length
Tunnel Span		1		Unique feature, count provided instead of length
Anchored Combiwall	3637		3	

Table 5-1: Detailed inventory	of SBMs for	r Harlem River	Actionable Element
Table 5 1. Detailed inventory	01 01010 10		Actionable Element

5.3 Quantity Take-offs

Quantity take-offs for each prototypical SBM were completed. This was done per linear foot, with the exception of the deployable vehicular gate and the tunnel span. Appendix 5 includes all quantity take-offs for the measures presented herein. Additional appurtenances were described qualitatively instead of quantitively, and additional caveats and notes regarding the items covered within each quantity take-off are listed in that same appendix.

6 Design Summary and Next Steps

6.1 Summary

This memorandum documents the general design criteria and preliminary design for the Harlem River Actionable Element. The purpose of the study is to review available site data, develop a preliminary design and construction cost estimate and identify the required next steps to progress the design with sufficient level of details for a class 3 cost estimate (USACE, 2016).

For the Harlem River Actionable Element, in many instances, the alignment or the selection of the SBM relied on a high-level review of available data. It should be reiterated that no project-specific topographic survey, bathymetric survey, condition survey, and/or geotechnical analysis have been completed. Instead, in accordance with USACE's SMART planning principles, the alignment, and the selection of the SBM type was based on qualitative data and a desktop-level analysis of available data from past projects. This yielded generalizations of existing conditions and generally broad design assumptions.

The implications of these assumptions are that further optimization of the alignment is possible and that for locations where conflicts are apparent, an alternative comparison on a reach-by-reach basis is recommended during a future phase.

6.2 Recommendations for Next Steps

To refine and progress the presented preliminary design to a greater level of design maturity the next steps are broken down into two categories: 1) studies and data collection and 2) design tasks.

6.2.1 Studies and Data Collection:

The studies listed hereafter are recommended to further refine the alignment during the next study phase. Some of these studies could potentially be completed during the Pre-Construction Engineering and Design (PED) phase but will require evaluation as to determine whether they are critical to define project planning, scope, and construction quantities for a class 3 cost estimate.

- 1. Obtain site topographic survey.
- 2. Obtain bathymetric survey.
- 3. Obtain existing structure surveys (condition surveys and record drawings).
- 4. Obtain site-specific geotechnical data (Obtain detailed geotechnical information from other projects within direct vicinity, or complete project specific geotechnical investigation including CPTs, SPTs, boreholes with soil sampling and rock coring, and laboratory testing. Geophysical testing to understand depth to rock along the line of protection may also be recommended).
- 5. Obtain sub-surface utility survey and obtain stormwater infrastructure as-built records, digital infrastructure files and other pertinent stormwater data.

- 6. Obtain tree survey to better estimate impacts to and need of removal of trees.
- 7. Complete site-specific wave modeling to establish design wave characteristics.
- 8. Complete comprehensive interior drainage modeling.
- 9. Continuation of stakeholder and public outreach such that input and comments from stakeholders can further inform alignment alternatives to be evaluated.
- 10. Complete vessel impact analysis to assess vessel impact load conditions for the alignment and the individual structures.
- 11. Complete an analysis of easement delineation and real estate studies such that impacts beyond the footprint of the measures can be preliminarily assessed.
- 12. Complete an analysis of the potential for induced flooding impacts and changes in induced flooding patterns (if any) compared to the Alternative 3B analysis that was completed previously.
- 13. Complete utility conflict investigations and/or relocations studies.
- 14. Complete construction cost estimates and impact assessments for alignment alternatives.
- 15. Complete site hazardous waste studies.

6.2.2 Recommendations for Further Design Refinements of Harlem River Actionable Element SBMs

Assumptions, as discussed in the report, have been made to advance the design, but it should be noted that additional data and studies are needed for the next design phase to refine the SBM designs such that more site-specific measures can be developed for the Harlem River Actionable Element project and a class 3 cost estimate can be prepared. Recommendations for next phases of the project include:

- 1. Refine the design of each SBMs and develop of additional site-specific SBMs where required.
- 2. Assess and design the transitions between various SBMs and transitions between SBMs and the existing high ground.
- 3. Refine the requirements for future adaptability and refine the SBM designs to incorporate adaptability into the design.
- 4. Setting the wave overtopping criterion and optimize it for this project. Ideally, the overtopping criterion is informed by two main considerations:
- a. The ability of the risk reduction system to handle the volume of overtopping (i.e., pumping or storage on the land side of the risk reduction alignment may allow for accepting large overtopping volumes), and
- b. The type of construction on the land side of the alignment, e.g., grey infrastructure has a relative high tolerance for large overtopping discharges prior to the onset of structural failure while levees have a lower tolerance. Given the urban nature of the project area and relatively high portion of grey SBMs, a higher overtopping criterion could be considered.
- 5. Complete a gate-type evaluation. For the locations where deployable flood gates are required, determine the best gate types, sizes, and configurations.
- 6. Assess the control, security, and deployment requirements for the deployable flood barriers.
- 7. Evaluate the need for maintenance and inspections for each SBM.
- 8. Continuation and furthering stakeholder and public outreach such that input and comments from stakeholders including city, state agencies, and the public can be incorporated for better integration of the SBMs into the urban fabric.
- 9. Coordinate and provide supports for non-structural elements, such as lighting, conduits, landscaping, public amenities, and utilities.

Finally, albeit that major construction items have been accounted for in the quantity take-off, a number of items could only be qualitatively discussed, since insufficient information or data is available at this stage in the study to provide meaningful quantitative data. For the SBMs, additional data collection and studies should be completed such that existing data gaps can be filled and a more complete inventory of items and work form the basis of the cost estimates. Such items are detailed in Table 6-1.

Fable 6-1:	Detailed Design Items to be	Considered During Next Phases of the Study
------------	-----------------------------	---

SBM Appurtenances and Construction Related Work Items	Example	
Utility relocation	Gas, water, electricity, cables, etc.	
Additional drainage features	Storm water collection, discharge etc.	
Additional aesthetic features	Pavers, textured wall, lighting, etc.	
Additional access features for inspection	Ramps, railing, stairs, guard rails, etc.	

References

- DeMott, L., Stumm, F., & Finkelstein. (2023). Bedrock-Surface Elevation and Overburden Thickness Maps of the Five Boroughs, New York City, New York. Reston, VA: U.S. Geological Survey.
- Hunter Roberts. (2023). Manhattan Greenway Harlem River IFB Estimate.
- Langan. (2021). Geotechnical Engineering Report for Manhattan Greenway Harlem River (Sub-Project 3). New York City: Langan - 9 March 2021.
- Langan. (2022). Manhattan Greenway Harlem River Subproject 2.
- Langan. (2022). Manhattan Greenway Harlem River Subproject 3.
- Langan. (2023). Geotechnical Engineering Report for Manhattan Greenway Harlem River (Sub-Project 2). New York City.
- MTA Construction and Development. (2022). *External Partner Program: Adjacency General Notes.* New York, NY: Metropolitan Transportation Authority, State of New York.
- New York State. (2025, 05 15). *Combined Sewer Overflows*. Retrieved from DATA NY GOV : https://data.ny.gov/Energy-Environment/Combined-Sewer-Overflows-CSOs-Beginning-2013/ephi-ffu6/about data
- NYCEDC. (n.d.). Environmental Assessment Statement. Manhattan Greenway Harlem River.
- Office of Coast Survey. (2025). Vertical Datum Transformation. Retrieved from NOAA: https://www.fisheries.noaa.gov/inport/item/39987
- USACE. (2016). *Civil Works Cost Engineering (ER 1110-2-1302)*. Washington, DC: Department of the Army.
- USACE. (2022). New York New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study - Engineering Appendix B.
- USACE. (2022). New York New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study - Shore-Based Measures Sub-Appendix B1.
- USACE. (2022). New York-New Jersey Harbor and Tributaries (NYNJHAT) Draft Integrated Feasibility Report/Tier 1 (Programmatic) EIS. New York: U.S. Army Corps of Engineers, New York District.

Appendices

Appendices to this memorandum follow hereafter.

Appendix 1	Excerpts from TSP
Appendix 2	Maps of Project Area
Appendix 3	Structural Sections/Plans
Appendix 4	Coastal Analysis
Appendix 5	QTO
Appendix 6	Cost EngineeringQTO

Feasibility Design Memorandum

DRAFT

Appendix 1 – Excerpts from TSP

New York – New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study

June 2025

NEW YORK – NEW JERSEY HARBOR AND TRIBUTARIES COASTAL STORM RISK MANAGEMENT FEASIBILI TY STUDY

US Army Corps of Engineers®						
\prod				MK	MK	APPR.
				09.23.22	08.26.22	DATE
				DRAFT for Public Review - NYNJHAT Study TSP Plan Set	DRAFT for DQC-NYNJHAT Study - TSP Plan Set	DESCRIPTION
				в	A	MARK
DESIGNED BY: DATE: 09.09.22	DWN BY: CKD BY: SOLICITATION NO.: AA MK	SUBMITTED BY: CONTRACT NO.:	SA 220032-01	PLOT SCALE: PLOT DATE: FILE NUMBER: AS SHOWN 9(9/2022	SIZE: FILE NAME-	ANSI D 220032-CS-115.dgn
U.S. ARMY CORPS OF ENGINEERS	U.S. AKMY ENGINEEK UISTRICT NEW YORK	http://www.nan.usace.army.mil	MOFFATT & NICHOL	529 FIFTH AVE., 14TH FLOOR	NEW YORK, NY 10017	212-768-7454
NEW YORK - NEW JERSEY HARBOR AND	TENTATIVELY SELECTED PLAN			SBM - SITE PLAN (15 OF 27)		
	SH	IEI	 ∃⊺ 1 ′	ID		

Feasibility Design Memorandum

DRAFT

Appendix 2 – Maps of Project Area

New York – New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study

June 2025

NEW YORK – NEW JERSEY HARBOR AND TRIBUTARIES COASTAL STORM RISK MANAGEMENT FEASIBILI TY STUDY

May 13, 2025

Web AppBuilder for ArcGIS

0.12 mi

0.2 km

May 13, 2025

Web AppBuilder for ArcGIS

May 13, 2025

Web AppBuilder for ArcGIS

May 13, 2025

Web AppBuilder for ArcGIS

Feasibility Design Memorandum

DRAFT

Appendix 3 – Structural Sections/Plans

New York – New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study

June 2025

NEW YORK – NEW JERSEY HARBOR AND TRIBUTARIES COASTAL STORM RISK MANAGEMENT FEASIBILI TY STUDY

FLOOD SIDE

- CONC FLOODWALL

2'-0" 2'-0" 4'-0"

SCALE: 1/2"=1'-0"

Feasibility Design Memorandum

DRAFT

Appendix 4 – Coastal Analysis

New York – New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study

June 2025

NEW YORK – NEW JERSEY HARBOR AND TRIBUTARIES COASTAL STORM RISK MANAGEMENT FEASIBILI TY STUDY

1.0 SUMMARY

The proposed Harlem Shore Based Measure (SBM) alignment consists of vehicular gates at the tie-ins to high ground. The ground elevation at these locations is about 7 ft NAVD88 based on the contours at the tie-in location shown in Figure 1-1. Closure of the vehicular gate feature will be required when the still water elevation exceeds this elevation. An analysis of the estimated frequency of such closure is described below.

Figure 1-1: Map of Elevation Contours at the Harlem SBM Tie-In to High Ground

Stage Frequency Curves for this location were developed based on data from the North Atlantic Comprehensive Coastal Study (NACCS), and using Sea Level Rise projections from USACE. The assumed service life of the project from the estimated date of completion in 2045 to 50 years hence in 2095. Annual exceedance probability curves for water levels at this location are available just offshore of this alignment at NACCS Save Point ID 11881. The Intermediate USACE Sea Level Rise projection from the Battery, NY was used to update this curve over the timeline of the expected project service life. These curves are shown in Figure 1-2 below, with the Average Recurrence Intervals corresponding to a closure elevation of +7 ft NAVD88 indicated using colored text labels for the corresponding years. Uncertainty bands around the expected Average Recurrence Intervals to account for inaccurate timing of gate closure which may be triggered at still water elevations withing +/-0.5 ft of the closure elevation are shown in shaded areas of the corresponding color, for each year. Based on this analysis, the estimated average closure interval for the vehicular gate over its service life would range between 3.6 years in 2045 to 1.4 years by the end of service life in 2095.

Figure 1-2: Stage Frequency Curves for the Harlem SBM alignment

For a closure elevation of +6 ft NAVD88, which corresponds to a lower estimate of the ground elevation, the stage frequency curves would drop a little lower as shown in Figure 1-3. At this closure elevation, the average closure interval for the gates would range from 1.6 years at the beginning of service life in 2045 to less than 1 year at the end of service life in 2095.

Figure 1-3: Stage Frequency Curves for Harlem SBM showing closure intervals for a +6 ft NAVD88 ground elevation

As apparent from both Figure 1-2 and Figure 1-3, the expected average closure interval would shorten over time as a result of the projected sea level rise. This trend is illustrated in Figure 1-4, which shows the change in the expected average recurrence interval of closure for different closure elevations (8, 7, and 6 ft NAVD88).

Figure 1-4: Change in expected Average Recurrence Interval over time

Feasibility Design Memorandum

DRAFT

Appendix 5 – QTO

New York – New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study

June 2025

NEW YORK – NEW JERSEY HARBOR AND TRIBUTARIES COASTAL STORM RISK MANAGEMENT FEASIBILI TY STUDY

Title: Contract No.: Task Order No.: Project Title: Consultant Name: Consultant Contact: Revision:

Quantities Per Harlem River SBM W912DS-18-D-0006 W912DS-19F0111 New York/New Jersey Harbor & Tributaries CSRM Study Moffatt & Nichol M. Kluijver 1

Discipline: Civil Engineering	Sheet:	1 of 1
Prepared By: Michelle Kim	Date:	6/2/2025
Checked By: Nauman M	Date:	6/10/2025

Anchored Combiwall per LF			
Item	Quantity	Unit	
Reinforced Concrete for Combiwall	3.02	CY	
Bracing (Pipe 16 X-Strong)	0.10	TN	
Combi-Wall (36" Dia. Pipe/NZ-19)	1.48	TN	
Batter Pile (36" Dia. X 0.625")	1.74	TN	

Additional Appurtenances: The items below are outside of the core construction quantities but should still be considered in the cost estimate. Hydraulic Fill from El-20 to El 7 Transitions between feature types Aesthetic and architectural features, lightning design (if any), signage, environmental mitigation, etc

Vehicular Gate			
Item	Quantity	Unit	
Reinforced Concrete for Gate Foundation	201.29	CY	
Sheet Pile (NZ26)	27.90	TN	
Micropile (12"x0.5")	32.00	EA	
micropile casing tonnage	24.60	TN	
micropile grout volume	82.13	CY	
Structural Steel	17.56	TN	
Excavation	198.33	CY	
Additional Appurtenances: The items below are outside of the core construction quantities but should still be considered in the cost estimate. Mechanical, electrical items			

Floodwall per LF		
Item	Quantity	Unit
Reinforced Concrete for Floodwall	2.69	CY
Steel Sheet Pile (NZ26)	0.31	TN
Excavation	2.20	CY
Micropile (12")	0.33	EA
Micropile casing tonnage	0.26	TN
Micropile grout volume	0.86	CY
Additional Appurtenances: The items below are outside of the core construction quantities but should still be considered in the cost estimate.		
Transitions between feature types		
Aesthetic and architectural features (if any), etc.		
Tunnel Span		
Item	Quantity	Unit
Jacket Structure -Steel Pipe Piles (60"dia x 1" thick)	2825.00	TN
Jacket Structure-Framing (W40x211)	87.00	TN
Truss Members (Member sizes vary)	560.00	TN
Truss Plate (0.38" Plate)	49.61	TN
Sheetpile Connection (SIZE)	12.96	TN
Jacket Structure-Steel Pipe Bracing (30" Dia. X 1")	451.00	TN
Additional Appurtenances: The items below are outside of the core construction quantities but should still be considered in the cost estimate.		
Aacthetic and architectural features, lightning design (if any), signage, environmental mitigation, etc.		

DRAFT

Feasibility Design Memorandum

Appendix 6 – Cost Engineering

New York – New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study

June 2025

NEW YORK – NEW JERSEY HARBOR AND TRIBUTARIES COASTAL STORM RISK MANAGEMENT FEASIBILI TY STUDY

Table of Contents

1	Intro	duction	4
2	Cost	Estimating Methodology	4
	2.1	Scope of Work Summary	4
	2.2	Cost Estimate Development	4
	2.3	Relocation Cost Estimating	4
3	Cost	Estimate Assumptions	5
	3.1	Effective Price Level	5
	3.2	Cost Book	5
	3.3	Labor Rates	5
	3.4	Equipment Rates	5
	3.5	Material Rates	5
	3.6	Direct Cost Markups	5
	3.6.1	Effective Price Level Markups	5
	3.6.2	Productivity Markups	6
	3.6.3	8 Site-Specific Modifier Markups	6
	3.6.4	4 Overtime Markups	6
	3.6.5	5 Additional Direct Cost Markups	6
	3.6.0	5 Sales Tax	6
	3.7	Contractor Markups	6
	3.7.1	Contracting Strategy	6
	3.7.2	2 Job Office Overhead	7
	3.7.3	B Home Office Overhead	7
	3.7.4	4 Profit	7
	3.7.5	5 Bonds	7
	3.7.6	5 Insurance	7
	3.8	Owner Markups	7
	3.8.1	Escalation to Mid-point of Construction	7
	3.8.2	2 Contingency	7
	3.8.3	<i>SIOH</i>	7
4	Con	struction Cost Estimate Summary	8
5	Ann	ex 6.1 – MII Report	9

LIST OF TABLES

Table 1:	East Harlem AE Cost Summary	Table	
			New York – New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study
June 2025		2	Harlem River SBM Cost Engineering Appendix

LIST OF ACRONYMS

AE	Actionable Element	
AMF	Access Material Factor	
ARA	Abbreviated Risk Analysis	
CCI	Construction Cost Index	
CSRM	Coastal Storm Risk Management	
CWCCIS	Civil Works Construction Cost Index System	
CWWBS	Civil Works Work Breakdown Structure	
ENR	Engineering News Record	
ER	Engineer Regulation	
G&A	General and Administrative	
GIS	Geographic Information System	
NYNJHAT New York–New Jersey Harbor and Tributaries Coastal Storm F		
	Management Feasibility Study	
НООН	Home Office Overhead	
JOOH	Job Office Overhead	
MCASES	Micro-Computer Aided Cost Estimating System	
MCI	Materials Cost Index	
MCLEM	Marine Crew Labor and Equipment	
MII	MCASES Second Generation	
MPT	Maintenance and Protection of Traffic	
NYD	New York District	
SBM	Shore-Based Measures	
SIOH	Supervision, Inspection, and Overhead	
USACE	United States Army Corps of Engineers	

1 Introduction

The New York District (NYD) Corps of Engineers is conducting a feasibility level study to evaluate coastal storm risk management (CSRM) on the New York New Jersey Harbors and Tributaries Study (NYNJHAT) area.

As the next step, the study will seek construction authorization for limited elements referred to as Actionable Elements (AEs). The AEs included in this task order will primarily be comprised of critical infrastructure facilities.

This appendix presents the cost estimate developed for one of the AEs along the East Harlem River Drive, to achieve a Class 4 cost estimate per United State Army Corps of Engineers (USACE) Engineer Regulation (ER) 1110-2-1302. The cost estimate was developed in the Micro-Computer Aided Cost Estimating System (MCASES) Second Generation (MII) cost estimate software and followed the cost estimate approach developed for the NYNJHAT.

2 Cost Estimating Methodology

2.1 Scope of Work Summary

This section presents a narrative on the development of the construction cost estimate for the following elements:

2.2 Cost Estimate Development

Project quantities were developed for typical measure cross-sections primarily using Microsoft Excel calculations for major elements following design development. Linear foot costs for typical measures were developed in MII as assemblies, relying heavily on cost book data. Within MII, the quantity measure assemblies are multiplied by the length of each measure attributed to the specific site.

The typical features developed in MII include:

- Floodwall
- Deployable Flood Barrier Vehicle Gate
- Anchored Combi-wall
- Tunnel Span

Site specific modifiers, such as population density, site access, and staging conditions, were applied as productivity, marine crew labor and equipment (MCLEM), and access material factor (AMF) markups within MII to account for construction cost variability at each site.

2.3 Relocation Cost Estimating

Relocation costs include removing, relocating, or reconstructing property of others, such as roads, railroads, cemeteries, utilities, buildings, and other structures, and includes real estate planning and acquisition expenses. For the NYNJHAT, relocations costs for each project were developed at a Class 5 level without site-specific investigations or surveys. A parametric formula for relocation costs was developed from recent similar projects in the Northeast using a best-fit exponential equation relating site-specific characteristics of the project area to the cost per foot for

relocations. A linear foot unit cost of \$13,263 (2022Q3) was escalated to the effective price level and adopted for this cost estimate.

3 Cost Estimate Assumptions

The cost estimate was developed in MII with the assumptions described in this section.

3.1 Effective Price Level

The price level for the cost estimate is Q2 2025 USD.

3.2 Cost Book

Cost book items are from the 2024 MII English Cost Book.

3.3 Labor Rates

Labor rates are Davis-Bacon prevailing wages based on General Decision Number: NY20250003 05/23/2025, and General Decision Number: NY20250001 02/21/2025, downloaded from SAM.gov June 2, 2025.

3.4 Equipment Rates

Equipment rates are from the MII Equipment 2024 Region 1 library.

3.5 Material Rates

Material costs were generally derived from the 2024 MII English Cost Book. For larger cost drivers in the project (e.g., steel hydraulic gates and tunnel span truss), reference projects were used to develop material costs.

3.6 Direct Cost Markups

3.6.1 Effective Price Level Markups

The following escalation factors were applied to escalate the Cost Book items to the current price level (2025 Q2):

- 6.24%%; 2022 Q3 to assumed midpoint of construction (2025 Q2)(For Relocations). Calculated using CWICCS 30 September 2024, 02-Relocations
- 1.98%; 2024 Q2 USD to 2025 Q2 USD (for Equipment). Calculated using ENR (Engineering News Record) Construction Cost Index (CCI) for USA (date range Jan-24 to Mar-25).
- -0.35%; 2024 Q2 USD to 2025 Q2 USD (for Cost Book materials). Calculated using ENR Materials Cost Index (MCI) for USA (date range Jan-24 to Mar-25). Due to calculated negative number the MII markup is set to 0%.

3.6.2 Productivity Markups

Productivity is applied on all costs built up with a crew-based approach. A productivity markup is applied to account for major productivity drivers in marine construction (e.g., Onboard and Warmup, Disembark, Equipment Downtime, etc.). The total productivity markup for Harlem River SBM AE is 64.8% as established during NYNJHAT through a Geographic Information System (GIS) evaluation of site-specific conditions. See Section 3.6.3 for a description of site-specific modifiers.

3.6.3 Site-Specific Modifier Markups

As adopted for NYNJHAT, the baseline linear foot cost assemblies created from RSMeans Cost Book cost items were modified for site-specific conditions. Site-specific markups were applied to reflect the staging, site access, and population density conditions for along the Harlem River SBM AE. The site-specific modifier score ranged from 3 to 9 points with a lower score correlating to poor staging conditions, poor site access, and/or population dense project sites. Markups include:

- Marine Crew Labor and Equipment Markup (70%) the baseline feature assembly cost estimate assumes land-based construction. This markup is applied to items that will require marine-based construction (i.e. anchored combi-wall and tunnel span).
- Access Material Factor (50%) accounts for increased material cost due to poor site access (e.g., costs associated with trucking, barges, and transloading material to job site from remote laydown area).
- Phasing/Maintenance and Protection of Traffic (MPT)/Traffic A 10% markup is applied to upland cost items (i.e., floodwall and vehicular gate).

3.6.4 Overtime Markups

Overtime is applied on all costs built up with a crew-based approach. The overtime markup assumes (5) 10-hour days per week with a 1.5 multiplier after (5) 8-hour days per week.

3.6.5 Additional Direct Cost Markups

The following additional direct cost markups were applied to the cost estimate:

- 10% allowance for mobilization and demobilization •
- 2% allowance for general conditions •
- 2% allowance for appurtenances, transitions, existing structure modifications, etc.

3.6.6 Sales Tax

A 4.4375% sales tax has been applied to the direct cost of materials (New York State – 4.0%, New York City -4.875, assume $\frac{1}{2}$ normal sales tax).

3.7 Contractor Markups

3.7.1 Contracting Strategy

Contracting assumptions for the application of contractor markups in the MII cost estimate are:

- The prime contractor will self-perform the floodwall and anchored combi-wall construction. A sub-contractor will construct the deployable flood barrier and tunnel span. The above strategy results in
- The project delivery method will be design-bid-build.

3.7.2 Job Office Overhead

Job Office Overhead (JOOH) is also referred to as general conditions or field office overhead. The general contractor's JOOH is applied as a running percentage at 13%. The subcontractor's JOOH is applied as a running percentage at 5%.

3.7.3 Home Office Overhead

Home Office Overhead (HOOH) is commonly referred to as general and administrative (G&A) costs. The general contractor's HOOH is applied as a running percentage at 3.9%. The subcontractor's profit HOOH is applied as a running percentage at 5%.

3.7.4 Profit

As adopted for the NYNJHAT, the general contractor's profit is applied as a running percentage at 11% and applied for sub-contractors a running percentage at 10%.

3.7.5 Bonds

Bonds are applied as a running percentage at 1%.

3.7.6 Insurance

The general contractor's insurance premium costs are applied as a running percentage 3% and applied for sub-contractors a running percentage at 0%.

3.8 Owner Markups

The following Owner Markups are included in the MII cost estimate.

3.8.1 Escalation to Mid-point of Construction

The NYNJHAT assumed a construction start date of 2030 (2030Q3). The total duration of the Harlem River SBM AE construction is estimated at 1.7 years. Escalation (17.52%) is applied within MII up to an assumed mid-point of construction of 2031Q3 using Civil Works Construction Cost Index System (CWICCS) dated 30 September 2024.

3.8.2 Contingency

Contingencies for each NYNJHAT alternative were developed during the Abbreviated Risk Analysis (ARA). The contingency developed for the SBM, including the East Harlem SBM, was 52.47%. The contingency developed for relocations was 76.33%.

3.8.3 SIOH

Supervisions, Inspection, and Overhead (SIOH) is not included in the MII cost estimate.

4 Construction Cost Estimate Summary

The cost estimate by Civil Works Work Breakdown Structure (CWWBS) is presented in Table 1.

Feat. Acct	Description	Subtotal	Escalation to Mid-Point of Construction	Cont. %	Cont. \$\$	Total Cost
02	RELOCATIONS	\$59,030,000	\$10,340,000	76.33%	\$52,950,000	\$122,320,000
11	LEVEES AND FLOODWALLS	\$246,670,000	\$43,220,000	52.47%	\$152,110,000	\$442,000,000
	Total	\$305,700,000	\$53,560,000		\$205,060,000	\$564,320,000

 Table 1: Harlem River SBM AE Cost Summary Table

5 Annex 6.1 – MII Report
USACE Report Sections incl Cost Overrides DRAFT - NOT FOR RELEASE Title Page

Estimated byBairdDesigned byBairdPrepared byCarl SwatzellPreparation Date6/25/2025Effective Date of Pricing6/25/2025Estimated Construction Time600 Days

Print Date Wed 25 June 2025 Eff. Date 6/25/2025	U.S. Army Corps of Engineers Project : 13372.106.HATS EAE.OPCC.30PercentDesign	Time 12:42:15
	USACE Report Sections incl Cost Overrides	Table of Contents
Library Properties		i
Project Notes		ii
Markup Properties		iii
Project Cost Summary I	Report	1
Base Bid		1
Contract Cost Summary	y Report	7
Base Bid		7
02 Relocations		7
0001 Re	elocations	7
11 Levees & Fl	loodwalls	7
0002 Flo	oodwall (south)	7
0003 De	eployable Flood Barrier - Vehicle Gate (south)	7
0004 Ar	nchored Combi Wall	7
0005 Tu	unnel Span	7
0006 De	eployable Flood Barrier - Vehicle Gate (north)	7
0007 Flo	oodwall (north)	7
Project Direct Costs Rep	port	
Base Bid		
02 Relocations		
0001 Re	elocations	8

11 Levees & Floodwalls
0002 Floodwall (south)
0003 Deployable Flood Barrier - Vehicle Gate (south)9
0004 Anchored Combi Wall 11
0005 Tunnel Span
0006 Deployable Flood Barrier - Vehicle Gate (north)14
0007 Floodwall (north)15
Project Bare to Direct Report
Base Bid
02 Relocations
0001 Relocations
11 Levees & Floodwalls
0002 Floodwall (south)18
0003 Deployable Flood Barrier - Vehicle Gate (south)19
0004 Anchored Combi Wall
0005 Tunnel Span
0006 Deployable Flood Barrier - Vehicle Gate (north)23
0007 Floodwall (north)
Job Office Overhead Direct Cost Report
Job Office Overhead Bare to Direct Report

USACE Report Sections incl Cost Overrides

Print Date Wed 25 June 2025 Eff. Date 6/25/2025	U.S. Army Corps of Engineers Project : 13372.106.HATS EAE.OPCC.30PercentDesign	Time 12:42:15
	USACE Report Sections incl Cost Overrides	Table of Contents
Crews (Bare Costs) by Contractor, Repo	rt	
Prime		
Sub		
Contractors Labor Payroll Markup Repo	ort	
1 Prime		
1.1 Sub		
Labor by Contractor, Report		
Prime		
Sub		
Equipment by Contractor, Report		
Prime		
Sub		

USACE Report Sections incl Cost Overrides

Library Properties Page i

Designed by Baird Estimated by Baird Prepared by Carl Swatzell

Direct Costs

LaborCost EQCost MatlCost SubBidCost Allowance Disposal Fee UserCost3 UserCost4 UserCost5

Design Document

Document Date 6/25/2025 District New York

Contact Caleb Barth

Budget Year 2024 UOM System Original

Timeline/Currency

Preparation Date 6/25/2025 Escalation Date 9/30/2023 Eff. Pricing Date 6/25/2025 Estimated Duration 600 Day(s)

> Currency US dollars Exchange Rate 1.000000

Costbook CB24EN: 2024 MII English Costbook

Labor : NewYorkCtyNYLabor20250602

Labor Rates

LaborCost1 LaborCost2 LaborCost3 LaborCost4

Equipment EP24R01: MII Equipment 2024 Region 01

Region 01 - NORTHEAST, (2024)

Sales Tax 8.88 Working Hours per Year 1,330 Labor Adjustment Factor 1.14 Cost of Money 4.63 Cost of Money Discount 25.00 Tire Recap Cost Factor 1.50 Tire Recap Wear Factor 1.80 Tire Repair Factor 0.15 Equipment Cost Factor 1.00 Standby Depreciation Factor 0.50 Fuel Electricity 0.181 Gas 3.118 Diesel Off-Road 3.801 Diesel On-Road 3.801

Shipping Rates

Over 0 CWT 106.88 Over 240 CWT 87.48 Over 300 CWT 75.64 Over 400 CWT 67.28 Over 500 CWT 99.65 Over 700 CWT 85.41 Over 800 CWT 44.01 USACE Report Sections incl Cost Overrides

Project Notes Page ii

Date Author Note

USACE Report Sections incl Cost Overrides

Markup Properties Page iii

Time 12:42:15

Direct Cost Markups Esc to Current 2022Q3 to 2025Q2 6.24% LaborCost EQCost MatlCost SubBidCost ShipCost Allowance Disposal Fee UserCost3 UserCost4 UserCost5	ľ	Category MiscDirect			Method Running % on Sel	ected Costs			
EQCost Escalate to Current 1.98% <i>EQCost</i>	1	MiscDirect			Running % on Sel	ected Costs			
RSMMatlCost Escalate to Current 0% MatlCost	1	MiscDirect				Running % on Selected Costs			
GovMatlCost Escalate to Current 3.84% MatlCost	1	MiscDirect		Running % on Sel	Running % on Selected Costs				
Access Material Factor 50% MatlCost	1	MiscDirect				Running % on Selected Costs			
Productivity Overtime Standard Actual	H Days/Week 5.00 5.00	Productivity Overtime <i>Hours/Shift</i> 8.00 8.00		Shifts/Day 1.00 1.00	Productivity Overtime Ist Shift 8.00 10.00	2nd Shift 0.00 0.00	3rd Shift 0.00 0.00		
Day Monday Tuesday Wednesday Thursday Friday Saturday Sunday	OT Factor 1.50 1.50 1.50 1.50 1.50 1.50 2.00		Working Yes Yes Yes Yes No No			OT Percent 10.00	FCCM Percent (20.00)		
Sales Tax 4.4375% MatlCost	1	ſaxAdj			Running % on Sel	ected Costs			
Mobilization 10% LaborCost EQCost MatlCost SubBidCost	1	MiscDirect			Running % on Sel	ected Costs			

USACE Report Sections incl Cost Overrides

Markup Properties Page iv

ShipCost
Allowance
Disposal Fee
UserCost3
UserCost4
UserCost5

General Conditions 2% LaborCost EQCost MatlCost SubBidCost ShipCost Allowance Disposal Fee UserCost3 UserCost4 UserCost5	MiscDirect	Running % on Selected Costs
AppurtTransMod 2% LaborCost EQCost MatlCost SubBidCost ShipCost Allowance Disposal Fee UserCost3 UserCost4 UserCost5	MiscDirect	Running % on Selected Costs
Phasing/MPT/Traffic 10% LaborCost EQCost MatlCost SubBidCost ShipCost Allowance Disposal Fee UserCost3 UserCost4 UserCost5	MiscDirect	Running % on Selected Costs
Marine Construction 70% LaborCost EQCost MatlCost SubBidCost ShipCost Allowance Disposal Fee	MiscDirect	Running % on Selected Costs

USACE Report Sections incl Cost Overrides

UserCost3 UserCost4 UserCost5

Contractor Markups	Category	Method
JOOH	JOOH	Running %
НООН	НООН	Running %
Profit	Profit	Running %
Profit WG	Profit	Profit Weighted Guidelines
Guideline	Value	Weight Percentage
Risk	0.090	20 1.80
Difficulty	0.100	15 1.50
Size	0.030	15 0.45
Period	0.120	15 1.80
Invest (Contractor's)	0.120	5 0.60
Assist (Assistance by)	0.120	5 0.60
SubContracting	0.080	25 2.00
Total		100 8.75
Bond	Bond	Running %
Excise Tax	Excise	Running %
Insurance	MiscContract	Running %
Owner Markups	Category	Method
Esc to Mid Construction 17.52%	Escalation	Running %
Contingency	Contingency	Running %
SIOH	SIOH	Running %

USACE Report Sections incl Cost Overrides

Project Cost Summary Report Page 1

Description	Quantity	UOM	ContractCost	Escalation	Contingency	SIOH	MiscOwner	ProjectCost	C/0
Project Cost Summary Report			305,691,904.80	53,557,221.72	205,048,947.15	0.00	0.00	564,298,073.67	
Base Bid	1.00	EA	305.691.904.80	53.557.221.72	205.048.947.15	0.00	0.00	564.298.073.67	
	1.00		59 025 570 32		200,010,917110	0.00	0.00	122 314 567 02	
02 Relocations	1.00	EA	59,025,570.32	10,341,279.92	52,947,716.79	0.00	0.00	122,314,567.02	
			14,090.61					29,198.99	
0001 Relocations	4,189.00	LF	59,025,570.32	10,341,279.92	52,947,716.79	0.00	0.00	122,314,567.02	
	4 100 00	TE	14,090.61	17.52%	89.70%	0.00%	0.00%	29,198.99	
USK Relocations	4,189.00	LF	59,025,570.32	10,341,279.92	52,947,716.79	0.00	0.00	122,314,567.02	
(Note: \$13,2037 LF developed from HATS for East Hartern 2022Q	5)		24666622440					111 002 506 65	
11 Levees & Floodwalls	1.00	EA	240,000,334.48	43.215.941.80	152.101.230.36	0.00	0.00	441,983,506.65	
	1.00	1.1	16.133.52	10,210,21100	102,101,200,000	0.00	0.00	28.908.48	
0002 Floodwall (south)	80.00	LF	1,290,681.37	226,127.38	795,869.55	0.00	0.00	2,312,678.30	
(Note: Assemblies makeup and quantities based on "QTO_Draft_202 (12") 0.33 EA Micropile casing tonnage 0.26 TN Micropile grout vol	50610 Rev1 ume 0.86 CY	MN" Ro)	einforced Concrete fo	or Floodwall 2.69 C	CY Steel Sheet Pile	(NZ26) 0	.31 TN Excavatio	on 2.20 CY Micropil	le
	215.20	CN	1,854.89	17.52%	61.66%	0.00%	0.00%	3,323.65	
retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing	215.20	CY	399,1/3.15	69,935.14	246,141.12	0.00	0.00	/15,249.41	
(Note: Initial Material Cost = \$260/CY. From RSM 033113350400 to \$274/CY.)	\$198.00/CY	for 5000	psi concrete. From R	SM 033113350150) \$184.00/CY for 35	500psi co	ncrete. Increse r	naterial cost by \$14/	/CY
	• • • • •	TON	9,395.90	17.52%	61.66%	0.00%	0.00%	16,835.82	
RSM 314116100300 Sheet piling, steel, 27 pst, 20' excavation, per ton left in place excludes wales	24.80	TON	233,018.22	40,824.79	143,685.43	0.00	0.00	417,528.45	
(Note: References RSM 314116100300 and 314116100600. Interpo (2.3750-1.6188)/(38-27)=(X-1.6188)/(30.99-27), X=1.804ton/hr)	blate using 27	psf(1.61	88ton/hr) and 38(2.3	750) psf to obtain o	crew output for NZ	26 30.991	b/sf.		
	154.00		153.60	17.52%	61.66%	0.00%	0.00%	275.23	
USR IDW-DISPOSE IDW Disposal Fee	176.00	EA	27,034.38	4,/36.42	16,670.14	0.00	0.00	48,440.95	
(Note: Does not include haul. Engineering judgement based on US/	ACE Green B	rook flo	od Risk Management	t project. Task deta	ils based on engined	ering judg	gement of the Cos	st Estimator.)	
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	176.00	BCY	4,953.37	17.32% 867.83	61.66% 3,054.39	0.00%	0.00%	50.43 8,875.59	
			911.16	17.52%	61.66%	0.00%	0.00%	1,632.63	
USR 316333105040 Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200 piles, 60' long, unless specified otherwise, excludes pile caps or mobilization	639.94	VLF	583,081.72	102,155.92	359,544.19	0.00	0.00	1,044,781.83	

Print Date Wed 25 June 2025 Eff. Date 6/25/2025	Project : 13	U.S. Arn 372.106.H	ny Corps of Engineers IATS EAE.OPCC.30	s PercentDesign	Time 12:4 Project Cost Summary Report Pa				
	USAC	CE Report	Sections incl Cost Ov	verrides					
Description (Note: assume for vehicle gate foundation 24.60ton * 2000lb/ton / in3 (12.75 in / 2)^2 *pi = 127.61 in3 \$43.0 *(127.61 in3 / 24.29	Quantity (65.48lb/lf/3) in3) = \$225.90	UOM 2EA = 23.)/VLF cha	ContractCost 48 VLF/pile. for floo nged crew output from	Escalation dwall 0.26ton * 20 n 20vlf/hr to 10vlf	Contingency 00lb/ton / 65.48lb/ /hr)	SIOH lf / 0.33E.	MiscOwner A = 24.24 (5.563	ProjectCost C/O in $/ 2$)^2 *pi = 24.29	
USR Coal Tar Epoxy Coating	23.20) TON	<i>1,871.57</i> 43 420 52	17.52% 7.607.28	61.66% 26 774 28	0.00%	0.00%	<i>3,353.54</i> 77 802 08	
(Note: assume \$700/ton. Task details based on engineering judger concrete). Micropile casing tonnage 0.26 TN/lf (Assume 40% coa	nent of the Co	st Estimat	or. Floodwall Steel S	heet Pile (NZ26) 0 Epoxy Q*(0.31*0.6	.31 TN/lf (Assume 5+0.26*0.4))	60% coa	ting. Assuming ex	xtends 5ft below	
		5	30,273.67					54,245.19	
0003 Deployable Flood Barrier - Vehicle Gate (south) (Note: Assemblies makeup and quantities based on "QTO_Draft_2(= 0.34875 ton/ft Micropile (12"x0.5") 32.00 EA / 80 ft = 0.4 ea/ft m 17.56 TN / 80 ft = 0.2195 tn/ft Excavation 198.33 CY / 80 ft = 2.47	40.00 250610 Rev1 icropile casin 9125 cy/ft)	LF MN" Re g tonnage	1,210,946.67 Enforced Concrete for 24.60 TN / 80 ft = 0.3	212,157.86 Gate Foundation 3075 tn/ft micropil	746,702.94 201.29 CY / 80 ft = e grout volume 82.	0.00 = 2.51612 13 CY / 8	0.00 5 cy/ft Sheet Pile 0 ft = 1.026625 c	2,169,807.47 (NZ26) 27.90 TN / 80 ft y/ft Structural Steel	
USR 033053406300 Structural concrete, in place, cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing	100.65	5 CY	<i>2,267.43</i> 228,205.38	<i>17.52%</i> 39,981.58	<i>61.66%</i> 140,717.70	0.00% 0.00	0.00% 0.00	<i>4,062.84</i> 408,904.66	
(Note: Initial Material Cost = \$260/CY. From RSM 03311335040 to \$274/CY.)	0 \$198.00/CY	for 5000p	osi concrete. From RS	SM 033113350150	\$184.00/CY for 35	500psi con	ncrete. Increse n	naterial cost by \$14/CY	
RSM 314116100300 Sheet piling, steel, 27 psf, 20' excavation, per ton, left in place, excludes wales (Note: References RSM 314116100300 and 314116100600. Inter (2 3750 1 6188)/(38 27)=(X 1 6188)/(30 99 27) X=1 804ton/br)	13.95 polate using 2'	5 TON 7 psf(1.61)	<i>11,521.14</i> 160,719.83 88ton/hr) and 38(2.37	17.52% 28,158.12 50) psf to obtain c	61.66% 99,104.26 rew output for NZ	0.00% 0.00 26 30.991	0.00% 0.00 b/sf.	<i>20,643.89</i> 287,982.21	
USR 316333105040 Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200 piles, 60' long, unless specified otherwise, excludes pile cass or mobilization	n 375.68	S VLF	<i>1,116.26</i> 419,354.94	<i>17.52%</i> 73,470.99	61.66% 258,585.76	0.00% 0.00	0.00% 0.00	<i>2,000.14</i> 751,411.69	
(Note: assume for vehicle gate foundation 24.60ton * 2000lb/ton / in3 (12.75 in / 2)^2 *pi = 127.61 in3 \$43.0 *(127.61 in3 / 24.29	(65.48lb/lf/3 in3) = \$225.90	2EA = 23.)/VLF cha	48 VLF/pile. for floo nged crew output from	dwall 0.26ton * 20 n 20vlf/hr to 10vlf	00lb/ton / 65.48lb/ /hr)	lf/0.33E	A = 24.24 (5.563	in / 2)^2 *pi = 24.29	
USR Structural Steel(Vehicular Gate) TON	8 78	TON	<i>37,565.06</i> 329 821 24	17.52% 57 784 68	61.66% 203 376 83	0.00% 0.00	0.00%	<i>67,310.11</i> 590 982 74	
(Note: assumed \$5,600 per ton(from RSM 051223772000). Add 1 \$17,920 / TON)	00% continge	ncy for ro	llers, hardware, botm	misc. steel, etc. m	naterial - \$11,200/t	on Add (50% for installation	on: \$11,200/ton * 1.6 =	
USR IDW-DISPOSE IDW Disposal Fee	99.17	' EA	<i>188.66</i> 18,708.85	17.52% 3,277.79	<i>61.66%</i> 11,536.39	$\begin{array}{c} 0.00\% \\ 0.00 \end{array}$	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>338.05</i> 33,523.03	
(Note: Does not include haul. Engineering judgement based on Us	SACE Green H	Brook Floo	od Risk Management	project. Task detai	ls based on engine	ering judg	ement of the Cos	t Estimator.)	
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, exclude sheeting or dewatering	99.17 s	BCY	<i>34.32</i> 3,403.00	17.52% 596.21	61.66% 2,098.39	0.00% 0.00	0.00% 0.00	<i>61.49</i> 6,097.60	
Sheeting of devidering			2,298.75	17.52%	61.66%	0.00%	0.00%	4,118.96	

Print Date Wed 25 June 2025 Eff. Date 6/25/2025	Project : 13	U.S. Arn 372.106.H	ny Corps of Enginee HATS EAE.OPCC.3	rs 0PercentDesign				Time 1	2:42:15
	USAG	CE Report	Sections incl Cost C	Overrides		t Summary Report	t Page 3		
Description USR Coal Tar Epoxy Coating	Quantity 22.07	UOM TON	ContractCost 50,733.43	Escalation 8,888.50	Contingency 31,283.62	SIOH 0.00	MiscOwner 0.00	ProjectCost 90,905.55	5 C/O
(Note: assume \$700/ton. Task details based on engineering judgen Assuming extends 5ft below concrete). micropile casing tonnage 2 0.2195 tn/ft (Assume 100% coating). Epoxy Q*(0.34875*0.6+0.30	nent of the Co 24.60 TN / 80 075*0.4+0.21	ost Estimat ft = 0.307 95*1))	tor. Deployable Floo 5 tn/ft (Assume 40%	d Barrier Sheet Pile coating. Assuming	e (NZ26) 27.90 TN g extends 5ft below	/ 80 ft = 0 concrete).34875 ton/ft (A). Structural Stee	ssume 60% coatin 1 17.56 TN / 80 ft =	g. =
			49,460.19					88,624.12	2
0004 Anchored Combi Wall (Note: Assemblies makeup and quantities based on "QTO_Draft_20 Pipe/NZ-19) 1.48 TN Batter Pile (30" Dia. X 0.625") 1.74 TN)	3,636.00 250610 Rev1	DLF MN"Re	179,837,243.93 einforced Concrete fo	31,507,485.14 or Combiwall 3.02	110,892,579.34 CY Bracing (Pipe 1	0.00 6 X-Stro	0.00 ng) 0.10 TN Con	322,237,308.4 1 nbi-Wall (36" Dia.	1
USR 033053406300 Structural concrete, in place, cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing	10,980.72	2 CY	2,962.04 32,525,322.60	17.52% 5,698,436.52	61.66% 20,056,006.41	0.00% 0.00	0.00% 0.00	5,307.40 58,279,765.52	5 2
(Note: Initial Material Cost = \$260/CY. From RSM 03311335040 to \$274/CY.)	0 \$198.00/CY	for 5000p	psi concrete. From R	SM 033113350150	\$184.00/CY for 3	500psi co	ncrete. Increse 1	material cost by \$1	4/CY
USR 051223171600 Column, structural, 6" to 12" dia, extra strong pipe, incl shop primer, cap & base plate, bolts, converted to per ton (Note: converted to per ton)	363.60) TON	21,560.19 7,839,284.49	<i>17.52%</i> 1,373,442.64	61.66% 4,833,917.93	0.00% 0.00	0.00% 0.00	38,632.14 14,046,645.00	4 5
RSM 314116100600 Sheet piling, steel, 38 psf, 25' excavation, per ton, left in place, excludes wales	5,381.28	3 TON	13,734.69 73,910,195.27	<i>17.52%</i> 12,949,066.21	61.66% 45,575,054.50	0.00% 0.00	0.00% 0.00	24,610.19 132,434,315.98	9 3
USR 316223134100 Concrete-filled steel piles, steel, pipe piles, no concrete, 50' long, 18" diameter, 59 lb./L.F., excludes mobilization or demobilization, converted to 36"x0.625" pipe per ton	6,326.64	t TON	7,763.60 49,117,523.08	17.52% 8,605,390.04	61.66% 30,287,212.52	0.00% 0.00	0.00% 0.00	<i>13,911.0</i> 88,010,125.65	4 5
(Note: Initial Material = 46.50/VLF, convert to ton using default 5 36"x0.625" pipe with 236.4lb/ft, 44.375VLF/hr * 236lb/lf / 2000lb	9 lb/lf, \$46.5/ /ton = 5.2362	/VLF / 591 25TON/hr)	b/lf * 2000lb/ton = \$	51,576.27/ton Initia	l Crew Output = 44	.3750VL	F/hr, use same pr	roduction rate conv	verted to
USR Dredge and Fill	72,720.00) CY	<i>18.46</i> 1,342,670.44	17.52% 235,235.86	61.66% 827,927.44	$\begin{array}{c} 0.00\% \\ 0.00 \end{array}$	$0.00\% \\ 0.00$	33.08 2,405,833.74	8 4
(Note: This Item was added for backfill behind structure. From the to \$7. ~20ft LOP offset, 20' x 27' x1' per foot of structure / 27ft3/c	x = 20CY/LF	of the Ver)	rrazano Narrows Sec	etor Gate Islands we	e used \$6.10-6.14 /	CY to dro	edge nearby and	fill the islands. rou	ınd up
USR Coal Tar Epoxy Coating	5,221.30) TON	<i>2,892.43</i> 15,102,248.05	17.52% 2,645,913.86	<i>61.66%</i> 9,312,460.55	$\begin{array}{c} 0.00\% \\ 0.00 \end{array}$	$0.00\% \\ 0.00$	<i>5,182.74</i> 27,060,622.46	4 6
(Note: assume \$700/ton. Task details based on engineering judgen 10-15ft below mudline). Batter Pile (30" Dia. X 0.625") 1.74 TN/l	nent of the Co f (Assume 40	ost Estimat %. Assum	tor. Anchored Combining extends 10-15ft	i Wall Combi-Wall below mudline). Ep	(36" Dia. Pipe/NZ- boxy Q*(1.48*0.5+	-19) 1.48 1.74*0.4)	TN/lf (Assume 5)	50%. Assuming ex	tends
			382,430.57					685,249.5	9
0005 Tunnel Span (Note: Assemblies makeup and quantities based on "QTO_Draft_20 Structure-Framing (W40x211) 87.00 TN / 155 ft = 1.187096774 tn/ 0.320064516 tn/ft Sheetpile Connection (SIZE) 12.96 TN / 155 ft =	155.00 250610 Rev1 ft Truss Mem 0.083612903) LF MN" Jac bers (Mem tn/ft Jacke	59,276,738.75 cket Structure -Steel iber sizes vary) 560. et Structure-Steel Pip	10,385,284.63 Pipe Piles (60"dia 00 TN / 155 ft = 3.0 be Bracing (30" Dia	36,551,663.67 x 1" thick) 2825.00 612903226 tn/ft Tr t, X 1") 451.00 TN	0.00 TN / 155 iss Plate (/ 155 ft =	0.00 6 ft = 18.2258064 (0.38" Plate) 49.6 = 2.909677419 tn	106,213,687.05 45 tn/ft Jacket 51 TN / 155 ft = //ft)	5

USACE Report Sections incl Cost Overrides

Project Cost Summary Report Page 4

Description	Quantity	UOM	ContractCost	Escalation	Contingency	SIOH	MiscOwner	ProjectCost	C/O
USR 316223134100 Concrete-filled steel piles, steel, pipe piles, no concrete, 50' long, 18" diameter, 59 lb./L.F., excludes mobilization	2,825.00	TON	8,582.97 24,246,884.44	<i>17.52%</i> 4,248,054.15	<i>61.66%</i> 14,951,294.28	0.00% 0.00	0.00% 0.00	<i>15,379.20</i> 43,446,232.88	
or demobilization (Note: Initial RSM 316333105040 item details: Material = \$46.50/V Crew Output VLF/hr to TON/hr. 44.3750vlf/hr * 630.7lb/ft / 2000lk ton crane)	/LF, Crew O b/ton = 13.97	utput = 44 8125 TO	4.3750VLF/hr. Con N/hr. 630.71b/ft from	vert VLF to TON. skyline product m	Material \$46.50/ft anual for 60inx1in	/ 59lb/ft * pipe. Ch	* 2000lb/ton = \$1, hange crew item fr	576.27/ton. Conversion 50 ton crane to	rt > 100
USR 051223757900 Structural steel beam or girder, 100-ton project, 1 to 2 story building, W36x231, A992 steel, shop fabricated, incl shop primer, bolted connections	184.00	TON	19,584.98 3,603,635.64	17.52% 631,356.96	61.66% 2,222,100.62	0.00% 0.00	0.00% 0.00	35,092.90 6,457,093.22	F /1 /
(Note: Initial for W36x231 material = \$430.00/LF, Crew Output = TON/hr. 140.6250ft/hr * 231lb/ft / 2000lb/ton = 16.2421875TON/h	r)	hr, $2311b/2$	ft. Convert material L	F to TON. \$430/1	t / 2311b/ft *20001b	ton = \$3	,722.94/10N Con	vert crew output L	F/hr to
USR Tunnel Span Truss TON	560.00	TON	<i>29,027.55</i> 16,255,426,48	<i>17.52%</i> 2.847.950.72	<i>61.66%</i> 10.023.542.01	0.00% 0.00	0.00%	<i>52,012.36</i> 29,126,919,21	
(Note: assumed \$5,600 per ton(from RSM 051223772000). mater and plates)	rial - \$5,600/	ton Add	60% for installation:	\$5,600/ton * 1.6 =	= \$8,960 / TON us	e same co	ost from above ca	lculated gate for tru	uss
USR Tunnel Span Plates TON	49.61	TON	<i>29,027.55</i> 1,440,056.62	<i>17.52%</i> 252,297.92	61.66% 887,978.43	$0.00\% \\ 0.00$	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>52,012.36</i> 2,580,332.97	
(Note: assumed \$5,600 per ton(from RSM 051223772000). mater and plates)	rial - \$5,600/	ton Add	60% for installation:	\$5,600/ton * 1.6 =	= \$8,960 / TON us	e same c	ost from above ca	lculated gate for tru	uss
USP 31/11/61/02500 Sheet niling wales connections and strute 2/3	12.96	TON	<i>7,917.26</i> 102 607 63	17.52% 17.976.86	61.66% 63 270 68	0.00%	0.00%	<i>14,186.36</i> 183 855 17	
salvage	12.90	10N	102,007.05	17,970.00	05,270.08	0.00	0.00	105,055.17	
(Note: convert \$520.00/10N for 2/3 salvage to no salvage. \$520.00	$/ \tan * 3 ea = 1$	\$1,560/10	ON)	17.520/	(1.(0)	0.000/	0.000/	16 457 70	
USR 316223134100 Concrete-filled steel piles, steel, pipe piles, no concrete, 50' long, 18" diameter, 59 lb./L.F., excludes mobilization	451.00	TON	4,142,398.25	725,748.17	2,554,316.43	0.00%	0.00%	7,422,462.85	
(Note: Initial RSM 316333105040 item details: Material = \$46.50/V Crew Output VLF/hr to TON/hr. 44.3750vlf/hr * 310.0lb/ft / 2000lt ton crane)	/LF, Crew O b/ton = 6.878	utput = 44 125 TON	4.3750VLF/hr. Com /hr. 310.0lb/ft from s	vert VLF to TON. kyline product ma	Material \$46.50/ft nual for 30inx1in p	/ 59lb/ft * ipe. Cha	* 2000lb/ton = \$1, inge crew item fro	576.27/ton. Conver m 50 ton crane to 1	rt 100
			3,552.61	17.52%	61.66%	0.00%	0.00%	6,365.67	
USR Coal Tar Epoxy Coating	2,670.07	TON	9,485,729.70	1,661,899.84	5,849,161.22	0.00	0.00	16,996,790.76	
(Note: assume \$700/ton. Task details based on engineering judgened (assume 50% coating). Jacket Structure-Framing (W40x211) 87.00 tn/ft (Assume 100% coating). Truss Plate (0.38" Plate) 49.61 TN / 1 100% coating). Jacket Structure-Steel Pipe Bracing (30" Dia. X 1") Q*(18.22580645*0.5+1.187096774+3.612903226+0.320064516+0	ent of the Cos TN / 155 ft = 55 ft = 0.320 451.00 TN / .083612903+	st Estimat = 1.187090 0064516 tr / 155 ft = -2.909677	or. Tunnel Span Jack 6774 tn/ft (Assume 1 n/ft (Assume 100% c 2.909677419 tn/ft (A '419))	et Structure -Steel 00% coating). Tru oating). Sheetpile ssume 100% coati	Pipe Piles (60"dia ss Members (Memb Connection (SIZE) ng). Epoxy	x 1" thick ber sizes v 12.96 TN	x) 2825.00 TN / 1: vary) 560.00 TN / N / 155 ft = 0.0836	55 ft = 18.2258064 155 ft = 3.612903 12903 tn/ft (Assur	5 tn/ft 226 ne
			30,273.67					54,245.19	
0006 Deployable Flood Barrier - Vehicle Gate (north) (Note: Assemblies makeup and quantities based on "QTO_Draft_202	40.00 50610 Rev1	LF MN" Re	1,210,946.67 inforced Concrete fo	212,157.86 r Gate Foundation	746,702.94 201.29 CY / 80 ft =	0.00 = 2.51612	0.00 25 cy/ft Sheet Pile	2,169,807.47 (NZ26) 27.90 TN	/ 80 ft

= 0.34875 ton/ft Micropile (12"x0.5") 32.00 EA / 80 ft = $\overline{0.4}$ ea/ft micropile casing tonnage 24.60 TN / 80 ft = 0.3075 tn/ft micropile grout volume 82.13 CY / 80 ft = 1.026625 cy/ft Structural Steel

USACE Report Sections incl Cost Overrides

Project Cost Summary Report Page 5

Description 17.56 TN / 80 ft = 0.2195 tn/ft Excavation 198.33 CY / 80 ft = 2.479	Quantity 25 cv/ft)	UOM	ContractCost	Escalation	Contingency	SIOH	MiscOwner	ProjectCost	C/O
USR 033053406300 Structural concrete, in place, cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing	100.65	СҮ	2,267.43 228,205.38	<i>17.52%</i> 39,981.58	<i>61.66%</i> 140,717.70	0.00% 0.00	0.00% 0.00	<i>4,062.84</i> 408,904.66	
(Note: Initial Material Cost = \$260/CY. From RSM 033113350400 to \$274/CY.)	\$198.00/CY	for 5000j	osi concrete. From RS	SM 033113350150	\$184.00/CY for 35	500psi co	ncrete. Increse n	naterial cost by \$14	4/CY
RSM 314116100300 Sheet piling, steel, 27 psf, 20' excavation, per ton, left in place, excludes wales	13.95	TON	<i>11,521.14</i> 160,719.83	<i>17.52%</i> 28,158.12	<i>61.66%</i> 99,104.26	0.00% 0.00	0.00% 0.00	20,643.89 287,982.21	1
(Note: References RSM 314116100300 and 314116100600. Interpo (2.3750-1.6188)/(38-27)=(X-1.6188)/(30.99-27), X=1.804ton/hr)	late using 27	psf(1.61	88ton/hr) and 38(2.37	750) psf to obtain o	erew output for NZ	26 30.99	lb/sf.		
USR 316333105040 Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200 piles, 60' long, unless specified otherwise,	375.68	VLF	<i>1,116.26</i> 419,354.94	17.52% 73,470.99	61.66% 258,585.76	0.00% 0.00	0.00% 0.00	2,000.14 751,411.69	i
excludes pile caps or mobilization (Note: assume for vehicle gate foundation 24.60ton * 2000lb/ton / 6 in3 (12.75 in / 2)^2 *pi = 127.61 in3 \$43.0 *(127.61 in3 / 24.29 in	5.48lb/lf / 32 3) = \$225.90/	EA = 23. VLF cha	48 VLF/pile. for floo nged crew output from	dwall 0.26ton * 20 m 20vlf/hr to 10vl) 000lb/ton / 65.48lb/ f/hr)	lf/0.33E	A = 24.24 (5.563	in / 2)^2 *pi = 24	4.29
USR Structural Steel(Vehicular Gate) TON	8.78	TON	<i>37,565.06</i> 329,821.24	<i>17.52%</i> 57,784.68	61.66% 203,376.83	$\begin{array}{c} 0.00\% \\ 0.00 \end{array}$	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>67,310.11</i> 590,982.74	ł
(Note: assumed \$5,600 per ton(from RSM 051223772000). Add 10 \$17,920 / TON)	0% continger	cy for ro	llers, hardware, botm	misc. steel, etc. r	naterial - \$11,200/to	on Add	60% for installation	on: \$11,200/ton *	1.6 =
USR IDW-DISPOSE IDW Disposal Fee	99.17	EA	188.66 18,708.85	<i>17.52%</i> 3,277.79	<i>61.66%</i> 11,536.39	0.00% 0.00	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>338.05</i> 33,523.03	;
(Note: Does not include haul. Engineering judgement based on USA	ACE Green B	rook Floo	od Risk Management	project. Task deta	ils based on engine	ering judg	gement of the Cos	t Estimator.)	
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	99.17	BCY	<i>34.32</i> 3,403.00	17.52% 596.21	61.66% 2,098.39	0.00% 0.00	0.00% 0.00	61.49 6,097.60	1
USR Coal Tar Epoxy Coating	22.07	TON	<i>2,298.75</i> 50,733.43	17.52% 8,888.50	<i>61.66%</i> 31,283.62	$0.00\% \\ 0.00$	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>4,118.96</i> 90,905.55	
(Note: assume \$700/ton. Task details based on engineering judgeme Assuming extends 5ft below concrete). micropile casing tonnage 24 0.2195 tn/ft (Assume 100% coating). Epoxy Q*(0.34875*0.6+0.30)	ent of the Cos 6.60 TN / 80 f 75*0.4+0.219	t Estimat t = 0.307 5*1))	tor. Deployable Flood 5 tn/ft (Assume 40%	Barrier Sheet Pile coating. Assuming	e (NZ26) 27.90 TN g extends 5ft below	/ 80 ft = 0 concrete	0.34875 ton/ft (As). Structural Steel	sume 60% coating 17.56 TN / 80 ft =	3. =
			16,133.52					28,908.48	:
0007 Floodwall (north) (Note: Assemblies makeup and quantities based on "QTO_Draft_202 (12") 0.33 EA Micropile casing tonnage 0.26 TN Micropile grout vol	238.00 50610 Rev1 I ume 0.86 CY	LF MN" Re)	3,839,777.09 einforced Concrete fo	672,728.95 r Floodwall 2.69 C	2,367,711.91 CY Steel Sheet Pile	0.00 (NZ26) 0	0.00 0.31 TN Excavatio	6,880,217.94 on 2.20 CY Microp	oile
USR 033053406300 Structural concrete, in place, cantilever	640.22	СҮ	<i>1,854.89</i> 1,187,540.13	17.52% 208,057.03	61.66% 732,269.83	0.00% 0.00	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>3,323.65</i> 2,127,866.99	

USACE Report Sections incl Cost Overrides

Description retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing	Quantity	UOM	ContractCost	Escalation	Contingency	SIOH	MiscOwner	ProjectCost	C/0
(Note: Initial Material Cost = \$260/CY. From RSM 033113350400 to \$274/CY.)	\$198.00/CY f	or 5000µ	osi concrete. From RS	SM 033113350150	\$184.00/CY for 35	500psi con	ncrete. Increse m	naterial cost by \$14	4/CY
RSM 314116100300 Sheet piling, steel, 27 psf, 20' excavation, per ton, left in place, excludes wales	73.78	ΓΟΝ	<i>9,395.90</i> 693,229.21	<i>17.52%</i> 121,453.76	61.66% 427,464.15	0.00% 0.00	0.00% 0.00	<i>16,835.82</i> 1,242,147.12	
(Note: References RSM 314116100300 and 314116100600. Interpo (2.3750-1.6188)/(38-27)=(X-1.6188)/(30.99-27), X=1.804ton/hr)	late using 27 p	osf(1.61)	88ton/hr) and 38(2.37	50) psf to obtain c	rew output for NZ	26 30.991	b/sf.		
USR IDW-DISPOSE IDW Disposal Fee	523.60 1	ΞA	<i>153.60</i> 80,427.29	<i>17.52%</i> 14,090.86	61.66% 49,593.67	$0.00\% \\ 0.00$	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>275.23</i> 144,111.82	
(Note: Does not include haul. Engineering judgement based on USA	CE Green Bro	ook Floo	od Risk Management	project. Task deta	ils based on engine	ering judg	gement of the Cos	t Estimator.)	
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	523.60 1	3CY	28.14 14,736.28	17.52% 2,581.80	61.66% 9,086.80	0.00% 0.00	0.00% 0.00	<i>50.43</i> 26,404.88	
USR 316333105040 Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200 piles, 60' long, unless specified otherwise, excludes pile caps or mobilization (Note: assume for vehicle gate foundation 24.60ton * 2000lb/ton / 6	1,903.81 ¥ 5.48lb/lf/32E	VLF	911.16 1,734,668.12 48 VLF/pile. for floo	17.52% 303,913.85 dwall 0.26ton * 20	61.66% 1,069,643.96 000lb/ton / 65.48lb/	0.00% 0.00	0.00% 0.00 A = 24.24 (5.563	<i>1,632.63</i> 3,108,225.94 in / 2)^2 *pi = 24	4.29
in3 (12.75 in / 2)^2 *pi = 127.61 in3 \$43.0 *(127.61 in3 / 24.29 in)	3) = \$225.90/\	/LF cha	nged crew output from	m 20vlf/hr to 10vl	f/hr)				
USR Coal Tar Epoxy Coating	69.02	ΓΟΝ	<i>1,871.57</i> 129,176.05	<i>17.52%</i> 22,631.64	61.66% 79,653.50	0.00% 0.00	0.00% 0.00	<i>3,353.54</i> 231,461.19	

(Note: assume \$700/ton. Task details based on engineering judgement of the Cost Estimator. Floodwall Steel Sheet Pile (NZ26) 0.31 TN/lf (Assume 60% coating. Assuming extends 5ft below concrete). Micropile casing tonnage 0.26 TN/lf (Assume 40% coating. Assuming extends 5ft below concrete). Epoxy Q*(0.31*0.6+0.26*0.4))

USACE Report Sections incl Cost Overrides

Contract Cost Summary Report Page 7

Description	Quantity	UOM	Contractor	DirectCost	SubCMU	CostToPrime	PrimeCMU	ContractCost	C/O
Contract Cost Summary Report				232,511,153.04	8,332,228.25	181,817,810.98	64,848,523.50	305,691,904.80	
				232,511,153.04		181,817,810.98		305,691,904.80	
Base Bid	1.00	EA	Prime	232,511,153.04	8,332,228.25	181,817,810.98	64,848,523.50	305,691,904.80	
				59,025,570.32		0.00		59,025,570.32	
02 Relocations	1.00	EA		59,025,570.32	0.00	0.00	0.00	59,025,570.32	
				14,090.61		0.00		14,090.61	
0001 Relocations	4,189.00	LF		59,025,570.32	0.00	0.00	0.00	59,025,570.32	
				173,485,582.72		181,817,810.98		246,666,334.48	
11 Levees & Floodwalls	1.00	EA	Prime	173,485,582.72	8,332,228.25	181,817,810.98	64,848,523.50	246,666,334.48	
				11,900.18		11,900.18		16,133.52	
0002 Floodwall (south)	80.00	LF	Prime	952,014.30	0.00	952,014.30	338,667.07	1,290,681.37	
				18,180.45		22,268.82		30,273.67	
0003 Deployable Flood Barrier - Vehicle Gate (south)	40.00	LF	Sub	727,218.03	163,534.97	890,753.00	320,193.67	1,210,946.67	
				36,482.13		36,482.13		49,460.19	
0004 Anchored Combi Wall	3,636.00	LF	Prime	132,649,027.37	0.00	132,649,027.37	47,188,216.57	179,837,243.93	
				229,663.63		281,309.81		382,430.57	
0005 Tunnel Span	155.00	LF	Sub	35,597,862.44	8,005,158.31	43,603,020.76	15,673,718.00	59,276,738.75	
				18,180.45		22,268.82		30,273.67	
0006 Deployable Flood Barrier - Vehicle Gate	40.00	IF	Sub	777 218 03	163 534 07	800 753 00	220 102 67	1 210 046 67	
(north)	40.00	LF	Sub	121,218.03	105,554.97	890,753.00	520,195.07	1,210,940.07	
0007 Electrul (reuth)	320 00	ιF	Duting	11,900.18	0.00	11,900.18	1 007 524 52	16,133.52	
uuu / rioodwall (north)	238.00	Lľ	rrime	2,832,242.56	0.00	2,832,242.56	1,007,534.53	3,839,777.09	

Project Direct Costs Report Page 8

Description	Quantity	UOM	Contractor	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectUserCost	DirectCost	DirectCost	C/C
Report				34,197,719.93	3,619,889.37	123,552,948.40	71,140,595.35	0.00	232,511,153.04	232,511,153.04	
-				34,197,719.93	3,619,889.37	123,552,948.40	71,140,595.35		232,511,153.04	232,511,153.04	
Base Bid	1.00	EA	Prime	34,197,719.93	3,619,889.37	123,552,948.40	71,140,595.35	0.00	232,511,153.04	232,511,153.04	
				0.00	0.00	0.00	59,025,570.32		59,025,570.32	59,025,570.32	
02 Relocations	1.00	EA		0.00	0.00	0.00	59,025,570.32	0.00	59,025,570.32	59,025,570.32	
				0.00	0.00	0.00	14,090.61		14,090.61	14,090.61	
0001 Relocations	4,189.00	LF		0.00	0.00	0.00	59,025,570.32	0.00	59,025,570.32	59,025,570.32	
	,			0.00	0.00	0.00	14.090.61		14.090.61	14.090.61	
USR Relocations	4,189.00	LF		0.00	0.00	0.00	59,025,570.32	0.00	59,025,570.32	59,025,570.32	
(Note: \$13,263 / LF	deveolped fro	om HAT	S for East Harler	m 2022Q3)							
				34,197,719.93	3,619,889.37	123,552,948.40	12,115,025.03		173,485,582.72	173,485,582.72	
11 Levees &											
Floodwalls	1.00	EA	Prime	34,197,719.93	3,619,889.37	123,552,948.40	12,115,025.03	0.00	173,485,582.72	173,485,582.72	
				4,315.10	328.72	7,007.10	249.26		11,900.18	11,900.18	
0002 Floodwall	00.00	IF	Duting	245 207 70	26 207 76	5(0,5(0,0)	10 0 40 73	0.00	052 014 20	052 014 20	
(SOULD) (Note: Assemblies ms	80.00 whether and aua	L F ntities by	Prime ased on "OTO F	343,207.79 Traft 20250610 Re	20,297.70 v1 MN" Reinfor	300,308.03 reed Concrete for Fl	19,940.72 oodwall 2.69 CV S	U.UU Steel Sheet Pile (N726	952,014.30 0 31 TN Excepted	952,014.30 on 2 20 CV Micror	vile
(12") 0.33 EA Microp	ile casing ton	nage 0.2	6 TN Micropile	grout volume 0.86	CY)) 0.51 IIV Exeaval		ne
	-	-		821.39	6.43	540.36	0.00		1,368.18	1,368.18	
USR 033053406300	215.20	CY	Prime	176,762.90	1,383.92	116,285.69	0.00	0.00	294,432.51	294,432.51	
Structural concrete,											
in place, cantilever retaining wall (3000											
psi), 8' high, level											
backfill loading,											
includes forms(4											
uses), Grade 60											
rebar, concrete											
(Portland cement											
finishing											
(Note: Initial Materi to \$274/CY.)	al Cost = \$26	0/CY. Fi	rom RSM 03311	3350400 \$198.00/0	CY for 5000psi co	oncrete. From RSM	033113350150 \$18	84.00/CY for 3500psi	concrete. Increse 1	material cost by \$14	4/CY
				1,447.12	355.84	5,127.51	0.00		6,930.47	6,930.47	
RSM 314116100300	24.80	TON	Prime	35,888.45	8,824.86	127,162.33	0.00	0.00	171,875.64	171,875.64	
Sheet piling, steel, 27											
psi, 20 excavation,											
excludes wales											
(Note: References R	SM 3141161	00300 ar	nd 31411610060	0. Interpolate using	27 psf(1.6188tor	(hr) and 38(2.3750)	nsf to obtain crew	output for NZ 26 30.	991b/sf.		

(2.3750-1.6188)/(38-27)=(X-1.6188)/(30.99-27), X=1.804ton/hr)

USACE Report Sections incl Cost Overrides

Description	Quantity	UOM	Contractor	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectUserCost	DirectCost	DirectCost	C/0
USR IDW-DISPOSE	176.00	EA	Prime	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.00 0.00	0.00 0.00	<i>113.30</i> 19,940.72	0.00	<i>113.30</i> 19,940.72	<i>113.30</i> 19,940.72	
(Note: Does not incl	ude haul. En	gineering	judgement base	d on USACE Green	Brook Flood Ris	k Management pro	ject. Task details b	ased on engineering ju	udgement of the Cos	t Estimator.)	
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	176.00	BCY	Prime	17.28 3,041.16	3.48 612.48	0.00 0.00	0.00 0.00	0.00	20.76 3,653.64	20.76 3,653.64	
USR 316333105040 Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200 piles, 60' long, unless specified otherwise, excludes pile caps or mobilization (Note: assume for ve	639.94	undation	Prime 24.60ton * 2000	202.39 129,515.28 lb/ton / 65.48lb/lf /	24.18 15,476.51 32EA = 23.48 VI	445.50 285,092.78	0.00 0.00	0.00 b/ton / 65.481b/1f / 0.3	672.07 430,084.57 3EA = 24.24 (5.563	672.07 430,084.57 in / 2)^2 *pi = 24.	29
USR Coal Tar	23.20	1 III3 543.	Prime	(0.00) (0.00)	0.00 0.00	<i>1,380.48</i> 32,027.24	0.00 0.00	0.00	<i>1,380.48</i> 32,027,24	<i>1,380.48</i> 32,027.24	
Epoxy Coating (Note: assume \$700, concrete). Micropile	/ton. Task de casing tonna	tails based age 0.26 T	d on engineering N/lf (Assume 4	judgement of the C 0% coating. Assum	Cost Estimator. Fl ing extends 5ft be	oodwall Steel Shee slow concrete). Epo	t Pile (NZ26) 0.31 xy Q*(0.31*0.6+0	TN/lf (Assume 60% c .26*0.4))	coating. Assuming e	xtends 5ft below	
0003 Deployable Flood Barrier - Vehicle Gate				4,478.10	376.05	8,093.67	5,232.63		18,180.45	18,180.45	
(south) (Note: Assemblies ma = 0.34875 ton/ft Micro 17.56 TN / 80 ft = 0.2	40.00 keup and qua opile (12"x0. 195 tn/ft Exc	LF antities ba 5") 32.00 avation 1	Sub used on "QTO_D EA / 80 ft = 0.4 98.33 CY / 80 ft	179,124.03 raft_20250610 Rev ea/ft micropile casi = 2.479125 cy/ft)	15,041.93 1 MN" Reinfording tonnage 24.60	323,746.93 ced Concrete for Ge TN / 80 ft = 0.307	209,305.14 ate Foundation 201 5 tn/ft micropile gr	0.00 .29 CY / 80 ft = 2.516 rout volume 82.13 CY	727,218.03 5125 cy/ft Sheet Pile 7 80 ft = 1.026625 c	727,218.03 (NZ26) 27.90 TN / cy/ft Structural Steel	′ 80 ft l
USR 033053406300	100.65	CY	Sub	<i>814.88</i> 82,013.86	6.43 647.23	<i>540.36</i> 54,384.63	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.00	<i>1,361.67</i> 137,045.72	<i>1,361.67</i> 137,045.72	

Description Structural concrete, in place, cantilever	Quantity	UOM	Contractor	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectUserCost	DirectCost	DirectCost	C/O
psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60											
rebar, concrete (Portland cement Type I), placing and finishing (Note: Initial Materi	al Cost = \$26	0/CY. Fr	om RSM 033113	350400 \$198.00/C	Y for 5000psi cor	ncrete. From RSM	033113350150 \$18	84.00/CY for 3500psi	concrete. Increse n	naterial cost by \$14	/CY
10.5274/C1.)				1 425 51	255.94	5 1 27 5 1	0.00		6 0 1 9 97	6 0 1 9 97	
RSM 314116100300 Sheet piling, steel, 27 psf, 20' excavation, per ton, left in place, avoludes, wales	13.95	TON	Sub	20,025.38	4,963.98	71,528.81	0.00	0.00	96,518.17	96,518.17	
(Note: References R (2.3750-1.6188)/(38	SM 3141161 -27)=(X-1.61	00300 an 88)/(30.9	d 314116100600 9-27), X=1.804t	. Interpolate using 2 on/hr)	27 psf(1.6188ton/	hr) and 38(2.3750)) psf to obtain crew	output for NZ 26 30.9	99lb/sf.		
1100 21/222105040	275 (0		0.1	200.67	24.18	445.50	0.00	0.00	670.35	670.35	
Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200 piles, 60' long, unless specified otherwise, excludes pile caps or mobilization (Note: assume for voi in3 (12.75 in / 2)^2	shicle gate fo *pi = 127.61	undation	24.60ton * 2000 0 *(127.61 in3 /	/5,386.25 b/ton / 65.48lb/lf / 24.29 in3) = \$225.9	9,085.62 32EA = 23.48 VL 00/VLF changed c	.F/pile. for floodwa	0.00 all 0.26ton * 20001 0vlf/hr to 10vlf/hr)	0.00 b/ton / 65.48lb/lf / 0.3	251,838.07 3EA = 24.24 (5.563	in / 2)^2 *pi = 24	.29
	1			0.00	0.00	0.00	22.559.20		22.559.20	22.559.20	
USR Structural Steel(Vehicular Gate) TON	8.78	TON	Sub	0.00	0.00	0.00	198,069.79	0.00	198,069.79	198,069.79	
(Note: assumed \$5,6 \$17,920 / TON)	00 per ton(fr	om RSM	051223772000).	Add 100% conting	ency for rollers, h	nardware, botmmis	c. steel, etc. mate	rial - \$11,200/ton Ac	ld 60% for installation	on: \$11,200/ton * 1	.6=
			a 1	0.00	0.00	0.00	113.30		113.30	113.30	
USR IDW-DISPOSE	99.17	EA	Sub	0.00	0.00	0.00	11,235.35	0.00	11,235.35	11,235.35	

Time 12:42:15

USACE Report Sections incl Cost Overrides

Description IDW Disposal Fee	Quantity	UOM	Contractor	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectUserCost	DirectCost	DirectCost	C/0
(Note: Does not incl	ude haul. En	gineering	judgement base	d on USACE Greer	n Brook Flood Ris	k Management pro	oject. Task details b	ased on engineering j	udgement of the Cos	st Estimator.)	
	00.4 -	DOL	a 1	17.13	3.48	0.00	0.00	0.00	20.61	20.61	
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	99.17	ВСҮ	Sub	1,698.54	345.09	0.00	0.00	0.00	2,043.63	2,043.63	
	22.07	TON	a 1	0.00	0.00	1,380.48	0.00	0.00	1,380.48	1,380.48	
USR Coal Tar	22.07	TON	Sub	0.00	0.00	30,467.29	0.00	0.00	30,467.29	30,467.29	
(Note: assume \$700/ Assuming extends 5: 0.2195 tn/ft (Assume	'ton. Task de ft below con e 100% coati	tails based crete). mic ng). Epox	d on engineering cropile casing to xy Q*(0.34875*(g judgement of the 0 nnage 24.60 TN / 8 0.6+0.3075*0.4+0.2	Cost Estimator. De 30 ft = 0.3075 tn/ft 2195*1))	eployable Flood Ba (Assume 40% coa	arrier Sheet Pile (Nating. Assuming ex	Z26) 27.90 TN / 80 ft tends 5ft below concr	= 0.34875 ton/ft (A ete). Structural Steel	ssume 60% coating 17.56 TN / 80 ft =	• •
				8,600.49	906.10	26,703.16	272.38		36,482.13	36,482.13	
0004 Anchored	2 (2(00	I F	D '	21 251 200 (1	2 20 4 500 50			0.00		122 (10 025 25	
(Note: Assemblies ma Pipe/NZ-19) 1.48 TN	3,636.00 keup and qua Batter Pile (3	LF antities ba 30" Dia. X	Prime used on "QTO_D X 0.625") 1.74 T	31,271,380.61 0raft_20250610 Rev N)	3,294,590.50 /1 MN" Reinford	97,092,694.50 ced Concrete for Co	ombiwall 3.02 CY	0.00 Bracing (Pipe 16 X-S	132,649,027.37 trong) 0.10 TN Con	132,649,027.37 hbi-Wall (36" Dia.	
				1,339.78	9.94	835.10	0.00		2,184.82	2,184.82	
USR 033053406300 Structural concrete, in place, cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing (Note: Initial Materia	10,980.72 al Cost = \$26	CY 50/CY. Fr	Prime om RSM 03311	14,711,703.59 3350400 \$198.00/C	109,132.66 CY for 5000psi con	9,170,036.34 ncrete. From RSM	0.00	0.00 34.00/CY for 3500psi	23,990,872.60 concrete. Increse r	23,990,872.60 naterial cost by \$14	4/CY
to $\frac{2}{4}$ (Y.)											
USR 051223171600 Column, structural, 6" to 12" dia, extra strong pipe, incl shop primer, cap & base plate, bolts, converted to per ton	363.60	TON	Prime	<i>4,953.66</i> 1,801,149.86	647.63 235,476.92	10,301.64 3,745,676.37	0.00 0.00	0.00	<i>15,902.92</i> 5,782,303.15	<i>15,902.92</i> 5,782,303.15	

Time 12:42:15

USACE Report Sections incl Cost Overrides

Description (Note: converted to	Quantity per ton)	UOM	Contractor	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectUserCost	DirectCost	DirectCost	C/O
RSM 314116100600 Sheet piling, steel, 38 psf, 25' excavation, per ton, left in place, excludes wales	5,381.28	TON	Prime	<i>1,788.73</i> 9,625,650.24	417.72 2,247,867.29	7,924.34 42,643,084.83	<i>0.00</i> 0.00	0.00	<i>10,130.79</i> 54,516,602.35	<i>10,130.79</i> 54,516,602.35	
(Note: Currently ass	suming 36inx	0.4381n W	ith NZ19. assum	ing NZ Length / Pi	pe Length at 100	$\gamma_0 = 38.010/\text{st}$)					
USR 316223134100 Concrete-filled steel piles, steel, pipe piles, no concrete, 50' long, 18" diameter, 59 lb./L.F., excludes mobilization or demobilization, converted to 36"x0.625" pipe per ton (Note: Initial Mater 26"x0.625" pipe ner	6,326.64 ial = 46.50/VI	TON LF, conve	Prime ert to ton using de	811.31 5,132,876.92 efault 59 lb/lf, \$46. 2000lb/ton = 5.23	110.98 702,113.63 5/VLF / 591b/lf *	4,804.19 30,394,388.42 2000lb/ton = \$1,57	0.00 0.00 76.27/ton Initial Cr	0.00 ew Output = 44.3750V	5,726.48 36,229,378.97 'LF/hr, use same pro	5,726.48 36,229,378.97 oduction rate conver	rted to
USR Dredge and	72.720.00	сү	Prime	0.00 0.00	0.00 0.00	0.00 0.00	<i>13.62</i> 990.361.75	0.00	<i>13.62</i> 990.361.75	<i>13.62</i> 990.361.75	
Fill (Note: This Item wa to \$7. ~20ft LOP of	s added for b fset, 20' x 27'	ackfill be x1' per fo	hind structure. Fi oot of structure / 2	rom the constructio 27ft3/cy = 20CY/L	n of the Verrazan F)	o Narrows Sector (Gate Islands we use	ed \$6.10-6.14 / CY to	dredge nearby and fi	ill the islands. round	l up
				0.00	0.00	2.133.48	0.00		2.133.48	2.133.48	
USR Coal Tar Epoxy Coating	5,221.30	TON	Prime	0.00	0.00	11,139,508.54	0.00	0.00	11,139,508.54	11,139,508.54	
(Note: assume \$700 10-15ft below mudl	/ton. Task der ine). Batter P	tails based ile (30" D	l on engineering bia. X 0.625") 1.7	judgement of the C 4 TN/lf (Assume 4	Cost Estimator. An 0%. Assuming ex	nchored Combi Wa stends 10-15ft belo	ll Combi-Wall (36 w mudline). Epoxy	" Dia. Pipe/NZ-19) 1.4 v Q*(1.48*0.5+1.74*0.	48 TN/lf (Assume 50 4)))%. Assuming exter	nds
				7,715.42	1,230.20	152,158.08	68,559.93		229,663.63	229,663.63	
0005 Tunnel Span (Note: Assemblies ma Structure-Framing (W 0.320064516 tn/ft Sho	155.00 akeup and qua (40x211) 87.0 eetpile Conne	LF antities ba 0 TN / 15 ction (SIZ	Sub sed on "QTO_D 55 ft = 1.1870967 ZE) 12.96 TN / 1	1,195,890.29 raft_20250610 Rev 774 tn/ft Truss Mer 55 ft = 0.08361290	190,681.41 1 MN" Jacket S nbers (Member si 3 tn/ft Jacket Stru	23,584,502.12 tructure -Steel Pipe zes vary) 560.00 T acture-Steel Pipe B	10,626,788.63 e Piles (60"dia x 1" N / 155 ft = 3.6129 racing (30" Dia. X	0.00 thick) 2825.00 TN / 1 003226 tn/ft Truss Plat 1") 451.00 TN / 155 f	35,597,862.44 55 ft = 18.22580645 e (0.38" Plate) 49.61 t = 2.909677419 tn/t	35,597,862.44 5 tn/ft Jacket 1 TN / 155 ft = ft)	
USR 316223134100 Concrete-filled steel piles, steel, pipe piles, no concrete, 50' long, 18"	2,825.00	TON	Sub	<i>301.01</i> 850,361.32	<i>49.18</i> 138,944.61	<i>4,804.19</i> 13,571,840.23	0.00 0.00	0.00	<i>5,154.39</i> 14,561,146.16	<i>5,154.39</i> 14,561,146.16	

Time 12:42:15

Description diameter, 59 lb./L.F., excludes mobilization or	Quantity	UOM	Contractor	DirectLabor E	DirectEQ	DirectMatl	DirectSubBid	DirectUserCost	DirectCost	DirectCost	C/O
demobilization (Note: Initial RSM 3 Crew Output VLF/hr ton crane)	16333105040 to TON/hr. 4) item det 14.3750v	tails: Material = 5 lf/hr * 630.7lb/ft	\$46.50/VLF, Crew Ou / 2000lb/ton = 13.978	tput = 44.375 125 TON/hr.	0VLF/hr. Convert 630.7lb/ft from skyl	VLF to TON. Mat ine product manua	terial \$46.50/ft / 59lb al for 60inx1in pipe.	/ft * 2000lb/ton = \$1, Change crew item fi	576.27/ton. Conve rom 50 ton crane to	ert o 100
USR 051223757900 Structural steel beam or girder, 100-ton project, 1 to 2 story building, W36x231, A992 steel, shop fabricated, incl shop primer, bolted connections	184.00	TON	Sub	378.46 69,636.12	36.18 6,657.34	<i>11,346.86</i> 2,087,822.32	0.00 0.00	0.00	<i>11,761.50</i> 2,164,115.78	<i>11,761.50</i> 2,164,115.78	
(Note: Initial for W3 TON/hr. 140.6250ft/	6x231 materi hr * 2311b/ft	al = \$430 / 2000lb/	0.00/LF, Crew Ou ton = 16.2421875	utput = 140.6250FT/h 5TON/hr)	r, 2311b/ft. Co	onvert material LF to	TON. \$430/lf / 23	311b/ft *20001b/ton =	\$3,722.94/TON Cor	overt crew output L	.F/hr to
USR Tunnel Span Truss TON	560.00	TON	Sub	0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	<i>17,432.11</i> 9,761,981.65	0.00	<i>17,432.11</i> 9,761,981.65	<i>17,432.11</i> 9,761,981.65	
(Note: assumed \$5,6 and plates)	00 per ton(fro	om RSM	051223772000).	material - \$5,600/to	on Add 60%	for installation: \$5,6	500/ton * 1.6 = \$8,	,960 / TON use sam	e cost from above ca	lculated gate for tr	uss
USR Tunnel Span Plates TON	49.61	TON	Sub	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	<i>17,432.11</i> 864,806.98	0.00	<i>17,432.11</i> 864,806.98	<i>17,432.11</i> 864,806.98	
(Note: assumed \$5,60 and plates)	00 per ton(fro	om RSM	051223772000).	material - \$5,600/to	on Add 60%	for installation: \$5,6	500/ton * 1.6 = \$8,	,960 / TON use sam	e cost from above ca	lculated gate for tr	uss
USR 314116102500 Sheet piling, wales, connections and struts, 2/3 salvage	12.96	TON	Sub	0.00 0.00	0.00 0.00	<i>4,754.60</i> 61,619.66	0.00 0.00	0.00	<i>4,754.60</i> 61,619.66	<i>4,754.60</i> 61,619.66	
(Note: convert \$520.)	00/TON for 2	2/3 salvag	ge to no salvage.	520.00/ton * 3ea =	1,560/TON)						
USR 316223134100 Concrete-filled steel piles, steel, pipe piles, no concrete, 50' long, 18" diameter, 59 lb./L.F., excludes mobilization or demobilization (30")	451.00	TON	Sub	611.74 275,892.85	99.95 45,079.46	4,804.19 2,166,690.25	0.00 0.00	0.00	5,515.88 2,487,662.55	5,515.88 2,487,662.55	

Print Date Wed 25 June 2025 Eff. Date 6/25/2025			Project : 1	U.S. Army Cor 3372.106.HATS	ps of Engineers EAE.OPCC.30Per	centDesign			Time 12:42:15
			USA	CE Report Section	ons incl Cost Overr	rides		Project Direct	et Costs Report Page 14
Description (Note: Initial RSM 31 Crew Output VLF/hr ton crane)	Quantity UOM 6333105040 item de to TON/hr. 44.3750v	Contractor etails: Material = /lf/hr * 310.0lb/f	DirectLabor \$46.50/VLF, Crew t / 2000lb/ton = 6.8°	DirectEQ Output = 44.3750 78125 TON/hr. 31	DirectMatl VLF/hr. Convert 0.0lb/ft from skyli	DirectSubBid VLF to TON. Mat ine product manual	DirectUserCost erial \$46.50/ft / 59lb for 30inx1in pipe.	DirectCost /ft * 2000lb/ton = \$1, Change crew item fro	DirectCost C/O 576.27/ton. Convert m 50 ton crane to 100
USR Coal Tar Epoxy Coating	2,670.07 TON	Sub	0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	<i>2,133.48</i> 5,696,529.67	0.00 0.00	0.00	<i>2,133.48</i> 5,696,529.67	<i>2,133.48</i> 5,696,529.67
(Note: assume \$700/t (assume 50% coating tn/ft (Assume 100% c 100% coating). Jacke Q*(18.22580645*0.5	on. Task details base). Jacket Structure-Fi :oating). Truss Plate t Structure-Steel Pipe +1.187096774+3.612	d on engineering raming (W40x21 (0.38" Plate) 49.0 e Bracing (30" D 2903226+0.3200	judgement of the C 1) 87.00 TN / 155 ft 51 TN / 155 ft = 0.3 ia. X 1") 451.00 Th 64516+0.08361290	Cost Estimator. Tu t = 1.187096774 t 20064516 tn/ft (A V / 155 ft = 2.9096 3+2.909677419))	nnel Span Jacket S n/ft (Assume 100% ssume 100% coati 577419 tn/ft (Assur	Structure -Steel Pip 6 coating). Truss M ng). Sheetpile Con me 100% coating).	e Piles (60"dia x 1" t Iembers (Member siz nection (SIZE) 12.96 Epoxy	hick) 2825.00 TN / 13 zes vary) 560.00 TN / 5 TN / 155 ft = 0.0836	55 ft = 18.22580645 tn/ft 155 ft = 3.612903226 512903 tn/ft (Assume
0006 Doployabla			4,478.10	376.05	8,093.67	5,232.63		18,180.45	18,180.45
Flood Barrier - Vehicle Gate									
(north) (Note: Assemblies mak = 0.34875 ton/ft Microj 17.56 TN / 80 ft = 0.21	40.00 LF eup and quantities ba pile (12"x0.5") 32.00 95 tn/ft Excavation 1	Sub ased on "QTO_D EA / 80 ft = 0.4 98.33 CY / 80 ft	179,124.03 praft_20250610 Rev ea/ft micropile casi = 2.479125 cy/ft)	15,041.93 1 MN" Reinforc ng tonnage 24.60	323,746.93 ed Concrete for Ga TN / 80 ft = 0.307	209,305.14 ate Foundation 201 5 tn/ft micropile gr	0.00 .29 CY / 80 ft = 2.51 out volume 82.13 CY	727,218.03 6125 cy/ft Sheet Pile Y / 80 ft = 1.026625 c	727,218.03 (NZ26) 27.90 TN / 80 ft y/ft Structural Steel
USR 033053406300 Structural concrete, in place, cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing	100.65 CY	Sub	<i>814.88</i> 82,013.86	<i>6.43</i> 647.23	<i>540.36</i> 54,384.63	0.00 0.00	0.00	<i>1,361.67</i> 137,045.72	<i>1,361.67</i> 137,045.72
(Note: Initial Materia to \$274/CY.)	$l \operatorname{Cost} = \$260/\mathrm{CY}.$ Fi	rom RSM 03311	3350400 \$198.00/C	Y for 5000psi con	crete. From RSM	033113350150 \$18	84.00/CY for 3500ps	i concrete. Increse n	naterial cost by \$14/CY
RSM 314116100300 Sheet piling, steel, 27 psf, 20' excavation, per ton, left in place, excludes wales	13.95 TON	Sub	<i>1,435.51</i> 20,025.38	355.84 4,963.98	<i>5,127.51</i> 71,528.81	0.00 0.00	0.00	<i>6,918.87</i> 96,518.17	6,918.87 96,518.17
(Note: References RS (2.3750-1.6188)/(38-2	M 314116100300 ar 27)=(X-1.6188)/(30.9	nd 314116100600 99-27), X=1.8041). Interpolate using con/hr)	27 psf(1.6188ton/	hr) and 38(2.3750)	psf to obtain crew	output for NZ 26 30	.991b/sf.	
USR 316333105040 Concrete-filled steel	375.68 VLF	Sub	200.67 75,386.25	24.18 9,085.62	445.50 167,366.20	0.00 0.00	0.00	670.35 251,838.07	670.35 251,838.07

Description piles, pressure	Quantity	UOM	Contractor	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectUserCost	DirectCost	DirectCost	C/0
cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using											
200 piles, 60' long, unless specified otherwise, excludes pile caps or mobilization											
(Note: assume for ve in3 (12.75 in / 2)^2 *	ehicle gate for *pi = 127.61	undation in3 \$43	24.60ton * 2000 .0 *(127.61 in3	0lb/ton / 65.48lb/lf / / 24.29 in3) = \$225.	32EA = 23.48 VI 90/VLF changed o	.F/pile. for floodw crew output from 2	all 0.26ton * 20001 0vlf/hr to 10vlf/hr)	b/ton / 65.48lb/lf / 0.3	3EA = 24.24 (5.563	$in / 2)^2 * pi = 24$	4.29
				0.00	0.00	0.00	22,559.20		22,559.20	22,559.20)
USR Structural Steel(Vehicular Gate) TON	8.78	TON	Sub	0.00	0.00	0.00	198,069.79	0.00	198,069.79	198,069.79)
(Note: assumed \$5,6 \$17,920 / TON)	00 per ton(fr	om RSM	051223772000)). Add 100% contin	gency for rollers, l	hardware, botmmis	sc. steel, etc. mate	rial - \$11,200/ton Ac	dd 60% for installatio	on: \$11,200/ton *	1.6 =
				0.00	0.00	0.00	113.30		113.30	113.30)
USR IDW-DISPOSE IDW Disposal Fee	99.17	EA	Sub	0.00	0.00	0.00	11,235.35	0.00	11,235.35	11,235.35	1
(Note: Does not incl	ude haul. Eng	gineering	judgement base	d on USACE Greer	Brook Flood Ris	k Management pro	ject. Task details b	ased on engineering ju	udgement of the Cos	t Estimator.)	
				17.13	3.48	0.00	0.00		20.61	20.61	!
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	99.17	BCY	Sub	1,698.54	345.09	0.00	0.00	0.00	2,043.63	2,043.63	
				0.00	0.00	1,380.48	0.00		1,380.48	1,380.48	3
USR Coal Tar Epoxy Coating	22.07	TON	Sub	0.00	0.00	30,467.29	0.00	0.00	30,467.29	30,467.29	1
(Note: assume \$700/ Assuming extends 5: 0.2195 tn/ft (Assume	ton. Task det ft below conc e 100% coatii	ails base rete). mi 1g). Epoy	d on engineering cropile casing to xy Q*(0.34875*)	g judgement of the 0 onnage 24.60 TN / 8 0.6+0.3075*0.4+0.2	Cost Estimator. De 0 ft = 0.3075 tn/ft 2195*1))	ployable Flood Ba (Assume 40% coa	urrier Sheet Pile (Na ating. Assuming ext	Z26) 27.90 TN / 80 ft tends 5ft below concre	= 0.34875 ton/ft (As ete). Structural Steel	sume 60% coating 17.56 TN / 80 ft =	з. =
				4,315.10	328.72	7,007.10	249.26		11,900.18	11,900.18	}
0007 Floodwall											
(north) (Note: Assemblies ma (12") 0.33 EA Micropi	238.00 keup and qua ile casing ton	LF ntities ba nage 0.20	Prime ased on "QTO_E 6 TN Micropile	1,026,993.18 Draft_20250610 Rev grout volume 0.86 (78,235.84 71 MN" Reinford CY)	1,667,689.89 red Concrete for Fl	59,323.65 oodwall 2.69 CY S	0.00 Iteel Sheet Pile (NZ26	2,832,242.56) 0.31 TN Excavatio	2,832,242.56 n 2.20 CY Microp	oile
				821.39	6.43	540.36	0.00		1,368.18	1,368.18	}

USACE Report Sections incl Cost Overrides

Description USR 033053406300 Structural concrete, in place, cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing (Note: Initial Materia to \$274/CY.)	Quantity 640.22	UOM CY 50/CY. Fro	Contractor Prime om RSM 033113	DirectLabor 525,869.63 350400 \$198.00/C	DirectEQ 4,117.15 Y for 5000psi cor	DirectMatl 345,949.92	DirectSubBid 0.00	DirectUserCost 0.00	DirectCost 875,936.70	DirectCost C/O 875,936.70
10 \$2/4/01.)				1,447.12	355.84	5,127.51	0.00		6,930.47	6,930.47
RSM 314116100300 Sheet piling, steel, 27 psf, 20' excavation, per ton, left in place, excludes wales (Note: References R: (2 3750-1 6188)/(38)	73.78 SM 3141161 27)=(X-1 61	TON 00300 and 88)/(30 9)	Prime d 314116100600 9-77) X=1 804tr	106,768.15 . Interpolate using 2	26,253.95 27 psf(1.6188ton/	378,307.92 hr) and 38(2.3750)	0.00) psf to obtain crew	0.00 output for NZ 26 30.9	511,330.02 99lb/sf.	511,330.02
(2.3750-1.0100)/(50-	-27)-(A- 1.01		<i>J-27)</i> , <u>A</u> =1.00+0	0.00	0.00	0.00	113 30		113 30	113 30
USR IDW-DISPOSE	523.60	EA	Prime	0.00	0.00	0.00	59,323.65	0.00	59,323.65	59,323.65
(Note: Does not inclu	ude haul. Eng	gineering	judgement based	on USACE Green	Brook Flood Risl	k Management pro	ject. Task details b	ased on engineering ju	dgement of the Cos	t Estimator.)
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	523.60	BCY	Prime	<i>17.28</i> 9,047.46	3.48 1,822.12	0.00 0.00	0.00 0.00	0.00	20.76 10,869.57	20.76 10,869.57
USR 316333105040 Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200 piles, 60' long,	1,903.81	VLF	Prime	<i>202.39</i> 385,307.95	24.18 46,042.63	<i>445.50</i> 848,151.01	0.00 0.00	0.00	672.07 1,279,501.59	672.07 1,279,501.59

Description	Quantity	UOM	Contractor	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectUserCost	DirectCost	DirectCost	C/0
unless specified											
otherwise, excludes											
pile caps or											
mobilization											
(Note: assume for ve	chicle gate fo	undation	24.60ton * 2000	lb/ton / 65.48lb/lf /	/ 32EA = 23.48 V	LF/pile. for floody	vall 0.26ton * 2000	b/ton / 65.48lb/lf / 0.3	3EA = 24.24 (5.563	$3 in / 2$)^2 *pi = 2	24.29
in3 (12.75 in / 2)^2	*pi = 127.6	1 in3 \$43	.0 *(127.61 in3 /	(24.29 in3) = \$225	.90/VLF changed	crew output from	20vlf/hr to 10vlf/hr)		· •	
				0.00	0.00	1,380.48	8 0.00		1,380.48	1,380.4	48
USR Coal Tar	69.02	TON	Prime	0.00	0.00	95,281.03	3 0.00	0.00	95,281.03	95,281.0	13
Epoxy Coating											
(Note: assume \$700	ton Task de	taile base	d on engineering	indocement of the	Cost Estimator E	loodwall Steel She	et Pile (N726) 0.31	TN/lf (Assume 60%)	posting Assuming	extends 5ft below	

(Note: assume \$700/ton. Task details based on engineering judgement of the Cost Estimator. Floodwall Steel Sheet Pile (NZ26) 0.31 TN/lf (Assume 60% coating. Assuming extends 5ft below concrete). Micropile casing tonnage 0.26 TN/lf (Assume 40% coating. Assuming extends 5ft below concrete). Epoxy Q*(0.31*0.6+0.26*0.4))

USACE Report Sections incl Cost Overrides

Description Project Bare to Direct	Quantity	UOM	BareCost	Productivity	Overtime	TaxAdj	MiscDirect	Payroll	WCI	DirectCost	C/0
Report			112,453,571.77	5,160,336.31	645,972.76	2,732,574.62	102,671,642.25	4,789,501.38	4,057,553.94	232,511,153.04	
			112,453,571.77	5,160,336.31%	645,972.76%					232,511,153.04	
Base Bid	1.00	EA	112,453,571.77	5,160,336.31	645,972.76	2,732,574.62	102,671,642.25	4,789,501.38	4,057,553.94	232,511,153.04	
			55,558,707.00	0.00%	0.00%					59,025,570.32	
02 Relocations	1.00	EA	55,558,707.00	0.00	0.00	0.00	3,466,863.32	0.00	0.00	59,025,570.32	
			13,263.00	0.00%	0.00%					14,090.61	
0001 Relocations	4,189.00	LF	55,558,707.00	0.00	0.00	0.00	3,466,863.32	0.00	0.00	59,025,570.32	
USR Relocations	4,189.00) LF	<i>13,263.00</i> 55,558,707.00	0.00% 0.00	0.00% 0.00	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>6.24%</i> 3,466,863.32	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>14,090.61</i> 59,025,570.32	
(Note: \$13,263 / LF deveo	lped from HA	TS for Ea	ast Harlem 2022Q3)								
			56,894,864.77	5,160,336.31%	645,972.76%					173,485,582.72	
11 Levees & Floodwalls	1.00	EA	56,894,864.77	5,160,336.31	645,972.76	2,732,574.62	99,204,778.94	4,789,501.38	4,057,553.94	173,485,582.72	
			5,555.02	981.73%	135.02%					11,900.18	
0002 Floodwall (south) (Note: Assemblies makeup at (12") 0.33 EA Micropile cas	80.00 and quantities ing tonnage 0.	LF based on .26 TN M	444,401.73 "QTO_Draft_202500 ficropile grout volum	78,538.18 510 Rev1 MN" 1 e 0.86 CY)	10,801.95 Reinforced Con	18,920.15 crete for Floodwa	322,327.12 all 2.69 CY Steel Sh	41,124.37 neet Pile (NZ26) (35,900.81).31 TN Excavation	952,014.30 on 2.20 CY Microp	ile
	0 0		587.49	64.80%	10.00%	3,924.84%	75.98%	14.29%	21.89%	1,368.18	
USR 033053406300 Structural concrete, in place cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing	, , ,	CY	126,427.92	36,654.18	5,503.11	3,924.84	81,792.52	22,281.28	17,848.65	294,432.51	UCY
(Note: Initial Material Cos to \$274/CY.)	$t = \frac{260}{CY}$.	From RS	M 033113350400 \$1	98.00/CY for 500	Opsi concrete. I	From RSM 03311	13350150 \$184.00/C	TY for 3500psi co	ncrete. Increse i	naterial cost by \$14	I/CY
			3.335.35	64.80%	10.00%	4.291.95%	75.98%	14.29%	21.89%	6.930.47	
RSM 314116100300 Sheet piling, steel, 27 psf, 20' excavation, per ton, left in place, excludes wales	24.80) TON	82,716.70	9,954.93	1,035.57	4,291.95	66,069.39	4,138.72	3,668.37	171,875.64	
(2.3750-1.6188)/(38-27)=([X-1.6188)/(30).99-27),	X=1.804ton/hr)	$2 \operatorname{using} 2 / \operatorname{psi}(1.0)$	1 001011/111) allu	50(2.5750) psi u	5 ootam erew output	101 1NZ 20 30.99	10/ 51.		
		,,	90.00	64.80%	10.00%	0.00%	75.98%	0.00%	0.00%	113.30	
USR IDW-DISPOSE IDW Disposal Fee	176.00	EA	15,840.00	0.00	0.00	0.00	4,100.72	0.00	0.00	19,940.72	
(Note: Does not include ha	aul. Engineerir	ng judgen	nent based on USAC	Green Brook Fl	ood Risk Mana	gement project. I	ask details based of	n engineering jud	gement of the Co	st Estimator.)	
			8.33	64.80%	10.00%	0.00%	75.98%	14.29%	21.89%	20.76	

USACE Report Sections incl Cost Overrides

Description RSM 312316130110 Excavating, trench or	Quantity 176.00	UOM BCY	BareCost 1,465.31	Productivity 799.35	Overtime 96.92	TaxAdj 0.00	MiscDirect 619.20	Payroll 334.23	WCI 338.63	DirectCost C/O 3,653.64
continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering										
USR 316333105040 Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200 piles, 60' long, unless specified otherwise, excludes pile caps or mobilization	639.94	VLF	<i>315.21</i> 201,711.79	64.80% 31,129.72	10.00% 4,166.34	9,622.38% 9,622.38	75.98% 155,039.03	<i>14.29%</i> 14,370.15	<i>21.89%</i> 14,045.16	672.07 430,084.57
(Note: assume for vehicle gr in3 (12.75 in / 2)^2 *pi = 1	ate foundation 27.61 in3 \$43	n 24.60ton * 3.0 *(127.61	2000lb/ton / 65.43 in3 / 24.29 in3) =	8lb/lf / 32EA = 2. \$225.90/VLF ch	3.48 VLF/pile. fanged crew outp	or floodwall 0.26 out from 20vlf/hr	6500 * 2000lb/ton / 65 to 10vlf/hr)	5.48lb/lf / 0.33EA	= 24.24 (5.563 i	in / 2)^2 *pi = 24.29
USR Coal Tar Epoxy Coating	23.20	TON	700.00 16,240.00	64.80% 0.00	10.00% 0.00	0.00% 1,080.98	75.98% 14,706.26	0.00% 0.00	0.00% 0.00	<i>1,380.48</i> 32,027.24
(Note: assume \$700/ton. Ta concrete). Micropile casing	sk details bas tonnage 0.26	ed on engine TN/lf (Assu	ering judgement of me 40% coating.	of the Cost Estima Assuming extend	ator. Floodwall S s 5ft below conc	Steel Sheet Pile (rete). Epoxy Q*(NZ26) 0.31 TN/lf (A (0.31*0.6+0.26*0.4)	Assume 60% coatin)	ng. Assuming ex	ttends 5ft below
			10,165.25	1,036.69%	141.42%					18,180.45
0003 Deployable Flood Barrier - Vehicle Gate										
(south) (Note: Assemblies makeup an = 0.34875 ton/ft Micropile (12 17.56 TN / 80 ft = 0.2195 tn/ft	40.00 Id quantities b 2"x0.5") 32.0 t Excavation	LF based on "Q7 0 EA / 80 ft 198.33 CY /	406,609.84 TO_Draft_202506 = 0.4 ea/ft microp 80 ft = 2.479125	41,467.47 10 Rev1 MN" File casing tonnag cy/ft)	5,656.71 Reinforced Conc. e 24.60 TN / 80	10,927.02 rete for Gate Fou ft = 0.3075 tn/ft	223,815.40 indation 201.29 CY / micropile grout volu	21,373.00 / 80 ft = 2.516125 me 82.13 CY / 80	17,368.58 cy/ft Sheet Pile ft = 1.026625 cv	727,218.03 (NZ26) 27.90 TN / 80 ft y/ft Structural Steel
USR 033053406300 Structural concrete, in place, cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing (Note: Initial Material Cost	100.65 = \$260/CY. F	CY From RSM 0	587.49 59,127.96 33113350400 \$19	64.80% 17,142.47 8.00/CY for 5000	10.00% 2,573.70 Opsi concrete. Fi	<i>1,835.58%</i> 1,835.58	75.98% 38,252.83 3350150 \$184.00/CY	<i>14.29%</i> 10,420.54	20.17% 7,692.65 crete. Increse m	<i>1,361.67</i> 137,045.72 atterial cost by \$14/CY
to \$274/CY.)			3,335.35	64.80%	10.00%	2,414.22%	75.98%	14.29%	20.17%	6,918.87

Time 12:42:15

USACE Report Sections incl Cost Overrides

Description RSM 314116100300 Sheet piling, steel, 27 psf, 20' excavation, per ton, left in	Quantity 13.95	UOM TON	BareCost 46,528.15	Productivity 5,599.65	Overtime 582.51	TaxAdj 2,414.22	MiscDirect 37,164.03	Payroll 2,328.03	WCI 1,901.59	DirectCost C/O 96,518.17
(Note: References RSM 31 (2.3750-1.6188)/(38-27)=(2	4116100300 a X-1.6188)/(30	and 31411 .99-27), X	6100600. Interpolate (=1.804ton/hr)	e using 27 psf(1.6	188ton/hr) and	38(2.3750) psf to	obtain crew output	for NZ 26 30.991	b/sf.	
			315.21	64.80%	10.00%	5,648.90%	75.98%	14.29%	20.17%	670.35
USR 316333105040 Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200 piles, 60' long, unless specified otherwise,	375.68	VLF	118,416.67	18,274.97	2,445.89	5,648.90	91,017.01	8,436.12	7,598.51	251,838.07
excludes pile caps or mobilization										
(Note: assume for vehicle g in3 (12.75 in / 2)^2 *pi =	ate foundatio 127.61 in3 \$4	n 24.60tor 3.0 *(127	n * 2000lb/ton / 65.4 .61 in3 / 24.29 in3) =	8lb/lf / 32EA = 2 = \$225.90/VLF cł	3.48 VLF/pile. nanged crew ou	for floodwall 0.20 tput from 20vlf/h	6ton * 2000lb/ton / 6 r to 10vlf/hr)	65.48lb/lf/0.33E	A = 24.24 (5.563	in / 2)^2 *pi = 24.29
			17,920.00	64.80%	10.00%	0.00%	75.98%	0.00%	0.00%	22,559.20
USR Structural Steel(Vehicular Gate) TON (Note: assumed \$5,600 per	8.78 ton(from RSI	TON M 051223	157,337.60 772000). Add 100%	0.00 contingency for	0.00 rollers, hardwar	0.00 e, botmmisc. stee	40,732.19 el, etc. material - \$1	0.00 1,200/ton Add (0.00 50% for installati	198,069.79 on: \$11,200/ton * 1.6 =
\$17,920 / TON)	,		,	0,00						,
USR IDW-DISPOSE IDW Disposal Fee	99.17	EA	90.00 8,924.85	64.80% 0.00	10.00% 0.00	$0.00\% \\ 0.00$	75.98% 2,310.50	$0.00\% \\ 0.00$	$0.00\% \\ 0.00$	<i>113.30</i> 11,235.35
(Note: Does not include has	ul. Engineerin	g judgem	ent based on USACI	E Green Brook Fl	ood Risk Mana	gement project. T	ask details based on	engineering judg	gement of the Cos	t Estimator.)
			8.33	64.80%	10.00%	0.00%	75.98%	14.29%	20.17%	20.61
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	99.17	BCY	825.61	450.38	54.61	0.00	348.88	188.32	175.83	2,043.63
	22.07	TON	700.00	64.80%	10.00%	0.00%	75.98%	0.00%	0.00%	1,380.48
USR Coal Tar Epoxy	22.07	TON	15,449.00	0.00	0.00	1,028.32	13,989.97	0.00	0.00	30,467.29
(Note: assume \$700/ton. Ta Assuming extends 5ft below 0.2195 tn/ft (Assume 100%	ask details bas w concrete). n o coating). Epo	ed on eng nicropile c oxy Q*(0.	ineering judgement asing tonnage 24.60 34875*0.6+0.3075*	of the Cost Estim TN / 80 ft = 0.30 0.4+0.2195*1))	ator. Deployabl)75 tn/ft (Assun	le Flood Barrier S ne 40% coating. A	Sheet Pile (NZ26) 27 Assuming extends 5f	7.90 TN / 80 ft = 0 To below concrete)).34875 ton/ft (As). Structural Steel	ssume 60% coating. 17.56 TN / 80 ft =
	<i>6)</i> - F		11.212.15	1.2.58.46%	156.86%					36,482.13
0004 Anchored Combi	3,636.00	LF	40,767,366.01	4,575,749.34	570,344.28	2,120,442.51	76,449,524.86	4,419,531.39	3,746,068.97	132,649,027.37

Time 12:42:15

Description	Quantity	UOM	BareCost	Productivity	Overtime	TaxAdj	MiscDirect	Payroll	WCI	DirectCost	C/O
(Note: Assemblies makeup an Pipe/NZ-19) 1.48 TN Batter I	nd quantities l Pile (30" Dia.	based on "Q X 0.625")	QTO_Draft_202506 1.74 TN)	510 Rev1 MN" H	Reinforced Conc	rete for Combiw	all 3.02 CY Bracing	g (Pipe 16 X-Stron	ng) 0.10 TN Com	bi-Wall (36" Dia.	
USR 033053406300 Structural concrete, in place, cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing (Note: Initial Material Cost	10,980.72 = \$260/CY.1	CY From RSM	<i>587.49</i> 6,451,066.83 033113350400 \$19	64.80% 1,870,303.63	10.00% 280,799.94	200,267.74% 200,267.74	<i>135.98%</i> 11,251,309.93 3350150 \$184.00/C	14.29% 2,169,188.33 Y for 3500psi cor	21.89% 1,767,936.20	2,184.82 23,990,872.60 naterial cost by \$1	2) 4/CY
to \$274/CY.)					-1			1		5.4	
USR 051223171600 Column, structural, 6" to 12" dia, extra strong pipe, incl shop primer, cap & base plate, bolts, converted to per	363.60	TON	<i>4,794.22</i> 1,743,177.09	64.80% 280,167.10	10.00% 26,213.13	81,803.18% 81,803.18	<i>135.98%</i> 3,213,833.34	<i>14.29%</i> 258,534.95	21.89% 178,574.37	<i>15,902.92</i> 5,782,303.15	2
(Note: converted to per ton))										
			3,158.56	64.80%	10.00%	931,297.77%	135.98%	14.29%	21.89%	10,130.79)
RSM 314116100600 Sheet piling, steel, 38 psf, 25' excavation, per ton, left in place, excludes wales	5,381.28	TON	16,997,080.22	1,640,759.41	170,682.11	931,297.77	32,304,017.93	1,299,075.99	1,173,688.92	54,516,602.35	;
(Note: Currently assuming :	36inx0.438in	with NZ19	assuming NZ Len	igth / Pipe Length	1 at 100% = 38.0	lb/sf)					
USR 316223134100 Concrete-filled steel piles, steel, pipe piles, no concrete, 50' long, 18" diameter, 59 lb./L.F., excludes mobilization or demobilization, converted to 36"x0.625" pipe per ton (Note: Initial Material = 46. 36"x0.625" pipe with 236.4	6,326.64 50/VLF, con lb/ft, 44,375V	TON vert to ton u /L.F/hr * 23	<i>1,803.82</i> 11,412,094.67 using default 59 lb/ 36lb/lf / 2000lb/ton	64.80% 784,519.20 If, \$46.5/VLF / 5! = 5.23625TON/b	10.00% 92,649.10 91b/lf * 2000lb/t	663,794.05% 663,794.05 on = \$1,576.27/to	135.98% 21,957,720.34 on Initial Crew Outp	14.29% 692,732.13 but = 44.3750VLI	21.89% 625,869.48	5,726.48 36,229,378.97	erted to
	,		7.00	64.80%	, 10.00%	0.00%	135.98%	0.00%	0.00%	13 62	2
USR Dredge and Fill	72,720.00	CY	509,040.00	0.00	0.00	0.00	481,321.75	0.00	0.00	990,361.75	5
(Note: This Item was added to \$7. ~20ft LOP offset, 20'	for backfill b x 27' x1' per	oehind struc foot of stru	cture. From the con acture / 27ft3/cy = 2	struction of the V 0CY/LF)	errazano Narrov	vs Sector Gate Is	lands we used \$6.10)-6.14 / CY to dre	dge nearby and f	ill the islands. rour	nd up

rint Date Wed 25 June 2025 ff. Date 6/25/2025			Pro	U.S. A ject : 13372.106	rmy Corps of E 6.HATS EAE.OI	ngineers PCC.30PercentDe	esign			Time 12:42:15		
				USACE Repo	ort Sections incl	Cost Overrides			Project Bare to	Direct Report Page 22		
Description	Quantity	UOM	BareCost	Productivity	Overtime	TaxAdj	MiscDirect	Payroll	WCI	DirectCost C/O		
USR Coal Tar Epoxy	5,221.30	TON	700.00 3,654,907.20	64.80% 0.00	10.00% 0.00	0.00% 243,279.76	<i>135.98%</i> 7,241,321.58	$0.00\% \\ 0.00$	$0.00\% \\ 0.00$	<i>2,133.48</i> 11,139,508.54		
(Note: assume \$700/ton. Ta 10-15ft below mudline). Ba	ask details bas atter Pile (30"	ed on eng Dia. X 0.	gineering judgement 625") 1.74 TN/lf (As	of the Cost Estim ssume 40%. Assu	nator. Anchored uming extends 10	Combi Wall Con 0-15ft below mud	nbi-Wall (36" Dia. P lline). Epoxy Q*(1.4	Pipe/NZ-19) 1.48 (8*0.5+1.74*0.4))	FN/lf (Assume 5)	0%. Assuming extends		
			87,405.05	1,222.34%	137.92%					229,663.63		
0005 Tunnel Span (Note: Assemblies makeup an Structure-Framing (W40x21) 0.320064516 tn/ft Sheetpile 0	155.00 nd quantities I 1) 87.00 TN / Connection (S	LF based on ' 155 ft = 1 IZE) 12.9	13,547,782.21 'QTO_Draft_202506 187096774 tn/ft Tru 66 TN / 155 ft = 0.08	189,462.77 510 Rev1 MN" Juss Members (Me 3612903 tn/ft Jac	21,377.29 Jacket Structure ember sizes vary sket Structure-St	515,070.48 -Steel Pipe Piles 7) 560.00 TN / 15 eel Pipe Bracing	21,026,372.96 (60"dia x 1" thick) 2 5 ft = 3.612903226 (30" Dia. X 1") 451	163,754.62 2825.00 TN / 155 tn/ft Truss Plate (0 1.00 TN / 155 ft =	134,042.11 ft = 18.2258064: 0.38" Plate) 49.6 2.909677419 tn/	35,597,862.44 5 tn/ft Jacket 1 TN / 155 ft = ft)		
USR 316223134100 Concrete-filled steel piles, steel, pipe piles, no concrete, 50' long, 18" diameter, 59 lb./L.F., excludes mobilization or demobilization	2,825.00	TON	<i>1,664.02</i> 4,700,869.43	64.80% 135,162.17	10.00% 15,367.58	296,400.33% 296,400.33	<i>135.98%</i> 9,200,997.29	<i>14.29%</i> 115,872.96	20.17% 96,476.39	<i>5,154.39</i> 14,561,146.16		
(Note: Initial RSM 316333 Crew Output VLF/hr to TO ton crane)	105040 item c N/hr. 44.3750	letails: M)vlf/hr * 6	aterial = \$46.50/VLF 530.71b/ft / 20001b/to	F, Crew Output = n = 13.978125 Te	44.3750VLF/hr ON/hr. 630.7lb/	: Convert VLF ft from skyline pr	to TON. Material \$4 oduct manual for 60	6.50/ft / 59lb/ft *)inx1in pipe. Cha	2000lb/ton = \$1, ange crew item fi	576.27/ton. Convert rom 50 ton crane to 100		
USR 051223757900 Structural steel beam or girder, 100-ton project, 1 to 2 story building, W36x231, A992 steel, shop fabricated, incl shop primer, bolted connections	184.00	TON	<i>3,827.24</i> 704,211.49	64.80% 10,448.33	10.00% 1,023.83	45,596.71% 45,596.71	135.98% 1,386,283.09	<i>14.29%</i> 10,287.61	20.17% 6,264.73	11,761.50 2,164,115.78		
(Note: Initial for W36x231 TON/hr. 140.6250ft/hr * 23	material = \$4 311b/ft / 20001	30.00/LF b/ton = 10	, Crew Output = 140 6.2421875TON/hr)	.6250FT/hr, 2311	b/ft. Convert ma	aterial LF to TON	I. \$430/lf / 231lb/ft *	*2000lb/ton = \$3,7	722.94/TON Con	vert crew output LF/hr to		
USR Tunnel Span Truss	560.00	TON	8,960.00 5,017,600.00	64.80% 0.00	10.00% 0.00	0.00% 0.00	<i>135.98%</i> 4,744,381.65	0.00% 0.00	$0.00\% \\ 0.00$	<i>17,432.11</i> 9,761,981.65		
(Note: assumed \$5,600 per and plates)	ton(from RSN	M 051223	772000). material	- \$5,600/ton Ac	dd 60% for insta	llation: \$5,600/to	n * 1.6 = \$8,960 / T	ON use same co	st from above ca	lculated gate for truss		
USR Tunnel Span Plates	49.61	TON	<i>8,960.00</i> 444,505.60	64.80% 0.00	10.00% 0.00	0.00% 0.00	<i>135.98%</i> 420,301.38	0.00% 0.00	0.00% 0.00	<i>17,432.11</i> 864,806.98		
(Note: assumed \$5,600 per and plates)	ton(from RSN	M 051223	772000). material	- \$5,600/ton Ac	dd 60% for insta	llation: \$5,600/to	n * 1.6 = \$8,960 / T	ON use same co	st from above ca	lculated gate for truss		
USR 314116102500 Sheet piling, wales, connections	12.96	TON	<i>1,560.00</i> 20,217.60	64.80% 0.00	10.00% 0.00	<i>1,345.73%</i> 1,345.73	<i>135.98%</i> 40,056.32	0.00% 0.00	0.00% 0.00	<i>4,754.60</i> 61,619.66		

Time 12:42:15

Description	Quantity	UOM	BareCost	Productivity	Overtime	TaxAdj	MiscDirect	Payroll	WCI	DirectCost	C/0
(Note: convert \$520.00/TO)	N for 2/3 salv	age to no sa	alvage. \$520.00/toi	n * 3ea = \$1,560/7	ΓΟΝ)						
USR 316223134100 Concrete-filled steel piles, steel, pipe piles, no concrete, 50' long, 18" diameter, 59 lb /L E. excludes	451.00	TON	<i>1,754.61</i> 791,329.09	64.80% 43,852.27	10.00% 4,985.89	<i>47,319.13%</i> 47,319.13	<i>135.98%</i> 1,531,281.14	<i>14.29%</i> 37,594.05	20.17% 31,300.99	<i>5,515.88</i> 2,487,662.55	
mobilization or demobilization (30") (Note: Initial RSM 3163331 Crew Output VLF/hr to TO ton crane)	105040 item d N/hr. 44.3750	letails: Mato Vlf/hr * 310	erial = \$46.50/VLF 0.0lb/ft / 2000lb/to	5, Crew Output = - n = 6.878125 TO	44.3750VLF/hr N/hr. 310.0lb/ft	. Convert VLF t from skyline pro	to TON. Material \$40 duct manual for 30in	5.50/ft / 59lb/ft * 2 x1in pipe. Chanş	2000lb/ton = \$1,; ge crew item from	576.27/ton. Conve m 50 ton crane to	ert 100
USR Coal Tar Epoxy	2,670.07	TON	700.00 1,869,049.00	64.80% 0.00	10.00% 0.00	0.00% 124,408.57	<i>135.98%</i> 3,703,072.09	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>2,133.48</i> 5,696,529.67	
(Note: assume \$700/ton. Ta (assume 50% coating). Jack tn/ft (Assume 100% coating 100% coating). Jacket Struct Q*(18.22580645*0.5+1.18)	sk details bas tet Structure-F g). Truss Plate ture-Steel Pip 7096774+3.61	ed on engin Framing (W (0.38" Plat be Bracing (12903226+(teering judgement (40x211) 87.00 TN te) 49.61 TN / 155 (30" Dia. X 1") 45).320064516+0.08	of the Cost Estima / 155 ft = 1.1870 ft = 0.320064516 1.00 TN / 155 ft = 3612903+2.90967	ator. Tunnel Spa 96774 tn/ft (Ass tn/ft (Assume 1 = 2.909677419 t 77419))	an Jacket Structur sume 100% coati 00% coating). SI n/ft (Assume 100	re -Steel Pipe Piles (6 ng). Truss Members heetpile Connection (0% coating). Epoxy	60"dia x 1" thick) (Member sizes va (SIZE) 12.96 TN /	2825.00 TN / 15 ry) 560.00 TN / / 155 ft = 0.0836	5 ft = 18.2258064 155 ft = 3.612903 12903 tn/ft (Assur	45 tn/ft 5226 me
			10,165.25	1,036.69%	141.42%					18,180.45	
0006 Deployable Flood Barrier - Vehicle Gate											
(north)	40.00	LF	406,609.84	41,467.47	5,656.71	10,927.02	223,815.40	21,373.00	17,368.58	727,218.03	
(Note: Assemblies makeup ar = 0.34875 ton/ft Micropile (1 17.56 TN / 80 ft = 0.2195 tn/f	nd quantities b 2"x0.5") 32.0 ft Excavation	oased on "Q 0 EA / 80 f 198.33 CY	TO_Draft_202506 t = 0.4 ea/ft microp / 80 ft = 2.479125	10 Rev1 MN" Foile casing tonnag cy/ft)	Reinforced Conc e 24.60 TN / 80	The for Gate Foundation $ft = 0.3075 \text{ tm/ft}$	indation 201.29 CY / micropile grout volu	/ 80 ft = 2.516125 me 82.13 CY / 80	cy/ft Sheet Pile ft = 1.026625 cy	(NZ26) 27.90 TN y/ft Structural Stee	/ 80 ft el
			587.49	64.80%	10.00%	1,835.58%	75.98%	14.29%	20.17%	1,361.67	,
USR 033053406300 Structural concrete, in place, cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60 rebar, concrete (Portland cement Type I), placing and finishing (Note: Initial Material Cost	100.65 = \$260/CV_F	CY From RSM	59,127.96	17,142.47	2,573.70	1,835.58	38,252.83	10,420.54	7,692.65	137,045.72	4/CY
to \$274/CY.)	Ψ200/€1.1		555115550+00 φ1,	0.00/01/10/200		10111 10141 0 <i>00</i> 111.		i isi sooopsi cone	nete, merese m	aterial cost by \$1-	
			3,335.35	64.80%	10.00%	2,414.22%	75.98%	14.29%	20.17%	6,918.87	
RSM 314116100300 Sheet piling, steel, 27 psf, 20' excavation, per ton, left in place, excludes wales	13.95	TON	46,528.15	5,599.65	582.51	2,414.22	37,164.03	2,328.03	1,901.59	96,518.17	

Time 12:42:15

USACE Report Sections incl Cost Overrides

Description (Note: References RSM 314 (2.3750-1.6188)/(38-27)=(X	Quantity UOM 4116100300 and 31411 K-1.6188)/(30.99-27), X	BareCost I 6100600. Interpolate (=1.804ton/hr)	Productivity using 27 psf(1.6)	Overtime 188ton/hr) and 3	TaxAdj 38(2.3750) psf to	MiscDirect obtain crew output f	Payroll For NZ 26 30.99lb	WCI //sf.	DirectCost C/0	C
		315 21	64 80%	10.00%	5 648 90%	75 98%	14 29%	20.17%	670 35	
USR 316333105040 Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200 piles, 60' long, unless specified otherwise, excludes pile caps or	375.68 VLF	118,416.67	18,274.97	2,445.89	5,648.90	91,017.01	8,436.12	7,598.51	251,838.07	
mobilization										
(Note: assume for vehicle g in3 (12.75 in / 2) 2 *pi =	ate foundation 24.60tor 127.61 in3 \$43.0 *(127.	n * 2000lb/ton / 65.48 .61 in3 / 24.29 in3) =	lb/lf / 32EA = 23 \$225.90/VLF ch	3.48 VLF/pile. fanged crew outp	or floodwall 0.26 out from 20vlf/hr	ton * 2000lb/ton / 6 to 10vlf/hr)	5.48lb/lf / 0.33EA	a = 24.24 (5.563	in / 2)^2 *pi = 24.29	
		17,920.00	64.80%	10.00%	0.00%	75.98%	0.00%	0.00%	22,559.20	
USR Structural	8.78 TON	157,337.60	0.00	0.00	0.00	40,732.19	0.00	0.00	198,069.79	
(Note: assumed \$5,600 per \$17,920 / TON)	ton(from RSM 0512237	772000). Add 100% c	contingency for r	ollers, hardware	e, botmmisc. steel	, etc. material - \$1	1,200/ton Add 6	0% for installatio	on: \$11,200/ton * 1.6 =	
		90.00	64.80%	10.00%	0.00%	75.98%	0.00%	0.00%	113.30	
USR IDW-DISPOSE IDW	99.17 EA	8,924.85	0.00	0.00	0.00	2,310.50	0.00	0.00	11,235.35	
(Note: Does not include hau	1. Engineering judgeme	ent based on USACE	Green Brook Flo	od Risk Manag	ement project. Ta	ask details based on	engineering judge	ement of the Cost	Estimator.)	
Υ.	0 05 0	8 33	64.80%	10.00%	0.00%	75 98%	14 29%	20.17%	20.61	
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	99.17 BCY	825.61	450.38	54.61	0.00	348.88	188.32	175.83	2,043.63	
	22.07 TON	700.00	64.80%	10.00%	0.00%	75.98%	0.00%	0.00%	1,380.48	
USR Coal far Epoxy Coating (Note: assume \$700/ton. Ta Assuming extends 5ft below 0.2195 tn/ft (Assume 100%	22.07 TON sk details based on eng v concrete). micropile c coating). Epoxy Q*(0.2	15,449.00 ineering judgement of asing tonnage 24.60 34875*0.6+0.3075*0.	0.00 f the Cost Estima FN / 80 ft = 0.30 (4+0.2195*1))	0.00 ator. Deployable 75 tn/ft (Assum	1,028.32 Flood Barrier Sl e 40% coating. A	13,989.97 neet Pile (NZ26) 27. ssuming extends 5ft	0.00 90 TN / 80 ft = 0. below concrete).	0.00 34875 ton/ft (As Structural Steel	30,467.29 sume 60% coating. 17.56 TN / 80 ft =	
		5,555.02	981.73%	135.02%					11,900.18	
0007 Floodwall (north) (Note: Assemblies makeup ar (12") 0.33 EA Micropile casin	238.00 LF ad quantities based on " ng tonnage 0.26 TN Mi	1,322,095.15 QTO_Draft_2025061 cropile grout volume	233,651.07 0 Rev1 MN" R 0.86 CY)	32,135.81 einforced Conc	56,287.44 rete for Floodwal	958,923.19 ll 2.69 CY Steel She	122,345.00 et Pile (NZ26) 0.3	106,804.90 31 TN Excavatio	2,832,242.56 n 2.20 CY Micropile	
1	0		64.80%	10.00%	11.676.41%	75.98%	14.29%	21.89%	1.368.18	
USR 033053406300	640.22 CY	376,123.06	109,046.20	16,371.76	11,676.41	243,332.74	66,286.80	53,099.73	875,936.70	

Time 12:42:15

USACE Report Sections incl Cost Overrides

Description Structural concrete, in place,	Quantity	UOM	BareCost	Productivity	Overtime	TaxAdj	MiscDirect	Payroll	WCI	DirectCost	C/0
cantilever retaining wall (3000 psi), 8' high, level backfill loading, includes forms(4 uses), Grade 60											
rebar, concrete (Portland cement Type I), placing and finishing	- ¢2(0/CV 1	Energy DCM	022112250400 \$10	9 00/CX fr - 50 0	0	DCM 02211	2250150 \$194 00/03	7 fra 2500ari rea		-4	VCV
to \$274/CY.)	- \$200/C1.1		033113330400 \$19	8.00/C 1 101 500	opsi concrete. Fi	0111 KSW 05511.	5550150 \$184.00/C 1	i loi 5500psi con	fiele. merese m	aterial cost by \$14	+/C I
RSM 314116100300 Sheet piling, steel, 27 psf, 20' excavation, per ton, left in	73.78	TON	<i>3,335.35</i> 246,082.19	64.80% 29,615.91	10.00% 3,080.83	12,768.55% 12,768.55	75.98% 196,556.44	<i>14.29%</i> 12,312.68	<i>21.89%</i> 10,913.41	<i>6,930.47</i> 511,330.02	
place, excludes wales (Note: References RSM 314 (2.3750-1.6188)/(38-27)=(X	4116100300 a X-1.6188)/(30	and 314116 .99-27), X=	100600. Interpolate =1.804ton/hr)	using 27 psf(1.6	188ton/hr) and 3	88(2.3750) psf to	obtain crew output f	for NZ 26 30.99lb	/sf.		
USR IDW-DISPOSE IDW Disposal Fee	523.60	EA	<i>90.00</i> 47,124.00	64.80% 0.00	10.00% 0.00	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	75.98% 12,199.65	0.00% 0.00	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>113.30</i> 59,323.65	
(Note: Does not include hau	ıl. Engineerin	g judgemei	nt based on USACE	Green Brook Flo	ood Risk Manag	ement project. T	ask details based on	engineering judge	ement of the Cost	Estimator.)	
RSM 312316130110 Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or	523.60	ВСҮ	8.33 4,359.30	64.80% 2,378.06	10.00% 288.35	0.00% 0.00	75.98% 1,842.12	<i>14.29%</i> 994.33	21.89% 1,007.42	20.76 10,869.57	
USR 316333105040 Concrete-filled steel piles, pressure grouted pin pile, cased, end bearing, up to 50 ton, 5" diameter, less than 20' long, priced using 200	1,903.81	VLF	315.21 600,092.59	64.80% 92,610.91	10.00% 12,394.87	28,626.57% 28,626.57	75.98% 461,241.11	<i>14.29%</i> 42,751.19	21.89% 41,784.34	672.07 1,279,501.59	
piles, 60' long, unless specified otherwise, excludes pile caps or mobilization (Note: assume for vehicle gr in3 (12.75 in / 2)^2 *pi = 1	ate foundation 27.61 in3 \$4	n 24.60ton 3.0 *(127.6	* 2000lb/ton / 65.4 1 in3 / 24.29 in3) =	8lb/lf / 32EA = 2 \$225.90/VLF ch	3.48 VLF/pile. f nanged crew outj	or floodwall 0.26 out from 20vlf/hi	6ton * 2000lb/ton / 6 r to 10vlf/hr)	5.48lb/lf / 0.33EA	L = 24.24 (5.563	in / 2)^2 *pi = 24	1.29
USR Coal Tar Epoxy Coating	69.02	TON	700.00 48,314.00	64.80% 0.00	10.00% 0.00	0.00% 3,215.90	75.98% 43,751.13	0.00% 0.00	$\begin{array}{c} 0.00\%\\ 0.00\end{array}$	<i>1,380.48</i> 95,281.03	

USACE Report Sections incl Cost Overrides

Project Bare to Direct Report Page 26

 Description
 Quantity
 UOM
 BareCost
 Productivity
 Overtime
 TaxAdj
 MiscDirect
 Payroll
 WCI
 DirectCost
 C/O

 (Note: assume \$700/ton.
 Task details based on engineering judgement of the Cost Estimator.
 Floodwall Steel Sheet Pile (NZ26) 0.31 TN/lf (Assume 60% coating. Assuming extends 5ft below concrete).
 MiscDirect
 Payroll
 WCI
 DirectCost
 C/O

USACE Report Sections incl Cost Overrides

Time 12:42:15

Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectUserCost	DirectShip	DirectCost	C/O
Job Office Overhead Direct Cost										
Report										

Labor ID: EQ ID: EP24R01
Job Office Overhead Bare to Direct Report Page

28

Description	Quantity	UOM	BareCost	Productivity	Overtime	TaxAdj	MiscDirect	Payroll	WCI	DirectCost	C/0
Job Office Overhead Bare											
to Direct Report											

USACE Report Sections incl Cost Overrides

Description Crews (Bare Costs) by Contractor	LaborRate	CrewHours	MemberType	MemberRate	ManHours	LaborCost	EQHours	EQCost	CrewCost
Report		9,209.65			108,431.78	12,733,054.59	21,035.74	1,889,578.10	14,622,632.70
Prime	LaborCost1	9,209.65		0.00	108,431.78	12,733,054.59	21,035.74	1,889,578.10	14,622,632.70
					2.00	245.34	1.00	66.87	312.21
RSM B12F 1 Equip Oper Heavy + 1 Laborer	LaborCost1	28.79			57.58	7,063.37	28.79	1,925.23	8,988.60
MIL B-EQOPRCRB Equip. Operators Crane			Journeyman	169.01	1.00	169.01			
MIL B-LABORER Laborers, (Semi-Skilled)			Journeyman	76.33	1.00	76.33			
GEN H25Z3182 HYDRAULIC EXCAVATOR, CRAWLER, 30,600 LBS (13.9 MT), 0.69 CY (0.53 M3) BUCKET, 18.4' (5.6 M) MAX DIGGING DEPTH			EP / Average	66.87			1.00	66.87	
					8.00	998.09	3.00	193.40	1.191.49
RSM B19 5 Pile Driver + 2 Equip Oper Heavy + 1 crane, crawler, 50 ton + 1 pile hammer,	LaborCost1	1,864.57			14,916.53	1,861,004.61	5,593.70	360,603.17	2,221,607.78
MIL B-PILEDRVR Pile Drivers			Foreman	106.98	1.00	106.98			
MIL B-PILEDRVR Pile Drivers			Journeyman	105.38	4.00	421.52			
MIL B-EQOPRCRB Equip. Operators Crane			Journeyman	169.01	2.00	338.02			
with Boom Pay MIL B-EQOPROIL Equip. Operators, Oilers			Journeyman	131.57	1.00	131.57			
EP C90MX001 CRANES, MECHANICAL, LATTICE BOOM, TRUCK MTD, 30 TON, 50' BOOM, DRAGLINE/CLAMSHELL			EP / Average	153.60			1.00	153.60	
GEN P10Z4840 PILE HAMMER ACCESSORIES, PILE LEADS, SWING, 8" X 26" X 84' (20 CM X 66 CM X 25 6 M)			EP / Average	13.44			1.00	13.44	
GEN P20Z4880 PILE HAMMER, SINGLE ACTING, DIESEL, 31,320 FT-LBS (42.4 KJ) (ADD LEADS & CRANE)			EP / Average	26.35			1.00	26.35	
RSM B40 5 Pile Drivers + 1 crane, crawler,	LaborCost1	3,580.94			8.00 28,647.50	998.09 3,574,097.66	2.00 7,161.87	<i>328.48</i> 1,176,277.52	<i>1,326.57</i> 4,750,375.18
50 ton w pile hammer + leads + 1 generator MIL B-EQOPROIL Equip. Operators, Oilers / Grade Checker			Journeyman	131.57	1.00	131.57			
MIL B-PILEDRVR Pile Drivers			Foreman	106.98	1.00	106.98			
MIL B-EQOPRCRB Equip. Operators Crane			Journeyman	169.01	2.00	338.02			
with Boom Pay MIL B-PILEDRVR Pile Drivers			Journeyman	105.38	4.00	421.52			

USACE Report Sections incl Cost Overrides

Description EP C90MX001 CRANES, MECHANICAL, LATTICE BOOM, TRUCK MTD, 30 TON, 50' BOOM, DRAGLINE/CLAMSHELL	LaborRate	CrewHours	MemberType EP / Average	MemberRate 153.60	ManHours	LaborCost	EQHours 1.00	EQCost 153.60	CrewCost
CAPABLE, 6X4 GEN P30Z4920 PILE HAMMER, DRIVER/EXTRACTOR, VIBRATORY, 100 TON (890 KN)FORCE DRIVE (ADD CRANE)			EP / Average	174.88			1.00	174.88	
RSM B48 4 Laborer + 1 Equip Oper Heavy + 1 Equip Oper Light + 1 centrifugal water pump, wheel, 6" + 1 suction hose + 1	LaborCost1	392.55			7.00 2,747.87	769.37 302,018.76	4.00 1,570.21	<i>123.69</i> 48,555.71	<i>893.06</i> 350,574.46
discharge hose + 1 drill rig, truck mtd MIL B-EQOPROIL Equip. Operators, Oilers			Journeyman	131.57	1.00	131.57			
MIL B-EQOPRLT Equip. Operators, Light			Journeyman	162.47	1.00	162.47			
MIL B-LABORER Laborers,			Foreman	77.33	1.00	77.33			
(Semi-Skilled) MIL B-EQOPRCRB Equip. Operators Crane			Journeyman	169.01	1.00	169.01			
MIL B-LABORER Laborers,			Journeyman	76.33	3.00	228.99			
GEN P50Z5095 PUMP HOSE, SUCTION, 6" (153 MM) DIA x 20' (6.1 M) LENGTH, W/COUPLING/SECTION			EP / Average	0.58			1.00	0.58	
GEN P50Z5099 PUMP HOSE, DISCH, 6" (15 CM) DIA X 50' (15M) WITH COUPL DIG (JEED SECTION)			EP / Average	0.55			1.00	0.55	
GEN P60Z5410 PUMP, WATER, CENTRIFUGAL, DEWATERING, WHEEL, 6" (15 CM) DIA, 1,825 GPM (6.9 M3M) @ 40' (12.2 M) HEAD (ADD HOSES)			EP / Average	2.95			1.00	2.95	
GEN D30Z2890 DRILL, EARTH / AUGER, MULTI-PURPOSE, 8" (20CM) DIA, 250' (76.2M) DEPTH, 7,000 FT-LBS (9.5KNM) TORQUE W/45KGVW (20.4MT) TRUCK (ADD COST FOR DRILL STEEL AND CUTTING EDGE WEAR)			EP / Average	119.62			1.00	119.62	
RSM C14D 19 Carpenter + 2 Rodmen + 2 Laborer + 1 Cement Finisher + 1 Equip Oper Medium + 1 conc pump, 117 cy/hr, truck mtd + 1 conc vib, 2.5" dia w 7.5 HP generator	LaborCost1	2,087.50			25.00 52,187.57	2,714.49 5,666,505.06	2.00 4,175.01	28.55 59,599.02	2,743.04 5,726,104.08

USACE Report Sections incl Cost Overrides

Description MIL B-LABORER Laborers,	LaborRate	CrewHours	MemberType Journeyman	MemberRate 76.33	ManHours 2.00	LaborCost 152.66	EQHours	EQCost	CrewCost
(Semi-Skilled) MIL B-CARPNTER Carpenters			Journeyman	105.38	18.00	1,896.84			
MIL B-RODMAN Rodmen, (Reinforcing)			Journeyman	149.22	2.00	298.44			
MIL B-EQOPRMED Equip. Operators,			Journeyman	166.97	1.00	166.97			
MIL B-CEMTFINR Cement Finishers			Journeyman	92.60	1.00	92.60			
MIL B-CARPNTER Carpenters			Foreman	106.98	1.00	106.98			
EP C55MU001 CONCRETE PUMP, 25 CY/HR. SINGLE. TRAILER MTD			EP / Average	23.55			1.00	23.55	
GEN XMEZ9520 CONCRETE VIBRATOR, 2.5" (63.5 MM) DIA, W/7.5 HP (5.6 KW) GENERATOR			Non-EP / Average	5.00			1.00	5.00	
RSM E2 5 Structural Steel Worker + 1 Equip	LaborCost1	641.27			7.00 4,488.89	<i>1,048.68</i> 672,486.86	1.00 641.27	188.76 121,045.69	<i>1,237.44</i> 793,532.55
MIL B-STRSTEEL Structural Steel Workers			Foreman	151.22	1.00	151.22			
MIL B-EQOPROIL Equip. Operators, Oilers			Journeyman	131.57	1.00	131.57			
MIL B-EQOPRCRB Equip. Operators Crane with Boom Pay			Journeyman	169.01	1.00	169.01			
MIL B-STRSTEEL Structural Steel Workers			Journeyman	149.22	4.00	596.88			
GEN C80Z2190 CRANES, HYDRAULIC, TRUCK MTD, 80T (72.6MT), 128' (39M) BOOM. 8X4X4			EP / Average	188.76			1.00	188.76	
Sub	LaborCost1	614.04		0.00	5,385.85	649,878.29	1,864.88	121,571.75	771,450.04
RSM B12F 1 Equip Oper Heavy + 1 Laborer	LaborCost1	8.16			2.00 16.32	<i>245.34</i> 2,002.40	<i>1.00</i> 8.16	66.87 545.79	<i>312.21</i> 2,548.18
+ 1 hyd excavator, crawler, .75 CY MIL B-EQOPRCRB Equip. Operators Crane with Boom Pay			Journeyman	169.01	1.00	169.01			
MIL B-LABORER Laborers, (Semi-Skilled)			Journeyman	76.33	1.00	76.33			
GEN H25Z3182 HYDRAULIC EXCAVATOR, CRAWLER, 30,600 LBS (13.9 MT), 0.69 CY (0.53 M3) BUCKET, 18.4' (5.6 M) MAX DIGGING DEPTH			EP / Average	66.87			1.00	66.87	
RSM B40 5 Pile Drivers + 1 crane, crawler, 50 ton w pile hammer + leads + 1 generator	LaborCost1	23.87			8.00 190.93	<i>998.09</i> 23,821.13	2.00 47.73	<i>328.48</i> 7,839.81	<i>1,326.57</i> 31,660.94
MIL B-EQOPROIL Equip. Operators, Oilers / Grade Checker			Journeyman	131.57	1.00	131.57			

USACE Report Sections incl Cost Overrides

Description MIL B-PILEDRVR Pile Drivers	LaborRate	CrewHours	MemberType Foreman	MemberRate 106.98	ManHours 1.00	LaborCost 106.98	EQHours	EQCost	CrewCost
MIL B-EQOPRCRB Equip. Operators Crane with Boom Pay			Journeyman	169.01	2.00	338.02			
MIL B-PILEDRVR Pile Drivers			Journeyman	105.38	4.00	421.52			
EP C90MX001 CRANES, MECHANICAL, LATTICE BOOM, TRUCK MTD, 30 TON, 50' BOOM, DRAGLINE/CLAMSHELL CAPABLE, 6X4			EP / Average	153.60			1.00	153.60	
GEN P30Z4920 PILE HAMMER, DRIVER/EXTRACTOR, VIBRATORY, 100 TON (890 KN)FORCE DRIVE (ADD CRANE)			EP / Average	174.88			1.00	174.88	
RSM B48 4 Laborer + 1 Equip Oper Heavy + 1 Equip Oper Light + 1 centrifugal water	LaborCost1	115.95			7.00 811.65	769.37 89,208.93	4.00 463.80	<i>123.69</i> 14,342.16	<i>893.06</i> 103,551.09
pump, wheel, $6" + 1$ suction hose + 1									
discharge hose + 1 drill rig, truck mtd									
MIL B-EQOPROIL Equip. Operators,			Journeyman	131.57	1.00	131.57			
Oilers / Grade Checker MIL P ECOPPLT Equip Operators Light			Journauman	162.47	1.00	162 17			
MIL D LADODED L			Journeyman	102.47	1.00	102.47			
MIL B-LABORER Laborers, (Semi-Skilled)			Foreman	//.33	1.00	//.33			
MIL B-EQOPRCRB Equip. Operators			Journeyman	169.01	1.00	169.01			
Crane with Boom Pay			2						
MIL B-LABORER Laborers,			Journeyman	76.33	3.00	228.99			
(Semi-Skilled)			ED / Avenage	0.59			1.00	0.59	
6" (153 MM) DIA x 20' (6.1 M) LENGTH, W/COUPLING/SECTION			EP / Average	0.58			1.00	0.38	
GEN P50Z5099 PUMP HOSE, DISCH, 6"			EP / Average	0.55			1.00	0.55	
(15 CM) DIA X 50' (15M) WITH									
COUPLING (PER SECTION)				2.05			1.00	2.05	
CENTRIFUGAL DEWATERING			EP / Average	2.95			1.00	2.95	
WHEEL, 6" (15 CM) DIA, 1,825 GPM									
(6.9 M3M) @ 40' (12.2 M) HEAD (ADD									
HOSES)			/ .						
GEN D30Z2890 DRILL, EARTH /			EP / Average	119.62			1.00	119.62	
AUGER, MULTI-PURPOSE, 8° (20CM) DIA 250' (76 2M) DEPTH 7 000 FT LBS									
(9.5KNM) TOROUE W/45KGVW									
(20.4MT) TRUCK (ADD COST FOR									
DRILL STEEL AND CUTTING EDGE									
WEAR)									

USACE Report Sections incl Cost Overrides

Description	LaborRate	CrewHours	MemberType	MemberRate	ManHours	LaborCost	EQHours	EQCost	CrewCost
RSM C14D 19 Carpenter + 2 Rodmen + 2 Laborer + 1 Cement Finisher + 1 Equip Oper Medium + 1 conc pump, 117 cy/hr, truck	LaborCost1	35.50			25.00 887.52	<i>2,714.49</i> 96,366.79	2.00 71.00	28.55 1,013.56	<i>2,743.04</i> 97,380.35
mtd + 1 conc vib, 2.5" dia w 7.5 HP generator			Ŧ	76.00	2.00	150 ((
MIL B-LABORER Laborers, (Semi-Skilled)			Journeyman	76.33	2.00	152.66			
MIL B-CARPNIER Carpenters			Journeyman	105.38	18.00	1,896.84			
MIL B-RODMAN Rodmen, (Reinforcing)			Journeyman	149.22	2.00	298.44			
MIL B-EQOPRMED Equip. Operators, Medium			Journeyman	166.97	1.00	166.97			
MIL B-CEMTFINR Cement Finishers			Journeyman	92.60	1.00	92.60			
MIL B-CARPNTER Carpenters			Foreman	106.98	1.00	106.98			
EP C55MU001 CONCRETE PUMP, 25 CY/HR, SINGLE, TRAILER MTD			EP / Average	23.55			1.00	23.55	
GEN XMEZ9520 CONCRETE VIBRATOR, 2.5" (63.5 MM) DIA, W/7.5 HP (5.6 KW) GENERATOR			Non-EP / Average	5.00			1.00	5.00	
					10.00	1,498.34	2.00	195.66	1,694.00
RSM E5 7 Structural Steel Worker + 1 Equip Oper Heavy + 1 Welder + 1 crane,	LaborCost1	17.48			174.82	26,194.41	34.96	3,420.61	29,615.02
lattice boom, $100 \text{ ton} + 1 \text{ welder}$, 300 amp			_						
MIL B-EQOPROIL Equip. Operators,			Journeyman	131.57	1.00	131.57			
MIL B-STRSTEEL Structural Steel			Journeyman	149.22	5.00	746.10			
MIL B-STRSTEEL Structural Steel			Foreman	151.22	2.00	302.44			
MIL B-WELDERS Welders, Structural			Journeyman	149.22	1.00	149.22			
MIL B-EQOPRCRB Equip. Operators			Journeyman	169.01	1.00	169.01			
GEN C80Z2190 CRANES, HYDRAULIC TRUCK MTD 80T			EP / Average	188.76			1.00	188.76	
(72.6MT), 128' (39M) BOOM, 8X4X4 GEN W35Z8640 WELDER, ENGINE DRIVEN, DIESEL, DC-CC, 300 AMP, 3 KW			EP / Average	6.90			1.00	6.90	
USR B19 5 Pile Driver + 2 Equip Oper Heavy + 1 crane, crawler, 50 ton + 1 pile hammer, 18,100 FT-LBS w Lead (changed to 100 ton crane)	LaborCost1	413.07			8.00 3,304.59	<i>998.09</i> 412,284.63	3.00 1,239.22	228.55 94,409.82	<i>1,226.64</i> 506,694.45

USACE Report Sections incl Cost Overrides

Description MIL B-PILEDRVR Pile Drivers	LaborRate	CrewHours	MemberType Journeyman	MemberRate 105.38	ManHours 4.00	LaborCost 421.52	EQHours	EQCost	CrewCost
MIL B-EQOPRCRB Equip. Operators Crane with Boom Pay			Journeyman	169.01	2.00	338.02			
MIL B-EQOPROIL Equip. Operators, Oilers / Grade Checker			Journeyman	131.57	1.00	131.57			
MIL B-PILEDRVR Pile Drivers			Foreman	106.98	1.00	106.98			
GEN P10Z4840 PILE HAMMER ACCESSORIES, PILE LEADS, SWING, 8" X 26" X 84' (20 CM X 66 CM X 25.6			EP / Average	13.44			1.00	13.44	
GEN P20Z4880 PILE HAMMER, SINGLE ACTING, DIESEL, 31,320 FT-LBS (42.4 KJ) (ADD LEADS &			EP / Average	26.35			1.00	26.35	
CRANE) GEN C80Z2190 CRANES, HYDRAULIC, TRUCK MTD, 80T (72.6MT), 128' (39M) BOOM, 8X4X4			EP / Average	188.76			1.00	188.76	

USACE Report Sections incl Cost Overrides

Contractors Labor Payroll Markup Report Page 35

Description Contractors Labor Payroll Markup Report	SUIExperience	SUIRate	FICA	FUIRate	PayrollTax	State	ContractorClass	WCIBaseRate	WCIExperience	WCIRate
1 Prime	80.00	5.84	7.65	0.80	14.29	NY	Concrete Work NOC	25.75	85.00	21.89
1.1 Sub	80.00	5.84	7.65	0.80	14.29	NY	Steel Erection NOC	23.73	85.00	20.17

U.S. Army Corps of Engineers Project : 13372.106.HATS EAE.OPCC.30PercentDesign USACE Report Sections incl Cost Overrides

Time 12:42:15

Labor by Contractor, Report Page 36

Description Labor by Contractor, Report	LaborRate	LaborType	ManHours	BaseWage	Travel	TaxableFringe	NonTaxFringe	Subsistence	Payroll	WCI	Overtime	Total
Prime												
Carpenters	LaborCost1	Journeyman	37,575.05	<i>57.05</i> 2,143,656.47	$\begin{array}{c} 0.00\\ 0.00\end{array}$	48.33 1,816,002.05	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	626,000.92	469,192.81	214,365.65	<i>140.23</i> 5,269,217.89
Carpenters	LaborCost1	Foreman	2,087.50	58.65 122,432.03	$\begin{array}{c} 0.00\\ 0.00\end{array}$	48.33 100,889.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	35,348.86	26,797.31	12,243.20	<i>142.62</i> 297,710.41
Cement Finishers	LaborCost1	Journeyman	2,087.50	<i>57.72</i> 120,490.65	$\begin{array}{c} 0.00\\ 0.00\end{array}$	<i>34.88</i> 72,812.09	0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	31,004.76	26,372.39	12,049.07	<i>125.86</i> 262,728.96
Equip. Operators Crane with Boom Pay	LaborCost1	Journeyman	11,953.62	<i>94.76</i> 1,132,725.00	0.00 0.00	36.95 441,686.25	0.00 0.00	37.30 445,870.01	311,462.39	247,925.18	113,272.50	225.28 2,692,941.33
Equip. Operators, Light	LaborCost1	Journeyman	392.55	88.22 34,631.06	$\begin{array}{c} 0.00\\ 0.00\end{array}$	<i>36.95</i> 14,504.85	0.00 0.00	37.30 14,642.24	7,640.90	7,579.87	3,463.11	<i>210.07</i> 82,462.01
Equip. Operators, Medium	LaborCost1	Journeyman	2,087.50	<i>92.72</i> 193,553.25	0.00 0.00	36.95 77,133.22	0.00 0.00	37.30 77,863.85	44,113.53	42,363.97	19,355.32	<i>217.67</i> 454,383.14
Equip. Operators, Oilers / Grade Checker	LaborCost1	Journeyman	6,479.33	<i>57.32</i> 371,394.99	0.00 0.00	36.95 239,411.11	0.00 0.00	37.30 241,678.87	107,256.48	81,289.08	37,139.50	166.40 1,078,170.03
Laborers, (Semi-Skilled)	LaborCost1	Journeyman	5,381.46	<i>49.28</i> 265,198.12	0.00 0.00	27.05 145,568.37	0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	77,337.35	58,045.24	26,519.81	<i>106.42</i> 572,668.89
Laborers, (Semi-Skilled)	LaborCost1	Foreman	392.55	<i>50.28</i> 19,737.58	$\begin{array}{c} 0.00\\ 0.00\end{array}$	27.05 10,618.57	0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	4,690.90	4,320.06	1,973.76	<i>105.31</i> 41,340.87
Pile Drivers	LaborCost1	Foreman	5,445.50	58.65 319,378.76	$\begin{array}{c} 0.00\\ 0.00\end{array}$	48.33 263,181.17	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	90,901.41	69,904.03	31,937.88	<i>142.37</i> 775,303.24
Pile Drivers	LaborCost1	Journeyman	21,782.01	<i>57.05</i> 1,242,663.82	$\begin{array}{c} 0.00\\ 0.00\end{array}$	48.33 1,052,724.67	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	357,790.22	271,988.04	124,266.38	<i>140.00</i> 3,049,433.14
Rodmen, (Reinforcing)	LaborCost1	Journeyman	4,175.01	58.45 244,029.06	$\begin{array}{c} 0.00\\ 0.00\end{array}$	90.77 378,965.23	0.00 0.00	0.00 0.00	95,875.01	53,411.86	24,402.91	<i>190.82</i> 796,684.07
Structural Steel	LaborCost1	Foreman	641.27	60.45 38,764.76	$\begin{array}{c} 0.00\\ 0.00\end{array}$	<i>90.77</i> 58,208.06	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	14,411.37	8,484.64	3,876.48	<i>192.97</i> 123,745.30

Time 12:42:15

USACE Report Sections incl Cost Overrides

Labor by Contractor, Report Page 37

Description Workers	LaborRate	LaborType	ManHours	BaseWage	Travel	TaxableFringe	NonTaxFringe	Subsistence	Payroll	WCI	Overtime	Total
Structural Steel Workers	LaborCost1	Journeyman	2,565.08	<i>58.45</i> 149,928.89	0.00 0.00	90.77 232,832.25	0.00 0.00	0.00 0.00	56,839.05	32,815.69	14,992.89	<i>190.02</i> 487,408.77
Sub												
Carpenters	LaborCost1	Journeyman	639.02	57.05 36,455.86	$\begin{array}{c} 0.00\\ 0.00\end{array}$	48.33 30,883.64	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	10,404.24	7,353.33	3,645.59	<i>138.87</i> 88,742.65
Carpenters	LaborCost1	Foreman	35.50	58.65 2,082.13	$\begin{array}{c} 0.00\\ 0.00\end{array}$	48.33 1,715.76	0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	587.35	419.98	208.21	<i>141.22</i> 5,013.42
Cement Finishers	LaborCost1	Journeyman	35.50	<i>57.72</i> 2,049.11	0.00 0.00	<i>34.88</i> 1,238.27	0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	513.69	413.32	204.91	<i>124.48</i> 4,419.30
Equip. Operators Crane with Boom Pay	LaborCost1	Journeyman	1,015.48	<i>94.76</i> 96,226.44	0.00 0.00	36.95 37,521.81	0.00 0.00	37.30 37,877.23	28,609.47	19,409.35	9,622.64	225.77 229,266.94
Equip. Operators, Light	LaborCost1	Journeyman	115.95	88.22 10,229.16	0.00 0.00	<i>36.95</i> 4,284.38	<i>0.00</i> 0.00	37.30 4,324.96	2,293.25	2,063.27	1,022.92	<i>208.86</i> 24,217.93
Equip. Operators, Medium	LaborCost1	Journeyman	35.50	92.72 3,291.64	0.00 0.00	<i>36.95</i> 1,311.76	0.00 0.00	37.30 1,324.18	728.38	663.94	329.16	215.46 7,649.07
Equip. Operators, Oilers / Grade Checker	LaborCost1	Journeyman	570.37	57.32 32,693.79	0.00 0.00	36.95 21,075.29	0.00 0.00	37.30 21,274.92	9,961.53	6,594.50	3,269.38	166.33 94,869.42
Laborers, (Semi-Skilled)	LaborCost1	Journeyman	427.02	<i>49.28</i> 21,043.32	$\begin{array}{c} 0.00\\ 0.00\end{array}$	27.05 11,550.77	0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	5,798.68	4,244.54	2,104.33	<i>104.78</i> 44,741.64
Laborers, (Semi-Skilled)	LaborCost1	Foreman	115.95	<i>50.28</i> 5,830.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	27.05 3,136.46	0.00 0.00	0.00 0.00	1,406.27	1,175.94	583.00	<i>104.63</i> 12,131.67
Pile Drivers	LaborCost1	Journeyman	1,747.76	57.05 99,709.78	$\begin{array}{c} 0.00\\ 0.00\end{array}$	48.33 84,469.30	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	30,911.94	20,111.96	9,970.98	<i>140.28</i> 245,173.96
Pile Drivers	LaborCost1	Foreman	436.94	58.65 25,626.55	$\begin{array}{c} 0.00\\ 0.00\end{array}$	48.33 21,117.33	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	7,860.09	5,169.00	2,562.65	<i>142.66</i> 62,335.62
Rodmen,	LaborCost1	Journeyman	71.00	58.45 4,150.05	$\begin{array}{c} 0.00\\ 0.00\end{array}$	90.77 6,444.83	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	1,602.97	837.09	415.01	<i>189.43</i> 13,449.94

USACE Report Sections incl Cost Overrides

Time 12:42:15

Description (Reinforcing)	LaborRate	LaborType	ManHours	BaseWage	Travel	TaxableFringe	NonTaxFringe	Subsistence	Payroll	WCI	Overtime	Total
				58.45	0.00	90.77	0.00	0.00				189.01
Structural Steel Workers	LaborCost1	Journeyman	87.41	5,109.20	0.00	7,934.34	0.00	0.00	1,936.93	1,030.55	510.92	16,521.94
				60.45	0.00	90.77	0.00	0.00				191.93
Structural Steel Workers	LaborCost1	Foreman	34.96	2,113.61	0.00	3,173.73	0.00	0.00	785.76	426.33	211.36	6,710.79
				58.45	0.00	90.77	0.00	0.00				189.01
Welders, Structural Steel	LaborCost1	Journeyman	17.48	1,021.84	0.00	1,586.87	0.00	0.00	387.39	206.11	102.18	3,304.39

USACE Report Sections incl Cost Overrides

Time 12:42:15

Equipment by Contractor, Report Page 39

Description	CostType	ConditionType	Manufacturer	EQHours	Ownership	Operating	Total
Equipment by Contractor, Report Prime				21,035.74 21,035.74	604,275.77 604,275.77	1,256,640.67 1,256,640.67	1,860,916.43 1,860,916.43
EP C55MU001 CONCRETE PUMP, 25 CY/HR, SINGLE, TRAILER MTD	EP	Average	MU MULTIQUIP, INC.	2,087.50	5.47 11,413.39	<i>17.93</i> 37,432.37	<i>23.40</i> 48,845.76
EP C90MX001 CRANES, MECHANICAL, LATTICE BOOM, TRUCK MTD, 30 TON, 50' BOOM, DRAGLINE/CLAMSHELL CAPABLE, 6X4	EP	Average	MX MANITEX	5,445.50	<i>55.04</i> 299,718.31	<i>95.22</i> 518,538.71	<i>150.26</i> 818,257.01
GEN C80Z2190 CRANES, HYDRAULIC, TRUCK MTD, 80T (72.6MT), 128' (39M) BOOM, 8X4X4	EP	Average	GK GENERIC EQUIPMENT	641.27	66.73 42,792.87	<i>118.27</i> 75,844.15	<i>185.00</i> 118,637.02
GEN D30Z2890 DRILL, EARTH / AUGER, MULTI-PURPOSE, 8" (20CM) DIA, 250' (76.2M) DEPTH, 7,000 FT-LBS (9.5KNM) TORQUE W/45KGVW (20.4MT) TRUCK (ADD COST FOR DRILL STEEL AND CUTTING EDGE WEAR)	EP	Average	GK GENERIC EQUIPMENT	392.55	38.55 15,132.66	79.45 31,188.24	118.00 46,320.90
GEN H25Z3182 HYDRAULIC EXCAVATOR, CRAWLER, 30,600 LBS (13.9 MT), 0.69 CY (0.53 M3) BUCKET, 18.4' (5.6 M) MAX DIGGING DEPTH	EP	Average	GK GENERIC EQUIPMENT	28.79	27.79 800.22	38.05 1,095.59	65.85 1,895.81
GEN P10Z4840 PILE HAMMER ACCESSORIES, PILE LEADS, SWING, 8" X 26" X 84' (20 CM X 66 CM X 25.6 M)	EP	Average	GK GENERIC EQUIPMENT	1,864.57	5.29 9,856.16	7.98 14,877.71	<i>13.27</i> 24,733.87
GEN P20Z4880 PILE HAMMER, SINGLE ACTING, DIESEL, 31,320 FT-LBS (42.4 KJ) (ADD LEADS & CRANE)	EP	Average	GK GENERIC EQUIPMENT	1,864.57	6.36 11,854.05	19.83 36,979.28	<i>26.19</i> 48,833.33
GEN P30Z4920 PILE HAMMER, DRIVER/EXTRACTOR, VIBRATORY, 100 TON (890 KN)FORCE DRIVE (ADD CRANE)	EP	Average	GK GENERIC EQUIPMENT	3,580.94	47.16 168,862.73	<i>126.51</i> 453,020.31	<i>173.66</i> 621,883.04
GEN P50Z5095 PUMP HOSE, SUCTION, 6" (153 MM) DIA x 20' (6.1 M) LENGTH, W/COUPLING/SECTION	EP	Average	GK GENERIC EQUIPMENT	392.55	<i>0.18</i> 70.11	0.39 154.60	0.57 224.70
GEN P50Z5099 PUMP HOSE, DISCH, 6" (15 CM) DIA X 50' (15M) WITH COUPLING (PER SECTION)	EP	Average	GK GENERIC EQUIPMENT	392.55	<i>0.17</i> 66.61	0.37 146.89	0.54 213.50
GEN P60Z5410 PUMP, WATER, CENTRIFUGAL, DEWATERING, WHEEL, 6" (15 CM) DIA, 1,825 GPM (6.9 M3M) @ 40' (12.2 M) HEAD (ADD HOSES)	EP	Average	GK GENERIC EQUIPMENT	392.55	0.89 347.88	2.04 799.61	2.92 1,147.49
GEN XMEZ9520 CONCRETE VIBRATOR, 2.5" (63.5 MM) DIA, W/7.5 HP (5.6 KW) GENERATOR	Non-EP	Average	GK GENERIC EQUIPMENT	2,087.50	1.09 2,283.73	<i>3.90</i> 8,141.26	<i>4.99</i> 10,424.99
Sub				1,864.88	41,077.05	78,421.96	119,499.01

USACE Report Sections incl Cost Overrides

Equipment by Contractor, Report Page 40

Time 12:42:15

Description	CostType	ConditionType	Manufacturer	EQHours	Ownership	Operating	Total
EP C55MU001 CONCRETE PUMP, 25 CY/HR, SINGLE, TRAILER MTD	EP	Average	MU MULTIQUIP, INC.	35.50	5.47 194.10	17.93 636.59	23.40 830.69
EP C90MX001 CRANES, MECHANICAL, LATTICE BOOM, TRUCK MTD, 30 TON, 50' BOOM, DRAGLINE/CLAMSHELL CAPABLE, 6X4	EP	Average	MX MANITEX	23.87	55.04 1,313.61	95.22 2,272.67	150.26 3,586.28
GEN C80Z2190 CRANES, HYDRAULIC, TRUCK MTD, 80T (72.6MT), 128' (39M) BOOM, 8X4X4	EP	Average	GK GENERIC EQUIPMENT	430.56	66.73 28,731.62	118.27 50,922.63	185.00 79,654.25
GEN D30Z2890 DRILL, EARTH / AUGER, MULTI-PURPOSE, 8" (20CM) DIA, 250' (76.2M) DEPTH, 7,000 FT-LBS (9.5KNM) TORQUE W/45KGVW (20.4MT) TRUCK (ADD COST FOR DRILL STEEL AND CUTTING EDGE WEAR)	EP	Average	GK GENERIC EQUIPMENT	115.95	38.55 4,469.82	79.45 9,212.24	118.00 13,682.06
GEN H25Z3182 HYDRAULIC EXCAVATOR, CRAWLER, 30,600 LBS (13.9 MT), 0.69 CY (0.53 M3) BUCKET, 18.4' (5.6 M) MAX DIGGING DEPTH	EP	Average	GK GENERIC EQUIPMENT	8.16	27.79 226.86	38.05 310.59	65.85 537.44
GEN P10Z4840 PILE HAMMER ACCESSORIES, PILE LEADS, SWING, 8" X 26" X 84' (20 CM X 66 CM X 25.6 M)	EP	Average	GK GENERIC EQUIPMENT	413.07	5.29 2,183.52	7.98 3,295.99	<i>13.27</i> 5,479.51
GEN P20Z4880 PILE HAMMER, SINGLE ACTING, DIESEL, 31,320 FT-LBS (42.4 KJ) (ADD LEADS & CRANE)	EP	Average	GK GENERIC EQUIPMENT	413.07	6.36 2,626.13	19.83 8,192.34	<i>26.19</i> 10,818.48
GEN P30Z4920 PILE HAMMER, DRIVER/EXTRACTOR, VIBRATORY, 100 TON (890 KN)FORCE DRIVE (ADD CRANE)	EP	Average	GK GENERIC EQUIPMENT	23.87	47.16 1,125.46	<i>126.51</i> 3,019.35	<i>173.66</i> 4,144.81
GEN P50Z5095 PUMP HOSE, SUCTION, 6" (153 MM) DIA x 20' (6.1 M) LENGTH, W/COUPLING/SECTION	EP	Average	GK GENERIC EQUIPMENT	115.95	<i>0.18</i> 20.71	0.39 45.66	0.57 66.37
GEN P50Z5099 PUMP HOSE, DISCH, 6" (15 CM) DIA X 50' (15M) WITH COUPLING (PER SECTION)	EP	Average	GK GENERIC EQUIPMENT	115.95	<i>0.17</i> 19.68	0.37 43.39	0.54 63.06
GEN P60Z5410 PUMP, WATER, CENTRIFUGAL, DEWATERING, WHEEL, 6" (15 CM) DIA, 1,825 GPM (6.9 M3M) @ 40' (12.2 M) HEAD (ADD HOSES)	EP	Average	GK GENERIC EQUIPMENT	115.95	<i>0.89</i> 102.76	2.04 236.19	2.92 338.94
GEN W35Z8640 WELDER, ENGINE DRIVEN, DIESEL, DC-CC, 300 AMP, 3 KW	EP	Average	GK GENERIC EQUIPMENT	17.48	<i>1.37</i> 23.95	<i>5.48</i> 95.87	6.85 119.82
GEN XMEZ9520 CONCRETE VIBRATOR, 2.5" (63.5 MM) DIA, W/7.5	Non-EP	Average	GK GENERIC	35.50	1.09 38.84	3.90 138.45	4.99 177.29

USACE Report Sections incl Cost Overrides

Equipment by Contractor, Report Page 41

Time 12:42:15

Description

CostType ConditionType Manufacturer EQUIPMENT

EQHours Ownership Operating Total

HP (5.6 KW) GENERATOR