

U.S. Army Corps of Engineers

Final Supplemental Site Inspection Report Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York

Prepared for U.S. Army Corps of Engineers Contract No. W912DQ-19-D-3005 Delivery Order No. W912DQ21F3015

Supplemental Site Inspection R	eport, Staten Island Wareho	ouse FUSRAP Site,	Port Richmond, Staten Isla	and, New York April 2023
	THIS PAGE INTENTION	ONALLY LEFT	BLANK	

Final Supplemental Site Inspection Report Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York

Date Issued – April 2023

Prepared for U.S. Army Corps of Engineers

Prepared Under Contract No. W912DQ-19-D-3005 Delivery Order No. W912DQ21F3015

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, N Ap	lew York eril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

CONTRACTOR STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Notice is hereby given that an Independent Technical Review (ITR) has been conducted that is appropriate to the level of risk and complexity inherent in the project for the Final Supplemental Site Inspection (SSI) Report for the former Staten Island Warehouse (SIW) Formerly Utilized Sites Remedial Action Program (FUSRAP) Site, Port Richmond, Staten Island, New York. During the ITR, compliance with established policy, principles, and procedures was verified. This included review of procedures to be used to create a product that meets the customer's needs consistent with law and existing U.S. Army Corps of Engineers (USACE) policy.

faliables	
	4/10/23
John Wells, CIH, CSP, CHMM,	Date
Contractor ITR Team Member	
Natalie Magill, PhD, PE, PMP Contractor ITR Team Member	
Liyuan Liang, PhD Contractor Quality Reviewer	4/10/23 Date
Significant concerns and the explanation of the resolution are	as follows:
None.	
As noted above, all concerns resulting from the independent been considered.	technical review of the document have
James Azen	
	4/10/23
Margaret Dubbin, PE, PMP	Date
Contractor Project Manager	

Supplemental Site Inspection Re	port, Staten Island Warehouse F	SUSRAP Site, Port Richmond, Staten Isl	and, New York April 2023
,	THIS PAGE INTENTIONAI	LLY LEFT BLANK	

CONTENTS

EXECUTIVE SUMMARY	ES-1
1. INTRODUCTION	1
2. SITE DESCRIPTION AND HISTORY 2.1 SITE LOCATION AND FEATURES 2.2 SITE OPERATION AND HISTORY 2.3 CURRENT LAND USE	3
3. EXISTING SITE CONDITIONS 3.1 TOPOGRAPHY 3.2 REGIONAL GEOLOGY 3.3 HYDROGEOLOGY 3.4 CLIMATE	5 6
4. PREVIOUS INVESTIGATIONS	7 7 7
5. Supplemental SITE INSPECTION FIELD ACTIVITIES 5.1 INTRODUCTION 5.2 SURFACE CHARACTERIZATION 5.2.1 Site Preparation 5.2.2 Gamma Scan 5.2.3 Topographic Survey	9 9 9
5.2.4 Hydrographic Survey 5.2.5 Geotechnical Analysis 5.3 SURFACE SOIL SAMPLING 5.3.1 Surface Soil Sample Collection 5.4 SUBSURFACE SOIL SAMPLING	11 12 12
5.4.1 Subsurface Soil Sample Collection 5.4.2 Downhole Gamma Logging 5.4.3 Test Pits 5.4.4 Groundwater Sample Collection 5.4.5 Waste Characterization 5.5 SEDIMENT SAMPLING	14 15 15
5.5.1 Sediment Sample Collection 5.6 QUALITY CONTROL SAMPLING 5.7 AIR QUALITY MONITORING 5.8 INVESTIGATION DERIVED WASTE AND EQUIPMENT SCANS	16 16 16
6. SITE CONTAMINATION, EXPOSURE PATHWAYS, AND TARGETS 6.1 SOIL EXPOSURE PATHWAY 6.1.1 Targets 6.1.2 Radiological Contamination Results 6.1.3 Non-Radiological Contamination Results	19 19 19

6.2 GROUNDWATER EXPOSURE PATHWAY	23
6.2.1 Targets	
6.2.2 Results.	
6.3 SURFACE WATER EXPOSURE PATHWAY	
6.3.1 Targets	
6.3.2 Results.	
6.4 DATA ASSESSMENT	
7. SUPPLEMENTAL INFORMATION	27
7.1 EROSION EVALUATION	
7.2 RADIOLOGICAL ANALYSIS	
7.2.1 Evaluation of Uranium Present within the Staten Island Warehouse Site	
7.2.2 Evaluation of Radium Present within the Staten Island Warehouse Site	
7.3 EXCAVATION DESIGN ANALYSIS	
8. CONCLUSION	31
8.1 RADIOLOGICAL SURVEY	
8.2 CHEMICAL WASTE CHARACTERIZATION	
8.3 GEOTECHNICAL STUDY	
8.4 EROSION STUDY	
9. REFERENCES	33

LIST OF TABLES

Table 5-1.	Results of Surface Soil Samples (Alpha and Gamma Spectroscopy)
Table 5-2.	Results of Subsurface Soil Samples (Alpha and Gamma Spectroscopy)
Table 5-3.	Downhole Gamma Scan Results
Table 5-4.	Results of Test Pit Soil Samples (Alpha and Gamma Spectroscopy)
Table 5-5.	Water Quality Parameters for Groundwater Samples
Table 5-6.	Results of Groundwater Samples and Equipment Blanks
Table 5-7.	Results of Waste Characterization - Metal (Methods 6020A and 7471A)
Table 5-8.	Results of Waste Characterization - SVOC (Method 8270C)
Table 5-9.	Results of Waste Characterization - VOC (Method 8260B)
Table 5-10.	Tidal Chart
Table 5-11.	Results of Sediment Samples (Alpha and Gamma Spectroscopy)
Table 6-1.	Project Screening Levels for Soil and Sediment
Table 6-2.	Screening Levels for Radionuclides of Potential Concern in Groundwater
Table 7-1.	Evaluation of Sediment and Surface Soil Samples
Table 7-2.	Evaluation of Subsurface Soil Samples
Table 7-3.	Reported Ground Pressure for Excavator Equipment
Table 7-4.	Soil Classification
Table 7-5.	Unconfined Pressure Test Results
Table 7-6	Grain Size Analysis Results

LIST OF FIGURES

Figure 1-1. Site Location	ı Map
---------------------------	-------

- Figure 2-1. Surface Characterization Area
- Figure 2-2. Bayonne Bridge and Western Side of the Surface Characterization Area (facing north)
- Figure 2-3. Aerial Photograph of Staten Island Warehouse FUSRAP Site, April 1940
- Figure 2-4. Aerial Photograph of Staten Island Warehouse FUSRAP Site, April 1961
- Figure 2-5. Aerial Photograph of Staten Island Warehouse FUSRAP Site, March 1988
- Figure 2-6. Rocky Kill Van Kull Shoreline (facing north)
- Figure 2-7. Block Wall and Concrete Pad in Southern Portion of Surface Characterization Area (facing northwest)
- Figure 4-1. 1980 ORNL Gamma Survey Results and Soil Sample Locations
- Figure 4-2. 1992 NYSDEC Gamma Survey Results
- Figure 4-3. Surface Soil Sample and Test Pit Locations, 2011 SI
- Figure 4-4. Groundwater Sample Locations, 2011 SI
- Figure 5-1. Gamma Walkover Survey Results
- Figure 5-2 Comparison of 2011 and 2021 Elevated Radiological Boundaries
- Figure 5-3. Surface Soil Sample Locations
- Figure 5-4. Subsurface Soil Sample and Test Pit Locations
- Figure 5-5. Groundwater Sample Locations
- Figure 5-6. Waste Characterization Sample Locations
- Figure 5-7. Sediment Sample Locations
- Figure 6-1. Surface Soil and Sediment Exceedances of Radium-226 in Soils From 0 to 0.5-feet
- Figure 6-2. Subsurface Soil Exceedances of Radium-226 in Soils From 0.5 to 4.0-feet
- Figure 6-3. Subsurface Soil Exceedances of Radium-226 in Soils Greater Than 4.0-feet
- Figure 6-4. Surface Soil and Sediment Exceedances of Uranium-234 in Soils From 0 to 0.5-feet
- Figure 6-5. Subsurface Soil Exceedances of Uranium-234 in Soils From 0.5 to 4.0-feet
- Figure 6-6. Surface Soil and Sediment Exceedances of Uranium-235 in Soils From 0 to 0.5-feet
- Figure 6-7. Subsurface Soil Exceedances of Uranium-235 in Soils From 0.5 to 4.0-feet
- Figure 6-8. Surface Soil and Sediment Exceedances of Uranium-238 in Soils From 0 to 0.5-feet
- Figure 6-9. Subsurface Soil Exceedances of Uranium-238 in Soils From 0.5 to 4.0-feet
- Figure 7-1. Shoreline and Highly Vegetated Surface Characterization Area (facing south)
- Figure 7-2. Erosion Undercutting Shoreline (facing south)
- Figure 7-3. Shoreline Erosion Map
- Figure 7-4. Staten Island FUSRAP Site 1844 Historical Navigational Chart
- Figure 7-5. Staten Island FUSRAP Site 1887 Historical Navigational Chart
- Figure 7-6. Sanborn Map Staten Island Warehouse FUSRAP Site, 1898
- Figure 7-7. Sanborn Map Staten Island Warehouse FUSRAP Site, 1917
- Figure 7-8. Aerial Photograph of Staten Island Warehouse FUSRAP Site, 1924
- Figure 7-9. Sanborn Map Staten Island Warehouse FUSRAP Site, 1938
- Figure 7-10. Aerial Photograph of Staten Island Warehouse FUSRAP Site, 1944
- Figure 7-11. Aerial Photograph of Staten Island Warehouse FUSRAP Site, 1951
- Figure 7-12. Aerial Photograph of Staten Island Warehouse FUSRAP Site, 1970
- Figure 7-13. Aerial Photograph of Staten Island Warehouse FUSRAP Site, 1980
- Figure 7-14. Aerial Photograph Comparison of Shoreline Erosion SIW Site Northern Edge (2001 to 2018)
- Figure 7-15. Aerial Photograph Comparison of SIW Site Northwestern Corner of SCA (2001, to 2010, to 2018)

APPENDICES

Appendix A	Field Documents
Appendix B	Quality Control Summary Report
Appendix C	Laboratory Data Packages (electronic only)
Appendix D	Electronic Data Deliverables (electronic only)
Appendix E	GIS Data (electronic – included in Final version only)
Appendix F	Boring Logs
Appendix G	Photograph Log
Appendix H	Downhole Gamma Logs
Appendix I	Radiological Scan Data Sheets
Appendix J	Air Monitoring Data
Appendix K	Previous Inspection Sampling Results
Appendix L	Surveys of the SIW Site
Appendix	L1 2021 Civil and Hydrographic Survey of the SIW Site
Appendix	L2 1999 Civil Survey of the SIW Site
Appendix M	Geotechnical Analysis Data

ACRONYMS AND ABBREVIATIONS

ADM Archer-Daniels Midland bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations

COC chain of custody cpm counts per minute

DTSI Dolan Transportation Services Inc.

FUSRAP Formerly Utilized Sites Remedial Action Program

GEO GEO Consultants Corporation
GIS Geographic Information System
GPS Global Positioning System
IDW investigation derived waste

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual

MCL Maximum Contaminant Level MDC Minimal Detectable Concentration MED Manhattan Engineering District

mg/kg milligram per kilogram

MS matrix spike

MSD matrix spike duplicate mya million years ago

NaI(Tl) thallium-activated sodium iodide

NAVD88 North American Vertical Datum of 1988

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NYSDEC New York State Department of Environmental Conservation

ORNL Oak Ridge National Laboratory
PAH polycyclic aromatic hydrocarbon

pCi/g picocuries per gram pCi/L picocuries per liter

% percent

PPE personal protective equipment PRG Preliminary Remediation Goal

psi pounds per square inch PVC polyvinyl chloride PWP Project Work Plan QC Quality Control

QCSR Quality Control Summary Report
RCRA Resource Conservation and Recovery Act

SCA Surface Characterization Area

SI Site Inspection

SSI Supplemental Site Inspection SIW former Staten Island Warehouse SVOC semi-volatile organic compound

UFP-OAPP Uniform Federal Policy-Quality Assurance Project Plan

USDOE U.S. Department of Energy USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

VOC volatile organic compound

EXECUTIVE SUMMARY

The former Staten Island Warehouse (SIW) Formerly Utilized Sites Remedial Action Program (FUSRAP) Site is located in Staten Island, New York (Figure 1-1). This Report documents a Supplemental Site Inspection (SSI) during which sediment, soil, and groundwater samples were collected to identify the extent and concentrations of previously identified radioactive substances. The SSI was performed by GEO Consultants Corporation (GEO) for the U.S. Army Corps of Engineers (USACE) under the FUSRAP, in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). In addition, the evaluation follows the guidance and policy outlined in the *Environmental Quality-Formerly Utilized Sites Remedial Action Program (FUSRAP) - Site Designation, Remediation Scope, and Recovering Costs (USACE Engineer Regulation, ER 200-1-4)* (USACE 2014) and *Guidance for Performing Site Inspections Under CERCLA* (USEPA 1992).

The SIW Site was used to store high-grade Belgian Congo uranium ore from 1939 to 1942. Previous investigations conducted at the SIW Site have determined the presence of residual radiological contamination in soil. The primary objectives of this project are to address data gaps related to the extent of potential radionuclide contamination in previous inspections, to compare the new and existing data against background values and risk-based screening criteria, and to characterize beach erosion at the SIW Site. The SSI activities are outlined in the Project Work Plan [PWP (USACE 2021a)] and the Uniform Federal Policy-Quality Assurance Project Plan [UFP-QAPP (USACE 2021b)].

Five previous investigations have been performed at the SIW Site. From 1980 to 2011, gamma walkover surveys and samples gathered from the SIW Site confirm elevated gamma levels in the northwest corner of the property. The USACE conducted a Preliminary Assessment and Site Inspection (SI) in 2011. Based on the information gathered, the USACE found insufficient evidence for federal responsibility for the contamination which led to a recommendation for no further action to be taken at the SIW Site under the FUSRAP. Additional data gathered and analysis in 2016 and 2017 led the USACE to reasonably determine potential soil contamination at the SIW Site meets the application eligibility criteria in Engineer Regulation (ER) 200-1-4 for eligibility in the FUSRAP. The SIW Site was officially added to the FUSRAP in May 2021.

The 2021 SSI fieldwork included a radiological survey (gamma walkover scan of surface and boreholes, radionuclide sampling of surface and subsurface soils, sediment, and groundwater), excavating test pits, chemical waste characterization sampling (for metals, semi-volatile organic compounds, and volatile organic compounds), a geotechnical study, and an erosion study. Due to the lithology of the Surface Characterization Area (SCA), soil boring recovery problems experienced in the 2011 SI (USACE 2017), were also encountered during the 2021 SSI fieldwork. Downhole gamma scans were not performed on soil borings less than 2-feet bgs or when groundwater filled the soil boring immediately after the soil boring was completed (e.g., beach area).

The surface gamma scans confirmed the presence of elevated (above background levels) radionuclide activity in an approximate 100-feet by 200-feet area in the northwest section of the SIW Site. The area of above background gamma levels is slightly shifted laterally to the southwest and northeast as related to previous investigations. With this minor difference, the area of radiological contamination is similar to that identified in previous investigations.

Borehole logging, test pits, surface soil sampling, sediment sampling, and subsurface soil sampling confirm that radiological contamination above screening levels within the SCA boundary exist in soil only and is contained within the upper 5-feet bgs and within the elevated gamma scan area. Sediment samples

collected offshore during low tide were analyzed for the same radionuclides. Results indicate similar elevated radionuclides that are found in the vegetated area of the SCA.

Shallow groundwater samples are below the project screening levels (except for Ra-228 in one sample). The Ra-228 result of 5.83 picocuries per liter (pCi/L) from GW-10-1220 is slightly higher than the screening level of 5 pCi/L. The volume of water collected for gross alpha and beta analysis resulted in higher than typical values of sample Minimal Detectable Concentration (MDC), approximately 50 times higher than typical. Due to this high MDC for the gross alpha samples, more credibility should be placed on the isotopic results than the gross alpha values. The gross beta results for the samples exceed the MDC with magnitudes between approximately 100 and 800 pCi/L. This range of concentrations is greater than the 50 pCi/L project screening level for gross beta emitters. However, the 50 pCi/L screening level applies to drinking water. The sampled groundwater has no foreseeable use as drinking water and is likely significantly mixed with saline water from the Kill Van Kull. The radiological survey sample data, collected and analyzed during the 2021 SSI, was validated and determined to be useable.

A geotechnical analysis was performed to determine structural stability of the pier and its ability to support heavy construction equipment. As part of the geotechnical analysis, samples were collected to obtain Atterberg Limits, Unconfined Pressure Test Levels, and Sieve Analysis/Grain Size Distribution. The results of these tests indicate a moderately strong soil structure, despite the moisture and sand quantity located in the SCA. The equipment used during the geotechnical/environmental investigation (drill rig and mini excavator) did not cause observable failures to the soil at an estimated ground pressure of 5-pounds per square inch (psi). The soil pit excavations extended through the soil to a depth of approximately 6-feet. Given that no issues were encountered during the geotechnical/environmental investigation, and based on the results of the geotechnical testing of samples collected from soil borings, the use of a mini- or mid-sized excavator for any future remedial work at the SIW Site is unlikely to cause soil failure issues. A mid-sized excavator, such as a CAT 330L, is also unlikely to cause soil failure, even with a safety factor of 2.5 (ground pressure of 19 psi). Additional site preparation is recommended for removal of excavated material dependent upon the size of equipment being used.

Beach erosion has occurred along the northwestern and northern edge of the site, suggesting that some radionuclide-contaminated soil may be gradually transported from the SIW Site into the near-shore environment of the Kill Van Kull. A significant increase in shoreline erosion was observed due to major storms in the SIW Site area (e.g., Hurricane Irene and Hurricane Sandy). Erosional impacts have occurred at the SIW Site since the removal of building structures prior to 1980. Soil boring cores, test pit excavation, drilling refusal, and drilling equipment damage at approximately 3 to 4-feet along the SIW Site's northwestern shoreline indicate the presence of multiple foundation pillars. While the pillars may be slowing the effects of erosion, the evidence indicates that erosion will continue along the shoreline, further exposing higher levels of contamination to be transported by the Kill Van Kull tide.

1. INTRODUCTION

1.1 PURPOSE AND OBJECTIVES

This Report documents a Supplemental Site Inspection (SSI) that was conducted at the former Staten Island Warehouse (SIW) Formerly Utilized Sites Remedial Action Program (FUSRAP) Site in Staten Island, New York (Figure 1-1). Previous investigations conducted at the SIW Site, including a 2011 Site Inspection (SI), have determined the presence of radiological contamination in some areas. The SSI was performed by GEO Consultants Corporation (GEO) for the U.S. Army Corps of Engineers (USACE) under the FUSRAP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). In addition, the evaluation follows the guidance and policy outlined in *Environmental Quality-Formerly Utilized Sites Remedial Action Program (FUSRAP) - Site Designation, Remediation Scope, and Recovering Costs (USACE Engineer Regulation, ER 200-1-4)* (USACE 2014) and the *Guidance for Performing Site Inspections Under CERCLA* (USEPA 1992).

The SIW Site was a commercial site owned by Archer-Daniels Midland (ADM) Company that was used to store high-grade Belgian Congo uranium ore from 1939 to 1942. The 1.25-acre area was identified as the SIW Site through the eligibility determination from U.S. Department of Energy (USDOE), stating that the northwest quadrant of the entire property was eligible for the FUSRAP. The 2021 SSI was confined to a 100-feet by 200-feet section of the northwest quadrant, identified in this Report as the Surface Characterization Area (SCA).

The primary objectives of this project are to address data gaps related to the extent of radionuclide contamination in previous inspections, to compare the new and existing data against background values and risk-based screening criteria, and to characterize beach erosion at the SIW Site. The SSI activities are outlined in the Project Work Plan [PWP (USACE 2021a)], and the Uniform Federal Policy-Quality Assurance Project Plan [UFP-QAPP (USACE 2021b)].

1.2 REPORT ORGANIZATION

The contents and organization of this Report are in accordance with U.S. Environmental Protection Agency (USEPA) *Guidance for Conducting Site Inspections Under CERCLA* (USEPA 1992) and the USEPA *Federal Facilities Remedial Site Inspection Summary Guide* (USEPA 2005). The format of this Report is in general accordance with the USEPA guidance:

- Section 1 presents an introduction to the SSI, including project purpose, objectives, and the organization of this SSI Report.
- Section 2 describes the geographical location and features of the SIW Site as of September 2021.
 The operational and site history, including previous owners and property uses, are also discussed.
- Section 3 details the physical setting of the SIW Site based on relevant literature and information from the 2021 SSI and previous investigations. The topography, geology, hydrogeology, and the climate of the SIW Site are described.
- Section 4 provides an overview of previous investigations conducted at the property. A brief overview of each investigation, including work performed, results, conclusions, and recommendations are presented.
- Section 5 presents general information on the project field activities conducted during the 2021 SSI and the methods used in the inspection for data acquisition.

- Section 6 describes the results of the 2021 SSI. This section discusses soil and groundwater data
 resulting from the 2021 SSI and the data sets obtained from the SIW Site through previous
 inspections. These data identify the contaminants detected in the media at the SIW Site. A
 discussion of the distribution of these contaminants is also provided and a summary of the
 investigation and risk screening is presented.
- Section 7 details other aspects of the 2021 SSI, including the shoreline erosion of the SIW Site since the 2011 SI, changes in the radiological analysis from the 2011 SI to the 2021 SSI, excavation design analysis, and the conclusions and recommendations.
- Section 8 is a list of the references used in preparing the SSI Report.
- Figures and Tables are located immediately following the text.
- Appendix A contains quality forms completed in the field, including field logs, sampling forms,
 Daily Quality Control Reports, summary reports, and chain of custody forms.
- Appendix B contains the Quality Control Summary Report (QCSR) for Radiological and Waste Characterization Samples.
- Appendix C includes the laboratory data packages (electronic copy only).
- Appendix D is the Electronic Data Deliverables (electronic copy only).
- Appendix E is the Geographic Information System (GIS) data (electronic copy only, included on compact disk located at the front of the Final version).
- Appendix F contains boring logs recorded during 2021 subsurface soil sampling.
- Appendix G contains photograph logs of the SIW Site and fieldwork.
- Appendix H contains the downhole gamma logs.
- Appendix I contains the radiological scan data sheets.
- Appendix J contains the air monitoring data.
- Appendix K includes the previous inspection sampling results.
- Appendix L includes the civil and hydrographic surveys of the SIW Site.
- Appendix M contains the geotechnical analysis data.

2. SITE DESCRIPTION AND HISTORY

2.1 SITE LOCATION AND FEATURES

The SIW Site is located at 2351 Richmond Terrace, Staten Island, Richmond County, New York, 10302 (Figure 1-1). The entire SIW Site consists of approximately 4.5 to 5-acres, bounded by the Kill Van Kull tidal flat to the north and west. The SCA is in the northwest corner of the SIW Site and is approximately 100 by 200-feet (0.5-acres) (Figure 2-1). The SIW Site is located within the vicinity of coordinates at the point located at 40°38'25" N and 74°08'31" W.

The SIW Site protrudes into the Kill Van Kull and was originally described as a manmade, solid filled pier retained by timber crib bulkheads and built circa 1830 (USACE 2017). It was expanded circa 1890 with similar or timber sheet pile bulkheads. The SIW Site is entirely fenced, except along the Kill Van Kull shoreline, and is situated in a commercial and industrial area. The Bayonne Bridge crosses immediately overhead of the SIW Site to the west (Figure 2-2). The SIW Site is relatively flat and portions are paved.

A photographic analysis of the SIW Site area for USEPA Region 2 (USEPA 2009a) presents assessment of a series of aerial photographs taken from 1940 to 1988 (Figures 2-3 to 2-5). It is especially clear in photos taken prior to 1988 that the northern site boundary was sharp and well-defined, presumably by the back-filled area behind bulkheads. This is consistent with the apparent elimination of industrial activities at the SIW Site that began prior to 1970 as indicated by photographs (USEPA 2009a). Deterioration or removal of the bulkheads that established the docking facilities for the site may be associated with changes in the shoreline. The change could also be attributed to the demolition of buildings, piers, wharves, or other structures. However, over the period of several investigations, erosion has been observed to be a contributing factor in the changes to the shoreline. A more detailed explanation of the shoreline erosion at the SIW Site is included in Section 7.1.

2.2 SITE OPERATION AND HISTORY

The SIW Site in Port Richmond, Staten Island, New York, was used by African Metals Corporation to store high-grade Belgian Congo uranium ore from 1939 to 1942. In 1942, 2,007 drums of uranium ore were stored at the SIW Site containing 1,089 metric tons of ore. The ore contained approximately 600 metric tons of triuranium octoxide and 170 grams of radium [Oak Ridge National Laboratory (ORNL) 1980]. The uranium ore was later purchased by the Manhattan Engineering District (MED) in support of World War II activities (MED 1942). Ores were handled on the portion of the privately owned property north of Richmond Terrace. Portions of the former property south of the road are not part of the FUSRAP Site. The SIW Site underwent multiple non-governmental ownerships. Some former structures at the site, including the warehouse, were demolished.

Known site history dates back to 1836. The original property owned by ADM Company was divided into three parcels, which have changed ownership numerous times (ORNL 1980). One parcel is owned by the New York Port Authority, another is owned by Federal Express, and the last is owned by Dolan Transportation Services Inc. (DTSI), with the current tenant of Island Redi Mix Incorporated (as of September 2021). The parcel owned by DTSI comprises of a 20 by 40-meter area where radiological contamination was identified by ORNL in 1980 (USEPA 2008). At the time of the ORNL investigation, the parcel was owned by R.H.S. Realty Corporation (ORNL 1980). The USDOE conducted an eligibility review in 1986 and determined that the SIW Site was not eligible for FUSRAP based on contract language that indicated the government did not take possession of the ore until it was removed from the SIW Site.

In 1992, the New York State Department of Environmental Conservation (NYSDEC) performed surveys on the northwest portion of the SIW Site and confirmed the presence of radiological soil

contamination (NYSDEC 1992). In February 2008, the USEPA conducted a radiological survey of the SIW Site. This survey confirmed results of previous surveys identifying an area of low-level surface radioactive contamination (USEPA 2008). USEPA requested that the USDOE review the 1986 eligibility finding. The contract language reviews indicated that the government took possession of the ore materials while on the dock. The findings of the USEPA survey and additional contract review, led the USDOE to declare the SIW Site eligible for FUSRAP inclusion in October 2009 (USEPA 2009b).

The 2011 SI included collection and analysis of surface and subsurface soil and groundwater samples to identify the level of radioactive substances and determine if hazardous radioactive substances impacted specific targets. The 2011 SI confirmed the results of previous surveys identifying an area of low-level surface radioactive contamination (USACE 2017). The sampling results from previous inspections can be found in Appendix K. The USACE found insufficient evidence for federal responsibility for the contamination which led to a recommendation for no further action to be taken at the Site under the FUSRAP. Additional data gathered and analysis in 2016 and 2017 led the USACE to determine that there was a reasonable potential that the soil contamination in SIW meets the application criteria in Engineer Regulation (ER) 200-1-4 for eligibility in the FUSRAP. The SIW site was officially added to the FUSRAP in May 2021.

2.3 CURRENT LAND USE

The SIW Site and adjacent properties on the east and south are zoned for commercial use. The property to the west is owned by the New York Port Authority as part of the Bayonne Bridge area. A rocky beach on the Kill Van Kull waterway bounds the northern portion of the property (Figure 2-6). As of September 2021, an active concrete batch plant was in full operation at the SIW Site. During the SSI fieldwork, an inquiry was made to the current tenant whether fly ash or coal ash is used or stored on the property. The SIW Site tenant stated that no fly ash or coal ash were used or stored on the property.

As of September 2021, the SCA is fenced off from access from the Richmond Terrace. The condition of this intrusion fence was in good shape. Pre-cast concrete barrier blocks have recently (approximately June of 2021) been added by the tenant to section off some of the SCA from the active concrete batch plant (Figure 2-7). The concrete blocks are on the concrete plant side of the area of contamination; however, there is an opening along the northern section of the concrete barrier wide enough for a person to walk through. The southern section of the SCA has been filled in and a 6-inch concrete pad has been constructed to support cement mixing equipment (Figure 2-7). The majority of the SCA is also overgrown and is littered with assorted forms of debris.

3. EXISTING SITE CONDITIONS

3.1 TOPOGRAPHY

The topography of Staten Island ranges from steep hills to flat terrain (Soren 1988). The elevation of the SIW Site ranges from 3 to 9-feet above mean sea level to sea level at the shore. The maximum land-surface altitude in the northeastern part of Staten Island is about 405-feet (Soren 1988). The surface water runoff flows toward the northeast of the Site into the Kill Van Kull. According to Federal Emergency Management Agency (FEMA 2007), most of the SIW Site is in Zone AE [(EL 8) floodway area] while the southern and eastern portions of the SIW Site are in Zone X (other flood areas, that have average flood depths of less than 1-foot or drainage areas less than 1 square mile). The sloping beach was noted to be underwater during high tide. The flat vegetated area is estimated to be 3 to 4-feet above the beach area and close to that of the original pier.

Two major hurricanes affected the Staten Island area since the July 2011 SI fieldwork, Hurricane Irene in August 2011 and Hurricane Sandy in October 2012. During Hurricane Sandy, the water level in Kill Van Kull rose up to a maximum of 14.35-feet above mean low tide (NOAA 2021a). The ground surface elevation of the SIW Site is at or below 10-feet North American Vertical Datum of 1988 (NAVD88), which is equivalent to 12.72-feet mean low tide (NOAA 2021b). Thus, it can be assumed that the entire SIW Site was impacted by floodwaters during Hurricane Irene and Hurricane Sandy.

3.2 REGIONAL GEOLOGY

Regional geology around the SIW Site consists of glacial drift (specifically ground moraine) and overlying Palisade Diabase Sill (Soren 1988). The ground moraine is described as a reddish-brown clayey till with local bodies of sand and gravel. The presence of boulders has been noted in glacial drift at Staten Island (Perlmutter and Arnow 1953). Estimated bedrock topography indicates that the bedrock surface in the vicinity of the SIW Site is at 0-feet above mean sea level (Soren 1988). Thus, bedrock underlying the SIW Site may be relatively shallow given that the ground surface elevation at the SIW Site is at or below 10-feet NAVD88.

Soil borings indicate the SIW Site was underlain throughout with fill material comprised of a clay, sand, silt, gravel mix with scattered debris. The fill appeared to extend vertically in most borings and often contained debris such as brick, asphalt, and creosote-treated wood chunks. Some of the soil cores did show evidence of native material consisting of sand and clay. At some locations, direct push drill refusal was encountered at depths of 4-feet. Drill refusal and poor core recovery is attributed to the presence of concrete and other construction debris that might have been used as fill material or foundations for structures that have been removed.

During the Paleozoic Era [approximately 540 to 250 million years ago (mya)], an altered remnant of oceanic crust broke from the North American plate; this remnant became the bedrock unit of Staten Island. This bedrock unit is made up of pale green, low-grade metamorphic serpentinite. This serpentinite unit is lens shaped and underlies an area of 22 square miles in the north central portion of Staten Island.

During the Mesozoic Era (approximately 250 to 65 mya), the Newark Basin formed as a result of divergent tectonic stresses. Three sedimentary units deposited within the basin: the Stockton Formation (sandstones and arkoses), the Lockatong Formation (siltstones and shales), and the Passaic Formation (shales, sandstones, conglomerates, and siltstones). During the Jurassic Period, the Palisades Sill, an igneous diabase of feldspar labradorite and pyroxene augite, intruded the layers of sedimentary rocks of the Newark Basin. The Raritan and Magothy Formations were deposited as coastal plain sediments from eroded highland material during the late Mesozoic Era.

During the Cenozoic Era (approximately 65 mya to present), the Wisconsin glacier retreated, leaving a layer of loose, unconsolidated, well-graded glacial till and outwash plain sediment consisting of very dark grayish brown coarse sandy loam, brown sandy loam, and dark grayish brown very gravelly sandy loam (Hernandez undated). A more detailed description of the geology at the SIW Site can be found in the UFP-QAPP (USACE 2021b).

3.3 HYDROGEOLOGY

Surficial materials at the SIW Site consist of a combination of artificial fill and native glacial till. This artificial fill was encountered to a depth of at least 5-feet in most soil borings. Although either type of material could be coarse enough to make an aquifer, the total thickness is expected to be on the order of 10 to 20-feet, and the near-shore location of the SIW Site indicates that groundwater extracted from the surficial materials would be non-potable. Flow-direction in these surficial materials is expected to be generally northward (Soren 1988); however, tidal influence is significant in this setting, and therefore, flow-direction varies somewhat with the tides.

These unconsolidated surficial materials are underlain by the Palisades Sill. The Jurassic Palisades Sill is a westerly dipping igneous body that intruded between Triassic-age sedimentary units, and is composed of diabase, a dark-colored, coarse-grained intrusive rock with negligible primary permeability. Secondary permeability created by joints and fractures may be present in the unit; however, a vertical hydraulic gradient in this near-shore setting would be expected to be upward in general, although tidal influence may periodically reverse the gradient.

3.4 CLIMATE

According to the Koppen Climate Classification, Staten Island, New York has a humid subtropical climate similar to other areas within the region (Weatherbase 2021). The climate is influenced greatly by its close proximity to the Atlantic Ocean. The average annual temperature for the site ranges from a low of 45.6 degrees Fahrenheit (°F) to a high of 63.3 °F. The lowest monthly average temperature occurs in January (24.5 °F), and the highest monthly average temperature occurs in July (85.6 °F). The average annual precipitation is 48.6-inches, with July and September being the highest months of precipitation (an average of 4.6-inches of rain). The annual snowfall for Staten Island is 29.0-inches which mostly occurs in the month of February (8.4-inches of snow) (Weatherbase 2021).

4. PREVIOUS INVESTIGATIONS

Prior radiological investigations at the property included surface gamma surveys, as well as a limited number of surface and subsurface soil samples that were analyzed for specific radionuclides. Results from these analyses are detailed in Appendix K. These previous investigations are briefly summarized below.

4.1 OAK RIDGE NATIONAL LABORATORY (1980)

In 1980, ORNL performed a surface gamma survey of the property (ORNL 1980). Most of this area yielded background gamma levels. However, a relatively small area in the northwest corner of the property had elevated levels of gamma radiation (Figure 4-1). This region has been described as the 20-meter by 40-meter area of contamination at the property. In addition, three soil samples were collected and analyzed for selected radionuclides. The sample collected from the northwest corner (ST-1, Appendix K) had elevated levels of U-238 and Ra-226. The results of these analyses are presented in Appendix K.

4.2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (1992)

In 1992, NYSDEC conducted further radiologic investigations at the SIW Site (NYSDEC 1992). A surface gamma survey of a limited part of the property was performed. The survey identified the presence of areas of contamination that were at least three times higher than background, including an area that was over 167 times higher than background within the 20-meter by 40-meter region identified by ORNL (1980). A sketch map that identifies the background and elevated regions of the property is presented in Figure 4-2. In addition to the gamma survey, NYSDEC also collected six soil cores from within the 20-meter by 40-meter area covering a depth range from the surface to approximately 1.5-feet below ground surface (bgs). The cores were subsampled, and a variety of radionuclides were analyzed in each sample. The results of these analyses are presented in Appendix K.

Three samples from this investigation (072219, 072220, and 072221) showed poor precision. This was due to inadequate sample sizes for proper analysis. The material for these three samples was primarily organic (wood) material rather than soil. Therefore, the quantity of sample for analysis after drying was very small and was not sufficient to completely fill a standard gamma counting geometry.

4.3 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (2003)

In 2003, NYSDEC conducted a preliminary radiological survey on the parcel of land currently occupied by Federal Express, across Richmond Terrace from the SIW Site (as of September 2021). The purpose of the survey was to assess the potential for radiological contamination. In areas radiologically surveyed, one area was found to be above background. This area was described as a rock pile and had count rates approximately three times the background. Based on the radiation readings it was concluded this material was not considered to be high-grade uranium ore (NYSDEC 2003).

4.4 U.S. ENVIRONMENTAL PROTECTION AGENCY (2008)

In 2008, USEPA, in cooperation with the NYSDEC and New York City Department of Health, conducted a surface gamma survey of the vehicle-accessible area of the SIW Site in the paved and unpaved parking areas (USEPA 2008). Additional gamma surveying took place along part of a fence line in the area, but the details regarding the location of this survey area are unclear. In addition to the gamma survey, six surface soil samples (0 to 0.5-feet bgs) were collected from the 20-meter by 40-meter area. These were analyzed for selected radionuclides (Appendix K).

4.5 U.S. ARMY CORPS OF ENGINEERS (2017)

In 2011, USACE conducted a SI and confirmed the presence of elevated radioactivity in the 20-meter by 40-meter area identified in previous investigations (USACE 2017). Field activities included a gamma walkover survey, collection of soil and groundwater samples taken from 45 locations, and 4 test pits (Figures 4-3 and 4-4). Results from the 2011 SI showed that the majority of radiological soil contamination was defined laterally and is contained within the upper 5-feet bgs vertically. Beach erosion observed along the northern edge of the SIW Site suggested that some radionuclide contaminated soil may be gradually transported from the SIW Site into the near-shore environment of the Kill Van Kull. The 2011 SI recommended that sediment samples offshore of the most contaminated part of the SIW Site be collected and analyzed for the same radionuclides identified in the soils to determine if significant risk exists. Further vertical subsurface investigation was recommended as the SIW Site moves through the CERCLA process in order to verify vertical extent of contamination.

5. SUPPLEMENTAL SITE INSPECTION FIELD ACTIVITIES

5.1 INTRODUCTION

Field activities associated with the SSI work occurred in September 2021 at the SIW Site and included the following items:

- SIW Site preparation
- Surface gamma survey
- Topographic survey
- Hydrographic survey
- Surface soil sample collection
- Subsurface soil sample collection
- Downhole gamma logging
- Test pit excavation
- Groundwater sample collection
- Waste characterization sampling
- Collection of Quality Control (QC) samples [field duplicates and matrix spike (MS)/ matrix spike duplicate (MSD) pairs]
- Sediment sampling
- Air quality monitoring
- Investigation derived waste control and equipment scans

Prior to beginning fieldwork, the SIW Site was prepared by setting up an exclusion zone, two contamination reduction zones, a support zone, and mobile restrooms. The support zone was used for vehicle and equipment parking, temporary storage of debris, and waste storage. It was also used for initial QC checks on the equipment systems. The contamination reduction zones were sectioned off from general access and used for equipment decontamination, and radiological scanning of equipment and personnel. It was also where personal protective equipment (PPE) used in the exclusion zone was removed and placed in garbage bags.

5.2 SURFACE CHARACTERIZATION

The majority of the fieldwork at the SIW Site, except for the topographic and hydrographic surveys, was conducted within the boundaries of the SCA (Figure 2-1). Results from the gamma survey indicated an area with gamma count rates greater than 10,000 counts per minute (cpm) in the northwest corner, as shown on Figure 5-1. These results are relatively consistent with previous studies conducted by ORNL (1980), NYSDEC (1992), and USACE (2017).

5.2.1 Site Preparation

Upon arrival at the SIW Site a large portion of the SCA, excluding the beach and concreted areas, was covered with overgrown brush and shrubs. Additionally, the SCA was littered with trash and debris such as tree limbs, used tires, chairs, cans, bottles, and other debris washed up on shoreline. Prior to performing

any project work related to radiological gamma surveys, drilling, or sample collection, the SIW Site was cleared of brush and shrubs with the use of trimmers modified with metal blades, hand clippers, and a chain saw. Brush and tree limbs removed were chipped and stockpiled outside of the sampling areas. Trash and debris located in direct areas of sampling were moved to not effect sampling results. Trash and debris too large to move or along shoreline were left in place.

5.2.2 Gamma Scan

Following the clearing of brush and shrubs, the gamma walkover survey was performed consistent with Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) guidance (MARSSIM 2000). The survey was performed using a 2-inch by 2-inch thallium-activated sodium iodide [NaI(Tl)] gamma scintillation detector interconnected to a Trimble Global Positioning System (GPS). The survey was conducted using these controls: walking relatively straight parallel lines in approximately 1-meter spacings over an area, moving at a speed of approximately 0.5-meters per second, and passing the detector 2 to 4-inches above the ground surface in a serpentine motion. Count rate data from the ratemeter/scaler and position information from the GPS were collected once per second. Count rate and position information were downloaded periodically to a computer for evaluation, by plotting the data onto a project site map and statistical assessment. Color coding of count rate derived from statistical assessment facilitated identification of those portions of the SIW Site that were radiologically elevated relative to the SIW Site background count rates (Figure 5-1).

A background count rate of approximately 10,000 cpm was determined by using the gamma walkover scan data from the north of the known elevated radiological area and was used as the gamma walkover survey scan investigation level in this SSI. The mean count rate of this area (6,800 cpm) plus the recommended MARSSIM control limits of three standard deviations (2,400 cpm) was used and rounded up to the nearest 1,000 cpm, based on professional judgment. This approach provided a significantly reduced false positive rate which facilitated the selection of limited samples to be collected for radiological analysis. The color coding facilitated the investigation of areas with elevated count rates. Surface soil, subsurface soil, and test pit sample locations were subsequently selected, based in part on the results of the gamma walkover survey. The area of above background gamma levels is slightly shifted laterally to the southwest and northeast, relative to previous investigations. With this minor difference, the area of radiological contamination is similar to that identified in previous investigations (Figure 5-2).

5.2.3 Topographic Survey

A civil survey (Appendix L1) was conducted on the entire SIW Site (see full tax parcel included in Figure 1-1). The civil survey has confirmed past erosion impacts and property owner impacts on the SIW Site. Prior to 1988, the northwest corner of the SCA had begun to erode, causing a rounded corner of the elevated shoreline (Figure 2-5). Erosion of the shoreline has also occurred adjacent to the western edge of the SCA. In the southern portion of the SCA, the tenant has constructed a 6-inch concrete pad for placing cement mixing equipment. It appears that fill was brought in to level out the area under the concrete pad. Soil boring logs confirm the fill of 1 to 4-feet. The civil survey provides a baseline for design if future removal actions are required and a baseline to measure future erosion. The topographic survey provides details for record lines (right of ways), adopted lines and property lines based on New York City recorded section, final maps and/or filed maps (as of September 2021).

5.2.4 Hydrographic Survey

The hydrographic survey was completed with an unmanned survey vessel. The vessel was equipped with Single Frequency Singlebeam echo sounder used for data collection and real time water level recording. The upland topography and bathymetry were combined into one map (Appendix K). Along the western edge of the SCA, the bathometric lines indicate gradually increasing slope of elevation to the north,

with a depth of 19-feet bgs. The steepest elevation change along the shoreline appears to be in the northwest corner of the SCA. Historical changes in topography and beach erosion over time at the SIW Site is covered in more detail in Section 7.1.

5.2.5 Geotechnical Analysis

Site soil consists of silty sand with gravel and sandy lean clay fill material overlying coarse riprap. Soil thickness was approximately 6 to 12-feet within the SCA (increasing in depth towards the south). Standard penetration tests yielded N60 of between 2 and 20, with an average N60 value of 10. Ten cohesive soil samples were collected from various soil borings and measured unconfined compressive strength. Results from those samples ranged from 8.6 to 39.9 pounds per square inch (psi), with an average of 22 psi. The samples analyzed for compressive strength were collected from direct push sampling using a nominal 2-inch diameter macro-core sampler and included a large proportion of sand. Therefore, the compressive strength results likely provide an underestimate of the bearing capacity of the site soils. Geotechnical data is included in Appendix M and the analysis is further discussed in Section 7.3.

Equipment used during the geotechnical/environmental investigation (e.g., GeoProbe 7822DT and Kubota U35-4 mini excavator) did not cause observable failures to the soil at an estimated ground pressure of 5 psi. The soil pit excavations extended through the soil to a depth of approximately 6-feet. These excavations remained open while the excavator equipment was placed adjacent within 4-feet of the pits. No observable failures presented within the excavation walls (except for slough from incoming groundwater near the bottom of the test pits).

5.3 SURFACE SOIL SAMPLING

Surface soil characterization samples were collected according to the methods presented in the PWP (USACE 2021a) and are discussed in the subsections below. Sampling consisted of the following tasks:

- Surface soil samples were obtained from within the top 0.5-feet of soils.
- Biased surface and subsurface soil samples were obtained from locations identified by the gamma survey and using previous SI data to delineate contaminants both horizontally and vertically.
- Biased samples were collected from the first 2-feet lift of each test pit, identified by elevated count rates observed during gamma logging of the soil pile.
- In addition to the biased samples, systematic samples from surface and subsurface locations were distributed throughout the sampling area (Figures 5-2 and 5-3).
- Soil samples were located using GPS referenced to North American Datum, Universal Transverse Mercator Zone 18N (meters), Geographic Coordinate System North American 1983.
- Samples were collected, labeled, logged, and shipped to Pace Laboratories, Mt. Juliet, Tennessee for analysis. Soil samples were analyzed for Ra-226 (Pb-214, Bi-214), Th-234, Ac-228, and K-40, as well as for uranium isotopes.
- Waste characterization samples were analyzed for the complete list of contaminants (e.g., volatile organics, semi volatile organics, and metals) reported in Table 1 of 40 the Code of Federal Regulations (CFR) 261.24.
- QC blind duplicate samples were collected at one sample for every ten primary samples collected
 or portion thereof and MS/MSD pair samples collected at one pair for every 20 primary samples
 collected or portion thereof.

 Samples were packaged and maintained under strict chain of custody (COC) until delivery to the laboratory.

5.3.1 Surface Soil Sample Collection

A total of 25 surface soil sampling locations were sampled for radiological analysis for Ra-226 (Pb-214, Bi-214), Th-234, Ac-228, and K-40 by gamma spectroscopy, as well as for U isotopes. In the 2021 PWP, 20 surface soil locations were proposed. However, some of the originally proposed subsurface soil sampling locations were either not accessible by drill rig based upon site conditions or drilling depth refusal limited the number of subsurface soil samples. Instead, 5 additional surface soil sampling locations were added (SS-21 through SS-25). Of the 25 surface soil sampling locations, 15 of the locations (SS-01 to SS-15) were based on a statistical grid, using guidance from MARSSIM (Figure 5-3). Some of the original surface soil sampling locations were moved based on assessment of on-site conditions (SS-09, SS-10, SS-14, and SS-15, respectively). The remaining 10 locations were selected using the biased sampling approach based on gamma survey results, gaps in data, and discussions among the project team to further bound contaminants horizontally and vertically (SS-16 to SS-20). The locations of surface samples SS-21 through SS-25 were chosen to better define the area with elevated gamma scan readings. Surface soil samples were collected from the top 0.5-feet of soil using stainless steel trowels. Results of the laboratory analyses for the surface soil samples are discussed in Section 6.1.2 and shown in Table 5-1.

For sampling locations on beach areas where a dense layer of cobbles and other stony debris existed, these materials were first removed from the sample location to expose the underlying soil/sediment. For surface soil sampling locations, visually identifiable non-soil components such as stones, twigs, and foreign objects were manually separated in the field and excluded from the laboratory samples to avoid biasing low results.

Radiological soil samples were not preserved in the field, as there are no preservation requirements for the radiological analyses. Stainless steel trowels used in sample collection were decontaminated between samples to avoid cross-contamination. Decontamination water was poured back in the holes from which the sample originated.

5.4 SUBSURFACE SOIL SAMPLING

Borings for subsurface soil characterization were collected by a direct push method using a Geoprobe® 7822DT series track-mounted drilling rig (owned and operated by AARCO Environmental Services Corporation, a subcontractor to GEO), by hand auger, or post-hole digger. The drilling rig was also equipped with hollow stem auger attachment. Of the 34 subsurface soil samples collected, 28 were collected from 14 unbiased soil boring locations (SB-01 through SB-15, excluding SB-13), as shown in Figure 5-4. Of the 14 unbiased soil borehole locations, 5 were inaccessible due to on-site conditions and were relocated after a project group discussion. Sample location SB-10 shifted west approximately 15-feet from original location due to a brick wall recently placed along the eastern edge of the SCA by the tenant. Sample location SB-09 shifted west approximately 10-feet to split difference of SB-08 and new location of SB-10. Sample locations SB-14 and SB-15 shifted west from original location due to recently placed structures by tenant. The other 6 subsurface samples, also shown in Figure 5-4, were collected from biased sample locations that were chosen based on gamma survey results, gaps in data, and discussions among the project team.

5.4.1 Subsurface Soil Sample Collection

Subsurface soil samples were collected by using a direct push drilling rig with hollow stem auger attachment. Drilling activities began by advancing a 2-inch steel macro-core sampler core barrel to a depth of 12-feet, refusal, or interface with groundwater. Subsurface soil samples were collected with a target depth up to 12-feet. In the case of inaccessibility with the drilling rig, samples were collected using an auger

or post-hole digger. Eleven of the 20 soil boring locations were completed using the drill rig (SB-04, SB-05, SB-06, SB-07, SB-09, SB-10, SB-11, SB-12, SB-14, SB-15, and SB-16). Nine soil boring locations were completed using a hand auger or post-hole digger (SB-01, SB-02, SB-03, SB-08, SB-17, SB-18, SB-19, SB-23, and SB-24).

Initial direct push drilling efforts resulted in refusal at approximately 6 to 7-feet. Refusal was attributed to the various material encountered (e.g., brick structures, rip rap, fill material). Refusal contributed to broken core barrels and replacing multiple casing shoes. The drill rig was moved a few feet in multiple directions with similar results. The hollow stem auger attachment was then used on the drill rig with refusal at the same depth as the direct push method. Both methods resulted in similarly poor percentage recovery. Groundwater was also encountered at approximately 6-feet bgs. While using the direct push method, the macro-core sampler was advanced with intermediate soil samples contained inside 4-foot clear acetate liners that had been inserted into the core barrel prior drilling. The liners were removed from the core barrel at the sampling locations. The acetate sleeves were sliced open with a core cutter to expose the soils for classification and radiological screening. The sample cores were then scanned and described. Significant conditions, including the presence of groundwater, were noted. Boring logs associated with each of the 20 subsurface boring locations are included in Appendix F.

When using the hollow stem auger; once the core barrel was removed from the ground, the barrel was split open and sample were scanned, logged, and samples were collected from the cores. Excess soil was returned to the hole from which it was extracted. Any remaining excess soil was spread evenly around the borehole location. The empty core barrel was scanned and decontaminated (if necessary) with water prior to moving to next soil boring location. Decontamination water was poured back in the holes from which the samples were collected. Samples were then shipped to the off-site laboratory to be analyzed for Ra-226 (Pb-214, Bi-214), Th-234, Ac-228, and K-40 by gamma spectroscopy, as well as for U isotopes.

Subsurface soil samples were collected from each soil core at depth intervals based on the results of the scan of the core at elevated logged points. In the case of poor recoveries, the majority of the core was collected for sampling. Samples collected from the 0 to 4-feet intervals of a poorly recovered core were taken from the bottom of the core, working up, so as not to duplicate the material collected for a surface soil sample at that same location, when possible. This was also the method used for the collection of samples from cores with poor recovery in the remaining intervals since slough from the upper interval was contained in the top portion of the lower interval cores. Results of these analyses are discussed in Section 6.1.2 and shown in Table 5-2.

As is typical of fill that may contain construction debris, recovery was poor for some boring intervals, which made precise determination of sample depths difficult. Soil boring locations SB-11, SB-12, SB-14, and SB-15 were located on a 6-inch concrete pad installed by the tenant (approximately 6 months prior to 2021 fieldwork). After permission from tenant, the drill rig was used to drill through the concrete pad to collect surface and subsurface samples. The highest percentages of recovery were in the drilling cores removed from SB-11, SB-12, SB-14, and SB-15. This is most likely due to compaction of material in preparation for construction of the concrete pad.

In the event that groundwater was encountered, and the borehole appeared to produce water sufficient for sample collection, a groundwater sample was collected. A more detailed discussion of groundwater sampling is discussed in Section 5.4.4.

A strong diesel fuel odor was encountered in some soil cores collected from the parking lot area and the northwestern tip of the beach. Specifically, the odors were strong in samples SB-10 and SB-12 (Figure 5-4). A faint diesel fuel odor was also noted in SB-11.

5.4.2 Downhole Gamma Logging

Downhole gamma logging was performed in each borehole to 12-feet bgs, point of refusal, or prior to encountering groundwater. As specified in the PWP (USACE 2021a) to reduce the potential for borehole collapse, a section of 2-inch diameter polyvinyl chloride (PVC) casing, capped at one end, was inserted into the borehole to allow for downhole scanning. Downhole gamma scans were not performed on soil borings less than 2-feet bgs or when groundwater filled the soil boring immediately after the soil boring was completed (e.g., beach area).

Gamma rate meter counts were logged from each borehole with a NaI(Tl) scintillation detector. The scintillation detector was suspended from a tripod, which was used to obtain these measurements by advancing the rate meter at approximately 0.5 inches per second. In addition, static counts were collected at fixed points within the borehole (approximately 5 readings per foot). Gamma count rates were logged for each borehole and are further discussed in Section 6.1.2 and shown in Table 5-3. Downhole gamma scan results were not taken into consideration when determining the location for sample collection for each core. This was due to poor recovery of the sample cores as well as uncertainty of the actual depths of elevated downhole gamma scan results on the cores. The comparison between downhole gamma scans and a scan of the associated soil core is included in Section 6.1.2.

5.4.3 Test Pits

Four test pits were excavated during this SSI, using a Kubota U35-4 mini excavator. The locations are presented in Figure 5-4. The locations of the test pits were chosen to further delineate the eastern and southern extent of contaminants in the elevated radiological boundary. Each test pit was excavated to a maximum depth of 8-feet bgs or refusal and up to 6-feet in length, with a nominal width of 2-feet (approximately the width of the excavator bucket). Soils were removed from each test pit in 2-feet lifts. Each lift of excavated soil was spread uniformly and was then scanned and inspected for the presence of contamination (ore). The first two floors of test pits were also scanned for contamination using the same methods as the gamma survey walkover, discussed in Section 5.3, except for the use of GPS with the survey instrument. The floors of the test pits were not scanned below 4-feet, per the Accident Prevention Plan (USACE 2021c). For the gamma survey of the floor and walls of the test pits, survey count rates were recorded manually in field logbooks. A photograph log of subsurface conditions was maintained and is included in Appendix G. Upon completion of the test pit characterization, the excavation spoils were placed back in the test trench and compacted using the bucket of the excavator.

A total of eight soil samples from the test pits (two from each test pit) were collected in areas of elevated radioactivity identified during gamma scans of the excavated material and analyzed for Ra-226 (Pb-214, Bi-214), Th-234, Ac-228, and K-40 by gamma spectroscopy, and U isotopes (U-234, U-235, U-238) by alpha spectrometry. Gamma scan readings of the spoil piles indicated higher readings in the first levels removed (0 to 2-feet bgs and 2 to 4-feet bgs, respectively). One sample was collected from the first lift and one sample was collected from the second lift of each of the four test pits. Results of these analyses are discussed in Section 6 and are also shown in Table 5-4.

Groundwater was encountered at each of the four test pit locations at approximately 5 to 7-feet bgs. A sump pump was placed at the bottom of Test Pit 2 (TS-02) and Test Pit 3 (TS-03) for dewatering purposes. The sump pump was used to remove water at the rate of approximately 40-gallons per minute for at least 15 minutes and the water level did not subside. This level appeared to match the elevation of the tide in the Kill Van Kull waterway. The area of the groundwater in the bottom of the test pit was approximately 6-feet in length, 2-feet wide, and 6-inches in depth. It was decided to terminate the dewatering and stop the attempt to excavate the test pit further. At test pit locations including Test Pit 1 (TS-01), TS-02, and TS-03, groundwater was encountered at approximately 5 to 6-feet and the digging became extremely difficult at approximately 6-feet bgs. Groundwater was encountered at approximately 6-feet bgs in Test Pit 4 (TS-04),

and the excavation was terminated at approximately 7-feet bgs. Larger riprap was encountered in TS-01, TS-02, and TS-03 at approximately 6-feet bgs, but not encountered in TS-04.

5.4.4 Groundwater Sample Collection

Groundwater samples were collected from four borehole locations in accordance with GEO's groundwater sampling procedure contained in the PWP (USACE 2021a) (Figure 5-5). Four borehole locations produced enough groundwater to sample with bailers.

Once borings were advanced to their final depth (maximum 12-feet bgs), 2-inch outside diameter PVC casings with an open bottom end were temporarily installed to prevent borehole collapse and to facilitate sampling. A dedicated bailer was used to collect groundwater in SB-06, SB-07, SB-09, and SB-10. Groundwater quality parameters (pH, dissolved oxygen, conductivity, turbidity, and temperature) were collected and are provided in Table 5-5. The samples were analyzed by the off-site laboratory for gross alpha, gross beta, Ra-226, and Ra-228 using drinking water standards. Alpha spectroscopy analysis was used to determine the isotopic concentrations of the three uranium isotopes. Results of these analyses are presented in Table 5-6.

5.4.5 Waste Characterization

in the original document. %: percent

Two composite soil samples for waste characterization were collected from the test pit spoils and analyzed for volatile organic compounds (VOCs), semi volatile organic compounds (SVOCs), and metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) using toxicity characteristic leaching procedure. One composite sample was collected from the first lift (0 to 2-feet bgs) of TS-01 and TS-02 and the second composite sample was collected from the first lift (0 to 2-feet bgs) of TS-03 and TS-04. These locations are detailed in Figure 5-6.

Specific analytes include the chemicals listed in Table 1 of 40 CFR 261.24. Soil samples were also evaluated to determine ignitability (40 CFR 261.21), corrosivity (40 CFR 261.22), reactivity (40 CFR 261.23), and toxicity (40 CFR 261.24). Results of these analyses are discussed in Section 6.1.3. and are included in Tables 5-7 through 5-9, respectively.

Additional waste generated included scanned PPE, used acetate sleeves, and used PVC pipes. Soils and liquids removed from the ground were returned to the location where they were excavated, and thus did not generate waste. Protective clothing, acetate sleeves, and waste PVC pipes used during sample collection were contained in garbage bags, scanned to ensure they were not contaminated, and then disposed of in trash receptacles.

Since the contamination known at the SIW Site is suspected of being uranium ore, the chemicals found in that ore may also be present on-site. The uranium ore purchased by the MED had the following average non-radiological composition (percentages are rounded) (MED 1942).

$20.4\% SiO_2$	6.3% PbO
0.7% FeO	0.2% CuO
$2.1\% \text{ Al}_2\text{O}_3$	$0.2\% P_2O_5$
1.7% CaO	0.1% Co+Ni
2.9% MgO	1.1% Na ₂ O ₃ [printed as "No ₂ O ₃ (?)" in MED 1942]*
%: percent *Note: The referen	nce is likely a typographical error, further emphasized by the "(?)" contained

Lead is the only potential metal found in the ore that is regulated by the Resource Conservation and Recovery Act (RCRA). It should be noted that although some ore dissolution may occur due to local environmental factors, it is expected that metals in waste samples (especially lead) may be co-located with the radioactive contamination. From the analysis further discussed in Section 6.1.2, it was observed that highest concentrations of lead were found in the area of elevated radiological activity, as determined by the gamma walkover survey. Chemicals other than lead, if found on-site, are not related to the uranium ore, and therefore, are not considered FUSRAP waste.

5.5 SEDIMENT SAMPLING

To determine the contaminants (if any) in near-shore sediment, samples were collected from near-shore areas at mean low tide. A tidal chart for the 2021 SSI fieldwork is included in Table 5-10. Since there is evidence that fishermen use the shore area at the SIW Site, it was recommended that sediment samples offshore of the most contaminated part of the SIW Site be collected and analyzed to evaluate potential risks from exposure to this sediment.

5.5.1 Sediment Sample Collection

Sediment samples were collected from 10 locations at the shoreline along the northern and western boundary of the SCA (Figure 5-7). Samples were collected from 0 to 0.5-feet bgs and were collected with a stainless-steel trowel. The stainless-steel trowels were decontaminated between sediment sampling locations. After the sediment samples were collected, the excess sediment was returned to the hole from which it was extracted. Excess sediment was spread evenly around the sample location.

Sediment samples were analyzed for Ra-226 (Pb-214, Bi-214), Th-234, Ac-228, and K-40 by gamma spectroscopy, and U isotopes (U-234, U-235, U-238) by alpha spectrometry. Results of these analyses are discussed in Section 6.1.2. and are included in Table 5-11.

5.6 QUALITY CONTROL SAMPLING

Blind field duplicate samples were collected for surface soil, subsurface soil, sediment, and groundwater matrices. The duplicates were collected simultaneously or in immediate succession with the primary samples collected at that location. The duplicates were recovered from the same sample and in the same manner as the original to ensure homogenization of the sample. Duplicates were then split between the appropriate containers, and treated in the same manner during storage, transportation, and analysis. QC blind duplicate samples were collected at one sample for every 10 primary samples collected or portion thereof. MS/MSD pair samples collected at one pair for every 20 primary samples collected or portion thereof. Duplicate samples were numbered, logged, and transferred under GEO COC procedures to the off-site laboratory for analyses. Comparability of the QC samples with the original primary samples is discussed in detail in the Quality Control Summary Report (Appendix B).

5.7 AIR QUALITY MONITORING

Air monitoring was performed during field activities that had the potential to generate respirable, contaminated, airborne particulates. These activities included brush clearing, direct push drilling, surface and sediment sample collection, and test pit excavation. Air monitoring surveys were performed which measured gross alpha activity at or near the SCA to evaluate potential off-site emissions. The predominant wind direction was checked each morning and afternoon to ensure that the monitoring stations were placed at downwind and upwind locations. Air samples were collected downwind and upwind of the site boundaries during work activities to monitor potential offsite exposure during SSI work activities.

5.8 INVESTIGATION DERIVED WASTE AND EQUIPMENT SCANS

Minimal investigation derived waste (IDW) was generated during this investigation and mainly comprised of spent PPE including Tyvek suits, boot covers, and nitrile gloves. Soil or liquid IDW was not generated, since excavated test pit soil, as well as discarded soil boring cores, and surface and sediment sample spoils were placed back into their place of origin as backfill. Spent PPE was bagged and a release survey was conducted on each bag prior to release. The release survey for the bagged PPE was conducted in a similar manner as the release survey for equipment used on-site by collecting readings from the sides, top and bottom of the bags. The bags were properly disposed in waste receptacles.

PPE and equipment were scanned following work within the designated radiation zones to ensure no contamination was carried outside of the zone. Equipment used within the radiation zones underwent release surveys with a NaI(Tl) gamma scintillation detector, Ludlum Model 2929 Alpha/Beta Scaler, and a Ludlum Model 2360 Ratemeter. The results of the surveys, included in Appendix I, confirmed no contamination was present on the equipment.

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, A	New York April 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

6. SITE CONTAMINATION, EXPOSURE PATHWAYS, AND TARGETS

The objective of this section is to assess the impact of residual radioactivity in the SCA at the SIW Site.

6.1 SOIL EXPOSURE PATHWAY

6.1.1 Targets

As noted above, the area of the SIW Site known to contain radiological contamination above applicable screening levels, the SCA, is overgrown with thick vegetation and the southern portion of the SCA is being used by the property tenant as part of a concrete batch plant. Because the SIW Site is being used as an active concrete batch plant, access to the contaminated area is limited, the most plausible exposure targets include outside SIW Site workers and SIW Site intruders. Furthermore, there is no complete barrier to prevent local fisherman and intruders from entering the contaminated area by water from the Kill Van Kull waterway. The most likely soil exposure routes include external gamma radiation, inhalation of respirable, contaminated, airborne particulates, and inadvertent ingestion of contaminated soil.

Bank erosion adjacent to the contaminated region of the SIW Site due to tidal activity, wave action associated with passing ocean-going vessels, storm surges such as Hurricane Irene, Hurricane Sandy (August 2011 and October 2012, respectively), and periodic heavy rainfall events has the potential for transporting contaminated soil into the near-shore area of the Kill Van Kull. Potential uptake of contaminated sediment by bottom-feeding fish and/or shellfish may occur and represent another exposure pathway. The area of impacted sediment appears to be limited, and unlikely to have a significant impact on fish and shellfish populations.

6.1.2 Radiological Contamination Results

For this SSI, sediment, surface, and subsurface soil samples were collected and analyzed as described in Section 5.

Soil and sediment samples were analyzed by gamma spectroscopy for Ra-226 (Pb-214, Bi-214), Ac-228, K-40, Th-234, and by alpha spectrometry for the uranium isotopes (U-234, U-235, and U-238). Radionuclide activity data for soil samples collected at the SIW Site are presented in Tables 5-1 through 5-11 (excluding Table 5-5 Water Quality Parameters and Table 5-10 Tidal Chart).

6.1.2.1 Gamma Survey

The gamma walkover survey was performed as described in Section 5.2.2 and covered the majority of the SCA. There were rocky areas near the shoreline that were very slippery with difficult terrain, which limited surveyor access. The gamma walkover survey provided the gamma count rates in cpm and corresponding location data. The data collected was evaluated including color coding to reflect specific ranges of count rates (Figure 5-1).

In Figure 5-1, the blue data points represent background levels of gamma radiation (\leq 10,000 cpm, see Section 5.2.2). The area with elevated count rates (green to red data points) are generally consistent with the results from the previous gamma walkover survey collected during the 2011 SI fieldwork (USACE 2017). The elevated radiological boundary was developed based on the gamma walkover survey count rates and is included on Figure 5-1. Two areas of note in which higher count rates were identified in the 2021 SSI compared to the 2011 SI are the following areas:

- A small, localized area in the northern portion of the elevated radiological boundary as shown on Figure 5-1 with counts rates up to 44,000 cpm
- An area ranging from 12,000 to 16,000 cpm on the very southern portion of the SCA along the shoreline

A total of 10 biased samples was collected and adjustments were made to some systematic sample locations to either investigate or further bound the elevated areas identified during the gamma walkover survey. The biased locations include the following soil borings:

- Locations SB-16, SB-17, SB-19, and SS-25 were collected to investigate and bound areas identified in the northern portion of the SCA.
- Locations SB-18 and SB-24 were added to bound the SCA to the west.
- Locations SS-21 and SS-22 were added to bound the SCA to the east.
- Location SB-23 was included to bound the SCA to the south.
- Location SS-20 was added to investigate the elevated counts in the southern portion of the SCA along the shoreline.

Systematic location SB-10 was moved a small distance to investigate the elevated count rates in the southeastern portion of the SCA. Figures 5-2, 5-3, and 5-6 show the location of SCA, the surface, subsurface and sediment sampling locations, respectively.

6.1.2.2 Soil Screening Levels

To evaluate the presence of elevated concentrations of specific radionuclides in sediment and soils, project screening levels were set to either the higher of a background threshold value derived from background data from previous inspections (USEPA 2009a and USACE 2017) or receptor-specific (Residential) risk-based screening levels for soil using USEPA's online calculator Preliminary Remediation Goals for Radionuclides (PRG) set to a target risk of 10⁻⁶ (USEPA 2021). Table 6-1 provides the background data threshold values, the calculated risk-based screening levels, and project screening levels for the appropriate radionuclides. This screening approach evaluated risks under residential land use as a conservative approach given that the SIW Site is zoned as commercial/industrial.

6.1.2.3 Soils in the Surface Characterization Area

The project screening levels in Table 6-1 were used as threshold values to identify those soil samples at the SIW Site where the radionuclide concentrations are elevated. The results are illustrated in multiple figures, where radionuclides in the surface, subsurface soil, and sediment samples that exceed the screening levels are presented in a sequence representing sample depths of 0 to 0.5-feet bgs, 0.5 to 4.0-feet bgs, and greater than 4-feet bgs (Figures 6-1 through 6-10). When cover material was present, the depths for this evaluation were determined excluding the cover material.

Two soil samples were collected from each test pit based on the gamma scans. Sample results from the 0 to 2-feet and 2 to 4-feet interval of the test pits are included in the 0.5 to 4.0-feet interval for this evaluation.

Figures 6-1 through 6-9 present the results for Ra-226, U-234, U-235, and U-238, respectively. Th-234 is in secular equilibrium with U-238. Since the U-238 screening level is more conservative, the U-238 results were used to evaluate the soil results. Figures were included for the depth intervals in which a

screening level was exceeded for radionuclides of interest. In these Figures, white colored dots indicate a sample that did not exceed the screening level, yellow ones indicate a sample that exceeded the screening level by less than 5 times, and red dots indicate a result that was greater than 5 times the screening level. If two samples were collected at the same location within the designated interval, the higher result was used in the figures. For subsurface soils greater than 4-feet in depth, only Ra-226 exceeded screening level, and no other radionuclides of interest exceeded the screening level at this depth. The majority of elevated gamma counts identified during the downhole boring gamma surveys were within the top 2.5-feet of soil. The test pit gamma count rates and concentrations of radionuclides of interest generally decreased with increasing depth in test pits. One test pit sample collected below 4-feet (i.e., from TS-04 within the 4 to 6-feet depth interval) exceeded the Ra-226 screening level with a value of 2.74 picocuries per gram (pCi/g).

There were exceedances of Ra-226 above the screening level within the SCA at all the depth intervals (Figures 6-1 to 6-3). The eight test pit samples exceeded the Ra-226 screening level. The samples at locations outside the elevated radiological boundary to the south, below the concrete (SB-11, SB-12, SB-14, and SB-15) that had Ra-226 concentrations above the screening level, also showed elevated count rates during the downhole borehole logging ranging in depth from approximately 1.5 to 5-feet below the concrete and gravel cover material. The deepest elevated downhole gamma counts occurred at SB-14 which had a Ra-226 concentration of 2.44 pCi/g at the 4.5-6.5-feet depth interval. Based on the decreasing downhole count rates beyond 5-feet in the southern part of the SCA, it is not likely there would be Ra-226 exceedances at deeper depths.

Screening level exceedances for uranium isotopes occurred at boring location SB-17 for the surface and the 1 to 2-feet depth intervals (Figures 6-6 and 6-7, respectfully). TS-02 and TS-04 also had uranium data above the screening levels. The deepest interval (3 to 4-feet depth) with the three uranium isotopes exceeding the associated screening levels was in TS-02. There were also 6 additional locations within the top 2-feet of soil in which U-235 exceeded the screening level (Figure 6-6 and Figure 6-7). Two of the 6 locations were from outside the elevated radiological boundary determined by the gamma walkover survey. The highest Ra-226, U-234, U-235, and U-238 values were 347, 73.6, 3.8, and 73.3 pCi/g, respectively and were within TS-02 in the 0 to 2-feet interval (Figures 6-1 through 6-9).

6.1.2.4 Comparison of Results from the Current and Previous Inspections

Section 4 presented a review of the previous inspections conducted at SIW Site by USDOE (ORNL 1980), NYSDEC (1992), Region 2 of USEPA [in cooperation with NYSDEC and the New York City Department of Health (USEPA 2008)], and USACE (2017). During the first two investigations, soil samples ranged in depth from the surface to a maximum depth of 18-inches bgs. During the 2011 SI fieldwork activities, surface samples were collected from the 0 to 2-feet bgs interval and subsurface samples were collected to a maximum depth of 10-feet bgs (USACE 2017). The samples collected from the SIW Site were analyzed for a suite of radionuclides including Ra-226, U-235, and U-238. In the 2011 SI field investigation, soil samples were also analyzed for U-234. These radionuclides are the focus of this comparison. During the first two site investigations most of the samples were collected from the region of the SIW Site where gamma walkover survey results indicated elevated count rates (Figures 4-2 and 4-3). During the 2011 SI fieldwork activities, samples were collected both within and outside the designated SCA for 2021 SSI. The relevant data from previous investigations are presented in Appendix K. Surface soil, subsurface soil, sediment, and groundwater data for the 2021 SSI are shown in Tables 5-1 through 5-11 (excluding Table 5-5 Water Quality Parameters and Table 5-10 Tidal Chart).

The previous investigations at the SIW Site have consistently identified radioactivity in the upper 2-feet of soil that exceeds the 2021 screening levels. The concentrations in the surface soils for Ra-226, U-235, and U-238 are generally somewhat lower in the 2011 SI and the 2021 SSI than the two previous site investigations. Three samples (from Locations 072219, 072220, and 072221) from the NYSDEC (1992)

data had unusually high concentrations for the Ra-226, U-235, and U-238. However, it was noted that these samples had poor analysis precision due to the material consisting of organic wood material rather than soil resulting in insufficient sample quantities. Therefore, the reliability of these specific results is uncertain. With the exception of those three samples, the higher results from the NYSDEC (1992) data are of a similar magnitude to the results from TS-02 in the 0 to 2-foot layer (TS-02-002) which are 347, 73.8, 3.8, and 73.3 pCi/g for Ra-226, U-234, U-235, and U-238, respectively (Table 5-4).

The elevated results in the surface soil above the screening levels has mostly been within the elevated radiological boundary (Figure 5-1) identified during the 2011 SI and the 2021 SSI with the following exceptions:

- The 2011 SI identified three sample locations to the south and one to the east of the elevated radiological boundary with Ra-226 exceeding the 2021 SSI screening level. The 2021 SSI identified one sample location to the northwest of the elevated radiological boundary (SB-01) slightly over the Ra-226 screening level.
- One uranium sample result exceeded the screening level outside the elevated radiological boundary during the 2021 SSI was U-235, which was at SB-01. During the 2011 SI, there were no uranium samples results from outside the elevated radiological boundary that exceeded the current screening level.

The elevated uranium concentrations in subsurface soils above the screening levels were located within the identified elevated rad boundaries in both the 2011 SI and 2021 SSI. In the current SSI there were five locations to the south of the elevated radiological boundary with Ra-226 values slightly above the screening level compared to samples in the 2011 SI:

- In the 2011 SI, subsurface samples were collected and analyzed from the 0 to 5-foot layer and the 5 to 8-foot layer and results for Ra-226 in the area south of the elevated radiological areas ranged from approximately 1 to 1.8 pCi/g (USACE 2017).
- The 2021 SSI results exceeded the screening level for Ra-226 to the south of the elevated radiological boundary ranged from approximately 2.3 to 3.8 pCi/g indicating a slight increase in Ra-226 subsurface concentrations to the southern portion of the investigation area.

6.1.3 Non-Radiological Contamination Results

In addition to the sampling program that focuses on defining the distribution of radiological contamination at the SIW Site, two composite waste characterization samples were collected from the four test pits (Figure 5-4) and were analyzed for RCRA metals, SVOCs, and VOCs. The samples, WC-01 (composite samples from TS-01 and TS-02) and WC-02 (composite samples from TS-03 and TS-04) are in the elevated radiological boundary. An additional sample, SB-16-0000, was selected based on an elevated reading (>65,000 cpm). SB-16-0000 was inspected and scanned after the gamma scan walkover survey. This sample was collected near the shoreline and was found amongst many similar type rocks, which can be generally described as a black slag. In general, other than lead, which could be attributed to near-by facilities that would suggest higher than normal concentration of lead (e.g., leaded gasoline, leaded paint, etc.), there is no reason to expect association between non-radiological contamination at the SIW Site and the uranium ore that was stored there during the early 1940s (USEPA 2009c). The presence of these constituents is consistent with fuel spills that may have occurred at the industrial site, or a nearby lead manufacturing facility which was fully operational from 1839 to 1943.

The purpose of the non-radiological analyses is to provide preliminary information that might be needed to determine the final disposition of soil if remedial actions will be performed in the future. Most

of these chemicals (e.g., organic constituents), if detected, could not have been from use of the SIW Site for uranium ore storage but may be present due to decades of industrial use of the area.

The waste characterization data obtained from surface and subsurface soils at the three locations are presented in Tables 5-9 through 5-11. The majority of results for organic constituents (SVOCs and VOCs) were non-detects and either U or UJ qualified. Among the VOCs (Table 5-9), benzene, toluene, ethylbenzene, and total xylenes were commonly detected at one or more of the three sampling locations, but at low concentrations, as J qualified analytes. The presence of these constituents is consistent with fuel spills that may have occurred at the industrial site, although a definitive explanation for the presence of such contamination at the SIW Site is unknown and beyond the scope of this effort. Some other VOC analytes detected in some soil samples (e.g., acetone, methylene chloride, toluene, and 2-butanone) are not characteristic of SIW Site contamination. Most of the remaining VOC analytes were not detected in the samples (UJ qualified).

For the SVOCs, most analytes were not detected in samples from the three locations (Table 5-8). However, the polycyclic aromatic hydrocarbons (PAHs) that were included in the soil sample analyses are the most common contaminants that were detected. Detection levels were moderately less than those in the 2011 SI (USACE 2017). The PAHs are common compounds found in coal and petroleum-based fuels and are frequently deposited from asphalt pavement from the atmosphere as products of combustion. Their presence is not unexpected in soils in a heavily industrialized area, in a highly populated region where diesel and gasoline fuels are burned by vehicles, and with coal-fired electrical power plants surrounding the New York City region. The presence of the concrete slab on the SIW Site, which is approximately 6-inches thick, may have contributed to their presence. Also, asphalt debris was observed in several of the soil cores located near the asphalt area of the SIW Site. As discussed in Section 5.4.1, fuel odor was observed in several subsurface borings. Several SVOC analytes were detected in soil samples and are considered to be common laboratory contaminants rather than characteristic of SIW Site contamination.

Although there may be many potential sources of metal contamination at the SIW Site, including industrial and other regional activities, the possibility that the uranium ore may have associated non-radiogenic metal constituents cannot be ignored. The uranium ore in the Belgian Congo was hydrothermal in origin and is known to have a variety of associated metals that were deposited along with the uranium-bearing minerals. An assay of the non-radiogenic constituents in the original ore stored at the property in the early 1940s is provided in Section 5.4.5. It shows that a significant concentration of lead [6.27 percent (%) lead(II) oxide (PbO) – approximately 58,200 milligrams per kilogram (mg/kg) of lead (Pb)] and lesser amounts of a variety of other metals (e.g., copper, cobalt, and nickel) were present.

A majority of the metal compounds analyzed (Table 5-7) included in the 2021 SSI, arsenic, barium, cadmium, chromium, lead, selenium, silver, and mercury were detected in soil samples from at least two of the three locations, except for silver. Concentration results for WC-01 were deemed valid detections at the sample location. The sample from WC-02 yielded J qualified concentrations for the analytes arsenic, barium, lead, and mercury. Most of the observed metal concentrations were low, but lead and arsenic were detected. The high estimated concentrations of lead (as high as nearly 1000 mg/kg) may possibly be related to the ore stored at the property, but also may be attributed to the extensive former use of leaded gasoline in the surrounding region (substantial marine traffic observed during 2021 fieldwork) and deposition at the SIW Site from the atmosphere.

6.2 GROUNDWATER EXPOSURE PATHWAY

Conclusions from the 2011 SI stated that groundwater sampled from the SIW Site were not a concern to human health and the environment. During the 2021 SSI, groundwater samples were collected from four locations (Figure 5-5). The 2021 SSI considers the possibility that infiltration of precipitation at the SIW

Site may result in leaching of radionuclides from contaminated soils and transport to surface water where mixing occurs.

6.2.1 Targets

As a manmade structure, materials at the SIW Site consist of a combination of native glacial till and artificial fill. This artificial fill was encountered to a depth of at least 3-feet bgs in most boreholes (Appendix F). Although either type of material could be coarse enough to make an aquifer, the total thickness is expected to be on the order of 10 to 20-feet. The SIW Site extends into the Kill Van Kull which indicates that groundwater extracted from the construction materials would likely be highly influenced if not representative of adjacent surface water. Groundwater flow is expected to be to the north and influenced by the tides (approximately 4 to 5.5-feet daily fluctuation).

Groundwater underlying Staten Island is recharged primarily by precipitation with an annual average total of 46.3-inches. The groundwater originates in the central portions of the island and radiates outward. This groundwater flow in the vicinity of the SIW Site is expected to be to the north. Island fresh water is surrounded on all sides by saltwater interfaces (Soren 1988). As mentioned in Section 3.2, the SIW Site is underlain by diabase, which has low permeability and is not considered a viable source of groundwater. Staten Island groundwater has not been used for drinking water since 1970 (Soren 1988). Instead, New York City receives drinking water from upstate resources via aqueducts and piping.

There is no expectation that shallow groundwater at the SIW Site will result in exposure to outside workers or intruders. Furthermore, groundwater discharging to the near-shore environment of the Kill Van Kull on the north and west sides of the SIW Site will undergo rapid dilution by mixing with the surface water. Once groundwater underlying the SIW Site discharges into the Kill Van Kull, it transitions from a groundwater to a surface water exposure pathway with associated targets. The surface water component of potential exposure is discussed in Section 6.3.

6.2.2 Results

The analytical results for the four groundwater samples are presented in Table 5-6. The screening levels for the radionuclides are included in Table 6-2. These screening levels are appropriate for drinking water rather than for shallow groundwater at the SIW Site. Although there is no intention of, or likelihood for, human consumption or exposure in the future. Drinking water screening levels were selected as conservative values. The groundwater eventually is discharged into the Kill Van Kull. With the exception of Ra-228 in GW-10-1220, the isotope-specific activity data in Table 5-6 are below the appropriate screening levels. The Ra-228 result of 5.83 picocuries per liter (pCi/L) from GW-10-1220 was slightly higher than the screening level of 5 pCi/L.

The water quality parameters collected during groundwater sampling are presented in Table 5-5. In order to perform analyses for gross alpha and gross beta on the SIW Site groundwater samples, a very small volume of water could be used for evaporation in preparation for alpha and beta counting. The effect of this factor results in very high values of sample specific detection limits [reported as Minimal Detectable Concentrations (MDCs) in Table 5-6], approximately 50 times higher than typical. Gross alpha was not detected at this high MDC in GW-06-1205 but likely would have been detected at typical MDCs. Due to the high MDCs reported for the gross alpha samples, more credibility should be placed on the isotopic results than the gross alpha values.

The gross beta results for the samples exceed the respective uncertainties and MDCs with magnitudes between approximately 100 and 800 pCi/L. This range of concentrations is greater than the 50 pCi/L threshold level for gross beta results that USEPA uses as a trigger for analyzing samples for specific beta emitters. However, the 50 pCi/L threshold applies to drinking water. The sampled groundwater has no

foreseeable use as drinking water and is likely significantly mixed with saline water from the Kill Van Kull. Also, due to the amount of solids present in the dried samples, it is reasonable to conclude that a significant portion of gross beta activity is the result of K-40 (a naturally occurring radionuclide). While the specific activity affected by K-40 cannot be quantified, it is potentially significant in regard to beta counts. It is reasonable to assume that both the gross alpha and beta results presented in Table 5-6 do not warrant concern for potential risk to human health and the environment.

6.3 SURFACE WATER EXPOSURE PATHWAY

Surface water does not exist on the SIW Site; however, it is bordered along its northern and western boundaries by the Kill Van Kull waterway. It is noted in USACE (2021b) that significant erosion occurs along the northwest portion of the SIW Site. This is evident in aerial photographs and was confirmed during the 2021 SSI fieldwork. Photographs from previous investigations show the known area of contamination to extend to the areas impacted by erosion and/or tidal influences. Wind, river inflow, and tidal influences commonly cause the water current and sediment flows in the Kill Van Kull to switch directions (Chant 2001).

6.3.1 Targets

The Kill Van Kull is an interstate water body and is classified by the NYSDEC as Class SD (NYCDEP 2021). The usage of Class SD saline surface waters is fishing, so SD waters should be suitable for fish survival. It is also classified by the state of New Jersey as impaired (contamination exceeds New Jersey water quality standards for dioxin, pesticides, PAH, and polychlorinated biphenyls) and SE3 [Surface Water Quality Standards – New Jersey Administrative Code 7:9B (New Jersey 2016)]. The designated uses of SE3 saline waters of estuaries are: secondary contact recreation, maintenance and migration of fish populations, migration of diadromous fish, maintenance of wildlife, and other reasonable uses. Previous reports of the Kill Van Kull area indicate petroleum spills and other chemical contamination (New Jersey Department of Environmental Protection 2006). The Kill Van Kull is not a source of public drinking water.

6.3.2 Results

In Section 6.2.2, the analytical results of four groundwater samples obtained during the 2021 SSI are described. Available compositional evidence indicates that groundwater at these locations has been impacted by leaching and transport of radionuclides associated with soil contamination at the SIW Site. This observation also supports the conclusion that possible discharge of potentially radionuclide contaminated groundwater to the Kill Van Kull waterway may occur.

Based on the data presented in Section 6.1.2, there is evidence of radiological contamination in surface soils that poses a potential threat of release (via erosion and/or transport) into the surface water. However, it cannot be determined at this time, based on available evidence, if the slightly elevated concentrations of several radionuclides in surface soils on the beach exposed at low tide are indicative of a broader release issue.

6.4 DATA ASSESSMENT

The analytical data collected during the SSI (located in Appendix D) were evaluated for quality, accuracy, precision, comparability, sensitivity, representativeness, and completeness. Field QC samples analyzed include field duplicates and MS/MSD sample pairs. Laboratory QC samples include laboratory control samples, laboratory control sample duplicates, and method blanks. Results of the field and laboratory QC sample analysis are provided in the project QCSR (Appendix B).

A summary of the QC results for the soil and groundwater samples that were collected as part of the 2021 SSI fieldwork activities can be found in the project QCSR (Appendix B). The results of the laboratory and field QC sample analyses presented in the QCSR indicate that, overall, the laboratory conducted the field analyses with acceptable accuracy, precision, comparability, sensitivity, representativeness, and completeness for the radionuclides and chemicals of interest.

Validation of the analytical data was performed by subject matter experts and the data validation report can be found in Appendix B. The gamma U-238 result based on the Th-234 gamma result for three samples (SS-DUP-17, TS-02-0002, and TS-02-0304) were rejected due to incomparable alpha and beta U-238 results, however, the U-238 results using alpha spectroscopy were accepted as usable data and were used for evaluation against soil screening levels. There were no other major issues identified by the validation.

7. SUPPLEMENTAL INFORMATION

7.1 EROSION EVALUATION

As part of the 2021 SSI, an evaluation of shoreline erosion of the SIW Site (specifically the SCA) was completed and shows a significant rate of erosion along the Kill Van Kull waterway. The shoreline discussed in this SSI Report is elevated and heavily vegetated (Figure 7-1). As indicated in previous inspections, the shoreline is eroding to the southeast and undercutting a majority of the elevated area along the northern edge of the SCA during tidal change (Figure 7-2). A sample from SB-17, located in the undercut section of the shoreline, yielded one of the higher elevated readings for U-235 surface soil exceedances (Figure 6-6).

The retreating shoreline could lead to the contaminants from the SCA to be displaced into the Kill Van Kull waterway. A comparison of a civil survey performed in 1999 (Appendix L2) to the civil and hydrographic survey conducted in 2021 (Appendix L1), confirmed the shoreline erosion. This erosion may be from continuous wave action exacerbated by storm surges during the two hurricanes discussed in Section 3.1. Using historical shoreline data, the shoreline is retreating further south and east within the elevated radiological boundary (Figure 7-3). Historical evidence combined with the current rate of erosion indicate that the elevated shoreline will likely erode a majority of the vegetated area of the SCA.

As previously referenced, the SIW Site was a manmade pier built circa 1830 (USACE 2017) and is shown in an 1844 National Oceanic and Atmospheric Administration (NOAA) navigational chart as a singular, rectangle pier (Figure 7-4). The physical shape of the SIW Site has changed over time and appears to be correlated with the building structures added to, and removed, from the property. The width of the pier seemed to increase by 1887, likely due to fill brought in to form a structural foundational for site buildings. The first evidence of buildings at the SIW Site are shown in an 1887 NOAA navigational chart (Figure 7-5). The width of the pier seemed to increase as buildings are erected on the SIW Site and the adjacent property to the east. These buildings are further detailed in the 1898 Sanborn Fire Insurance Map (Figure 7-6). By 1900, the SIW Site had a rigid, well-defined shape strengthened by the timber sheet pile bulkheads.

By 1917, a small shed was added to the western area of the SIW Site on fill material and a thin, elongated pier was built to the east of the SIW Site (Figure 7-7). For this SSI, it was not determined if the shed was built on artificial fill or natural fill brought in by longshore drift. In an aerial photograph taken in 1924, it appears as if the area between the SIW Site and the pier to the east of the SIW Site was filled in. The small shed to the west of the SIW Site is no longer there, and silos/tanks are shown (Figure 7-8). In a 1938 Sanborn Fire Insurance Map (Figure 7-9), a storage building is shown on the western section of the SIW Site fill area where the shed was observed in Figure 7-7.

An aerial photograph from 1944, clearly showed the silos/tanks, storage building on the western side of the SIW Site, and the well-defined shape of the SIW Site which protrudes into the Kill Van Kull waterway (Figure 7-10). Prior to 1951, two of the silos/tanks were removed; however, industrial activity conducted at the SIW Site appears to continue as in previous years (Figure 7-11). The aerial photographs published from 1940 (Figure 2-3), 1944 (Figure 7-10), and 1951 (Figure 7-11), illustrate that barges and other types of vessels were docking immediately adjacent to the shore on the northern and western sides of the peninsula. By 1970, all but two of the buildings have been removed and there appeared to be substantial fill to the east of the SIW Site (Figure 7-12). The timbers used to strengthen the SIW Site still appear intact in 1970 (Figure 7-12).

Prior to 1980, all of the buildings on the SIW Site were removed (Figure 7-13). Comparing Figure 7-13 to Figure 2-5, there is a noticeable change in the defining shape of the SIW Site's northwest and southwest corners, most likely due to deterioration of some of the timber crib bulkheads, leading to erosion. Later photographs (first clearly observed in Figure 2-5, from 1988) indicate that the northern shoreline of the constructed peninsula, extending into the Kill Van Kull waterway, is no longer as sharply defined as earlier photographs.

From 2001 to 2010, and from 2010 to 2018, there was a significant impact due to erosion on the SIW Site, particularly along the northern and northwestern shoreline (Figures 7-13 and 7-14, respectfully). Reference markers and line segments were used to demonstrate the erosional effect on the Kill Van Kull and SIW Site shoreline for Figures 7-13 and 7-14. With respect to the northern edge of the SIW Site (Figure 7-14), from 2001 to 2018, there was approximately 150% increase in beach area between the reference markers and the northwest shoreline and a 200% increase in the northeastern edge of the shoreline. Between 2001 and 2010 in the northwestern section of the SIW Site, there was approximately 50% increase in beach area between the reference markers and the shoreline (Figure 7-15). Between 2010 to 2018, there was approximately 100% increase in beach area between the reference markers and the shoreline (Figure 7-15).

While there appears to be significant increase in shoreline erosion due to major storms in the SIW Site area (i.e., Hurricane Irene and Hurricane Sandy), it is also clear that since 1980 and the removal of building structures, there has been significant erosional impact at the SIW Site. During the 2011 SI and the 2021 SSI fieldwork, foundation pillars (brick and concrete) for buildings that had been on the SIW Site, were partially uncovered along the northwestern section of the SIW Site. The semi-exposed structures along the undercut shoreline (Figure 7-2), likely are slowing the effects of shoreline erosion. Soil boring cores, test pit excavation, drilling refusal, and drilling equipment damage at approximately 3 to 4-feet along the SIW Site's northwestern shoreline, indicate the presence of multiple foundation pillars. While the pillars may be slowing the effects of erosion, the evidence shown indicate that erosion will continue along the shoreline. Boring logs and geotechnical sampled data from the 2021 SSI fieldwork confirm previous lithological descriptions of a mostly clayey sand, which has the potential for increased rates of erosion.

Historical evidence indicates erosion has contributed to the depletion of the vegetated area of the SCA beginning in the early 1980s. The shoreline in Figure 5-1 shows that during high tides, a portion of the elevated radiological boundary is underwater. There is reasonable risk that contamination known to be in the SCA of the SIW Site is exposed to the Kill Van Kull. Erosion is expected to continue removing soils from the SCA, exposing higher levels of contamination to be transported by the Kill Van Kull tide.

7.2 RADIOLOGICAL ANALYSIS

7.2.1 Evaluation of Uranium Present within the Staten Island Warehouse Site

In terms of radioactivity contribution, natural uranium is composed of 48.6, 2.2 and 49.2% U-238, U-235, and U-234, respectively (Minteer et al 2007). As such, the U-238 to U-234 radioactivity ratio for natural uranium of 0.98 (i.e., 48.6 divided by 49.6) is expected.

Although depleted uranium concentrations are subject to some variability, activity concentrations of U-234, U-235, and U-238 are typically on the order of 8.4, 1.45, and 90.14%, respectively. Given that both U-235 and U-234 are extracted from natural uranium during the enrichment process, the residual concentrations of these isotopes present in depleted uranium result in activity ratios of U-238 to U-234 and U-238 to U-235 of 10.7 and 62.2, respectively. Comparing these activity ratios from natural uranium and depleted uranium, the ratio of U-238 to U-234 would change by a factor of about 10.9 (from 0.98 to 10.7) while the ratio of U-238 to U-235 would change by a factor of about 2.9 (from 21.7 to 62.2).

As noted above, concentrations of U-234 and U-238 in natural uranium are similar and are present at over 20 times the U-235 concentration. As such, U-234 and U-238 concentrations are commonly used when evaluating isotopic ratios based on activity concentrations from radiological analysis (e.g., alpha spectrometry) to determine whether individual samples contain natural, depleted, or enriched uranium. Activity concentrations of U-235 are commonly present at levels below applicable lower limits of detection such that the data does not lend itself to detailed statistical analysis.

Calculation of U-238 to U-234 ratios for SIW Site surface soil samples collected in September 2021, reflect ratios ranging from 0.78 ± 0.22 to 1.35 ± 0.23 with a mean of 1.08 and a mean value for total propagated uncertainty of 0.26. (Table 7-1). Similarly, for subsurface soils U-238 to U-234 ratios ranged from 0.87 ± 0.16 to 1.46 ± 0.36 with a mean of 1.06 and a mean value of the total propagated uncertainty of 0.22. (Table 7-2). Although the U-238 to U-234 ratios are slightly higher than the 2011 SI samples, the average ratios with the total propagated uncertainty are within the expected range for natural uranium and it is reasonable to conclude that uranium present at the SIW Site is natural uranium.

7.2.2 Evaluation of Radium Present within the Staten Island Warehouse Site

Given the absence of significant contaminant migration as a result of differences in solubility, Ra-226 (being a member of the naturally occurring U-238 decay series) decays with the same apparent activity concentration as the uranium parent. Comparison of U-238 and Ra-226 activity concentrations in surface soils reflects U-238 to Ra-226 ratios ranging from 0.51 ± 0.49 to 6.7 ± 0.48 with a mean value of 1.17 and a mean value of uncertainty of 0.25 (Table 7-1). The upper bound ratio of 6.7 may be representative of an outlier, as the next highest ratio for surface soils is 1.78 ± 0.16 . Similarly, the U-238 to Ra-226 activity ratios in subsurface soils ranged from 0.21 ± 0.09 to 2.21 ± 0.30 with a mean value of 1.02 and a mean value of uncertainty of 0.22 (Table 7-2). Ra-226 activity concentrations are commonly more variable than those of U-238 due to a lack of homogeneity resulting from specific activity differences and differences in solubility. The mean ratios of U-238 to Ra-226 are 1.17 and 1.02 in surface and subsurface soils, respectively. The overall ratio is within the range that would be expected for uranium ore. The results are consistent with results obtained in the 2011 SI samples.

7.3 EXCAVATION DESIGN ANALYSIS

Typical ground pressure estimates for various excavators are given in Table 7-3. Given that no issues were encountered during the geotechnical/environmental investigation, the use of a mini excavator for site remedial work is unlikely to cause soil failure issues. A mid-sized excavator, such as a CAT 330L, is also unlikely to cause soil failure, even with a safety factor of 2.5 (ground pressure of 19 psi). The larger excavators may prove to be too heavy; however, they may also require too large of an area to make them useful for the restricted size of the site.

As part of the geotechnical analysis, samples were collected to obtain Atterberg Limits (Table 7-4), Unconfined Pressure Test Levels (Table 7-5), and Sieve Analysis/Grain Size Distribution (Table 7-6). The results of these tests indicate a moderately strong soil structure, despite the moisture and sand quantity located in the SCA.

Additional site preparation is recommended if material is excavated and removed using tandem-axle dump trucks. A fully loaded tandem-axle dump truck would have a ground pressure over 100 psi, depending upon the weight of the load. This would likely cause severe rutting that may cause the truck to get stuck.

The above analysis and options are based on geotechnical conditions in the area and data obtained from site exploration. Variations could occur between exploration locations or be caused by the modifying effects of construction or weather. At the time of the 2021 SSI fieldwork, the current tenant had made physical changes to the SIW Site, including material fill and a 6-inch concrete slab on the southern portion

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, New York
April 2023

of the SCA, concrete block walls along the southern and eastern portion of the SCA, and staging of a large concrete batch plant, and erected other building structures on the property. Future removal actions will need to account for these obstructions.

8. CONCLUSION

The 2021 SSI fieldwork included performing a radiological survey (gamma walkover scan of surface and boreholes, radionuclide sampling of surface and subsurface soils, sediment, and groundwater), excavating test pits, chemical waste characterization sampling (including metals, SVOCs, and VOCs), a geotechnical study, and an erosion study. Conclusions for these SSI elements are discussed below.

8.1 RADIOLOGICAL SURVEY

The surface gamma scans confirmed the presence of elevated (above background levels) radionuclide activity in an approximate 100-feet by 200-feet area in the northwest section of the SIW Site, described earlier as the SCA. As noted in the report the area of above background gamma levels is slightly shifted laterally to the southwest and northeast as related to previous investigations. With this minor difference, the area of radiological contamination is similar to that identified in previous investigations.

Borehole logging, test pits, surface soil sampling, sediment sampling, and subsurface soil sampling confirm that the above screening levels of radiological contamination exists in soil only and is contained within the upper 5-feet bgs and within the elevated gamma scan area.

Shallow groundwater samples (except for Ra-228 in one sample) are below the project screening levels. The Ra-228 result of 5.83 picocuries per liter (pCi/L) from GW-10-1220 was slightly higher than the screening level of 5 pCi/L. The volume of water collected for gross alpha and beta analysis resulted in higher than typical values of sample MDC, approximately 50 times higher than typical. Due to this high MDC for the gross alpha samples, more credibility should be placed on the isotopic results than the gross alpha values. The gross beta results for the samples exceed the MDC with magnitudes between approximately 100 and 800 pCi/L. This range of concentrations is greater than the 50 pCi/L project screening level for gross beta emitters. However, the 50 pCi/L screening level applies to drinking water. The sampled groundwater has no foreseeable use as drinking water and is likely significantly mixed with saline water from the Kill Van Kull. The radiological survey sample data, collected and analyzed during the 2021 SSI, was validated and determined to be useable.

8.2 CHEMICAL WASTE CHARACTERIZATION

Waste characterization samples were collected from the four test pits and were analyzed for RCRA metals, SVOCs, and VOCs. The majority of results for organic constituents (SVOCs and VOCs) were non-detects. In general, other than lead, which could be attributed to nearby facilities that would suggest higher than normal concentration of lead, (e.g., leaded gasoline, leaded paint, etc.), there is no reason to expect association between non-radiological contamination at the SIW Site and the uranium ore that was stored there during the early 1940s. The presence of these constituents is consistent with fuel spills that may have occurred at the industrial site, or a nearby lead manufacturing facility which was fully operational from 1839 to 1943. Several SVOC analytes were detected in soil samples and are considered to be common laboratory contaminants rather than characteristic of SIW Site contamination.

8.3 GEOTECHNICAL STUDY

A geotechnical analysis was performed to determine structural stability of the pier and its ability to support heavy construction equipment. As part of the geotechnical analysis, samples were collected to obtain Atterberg Limits, Unconfined Pressure Test Levels, and Sieve Analysis/Grain Size Distribution. The results of these tests indicate a moderately strong soil structure, despite the moisture and sand quantity located in the SCA. The equipment used during the geotechnical/environmental investigation (drill rig and mini excavator) did not cause observable failures to the soil at an estimated ground pressure of 5 psi. The

soil pit excavations extended through the soil to a depth of approximately 6-feet bgs. Given that no issues were encountered during the geotechnical/environmental investigation and results of the geotechnical testing of samples collected from soil borings, the use of a mini- or mid-sized excavator for any future remedial work at the SIW Site is unlikely to cause soil failure issues. A mid-sized excavator, such as a CAT 330L, is also unlikely to cause soil failure, even with a safety factor of 2.5 (ground pressure of 19 psi). Additional site preparation is recommended for removal of excavated material dependent upon the size of equipment being used.

8.4 EROSION STUDY

Beach erosion has occurred along the northwestern and northern edge of the site, suggesting that some radionuclide-contaminated soil may be gradually transported from the SIW Site into the near-shore environment of the Kill Van Kull. A significant increase in shoreline erosion was observed due to major storms in the SIW Site area (i.e., Hurricane Irene and Hurricane Sandy), and erosional impacts have occurred at the SIW Site since the removal of building structures prior to 1980. Soil boring cores, test pit excavation, drilling refusal, and drilling equipment damage at approximately 3 to 4-feet along the SIW Site's northwestern shoreline, indicate the presence of multiple foundation pillars. While the pillars may be slowing the effects of erosion, the evidence shown indicate that erosion will continue along the shoreline, further exposing higher levels of contamination to be transported by the Kill Van Kull tide.

9. REFERENCES

- Chant 2001. Chant, Robert et al. Circulating and Mixing in a Complex Estuarine Environment: Effects on the Transport and Fate of Suspended Matter. Institute of Marine and Coastal Sciences, Rutgers University. 2001.
- FEMA (Federal Emergency Management Agency) 2007. Flood Insurance Rate Map 3604970169F Updated September 5, 2007. http://msc.fema.gov/portal/search#searchresultsanchor On-line. Visited November 10, 2021.
- Hernandez, L.A. CPSSc, CPSC. "16 New York City Soil Survey Program" Undated. http://clic.cses.vt.edu/icomanth/16-NYC_Survey_Data.pdf On-line. Visited August 24, 2021.
- MARSSIM (2000). Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). Department of Defense, Department of Energy, U.S. Environmental Protection Agency, Nuclear Regulatory Commission, NUREG-1575, EPA 402-R-09-016, Rev. 1, DOE/HS-0624, Rev. 1. August 2000.
- MED (Manhattan Engineer Depot) 1942 Report Summary, Trip made September 15 to New York by Capt. J.R. Ruhoff, Corps of Engineers, September 1942.
- Minteer M, Winkler P, Wyatt B, Moreland S, Johnson J, Winters T.(2007). *Reliability of Using* 238U/235U and 234U/238U Ratios from Alpha Spectrometry as Qualitative Indicators of Enriched Uranium Contamination. Health Physics. 2007;92(5):488-495. doi:10.1097/01.HP.0000254847.21026.7c
- New Jersey (2016). *Surface Water Quality Standards N.J.A.C.* 7:9B. Amended October 17, 2016. http://www.nj.gov/dep/rules/rules/njac7_9b.pdf
- New Jersey Department of Environmental Protection (2006). New Jersey Toxics Reduction Workplan for NY-NJ Harbor Study I-E Hydrodynamic Studies. The Hydrodynamics of the Newark Bay Kills System. April 2006.
- NOAA (National Oceanic and Atmospheric Administration), 2021a. *Tides and Current, Bergen Point West Reach, NY Station ID:* 8519483. Accessed on May 28, 2021, at https://tidesandcurrents.noaa.gov/stationhome.html?id=8519483
- NOAA (National Oceanic and Atmospheric Administration), 2021b. *Online Vertical Datum Transformation*. Accessed on May 28, 2021, at https://vdatum.noaa.gov/vdatumweb/vdatumweb?a=130703820210528
- NYCDEP (New York City Department of Environmental Protection) 2021. Website, New York City, NY, NYC Department of Environmental Protection, 2021, citing NYSDEC Standards for Fresh and Saline Waters Found Within New York City.
- NYSDEC (New York State Department of Environmental Conservation) 1992. *Richmond Terrace Field Survey Report*. July 1992.
- NYSDEC (New York State Department of Environmental Conservation) 2003. Site Visit Report Richmond Terrace Site, Staten Island, New York. July 2003.

- ORNL (Oak Ridge National Laboratory) 1980. Preliminary Radiological Survey Report of the Former Staten Island Warehouse Site (Archer-Daniels Midland Company) at Port Richmond, New York. October 1980.
- Perlmutter, N. M. and Arnow, T. 1953. Ground Water in Bronx, New York, and Richmond Counties with Summary Data on Kings and Queens Counties, New York City, New York. U. S. Geological Survey Bulletin GW-32.
- Soren 1988. Soren, Julian "Geologic and geohydrologic reconnaissance of Staten Island, New York." 1988. Accessed on-line September 2021. https://pubs.usgs.gov/wri/1987/4048/report.pdf
- USACE (U.S. Army Corps of Engineers) 2014, Environmental Quality-Formerly Utilized Sites Remedial Action Program (FUSRAP) Site Designation, Remediation Scope, and Recovering Costs, Engineer Regulation. ER 200-1-4. August 2014.
- USACE (U.S. Army Corps of Engineers) 2017. Site Inspection Report Staten Island Warehouse Formerly Utilized Sites Remedial Action Program Site, Staten Island, New York. November 2017.
- USACE (U.S. Army Corps of Engineers) 2021a. *Project Work Plan, Supplemental Site Inspection, Staten Island Warehouse FUSRAP Site, Port Richmond Staten Island, New York.* (September 2021).
- USACE (U.S. Army Corps of Engineers) 2021b. *Uniform Federal Policy-Quality Assurance Project Plan* (*UFP-QAPP*), Supplemental Site Inspection, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten, Island, New York. September 2021.
- USACE (U.S. Army Corps of Engineers) 2021c. Accident Prevention Plan, Supplemental Site Inspection, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten, Island, New York. September 2021.
- USEPA (U.S. Environmental Protection Agency) 1992. *Guidance for Performing Site Inspections Under CERCLA*. September 1992.
- USEPA (U.S. Environmental Protection Agency) 2005 Federal Facilities Remedial Site Inspection Summary Guide. July 2005.
- USEPA (U.S. Environmental Protection Agency) 2008. *Human Health Risk and Dose Assessment from Radioactivity at Richmond Terrace Site*. EPA Region 2, New York. July 2008.
- USEPA (U.S. Environmental Protection Agency) 2009a. Mika, George J. and Hickerson, Glen M. *Aerial Photographic Analysis Richmond Terrace Site Staten Island, New York.* EPA Region 2, New York. March 2009.
- USEPA (U.S. Environmental Protection Agency) 2009b. Ferriola, Michael, Eric Daly, and Jim Daloia. *Removal Site Evaluation for the Richmond Terrace Site, Staten Island, Richmond County, New York.* February 2009.
- USEPA (U.S. Environmental Protection Agency) 2009c. *Community Update; Site Investigation, Jewett White Lead Site, Port Richmond, Staten Island, New York.* September 2009.
- USEPA (U.S. Environmental Protection Agency) 2021. *Preliminary Remediation Goals for Radionuclides*. Accessed online May 27, 2021, at https://epa-prgs.ornl.gov/cgi-bin/radionuclides/rprg_search

Weatherbase. (2021). Accessed online August 2021 at, http://www.weatherbase.com/weather/weather.php3?s=128503&refer=&cityname=Staten-Island-New-York-United-States-of-America

Supplemental Site Inspection Report,	Staten Island Warehouse	FUSRAP Site, Port Richmoi	nd, Staten Island, New York April 2023
THIS	S PAGE INTENTIONA	LLY LEFT BLANK	

TABLES

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, A	New York pril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

			Table 5-	1. Resu	ılts of S	urface	Soil San	ples (b	y Gam	ma Spe	ctroscop	y)						
		Analyte	Actiniu	m-228	(Radiu	m-228)		Bismu	th-212		Radiur	n-226 (Bismut	h-214)		Lead	-212	
		CAS#										13982	-63-3					
		Units		рC	i/g			рC	i/g			рC	i/g			рC	i/g	
		ackground Soil		N.	A			N.	A			2.2	94			N.	A	
	Project S	creening Level		73	35			N.	A			2.2	94			N.	A	
	Source of S	creening Level			Reside	ential		N.				A 2008	Backg	round		N.		
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA
SS-01-0825	0-0.5	9/24/2021	2.37	J	0.415	0.52	3.18	J	1.29	1.92	2.76	J	0.352	0.253	2.66	J	0.305	0.252
SS-02-0835	0-0.5	9/24/2021	1.12	J	0.285	0.455	1.2	J	0.859	1.51	1.09	J	0.209	0.24	1.13	J	0.215	0.253
SS-03-0810	0-0.5	9/24/2021	2.51	J	0.394	0.511	2.58	J	1.1	1.79	2.23	J	0.298	0.268	2.8	J	0.304	0.216
SS-DUP-03	0-0.5	9/24/2021	0.632	J	0.339	0.624	1.15	UJ	1.28	2.43	0.543	J	0.256	0.45	1.47	J	0.231	0.221
SS-04-0926	0-0.5	9/22/2021	0.585	J	0.33	0.745	0.826	UJ	1.31	2.66	4.6	J	0.535	0.388	0.142	UJ	0.227	0.411
SS-05-0915	0-0.5	9/22/2021	1.37	J	0.366	0.598	1.44	J	1.37	2.55	4.05	J	0.532	0.35	1.61	J	0.266	0.28
SS-06-0936	0-0.5	9/22/2021	1.01	J	0.324	0.558	1.62	J	1.05	1.78	1.31	J	0.255	0.242	1.22	J	0.182	0.173
SS-DUP-06	0-0.5	9/22/2021	0.986	J	0.323	0.519	1.33	J	1.14	2.04	2.08	J	0.321	0.305	1.21	J	0.225	0.28
SS-07-1220	0-0.5	9/22/2021	0.439	J	0.192	0.372	0.83	J	0.665	1.15	0.429	J	0.137	0.198	0.481	J	0.112	0.159
SS-08-1400	0-0.5	9/23/2021	1.84	J	0.361	0.514	1.77	J	1.05	1.78	1.46	J	0.245	0.258	1.75	J	0.234	0.229
SS-09-0840	0-0.5	9/23/2021	1.15	J	0.336	0.594	0.917	UJ	1.1	2.17	1.61	J	0.27	0.313	1.42	J	0.265	0.352
SS-10-0750	0-0.5	9/23/2021	1.75	J	0.421	0.632	0.869	UJ	1.38	2.82	2.58	J	0.387	0.377	2.05	J	0.325	0.323
SS-11-1100	3-4.0	9/23/2021	0.812	J	0.273	0.511	1.18	J	0.893	1.54	0.599	J	0.188	0.279	0.805	J	0.177	0.241
SS-12-1115	2-3.0	9/23/2021	0.985	J	0.288	0.402	1.55	J	1.15	2.08	1.24	J	0.255	0.304	1.44	J	0.195	0.167
SS-13-1015	0-0.5	9/27/2021	0.991	J	0.172	0.229	1.26	J	0.556	0.861	1.43	J	0.163	0.139	1.17	J	0.133	0.123
SS-14-1205	1.5-2.5	9/23/2021	0.462	J	0.219	0.465	0.551	UJ	0.795	1.52	0.502	J	0.157	0.228	0.682	J	0.14	0.177
SS-15-1135	1.5-2.0	9/23/2021	0.526	J	0.229	0.467	0.968	J	0.837	1.58	0.978	J	0.193	0.222	0.835	J	0.163	0.196
SS-16-1300	0-0.5	9/23/2021	1.43	J	0.425	0.663	1.39	J	1.59	2.9	3.34	J	0.467	0.416	1.26	J	0.272	0.358
SS-17-1230	0-0.5	9/24/2021	1.61	J	0.333	0.546	2.76	J	1.25	2.11	15.5	J	1.28	0.308	1.64	J	0.235	0.304
SS-18-1250	0-0.5	9/24/2021	1.02	J	0.257	0.385	1.51	J	0.893	1.49	1	J	0.209	0.22	1.15	J	0.197	0.215
SS-19-1310	0-0.5	9/24/2021	0.893	J	0.151	0.202	1.37	J	0.537	0.819	1.23	J	0.139	0.114	1.3	J	0.133	0.107
SS-20-1020	0-0.5	9/27/2021	0.72	J	0.205	0.328	0.57	UJ	0.705	1.33	0.697	J	0.15	0.187	0.918	J	0.145	0.168
SS-21-1000	0-0.5	9/27/2021	0.486	J	0.134	0.222	0.519	J	0.425	0.716	0.901	J	0.124	0.128	0.669	J	0.095	0.105
SS-22-0935	0-0.5	9/27/2021	0.737	J	0.299	0.566	0.509	UJ	0.956	1.84	1.23	J	0.239	0.25	0.814	J	0.175	0.226
SS-23-1014	0-0.5	9/27/2021	0.592		0.173	0.257	0.771	J	0.555	0.982	0.983		0.156	0.148	0.663		0.119	
SS-24-0941	0-0.5	9/27/2021	0.895	J	0.348	0.585	2.08	J	1.36	2.32	3.91	J	0.487	0.347	1.02	J	0.191	0.223
SS-25-0940	0-0.5	9/27/2021	0.671	J	0.209	0.352	0.597	UJ	0.76	1.45	1.99	J	0.263	0.201	0.543	J	0.14	0.179

25: total uncertainty; bgs: below ground surface; CAS: Chemical Abstract Service; DUP: duplicate; ft: feet; ID: identification; J: Estimated value; MDA: Minimum Detectable Activity; pCi/g: picocuries per gram; Qual: Data Qualifer; SS: surface sample; USEPA: U.S. Environmental Protection Agency; U: not detected at the assocated level; *The DUP is a field duplicate of the preceding sample

		ŗ	Fable 5-1	1. Resu	lts of S	urface S	Soil Sam	ples (b	y Gam	ma Spe	ectroscop	oy)						
		Analyte		Lead	-214]]	Potassi				Thalliu	ım-208			Uraniu	m-235	
		CAS#						13966										
		Units		рC	_			рСi	_			рC	_			рC	_	
		ackground Soil		N.	A			18.	81			N	A			Below	MDA	
		creening Level		N.				NA.				N				N		
		creening Level		N.				N/				N				N		
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA		Qual	2σ	MDA	Result	Qual	2σ	MDA
SS-01-0825	0-0.5	9/24/2021	2.88	J	0.331	0.279	6.76	J	1.59	1.74	0.789	J	0.138		0.35	J	0.106	
SS-02-0835	0-0.5	9/24/2021	1.12	J	0.197	0.217	13.2	J	2.06	1.01	0.271	J	0.095	0.134	0.0995	U	0.086	
SS-03-0810	0-0.5	9/24/2021	2.62	J	0.3	0.25	11	J	1.84	1.79	0.819	J	0.131	0.131	0.37	J		0.172
SS-DUP-03	0-0.5	9/24/2021	0.795	J	0.223	0.39	1.94	J	1.76	3.1	0.228	J	0.106		0.0184	U		0.196
SS-04-0926	0-0.5	9/22/2021	5.57	J	0.581	0.399	9.77	J	2.39	2.65	0.37	J	0.12	0.162	0.466	UJ	0.117	0.715
SS-05-0915	0-0.5	9/22/2021	4.44	J	0.578	0.472	10.3	J	2.07	2.02	0.426	J	0.125		0.379	J	0.129	0.215
SS-06-0936	0-0.5	9/22/2021	1.3	J	0.211	0.266	14.3	J	2.45	1.52	0.396	J	0.114	0.146	0.15	J	0.072	0.12
SS-DUP-06	0-0.5	9/22/2021	2.41	J	0.312	0.296	7.9	J	1.86	2.02	0.294	J	0.115	0.176	0.263	J	0.117	0.198
SS-07-1220	0-0.5	9/22/2021	0.449	J	0.112	0.162	7.48	J	1.41	1.22	0.176	J	0.064	0.098	0.0267	U	0.049	0.094
SS-08-1400	0-0.5	9/23/2021	1.58	J	0.227	0.247	11.1	J	1.96	1.85	0.402	J	0.1	0.127	0.192	J	0.099	0.171
SS-09-0840	0-0.5	9/23/2021	1.94	J	0.323	0.324	11.9	J	2.23	2.08	0.389	J	0.109	0.139	0.221	U	0.116	0.95
SS-10-0750	0-0.5	9/23/2021	2.49	J	0.386	0.401	10.7	J	2.23	2.14	0.553	J	0.145	0.192	0.33	U	0.122	1.09
SS-11-1100	3-4.0	9/23/2021	0.651	J	0.156	0.239	10.8	J	1.95	1.52	0.228	J	0.09	0.143	0.115	J	0.078	0.139
SS-12-1115	2-3.0	9/23/2021	1.28	J	0.2	0.256	10.5	J	2.07	1.69	0.46	J	0.106	0.11	0.223	J	0.067	0.097
SS-13-1015	0-0.5	9/27/2021	1.51	J	0.156	0.135	12.1	J	1.3	0.8	0.317	J	0.056	0.065	0.164	J	0.063	0.102
SS-14-1205	1.5-2.5	9/23/2021	0.556	J	0.132	0.197	11.1	J	1.82	1.45	0.145	J	0.072	0.123	0.0667	J	0.062	0.115
SS-15-1135	1.5-2.0	9/23/2021	0.697	J	0.165	0.266	13.1	J	2.03	1.1	0.379	J	0.101	0.132	0.126	U	0.071	0.692
SS-16-1300	0-0.5	9/23/2021	4.08	J	0.467	0.384	10.7	J	2.33	2.28	0.306	J	0.126	0.189	0.385	J	0.154	0.26
SS-17-1230	0-0.5	9/24/2021	17.2	J	1.48	0.335	11.1	J	1.77	1.92	0.337	J	0.107	0.174	2.17	J	0.23	0.23
SS-18-1250	0-0.5	9/24/2021	1.3	J	0.203	0.182	9.59	J	1.69	1.04	0.391	J	0.095	0.102	0.228	J	0.086	0.134
SS-19-1310	0-0.5	9/24/2021	1.25	J	0.132	0.122	12.2	J	1.23	0.751	0.283	J	0.05	0.057	0.13	J	0.052	0.086
SS-20-1020	0-0.5	9/27/2021	0.828	J	0.138	0.171	10.6	J	1.57	1.12	0.271	J	0.067	0.084	0.0753	J	0.067	0.123
SS-21-1000	0-0.5	9/27/2021	0.971	J	0.115	0.118	7.6	J	0.99	0.73	0.199	J	0.043	0.053	0.0561	J	0.047	0.081
SS-22-0935	0-0.5	9/27/2021	1.36	J	0.219	0.264	7.55	J	1.77	1.91	0.287	J	0.091	0.128	0.108	J	0.084	0.153
SS-23-1014	0-0.5	9/27/2021	1.19		0.157	0.167	8.28		1.4	1.21	0.279		0.06	0.064	0.202	J	0.221	0.391
SS-24-0941	0-0.5	9/27/2021	4.16	J	0.456	0.332	6.76	J	1.87	1.97	0.329	J	0.117	0.166	0.377	J	0.103	0.154
SS-25-0940	0-0.5	9/27/2021	2.12	J	0.25	0.231	7.58	J	1.54	1.45	0.26	J	0.067	0.079	-0.351	U	0.311	0.603

2σ: total uncertainty; bgs: below ground surface; CAS: Chemical Abstract Service; DUP: duplicate; ft: feet; ID: identification; J: Estimated value; MDA: Minimum Detectable Activity; pCi/g: picocuries per gram; Qual: Data Qualifer; SS: surface sample; USEPA: U.S. Environmental Protection Agency; U: not detected at the assocated level; *The DUP is a field duplicate of the preceding sample

			Table 5	-1. Res	ults of	Surface	Soil Sar	nples (by Gam	ma Spe	ectroscop	oy)						
		Analyte	Tho	rium-2	34 (U-2	38)		Uraniu	ım-234			Urani	um-235			Uraniu	m-238	
		CAS#						13966	-29-5			1511	7-96-1			7440	61-1	
		Units		рC	i/g			рC	i/g			p(Ci/g			рC	i/g	
	Ba	ackground Soil		N.	A			2.5	24			Below	MDA			2.4	62	
	Project S	creening Level		12	20			5.8	83			0.2	203			6.4	18	
	Source of S	creening Level	USEP	A 2021	Reside	ential	USEP	A 2021	Reside	ential	USEI	PA 202	1 Reside	ential	USEF	A 2021	Resid	ential
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA
SS-01-0825	0-0.5	9/24/2021	2.62	UJ	1.69	3.04	3.45		0.358	0.128	0.254		0.103	0.075	3.52		0.356	0.075
SS-02-0835	0-0.5	9/24/2021	0.808	U	1.22	2.37	0.622	J	0.185	0.163	0.0054	U	0.0433	0.08	0.819		0.183	0.091
SS-03-0810	0-0.5	9/24/2021	3.45	U	1.95	2.91	3.43	J	0.365	0.133	0.14	J	0.0863	0.089	3.96		0.383	0.064
SS-DUP-03	0-0.5	9/24/2021	3.17	J	1.39	2.12	3.86		0.411	0.15	0.169		0.095	0.088	3.63		0.396	0.128
SS-04-0926	0-0.5	9/22/2021	2.02	J	1.14	2.09	2.53		0.363	0.238	0.248	J	0.112	0.089	2.65		0.345	0.145
SS-05-0915	0-0.5	9/22/2021	-6.81	U	3.18	5.34	2.78	J	0.366	0.161	0.206		0.102	0.077	2.8	J	0.356	0.077
SS-06-0936	0-0.5	9/22/2021	1.4	J	0.797	1.63	1.45		0.256	0.164	0.0943		0.0727	0.08	1.2	J	0.219	0.092
SS-DUP-06	0-0.5	9/22/2021	-2.35	U	2.07	4.62	2.77		0.367	0.173	0.0417	J	0.0786	0.118	3.02	J	0.376	0.145
SS-07-1220	0-0.5	9/22/2021	-0.101	U	0.679	1.58	0.719		0.213	0.164	0.0213	U	0.081	0.133	0.81	J	0.205	0.086
SS-08-1400	0-0.5	9/23/2021	-2.27	U	1.72	3.83	1.46		0.232	0.093	0.0317	J	0.0436	0.06	1.59	J	0.238	0.074
SS-09-0840	0-0.5	9/23/2021	1.34	U	1.68	3.48	1.72		0.283	0.139	0.0733	J	0.0723	0.09	1.99		0.298	0.114
SS-10-0750	0-0.5	9/23/2021	1.51	U	1.98	4.26	2.17		0.335	0.204	0.212		0.107	0.092	2.35		0.335	0.158
SS-11-1100	3-4.0	9/23/2021	0.694	UJ	1.08	2.28	0.784	J	0.241	0.177	0.0912	J	0.0887	0.106	0.8		0.235	0.148
SS-12-1115	2-3.0	9/23/2021	1.04	UJ	0.7	1.58	0.939	J	0.21	0.151	0.0049	U	0.0575	0.1	0.988		0.198	0.09
SS-13-1015	0-0.5	9/27/2021	0.364	U	0.745	1.7	0.813		0.199	0.169	0.0394	J	0.0458	0.058	0.866	J	0.19	0.132
SS-14-1205	1.5-2.5	9/23/2021	-0.23	U	0.823	1.97	0.324	J	0.119	0.121	0.0019	UJ	0.0224	0.044	0.258	J	0.096	0.087
SS-15-1135	1.5-2.0	9/23/2021	1.7	J	1.34	2.55	0.628		0.229	0.228	0.0345	J	0.0574	0.087	0.838		0.221	0.145
SS-16-1300	0-0.5	9/23/2021	-5.03	U	2.96	6.01	1.82		0.324	0.23	0.101	J	0.0767	0.078	2.09		0.326	0.176
SS-17-1230	0-0.5	9/24/2021	12.3	J	4.51	4.29	24.9		1.02	0.111	1.19	J	0.226	0.072	24.9	J	1.02	0.088
SS-18-1250	0-0.5	9/24/2021	-0.109	U	1.12	2.55	1.03		0.218	0.171	0.0309	J	0.0429	0.059	1.18		0.217	0.133
SS-19-1310	0-0.5	9/24/2021	1.45	UJ	0.912	1.46	0.962		0.193	0.158	0.0521	J	0.0679	0.093	0.955		0.182	0.132
SS-20-1020	0-0.5	9/27/2021	-0.599	U	0.983	2.37	1.04		0.222	0.145	0.037	J	0.0581	0.085	0.995	J	0.204	0.085
SS-21-1000	0-0.5	9/27/2021	0.477	U	0.625	1.34	0.669		0.185	0.16	0.033	J	0.0522	0.076	0.678	J	0.179	0.141
SS-22-0935	0-0.5	9/27/2021	-0.062	U	1.04	2.48	0.869		0.241	0.22	0.0179	U	0.0442	0.075	0.925		0.226	0.169
SS-23-1014	0-0.5	9/27/2021	0.877	UJ	0.604	1.21	0.61		0.209	0.209	0.0702	J	0.063	0.071	0.771	J	0.203	
SS-24-0941	0-0.5	9/27/2021	1.47	UJ	0.934	1.94	2.11		0.316		0.0692	J	0.062	0.07	2.14	J	0.3	0.108
SS-25-0940	0-0.5	9/27/2021	1.7	U	0.908	1.51	0.932		0.209	0.141	0.0669	J	0.0665	0.083	1.14		0.223	0.121

2σ: total uncertainty; bgs: below ground surface; CAS: Chemical Abstract Service; DUP: duplicate; ft: feet; ID: identification; J: Estimated value; MDA: Minimum Detectable Activity; pCi/g: picocuries per gram; Qual: Data Qualifer; SS: surface sample; USEPA: U.S. Environmental Protection Agency; U: not detected at the assocated level; *The DUP is a field duplicate of the preceding sample

		Table :	5-2. Resi	ılts of S	Subsur	face So					a Spectr	oscopy	7)					
		Analyte	Actini	um-22	8 (Ra-2	28)[1]	I	Bismut	h-212 ^[1]		Raduim	-226 (I	Bismutl	1-214) ^{[1}		Lead-	·212 ^[1]	
		CAS#										13982						
		Units		рC	i/g			рC	Ci/g			рC	i/g			рC	i/g	
	В	ackground Soil		N	A			N	A			2.2	94			N	Α	
	Project S	Screening Level		73	35			N	A			2.2	94			N	Α	
	Source of S	Screening Level	USEP	A 2021	Reside	ential		N	A		USEP	A 2008	Backg	round		N	Α	
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA
SB-01-0102	1-2	9/24/2021	0.929	J	0.289	0.388	1.6	J	1.08	1.78	0.788	J	0.206	0.241	0.94	J	0.207	0.258
SB-01-0501	0.5-1	9/24/2021	1.45	J	0.383	0.584	2.69	J	1.29	1.94	1.14	J	0.275	0.369	1.66	J	0.268	0.263
SB-DUP-01	0.5-1	9/24/2021	1.51	J	0.43	0.651	2.39	J	1.39	2.26	1.13	J	0.298	0.389	1.56	J	0.269	0.272
SB-02-0102	1-2	9/24/2021	1.08	J	0.204	0.301	1.35	J	0.62	1.02	1.03	J	0.158	0.172	0.873	J	0.137	0.178
SB-02-0501	0.5-1	9/24/2021	1.27	J	0.225	0.278	1.84	J	0.75	1.28	1.1	J	0.155	0.164	1.3	J	0.174	0.202
SB-DUP-02	0.5-1	9/24/2021	1.13	J	0.285	0.427	2.18	J	1.03	1.73	1.13	J	0.212	0.224	1.09	J	0.216	0.266
SB-03-0102	1-2	9/24/2021	1.91	J	0.354	0.466	1.82	J	1.09	1.9	1.46	J	0.258	0.302	1.9	J	0.246	0.214
SB-03-0815	0.8-1.5	9/24/2021	1.72	J	0.391	0.609	0.0268	UJ	1.15	2.28	1.47	J	0.271	0.316	1.67	J	0.239	0.251
SB-04-0102	1-2	9/22/2021	1.86	J	0.449	0.732	1.88	J	1.34	2.45	3.59	J	0.44	0.379	1.18	J	0.317	0.495
SB-04-0406	4-6	9/22/2021	1.04	J	0.367	0.678	1.56	J	1.43	2.73	1.07	J	0.275	0.396	1.03	J	0.283	0.425
SB-05-0505	0.5-5	9/22/2021	1.19	J	0.299	0.409	2.3	J	1.02	1.52	1.47	J	0.254	0.26	1.2	J	0.174	0.164
SB-05-0510	5-10	9/22/2021	1.12	J	0.228	0.358	0.767	J	0.78	1.42	1.2	J	0.184	0.198	1.19	J	0.162	0.18
SB-06-0203	2-3	9/22/2021	1.08	J	0.292	0.476	1.42	J	0.976	1.65	3.06	J	0.407	0.247	1.41	J	0.237	0.246
SB-06-0501	0.5-1	9/22/2021	1.23	J	0.322	0.491	2.11	J	1.05	1.65	5.69	J	0.539	0.264	1.47	J	0.19	0.179
SB-07-0102	1-2	9/22/2021	1.27	J	0.196	0.261	1.85	J	0.618	0.905	2.86	J	0.254	0.144	1.64	J	0.165	0.139
SB-07-0203	2-3	9/22/2021	0.837	J	0.27	0.457	1.53	J	0.92	1.51	1.33	J	0.229	0.195	0.89	J	0.155	0.17
SB-08-0102	1-2	9/23/2021	1.32	J	0.283	0.376	1.55	J	0.966	1.59	1.19	J	0.22	0.201	1.63	J	0.238	0.185
SB-09-0117	1-1.7	9/23/2021	1.52	J	0.406	0.649	2.81	J	1.45	2.46	1.35	J	0.293	0.408	1.75	J	0.29	0.287
SB-09-0506	5-6	9/23/2021	1.48	J	0.35	0.445	2.04	J	1.28	2.25	1.79	J	0.285	0.255	1.51	J	0.239	0.274
SB-10-0465	4-6.5	9/23/2021	0.935	J	0.285	0.483	0.281	UJ	0.933	1.9	1.09	J	0.22	0.262	1.07	J	0.182	0.217
SB-10-0517	0.5-1.7	9/23/2021	2.31	J	0.484	0.711	3.43	J	1.49	2.55	2.64	J	0.383	0.366	3.04	J	0.413	0.3
SB-11-0405	4-5	9/23/2021	2.02	J	0.265	0.325	2.15	J	0.794	1.23	1.9	J	0.211	0.18	1.92	J	0.197	0.179
SB-11-0506	5-6	9/23/2021	1.38	J	0.346	0.515	1.16	J	1.08	1.93	1.08	J	0.246	0.303	1.4	J	0.225	0.258
SB-DUP-11	4-5	9/23/2021	5.04	J	0.773	0.722	4.96	J	2.31	3.85	3.8	J	0.549	0.451	4.71	J	0.534	0.331
SB-12-0304	3-4	9/23/2021	0.854	J	0.307	0.512	1.35	J	1.04	1.77	3.39	J	0.462	0.26	0.942	J	0.216	0.283
SB-12-0506	5-6	9/23/2021	1.56	J	0.362	0.515	1.13	UJ	1.2	2.33	1.76	J	0.285	0.31	1.82	J	0.277	0.258
SB-14-0608	6-8	9/23/2021	2.73	J	0.317	0.333	3.73	J	0.937	1.21	2.44	J	0.255	0.206	3.05	J	0.275	0.201
SB-14-2540	2.5-4	9/23/2021	1.34	J	0.299	0.397	0.354	UJ	0.948	1.92	2.35	J	0.315	0.23	1.29	J	0.182	0.164
SB-15-0406	4-6	9/23/2021	2.12	J	0.415	0.453	1.96	J	1.26	2.24	2.35	J	0.334	0.316	2.06	J	0.285	0.308
SB-15-0608	6-8	9/23/2021	1.36	J	0.232	0.277	1.1	J	0.737	1.36	0.942	J	0.15	0.189	1.13	J	0.164	0.199
SB-16-0235	2-3.5	9/23/2021	1.43	J	0.346	0.502	2.21	J	1.14	1.81	1.34	J	0.267	0.298	1.33	J	0.199	0.197
SB-DUP-16	2-3.5	9/23/2021	1.25	J	0.311	0.465	0.478	UJ	0.984	1.89	1.07	J	0.231	0.258	1.53	J	0.241	0.229
SB-17-0102	1-2	9/24/2021	2.21	J	0.577	0.99	1.14	UJ	2.17	3.95	19.8	J	1.64	0.526	1.59	J	0.353	0.501
SB-DUP-17	1-2	9/24/2021	1.72	J	0.407	0.665	2.39	J	1.4	2.39	9.7	J	0.846	0.329	2.25	J	0.297	0.335
SB-18-0102	1-2	9/24/2021	1.11		0.219	0.289	1.29		0.64	1.08	1.22		0.173	0.142	1.05		0.147	0.136
SB-19-0102	1-2	9/24/2021	0.83	J	0.272	0.452	1.21	J	0.865	1.47	1.14	J	0.219	0.214	1.19	J	0.172	0.161
SB-19-0203	2-3	9/24/2021	1.08	J	0.289	0.413	1.4	J	1.07	1.89	0.991	J	0.235	0.282	1.18	J	0.179	0.18
SB-23-0102	1-2	9/27/2021	1.07	J	0.496	0.971	0.924	UJ	1.73	3.39	3.85	J	0.56	0.502	0.963	J	0.292	0.445
SB-DUP-23	1-2	9/27/2021	0.864	J	0.339	0.597	0.613	UJ	1.28	2.52	2.76	J	0.405	0.367	0.734	J	0.228	0.343
SB-24-0102	1-2	9/27/2021	2.97	J	0.385	0.382	3.18	J	1.03	1.54	2.64	J	0.309	0.236	3.11	J	0.311	0.186

^{[1]:} by gamma spectrometry; [2]: by alpha spectrometry; 2 σ : total uncertainty; bgs: below ground surface; CAS: Chemical Abstract Service; DUP: duplicate; ft: feet; ID: identification; J: Estimated value; MDA: Minimum Detectable Activity; pCi/g: picocuries per gram; Qual: Data Qualifer; R: rejected; SB: soil boring; U: not detected at the associated level; USEPA: U.S. Environmental Protection Agency; *The DUP is a field duplicate of the preceding sample

		Table 5	5-2. Resu	lts of S	Subsurf	ace Soil	l Sample	es (Alp	ha and	l Gamr	na Spect	roscop	y)					
		Analyte		Lead-	214 ^[1]		P	otassiu	m-40 ^{[1}	1]	Т	halliu	m-208 ^{[1}	[]	ı	Jraniu	m-235 ^{[1}	.]
		CAS#						13966	-00-2									
		Units		рC	i/g			pCi	i/g			рC	i/g			рC	i/g	
	В	ackground Soil		N	A			18.	81			N	Α			Below	MDA	
	Project S	Screening Level		N	A			N/	4			N	Α			0.2	203	
	Source of S	Screening Level		N	A			N/	4			N	Α		USEF	A 2021	1 Resid	ential
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA
SB-01-0102	1-2	9/24/2021	0.939	J	0.188	0.216	7.54	J	1.78	1.41	0.287	J	0.098		0.144	J	0.101	0.175
SB-01-0501	0.5-1	9/24/2021	1.07	J	0.255	0.508	6.56	J	1.7	1.67	0.48	J		0.177	0.131	J		0.187
SB-DUP-01	0.5-1	9/24/2021	1.02	J	0.271	0.551	8.19	J	2.05	1.83	0.46	J	0.15	0.213	-	J		0.198
SB-02-0102	1-2	9/24/2021	1.12	J	0.148	0.164	7.5	J	1.37	1.79	0.367	J	0.07	0.086		U	0.051	
SB-02-0501	0.5-1	9/24/2021	1.22	J	0.185	0.195	15.1	J	1.7	0.865	0.487	J	0.082		0.174	U	0.071	0.615
SB-DUP-02	0.5-1	9/24/2021	1.36	J	0.219	0.2	13.9	J	2.11	0.994	0.484	J	0.105		0.1	U	0.093	
SB-03-0102	1-2	9/24/2021	1.78	J	0.247	0.271	8.77	J	1.78	1.87	0.58	J	0.117		0.183	J		0.174
SB-03-0815	0.8-1.5	9/24/2021	1.65	J	0.237	0.26	4.68	J	1.43	1.77	0.496	J	0.116		0.205	J	0.091	
SB-04-0102	1-2	9/22/2021	4.58	J	0.553	0.376	11.1	J	2.33	2.53	0.455	J	0.138		0.507	U	0.152	
SB-04-0406	4-6	9/22/2021	1.31	J	0.316	0.405	14	J	2.83	2.78	0.338	J	0.13	0.192	0.236	U	0.137	1.2
SB-05-0505	0.5-5	9/22/2021	1.7	J	0.228	0.25	10.6	J	1.99	1.56	0.432	J	0.106		0.211	J		0.114
SB-05-0510	5-10	9/22/2021	1.49	J	0.183	0.195	11.4	J	1.59	1.3	0.332	J	0.078		0.124	J		0.129
SB-06-0203	2-3	9/22/2021	3.05	J	0.391	0.247	8.6	J	1.7	1.4	0.418	J	0.099		0.358	J		0.176
SB-06-0501	0.5-1	9/22/2021	6.02	J	0.55	0.24	10.5	J	1.76	1.6	0.548	J		0.142	0.62	J		0.135
SB-07-0102	1-2	9/22/2021	2.96	J	0.257	0.152	10.8	J	1.2	0.802	0.412	J	0.065		0.296	J	0.075	
SB-07-0203	2-3	9/22/2021	1.15	J	0.188	0.25	9.3	J	2	2.06	0.226	J	0.087	0.13	0.0878	U	0.29	0.53
SB-08-0102	1-2	9/23/2021	1.34	J	0.213	0.214	11.5	J	1.87	1.18	0.37	J	0.096			J	0.088	
SB-09-0117	1-1.7	9/23/2021	1.5	J	0.287	0.384	11.1	J	2.2	1.44	0.454	J		0.208	0.238	U	0.112	
SB-09-0506	5-6	9/23/2021	1.87	J	0.269	0.312	8.93	J	2.06	1.92	0.597	J	0.138		0.15	U		0.615
SB-10-0465	4-6.5	9/23/2021	1.16	J	0.191	0.251	16.2	J	2.5	1.29	0.409	J	0.109			U		0.507
SB-10-0517	0.5-1.7	9/23/2021	2.35	J	0.367	0.415	9.04	J	1.95	1.75	0.833	J	0.177		0.222	U	0.123	1.13
SB-11-0405	4-5	9/23/2021	1.91	J	0.2	0.191	10.6	J	1.37	1.08	0.699	J	0.093			J		0.129
SB-11-0506	5-6	9/23/2021	1.2	J	0.204	0.239	13	J	2.26	1.86	0.352	J	0.11	0.163		J		0.144
SB-DUP-11	4-5	9/23/2021	4.31	J	0.528	0.397	19.7	J	3.45	2.35	1.62	J	0.263		0.608	J	0.157	
SB-12-0304	3-4	9/23/2021	3.34	J	0.437	0.303	8.8	J	1.92	1.68	0.163	J	0.098		0.278	J	0.129	
SB-12-0506	5-6	9/23/2021	1.64	J	0.269	0.299	11.3	J	2.05	1.83	0.605	J		0.166		U		0.913
SB-14-0608	6-8	9/23/2021	2.83	J	0.267	0.216	10.0	J	1.42	1.33	0.933	J	0.116		0.322	J	0.093	
SB-14-2540	2.5-4	9/23/2021	2.44	J	0.288	0.251	9.61	J	1.83	1.33	0.419	J		0.132	0.266	J	0.077	
SB-15-0406	4-6	9/23/2021	2.44	J	0.307	0.294	9.56	J	2	1.67	0.893	J	0.16	0.168	0.344	UJ	0.092	
SB-15-0608	6-8	9/23/2021	1.2	J	0.186	0.198	14.2	J	1.68	1.03	0.337	J		0.094	0.176	U		0.612
SB-16-0235	2-3.5	9/23/2021	1.3	J	0.21	0.277	13.4	J	2.41	1.71	0.473	J	0.112		0.103	J	0.073	
SB-DUP-16	2-3.5	9/23/2021	1.14	J	0.2	0.217	15.8	J	2.34	1.17	0.441	J		0.113		J	0.091	
SB-17-0102	1-2	9/24/2021	21.8	J	1.8	0.535	9.98	J	2.48	3.21	0.569	J		0.275	1.28	J	0.899	
SS-DUP-17	1-2	9/24/2021	11.8	J	0.998	0.381	8.94	J	1.96	2.43	0.561	J		0.175		J		0.257
SB-18-0102	1-2	9/24/2021	1.44		0.172	0.163	12.1		1.68	1.23	0.376		0.071	0.076	0.203	J	0.232	
SB-19-0102	1-2	9/24/2021	1.29	J	0.193		9.48	J	1.85	1.32	0.303	J	0.09	0.118		J		0.101
SB-19-0203	2-3	9/24/2021	1.02	J	0.185	0.263	13.9	J	2.4	1.5	0.34	J	0.103		0.065	J	0.063	
SB-23-0102	1-2	9/27/2021	4.97	J	0.569	0.418	8.34	J	2.16	1.99	0.351	J		0.265	0.54	J	0.175	
SB-DUP-23	1-2	9/27/2021	3.54	J	0.419	0.385	7.54	J	1.97	2.21	0.251	J	0.124		0.391	J	0.143	
SB-24-0102	1-2	9/27/2021 Value exceeds the	2.8	J		0.216	13.8	J	1.88	1.54	0.773	J	0.118	0.117	0.319	J	0.088	0.143

^{[1]:} by gamma spectrometry; [2]: by alpha spectrometry; 2 σ : total uncertainty; bgs: below ground surface; CAS: Chemical Abstract Service; DUP: duplicate; ft: feet; ID: identification; J: Estimated value; MDA: Minimum Detectable Activity; pCi/g: picocuries per gram; Qual: Data Qualifer; R: rejected; SB: soil boring; U: not detected at the assocated level; USEPA: U.S. Environmental Protection Agency; *The DUP is a field duplicate of the preceding sample

		Table	5-2. Res	ults of	Subsur	face So	oil Samp	les (Al _l	oha and	l Gamn	na Spect	roscop	y)					
		Analyte	Thor	ium-23	34 (U-23	38) ^[1]	ı	Jraniui	m-234 ^{[2}]	1	Uraniu	m-235 ^[2]		τ	Jraniur	n- 238 [[]	2]
		CAS#						13966	-29-5				7-96-1			7440		
		Units		рC	i/g			рC	i/g			p(Ci/g			рC	i/g	
	В	ackground Soil		N	A			2.5	24			Belov	v MDA			2.4	62	
	Project S	Screening Level		12				5.3	83			0.	203			6.4	48	
	Source of S	Screening Level	USEP	A 2021	Reside	ential	USEF	PA 2021	Reside	ential	USEI	PA 202	1 Reside	ential	USEI	A 2021	Resid	ential
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result		2σ	MDA		Qual	2σ	MDA	Result		2σ	MDA
SB-01-0102	1-2	9/24/2021	0.856	U	1.27	2.72	1.66		0.253	0.127	0.124		0.0803	0.085	1.74		0.249	0.061
SB-01-0501	0.5-1	9/24/2021	-3.88	U	2.22	4.71	0.597		0.179	0.164	0.041	J	0.0476	0.061	0.634	J	0.158	0.094
SB-DUP-01	0.5-1	9/24/2021	-2.31	U	2.14	5.17	1.25		0.229	0.123	0.0837		0.0694	0.08	1.35	J	0.23	0.091
SB-02-0102	1-2	9/24/2021	0.369	U	0.839	1.76	0.634	J	0.169	0.145	0.0521	J	0.0528	0.066	0.918		0.182	0.112
SB-02-0501	0.5-1	9/24/2021	1.02	UJ	1.19	2.37	0.809	J	0.181	0.158	0.0094	U	0.0585	0.093	0.752		0.166	0.132
SB-DUP-02	0.5-1	9/24/2021	0.463	U	1.18	2.42	0.787	J	0.166	0.1	-0.005	U	0.0441	0.081	0.795		0.157	0.053
SB-03-0102	1-2	9/24/2021	2.06	UJ	1.51	2.87	3.21		0.341	0.148	0.178		0.0854	0.071	3.19		0.336	0.13
SB-03-0815	0.8-1.5	9/24/2021	0.79	U	1.28	2.82	3.52		0.382	0.136	0.182		0.103	0.106	3.07	J	0.352	0.084
SB-04-0102	1-2	9/22/2021	4.85	J	2.65	4.12	4.81	J	0.442	0.173	0.293		0.113	0.08	4.78		0.43	0.101
SB-04-0406	4-6	9/22/2021	2.07	J	2.05	4.06	1.84	J	0.277	0.163	0.0512	J	0.0518	0.062	2.04		0.277	0.103
SB-05-0505	0.5-5	9/22/2021	0.96	UJ	0.703	1.6	1.74	J	0.297	0.157	0.0665	J	0.0873	0.121	1.56		0.271	0.096
SB-05-0510	5-10	9/22/2021	-1.29	U	1.41	3.12	1.35	J	0.274	0.201	0.0181	U	0.0442	0.074	1.43	J	0.257	0.115
SB-06-0203	2-3	9/22/2021	1.07	U	1.38	2.96	2.54		0.376	0.177	0.0087	U	0.0946	0.158	2.6	J	0.367	0.088
SB-06-0501	0.5-1	9/22/2021	3.91	J	1.56	1.95	5.01		0.468	0.19	0.197	J	0.0998	0.086	5.05	J	0.462	0.147
SB-07-0102	1-2	9/22/2021	1.88	J	1.09	1.95	2.73		0.458	0.207	0.145	J	0.116	0.124	2.73	J	0.452	0.173
SB-07-0203	2-3	9/22/2021	1.52	J	0.839	1.55	1.4		0.259	0.141	0.04	J	0.0622	0.091	1.48	J	0.26	0.114
SB-08-0102	1-2	9/23/2021	0.653	U	1.1	2.37	0.966		0.195	0.14	0.0518	J	0.0524	0.065	1.12	J	0.191	0.082
SB-09-0117	1-1.7	9/23/2021	1.13	U	1.81	4.02	1.59		0.288	0.175	0.0304	U	0.0761	0.12	1.48		0.272	0.147
SB-09-0506	5-6	9/23/2021	2.14	J	1.03	1.69	1.94		0.279	0.146	0.0611	J	0.0714	0.096	1.92		0.267	0.087
SB-10-0465	4-6.5	9/23/2021	0.74	J	0.672	1.41	0.909		0.2	0.114	0.0986		0.0701	0.068	1.16		0.22	0.095
SB-10-0517	0.5-1.7	9/23/2021	1.13	U	2.06	4.55	2.55		0.316	0.122	0.0727	J	0.076	0.099	2.73		0.32	0.064
SB-11-0405	4-5	9/23/2021	-1.46	U	1.47	3.28	1.46	J	0.25	0.127	0.0359	UJ	0.0562	0.082	1.8	J	0.27	0.104
SB-11-0506	5-6	9/23/2021	1.12	U	1.27	2.64	1.02	J	0.236	0.171	0.0294	U	0.0742	0.117	1.06		0.232	0.143
SB-DUP-11	4-5	9/23/2021	2.29	UJ	1.6	3.31	2.01	J	0.293	0.141	0.128	J	0.0824	0.083	2.09		0.29	0.094
SB-12-0304	3-4	9/23/2021	-0.236	U	1.43	3.17	1.35	J	0.309	0.268	0.0941	J	0.0839	0.1	1.43		0.278	0.163
SB-12-0506	5-6	9/23/2021	1.04	U	1.63	3.45	1.2	J	0.239	0.198	0.0383	U	0.0842	0.124	1.69		0.249	0.129
SB-14-0608	6-8	9/23/2021	-3.93	U	2.24	3.99	2.08	J	0.311	0.204	0.114	J	0.0986	0.124	2.27	J	0.303	0.13
SB-14-2540	2.5-4	9/23/2021	1.57	UJ	0.812	1.59	2.99	J	0.43	0.248	0.176	J	0.105	0.092	3.1	J	0.414	0.142
SB-15-0406	4-6	9/23/2021	2.31	J	1.14	1.76	2.3		0.323	0.172	0.0477	J	0.0615	0.085	2.4		0.314	0.097
SB-15-0608	6-8	9/23/2021	1.43	J	1.17	2.25	0.834		0.186	0.161	0.0168	U	0.0614	0.095	0.807		0.154	0.072
SB-16-0235	2-3.5	9/23/2021	1.18	UJ	0.767	1.61	1.04		0.223	0.176	0.0321	J	0.0441	0.061	1.16		0.219	0.137
SB-DUP-16	2-3.5	9/23/2021	0.408	U	1.2	2.62	0.928		0.194	0.124	0.0315	UJ	0.0558	0.083	0.874		0.176	0.06
SB-17-0102	1-2	9/24/2021	18.5	J	6.89	6.04	22		0.841	0.144	0.97		0.179	0.067	22.1		0.839	0.084
SS-DUP-17	1-2	9/24/2021	-5.2	R	3.39	6.43	14.3		0.776	0.136	0.526		0.155	0.088	14.6		0.781	0.1
SB-18-0102	1-2	9/24/2021	1.27	UJ	0.787	1.36	0.838		0.195	0.15	0.0043	U	0.0399	0.074	0.756		0.168	0.084
SB-19-0102	1-2	9/24/2021	0.818	UJ	0.624	1.43	0.694		0.204	0.187	0.0974		0.0693	0.067	1.01		0.214	0.135
SB-19-0203	2-3	9/24/2021	0.855	UJ	0.666	1.48	0.79		0.207	0.176	0.0346	J	0.0474	0.065	0.998		0.202	0.101
SB-23-0102	1-2	9/27/2021	1.49	U	2.12	4.7	2.9		0.401	0.182	0.272		0.129	0.107	2.9	J	0.394	0.156
SB-DUP-23	1-2	9/27/2021	-2.13	U	2.19	5.17	2.05		0.325	0.155	0.0447	J	0.0684	0.1	2.54	J	0.352	0.114
SB-24-0102	1-2	9/27/2021	2.2	UJ	1.41	2.7	1.98		0.288	0.138	0.105	J	0.0807	0.092	2.21	J	0.292	0.066

^{[1]:} by gamma spectrometry; [2]: by alpha spectrometry; 2 σ : total uncertainty; bgs: below ground surface; CAS: Chemical Abstract Service; DUP: duplicate; ft: feet; ID: identification; J: Estimated value; MDA: Minimum Detectable Activity; pCi/g: picocuries per gram; Qual: Data Qualifer; R: rejected; SB: soil boring; U: not detected at the associated level; USEPA: U.S. Environmental Protection Agency; *The DUP is a field duplicate of the preceding sample

					Ta	ble 5-	3. Dov	nhole Gamr	na Sca	n Resi	ults								
	SB-01	SB-02	SB-03		04 Te	st 1		SB	-04 Te	est 2			-05 Te		ZENI I		-05 Te		TO I
Depth (ft bgs)	GR -	GR Total	GR Total	GR Total	K1	U'	Th'	GR Total	K1	U¹	Th¹	GR Total	K¹	U¹	Th¹	GR Total	K1	U'	Th ¹
0.0	2207	2228	2133	1378	26.7	8.8	0.1	1378	26.7	8.8	0.1	1925	45.6	18.3	2.8	1530	33.1	12.2	1.4
0.1	-	-	-	- 1678	26.7	8.9	0.2	- 1678	26.7	8.9	0.2	1858	40.4	19.8	2.2	- 1601	33.5	11.9	1.4
0.3	-	-	-	-	-	-	- 0.2	-	-	-	-	-	-	-	-	-	-	-	-
0.4	3186	2727	2465	1867	26.8	8.9	0.3	1867 -	26.8	8.9	0.3	2058	42.6	25.4	1.9	1902	34.8	11.9	1.5
0.6 0.7	-	-	-	2195	26.7	8.9	0.3	2195	26.7	8.9	0.3	1959	42.6	21.8	1.6	1761	35.1	11.6	1.7
0.7	-	-	-	2333	26.9	9.0	0.3	2333	26.9	9.0	0.3	1727	42.8	20.9	1.4	- 1794	35.5	12.0	1.9
0.9 1.0	2535	- 2936	2113	- 2126	27.0	- 9.1	0.2	- 2126	27.0	- 9.1	0.2	- 1636	43.1	18.6	1.2	- 1680	35.0	12.7	2.2
1.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.2	-	-	-	2124	27.0	9.3	0.3	2124	27.0	9.3	0.3	1666	38.8	18.3	1.1	1555	36.0	12.3	2.1
1.4	-	-	-	1696	27.1	9.4	0.4	1696	27.1	9.4	0.4	1258	40.9	16.6	2.4	1408	35.1	13.0	2.3
1.5	1786	3003	1307	1783	27.4	9.5	0.4	1783	27.4	9.5	0.4	- 1447	43.7	16.5	2.2	- 1479	35.5	13.1	2.5
1.7 1.8	-	-	-	1623	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-
1.8	-	-	-	-	27.7	9.6	0.4	1623	27.7	9.6	0.4	1101	40.3	15.2	2.1	1128	35.2	13.3	2.4
2.0	1503	2920	822	1545	28.0	9.7	0.4	1545	28.0	9.7	0.4	834	40.7	14.1	1.9	799 -	35.5	13.3	2.7
2.2	-	-	-	1432	28.0	9.7	0.4	1432	28.0	9.7	0.4	992	39.1	13.2	1.8	902	34.8	13.6	2.6
2.3 2.4	-	-	-	- 1627	28.3	9.8	0.4	- 1627	28.3	- 9.8	0.4	731	36.6	14.2	- 1.7	- 825	34.4	13.2	2.7
2.5	1261	2923	657	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.6	-	-	-	1601 1336	28.4	10.0	0.4	1601 1336	28.4	10.0	0.4	831 904	35.3 34.6	13.4	1.6	849 604	34.5 34.0	13.0	2.6
3.0	1209	-	-	1623	28.7	10.2	0.4	1623	28.7	10.2	0.4	858	33.4	12.4	1.4	931	34.0	12.6	2.7
3.2	-	-	-	1491 1530	28.5	9.7 9.8	0.4	1491 1530	28.5	9.7 9.8	0.4	1117 1511	32.4 32.3	12.5 12.6	1.3	1146 1295	33.7 33.9	12.6 12.6	2.9
3.6	-	-	-	1208	28.5	9.8	0.5	1208	28.5	9.8	0.5	-	-	-	-	-	-	-	-
3.8	-	-	-	874	28.8	9.5	0.5	874	28.8	9.5	0.5	-	-	-		-	-	-	-
4.0	-	-	-	752 667	28.0	9.5 9.5	0.5	752 667	28.0	9.5 9.5	0.5	-	-	-	-	-	-	-	-
4.4	-	-	-	667	27.5	9.6	0.5	667	27.5	9.6	0.5	-	-	-	-	-	-	-	-
4.6	-	-	-	732 589	27.6 27.7	9.6 9.6	0.5	732 589	27.6 27.7	9.6 9.6	0.5	-	-	-	-	-	-	-	-
5.0	-	-	-	619	27.7	9.6	0.5	619	27.7	9.6	0.5	-	-	-	-	-	-	-	-
5.2	-	-	-	770	27.8	9.6	0.5	770	27.8	9.6 9.7	0.5	-	-	-	-	-	-	-	-
5.4	-	-	-	784 728	27.6	9.7	0.5	784 728	27.6	9.7	0.5	-	-	-	-	-	-	-	-
5.8	-	-	-	751	27.6	9.3	0.6	751	27.6	9.3	0.6	-	-	-	-	-	-	-	-
6.0	-	-	-	885 855	27.5	9.5 9.6	0.6	885 855	27.5	9.5 9.6	0.6	-	-	-	-	-	-	-	-
6.4	-	-	-	775	28.0	9.6	0.8	775	28.0	9.6	0.8	-	-	-	-	-	-	-	-
6.6	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-
7.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7.2	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-	-
7.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8.0 8.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8.4	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
8.6 8.8	-	-	-	-	•		-	-	1 1	-	-	-	-	-	-	-	1	-	-
9.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9.4 9.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10.2	1	-	-	-	1	1	-	-	1	-	-	-	-	-	-	-	-	-	-
10.6	-	-	-	-	-	1	-	-	1	-	-	-	-	-	-	-	-	-	-
10.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11.4 11.6	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
11.8	-	-	-	-		1	-	-	1	-	-	-	-	-	-	-	-	-	-
12.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12.2 12.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12.6	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note: The downhole gamma logging tool was equipped with a Thallium doped Sodium Iodide crystal (NaI(TI)), which, when struck by gamma rays, emits pulses of light. These pulses are amplified by a photomultiplier tube and are converted into electrical pulses. The # of pulses are counted, digitized and transmitted to the surface acquisition system. In addition to the "total natural gamma counts" a real time process on the energy spectrum is applied and computes the concentration of the three main radioisotopes K, Th and U. 1: counts per minute; *Hole collapsed; **Encountered groundwater; -: no data; bgs: below ground surface; cpm: counts per minute; ft: feet; GR: gamma rate; K: Potassium; Th: Thorium; U: Uranium

									Table 5-3.	<u>Do</u> wn	hole G	<u>am</u> ma	Scan Resul	ts										
		8-06 Te				- 06 Te				07 Tes				3-07 Te				-09 Te				-09 T€		
Depth (ft bgs)	GR Total ¹	K ¹ 34.4	U ¹ 21.6	Th ¹ 2.6	GR Total	K¹	U	Th	GR Total ¹	K ¹	U ¹	Th ¹ 2.0	1289	K ¹	U ¹	Th ¹ 6.1	GR Total	K¹	U¹	Th	GR Total	K¹	U¹	Th
0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1284	24.8	15.2	1.9	1377	11.4	10.6	1.1
0.1	-	-	-	-	2339	42.9	23.5	2.6	1439	19.7	13.0	1.3	1227	32.3	14.0	5.9	-	-	-	-	-	-	-	
0.2	3550	28.6	31.2	1.7	3012	43.0	23.6	2.4	1601	14.8	13.5	4.8	1395	32.5	14.7	5.7	1694	30.5	10.1	1.3	1557	11.6	10.6	1.1
0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1623	26.1	20.6	1.0	1942	12.2	10.7	1.1
0.5	- 2549	42.1	29.9	2.6	3232	42.2	21.8	3.0	2248	15.6	10.8	3.8	1794	33.3	15.0	5.3	- 2472	26.1	18.2	0.8	2311	12.7	10.9	1.0
0.7	-	-	-	-	2460	43.7	22.1	2.8	2332	23.4	9.0	3.2	2167	33.8	14.2	5.0	-	-	-	-		-	-	-
0.8	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	-	2618	28.4	18.5	0.6	2679	13.0	11.1	1.0
0.9 1.0	2477	44.1	28.6	2.1	2276	43.1	23.5	2.6	2439	29.5	14.8	2.7	2230	33.2	14.6	5.4	2897	33.7	20.5	0.5	2899	13.4	11.3	1.1
1.1	-	-	-	-	2533	42.9	23.2	2.7	2180	29.3	14.7	2.4	2364	33.2	15.5	5.1	-	-	-	-	-	-	-	-
1.2	- 2215	- 45.0	-	- 1.7	-	- 42.2	-	-	2000	-	- 12.0	- 4 1	- 2200	- 22.6	- 15.2	-	2704	34.5	20.5	0.5	2828	13.6	11.6	1.1
1.3	2215	45.9	29.0	1.7	2527	43.2	22.9	3.1	2090	26.0	13.0	4.1	2309	33.6	15.3	5.4	2997	32.1	18.2	0.4	2829	14.3	11.9	1.1
1.5	-	-	-	-	2073	43.2	22.8	3.0	2823	25.3	13.6	5.5	2548	35.1	16.5	5.1	-	-	-	-	-	-	-	-
1.6 1.7	1957	45.8	26.6	2.1	2069	42.3	23.0	2.8	2457	29.6	12.3	5.0	2596	34.3	17.1	4.9	2696	34.3	20.5	1.7	2635	14.5	11.8	1.1
1.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3230	34.5	21.9	4.9	2752	14.9	11.9	1.1
1.9	1819	42.5	24.9	2.6	2032	42.2	22.6	2.9	2300	30.5	12.5	6.9	2676	35.4	17.0	4.7	-	-	-	-	-	-	-	
2.0	-	-	-	-	1890	42.0	22.2	3.1	-	-	-		2663	36.6	17.7	4.6	2986	36.0	22.2	5.2	2657	15.1	11.9	1.1
2.2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	2952	38.4	20.5	4.8	3131	15.5	12.1	1.1
2.3 2.4	-	-	-	-	1718	40.9	22.7	3.4	-	-	-	-	-	-	-	-	2680	- 20.6	- 10.9	- 5.2	- 2405	- 15.7	- 12.4	- 1 1
2.4	-	-	-	-	- 1815	41.1	22.7	3.5	-	-	-	-	-	-	-	-	2689	39.6	19.8	5.2	2495	15.7	12.4	1.1
2.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2231	40.2	18.5	5.5	2258	15.9	12.3	1.2
2.8 3.0	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	1751 1251	38.6 37.6	17.4 17.6	5.6 5.7	1594 1339	16.2 16.4	12.4 12.3	1.2
3.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1179	36.7	17.0	5.4	1266	17.0	12.3	1.1
3.4	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	885	35.7	16.1	5.1	990	16.9	12.0	1.1
3.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	827	35.1	15.3	4.9	822	16.8	12.0	1.1
3.8 4.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	642 664	34.6 33.8	14.6 14.7	4.6	707 837	16.8 17.0	12.2 12.2	1.1
4.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	738	32.7	14.7	4.4	800	17.0	12.2	1.2
4.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	758	32.7	14.1	4.1	742	17.1	12.1	1.1
4.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	969	32.0	13.5	3.9	936	17.1	12.2	1.1
4.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	754	31.4	13.7	3.7	861	17.3	12.1	1.1
5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	734 535	31.2	13.6	3.6	715 672	17.4 17.3	12.0 11.9	1.1
5.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	574	30.2	12.7	3.4	683	17.6	11.8	1.1
5.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	490	29.6	12.3	3.2	596	17.6	11.8	1.1
5.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	623	29.2	12.4	3.1	698	17.6	11.7	1.1
6.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	504	28.8	12.0	3.0	498	17.6	11.6	1.1
6.4	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	<u> </u>	-
6.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
7.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7.6	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
7.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<u> </u>
8.0 8.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
9.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
9.4	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
10.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-
10.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10.8	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		<u> </u>
11.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
11.2 11.4	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
11.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12.0	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		<u> </u>
12.2 12.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
12.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	. 1 1.		. 1		1 '41 TI - 1	liana da	1 C .	1' T.	dide crystal (Na	I(TI)) -	uhiah m	de ese este			•	1	1: 1 + Tl	.1	11	C . 11	1 . 1	11 . 1		

Note: The downhole gamma logging tool was equipped with a Thallium doped Sodium Iodide crystal (NaI(Tl)), which, when struck by gamma rays, emits pulses of light. These pulses are amplified by a photomultiplier tube and are converted into electrical pulses. The # of pulses are counted, digitized and transmitted to the surface acquisition system. In addition to the "total natural gamma counts" a real time process on the energy spectrum is applied and computes the concentration of the three main radioisotopes K, Th and U. 1: counts per minute; *Hole collapsed; **Encountered groundwater; -: no data; bgs: below ground surface; cpm: counts per minute; ft: feet; GR: gamma rate; K: Potassium; Th: Thorium; U: Uranium

	•				•			Jamm	a Scan Resu				•			
Depth (ft bgs)		3-10 Te	est 1 U	Th¹	SB GR Total	-10 Te	st 2	Th¹	GR Total	8-11 Te K ¹	est 1 U	Th¹	SE GR Total	8-11 Te K¹	st 2	Th¹
-0.1	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
0.0	2116	24.3	11.8	4.1	1472	33.0	15.8	3.0	730	23.3	7.9	0.9	689	34.9	10.2	3.7
0.1	2608	28.9	13.0	2.7	2130	33.0	15.9	3.4	- 852	26.6	8.9	4.3	665	34.5	10.3	3.7
0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.4	2886	29.7	11.7	2.0	2502	33.8	16.3	3.3	598	26.2	9.8	3.2	478	34.4	10.1	3.6
0.6	2660	33.7	17.6	1.6	2653	35.9	16.3	3.2	831	27.7	7.9	4.8	835	34.0	10.1	3.5
0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.8	2819	33.7	18.9	2.8	2500	35.8	16.1	3.4	772	28.8	8.4	4.0	781	34.2	9.9	3.5
1.0	3070	40.0	20.0	2.4	2735	36.9	16.8	3.7	835	30.7	7.2	3.5	627	34.1	9.8	3.4
1.1	2886	41.4	21.7	2.1	2855	36.9	17.7	3.6	807	29.7	6.3	3.0	518	33.9	9.8	3.4
1.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
1.4 1.5	3252	39.6	21.2	2.8	2888	37.4	18.6	4.0	870	27.7	6.9	2.7	725	33.9	10.0	3.3
1.6	2977	39.1	21.6	2.5	2879	37.4	18.7	4.3	1118	29.0	7.6	2.4	877	34.0	9.8	3.3
1.7	-	- 20.4	- 22.9	-	- 2026	- 27.0	- 10.7	-	- 1410	- 20.4	-	-	- 061	- 22.0	- 7	-
1.8 1.9	2826	39.4	22.8	2.3	2926	37.9	18.7	4.2	1410	28.4	7.9	2.2	961	33.9	9.7	3.3
2.0	2249	36.9	25.5	2.9	2772	38.2	18.9	4.5	1173	29.2	8.0	2.8	839	33.5	9.6	3.2
2.1 2.2	2073	38.0	26.8	2.6	2421	37.6	18.6	4.4	1269	30.7	7.4	2.6	1056	34.0	9.6	3.2
2.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.4 2.5	1687	38.1	25.4	3.0	2136	37.7	18.8	4.7	1328	31.6	7.7	2.4	1183	33.8	9.7	3.1
2.6	1375	36.6	23.8	2.8	1429	36.8	18.5	4.6	1455	31.9	7.1	2.3	1200	33.5	9.6	3.2
2.8 3.0	1260	37.0	22.8	2.6	1261	37.3	18.3	4.5	1092	31.7	6.7	2.1	1198	33.2	9.5	3.1
3.0	1246 945	35.9 34.3	22.0	2.5	1080 1023	36.7 36.7	18.1 17.9	4.4	1014 1325	30.6	6.3	2.0	1155 1133	33.0 32.8	9.6 9.7	3.2
3.4	1125	34.7	20.6	2.2	1078	37.1	17.7	4.2	1663	32.3	6.2	2.5	1141	32.6	9.8	3.4
3.6	1104	33.0	20.3	2.5	992	37.3	17.5	4.1	1949	34.2	6.6	2.4	1546	32.8	9.8	3.5
3.8 4.0	1351 1522	33.0 33.0	19.4 18.9	2.4	1110 1141	37.9 37.7	17.7 17.4	4.0	2232 2372	33.8 35.7	6.3 7.0	2.9 3.2	1445 1427	32.9 32.8	9.8 9.8	3.4
4.2	1590	33.0	18.0	2.2	1154	37.3	17.0	3.9	2260	35.4	7.5	3.1	2165	33.4	9.7	3.4
4.4	1469	33.3	17.3	2.4	1445	37.6	16.7	3.8	2696	36.4	8.0	4.2	2463	34.4	9.6	3.3
4.6 4.8	1703 1447	34.7 34.8	17.8 17.1	2.6	1452 1439	37.4 37.6	16.4 16.6	4.0 3.9	2528 2798	35.8 36.5	9.5 9.6	4.5	2257 2456	34.4	9.7 9.9	3.4
5.0	1415	34.2	17.4	2.4	1437	37.2		3.9	2462	37.2	10.3	4.7	2612	34.0	10.2	3.5
5.2	1452		17.3		1600	37.4		3.8	2841	38.3		5.0	2287		10.5	3.5
5.4 5.6	1240 1247	33.8 33.5	17.0 16.5	2.3	1371 1070	37.1 36.9	16.5 16.2	3.7	2650 2704	38.8 39.8	12.9 13.9	4.8	2979 2619	34.0	10.7	3.4
5.8	1235	33.4	16.4	2.9	1289	36.6		3.6	2250	39.6	14.5	4.5	2848	34.6	11.3	3.3
6.0	-	-	-	-	=	-	-	-	2159	39.3	14.0	4.4	2559	34.9	11.1	3.5
6.2 6.4	-	-	-	-	=	-	-	-	1738 1545	39.2 38.4	14.0	4.6	2330 1681	35.6 35.8	11.0	3.5
6.6	-	-	-	-	-	-	-	-	1443	37.8	14.1	4.3	1697	35.6	11.3	3.4
6.8	-	-	-	-	-	-	-	-	1507	38.1	14.6	4.2	1575	36.0	11.2	3.5
7.0	-	-	-	-	-	-	-	-	1629	37.9	14.3	4.5	1364	35.7	11.1	3.5
7.2 7.4	-	-	-	-	-	-	-	-	1617 1691	37.9 37.3	13.9	4.4	1693 1756	36.0 35.8	11.2	3.5
7.6	-	-	-	-	-	-	-	-	1496	38.2	13.2	4.2	1881	35.6	11.2	3.4
7.8	-	-	-	-	-	-	-	-	1367	38.3	13.2	4.1	1586	36.0	11.1	3.4
8.0 8.2	-	-	-	-	-	-	-	-	1444 1241	38.7 38.4	12.9 12.6	4.0 3.9	1721 1383	36.0 36.0	11.0	3.3
8.4	-	-	-	-	-	-	-	-	1370	39.0	12.9	3.8	1390	35.9	10.8	3.3
8.6	-	-	-	-	-	-	-	-	1116	38.8	12.8	3.9	1397	36.2	10.7	3.2
9.0	-	-	-	-	-	-	-	-	1365 1247	39.0 39.1	12.5 12.3	4.0	1542 1232	36.1	10.9	3.2
9.2	-	-	-	-	-	-	-	-	1653	38.6	12.3	3.9	1310	36.0	10.9	3.3
9.4	-	-	-	-	-	-	-	-	1205	38.8	12.1	3.8	1437	36.1	10.9	3.4
9.6 9.8	-	-	-	-	-	-	-	-	1502 1526	38.6	11.8 11.6	3.7	1293 1304	36.0 35.8	10.8	3.5
10.0	-	-	-	-	-	-	-	-	1185	37.8	11.4	3.8	1553	36.2	11.0	3.6
10.2	-	-	-	-	-	-	-	-	1217	37.7	11.4	3.7	1682	36.3	11.0	3.6
10.4 10.6	-	-	-	-	-	-	-	-	1062 1085	37.5 37.6	11.2	3.6	1318 1312	36.2 36.0	10.9	3.6
10.8	-	-	-	-	-	-	-	-	1085	37.4	10.8	3.9	1512	36.0	11.0	3.5
11.0	-	-	-	-	-	-	-	-	930	37.0	10.6	3.9	1075	35.9	11.1	3.5
11.2	-	-	-	-	-	-	-	-	729 851	36.7	10.5	3.8	1228 937	35.9	11.1	3.5
11.4 11.6	-	-	-	-	-	-	-	-	851 668	36.3 35.7	10.8	3.7	749	35.8 35.7	11.0	3.5
11.8	-	-	-	-	-	-	-	-	681	35.7	10.5	3.9	776	35.4	10.9	3.5
12.0	-	-	-	-	-	-	-	-	721	35.3	10.5	3.8	942	35.1	10.8	3.4
12.2 12.4	-	_	-	-	-	-	-	-	-	-	-	-	720 588	35.3 35.3	10.7	3.4
12.6	-	_	_	-	-		-	_	-	-	-	_	945	35.0	10.5	3.4

12.6 - - - 945 35.0 10.5 3.4

Note: The downhole gamma logging tool was equipped with a Thallium doped Sodium Iodide crystal (NaI(TI)), which, when struck by gamma rays, emits pulses of light. These pulses are amplified by a photomultiplier tube and are converted into electrical pulses. The # of pulses are counted, digitized and transmitted to the surface acquisition system. In addition to the "total natural gamma counts" a real time process on the energy spectrum is applied and computes the concentration of the three main radioisotopes K, Th and U. 1: counts per minute; *Hole collapsed; **Encountered groundwater; -: no data; bgs: below ground surface; cpm: counts per minute; ft: feet; GR: gamma rate; K: Potassium; Th: Thorium; U: Uranium

				Table	5-3. Downhole	Gamma Sca	n Resi	ults				
D 41 (641)		- 12 Te		T1. 1		B-12 Test 2	T 71	TL 1		SB-14 Test		T1. 1
Depth (ft bgs)	GR Total	K¹	U'	Th¹	GR Total	K¹ -	U'	Th¹	GR Total	K¹	U¹	Th¹
0.0	727	17.4	1.3	0.0	744	33.9	12.1	2.7	573	12.00162	3.52	0.77
0.1	1052	11.6	6.1	0.0	808	33.6	11.9	2.6	602	11.97744	3.52	0.77
0.3	831	24.4	4.5	0.0	- 998	33.8	12.0	2.6	834	12.01746	3.58	0.77
0.5	-	-	-	-	-	-	-	-	-	-	-	-
0.6	1190	19.5	7.3	0.0	972	33.5	12.1	2.6	977	12.2028	3.67	0.77
0.8 0.9	1205	29.5	8.3	0.0	1074	33.4	11.9	2.5	1109	12.44928	3.71	0.77
1.0	1302	25.3	7.1	0.0	1167	33.1	11.7	2.6	1200	12.5358	3.82	0.77
1.1 1.2 1.3	1429	26.5	6.2	0.0	1254	33.3	11.7	2.7	- 1446	12.87816	3.73	0.77
1.4	1287	25.1	7.1	0.0	1259	33.1	11.7	3.1	1130	13.01028	3.73	0.91
1.5 1.6	- 1697	27.1	6.4	0.0	- 1468	33.9	11.8	3.0	1254	13.46628	3.73	0.91
1.7 1.8	- 1711	30.1	8.6	1.4	1397	34.3	12.0	3.0	1123	13.41708	3.85	0.91
1.9 2.0	1865	31.1	7.9	2.1	- 1488	34.1	12.0	2.9	1059	13.33212	3.85	0.91
2.1	1382	31.9	7.3	2.8	1455	34.2	12.0	2.9	1025	13.61112	3.84	0.91
2.3	-	-	-	-	-	-	-	-	-	-	-	-
2.4	1333	29.6	8.3	2.6	1458	34.4	11.9	2.9	1391	13.72926	3.84	0.97
2.6	1390 1196	28.5	7.8	2.4	1253 1023	34.3 33.9	11.9 11.8	3.0	1370 1639	13.85304 14.1114	3.75	0.94
3.0	1150	27.0	7.9	2.1	1112	33.9	11.6	2.9	1855	14.51874	3.98	0.98
3.2	1443 1438	26.8	8.7 9.5	2.0	1356 1319	33.7 33.8	11.6	2.9	2117 2344	14.74212 14.96538	4.02	1.08
3.6	1986	27.6	10.4	1.8	1992	33.9	11.8	3.0	2369	15.38382	4.19	1.08
3.8	2083	27.4	10.5	1.7	1455	33.7	11.6	2.9	2649	15.92478	4.51	1.17
4.0	1993 2180	26.7	10.6	1.6	1683 2110	33.7 33.7	11.7	2.9	2655 2642	16.34994 16.60338	4.51 5.01	1.29
4.4	2301	26.2	11.4	1.9	2206	34.0	12.0	2.9	2695	17.0307	5.23	1.43
4.6	2523	27.4	12.7	2.3	2417	34.4	12.1	3.0	2895	17.23068	5.42	1.55
4.8	2182	27.3	12.7	2.2	2224	34.4	12.1	3.0	2891	17.62938	5.62	1.55
5.0	2342 2268	28.4	12.8 12.4	2.1	2150 2448	34.6 34.6	12.4 12.4	3.2	2651 2913	17.84586 17.90988	5.69 5.89	1.59
5.4	2205	29.5	13.1	2.0	1873	34.8	12.7	3.1	2794	18.21126	6.19	1.65
5.6	1905	29.2	13.1	2.3	2053	34.8	12.9	3.1	2703	18.32184	6.4	1.65
5.8 6.0	1676 1796	29.7	12.6 12.2	2.2	1676 1457	34.6 34.6	13.6 13.5	3.0	2729 2655	18.81582 18.9627	6.65	1.73
6.2	1888	32.3	12.4	2.1	1588	35.0	13.7	3.2	2576	19.3881	6.79	1.77
6.4	1710	32.7	12.6	2.0	1717	35.3	13.7	3.1	2152	19.63026	6.85	1.69
6.6	1759	33.0	12.3	2.0	1712	35.5	13.6	3.2	2151	19.67118	6.92	1.76
6.8 7.0	1690 1988	32.5	11.9	2.1	1735 2235	35.5 35.3	13.7	3.3	1767 1433	19.96572 20.09142	7.07	1.83
7.0	1870	33.5	11.7	2.4	1962	35.5	13.7	3.2	1604	20.27292	7.25	1.78
7.4	2223	34.3	11.4	2.3	2030	35.6	13.8	3.3	1723	20.34534	7.25	1.82
7.6	1913	34.2	11.1	2.2	1879	35.9	13.8	3.3	1751	20.36262	7.31	1.95
7.8 8.0	1766 1788	34.1	11.9	2.2	1891 1437	36.1 36.2	13.7 13.6	3.3	1318 1341	20.50098 20.47752	7.44	1.95 1.95
8.2	1937	34.0	11.7	2.1	1768	36.2	13.4	3.4	1472	20.95752	7.67	2
8.4	2153	33.9	11.7	2.0	1892	36.5	13.5	3.5	1448	21.33762	7.71	2
8.6 8.8	2063 1738	34.4	11.6	2.2	1980 1622	36.6 36.6	13.6 13.6	3.5	1384 1388	21.46242 21.58614	7.68	2.05
9.0	1/38	34.3	11.4	2.1	1522	36.6	13.6	3.4	1388	21.58614	7.72	2.05
9.2	1384	34.9	11.4	2.0	1607	36.4	13.5	3.5	1122	21.69378	7.72	2.12
9.4	1520	35.0	11.4	2.0	1443	36.2	13.6	3.5	1167	21.84408	7.75	2.15
9.6 9.8	1601 1502	34.6	11.9	2.6	1511 1205	35.9 35.8	13.7 13.7	3.6	1078 1284	21.82728 21.6804	7.77	2.19
10.0	1302	34.4	11.6	2.5	1203	35.9	13.7	3.5	944	21.66384	7.77	2.33
10.2	1247	34.3	11.4	2.5	1503	36.0	13.7	3.5	873	21.63414	7.91	2.33
10.4	1067	34.2	11.7	2.4	1490	36.1	13.7	3.5	996	21.77538	8.05	2.33
10.6 10.8	1358 1595	34.0	11.5	2.4	1293 1463	36.3 36.3	13.7	3.4	822 834	21.85368 21.91692	8.12 8.19	2.36
11.0	1593	33.8	12.3	2.3	1403	36.3	13.7	3.4	743	22.05642	8.19	2.43
11.2	1816	33.8	12.4	2.3	1605	36.4	13.7	3.4	761	22.19538	8.26	2.5
11.4	1687	33.7	12.2	2.2	1592	36.5	13.6	3.3	847	22.35834	8.31	2.55
11.6 11.8	2009 2288	33.7	12.0 12.2	2.2	1791 1916	36.8 37.0	13.5	3.3	752 851	22.48986 22.48308	8.23 8.06	2.55
12.0	1696	34.1	12.2	2.1	1910	37.0	13.6	3.3	839	22.46308	8.06	2.55
12.2	-	-	-	-	1795	37.0	13.5	3.3	917	22.72746	8.04	2.55
12.4 12.6	-	-	-	-	2029	37.4	13.5	3.3	1143	22.99212	8.11	2.62
Nata Tha Janu	<u> </u>			_	- 	- 11:	10.1.	- I. J		- [-](T1))1-:-		_

Note: The downhole gamma logging tool was equipped with a Thallium doped Sodium Iodide crystal (NaI(Tl)), which, when struck by gamma rays, emits pulses of light. These pulses are amplified by a photomultiplier tube and are converted into electrical pulses. The # of pulses are counted, digitized and transmitted to the surface acquisition system. In addition to the "total natural gamma counts" a real time process on the energy spectrum is applied and computes the concentration of the three main radioisotopes K, Th and U. 1: counts per minute; *Hole collapsed; **Encountered groundwater; -: no data; bgs: below ground surface; cpm: counts per minute; ft: feet; GR: gamma rate; K: Potassium; Th: Thorium; U: Uranium

						Table 5.3	Dow	nhole (Gamma Scan	Results						
		SB-14 Test	2			SB-15 Test		more v	,	SB-15 Test			SB-16	SB-19	SB-23	SB-24
Depth (ft bgs)		K ¹	U	Th	GR Total	K ¹	U	Th	GR Total	K ¹	U	Th¹	GR Total	GR Total	GR Total	GR Total
-0.1 0.0 0.1	782	22.90176	8.22	2.63	852	18.7	3.0	1.1	1154	36.8	14.8	3.5	2421	2110	2313	2568
0.2	540	22.96716	8.13	2.55	1049	30.6	2.0	0.7	671	36.2	14.7	3.4	-	-	-	-
0.3	732	22.90488	8.15	2.48	1170	32.1	3.8	0.5	- 856	35.4	14.9	3.3	-	-	-	-
0.5	- 968	23.02488	8.15	2.48	1242	31.4	5.0	0.4	807	35.3	14.8	3.3	3376	3021	3286	3321
0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.8	994	23.15742	8.2	2.48	1317	30.9	4.1	0.4	843	34.5	14.4	3.2	-	-	-	-
1.0	1172	23.52522	8.24	2.53	1226	31.8	4.9	0.3	1134	34.5	14.1	3.1	4016	3579	4316	5125
1.2	1054	23.62284	8.29	2.53	1490	30.1	5.4	0.3	1147	34.3	14.2	3.1	-	-	-	-
1.4	1289	23.72472	8.35	2.53	1452	28.8	5.8	0.2	1697	35.2	14.2	3.0	- 4267	- 3686	-	6532
1.6	1198	23.81718	8.47	2.53	1457	30.6	5.3	0.2	1424	35.1	14.3	3.1	-	-	-	-
1.8	1083	23.85342	8.58	2.53	1453	31.2	7.3	1.0	1237	34.8	14.0	3.0	-	-	-	-
1.9 2.0	1091	23.99064	8.58	2.57	1572	34.7	6.7	1.0	1212	35.0	13.9	3.0	-	3406	-	7113
2.1 2.2	- 957	23.79372	8.63	2.57	- 1489	36.0	7.5	0.9	- 1469	34.9	14.1	3.1	-	-	-	-
2.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.4	1390	24.07428	8.7	2.64	1692	34.1	8.3	0.8	1510	34.8	14.1	3.0	-	-	-	-
2.6 2.8	1357	24.25728	8.7	2.64	1818	32.4	10.2	0.8	1320	35.1	14.2	3.0	-	-	-	-
3.0	1409 1574	24.41742 24.5916	8.86 8.99	2.69	2073 2096	32.2 31.9	9.5 10.6	2.5	1659 1863	35.2 34.9	14.1 13.8	3.1	-	-	-	-
3.2	1769	25.09062	9.08	2.82	2528	35.2	11.6	2.7	2142	34.9	13.6	3.0	-	-	-	-
3.4	2038 2353	25.35138 25.32288	9.32	2.82	2553 2305	37.1 38.5	11.4 11.8	2.6	2196 2548	34.6 34.7	13.7 14.1	2.9	-	-	-	-
3.8	2545	25.87458	9.59	2.74	2017	39.2	11.3	2.8	2013	35.3	13.9	2.8	-	-	-	-
4.0	2789	26.10762	9.93	2.79	2340	37.9	12.0	2.7	2812	37.1	14.5	2.8	-	-	-	-
4.2	2571 2700	26.1753 26.30484	9.98	2.88 2.94	2419 2657	37.4 38.3	12.2 12.4	2.9	2194 2038	37.3 37.5	14.6 14.6	3.0	-	-	-	-
4.6	2640	26.70198	10.1	2.94	2457	38.2	13.7	3.4	2368	38.0	14.4	2.9	-	-	-	-
4.8	2795	26.96814	10.5	2.94	2941	37.5	14.9	3.3	2860	37.9	14.4	2.9	-	-	-	-
5.0	2847 2569	27.45486 27.64128	10.7	2.94	2648 2126	38.9 38.8	15.1 15.6	3.2	2594 2737	37.8 38.0	15.2 15.5	2.8	-	-	-	-
5.4	2811	28.1658	11	3.03	2363	39.7	15.7	4.2	2572	37.7	16.1	2.8	-	-	-	-
5.6	2532	28.22712	11.3	3.09	2029	39.9	15.4	4.1	1790	37.2	16.3	2.7	-	-	-	-
5.8	2271 2544	28.43838 28.8471	11.3	3.09	1763 1635	39.8 39.2	14.9	4.0 3.8	2108 2104	37.4 37.3	16.3 16.4	2.7	-	-	-	-
6.2	2410	29.30928	11.7	3.39	1546	38.9	15.5	3.7	1504	37.1	16.4	2.6	-	-	-	-
6.4	2321	29.67552	11.8		1614	38.3	15.3	3.9	1522	36.8	16.4	2.6	-	-	-	-
6.6	2202 2062	29.91042 29.87388	11.9	3.49	1398 1411	37.7 37.1	15.3 15.4	3.8	1403 1687	37.2 37.4	16.2 16.2	2.5	-	-	-	-
7.0	1936	29.96406	11.9		1482	36.9	15.2	3.6	1488	37.4	16.0	2.5	-	-	-	-
7.2	1637	30.14496	12	3.62	1306	37.2	15.1	3.5	1520	37.1	16.0	2.4	-	-	-	-
7.4	1498 1533	30.23376 30.46926	12.2	3.67	-	-	-	-	1302 1074	37.3 36.8	15.8 15.6	2.4	-	-	-	-
7.8	1604	30.70962	12.3		-	1	-	-	-	-	-	-	-	-	-	-
8.0	1532	30.906	12.5	3.73	-	-	-	-	-	-	-	-	-	-	-	-
8.2 8.4	1588 1477	31.10364 31.3668	12.8 12.8	3.73 3.73	-	-	-	-	-	-	-	-	-	-	-	-
8.6	1494	31.63842	12.8	3.73	-	-	-	-	-	-	-	-	-	-	-	-
8.8	1251	31.86474	12.9	3.73	-	-	-	-	-	-	-	-	-	-	-	-
9.0	1386 1402	31.84866 32.0604	12.9	3.73	-	-	-	-	-	-	-	-	-	-	-	-
9.4	1081	32.21568	13.1	3.79	-	-	-	-	-	-	-	-	-	-	-	-
9.6 9.8	1000 1072	32.09046 32.32704	13.1	3.79	-	-	-	-	-	-	-	-	-	-	-	-
10.0	1072	32.32704	13.1	3.83	-	-	-	-	-	-	-	-	-	-	-	-
10.2	1001	32.6574	13.1	3.83	-	-	-	-	-	-	-	-	-	-	-	-
10.4	921 965	32.64918 32.83218	13.1	3.83	-	-	-	-	-	-	-	-	-	-	-	-
10.8	842	32.83218	13.1	3.88	-	-	-	-	-	-	-	-	-	-	-	-
11.0	761	32.82486	13	3.88	-	-	-	-	-	-	-	-	-	-	-	-
11.2 11.4	932 896	32.88954 33.02088	13	3.88 4.01	-	-	-	-	-	-	-	-	-	-	-	-
11.4	688	33.30042	13	4.01	-	-	-	-	-	-	-	-	-	-	-	-
11.8	787	33.34542	13.1	4.05	-	-	-	-	-	-	-	-	-	-	-	-
12.0	901 855	33.39966 33.49668	13.1	4.14	-	-	-	-	-	-	-	-	-	-	-	-
12.2	887	33.68052	13.1	4.14	-	-	-	-	-	-	-	-	-	-	-	-
12.6	1310	34.02996	13.1	4.14	-	- 	-	-	-	-	-	-	-	-	-	- -1:£ - 4 h

Note: The downhole gamma logging tool was equipped with a Thallium doped Sodium Iodide crystal (NaI(Tl)), which, when struck by gamma rays, emits pulses of light. These pulses are amplified by a photomultiplier tube and are converted into electrical pulses. The # of pulses are counted, digitized and transmitted to the surface acquisition system. In addition to the "total natural gamma counts" a real time process on the energy spectrum is applied and computes the concentration of the three main radioisotopes K, Th and U. 1: counts per minute; *Hole collapsed; **Encountered groundwater; -: no data; bgs: below ground surface; cpm: counts per minute; ft: feet; GR: gamma rate; K: Potassium; Th: Thorium; U: Uranium

			Table 5	-4. Resu	lts of Te	st Pit So	il Sampl	es (Alpl	na and G	amma S	pectrosc	opy)						
		Analyte	Act	tinium-2	28 (Ra-2	228)		Bismu	th-212		Radiu	m-226 (Bismuth	1-214)		Lead	-212	
		CAS#										13982	2-63-3					
		Units		рC	i/g			рC	i/g			рC	i/g			рC	i/g	
	B	Sackground Soil		N	A			N	Α			2.2	294			N	A	
	Project S	Screening Level		7.	35			N	Α			2.2	294			N	A	
	Source of S	Screening Level	USE	EPA 202	1 Reside	ntial		N	Α		USE	PA 2008	Backgr	ound		N	A	
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2 σ	MDA	Result	Qual	2 σ	MDA	Result	Qual	2 σ	MDA	Result	Qual	2 σ	MDA
TS-01-0002	0-2	9/24/2021	1.74	J	0.298	0.417	2.11	J	0.887	1.42	2.9	J	0.31	0.215	1.41	J	0.214	0.29
TS-01-0204	2-4	9/24/2021	2.67	J	0.578	0.888	3.19	J	1.74	2.93	4.02	J	0.515	0.422	2.19	J	0.352	0.431
TS-02-0002	0-2	9/24/2021	1.36	U	1.49	3.34	2.56	UJ	6.28	11.5	347	J	30	1.72	-63.7	UJ	6.44	3.08
TS-02-0304	3-4	9/24/2021	1.9	J	0.715	1.48	-14.4	UJ	13.1	5.4	35.1	J	3.31	0.771	4.42	J	0.684	0.789
TS-DUP-01	3-4	9/24/2021	1.29	J	0.508	1.05	-2.59	UJ	8.79	3.77	32	J	2.92	0.539	-4.48	UJ	0.635	0.924
TS-03-0002	0-2	9/24/2021	1.61	J	0.305	0.463	2.35	J	0.896	1.36	3.5	J	0.349	0.226	1.49	J	0.229	0.31
TS-03-0204	2-4	9/24/2021	2.83	J	0.57	0.742	3.86	J	1.92	3.55	3.26	J	0.476	0.456	3.11	J	0.446	0.376
TS-04-0002	0-2	9/24/2021	1.27	J	0.303	0.583	2.29	J	0.992	1.57	11.9	J	0.919	0.289	-0.04	UJ	0.231	0.437
TS-DUP-02	0-2	9/24/2021	1.57	J	0.338	0.592	1.06	J	1.16	2.13	12.7	J	0.986	0.315	-0.11	UJ	0.242	0.465
TS-04-0406	4-6	9/24/2021	2.45	J	0.382	0.462	2.79	J	1.07	1.69	2.74	J	0.313	0.265	2.38	J	0.29	0.329

			Table 5-	4. Resu	lts of Te	st Pit So	il Sampl	es (Alph	a and G	amma S	Spectrosc	ору)						
		Analyte		Lead	1-214			Potassi	um-40			Thalliu	ım-208			Uraniı	ım-235	
		CAS#						13966	-00-2									
		Units		рC	li/g			рC	i/g			рC	i/g			рC	i/g	
	E	Background Soil		N	A			18.	81			N	A			Below	MDA	
	Project S	Screening Level		N	A			N	A			N	A			0.2	203	
	Source of S	Screening Level		N	A			N	A			N	A		USE	PA 202	1 Reside	ntial
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA
TS-01-0002	0-2	9/24/2021	3.39	J	0.33	0.227	5.83	J	1.41	2.02	0.56	J	0.101	0.125	0.356	UJ	0.0895	0.675
TS-01-0204	2-4	9/24/2021	4.65	J	0.532	0.458	12.6	J	2.69	2.14	1.01	J	0.203	0.223	0.359	U	0.126	0.886
TS-02-0002	0-2	9/24/2021	377	J	38.7	2.12	8.07	J	5.53	9.8	0.751	J	0.514	0.874	13.5	J	3.93	6.18
TS-02-0304	3-4	9/24/2021	35.8	J	4.05	0.842	13	J	2.98	3.96	0.799	J	0.26	0.422	2.74	J	0.419	2.7
TS-DUP-01	3-4	9/24/2021	34.8	J	3.65	0.603	14.1	J	2.59	3.02	0.596	J	0.182	0.272	0.498	U	1.12	1.91
TS-03-0002	0-2	9/24/2021	4.06	J	0.388	0.256	6.51	J	1.56	2.21	0.634	J	0.11	0.128	0.55	UJ	0.105	0.788
TS-03-0204	2-4	9/24/2021	3.38	J	0.496	0.457	7.14	J	2	2.26	0.798	J	0.19	0.245	0.292	U	0.146	1.33
TS-04-0002	0-2	9/24/2021	13.3	J	1.07	0.334	5.4	J	1.44	2.16	0.537	J	0.108	0.148	0.361	U	0.57	1.01
TS-DUP-02	0-2	9/24/2021	13.7	J	1.1	0.32	5.81	J	1.52	2.25	0.498	J	0.116	0.171	1.48	J	0.176	0.989
TS-04-0406	2-6	9/24/2021	3.2	J	0.331	0.257	5.68	J	1.48	2.07	0.863	J	0.137	0.154	0.475	UJ	0.102	0.784

			Table 5	4. Resul	lts of Te	st Pit So	il Sampl	es (Alph	a and G	amma S	pectrosc	opy)						
		Analyte	Thoriu	ım-234 (Uraniu	m-238)		Uraniı	ım-234			Urani	um-235			Uraniu	m- 238	
		CAS#						13966	-29-5			1511	7-96-1			7440	61-1	
		Units		рC	i/g			рC	i/g			p(Ci/g			рC	i/g	
	E	Background Soil		N	A			2.5	24			Below	v MDA			2.4	62	
	Project S	Screening Level		12	20			5.	83			0.2	203			6.4	48	
	Source of S	Screening Level	USE	PA 2021	Reside	ntial	USE	PA 202	Reside	ntial	USE	PA 202	1 Reside	ntial	USE	PA 2021	Reside	ntial
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA
TS-01-0002	0-2	9/24/2021	1.16	UJ	1.33	2.65	3.21		0.346	0.128	0.106	J	0.0677	0.061	3.27	J	0.342	0.061
TS-01-0204	2-4	9/24/2021	2.95	J	1.51	2.53	2.54		0.311	0.123	0.0888	J	0.0778	0.0955	2.63		0.31	0.076
TS-02-0002	0-2	9/24/2021	-7.05	R	10.4	19.7	73.6		2.11	0.279	3.8	J	0.48	0.103	73.3		2.1	0.159
TS-02-0304	3-4	9/24/2021	-4.94	R	4.83	10.1	9		0.551	0.119	0.384	J	0.121	0.0799	9.07		0.549	0.057
TS-DUP-01	3-4	9/24/2021	1.86	U	3.06	6.08	9.93		0.693	0.127	0.357		0.136	0.0824	9.77	J	0.686	0.101
TS-03-0002	0-2	9/24/2021	3.16	J	1.77	2.73	4.2		0.427	0.137	0.159	J	0.0931	0.0882	4.67		0.445	0.101
TS-03-0204	2-4	9/24/2021	3.9	J	2.82	5.15	3.22		0.351	0.131	0.118		0.0765	0.0766	3.1		0.342	0.112
TS-04-0002	0-2	9/24/2021	3.21	J	2.14	3.67	9.29		0.604	0.191	0.476		0.137	0.0647	9.69	J	0.611	0.147
TS-DUP-02	0-2	9/24/2021	6.53	J	3.08	3.85	9.85		0.562	0.141	0.572	J	0.138	0.0657	10.1		0.563	0.083
TS-04-0406	2-6	9/24/2021	2.35	J	1.8	3.06	2.43		0.308	0.169	0.11	J	0.0672	0.0585	2.32		0.292	0.132

VALUE

Value exceeds the Screening Level as outlined in the QAPP (USACE 2021b)

2σ: total uncertainty; CAS: Chemical Abstract Service; DUP: duplicate; ID: identification; J: Estimated value; MDA: Minimum Detectable Activity; pCi/g: picocuries per gram; Qual: Data Qualifer; R: rejected; TS: test pit; USEPA: U.S. Environmental Protection Agency; U: not detected at the associated level; *The DUP is a field duplicate of the preceding sample

		T	able 5-5. Water	Quality Parameters for	Groundwater Samples			
Sample ID	Soil Boring ID	Depth (ft bgs)	Temperature (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	ORP (mV)	Turbidity (NTU)
GW-06-1205	SB-06	5-6.0	21	3418	5.84	6.47	39.1	110
GW-07-1215	SB-07	4	20.6	3191	5.67	6.18	42.6	156
GW-09-1210	SB-09	5-6.0	21.1	3290	4.99	6.18	43.9	218
GW-10-1220	SB-10	6-7.0	20.6	3308	4.93	6.2	45.1	94.7

bgs: below ground surface; °C: degrees Celsius; ft: feet; GW: groundwater; ID: identification; mg/L: milligrams per liter; mS/cm: microSiemens per centimeter; mV: millivolts; NTU: nephlometric turbidity unit; ORP; Oxidation-Reduction Potential; pH; potential of hydrogen; SB: soil boring; S.U.: Standard Unit

				T	able :	5-6. Res	sults of C	Fround	water	Sample	es and E	quipme	nt Blan	ks							
		Analyte	(ross A	Alpha	ı		Gross	Beta			Radiu	m-226			Radiu	m-228		U	ranium	t I
		CAS#		12587-	46-1			12587-	47-2			13982	-63-3			15262	-20-1		152	262-20-	1
		Units		pCi.	/L			pCi/	L			pC:	i/L			рСi	i/L			mg/L	ļ
	Project S	Screening Level		15	;			50				5	;			5				0.03	
Sample ID				Unfilt	ered			Unfilte	ered			Unfil	tered			Unfilt	ered		Ur	filtere	d
Unfiltered	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDC	Result	Qual	2σ	MDC	Result	Qual	2σ	MDC	Result	Qual	2σ	MDC	Result	Qual	MDC
GW-06-1205	5-6	9/27/2021	-54.6	U	66	126	125		75.6	96.1	2.55		0.624	0.194	-0.017	U	0.439	0.811	0.00755		0.001
GW-07-1215	4-5	9/27/2021	663		239	234	803	J	150	165	2.76		0.630	0.163	1.01		0.425	0.758	0.152		0.001
GW-09-1210	5-6	9/27/2021	548		214	223	787	J	175	200	1.95		0.549	0.174	0.447	J	0.402	0.729	0.001	U	0.001
GW-10-1220	6-7	9/27/2021	40.1	J	61	85.7	198	J	77.6	95.2	0.576		0.319	0.196	5.83		0.931	1.56	0.012		0.001
EQ-SD-1410	=	9/27/2021	-0.061	U	0.5	0.814	0.125	U	1.43	1.94	0.0348	U	0.086	0.179	-0.256	U	0.296	0.562	0.001	U	0.001
EQ-SB-1520	-	9/27/2021	0.11	U	0.6	0.883	-1.54	U	1.49	2.11	0.468		0.3	0.258	-0.575	U	0.291	0.562	0.001	U	0.001

2 σ : total uncertainty; bgs: below ground surface; CAS: Chemical Abstract Service; EQ: equipment blank; ft: feet; GW: groundwater; J: estimated value; ID: identification; MDC: Minimum Detectable Concentration; mg/L: milligrams per liter; pCi/L: picocuries per liter; Qual: Data Qualifer; SB: soil boring; SD: sediment; U: not detected at the associated level

See http://water-epa.gov/drink/contaminants/index.cfm#Radionuclides for gross alpha and beta MCLs

	Table	5-7. Results of W	aste Ch	aracte	rization	- Meta	l (Meth	ods 602	0A and 7	7471A)				
		Analyte	A	rsenic	:]	Barium		Ca	ıdmiur	n	Chi	romiu	m
		CAS#	74	40-38-	2	7	440-39-	3	74	40-43-	9	74	40-47-	3
		Units	1	mg/kg			mg/kg		1	ng/kg		n	ng/kg	
Location ID	Depth (ft bgs)	Sample Date	Result	Qual	MDL	Result	Qual	MDL	Result	Qual	MDL	Result	Qual	MDL
WC-01-0002	0-2	9/24/2021	9.32		1	313		2.5	1.58		1	32.9		5
WC-02-0001	0-2	9/24/2021	1.12	O1	1	5.23	J5 O1	2.5	ND	-	1	ND	-	5
SB-16-0000	0-0.5	9/27/2021	ND	-	0.1	1.15	-	0.1	ND	-	0.1	ND	-	0.1

		Analyte CAS# Units	7	Lead 439-92-	1	77	eleniun 82-49-		Silv 7440-	22-4	74	1ercury 139-92-	′
Location ID	Depth (ft bgs)	Sample Date		mg/kg t Oual	MDL	Result	ng/kg Oual	MDL	mg/ Result Ou	U		mg/kg Oual	MDL
WC-01-0002	0-2	9/24/2021	942		2	ND		2.5	ND	0.5	0.71		0.04
WC-02-0001	0-2	9/24/2021	6.75	J5 O1	2	ND	-	2.5	ND -	0.5	0.524	J3 J5 J6 O1	0.04
SB-16-0000	0-0.5	9/27/2021	2.12	O1	0.1	ND	-	0.1	ND -	0.1	ND	-	0.01

bgs: below ground surface; CAS: Chemical Abstract Service; ft: feet; ID: identification; J: Detection confirmed by validator, but estimated value; MDL: Method Detection Limit; mg/kg: milligrams per kilogram; ND: non-detect; Qual: Qualifiers; SB: soil boring; WC: waste characterization

J3: batch QC outside range for precision

J5: batch QC outside range for accuracy

J6: sample matrix interference; spike value is low

O1: analyte failed serial dilution test or post spike criteria; matrix interference

Table 5-8. Results of Waste Characterization - SVOC (Method 8270C)

		Analyte	1,2,4-T	richloro	benzene	2,2-0	xybis(1-C	nloropropane)	2,4	,6-Trichle	orophenol		2,4-I	Dichlorophenol	2,	4-Dimeth	ylphenol	2,4-Dini	itrotoluen	ie	2,6-D	initroto	luene	2-Cl	ıloronapl	hthalene
		CAS#		120-82-	1		108-6	0-1		88-06	5-2			88-06-2		105-6	57-9	121	1-14-2		(606-20-2			91-58-	7
		Units		μg/kg			μg/	kg		μg/kg				μg/kg		μg/l	kg	μ	ıg/kg			μg/kg			μg/kg	<u>,</u>
Location ID	Depth (ft bgs)	Collected Date	Result	Qual	LOQ	Result	Qual	LOQ	Result	μg/kg ult Qual LOQ R		Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		0.333
WC-02-0001	0-2	9/24/2021	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		0.333
SB-16-0001	0-0.5	9/27/2021							ND		0.1							ND		0.1						

Table 5-8. Results of Waste Characterization - SVOC (Method 8270C)

		Analyte	2-0	Chloroph	nenol		2-Nitro	phenol	3,3-	-Dichloro	benzidine	4-	Bromo	phenyl-phenylether	4-Ch	loro-3-m	ethylphenol	4-Chlorophe	nyl-pheny	lether	4-N	litrophe	nol	A	cenapht	hene
		CAS#		95-57-8	3		88-7	5-5		91-94	l-1			101-55-3		59-50	0-7	700	5-72-3			100-02-7	,		83-32-	9
		Units		μg/kg			μg/	kg		μg/kg				μg/kg		μg/k	kg	μ	g/kg			μg/kg	l		μg/kg	<u>'</u>
Location ID	Depth (ft bgs)	Collected Date	Result	Qual	LOQ	Result	Qual	LOQ	Result	μg/kg sult Qual LOQ			Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		0.333
WC-02-0001	0-2	9/24/2021	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		0.333
SB-16-0001	0-0.5	9/27/2021																								

Table 5-8. Results of Waste Characterization - SVOC (Method 8270C)

		Analyta	1.0	ononbth	vilon o		Anthu			Nitroben				Benzidine	D.	mao(o)om	thun com o	Domas	(a)mrmana		Damas	h)flwans	mthomo	Dome	ro(a h i)n	lowe
		Analyte	Ac	enaphth			Anthra								De	enzo(a)an			(a)pyrene		Benzo(,		Бена	zo(g,h,i)p	•
		CAS#		208-96-	-8		120-1	2-7		98-95	-3			92-87-5		56-55	5-3	50	-32-8		1 2	205-99-2			191-24-	-2
		Units		μg/kg	;		μg/l	κg		μg/kg	g			μg/kg		μg/k	g	μ	g/kg			μg/kg			μg/kg	,
Location ID	Depth (ft bgs)	Collected Date	Result	Qual	LOQ	Result	Qual	LOQ	Result	μg/kg ult Qual LOQ		Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	0.374		0.333	0.371		0.333				ND		16.7	1.46		0.333	1.52		0.333	2.09		0.333	1.45		0.333
WC-02-0001	0-2	9/24/2021	ND		0.333	ND		0.333				ND		16.7	0.488		0.333	0.521		0.333	0.688		0.333	0.546		0.333
SB-16-0001	0-0.5	9/27/2021																								

Table 5-8. Results of Waste Characterization - SVOC (Method 8270C)

		Analyte	Benzo	o(k)fluor	anthene	В	enzylbuty	l phthalate	Bis(2-	chloreth	oxy)methane		Bis(2-c	chloroethyl)ether	Bis(2-	ethylhe	xyl)phthalate	Chi	rysene		Di-n-b	utyl pht	halate	Di-r	-octyl ph	thalate
		CAS#		207-08-	.9		85-6	68-7		111-9	91-1			111-44-4		117-	81-7	218	3-01-9			84-74-2			117-84-	.0
		Units		μg/kg			μg/	'kg		μg/	kg			μg/kg		μg/	/kg	μ	g/kg			μg/kg			μg/kg	
Location ID	Depth (ft bgs)	Collected Date	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	0.693		0.333	ND		3.33	ND		3.33	ND		3.33	ND		3.33	1.42		0.333	ND		3.33	ND		3.33
WC-02-0001	0-2	9/24/2021	ND		0.333	ND		3.33	ND		3.33	ND		3.33	ND		3.33	0.518		0.333	ND		3.33	ND		3.33
SB-16-0001	0-0.5	9/27/2021																								

bgs: below ground surface; CAS: Chemical Abstract Service; ft: feet; ID: identification; LOQ: Limit of Quantification; µg/kg: micrograms per kilogram; ND: non-detect; Qual: qualifiers; SB: soil boring; SVOC: semi-volatile organic compound; WC: waste characterization

Table 5-8. Results of Waste Characterization - SVOC (Method 8270C)

		Analyte	Dibenz	z(a,h)ant	thracene		Diethyl phthalate			imethyl p	hthalate		F	luoranthene		Fluor	ene	Hexachloro	-1,3-butadie	ene	Hexac	hlorobe	nzene	Hexach	lorocyclo	pentadiene
		CAS#		53-70-3	3		84-66-2			131-1	1-3			206-44-0		86-73	3-7	87	7-68-3		1	18-74-1			77-47-	4
		Units		μg/kg			μg/kg			μg/k	g			μg/kg		μg/k	g	μ	g/kg			μg/kg			μg/kg	
Location ID	Depth (ft bgs)	Collected Date	Result	Qual	LOQ	Result			Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual 1	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	ND		0.333	ND		3.33	ND		3.33	2.83		0.333	ND		0.333				ND		3.33	ND		3.33
WC-02-0001	0-2	9/24/2021	ND		0.333	ND		3.33	ND		3.33	1.03		0.333	ND		0.333				ND		3.33	ND		3.33
SB-16-0001	0-0.5	9/27/2021																ND		0.1	ND		0.1			

Table 5-8. Results of Waste Characterization - SVOC (Method 8270C)

	Analyte Hexachloroe			thane	In	deno(1,2,3	-cd)pyrene		Isopho	rone	1	-Nitros	odi-n-propylamine	n-N	trosodim	ethylamine	n-Nitrosod	liphenylan	nine	Na	phthal	ene	Ţ	Nitrobenz	zene	
	CAS# 67-72-1 193-39-5				39-5		78-59)-1			621-64-7		62-75	5-9	86	5-30-6			91-20-3	į.		98-95-3	3			
	Units μg/kg μg/kg					μg/k	g			μg/kg		μg/k	κg	μ	ıg/kg			μg/kg			μg/kg	;				
Location ID	Units μg/kg μg/kg D Depth (ft bgs) Collected Date Result Qual LOQ Result Qual LOQ		Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ						
WC-01-0002	0-2	9/24/2021	ND		3.33	1.41		0.333	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		0.333	ND		3.33
WC-02-0001	0-2	9/24/2021	ND		3.33	0.457		0.333	ND		3.33	ND		3.33	ND		3.33	ND		3.33	ND		0.333	ND		3.33
SB-16-0001	0-0.5	9/27/2021	ND		0.1																			ND		0.1

Table 5-8. Results of Waste Characterization - SVOC (Method 8270C)

														ii bioc (iiictiida 0270	-,					
		Analyte	Pent	tachloroj	phenol		Phenantl	nrene		Phene	ol			Pyrene	2	,4-Dinitro	phenol	4,6-Dinitro-2	2-methylp	henol
		CAS#		87-86-5	5		85-01	-8		108-95	5-2			129-00-0		51-28-	5	534	1-52-1	
		Units		μg/kg			μg/kg	g		μg/kg	g			μg/kg		μg/kg	.	μ	g/kg	
Location ID	ion ID Depth (ft bgs) Collected Da			Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	1 \ 8 /				3.33	1.78		0.333	ND		3.33	2.34		0.333	ND		33.3	ND		33.3
WC-02-0001	0-2	9/24/2021	ND		3.33	0.61		0.333	ND		3.33	0.86		0.333	ND		33.3	ND		33.3
SB-16-0001	0-0.5	9/27/2021	ND		0.1															

bgs: below ground surface; CAS: Chemical Abstract Service; ft: feet; ID: identification; LOQ: Limit of Quantification; µg/kg: micrograms per kilogram; ND: non-detect; Qual: qualifiers; SB: soil boring; SVOC: semi-volatile organic compound; WC: waste characterization

Table 5-9. Results of Waste Characterization - VOC (Method 8260B)

								140100 >	· Itebares	01 116656	• • • • • • • • • • • • • • • • • • •	2441011	7 0 0 (111	eenou 0=001	,								
		Analyte	1,1,1,2-	Tetrach	loroethane	1,1,1	-Trichlo	roethane	1,1,2,2	2-Tetracl	loroethane	1,1,2-	Trichlor	oethane	1,1,2-	Trichlo	orotrifluoroethane	1	,1-Dichloroe	ethane	1,1-Di	chloroe	thene
	CAS# 630-20-6						71-55-	6		79-34	-5		79-00-	5		7	/6-13-1		75-34-3	3		75-35-4	
		Units µg/kg					μg/kg	<u> </u>		μg/k	g		μg/kg	;			μg/kg		μg/kg			μg/kg	
Location ID	Depth (ft bgs)	Collected Date	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	The Constitution of the Co				0.00348	ND		0.00348	ND		0.00348	ND		0.00348	ND		0.00348	ND		0.00348	ND		0.0035
WC-02-0001	0-2	9/24/2021	ND		0.00408	ND		0.00408	ND		0.00408	ND		0.00408	ND		0.00408	ND		0.00408	ND		0.0041
SB-16-0000	0-0.5	9/27/2021																			ND		0.5

Table 5-9. Results of Waste Characterization - VOC (Method 8260B)

								14010 0 >			e characterr		(-:	- CHIOG 02001	-,								
	Analyte 1,1-Dichloroprope							propane	1,2,3-	Trimeth	ylbenzene	1,2,4-	Trichlor	benzene	1,2	,4-Trime	ethylbenzene	1,2-Dik	oromo-3-Ch	loropropane	1,2-Di	bromoe	ethane
	CAS# 563-58-6						96-18-4	Į.		526-73	3-8		120-82-	1		95-	63-6		96-12-	8	1	06-93-4	4
	Units μg/kg						μg/kg			μg/k	g		μg/kg			μе	g/kg		μg/kg	5		μg/kg	
Location ID	ion ID Depth (ft bgs) Collected Date Result Qual LO				LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result (Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002				0.00348	ND		0.0174	0.0511		0.00695	ND		0.0174	0.133		0.00695	ND		0.0348	ND		0.0035	
WC-02-0001				0.00408	ND		0.0204	ND		0.00815	ND		0.0204	0.0322		0.00815	ND		0.0408	ND		0.0041	
SB-16-0000	0-0.5	9/27/2021																					

Table 5-9. Results of Waste Characterization - VOC (Method 8260B)

													(
	Analyte 1,2-Dichlorobenze						Dichlor	ethane	1,2-	Dichloro	propane	1,3,5-7	rimeth	ylbenzene	1	,3-Dichloro	benzene	1,	3-Dichloro	propane	1,4-Di	chlorob	enzene
	CAS# 95-50-1				1		107-06	-2		78-87-	.5		108-67	7-8		541-73	3-1		75-34	-3		106-46-	7
	Units μg/kg				;		μg/kg	<u> </u>		μg/kg	3		μg/kg	g		μg/k	g		μg/k	g		μg/kg	
Location ID	n ID Depth (ft bgs) Collected Date Result Qual			LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	
WC-01-0002	0-2	9/24/2021	ND		0.00695	ND		0.00348	ND		0.00695	0.0565		0.00695	ND		0.00695	ND		0.00695	ND		0.007
WC-02-0001	3/2 / 2/2 / 2/2		0.00815	ND		0.00408	ND		0.00815	0.0118		0.00815	ND		0.00815	ND		0.00815	ND		0.0082		
SB-16-0000	0-0.5	9/27/2021				ND		0.05															

Table 5-9. Results of Waste Characterization - VOC (Method 8260B)

		propane	2-B	utanone	(MEK)	2	-Chlorot	oluene	4-	Chlorote	oluene	4-Met	hyl-2-penta	anone (MIBK)		Aceton	e	Ac	rylonit	rile			
		CAS#		594-20	-7		78-93-	3		95-49	-8		106-43	3-4		108-1	0-1		67-64-	1	:	107-13-	1
	Units µg/kg				,		μg/kg			μg/k	g		μg/kg	g		μg/k	g		μg/kg			μg/kg	
Location ID	on ID Depth (ft bgs) Collected Date Result			Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	ND		0.00348	ND		0.139	ND		0.00348	ND		0.00695	ND		0.0348	ND		0.0695	ND		0.0174
WC-02-0001				0.00815	ND		0.163	ND		0.00408	ND		0.00815	ND		0.0408	8260B		0.0815	ND		0.0204	
SB-16-0000	0-0.5	9/27/2021				ND		0.5															

Table 5-9. Results of Waste Characterization - VOC (Method 8260B)

													(,								
	Benzen	ne	В	romober	zene	Bron	nodichlor	omethane		Bromofo	rm		Bromome	thane	C	arbon tetr	achloride	Chl	oroben	zene			
	CAS				2		108-86	-1		75-27	-4		75-25-	2		74-83-	9		56-23	3-5		08-90-7	1
	Uni				:		μg/kg	;		μg/k	g		μg/kg			μg/kg	ţ		μg/k	g		μg/kg	
Location ID	cation ID Depth (ft bgs) Collected Date			Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	0.0081		0.00139	ND		0.0174	ND		0.00348	ND		0.0348	ND		0.0174	ND		0.00695	ND		0.0035
WC-02-0001					0.00163	ND		0.0204	ND		0.00408	ND		0.0408	ND		0.0204	ND		0.00815	ND		0.0041
SB-16-0000	0-0.5	9/27/2021	ND		0.05													ND		0.05			

bgs: below ground surface; CAS: Chemical Abstract Service; ft: feet; ID: identification; LOQ: Limit of Quantification; pg/kg: micrograms per kilogram; ND: non-detect; Qual: qualifiers; SB: soil boring; SVOC: semi-volatile organic compound; WC: waste characterization

Table 5-9. Results of Waste Characterization - VOC (Method 8260B)

								140100 /					(,								
	Analyte Chlorodibromomet							hane		Chlorof	orm	C	hloromet	thane	ci	s-1,2-Di	chloroethene	cis-	1,3-Dichlo	ropropene	Di-iso	propyl	ether
	CAS# 124-48						75-00-	-3		67-66	-3		74-87-	3		156	6-59-2		10061-	01-5] 1	108-20-	3
	Units μ _μ				;		μg/kg	3		μg/k	g		μg/kg	;		μ	g/kg		μg/k	g		μg/kg	
Location ID	ocation ID Depth (ft bgs) Collected Date Result				LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	1 (3 8 7				0.00348	ND		0.00695	ND		0.00348	ND		0.0174	ND		0.00348	ND		0.00348	ND		0.0014
WC-02-0001	772			0.00408	ND		0.00815	0.0049		0.00408	ND		0.0204	ND		0.00408	ND		0.00408	ND		0.0016	
SB-16-0000	0-0.5	9/27/2021							ND		0.25												

Table 5-9. Results of Waste Characterization - VOC (Method 8260B)

								140100		0 - 11 0000	e characteri		(ctilou ozooi	- /								
		Analyte	Dib	romom	ethane	Dichlo	rodifluoi	omethane]]	Ethylbe	nzene	Hexacl	loro-1,3-	-butadiene		Isoprop	ylbenzene	Me	ethyl tert-b	outyl ether	Methy	lene Cl	hloride
		CAS#		74-95-	3		75-71-	8		100-4	1-4		87-68-	3		98-	-82-8		1634-0	4-4		75-09-2	2
		Units		μg/kg	;		μg/kg	;		μg/k	g		μg/kg			μ	g/kg		μg/k	g		μg/kg	
Location ID	Depth (ft bgs)	Collected Date	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result (Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	ND		0.00695	ND		0.00348	ND		0.00348	ND		0.0348	0.0046		0.00348	ND		0.00139	ND		0.0348
WC-02-0001	0-2	9/24/2021	ND		0.00815	ND		0.00408	0.0059		0.00408	ND		0.0408				ND		0.00163	ND		0.0408
SB-16-0000	0-0.5	9/27/2021																					

Table 5-9. Results of Waste Characterization - VOC (Method 8260B)

											e character i		(-:-	ctilou ozoo.	-,								
		nzene	1	Naphthal	ene	p-I	sopropy	toluene	sec	-Butylbe	enzene		Styren	•	t	ert-Butylb	enzene	Tetra	chloroe	ethene			
	CAS# 103				-1		91-20-3	3		99-87	-6		74-83-9	9		100-42-	5		98-06	-6	1	27-18-	4
	Units				;		μg/kg			μg/k	g		μg/kg			μg/kg			μg/k	g		μg/kg	
Location ID	cation ID Depth (ft bgs) Collected Date			Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	0.0347		0.00695	0.0379		0.0174	0.012		0.00695	ND		0.0174	ND		0.0174	ND		0.00695	0.0181		0.0035
WC-02-0001	71-11-11				0.00815	ND		0.0204	ND		0.00815	ND		0.0204	ND		0.0204	ND		0.00815	0.106		0.0041
SB-16-0000	0-0.5	9/27/2021																			ND		0.05

Table 5-9. Results of Waste Characterization - VOC (Method 8260B)

													(/								
	Analyte Toluene					trans-1	,2-Dich	loroethene	trans-1	1,3-Dichlo	ropropene	Tr	ichloroe	thene	Tr	ichlorofluor	romethane		Vinyl ch	loride	Xyl	enes, T	otal
	CAS#			108-88-	-3		156-60)-5		10061-0	2-6		79-01-	6		75-69	-4		75-01	1-4	1	330-20-	.7
	Units			μg/kg	;		μg/kg	g		μg/kg	<u> </u>		μg/kg	<u> </u>		μg/kg	g		μg/k	κg		μg/kg	
Location ID	ion ID Depth (ft bgs) Collected Date Result		Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	0.0117		0.00695	ND		0.00695	ND		0.00695	0.0039		0.00139	ND		0.00348	ND		0.00348	0.0462		0.009
WC-02-0001	0-2	9/24/2021	0.029		0.00815	ND		0.00815	ND		0.00815	0.0279		0.00163	ND		0.00408	ND		0.00408	0.0462		0.0106
SB-16-0000	0-0.5	9/27/2021										0.0279		0.05				ND		0.05			

Table 5-9. Results of Waste Characterization - VOC (Method 8260B)

		Analyte	1,2,3-7	[richloro	benzene	n	-Butylb	enzene
		CAS#		87-61-6			1045	1-8
		Units		μg/kg			μg/l	kg
Location ID	Depth (ft bgs)	Collected Date	Result	Qual	LOQ	Result	Qual	LOQ
WC-01-0002	0-2	9/24/2021	ND		0.0174	ND		0.0174
WC-02-0001	0-2	9/24/2021	ND		0.0204	ND		0.0204
SB-16-0000	0-0.5	9/27/2021						

bgs: below ground surface; CAS: Chemical Abstract Service; ft: feet; ID: identification; LOQ: Limit of Quantification; pg/kg: micrograms per kilogram; ND: non-detect; Qual: qualifiers; SB: soil boring; SVOC: semi-volatile organic compound; WC: waste characterization

Table 5-10. Tidal Chart								
Date	High/Low	Tide Time	Height (feet)					
09/19/22	Low	1:55 AM	-0.1					
	High	7:48 AM	5.5					
	Low	2:10 PM	0.1					
	High	8:08 PM	6.1					
09/20/22	Low	2:40 AM	-0.2					
	High	8:33 AM	5.7					
	Low	2:59 PM	0.1					
	High	8:50 PM	6.0					
09/21/22	Low	3:23 AM	-0.2					
	High	9:13 AM	5.8					
	Low	3:44 PM	0.1					
	High	9:31 PM	5.9					
09/22/22	Low	4:02 AM	-0.1					
	High	9:52 AM	5.8					
	Low	4:26 PM	0.2					
	High	10:10 PM	5.6					
09/23/22	Low	4:37 AM	0.1					
	High	10:29 AM	5.7					
	Low	5:05 PM	0.4					
	High	10:50 PM	5.3					
09/24/22	Low	5:09 AM	0.3					
	High	11:05 AM	5.5					
	Low	5:41 PM	0.6					
	High	11:32 PM	4.9					
09/25/22	Low	5:38 AM	0.6					
	High	11:41 AM	5.3					
	Low	6:17 PM	0.9					
	-	-	-					
09/26/22	High	12:18 AM	4.6					
	Low	6:05 AM	0.9					
	High	12:18 PM	5.1					
	Low	6:55 PM	1.1					
09/27/22	High	1:06 AM	4.4					
	Low	6:35 AM	1.1					
	High	1:00 PM	5.0					
	Low	7:43 PM	1.4					
09/28/22	High	1:57 AM	4.2					
	Low	7:15 AM	1.4					
	High	1:47 PM	4.9					
	Low	8:55 PM	1.5					

http://www.usharbors.com/harbor/new-york/bergen-point-west-reach-ny

		Table 5-11. R	esults of	Sedime	nt Samp	les (Alp	ha and G	amma S	Spectros	сору)				
		Analyte CAS#	Act	inium-2	28 (Ra-2	228)		Bismu	th-212		Radiu	`	Bismutl 2-63-3	1-214)
		Units		рC	i/g			рC	i/g			pC		
		ackground Soil		N					A			2.2		
	•	creening Level		73					Α				294	
	Source of S	creening Level	USE	PA 2021	1 Reside	ntial		N	A		USE	PA 2008	Backgr	ound
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA
SD-01-0813	0-0.5	9/29/2021	1.02	J	0.259	0.416	1.34	J	0.816	1.38	2.03	J	0.27	0.215
SD-02-0810	0-0.5	9/29/2021	1.09	J	0.296	0.462	2.22	J	1.02	1.5	0.972	J	0.222	0.278
SD-DUP-02	0-0.5	9/29/2021	0.902	J	0.389	0.738	1.51	J	1.43	2.59	1.01	J	0.287	0.4
SD-03-0815	0-0.5	9/29/2021	0.917	J	0.245	0.375	0.918	J	0.784	1.38	1.5	J	0.242	0.215
SD-04-0910	0-0.5	9/29/2021	1.1	J	0.323	0.528	1.28	J	1.18	2.12	1.16	J	0.263	0.319
SD-05-0800	0-0.5	9/29/2021	1.13	J	0.314	0.495	1.8	J	1.11	1.87	1.35	J	0.253	0.247
SD-06-0754	0-0.5	9/29/2021	1.29	J	0.197	0.226	1.05	J	0.588	1.05	2.57	J	0.259	0.139
SD-07-0758	0-0.5	9/29/2021	0.947	J	0.244	0.419	1.77	J	0.797	1.23	1.9	J	0.251	0.201
SD-08-0805	0-0.5	9/29/2021	1.35	J	0.308	0.446	0.841	J	0.959	1.79	1.04	J	0.217	0.264
SD-09-0750	0-0.5	9/29/2021	0.809	J	0.251	0.417	0.74	J	0.733	1.4	0.956	J	0.178	0.172
SD-10-0816	0-0.5	9/29/2021	0.836	J	0.245	0.386	1.49	J	0.883	1.47	1.32	J	0.225	0.243

		Table 5-11. R	esults of	Sedime	nt Samp	les (Alpl	ha and G	amma S	Spectros	copy)				
		Analyte		Lead	1-212			Lead	1-214			Potassi	um-40	
		CAS#										13966	-00-2	
		Units		рC	i/g			рC	Ci/g			рC	i/g	
	Ba	ackground Soil		N	Α			N	\mathbf{A}			18.	81	
	Project S	creening Level		N	A			N	\mathbf{A}			N	A	
	Source of S	creening Level		N	Α			N	Α			N	A	
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA
SD-01-0813	0-0.5	9/29/2021	1.15	J	0.176	0.197	2.34	J	0.264	0.211	10.5	J	1.69	1.27
SD-02-0810	0-0.5	9/29/2021	1.18	J	0.175	0.174	1.01	J	0.174	0.241	17.1	J	2.61	1.53
SD-DUP-02	0-0.5	9/29/2021	1.38	J	0.25	0.311	1.19	J	0.238	0.332	16	J	2.76	1.95
SD-03-0815	0-0.5	9/29/2021	0.922	J	0.169	0.186	1.59	J	0.229	0.182	8.58	J	1.58	1.27
SD-04-0910	0-0.5	9/29/2021	1.49	J	0.214	0.193	1.56	J	0.24	0.289	13.3	J	2.46	1.53
SD-05-0800	0-0.5	9/29/2021	1.48	J	0.241	0.222	1.37	J	0.23	0.255	12.4	J	2.07	1.2
SD-06-0754	0-0.5	9/29/2021	1.22	J	0.141	0.122	2.47	J	0.247	0.152	10.3	J	1.25	0.87
SD-07-0758	0-0.5	9/29/2021	1.16	J	0.171	0.193	1.98	J	0.234	0.224	10.2	J	1.62	1.35
SD-08-0805	0-0.5	9/29/2021	1.09	J	0.185	0.227	1.37	J	0.206	0.217	12.7	J	2.04	1.63
SD-09-0750	0-0.5	9/29/2021	1.03	J	0.151	0.143	0.939	J	0.16	0.226	8.81	J	1.91	2.17
SD-10-0816	0-0.5	9/29/2021	0.935	J	0.168	0.212	1.39	J	0.199	0.218	8.05	J	1.56	1.51

VALUE Value exceeds the Screening Level as outlined in the QAPP (USACE 2021b)

2σ: total uncertainty; bgs: below ground surface; CAS: Chemical Abstract Service; ft: feet; ID: identification; J: Estimated value; MDA: Minimum Detectable Activity; pCi/g: picocuries per gram; Qual: Data qualifer; SD: sediment; USEPA: U.S. Environmental Protection Agency; U: not detected at the assocated level; *The DUP is a field duplicate of the preceding sample.

		Table 5-11. R	esults of	Sedime	nt Samp	les (Alpl	ha and G	amma S	Spectroso	сору)				
		Analyte		Thalli	um-208			Uraniı	um-235		Thoriu	ım-234 (Uraniui	m-238)
		CAS#												
		Units		рC	Ci/g			p(Ci/g			рC	ʻi/g	
	Ba	ackground Soil		N	IA			Below	MDA			N	Α	
	Project S	creening Level		N	IA			N	J A			12	20	
	Source of S	creening Level		N	J A			N	J A		USE	PA 2021	1 Reside	ntial
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA
SD-01-0813	0-0.5	9/29/2021	0.356	J	0.0884	0.119	0.233	J	0.0784	0.133	0.819	U	1.04	2.23
SD-02-0810	0-0.5	9/29/2021	0.397	J	0.107	0.138	0.151	J	0.0645	0.108	1.48	J	0.785	1.43
SD-DUP-02	0-0.5	9/29/2021	0.34	J	0.127	0.201	0.159	J	0.105	0.189	0.805	U	1.5	3.32
SD-03-0815	0-0.5	9/29/2021	0.232	J	0.0773	0.104	0.218	J	0.0867	0.14	1.59	J	1.17	2.08
SD-04-0910	0-0.5	9/29/2021	0.497	J	0.125	0.144	0.114	J	0.0794	0.14	1.13	J	0.793	1.75
SD-05-0800	0-0.5	9/29/2021	0.387	J	0.104	0.121	0.168	J	0.103	0.175	1.69	J	1.45	2.67
SD-06-0754	0-0.5	9/29/2021	0.364	J	0.0637	0.0712	0.25	J	0.0635	0.103	1.91	J	0.994	1.67
SD-07-0758	0-0.5	9/29/2021	0.336	J	0.0839	0.112	0.308	J	0.0878	0.137	-0.71	U	1.26	3.05
SD-08-0805	0-0.5	9/29/2021	0.389	J	0.0967	0.126	0.15	J	0.0784	0.139	1.24	J	1.12	2.29
SD-09-0750	0-0.5	9/29/2021	0.244	J	0.075	0.102	0.106	U	0.257	0.467	0.654	(U)J	0.601	1.47
SD-10-0816	0-0.5	9/29/2021	0.208	J	0.0795	0.121	0.11	J	0.0821	0.148	-2.52	U	1.6	3.21

		Table 5-11. R	esults of	Sedime	nt Samp	les (Alp	ha and G	amma	Spectros	copy)				
		Analyte		Uraniu	ım-234			Urani	um-235			Uraniı	ım-238	
		CAS#		13966	5-29-5			1511	7-96-1			7440	-61-1	
		Units		рC	'i/g			p(Ci/g			рC	Ci/g	
	Ba	ackground Soil		2.5	524			Below	MDA			2.4	162	
	Project S	creening Level		5.	83			0.2	203			6.	48	
	Source of S	creening Level	USE	PA 202	1 Reside	ntial	USE	PA 202	1 Reside	ntial	USE	PA 202	1 Reside	ential
Sample ID	Depth (ft bgs)	Sample Date	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA	Result	Qual	2σ	MDA
SD-01-0813	0-0.5	9/29/2021	2.66		0.347	0.166	0.167		0.103	0.11	3.09	J	0.361	0.0993
SD-02-0810	0-0.5	9/29/2021	0.618		0.187	0.184	0.0291	(U)J	0.047	0.0686	0.686	J	0.164	0.112
SD-DUP-02	0-0.5	9/29/2021	0.881		0.2	0.11	0.0275	(U)J	0.0471	0.071	0.913		0.199	0.087
SD-03-0815	0-0.5	9/29/2021	2.18		0.295	0.193	0.0455	(U)J	0.0838	0.121	2.18	J	0.276	0.125
SD-04-0910	0-0.5	9/29/2021	0.887		0.186	0.102	0.0599	J	0.0543	0.061	0.85		0.179	0.0854
SD-05-0800	0-0.5	9/29/2021	2.16		0.315	0.14	0.0286	U	0.0578	0.0902	1.69		0.276	0.114
SD-06-0754	0-0.5	9/29/2021	2.81		0.346	0.153	0.0877	J	0.0828	0.105	3.02		0.353	0.128
SD-07-0758	0-0.5	9/29/2021	1.83		0.267	0.14	0.104	J	0.0795	0.0926	2.39	J	0.292	0.0839
SD-08-0805	0-0.5	9/29/2021	1.24		0.23	0.177	0.102		0.066	0.0661	1.67		0.237	0.108
SD-09-0750	0-0.5	9/29/2021	0.995		0.223	0.196	0.0208	U	0.0799	0.122	1.22		0.215	0.127
SD-10-0816	0-0.5	9/29/2021	1.56		0.278	0.193	0.0674	J	0.0729	0.0953	1.57	J	0.259	0.122

VALUE Value exceeds the Screening Level as outlined in the QAPP (USACE 2021b)

2σ: total uncertainty; bgs: below ground surface; CAS: Chemical Abstract Service; ft: feet; ID: identification; J: Estimated value; MDA: Minimum Detectable Activity; pCi/g: picocuries per gram; Qual: Data qualifer; SD: sediment; USEPA: U.S. Environmental Protection Agency; U: not detected at the assocated level; *The DUP is a field duplicate of the preceding sample.

	Table 6-1. Pro	ject Screening I	evels for Soil and	l Sediment		
		Background Soil (pCi/g)		Screening Level (pCi/g) ^[1] , Target R	isk of 10 ⁻⁶
Radionuclide	Project Screening Level (pCi/g) ^[2]	95% Upper Prediction Limit ^[3]	Residential ^[4]	Outdoor Worker ^[5]	Construction Worker ^[6]	Recreational Receptor ^[7]
Uranium-238	6.48	2.462	6.48	34.7	63.1	64.9
Uranium-235	0.203	Below MDA	0.203	0.35	9.28	5.46
Uranium-234	5.83	2.524	5.83	30.9	54.4	58.5
Radium-226	2.294	2.294	1.03	3.39	23.4	11.4
Thorium-234	1220	NA	1220	2720	2590	22500
Actinium-228	735	NA	735	1190	1240	21800

pCi/g: picocuries per gram

- [1] From U.S. Environmental Protection Agency, Regional Screening Levels Generic Table
- [2] Project Screening Level set to higher of background soil and lowest Risk-Based Screening Level (residential)
- [3] Source: Table 6-2, Site Inspection report (USACE 2017a)
- [4] Default parameters; no food intake was used as the subject area is zoned as commercial/industrial and future residental land use is considered unlikely.
- [5] Default exposure parameters
- [6] Dust from Unpaved Roads. Default except for Area (2000 m2), 2 x 2-ton cars, 2 x 20 ton trucks, 150 days with >0.01" precipitation (from Figure 5-2 of Supplemental Screening Guide)
- [7] Default except area is 1000 square meters, 26 years exposure as adult, 6 years exposure as child, 30 days/year, 4 hours/day

Table 6-2. Screening Leve	els for Radionuclides of Pote	ential Concern in Groundwater
Radionuclide	MCL ^[1] (pCi/L)	Screening Level ^[2] (pCi/L)
Gross Alpha ^[3]	15	15
Gross Beta ^[4]	50	50
Radium-226	5	5
Radium-228	5	5
Radionuclide	MCL ^[1] (mg/L)	Screening Level ^[2] (mg/L)
Uranium	0.03	0.03

MCL: Maximum Contaminant Level; mg/L: milligram per liter; pCi/L: picocuries per liter

- [1] From U.S. Environmental Protection Agency, Regional Screening Levels Generic Table
- [2] Screening levels are based on the MCL values
- [3] Excluding radon and uranium
- [4] Excluding K-40

			•						nples From									
		Analyte]	Radium-22	5	Ţ	Jranium-23	34	U	ranium-23	5	U	ranium- 23	88	Uranium-		Uranium-	
		·		(pCi/g)			(pCi/g)			(pCi/g)			(pCi/g)		238/Uranium-		238/Radium-	
Sample ID	Depth (ft bgs)	Sample Date	Result	2 σ	MDC	Result	2 σ	MDC	Result	2 σ	MDC	Result	2 σ	MDC	234 Ratio	2 σ	226 Ratio	2 σ
SS-01-0825	0-0.5	9/24/2021	2.76	0.35	0.25	3.45	0.358	0.128	0.25	0.10	0.07	3.52	0.36	0.07	1.02	0.14	1.28	0.16
SS-02-0835	0-0.5	9/24/2021	1.09	0.21	0.24	0.622	0.185	0.163	0.01	0.04	0.08	0.82	0.18	0.09	1.32	0.37	0.75	0.29
SS-03-0810	0-0.5	9/24/2021	2.23	0.30	0.27	3.43	0.365	0.133	0.14	0.09	0.09	3.96	0.38	0.06	1.15	0.14	1.78	0.16
SS-04-0926	0-0.5	9/22/2021	4.60	0.54	0.39	2.53	0.363	0.238	0.25	0.11	0.09	2.65	0.35	0.15	1.05	0.19	0.58	0.17
SS-05-0915	0-0.5	9/22/2021	4.05	0.53	0.35	2.78	0.366	0.161	0.21	0.10	0.08	2.80	0.36	0.08	1.01	0.18	0.69	0.18
SS-06-0936	0-0.5	9/22/2021	1.31	0.26	0.24	1.45	0.256	0.164	0.09	0.07	0.08	1.20	0.22	0.09	0.83	0.25	0.92	0.27
SS-07-1220	0-0.5	9/22/2021	0.43	0.14	0.20	0.719	0.213	0.164	0.02	0.08	0.13	0.81	0.21	0.09	1.13	0.39	1.89	0.41
SS-08-1400	0-0.5	9/23/2021	1.46	0.25	0.26	1.46	0.232	0.0928	0.03	0.04	0.06	1.59	0.24	0.07	1.09	0.22	1.09	0.22
SS-09-0840	0-0.5	9/23/2021	1.61	0.27	0.31	1.72	0.283	0.139	0.07	0.07	0.09	1.99	0.30	0.11	1.16	0.22	1.24	0.22
SS-10-0750	0-0.5	9/23/2021	2.58	0.39	0.38	2.17	0.335	0.204	0.21	0.11	0.09	2.35	0.34	0.16	1.08	0.21	0.91	0.21
SS-12-1115	0-0.5	9/23/2021	1.24	0.26	0.30	0.939	0.21	0.151	0.00	0.06	0.10	0.99	0.20	0.09	1.05	0.30	0.80	0.29
SS-13-1015	0-0.5	9/27/2021	1.43	0.16	0.14	0.813	0.199	0.169	0.04	0.05	0.06	0.87	0.19	0.13	1.07	0.33	0.61	0.25
SS-14-1205	0-0.5	9/23/2021	0.50	0.16	0.23	0.324	0.119	0.121	0.00	0.02	0.04	0.26	0.10	0.09	0.80	0.52	0.51	0.49
SS-15-1135	0-0.5	9/23/2021	0.98	0.19	0.22	0.628	0.229	0.228	0.03	0.06	0.09	0.84	0.22	0.15	1.33	0.45	0.86	0.33
SS-16-1300	0-0.5	9/23/2021	3.34	0.47	0.42	1.82	0.324	0.23	0.10	0.08	0.08	2.09	0.33	0.18	1.15	0.24	0.63	0.21
SS-17-1230	0-0.5	9/24/2021	15.50	1.28	0.31	24.9	1.02	0.111	1.19	0.23	0.07	24.90	1.02	0.09	1.00	0.06	1.61	0.09
SS-18-1250	0-0.5	9/24/2021	1.00	0.21	0.22	1.03	0.218	0.171	0.03	0.04	0.06	1.18	0.22	0.13	1.15	0.28	1.18	0.28
SS-19-1310	0-0.5	9/24/2021	1.23	0.14	0.11	0.962	0.193	0.158	0.05	0.07	0.09	0.96	0.18	0.13	0.99	0.28	0.78	0.22
SS-20-1020	0-0.5	9/27/2021	0.70	0.15	0.19	1.04	0.222	0.145	0.04	0.06	0.08	1.00	0.20	0.08	0.96	0.30	1.43	0.30
SS-21-1000	0-0.5	9/27/2021	0.90	0.12	0.13	0.669	0.185	0.16	0.03	0.05	0.08	0.68	0.18	0.14	1.01	0.38	0.75	0.30
SS-22-0935	0-0.5	9/27/2021	1.23	0.24	0.25	0.869	0.241	0.22	0.02	0.04	0.07	0.93	0.23	0.17	1.06	0.37	0.75	0.31
SS-23-1014	0-0.5	9/27/2021	0.98	0.16	0.15	0.61	0.209	0.209	0.07	0.06	0.07	0.77	0.20	0.16	1.26	0.43	0.78	0.31
SS-24-0941	0-0.5	9/27/2021	3.91	0.49	0.35	2.11	0.316	0.188	0.07	0.06	0.07	2.14	0.30	0.11	1.01	0.21	0.55	0.19
SS-25-0940	0-0.5	9/27/2021	1.99	0.26	0.20	0.932	0.209	0.141	0.07	0.07	0.08	1.14	0.22	0.12	1.22	0.30	0.57	0.24
SD-01-0813	0-0.5	9/29/2021	2.03	0.27	0.22	2.66	0.347	0.166	0.17	0.10	0.11	3.09	0.36	0.10	1.16	0.18	1.52	0.18
SD-02-0810	0-0.5	9/29/2021	0.97	0.22	0.28	0.618	0.187	0.184	0.03	0.05	0.07	0.69	0.16	0.11	1.11	0.39	0.71	0.33
SD-03-0815	0-0.5	9/29/2021	1.50	0.24	0.22	2.18	0.295	0.193	0.05	0.08	0.12	2.18	0.28	0.13	1.00	0.19	1.45	0.21
SD-04-0910	0-0.5	9/29/2021	1.16	0.26	0.32	0.887	0.186	0.102	0.06	0.05	0.06	0.85	0.18	0.09	0.96	0.30	0.73	0.31
SD-05-0800	0-0.5	9/29/2021	1.35	0.25	0.25	2.16	0.315	0.14	0.03	0.06	0.09	1.69	0.28	0.11	0.78	0.22	1.25	0.25
SD-06-0754	0-0.5	9/29/2021	2.57	0.26	0.14	2.81	0.346	0.153	0.09	0.08	0.11	3.02	0.35	0.13	1.07	0.17	1.18	0.15
SD-07-0758	0-0.5	9/29/2021	1.90	0.25	0.20	1.83	0.267	0.14	0.10	0.08	0.09	2.39	0.29	0.08	1.31	0.19	1.26	0.18
SD-08-0805	0-0.5	9/29/2021	1.04	0.22	0.26	1.24	0.23	0.177	0.10	0.07	0.07	1.67	0.24	0.11	1.35	0.23	1.61	0.25
SD-09-0750	0-0.5	9/29/2021	0.96	0.18	0.17	0.995	0.223	0.196	0.02	0.08	0.12	1.22	0.22	0.13	1.23	0.29	1.28	0.26
SD-10-0816	0-0.5	9/29/2021	1.32	0.23	0.24	1.56	0.278	0.193	0.07	0.07	0.10	1.57	0.26	0.12	1.01	0.24	1.19	0.24
		Average	2.11			2.20			0.11	****		2.32			1.08	0.27	1.03	0.25
2σ. total propaga	ited uncertainty; MD	_		ncentration:	nCi/g: nico		am· *The F	UP is a fiel	d duplicate o	of the preced	ling sample				1			

]	Radium-22	6	J	Jranium-23	34	U	ranium-23	5	U	ranium-23	8	Uranium-		Uranium-	
		Analyte		(pCi/g)			(pCi/g)			(pCi/g)			(pCi/g)		238/Uranium-		238/Radium-	
Sample ID	Depth (ft bgs)	Sample Date	Result	2 σ	MDC	Result	2 σ	MDC	Result	2 σ	MDC	Result	2 σ	MDC	234 Ratio	2 σ	226 Ratio	2 σ
SB-01-0501	0.5-1	9/24/2021	1.14	0.28	0.37	0.60	0.18	0.16	0.04	0.05	0.06	0.63	0.16	0.09	1.06	0.39	0.56	0.35
SB-01-0102	1-2	9/24/2021	0.79	0.21	0.24	1.66	0.25	0.13	0.12	0.08	0.08	1.74	0.25	0.06	1.05	0.21	2.21	0.30
SB-02-0501	0.5-1	9/24/2021	1.10	0.16	0.16	0.81	0.18	0.16	0.01	0.06	0.09	0.75	0.17	0.13	0.93	0.31	0.68	0.26
SB-02-0102	1-2	9/24/2021	1.03	0.16	0.17	0.63	0.17	0.15	0.05	0.05	0.07	0.92	0.18	0.11	1.45	0.33	0.89	0.25
SB-03-0815	0.8-1.5	9/24/2021	1.47	0.27	0.32	3.52	0.38	0.14	0.18	0.10	0.11	3.07	0.35	0.08	0.87	0.16	2.09	0.22
SB-03-0102	1-2	9/24/2021	1.46	0.26	0.30	3.21	0.34	0.15	0.18	0.09	0.07	3.19	0.34	0.13	0.99	0.15	2.18	0.21
SB-04-0406	4-6	9/22/2021	1.07	0.28	0.40	1.84	0.28	0.16	0.05	0.05	0.06	2.04	0.28	0.10	1.11	0.20	1.91	0.29
SB-04-0102	1-2	9/22/2021	3.59	0.44	0.38	4.81	0.44	0.17	0.29	0.11	0.08	4.78	0.43	0.10	0.99	0.13	1.33	0.15
SB-05-0505	0.5-5	9/22/2021	1.47	0.25	0.26	1.74	0.30	0.16	0.07	0.09	0.12	1.56	0.27	0.10	0.90	0.24	1.06	0.25
SB-05-0510	5-10	9/22/2021	1.20	0.18	0.20	1.35	0.27	0.20	0.02	0.04	0.07	1.43	0.26	0.12	1.06	0.27	1.19	0.24
SB-06-0501	0.5-1	9/22/2021	5.69	0.54	0.26	5.01	0.47	0.19	0.20	0.10	0.09	5.05	0.46	0.15	1.01	0.13	0.89	0.13
SB-06-0203	2-3	9/22/2021	3.06	0.41	0.25	2.54	0.38	0.18	0.01	0.09	0.16	2.60	0.37	0.09	1.02	0.20	0.85	0.19
SB-07-0102	1-2	9/22/2021	2.86	0.25	0.14	2.73	0.46	0.21	0.15	0.12	0.12	2.73	0.45	0.17	1.00	0.24	0.95	0.19
SB-07-0203	2-3	9/22/2021	1.33	0.23	0.20	1.40	0.26	0.14	0.04	0.06	0.09	1.48	0.26	0.11	1.06	0.26	1.11	0.25
SB-08-0102	1-2	9/23/2021	1.19	0.22	0.20	0.97	0.20	0.14	0.05	0.05	0.07	1.12	0.19	0.08	1.16	0.26	0.94	0.25
SB-09-0117	01-17	9/23/2021	1.35	0.29	0.41	1.59	0.29	0.18	0.03	0.08	0.12	1.48	0.27	0.15	0.93	0.26	1.10	0.28
SB-09-0506	5-6	9/23/2021	1.79	0.29	0.26	1.94	0.28	0.15	0.06	0.07	0.10	1.92	0.27	0.09	0.99	0.20	1.07	0.21
SB-10-0517	0.5-1.7	9/23/2021	2.64	0.38	0.37	2.55	0.32	0.12	0.07	0.08	0.10	2.73	0.32	0.06	1.07	0.17	1.03	0.19
SB-10-0465	4-6.5	9/23/2021	1.09	0.22	0.26	0.91	0.20	0.11	0.10	0.07	0.07	1.16	0.22	0.10	1.28	0.29	1.06	0.28
SS-11-1100	0-0.5	9/23/2021	0.60	0.19	0.28	0.78	0.24	0.18	0.09	0.09	0.11	0.80	0.24	0.15	1.02	0.43	1.34	0.43
SB-11-0405	4-5	9/23/2021	1.90	0.21	0.18	1.46	0.25	0.13	0.04	0.06	0.08	1.80	0.27	0.10	1.23	0.23	0.95	0.19
SB-11-0506	5-6	9/23/2021	1.08	0.25	0.30	1.02	0.24	0.17	0.03	0.07	0.12	1.06	0.23	0.14	1.04	0.32	0.98	0.32
SB-12-0304	3-4	9/23/2021	3.39	0.46	0.26	1.35	0.31	0.27	0.09	0.08	0.10	1.43	0.28	0.16	1.06	0.30	0.42	0.24
SB-12-0506	5-6	9/23/2021	1.76	0.29	0.31	1.20	0.24	0.20	0.04	0.08	0.12	1.69	0.25	0.13	1.41	0.25	0.96	0.22
SB-14-2540	2.5-4	9/23/2021	2.35	0.32	0.23	2.99	0.43	0.25	0.18	0.11	0.09	3.10	0.41	0.14	1.04	0.20	1.32	0.19
SB-14-0608	6-8	9/23/2021	2.44	0.26	0.21	2.08	0.31	0.20	0.11	0.10	0.12	2.27	0.30	0.13	1.09	0.20	0.93	0.17
SB-15-0406	4-6	9/23/2021	2.35	0.33	0.32	2.30	0.32	0.17	0.05	0.06	0.08	2.40	0.31	0.10	1.04	0.19	1.02	0.19
SB-15-0608	6-8	9/23/2021	0.94	0.15	0.19	0.83	0.19	0.16	0.02	0.06	0.09	0.81	0.15	0.07	0.97	0.29	0.86	0.25
SB-16-0235	2-3.5	9/23/2021	1.34	0.27	0.30	1.04	0.22	0.18	0.03	0.04	0.06	1.16	0.22	0.14	1.12	0.29	0.87	0.27
SB-17-0102	1-2	9/24/2021	19.80	1.64	0.53	22.00	0.84	0.14	0.97	0.18	0.07	22.10	0.84	0.08	1.00	0.05	1.12	0.09
SB-18-0102	1-2	9/24/2021	1.22	0.17	0.14	0.84	0.20	0.15	0.00	0.04	0.07	0.76	0.17	0.08	0.90	0.32	0.62	0.26
SB-19-0102	1-2	9/24/2021	1.14	0.22	0.21	0.69	0.20	0.19	0.10	0.07	0.07	1.01	0.21	0.14	1.46	0.36	0.89	0.29
SB-19-0203	2-3	9/24/2021	0.99	0.24	0.28	0.79	0.21	0.18	0.03	0.05	0.07	1.00	0.20	0.10	1.26	0.33	1.01	0.31
SB-23-0102	1-2	9/27/2021	3.85	0.56	0.50	2.94	0.40	0.18	0.27	0.13	0.11	2.90	0.39	0.16	0.99	0.19	0.75	0.20
SB-24-0102	1-2	9/27/2021	2.64	0.31	0.24	1.98	0.29	0.14	0.11	0.08	0.09	2.21	0.29	0.07	1.12	0.20	0.84	0.18
TS-01-0204	2-4	9/24/2021	4.02	0.52	0.42	2.54	0.31	0.12	0.09	0.08	0.10	2.63	0.31	0.08	1.04	0.17	0.65	0.17
TS-03-0204	2-4	9/24/2021	3.26	0.48	0.46	3.22	0.35	0.13	0.12	0.08	0.08	3.10	0.34	0.11	0.96	0.16	0.95	0.18
TS-02-0304	3-4	9/24/2021	35.10	3.31	0.77	9.00	0.55	0.12	0.38	0.12	0.08	9.07	0.55	0.06	1.01	0.09	0.26	0.11
TS-04-0406	2-6	9/24/2021	2.74	0.31	0.27	2.43	0.31	0.17	0.11	0.07	0.06	2.32	0.29	0.13	0.95	0.18	0.85	0.17
TS-01-0002	0-2	9/24/2021	2.90	0.31	0.22	3.21	0.35	0.13	0.11	0.07	0.06	3.27	0.34	0.06	1.02	0.15	1.13	0.15
TS-02-0002	0-2	9/24/2021	347.00	30.00	1.72	73.60	2.11	0.28	3.80	0.48	0.10	73.30	2.10	0.16	1.00	0.04	0.21	0.09
TS-03-0002	0-2	9/24/2021	3.51	0.35	0.23	4.20	0.43	0.14	0.16	0.09	0.09	4.67	0.45	0.10	1.11	0.14	1.33	0.14
TS-04-0002	0-2	9/24/2021	11.90	0.92	0.29	9.29	0.60	0.19	0.48	0.14	0.06	9.69	0.61	0.15	1.04	0.09	0.81	0.10
		Average	11.48			4.46			0.21			4.53			1.07	0.22	1.03	0.22

25: total propagated uncertainty; MDC: Minimum Detectable Concentration; pCi/g: picocuries per gram; *The DUP is a field duplicate of the preceding sample

Table 7-3. Reported Ground Pressure for Excavator Equipment												
	Ground Pressure											
Machinery	psi	psf	kPa									
CAT 308D Mini Excavator	4.2	602	29									
CAT 330L Excavator	7.6	1093	53									
CAT 345L Excavator	12.1	1732	84									

kPa: kilopascals; psf: pounds per square foot; psi: pounds per square inch

									Table 7	7-4. Soil Cl	lassificati	ion									
	Depth (ft				Atte	rberg L	imits					Gra	ivel		Sand		Fi	nes			
Soil Boring ID	bgs)	USCS	AASHTO	Description	LL	PL	PΙ	<#40	<#200	Moisture	% >3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	$\mathbf{C}_{\mathbf{U}}$	$\mathbf{c}_{\mathbf{c}}$	
SB-06	0-2	SM	A-2-4(0)	Silty Sand with Gravel	NP	NP	NP	49	27	20.9	0	0	23	11	17	22	21	6	100.86	0.84	poorly graded
SB-06	2-5	CL	A-4(3)	Sandy Lean Clay	27	19	8	86	65	18.7	0	0	4	3	7	21	40	25			
SB-10	0-4	SM	A-2-4(0)	Silty Sand with Gravel	24	26	2	52	29	12.5	0	8	13	9	18	23	23	6	99.55	1.37	well graded
SB-10	4-8	GM	A-1-b	Silty Gravel with Sand	21	18	3	30	18	11.0	0	34	23	6	7	12	15	3	854.85	0.73	poorly graded
SB-12	6-8	SC-SM	A-4(0)	Silty, Clayey Sand with Gravel	21	17	4	64	42	21.7	0	3	14	6	13	22	28	14	105.27	1.18	well graded
SB-12	11-12	CL-ML	A-4(2)	Sandy Silty Clay	24	17	7	84	68	16.0	0	0	6	3	7	16	38	30			
SB-14	4-6	SM	A-1-b	Silty Sand with Gravel	NP	NP	NP	42	21	19.6	0	0	17	18	23	21	17	4	101.14	1.77	well graded
SB-14	8-12	CL	A-6(5)	Sandy Lean Clay with Gravel	34	22	12	71	58	52.0	0	8	7	6	8	13	27	31	100.84	0.22	
SB-16	0-2	SM	A-2-5(0)	Silty Sand with Gravel	41	36	5	46	28	22.3	0	5	18	11	20	18	23	5	109.17	0.58	poorly graded
SB-16	2-4	SC-SM	A-4(0)	Silty, Clayey Sand with Gravel	27	22	5	60	15	14.0	0	14	11	4	11	15	31	14	194.49	2.09	well graded

AASHTO: The American Association of State Highway and Transportation Officials; bgs: below ground surface; C_C: curvature coefficient; CL: lean clay; C_U: uniformity coefficient; GM: silty gravel; ID: identification; LL: liquid limit; ML: lean silt; Pl: plasticity index; PL: plastic limit; MDC: Minimum Detectable Concentration; pCi/g: picocuries per gram; SB: soil boring; SC: clayey sand; SM: silty sand; USCS: Unified Soil Classification System

Table 7-5. Unconfined Pressure	Test Result	s	
Boring	SB-12	SB-14	SB-16
Depth (ft bgs)	6-8	8-12	2-4
Unconfined compressive strength (psi)	39.941	8.627	17.649
Undrained shear strength (psi)	19.971	4.313	8.824
Failure strain (%)	5.1	12.8	2
Strain rate (inches/minute)	0.039	0.039	0.038
Water content (%)	13.4	20.9	18.9
Wet density (pcf)	140.1	126	120.9
Dry denstiy (pcf)	123.5	104.2	101.7
GS (assumed)	2.7	2.7	2.7
Saturation (%)	99.2	91.2	77.5
Void Ratio	0.3646	0.6173	0.6579
Diameter (inch)	1.635	1.616	1.643
Height (inch)	39.34	3.907	3.805
H/D ratio	2.41	2.42	2.32

bgs: below ground surface; ft: feet; H/D: height/diameter; %: percent; pcf: per cubic foot; psi: pounds per square inch; SB: soil boring

			Table 7	-6. Grain S	ize Analysi	s Results				
Boring	SB-06	SB-06	SB-10	SB-10	SB-12	SB-12	SB-14	SB-14	SB-16	SB-16
Depth (ft bgs)	0-2	2-5	0-4	4-8	6-8	11-12	4-6	8-12	0-2	2-4
Sieve Size										
1.5	-	-	100	100	-	ı	ı	100	100	100
1	-	-	94	81	100	-	-	94	95	86
0.75	100	100	92	66	97	100	100	92	95	86
0.5	95	99	88	55	92	99	98	90	91	84
0.375	89	98	85	50	90	97	95	89	87	81
#4	77	96	79	43	83	94	83	85	77	75
#10	66	93	70	37	77	91	65	79	66	71
#20	58	91	62	33	71	88	54	74	55	63
#40	49	86	52	30	64	84	42	71	46	60
#60	41	79	42	26	56	79	34	66	39	54
#140	31	69	32	21	46	72	25	60	31	48
#200	27	65	29	18	42	68	21	58	28	45
Coefficients										
D_{90}	9.8653	0.7277	14.5874	30.6609	10.1635	1.5471	6.9255	12.7493	11.708	30.1988
D_{85}	7.7516	0.382	9.2327	27.6642	5.7508	0.5076	5.3537	5.0953	8.5767	16.2004
D_{60}	1.065	0.0543	0.7179	15.9999	0.3198	0.0402	1.3784	0.1026	1.2588	0.4513
D_{50}	0.4509	0.0316	0.3805	9.1913	0.1582	0.0189	0.6659	0.0189	0.5715	0.1603
D_{30}	0.0974	0.0071	0.0843	0.4676	0.0338	0.0049	0.1825	0.0048	0.0914	0.0468
D ₁₅	0.0229	0.0021	0.0138	0.0421	0.0063	0.0011	0.0445	0.0019	0.0386	0.0068
D_{10}	0.0106	-	0.0072	0.0187	0.003	-	0.0136	0.001	0.0115	0.0023

bgs: below ground surface; ft: feet; SB: soil boring

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, I Ap	New York oril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

FIGURES

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, I Ap	New York oril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

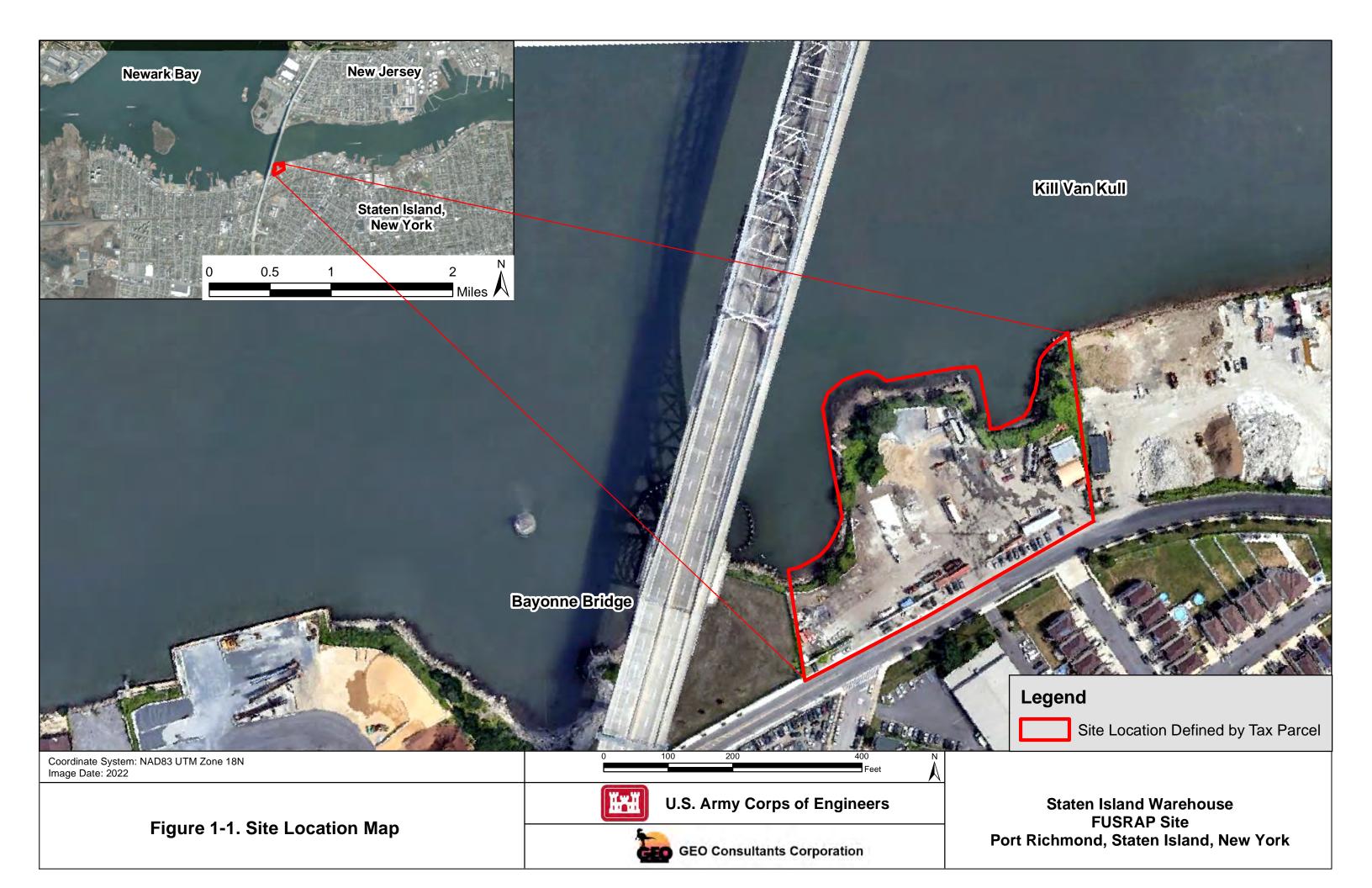


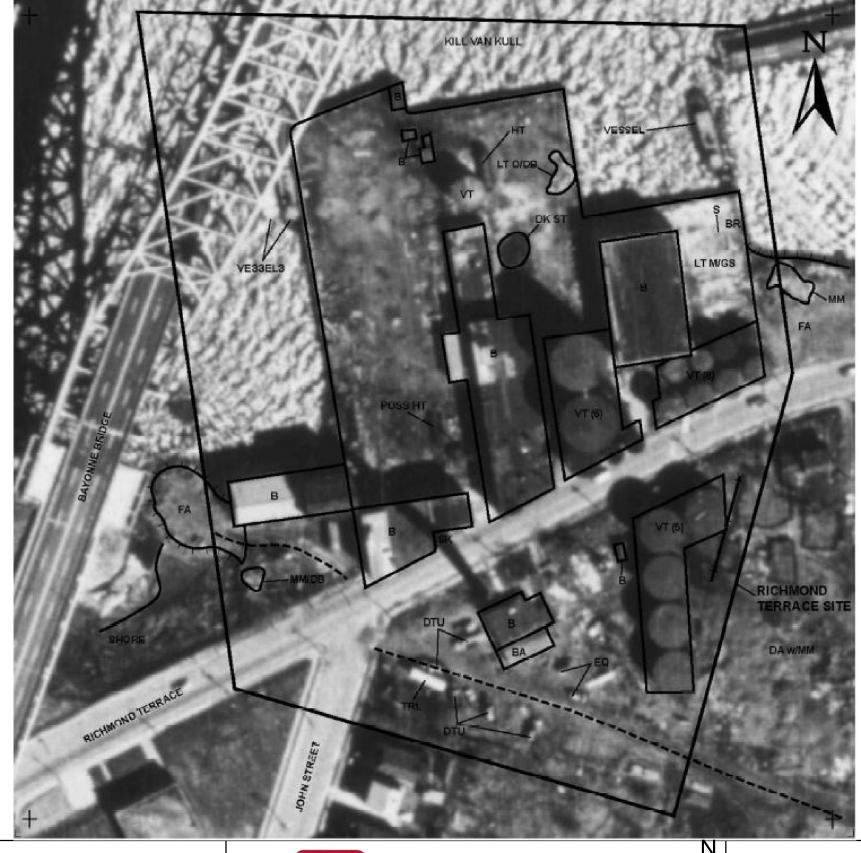
Figure 2-2. Bayonne Bridge and Western Side of the Surface Characterization Area (facing north)

U.S. Army Corps of Engineers

GEO Consultants Corporation

Figure 2-3. Aerial Photograph of Staten Island Warehouse FUSRAP Site, April 1940

Image Source: USEPA 2009a



U.S. Army Corps of Engineers

GEO Consultants Corporation

Approximate Scale 1:1,067

Approximate Scale 1:1,006

Image Source: USEPA 2009a

Figure 2-4. Aerial Photograph of Staten Island Warehouse FUSRAP Site, April 1961

U.S. Army Corps of Engineers

GEO Consultants Corporation

Figure 2-5. Aerial Photograph of Staten Island Warehouse FUSRAP Site, March 1988

Image Source: USEPA 2009a

U.S. Army Corps of Engineers

GEO Consultants Corporation

Approximate Scale 1:1,105

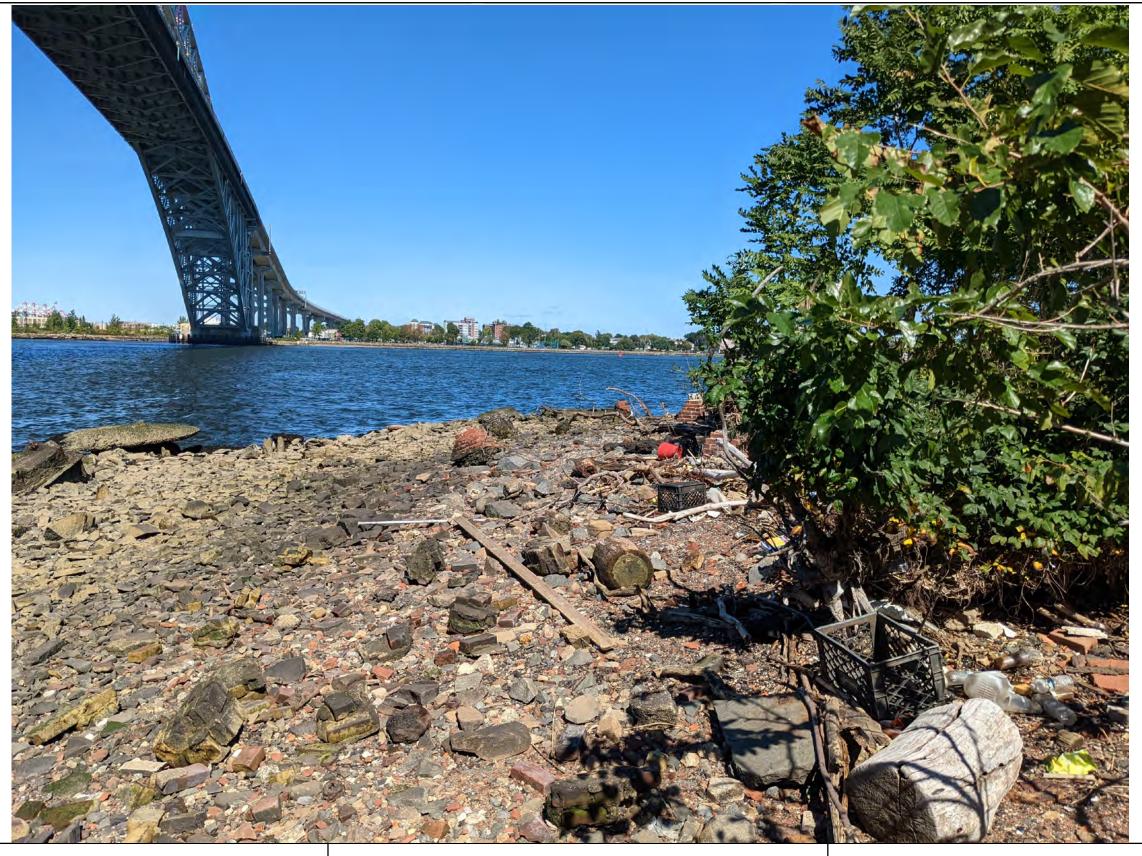
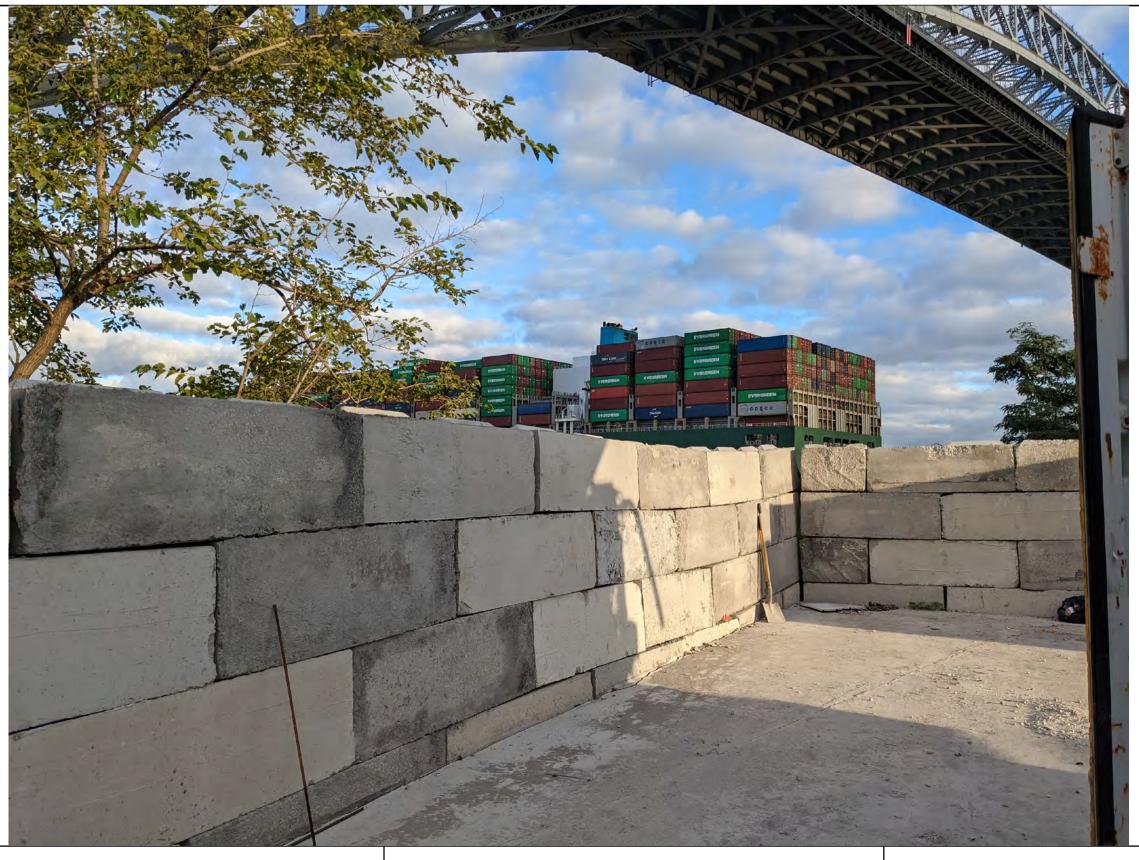
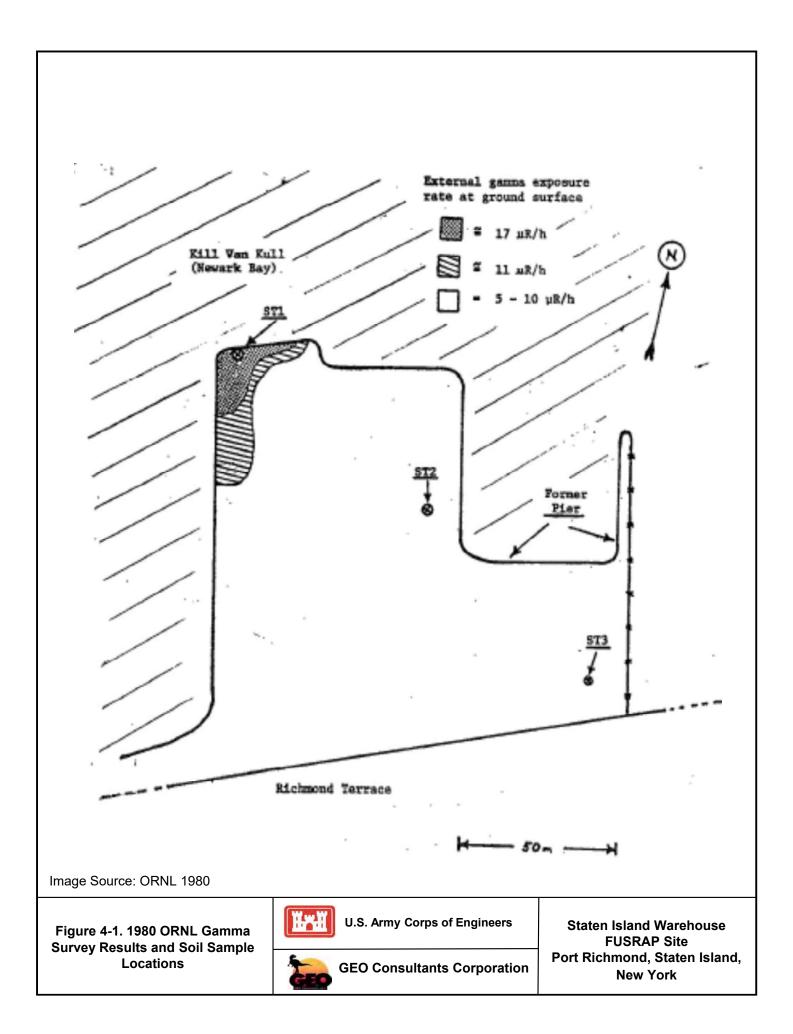


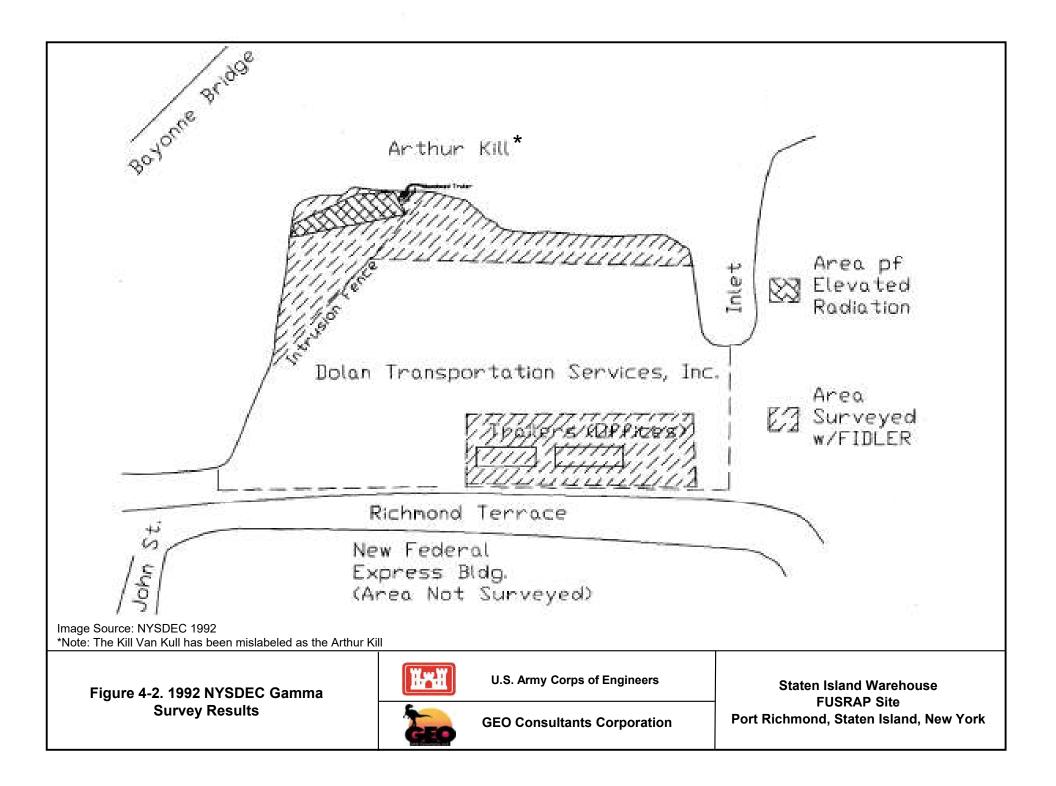
Figure 2-6. Rocky Kill Van Kull Shoreline (facing north)

U.S. Army Corps of Engineers

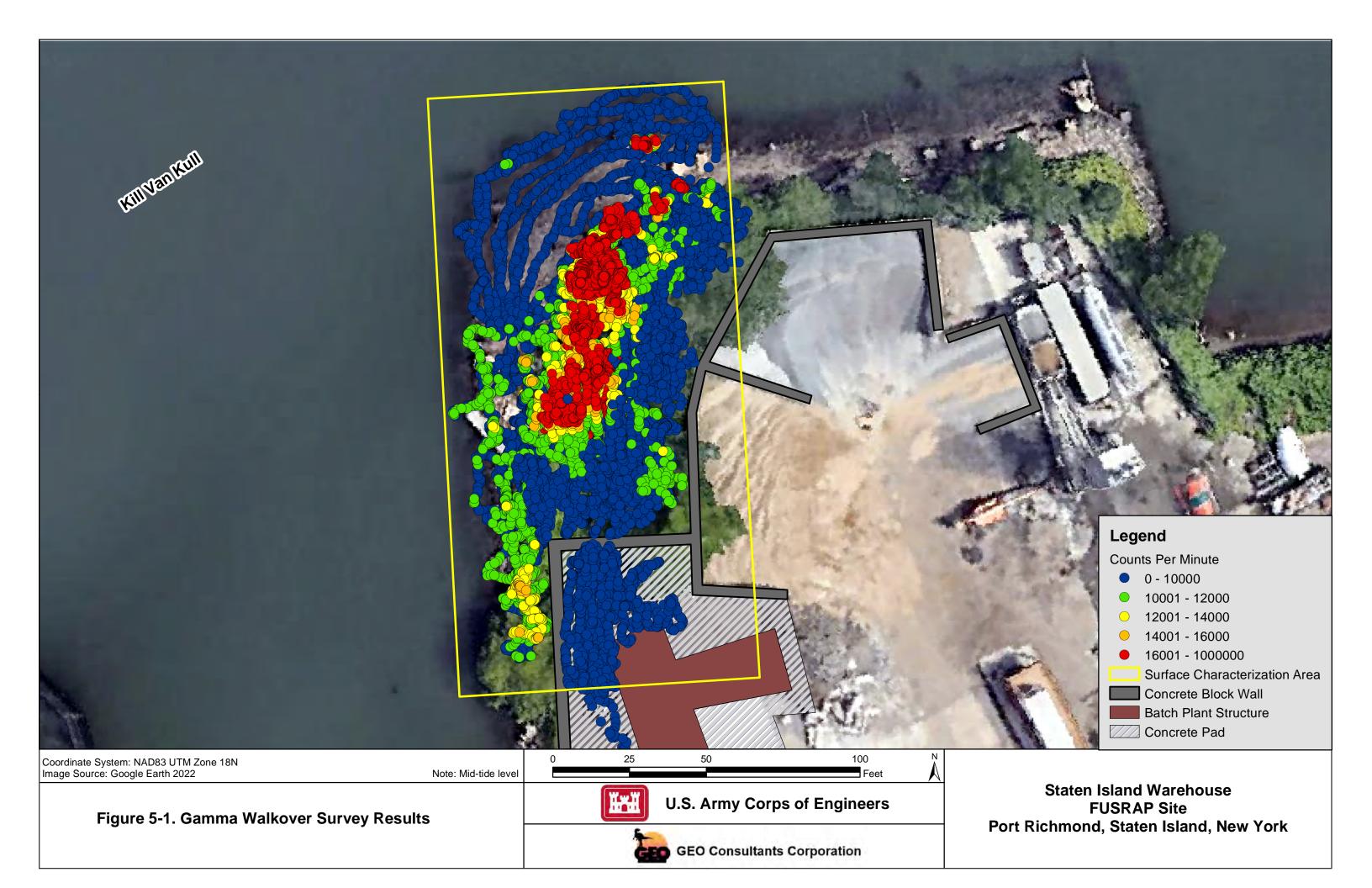
GEO Consultants Corporation

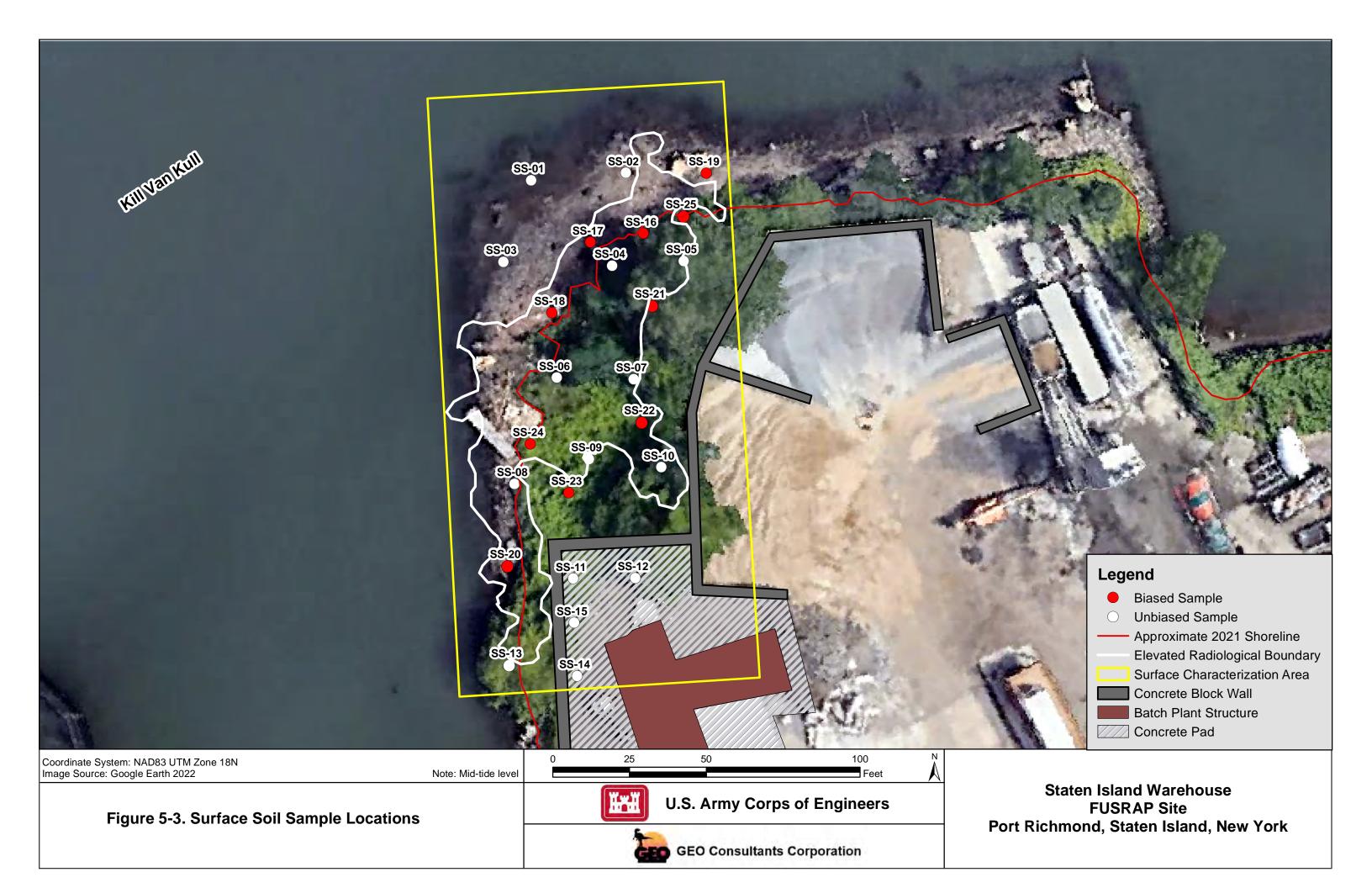



Figure 2-7. Block Wall and Concrete Pad in Southern Portion of Surface Characterization Area (facing northwest)



U.S. Army Corps of Engineers


GEO Consultants Corporation



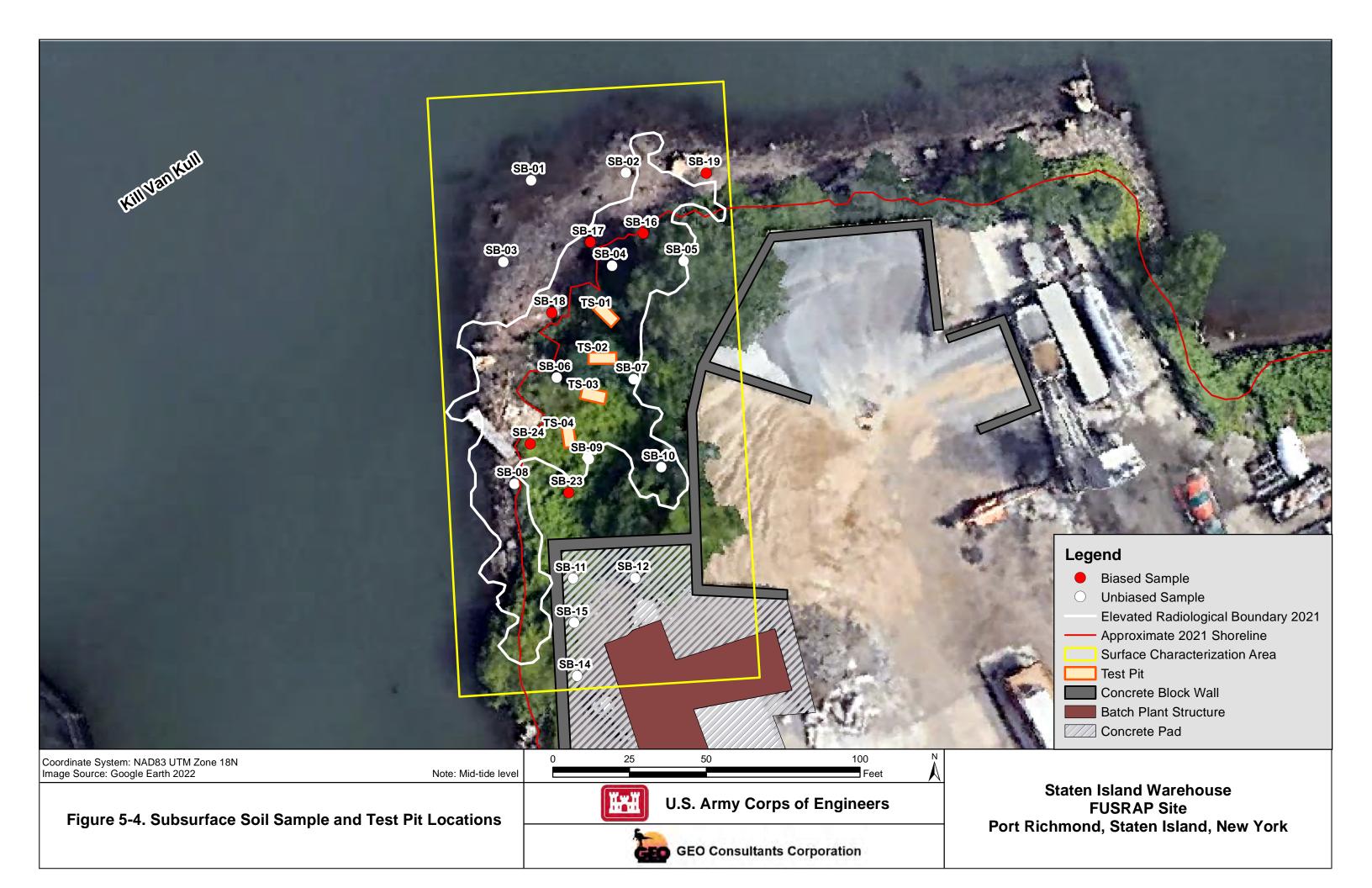


Figure 7-1. Shoreline and Highly Vegetated Surface Characterization Area (facing south)

U.S. Army Corps of Engineers

GEO Consultants Corporation


Figure 7-2. Erosion Undercutting Shoreline (facing south)

U.S. Army Corps of Engineers

GEO Consultants Corporation

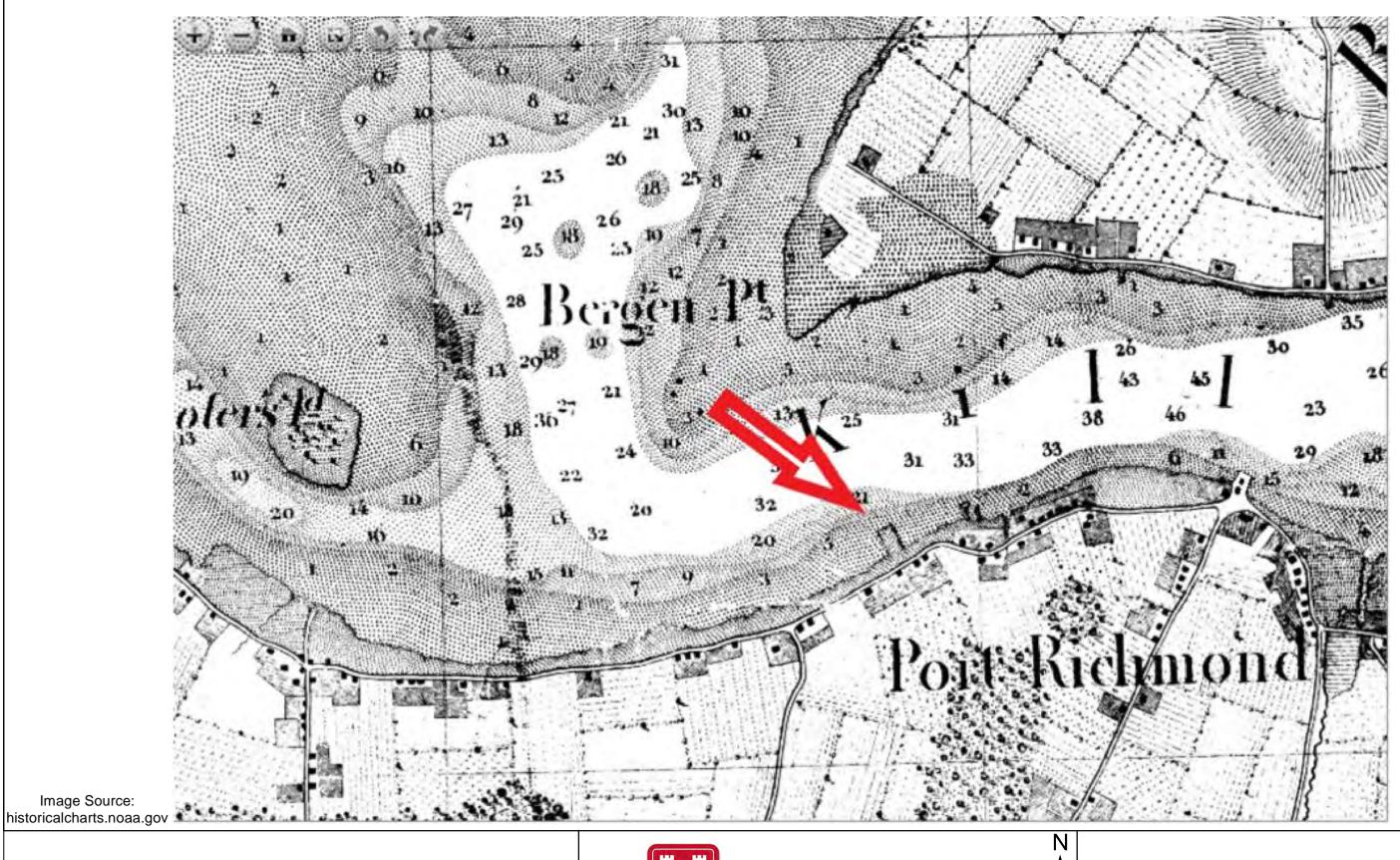


Figure 7-4. Staten Island Warehouse FUSRAP Site 1844 Historical Navigational Chart

U.S. Army Corps of Engineers

GEO Consultants Corporation

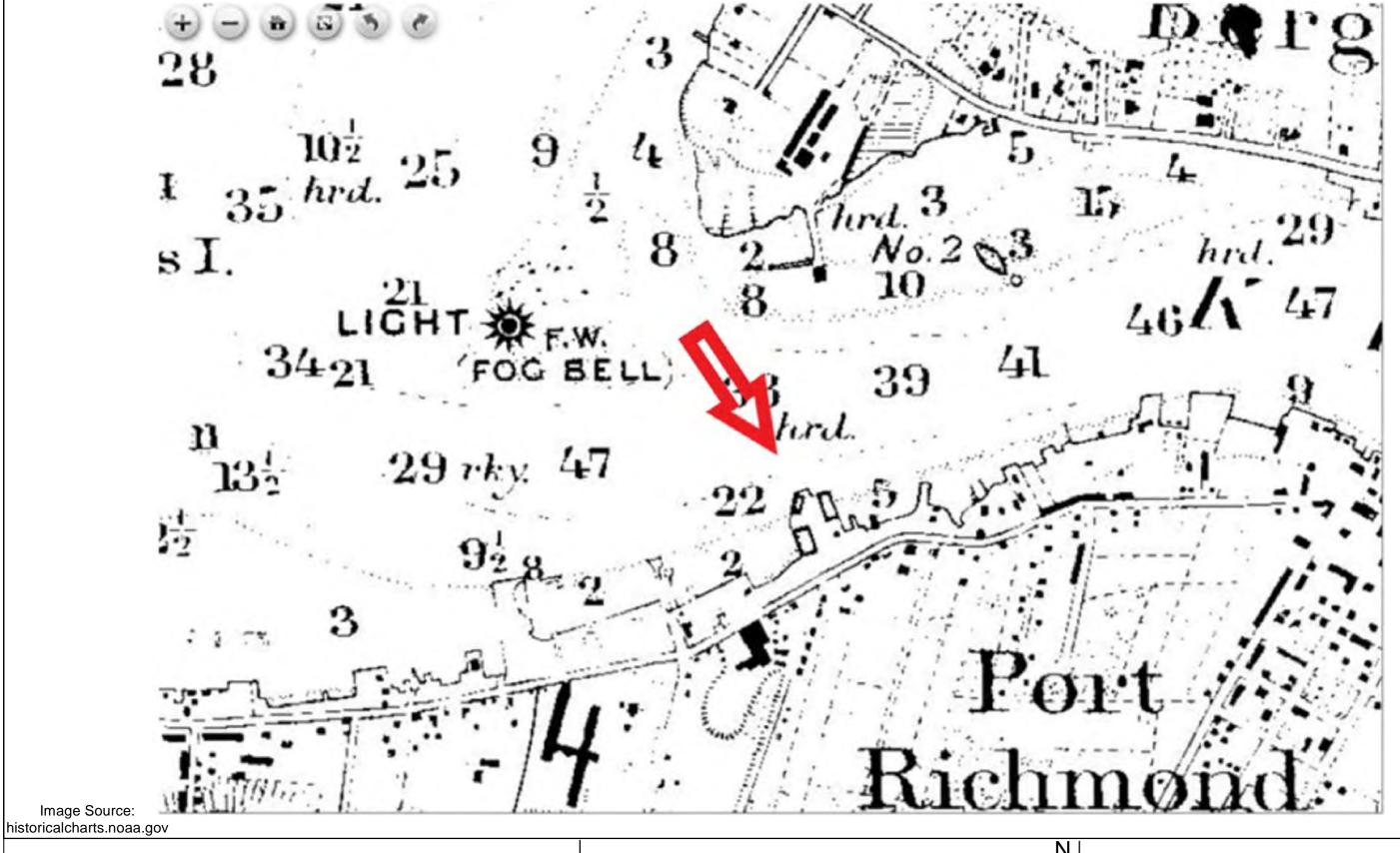
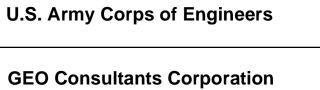
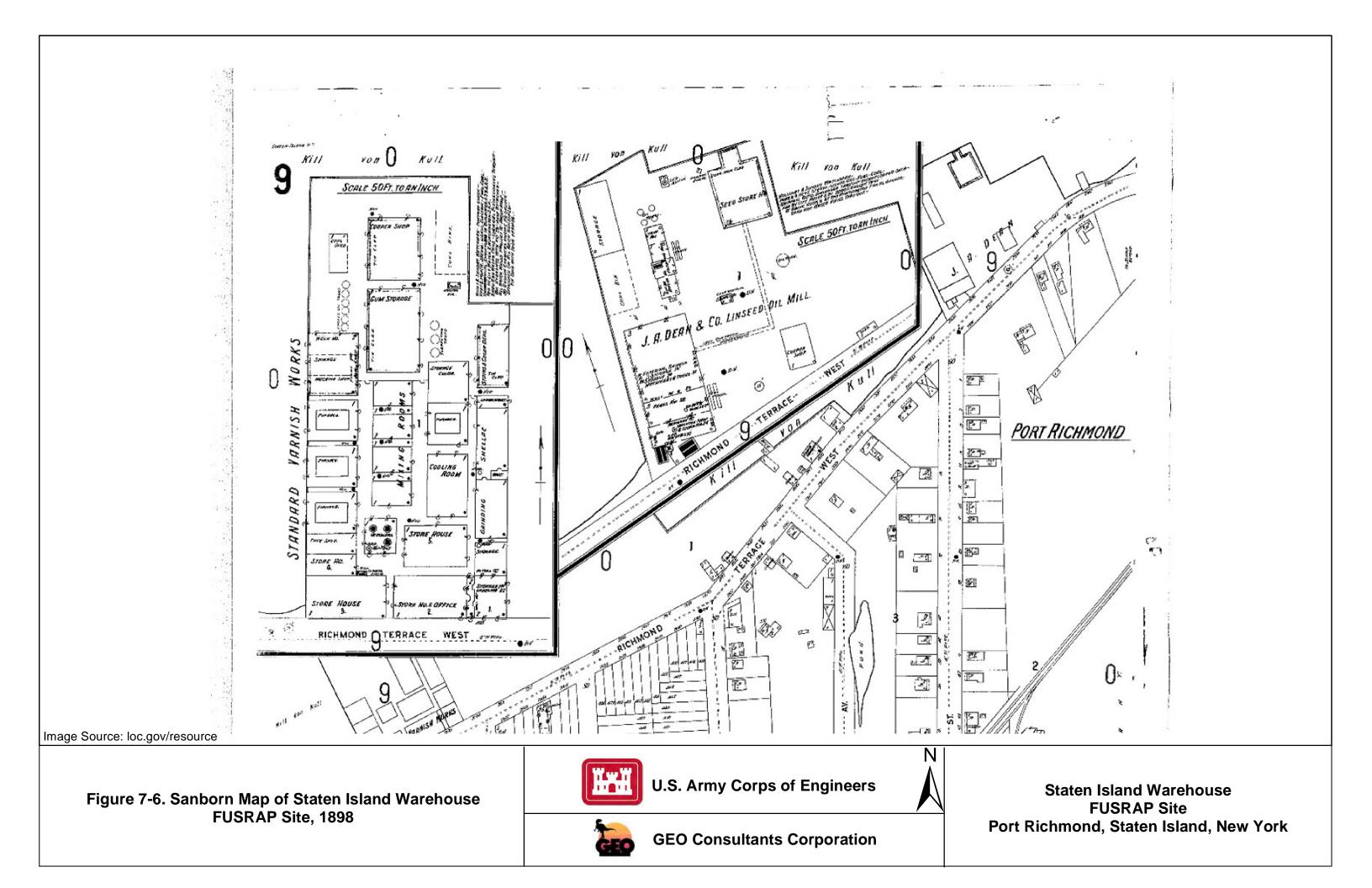




Figure 7-5. Staten Island Warehouse FUSRAP Site **1887 Historical Navigational Chart**

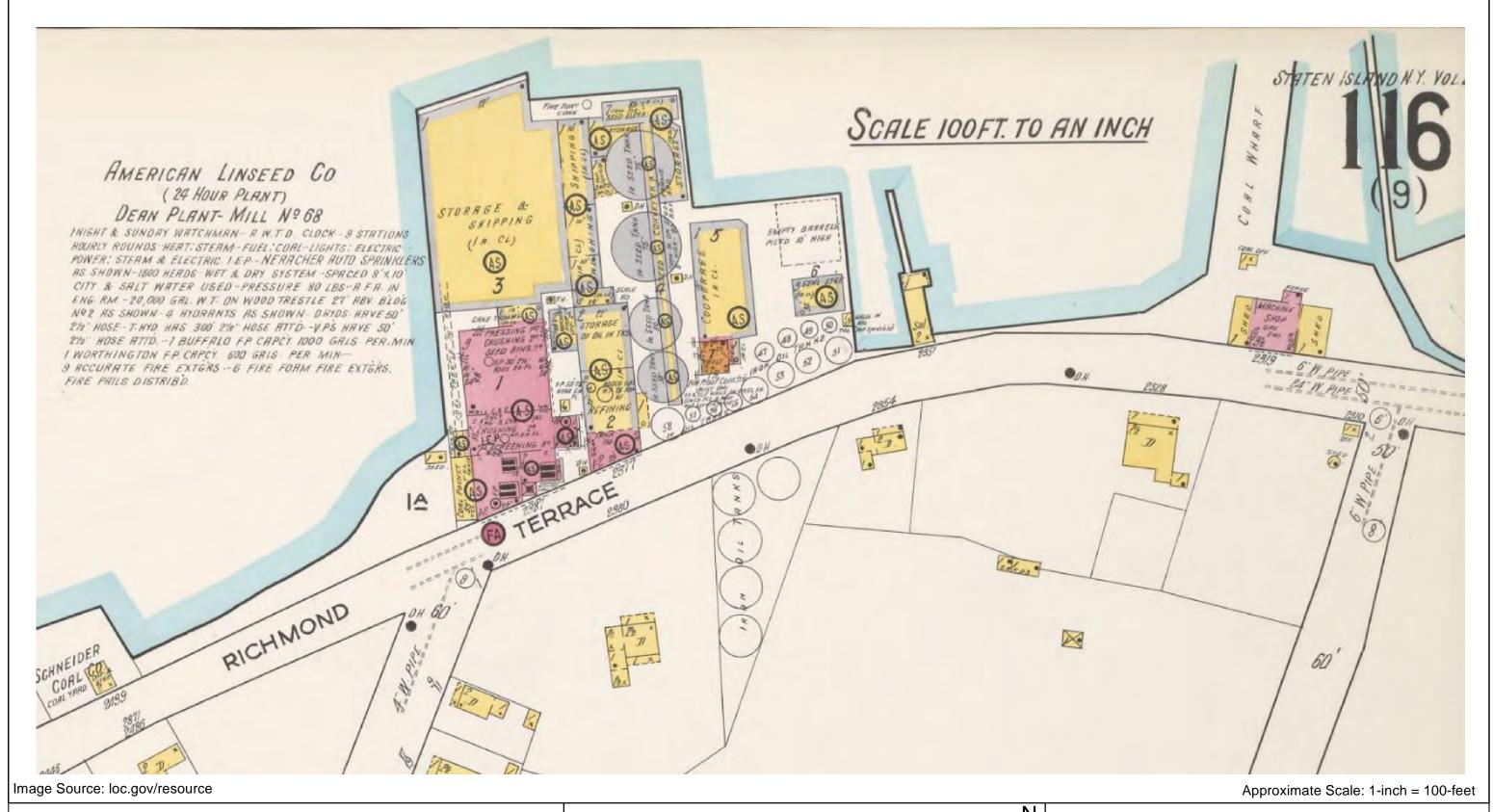


Figure 7-7. Sanborn Map of Staten Island Warehouse FUSRAP Site, 1917

U.S. Army Corps of Engineers

Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York

GEO Consultants Corporation

Image Source: https://maps.nyc.gov/then&now/

Figure 7-8. Aerial Photograph of Staten Island Warehouse FUSRAP Site, 1924

U.S. Army Corps of Engineers

Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York

1

GEO Consultants Corporation

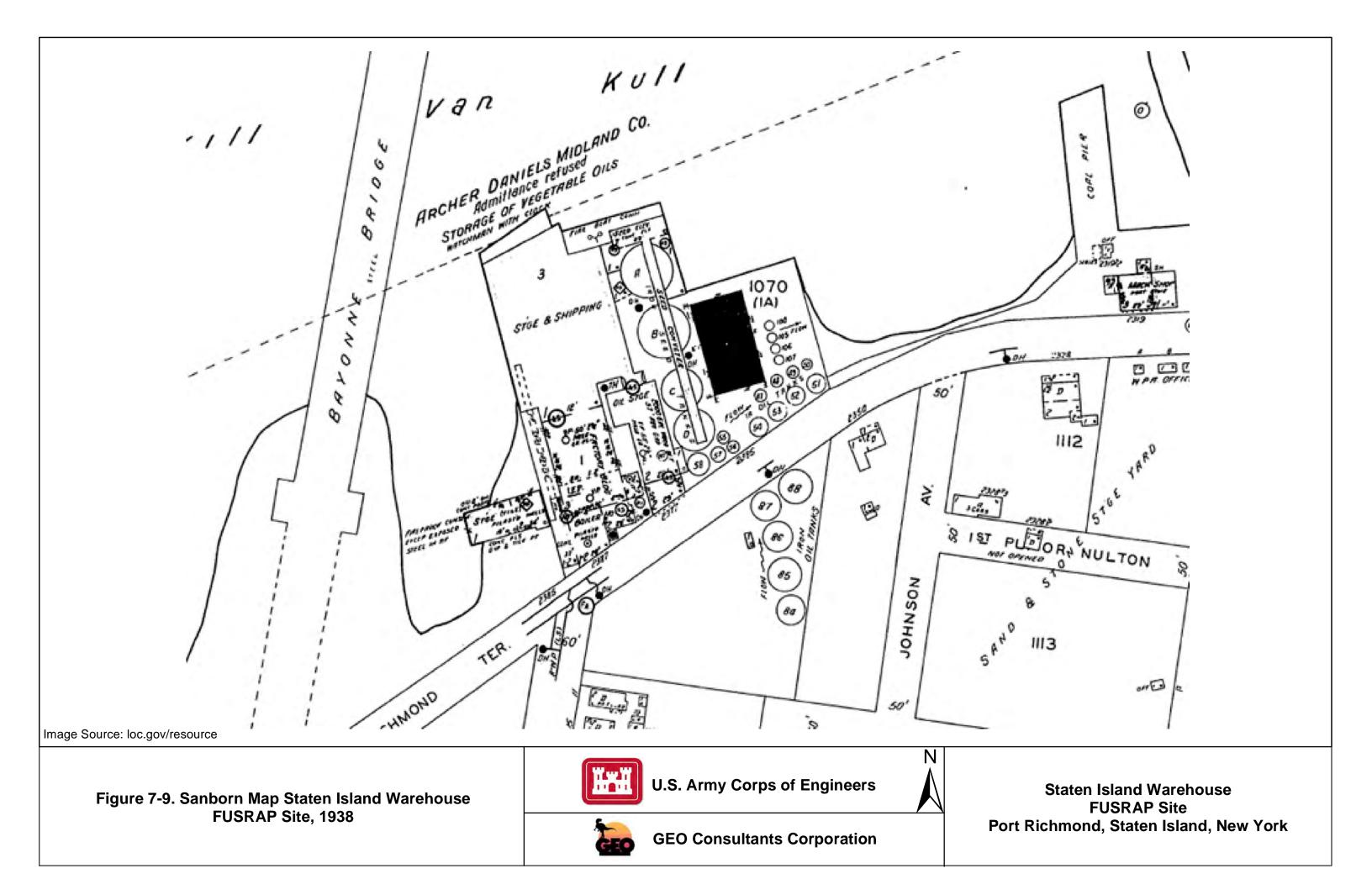


Image Source: https://maps.nyc.gov/then&now/

Figure 7-10. Aerial Photograph of Staten Island Warehouse FUSRAP Site, 1944

U.S. Army Corps of Engineers

Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York

GEO Consultants Corporation

Image Source: https://maps.nyc.gov/then&now/

Figure 7-11. Aerial Photograph of Staten Island Warehouse FUSRAP Site, 1951

U.S. Army Corps of Engineers

GEO Consultants Corporation

Approximate Scale 1-inch = 100-feet

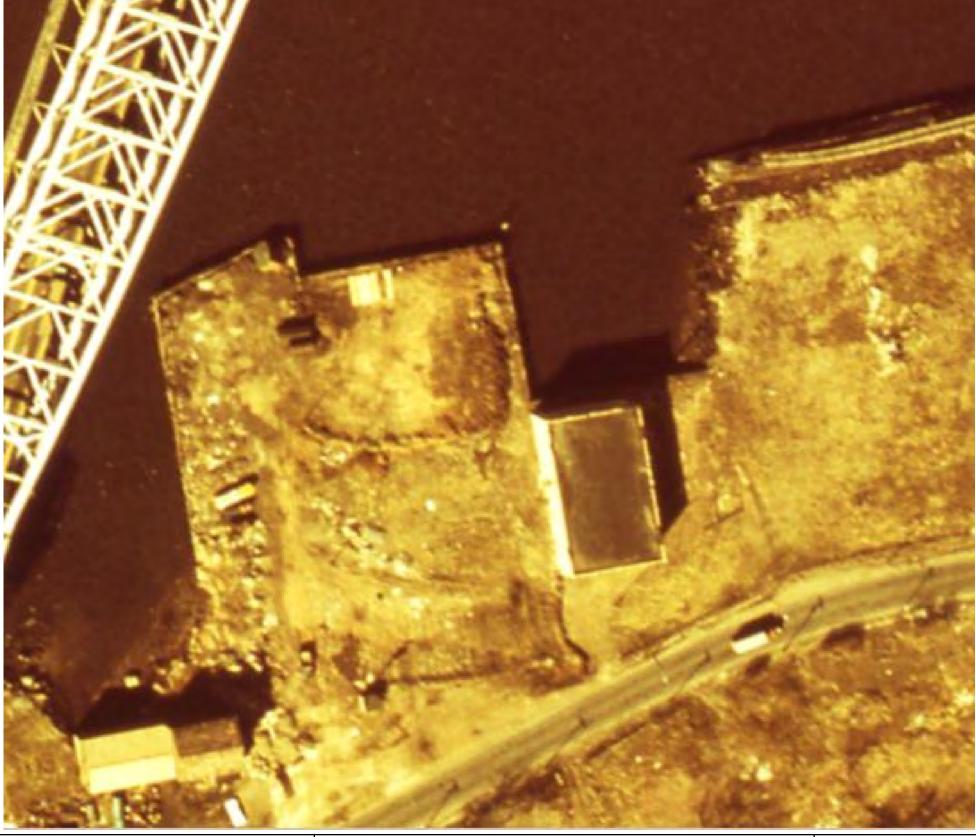


Image Source: unknown

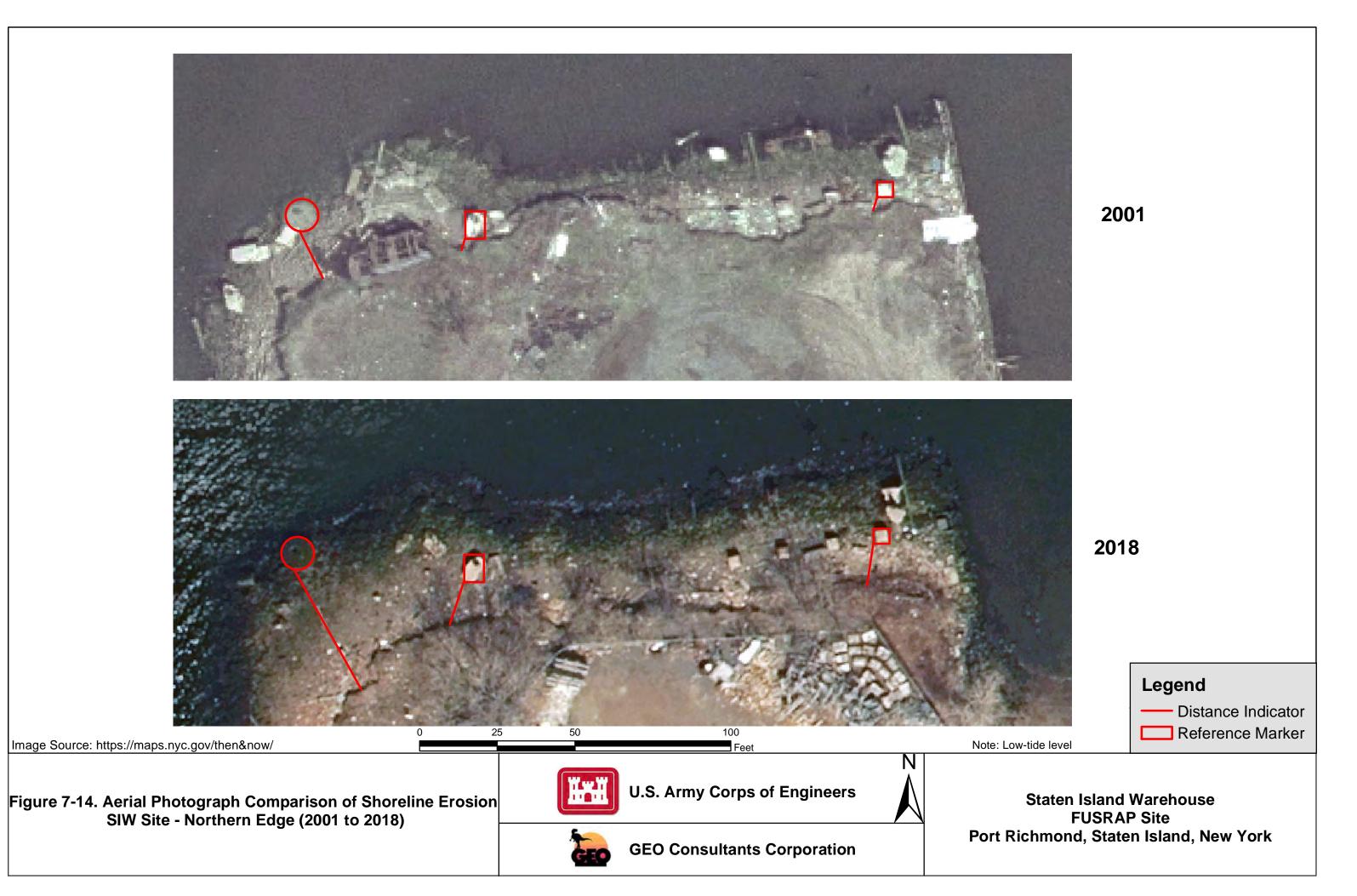
Approximate Scale 1-inch = 100-feet

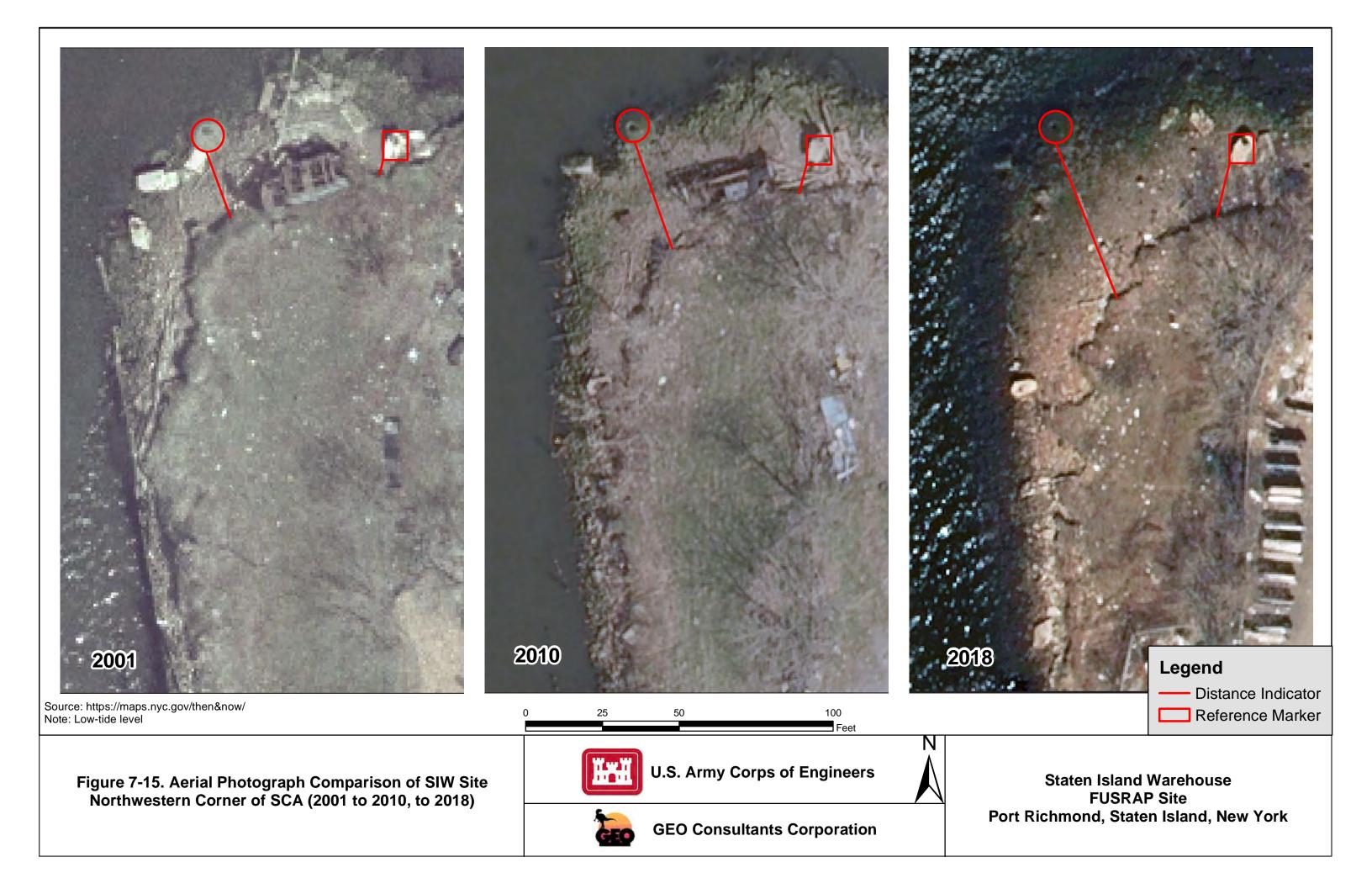
Figure 7-12. Aerial Photograph of Staten Island Warehouse FUSRAP Site, 1970

U.S. Army Corps of Engineers

GEO Consultants Corporation

Image Source: https://www.historicaerials.com/viewer/279927


Figure 7-13. Aerial Photograph of Staten Island Warehouse FUSRAP Site, 1980



U.S. Army Corps of Engineers

GEO Consultants Corporation

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, A	New York pril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

APPENDICES

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, A	New York pril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

APPENDIX A

FIELD DOCUMENTS

(Field Logs, Sampling Forms, Daily Quality Control Report, Summary Reports, and Chain of Custody Forms)

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, A	New York pril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

Daily Safety Tailgate Meeting Form

Job Name: Staten Island Nu	mber: Date:
Start Time: 0709 Co	mpleted: 0715 Site Location: Staten 751and
	SAFETY ISSUES
Tasks (this shift)	Site set-up, mark -out locations, grubbing clairing
Protective Clothing/Equipment	hard - hat safety 2/asses
Chemical Hazards	Radia form
Physical Hazards	traffic, construction equipment, fall hazards, water
Control Methods	TPE, 2001 set-up
Special Equipment/Techniques	Ale nonitons , rad scanny equipment
Hazard Communication Overview	Poison Ing, Slipping Rocks
Nearest Phone	Cell
Name/Address	2351 Richmond Terrace / Richmond university
(incidents, actions taken, etc.)	
	ATTENDEES
Print Name	Sign Name
David Lindsey	Dan
JEFFREY J. WARREN	S. Fri
Ban Hooks	But Hi
Megan Sherman	Musa Shirmer
	7 3
Manda	The state of the s
wieeting C	Conducted by:

Health and Safety	Checklist (Page	1 01 1)					
Project Name/Nun							
Site: Staten	Island	New	Youk				
Date: 9/20/202							
Briefed on-site Per							
cement mixi				Radiological 1	hazards,	5/ip he	3005

Complete weekly for each site. Answer each question by checking the appropriate column [yes, no, not observed (N/O), or not applicable (N/A)]. If a "no" is checked, provide an explanation on the

Noncompliance or Corrective Actions form.

Documentation	Yes	No	N/O	N/A
1. Is the Site Health and Safely Plan (SSHP) on the Site?				
2. Has the SSHP been reviewed, dated, and signed within the last year?				
3. Are the tasks being completed reflected in the hazard task analysis?	/			
4. Are emergency maps posted at the site and maintained in vehicles?	/	W		
5. Were daily safety checklists completed and fire extinguishers checked?	/			
6. Were applicable Material Safety Data Sheets at the Site?				
Observations	Yes	No	N/O	N/A
7. Is required personal protective equipment available and correctly used, maintained, and stored?	/			
8. Is the following emergency equipment located at each site:	(A11)			
-Fire extinguisher?				
-Eyewash (15 minutes fresh water)?				
-Communications (walkie-talkie or phone)?				
-First aid kit?	/			
9. Is the buddy system in use?				
10. Is the site organized to allow the use of lifting equipment, avoid tripping hazards and spreading contamination?	/			
11. Was a random employee asked if he/she knew site hazard and emergency procedures?	/			
12. Is the drill rig kill switch clearly marked and easily accessible?	/			

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:	Date:
Dem	9-20-202

Sample Collection Checklist (Page 1 of 1)	,			
Project Name/Number: Staten Island SSI	11			
Sampling Date: 9-20-21				
Answer each question by checking the appropriate column	Tves no ne	nt observ	red (NI/O)	or not
applicable (N/A)]. If "no" is checked, provide an explanation	on on the fo	orm	· ca (14/0),	or not
General	Yes	No	N/O	N/A
Were new protective gloves worn between sampling		1,0	1,10	UVZX
locations and/or intervals?				
2. Were samples collected using methods described in the				
Work Plan?				
3. Were sample containers filled in the correct order?				
4. Was sampling equipment appropriate for the purpose and				
site conditions?				
5. Was sampling equipment decontaminated or				
disposable/dedicated equipment used between each sample?				
6. Were procedures for collecting QA/QC samples followed as				
per the Work Plan?				
7. Were sampling locations properly identified by land survey				
or GPS locator?				
8. Were bottles adequately protected from contamination prior				/
to sample identification?				
Soil samples for chemical analysis	Yes	No	N/O	N/A
9. Were samples collected according to the Work Plan?				
10. Was a field sampling form completed?				
11. Were the analytical parameters and QA/QC samples				
recorded on the Field Data Sheet?				
12. Was headspace in sample containers for volatiles				
eliminated?			F _ 1/	V
Air samples for chemical analysis	Yes	No	N/O	N/A
13. Were the following forms filled out completely for each				
building sampled for Vapor Intrusion?				
-the Building Questionnaire				
-the Field Data Air Sampling Form				
-the Indoor Air Quality Building Survey				
-the Air Sampling Log, including barometric pressure			5 - 7	

The QC inspector shall sign this checklist upon completion of all items on the checklist.

14. Were samples collected according to the Work Plan?15. Were sampling port and canister valves open and closed in

QC Inspector Signature:

correct sequence?

Corrective Actions:

Date:

9-20-2021

Daily Quality Control Report (Page 1 of 2)

Project Name/Number: <u>Staten Island Suppler</u>	mental S	Site Inspection V	V912DQ21F3	<u>8015</u>	
Site: Staten Island, New York					
Date: 9/20/2021					
Weather: ⊠Clear, □Overcast, □Rain, □T	hunders	storm, Snow			
Temperature:	70 °F, [∑	☑70-85 °F, <u></u> 85	5+ °F		
Wind: ☐Still, ☐Gusty, ☒Moderate, ☐Hig	h; Dire	ction: Northwest	- <u>-</u>		
Humidity: Dry, Moderate, Humid					
Activity		Contractor/ Subcontractor	Equipment	Number of Workers	Total Hours Worked
Safety tailgate meeting		4		4	1
Zone set-up		4	Signs	4	4
Calibrate/set-up equipment		2	Air	2	5
			monitors,		
			Gamma scan		
Brush clearing		2	Wood-	2	15
Brush clearing		2	chipper, brush clearer	2	13
Scanning of equipment and personnel		1	Gamma scan		15
Problems Encountered		ctive Action Taker		11 '1	1 1
Physical set-up/condition of site is different than anticipated.	reason	work in areas who able to work. So g forward.			
Woodchipper stopped working towards end of shift.	Will h	nave equipment i ement picked up		orning or h	ave
Tripod for downhole scanning equipment driven back to shop for repair.		d replaced. Did i		ays work.	
Tests: (List type and location of the tests per	rformed	l and the results	of these tests.)	
N/A					
Total Daily Hours Worked by all Personnel:	40				

Daily Quality Control Report (Page 2 of 2)

Safety: Activity Safety Inspection		
Safety Deficiencies Observed		Corrective Action Taken
<u>N/A</u>		
Remarks:		
stated that it should be no proble characterization area. Tomorrow grubbing and clearing, gamma w	em removing co vs activities will valkover scan, t	ve it cleared tomorrow morning. Current tenant oncrete blocks to gain better/safer access to surface include safety tailgate meeting, completion of opographic and hydrographic surveys, completion of ossible collection of sediment and surface samples.
Safety Statistics		
Number of First Aid Incidents:	0	
Number of Recordable Incidents:	0	
Number of Lost Time Days:	0	
The FOM shall complete and sign a I	DQCR daily, all l	DQCRs to be submitted at conclusion of field work. Date:
Benow P Hosp		9-20-2021

Daily Safety Tailgate Meeting Form

Job Name: Staten Frand Nu	mber: Date:9-2/-21
Start Time: 0707 Co	mpleted: 07/5 Site Location: 5th fen Island
	SAFETY ISSUES
Tasks (this shift)	Tomplek brush clearing, gamma walkover survey
Protective Clothing/Equipment	PTE, long steen shorts, protetive boot covers
Chemical Hazards	N/A (Radia Lora)
Physical Hazards	construction truffic, biological, slips trips, falls
Control Methods	different working zones, PPE
Special Equipment/Techniques	gamma sean, brush clearly equipment
Hazard Communication Overview	
Nearest Phone	Cell
Name/Address	2351 Richmond Terrace / Richmond University
(incidents, actions taken, etc.)	
	ATTENDEES
Print Name	Sign Name
David Lindsey	- Peris
Ban Hooks	Bol K
JEFFREY J. WARRED	v = -61
Megan Sherman	Miyon Chris
Day Kenneds	Pless
Meeting C	Conducted by: Dand Lindsey

Project Name/Number: Starten Island SSI	2			
Sampling Date: 9-21-21				
Answer each question by checking the appropriate column applicable (N/A)]. If "no" is checked, provide an explanation			ed (N/O),	or not
General	Yes	No	N/O	N/A
1. Were new protective gloves worn between sampling locations and/or intervals?				
Were samples collected using methods described in the Work Plan?				
3. Were sample containers filled in the correct order?				~
4. Was sampling equipment appropriate for the purpose and site conditions?	/			
Was sampling equipment decontaminated or disposable/dedicated equipment used between each sample?				
6. Were procedures for collecting QA/QC samples followed as per the Work Plan?	V			
7. Were sampling locations properly identified by land survey or GPS locator?				/
8. Were bottles adequately protected from contamination prior to sample identification?				
Soil samples for chemical analysis	Yes	No	N/O	N/A
9. Were samples collected according to the Work Plan?				
10. Was a field sampling form completed?				1
11. Were the analytical parameters and QA/QC samples recorded on the Field Data Sheet?				~
12. Was headspace in sample containers for volatiles eliminated?				
Air samples for chemical analysis	Yes	No	N/O	N/A
13. Were the following forms filled out completely for each building sampled for Vapor Intrusion?				V
-the Building Questionnaire				V
-the Field Data Air Sampling Form	V			
-the Indoor Air Quality Building Survey				-
-the Air Sampling Log, including barometric pressure				-
14. Were samples collected according to the Work Plan?	2/			
15. Were sampling port and canister valves open and closed in correct sequence?	V			
Corrective Actions:				

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Date:

9-21-21

Daily Quality Control Report (Page 1 of 2)

Project Name/Number: <u>Staten Island Suppler</u>	mental S	Site Inspection V	W912DQ21F3	<u>8015</u>	
Site: Staten Island, New York					
Date: 9/21/2021					
Weather: ⊠Clear, □Overcast, □Rain, □T	hunders	storm, Snow			
Temperature:	′0 °F, [∑	⊠70-85 °F, <u></u> 85	5+ °F		
Wind: □Still, □Gusty, ☑Moderate, □Hig	h: Dire	ction: Northwest	İ		
Humidity: ☑ Dry, ☐ Moderate, ☐ Humid	, -		-		
Activity		Contractor/ Subcontractor	Equipment	Number of Workers	Total Hours Worked
Safety tailgate meeting		4		4	1
Calibrate/set-up equipment		2	Air	2	10
			monitors,		
			Gamma		
Brush clearing		2	scan Wood-	2	8
Drush clearing		2	chipper,	2	0
			brush		
			clearer		
Walkover scan		2	Gamma	2	10
			scan		
		GPS	2	10	
Supplies; return rental equipment	T	2		2	5
<u>Problems Encountered</u>		ctive Action Tak			
Physical set-up/condition of site is		enet moved barri			
different than anticipated.	_	coordinated with		ller for adva	ancing
Woodshings stoned working		g through concre			
Woodchipper stopped working.		piled cuttings in quent site work.		not impact	
Survey crew delayed and did not arrive on		work with survey		hedule and	have
site today.		completed in a t			nave
Site today.	WOIR	completed in a c	inicij mamei	•	
Tests: (List type and location of the tests per	formed	and the results	of these tests.)	
Total Daily Hours Worked by all Personnel:	44				

Daily Quality Control Report (Page 2 of 2)

Safety: Activity Safety Inspection	<u>l</u>	Competitie Action Tolean
Safety Deficiencies Observed		Corrective Action Taken
<u>N/A</u>		
Remarks:		
The woodchinner was not functi	onal and excess	s brush was stockpiled onsite and was moved away
* *		ne barrier wall blocks to provide access for the drill
		for the northern portion of the site, the area with
		crew did not arrive and the survey will likely be
		es will incline salely laligate meeting branning
		es will include safety tailgate meeting, planning
meeting with USACE to discuss	walkover surv	ey results and boring locations, start of soil borings,
	walkover surv	
meeting with USACE to discuss and surface soil and sediment sa	walkover surv	
meeting with USACE to discuss	walkover surv	
meeting with USACE to discuss and surface soil and sediment sa Safety Statistics	walkover survempling.	
meeting with USACE to discuss and surface soil and sediment sa Safety Statistics Number of First Aid Incidents:	walkover survempling.	
meeting with USACE to discuss and surface soil and sediment sa Safety Statistics Number of First Aid Incidents: Number of Recordable Incidents:	walkover survempling. 0 0	
meeting with USACE to discuss and surface soil and sediment sa Safety Statistics Number of First Aid Incidents: Number of Recordable Incidents:	walkover survempling. 0 0	
meeting with USACE to discuss and surface soil and sediment sa Safety Statistics Number of First Aid Incidents: Number of Recordable Incidents: Number of Lost Time Days:	walkover survempling. 0 0 0	
meeting with USACE to discuss and surface soil and sediment sa Safety Statistics Number of First Aid Incidents: Number of Recordable Incidents: Number of Lost Time Days:	walkover survempling. 0 0 0	ey results and boring locations, start of soil borings,
meeting with USACE to discuss and surface soil and sediment sa Safety Statistics Number of First Aid Incidents: Number of Recordable Incidents: Number of Lost Time Days:	walkover survempling. 0 0 0	DQCRs to be submitted at conclusion of field work.

Daily Safety Tailgate Meeting Form

Job Name: Staten Foland Nur	mber: Date:9-22-21
Start Time: 07/0 Cor	mpleted: 0715 Site Location: Staten Island
	SAFETY ISSUES
Tasks (this shift)	Sedinent, surface and groundwater sumpling
Protective Clothing/Equipment	PTE, Tyvele suits for those enforing restricted gone
Chemical Hazards	ATA Radiation
Physical Hazards	Trips slips, falls, bibligical, water, traffic
Control Methods	awareness, sectioned off zons
Special Equipment/Techniques	Gamma Scan
Hazard Communication Overview	Poison Ing, water, slipping pocks
Nearest Phone	(ell
Name/Address	2351 Richmond Terrace / Lichmond university
(incidents, actions taken, etc.)	
	ATTENDEES
Print Name	Sign Name
David Lindsay	Sin
JEFFREY J. WARREN	v Oh
Megan Shuman	Mayor Sher
Banganing Hooks	Blans
Robert Randaer	- Ik front to
Jose Garcia	An Am
	
Meeting Co	

Borehole and Core Logging Checklist (Page 1 of 2)

Project Name/Number: Staken Island SSI	Site: Staten Island, Net
Boring/Monitoring Well Number(s): 5B-04, 5B-05, 5B-06, 5B-	07
Date: 9-22-2021	→

Complete daily. Answer each question by checking the appropriate column [yes, no, not observed (N/O), or not applicable (N/A)]. If a No is checked, provide an explanation on the noncompliance and Corrective Actions form.

noncompliance and Corrective Actions form.				
Borehole Logging	Yes	No	N/O	N/A
1. Was boring logged by a geologist, geological engineer, or				
other qualified personnel?				
2. Was log completed and entries printed legibly on the HTRW				
Drilling Log?				
3. Was the log scale 1 inch = 1 foot?				
4. Were logs completed in the field (originals)?				
5. Does the log contain the following entries?				
-Unique borehole number				
-Depositional type (alluvium, till, loess, etc.)				
-Depths/Heights recorded in tenths of feet.				
-Soils classified as per USCS and fully described with				1
numerical percents of constituents.				
-Soil moisture content and texture or cohesiveness.				1
6. Was general information (top of form HTRW drilling log)				1
completed?				
7. Were special conditions (i.e. intervals of hole instability) and				
their resolution recorded?	V			
8. Were start and completion dates and time included for	/			
boring installation activities?				1942
9. Were boundaries between soils noted (solid line at				
appropriate depth or dashed line if transitional or if observed in				100
cuttings?				
10. Were depths at which free water was encountered and			1-0-0	
stabilized water levels recorded?				
11. Were soil sample depths recorded?				
12. If changes in drilling or sampling methods or equipment	,			
and changes in sample or borehole diameter recorded?				
13. Were soil sampling methods and recovery recorded?	/			
14. Was observed evidence of contamination in samples,				
cuttings, or drilling fluids recorded?	2 4			
15. Were abbreviations used on the log defined?	V			
16. Were drilling fluid losses including depth, rate, and volume				
in the subsurface recorded?	2			
Borehole Logging	Yes	No	N/O	N/A
17. Was drilling fluid described (water source, additive brand,				
product name, and mixture)?				V
18. Were drilling pressures and driller's comments recorded?				/
19. Was total depth recorded and marked with a double line?				
20. Was monitoring well diagram completed and attached to				
log?				/
21. Was drilling fluid described (water source, additive brand,			-	1
product name, and mixture)?				V

Borehole and Core Logging Checklist (Page 2 of 2)

Core Logging	Yes	No	N/O	N/A
22. Was rock described using standard geologic nomenclature; e.g. rock type, relative				
hardness, density, texture, color, weathering, bedding, fossils, crystals, and open or	./			
closed fractures, joints, bedding planes, or cavities and filling materials?				
23. Was start and stop time of each core run recorded?				
24. Were depths to top and bottom of each core run recorded?				
25. Was length of core recovered in each core run recorded?	V			
26. Were the size and type of coring bit and barrel recorded?	-			
27. Was the depth to the bottom of the hole measured after the core was removed for		88		
each core run?				

The QC inspector shall sign this checklist upon completion of all items on the checklist.

1
12/1/

QC Inspector Signature:

Date:

9-23-21

Project Name/Number: Staten Island 851	/ /			
Project Name/Number: Staten Island SSI Site: Staten Island, NY				
Sampling Date: 9-22-21				
Boring/Monitoring Well Number(s): 58 - 06, 58 - 07,	8-05	8-04		
Answer each question by checking the appropriate column (N/A)]. If "no" is checked, provide an explanation on the form	[yes, no, n	ot obser		, or not app
Equipment	Yes	No	N/O	N/A
1. Was all sampling equipment decontaminated properly prior to use and between sample intervals?	/			
2. Was each decontamination event recorded in the logbook?				
2. Was each decontamination event recorded in the logbook? 3. Was IDW (decontamination water) handled in accordance with the approved work plan? Corrective Actions:				
3. Was IDW (decontamination water) handled in accordance with the approved work plan?	items on the	ne checkli	st.	
3. Was IDW (decontamination water) handled in accordance with the approved work plan? Corrective Actions:	items on the		st.	

Daily Quality Control Report (Page 1 of 2)

Project Name/Number: <u>Staten Island Suppler</u>	mental :	Site Inspection V	W912DQ21F3	<u>8015</u>	
Site: Staten Island, New York					
Date: 9/22/2021			_		
Weather: ☐Clear, ☐Overcast, ☐Rain, ☐T Temperature: ☐ <32°F, ☐ 32-50 °F, ☐50-7			5+ °F		
Wind: \square Still, \square Gusty, \boxtimes Moderate, \square Hig	h; Dire	ction: Northwest	<u>t</u>		
Humidity: ☐ Dry, ☑Moderate, ☐ Humid					
Activity		Contractor/ Subcontractor	Equipment	Number of Workers	Total Hours Worked
Safety tailgate meeting		6		6	2
Calibrate/set-up equipment		2	Air monitors, Gamma scan	2	4
Drilling (direct push and SPT)		4	Geoprobe; PID	4	36
Downhole scan; sample scan		2	Gamma scan	2	18
Meet with USACE; project communication		2		2	4
Problems Encountered	Correc	ctive Action Taker	<u>1</u> <u>1</u>		
Drill crew had equipment issues	hollov	crew DPT equip w stem auger for iile new barrel w	first two bori	ng (SB-6 a	
Poor boring recovery		ple drill method	·		
		w stem auger) bu			
		d fill material is a ctions and when			
		gs to find better		ica. 11 C 011	500
Survey crew delayed and did not arrive on site today		ey crew has compo and hydro sur		g onsite tor	norrow
Tests: (List type and location of the tests per	rformed	d and the results	of these tests.)	
Four soil borings were competed (SB-4, SB-	5, SB-6	6 , and $\overline{SB-7}$, thr	ee were down	hole scann	ed (SB-4
was not scanned)					
Total Daily Hours Worked by all Personnel:	64				

Daily Quality Control Report (Page 2 of 2)

Safety: Activity Safety Inspection	ļ	
Safety Deficiencies Observed		Corrective Action Taken
<u>N/A</u>		
Remarks:		
completed, except SB-4. New be provide a deeper hole for downly meeting, continuation of soil bor complete additional gamma wall core recovery. A variety of option pits, hand augering and a variety	orings for SB-4, nole scans. Tomorings, and surfact k over survey. Fons were discussed of drilling met.	ompleted. Downhole logging of the borings was SB-6, and SB-7 will be completed using augers to orrow's activities will include safety tailgate se soil and sediment sampling. We will also thone call made today with USACE regarding poor sed including replacing some soil borings with test hods with the goal of bounding the elevated reading toing forward and discuss with USACE tomorrow.
Safety Statistics		
Number of First Aid Incidents:	0	
Number of Recordable Incidents:	0	
Number of Lost Time Days:	0	
The FOM shall complete and sign a life FOM signature:	DQCR daily, all I	DQCRs to be submitted at conclusion of field work. Date: 9-22-2021

Investigation-Derived Waste Management Checklist (Pa	ge 1 of 1)				
Project Name/Number: Staten Island SSI					
Site: Staten Island, Xlew YORK					
Sampling Date: 9-22-2021, 9-23-2021, 9-24-2021					
Boring/Monitoring Well Number: 53-06, 53-07, 58-05, 58-05, 58-03, 58-03,	58-01,50	53-10,5	B-09,5 3-17,58-1	3-11,58-19	12,58-15,53-14
Complete weekly for each site. Answer each question by ch					
observed (N/O), or not applicable (N/A)]. If a "no" is check	ked, provi	de an exp	olanation o	on the	
Noncompliance or Corrective Actions form.					
Investigation-Derived Waste Management	Yes	No	N/O	N/A	
1. Was all IDW managed according to the Waste Management	/				

Yes	No	N/O	N/A
/			
		1 31	/
		N To The State of	
			1
	Yes	Yes No	Yes No N/O

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Date:

9-24-21

Sample Collection Checklist (Page 1 of 1)		3 m	6-12-11	
Sample Collection Checklist (Page 1 of 1) Project Name/Number: Staten Island 55.	I /3.	905		
Sampling Date: 9-22 - Zoz I				
Answer each question by checking the appropriate column applicable (N/A)]. If "no" is checked, provide an explanation			ved (N/O),	or not
General	Yes	No	N/O	N/A
1. Were new protective gloves worn between sampling				
locations and/or intervals?				
2. Were samples collected using methods described in the Work Plan?	~			
3. Were sample containers filled in the correct order?	~			
4. Was sampling equipment appropriate for the purpose and site conditions?	V			
5. Was sampling equipment decontaminated or disposable/dedicated equipment used between each sample?	~			
6. Were procedures for collecting QA/QC samples followed as per the Work Plan?	/			
7. Were sampling locations properly identified by land survey or GPS locator?	/			
8. Were bottles adequately protected from contamination prior to sample identification?	/			
Soil samples for chemical analysis	Yes	No	N/O	N/A
9. Were samples collected according to the Work Plan?	V			
10. Was a field sampling form completed?	~			
11. Were the analytical parameters and QA/QC samples recorded on the Field Data Sheet?	V			
12. Was headspace in sample containers for volatiles eliminated?		1 7 1		/
			-	
Air samples for chemical analysis	Yes	No	N/O	N/A
13. Were the following forms filled out completely for each	105	110	14/0	1071
building sampled for Vapor Intrusion?				V
-the Building Questionnaire				V
-the Field Data Air Sampling Form	/			7
-the Indoor Air Quality Building Survey				V
-the Air Sampling Log, including barometric pressure				~
14. Were samples collected according to the Work Plan?	V			
15. Were sampling port and canister valves open and closed in correct sequence?	/	- 4		

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Corrective Actions:_

Date:

9-22-2021

Project Name/Number: staten Island SI / 3				
Site: Staten Island New York				
Sampling Date: 4-22-702/				
Boring/Monitoring Well Number(s): 58-04, 58-0	05, SB.	-06, 5	B-07	-
				_
Samuel 10(4).		2 60		-
Sample ID(s): 53-04-0926, 58-6				
95-05-0915, 58-05-0505, 58-05- 5B-06-0203, 55-07-0943, 58-07-01	0510,	55-06	-0936	1513-0
5B-06-0703, 55-07-0943, 5B-07-01	02,513	-07-0	203	_
Complete daily. Answer each question by checking the ap-	propriate c	olumn [v	es. no. not	observe
Complete daily. Answer each question by checking the ap or not applicable (N/A)]. If a "no" is checked, provide an				
or not applicable (N/A)]. If a "no" is checked, provide an Corrective Actions form. Packing, Storing, and Shipment of Samples				
or not applicable (N/A)]. If a "no" is checked, provide an Corrective Actions form.	explanatio	n on the l	Voncompl	iance or
or not applicable (N/A)]. If a "no" is checked, provide an Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and	explanatio	n on the l	Voncompl	iance or
or not applicable (N/A)]. If a "no" is checked, provide an Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler	explanatio	n on the l	Voncompl	iance or
or not applicable (N/A)]. If a "no" is checked, provide an Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the	explanatio	n on the l	Voncompl	iance or
or not applicable (N/A)]. If a "no" is checked, provide an Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the	explanatio	n on the l	Voncompl	iance or

9-22-2021

Daily Safety Tailgate Meeting Form

Job Name: S IW Nu	mber:4 Date:9/z3/21
	mpleted: 6715 Site Location: Port Richmond
	SAFETY ISSUES
T 1 (41' 1'0)	
Tasks (this shift)	Soil borings gomma scen
Protective Clothing/Equipment	Types
Chemical Hazards	Kadiation
Physical Hazards	stop fall stock by,
Control Methods	a laweness, sectioned off zones
Special Equipment/Techniques	Gamma scan
Hazard Communication Overview	Poison ixy
Nearest Phone	Cell phone
Name/Address	2351 Richmod unitursity / Richmond university
(incidents, actions taken, etc.)	
	ATTENDEES
Print Name	Sign Name
	Sign Name
3	
Megan Shirnen	Nicya -
JEFFREY J. WARRE	
Jose Garcia	- Jun Jun
Robert Randuzzo	- A- A-S-3
Michael Bertellett.	TAME ()
Millet Pag	Willit for
StevEN DIAZ	
Connor Rigers	(m)
Alexander Joseph	H Jeyach Joseph
Meeting C	Conducted by:

Project Name/Number: Staten Island SSI		Site:	State	en Is
Project Name/Number: Staten Island SSI Boring/Monitoring Well Number(s): 58-09, 58-10,	58-11	58-12	58-14	58-15
Date: 9-23-2021	-	_ ′	',	
Complete daily. Answer each question by checking the ap	nronriate d	column (v	es no not	•
observed (N/O), or not applicable (N/A)]. If a No is check				
noncompliance and Corrective Actions form.	, г	F		
Borehole Logging	Yes	No	N/O	N/A
1. Was boring logged by a geologist, geological engineer, or other qualified personnel?				
2. Was log completed and entries printed legibly on the HTRW Drilling Log?	/			
3. Was the log scale 1 inch = 1 foot?				
4. Were logs completed in the field (originals)?	/			
5. Does the log contain the following entries?				
-Unique borehole number	1			
-Depositional type (alluvium, till, loess, etc.)	1			
-Depths/Heights recorded in tenths of feet.	7			
-Soils classified as per USCS and fully described with numerical percents of constituents.	/			
-Soil moisture content and texture or cohesiveness.	/			
6. Was general information (top of form HTRW drilling log) completed?	/			
7. Were special conditions (i.e. intervals of hole instability) and their resolution recorded?	/			
8. Were start and completion dates and time included for boring installation activities?	/			
9. Were boundaries between soils noted (solid line at appropriate depth or dashed line if transitional or if observed in cuttings?	1			
10. Were depths at which free water was encountered and stabilized water levels recorded?	/			
11. Were soil sample depths recorded?	V			
12. If changes in drilling or sampling methods or equipment and changes in sample or borehole diameter recorded?	/			
13. Were soil sampling methods and recovery recorded?	~			
14. Was observed evidence of contamination in samples, cuttings, or drilling fluids recorded?				/
15. Were abbreviations used on the log defined?	/			
16. Were drilling fluid losses including depth, rate, and volume in the subsurface recorded?				/
Borehole Logging	Yes	No	N/O	N/A

17. Was drilling fluid described (water source, additive brand,

18. Were drilling pressures and driller's comments recorded?19. Was total depth recorded and marked with a double line?20. Was monitoring well diagram completed and attached to

21. Was drilling fluid described (water source, additive brand,

product name, and mixture)?

product name, and mixture)?

Borehole and Core Logging Checklist (Page 2 of 2)

Core Logging	Yes	No	N/O	N/A
22. Was rock described using standard geologic nomenclature; e.g. rock type, relative hardness, density, texture, color, weathering, bedding, fossils, crystals, and open or closed fractures, joints, bedding planes, or cavities and filling materials?	~			
23. Was start and stop time of each core run recorded?	1)
24. Were depths to top and bottom of each core run recorded?				
25. Was length of core recovered in each core run recorded?	V			
26. Were the size and type of coring bit and barrel recorded?	1			
27. Was the depth to the bottom of the hole measured after the core was removed for each core run?	/			

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Date:

9-23-2021

Project Name/Number: Staten Island 551	2			
Site: 923-202+ Staten Island, All	1			
Site: 9-23-2021 Staken Island, NI Sampling Date: 9-23-2021				
Boring/Monitoring Well Number(s): 58-10 58 09, 58-11	CR-12,	58-15,5	58-14, 58	-16,53-00
Answer each question by checking the appropriate column (N/A)]. If "no" is checked, provide an explanation on the fo	[yes, no, n	ot observ	red (N/O),	
Equipment	Yes	No	N/O	N/A
1. Was all sampling equipment decontaminated properly prior to use and between sample intervals?	/			
2. Was each decontamination event recorded in the logbook?	/			
	-			
with the approved work plan?				
with the approved work plan?				
with the approved work plan? Corrective Actions:	items on th	ne checkli	st.	
3. Was IDW (decontamination water) handled in accordance with the approved work plan? Corrective Actions: The QC inspector shall sign this checklist upon completion of all QC Inspector Signature:	items on the		st.	

Sample Collection Checklist (Page 1 of 1) Project Name/Number: Staken Fisherd SSI	14			
Sample Collection Checklist (Page 1 of 1) Project Name/Number: Staten Island 851 Sampling Date: 9-23-202(/_/			
building but.				
Answer each question by checking the appropriate column			ed (N/O),	or not
applicable (N/A)]. If "no" is checked, provide an explanation				
General	Yes	No	N/O	N/A
Were new protective gloves worn between sampling				
locations and/or intervals?	1			
2. Were samples collected using methods described in the				
Work Plan?				
3. Were sample containers filled in the correct order?				
4. Was sampling equipment appropriate for the purpose and	/			
site conditions?				
5. Was sampling equipment decontaminated or				
disposable/dedicated equipment used between each sample?				
6. Were procedures for collecting QA/QC samples followed as				
per the Work Plan?				
7. Were sampling locations properly identified by land survey				
or GPS locator?	V			
8. Were bottles adequately protected from contamination prior				
to sample identification?	1			
Soil samples for chemical analysis	Yes	No	N/O	N/A
9. Were samples collected according to the Work Plan?	1/		1	
10. Was a field sampling form completed?	V			
11. Were the analytical parameters and QA/QC samples				
recorded on the Field Data Sheet?				
12. Was headspace in sample containers for volatiles				
eliminated?				
		_	-	
Air samples for chemical analysis	Yes	No	N/O	N/A
13. Were the following forms filled out completely for each	103	140	14/0	14/74
building sampled for Vapor Intrusion?				
the Building Questionnaire				-
the Field Data Air Sampling Form	./			
the Indoor Air Quality Building Survey				-
the Air Sampling Log, including barometric pressure				-
4. Were samples collected according to the Work Plan?	/			
15. Were sampling port and canister valves open and closed in correct sequence?				
Corrective Actions:				
Lonective Actions:				

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Date:

9-23-2021

58-10	58-1	1,58-	<u>/</u> 2
102, 5)	3-09-01	17, SB-1	- 0506,
-10-04	65,515	-10-040	8,55-09-084
0405,	5B-11-0	506, 55	-12-1115
513-12	-1/12,	55-15-	1135,
ropriete e	olumn Fra	a no not	observed OI/O
ropriale ci	olumn [ye	s, no, noi	observed (N/O
хріапацю	n on the r	voncompi	lance or
Vec	No	N/O	N/A
1 65	INO	N/O	IN/A
V			
			/
/			
/			
/			
items on th	e checklis	t	
items on ti	ic circexiis	ι.	
Date	e:		
	_		
	9-23-	2021	
	oyos, so oyo	ropriate column [yes No Yes No Jack N	items on the checklist.

Surve	eying Checkl	ist (Page 1 of 1)		
			Island	SI 3005
Site:_	Staten	Island	, New	YORK
Date:	9-23-	2021		

Complete one time for project. Answer each question by checking the appropriate column [yes, no, not observed (N/O) or not applicable (N/A)]. If a "No" is checked, provide an explanation on the Noncompliance and Corrective Action form.

Yes	No	N/O	N/A
V			
			/
		I	
/			
	Yes	Yes No	Yes No N/O

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Date:

9-23-2021

Daily Quality Control Report (Page 1 of 2)

Project Name/Number: <u>Staten Island Supple</u>	ementa	l Site Inspection V	V912DQ21F3	<u>8015</u>	
Site: Staten Island, New York					
Date: 9/23/2021					
Weather: ☐Clear, ☐Overcast, ☐Rain, ☐			E . OE		
Temperature: ☐ <32°F, ☐ 32-50 °F, ☐ 50-)+ Г		
Wind: ☐Still, ☐Gusty, ☐Moderate, ☐Hi	gh; Dir	ection: West			
Humidity: ☐ Dry, ☑ Moderate, ☐ Humid					
Activity		Contractor/ Subcontractor	Equipment	Number of Workers	Total Hours Worked
Safety tailgate meeting		GEO, Leidos, AARCO Environmental, Rogers Surveying		10	2
Calibrate/set-up equipment		Leidos	Air monitors, Gamma scan	2	2
Drilling (direct push and SPT)		AARCO, GEO	Geoprobe; PID	4	14
Downhole scan; walkover scan		Leidos	Gamma scan	2	18
Sample collection		GEO	PID	2	14
Meet with USACE; project communication	l	GEO		1	1
Topographic and hydrographic survey		Rogers Surveyors	GPS; remote control boat	4	24
Equipment rental returns	•	GEO		1	3
<u>Problems Encountered</u>	Corre	ctive Action Taken			
Tests: (List type and location of the tests pe					
Seven soil borings were competed (SB-9, S associated surface and subsurface soil samp	oles we	re collected.			
Additional walk over survey was completed	d, dowi	nhole survey was o	completed on	seven borii	ngs
Hydrographic survey was completed; topog	graphic	survey was starte	d.		
Total Daily Hours Worked by all Personnel:	78				

Daily Quality Control Report (Page 2 of 2)

Safety: Activity Safety Inspection	
Safety Deficiencies Observed	Corrective Action Taken
Piece of overhead metal sheeting was ripping/coming apart south of our staging area.	Current tenant was informed and field crew was notified to try and avoid walking underneath that area.

Remarks:

All soil borings using the Geoprobe have been completed. All other borings will be done using hand augers due to location access. Test pits will be completed tomorrow and sediment samples will be collected. Additional boring will be started. Conducted phone conversation regarding placement of biased soil borings and test pits. SB-16 will be placed northwest of SB-05 and Northeast of SB-04. SB-17 will be placed north of SB-04 and SB-18 will be placed west of SB-04. SD-01 will be moved approximately 5-10 feet southeast of current proposed location. SD-10 will be used to sample "slag" material found west of SB-04, testing for waste characterization. SB-20 will be placed between SD-09 and SB-11. SB-19 (and it's 3 samples) will not be placed for the time being. SB-01, SB-02, SB-03, SB-08, SB-13, SB-17, SB-18, and SB-20 will be sampled using a hand auger instead of drill rig. Asked current tenant if they use or store of fly/coal ash on site, he informed me that they do not use that at this site, nor do they store it there.

Safety Statistics	
Number of First Aid Incidents:	0
Number of Recordable Incidents:	0
Number of Lost Time Days:	0

The FOM shall complete and sign a DQCR daily, all DQCRs to be submitted at conclusion of field work.

FOM Signature:	Date:
Benan P Hoop	
Carjan 1 1/0000	9-23-2021

Daily Safety Tailgate Meeting Form

Job Name: Staten Island Num	nber:5 Date:9-24-2021
Start Time: <u>073</u> ° Com	opleted: 0745 Site Location: Staten Island
	SAFETY ISSUES
Tasks (this shift)	test pit excavation
Protective Clothing/Equipment	PRE, Tykek suits
Chemical Hazards	N/A (12 adiation)
Physical Hazards	slippery, mildy ground, overhead metal sheeting, biological
Control Methods	awareness / sectioned of zones
Special Equipment/Techniques	Mini excavatore, gamma scanning equipment
Hazard Communication Overview _	Slips trips, mini excavator awareness
Nearest Phone	cell
Name/Address	2351 Richmond Terrace / Lichmond University
(incidents, actions taken, etc.)	
	ATTENDEES
Print Name	Sign Name
David Lindsay	
Rob Reduzes	R. R.
Benjamia Hooks	As Han
JETTREY J. WARREN	
Jose Barcic	An bur
Megan Shimain	Muyan Shermen
J	
W. C. C	onducted by:

Project Name/Number: Staten Island SSI		Site;	State	n Isl
Boring/Monitoring Well Number(s): \$8-03, 58-01,58	-02,5B	-19		
Date: 9-24-2021	•			
Complete daily. Answer each question by checking the apobserved (N/O), or not applicable (N/A)]. If a No is check				
noncompliance and Corrective Actions form.	1 77		21/0	T 27/4
Borehole Logging	Yes	No	N/O	N/A
Was boring logged by a geologist, geological engineer, or other qualified personnel?	_			
2. Was log completed and entries printed legibly on the HTRW Drilling Log?				
3. Was the log scale 1 inch = 1 foot?				
4. Were logs completed in the field (originals)?	/			
5. Does the log contain the following entries?	Y			
-Unique borehole number			S	
-Depositional type (alluvium, till, loess, etc.)	/			
-Depths/Heights recorded in tenths of feet.	1			
-Soils classified as per USCS and fully described with	1			
numerical percents of constituents.				
-Soil moisture content and texture or cohesiveness.				
6. Was general information (top of form HTRW drilling log) completed?	/			
7. Were special conditions (i.e. intervals of hole instability) and their resolution recorded?	/	1 10 1		
8. Were start and completion dates and time included for				
boring installation activities?	V			
9. Were boundaries between soils noted (solid line at appropriate depth or dashed line if transitional or if observed in cuttings?				
10. Were depths at which free water was encountered and stabilized water levels recorded?	/			
11. Were soil sample depths recorded?				
12. If changes in drilling or sampling methods or equipment and changes in sample or borehole diameter recorded?	/			
13. Were soil sampling methods and recovery recorded?				
14. Was observed evidence of contamination in samples,				
cuttings, or drilling fluids recorded?				
15. Were abbreviations used on the log defined?				
16. Were drilling fluid losses including depth, rate, and volume				
n the subsurface recorded?				
Borehole Logging	Yes	No	N/O	N/A
17. Was drilling fluid described (water source, additive brand, product name, and mixture)?				-
18. Were drilling pressures and driller's comments recorded?				/
19. Was total depth recorded and marked with a double line?				
20. Was monitoring well diagram completed and attached to log?				/
21. Was drilling fluid described (water source, additive brand, product name, and mixture)?			, 7	V
			-	•

Borehole and Core Logging Checklist (Page 2 of 2)

Core Logging	Yes	No	N/O	N/A
22. Was rock described using standard geologic nomenclature; e.g. rock type, relative				
hardness, density, texture, color, weathering, bedding, fossils, crystals, and open or				
closed fractures, joints, bedding planes, or cavities and filling materials?				
23. Was start and stop time of each core run recorded?				
24. Were depths to top and bottom of each core run recorded?				V
25. Was length of core recovered in each core run recorded?				
26. Were the size and type of coring bit and barrel recorded?				
27. Was the depth to the bottom of the hole measured after the core was removed for				
each core run?				

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Date:

9-24-2021

Project Name/Number: Staten Island SSI	3				
Site: Staten Island, UY.					
Sampling Date: 9-24-2021					
Boring/Monitoring Well Number(s): 58-03, 58 -01, 58	-02, TS.	01.75	02, 75-	03,75-0	4, 513-17,
A possess coach question by sheeting the appropriate of the		58-1	9 10110		11 11
Answer each question by checking the appropriate column (N/A)]. If "no" is checked, provide an explanation on the fo	lyes, no, r	lot observ	rea (N/O)	, or not ap	plicable
Equipment	Yes	No No	N/O	N/A	1
1. Was all sampling equipment decontaminated properly prior					
to use and between sample intervals?					
2. Was each decontamination event recorded in the logbook?					
	1/				
3. Was IDW (decontamination water) handled in accordance with the approved work plan?	V				
3. Was IDW (decontamination water) handled in accordance with the approved work plan? Corrective Actions:	V				
3. Was IDW (decontamination water) handled in accordance with the approved work plan?					
3. Was IDW (decontamination water) handled in accordance with the approved work plan?					
3. Was IDW (decontamination water) handled in accordance with the approved work plan?					
3. Was IDW (decontamination water) handled in accordance with the approved work plan?					
3. Was IDW (decontamination water) handled in accordance with the approved work plan? Corrective Actions:	items on the	ie checklis			
3. Was IDW (decontamination water) handled in accordance with the approved work plan? Corrective Actions: The QC inspector shall sign this checklist upon completion of all	items on th	ne checklis	st.		
3. Was IDW (decontamination water) handled in accordance with the approved work plan? Corrective Actions:	items on the		st.		

Sample Collection Checklist (Page 1 of 1)	,			
Project Name/Number: Staten Island SSI	5			
Sampling Date: 9-24-2021				
Answer each question by checking the appropriate column applicable (N/A)]. If "no" is checked, provide an explanation			/ed (N/O),	or not
General	Yes	No	N/O	N/A
1. Were new protective gloves worn between sampling locations and/or intervals?	/			
2. Were samples collected using methods described in the Work Plan?	1			
3. Were sample containers filled in the correct order?				
4. Was sampling equipment appropriate for the purpose and site conditions?	/			
5. Was sampling equipment decontaminated or disposable/dedicated equipment used between each sample?	/			

6. Were procedures for collecting QA/QC samples followed as

7. Were sampling locations properly identified by land survey

8. Were bottles adequately protected from contamination prior

Soil samples for chemical analysis	Yes	No	N/O	N/A
9. Were samples collected according to the Work Plan?				
10. Was a field sampling form completed?	V			
11. Were the analytical parameters and QA/QC samples recorded on the Field Data Sheet?	/			
12. Was headspace in sample containers for volatiles eliminated?				/

Air samples for chemical analysis	Yes	No	N/O	N/A
13. Were the following forms filled out completely for each				
building sampled for Vapor Intrusion?				/
-the Building Questionnaire				V
-the Field Data Air Sampling Form				
-the Indoor Air Quality Building Survey				1
-the Air Sampling Log, including barometric pressure			(4)	V
14. Were samples collected according to the Work Plan?				
15. Were sampling port and canister valves open and closed in correct sequence?				
Corrective Actions:				

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

per the Work Plan?

to sample identification?

or GPS locator?

Date:

9-24-2021

Site: Staten Island, New York Sampling Date: 9-24-2021				
Boring/Monitoring Well Number(s): 58-03, 58-01, 58-19, 72st P.75 75-01, 75-0:				
Sample ID(s): 55-03-0810, S13-03-	-050/,	58-03-	0/02, 5	- - (s-01-08
513-01-0102, 58-01-0501, 55-02-0875, 518	-02-0	504 65		7
TS-61-0002, TS-01-0204, TS-02-000-			-62 -0	15-02
TS-03-002	2,70	WC-0	1-0002,	
TS-03-0002, TS-03-0704, SS-17-123	10,58-	17-02	02, 55	18-1250
Complete daily. Answer each question by checking the appropriate or not applicable (N/A)]. If a "no" is checked, provide an excorrective Actions form.	xplanatio	n on the N	Noncomp1	iance or
		NT-	N/O	N/A
Packing, Storing, and Shipment of Samples	Yes	No	14/0	14/21
Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP?	Yes	INO	14/0	14/24
1. Were the samples handled according to the Work Plan and	Yes	INO	14/0	14/21
Were the samples handled according to the Work Plan and QAPP? Did the samples remain in ice from collection until cooler was taped for shipment? Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media	Yes	NO	14/0	1971
Were the samples handled according to the Work Plan and QAPP? Did the samples remain in ice from collection until cooler was taped for shipment? Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and	Yes	NO	14/0	17/2
1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler? 5. Were signed and dated custody seals properly placed on the	Yes	NO	14/0	1772
1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler?	Yes	NO	14/0	14/2
1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler? 5. Were signed and dated custody seals properly placed on the cooler and the cooler sealed with strapping tape?				1772
1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler? 5. Were signed and dated custody seals properly placed on the cooler and the cooler sealed with strapping tape? 6. Was a shipping label attached to the cooler?		e checklis		

TS-04-0002, TS-04-0406, TS-DUP-02

Daily Quality Control Report (Page 1 of 2)

Project Name/Number: Staten Island Suppler	nental	Site inspection	W912DQ21F3	<u>8015</u>	
Site: Staten Island, New York					
Date: 9/24/2021					
Weather: ⊠Clear, □Overcast, □Rain, □T	hunder	storm, Snow	,		
Temperature: $\square < 32^{\circ}F$, $\square 32-50 {\circ}F$, $\boxtimes 50-7$	′0 °F, [□70-85 °F, □	85+ °F		
Wind: ☐Still, ☐Gusty, ☑Moderate, ☐High	h; Dire	ction: West			
Humidity: ⊠ Dry, □Moderate, □ Humid					
Activity		Contractor/ Subcontractor	Equipment	Number of Workers	Total Hours Worked
Safety tailgate meeting		9		9	2
Calibrate/set-up equipment		2	Air monitors, Gamma scan	2	2
Test pits		4	Geoprobe; PID	4	32
Drilling (hand auger)		3		3	8
Scan soils, test pit samples		2		2	12
Downhole scan; compile data		1	Gamma scan	1	12
Topographic survey		3	GPS	3	24
D. I.I. E I		.: A .: 170.1			
Problems Encountered Mini-excavator operator encountered refusal and groundwater in test pits at approximately 6 feet.	Atten	npted to dewate ecessful. Pumpe nutes, water le	er 2 of the test ped approximate	ly 35-40 gr	
Tests: (List type and location of the tests per	formed	l and the result	s of these tests.)	
Eight soil borings were competed (SB-1, SB collected	-2, SB-	3, SB-8, SB-17	7, SB-18, and S	B-19) and	samples
Four test pits were completed and samples co	ollected	d			
Topographic survey was completed					
Total Daily Hours Worked by all Personnel:	92				

Daily Quality Control Report (Page 2 of 2)

Safety: Activity Safety Inspection	1	
Safety Deficiencies Observed		Corrective Action Taken
<u>N/A</u>		
Remarks:		
Test pits have been completed. Completed on Monday.	Γwo soil boring	s remain to complete. Sediment sampling will be
Safety Statistics		
Number of First Aid Incidents:	0	
Number of Recordable Incidents:	0	
Number of Lost Time Days:	0	
	1	
The FOM shall complete and sign a	DQCR daily, all	DQCRs to be submitted at conclusion of field work.
FOM Signature:		Date:

9-24-2021

Daily Safety Tailgate Meeting Form

Job Name: Stafen Foland Num	mber:6 Date:9-27-2021
Start Time: 0705 Con	mpleted: 0712 Site Location: Staten Foland
	SAFETY ISSUES
Tasks (this shift)	Grandwater Sumples, sechment sumply, SB simplify, downlinde his
Protective Clothing/Equipment	Tyrek Suits PPE YST water quality metal & gamas se
Chemical Hazards	standards (Radiation)
Physical Hazards	Skep Slopes, worker, shopping surfaces
Control Methods	awareness / sectioned off zones
Special Equipment/Techniques	gamma saan metale
Hazard Communication Overview	Slips , fulls , rad awareness
Nearest Phone	Cell Hospital
Name/Address	2351 Richmond Terrace / Richmond university
(incidents, actions taken, etc.)	
	ATTENDEES
Print Name Print Name Bon Hours	Sign Name
JEKFREY J. WARREN	Chilo.
Megan Shuman	Migar She
Meeting C	Conducted by:

Project Name/Number: Staten Island SSI		Site:	States	- 15/4
Boring/Monitoring Well Number(s): 58-24, 58-23,				
Date: 9-27-2021				
Complete daily. Answer each question by checking the approbserved (N/O), or not applicable (N/A)]. If a No is checken noncompliance and Corrective Actions form.				
Borehole Logging	Yes	No	N/O	N/A
1. Was boring logged by a geologist, geological engineer, or other qualified personnel?	/			
2. Was log completed and entries printed legibly on the HTRW	/			
Drilling Log?	1/			
3. Was the log scale 1 inch = 1 foot?	1/			
4. Were logs completed in the field (originals)?	-			
5. Does the log contain the following entries?				T
-Unique borehole number	V			
-Depositional type (alluvium, till, loess, etc.)	V			
-Depths/Heights recorded in tenths of feet.	2			
-Soils classified as per USCS and fully described with numerical percents of constituents.			1	
-Soil moisture content and texture or cohesiveness.	1			
6. Was general information (top of form HTRW drilling log) completed?	/			
7. Were special conditions (i.e. intervals of hole instability) and				
their resolution recorded?	· /			
8. Were start and completion dates and time included for				
boring installation activities?	V			
9. Were boundaries between soils noted (solid line at				
appropriate depth or dashed line if transitional or if observed in cuttings?	V			
10. Were depths at which free water was encountered and stabilized water levels recorded?	V			
11. Were soil sample depths recorded?	/			
12. If changes in drilling or sampling methods or equipment				
and changes in sample or borehole diameter recorded?				
13. Were soil sampling methods and recovery recorded?	~			
14. Was observed evidence of contamination in samples,				\ i/
cuttings, or drilling fluids recorded?				
15. Were abbreviations used on the log defined?				
16. Were drilling fluid losses including depth, rate, and volume in the subsurface recorded?				1
Borehole Logging	Yes	No	N/O	N/A
17. Was drilling fluid described (water source, additive brand,	- 20	110	1.110	1
product name, and mixture)?				1
18. Were drilling pressures and driller's comments recorded?				./
19. Was total depth recorded and marked with a double line?				-
20. Was monitoring well diagram completed and attached to				
log?				L
21. Was drilling fluid described (water source, additive brand,				/
product name, and mixture)?				

Borehole and Core Logging Checklist (Page 2 of 2)

Core Logging	Yes	No	N/O	N/A
22. Was rock described using standard geologic nomenclature; e.g. rock type, relative hardness, density, texture, color, weathering, hedding, fossils, crystals, and open or closed fractures, joints, bedding planes, or cavities and filling materials?	V		- 1	
23. Was start and stop time of each core run recorded?	1/			
24. Were depths to top and bottom of each core run recorded?				V
25. Was length of core recovered in each core run recorded?				V
26. Were the size and type of coring bit and barrel recorded?				V
27. Was the depth to the bottom of the hole measured after the core was removed for each core run?	V	/		

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature;

Date:

9-27-2021

Project Name/Number: Staken Island SSI Site: Staken Island Sty				
Sampling Date: 9-27-21				
Boring/Monitoring Well Number(s): Salue of Samueles	, Surface	Sugale	3, 58-29	1, 38-23, 900
Answer each question by checking the appropriate column (N/A)]. If "no" is checked, provide an explanation on the fo	[yes, no, n	ot observ	ved (N/O),	
Equipment	Yes	No	N/O	N/A
1. Was all sampling equipment decontaminated properly prior to use and between sample intervals?	/		7 - 7	
2. Was each decontamination event recorded in the logbook?	V			
2 11/ 11/2017 () () () () () () () ()				1
3. Was IDW (decontamination water) handled in accordance with the approved work plan? Corrective Actions:				
with the approved work plan?				

Project Data							Page	/ of /
	Staten Island S	122			Contract No:	W012DO-10 I	3005	
	USACE	551		D	elivery Order:	~		
Sample Data								
Sample ID(s): 9W-00	-1205			Field Duplic	ID:	None		
Sample Time: 1205				MS/MSD collec		ID:	None	
Analysis Data (circle require								
VOCs						Metals		
Pesticides Well Data	PAHs	Herbicides	PCBs	Explosives	TCLP	Sulfides		
Soil Boring/Sediment ID:	58-6	6			Depth to water:	9-27-21	+5	ft btoc
Date:		-21	-		depth of well:	7-27-21		ft btoc
	David Lindsey	/Ben Hooks	.		purge column:	_		ft
Sample type:	Grounda	rafe	-			Controller sett	tings	
Sample Depth:	546	,	ft bgs		Pressure:	Bu. le		psi
Field Fe II:	- '		mg/L	Refill/	discharge time:			sec
xlot enough than one create Dux	water to	671 A	non			W4	444 9060.409	
the are	141	ack 1- /4	6 %		Cloudy	Snowy	Temperature:	- 10
1	60 0 PC	The state of the s			Sunny	Fog	Barometric	78
create Dup	of poss.	eble			Rainy	Other:	Pressure:	in Hg
Purge Data								
	7			Y	Water Quality	Parameters		
Time	Pump Flow	Depth to GW	Temperature	Specific	Dissolved	pН	ORP	Turbidity
	Rate	(A L -4-)	(90)	Conductivity	Oxygen	0.11	(-10)	O LTT I
	(mL/min)	(ft botc)	(°C)	(µS/cm)	(mg/L) +0 1 if < 1	SU	(mV)	(NTU)
120100110000000000000000000000000000000	Stable Water	Stable or		±1% of full-scale;	mg/L;		40.11	
Initial Stablization Criteria	Level	Decreasing	+0.5°C	default ±20 μS/cm	$\pm 10\% \text{ if} > 1$	±0.1 S U	±10mV	<50 NTU
4. 4			2/2		mg/L		70.	
1204	Builer	5	21.0	3418	5.87	6.47	39./	110
		7,		i				
	/							
					1			
				7-	27			
				79-				
		V		SV			J = I	
	/							
							1	
		1						
	The second secon							

							Page	/ of /
Project Data								
	Staten Island S	SI			Contract No: V	-		
	USACE			D	elivery Order: V	V912DQ21F3	015	
Sample Data Sample ID(s): 6 W -07	-1216			P. LLD. P.	VIII (10	ID	.	
Sample ID(s): $9w-07$ Sample Time: $12/5$	-1213			MS/MSD collect	cate: YES NO		None None	
Analysis Data (circle require	od)			MIS/MISD COILEC	sted. YES (NO)	ID.	None	
VOCs	SVOCs	Radiological	CO2	Waste	Alkalinity	Metals		
Pesticides					-	Sulfides		
Well Data								
Soil Boring/Sediment ID:	58-0	7		1	Depth to water:	4		ft btoc
	9-27-				l depth of well:			ft btoc
Sampler(s):	David Lindsey	Ben Hooks	•		purge column:			ft
Sample type:	Ground	water			Pump, C	ontroller sett	ings	
Sample Depth:	4		ft bgs		Pressure:	Baile	ne	psi
Field Fe II:			mg/L	Refill/	discharge time:			sec_
					-		ditions (circle)	
					Cloudy	Snowy	Temperature:	78 "
					Sunny	Fog Other:	Barometric Pressure:	in Hg
Purge Data					Rainy	Offici.	1 ressure.	til 11g
ange 2 km	r -				Water Quality F	arameters		
Time	Pump Flow	Don'th to CW	Tamanagatuga	Specific	Dissolved	-II	ORP	Turbidity
Time	Rate	Depth to GW	Temperature	Conductivity	Oxygen	pН	ORP	Turblany
	(mL/min)	(ft botc)	(°C)	(µS/cm)	(mg/L)	S.U_	(mV)	(NTU)
	0.11.77	0.11		. 107 66 11	+0 1 if < 1			
Initial Stablization Criteria	Stable Water Level	Stable or Decreasing	+0.5°C	±1% of full-scale; default ±20 μS/cm	mg/L; ±10% if > 1	±0.1 S U	±10mV	<50 NTU
	Level	Decreasing		derault ±20 µ5/cm	mg/L			
1214	Boniles	4	20.6	3/9/	5.67	6.18	42.6	156
	711.101-			21.				
					-27 2.1	_		
			_	- Pr	-			
				770	4			
								1
							j	
/	1							
						_		
					-			
				A				

D D .							Page	of
Project Data	State II IS	lor.				11101000 101	D 2005	
	Staten Island S	551			Contract No:			
Sample Data	: USACE Delivery Order:					W912DQ21F.	3015	
Sample ID(s): 6w-09-	-1210 Field Duplicate: YES N					ID	: None	
Sample Time: /ZIO							: None	
Analysis Data (circle require				WIS/WISD COILCE	ica, 125 140	ID.	. INOIIC	
VOCs		Radiological	CO2	Waste	Alkalinity	Metals	3	
Pesticides				Explosives	TCLP	Sulfides	S	
Well Data								
Soil Boring/Sediment ID:	58-0	9		1	Depth to water:	<		ft btoc
Soil Boring/Sediment ID: Date:	9-27-	21	•		depth of well:			ft btoc
	David Lindsey		•		purge column:			ft
Sample type:	aroun	luate	•			Controller set	tings	
Sample Depth:	Grove	-6	ft bgs		Pressure	Bule	n	psi
Field Fe II:			mg/L	Refill/e	discharge time:			sec
						Weather Cor	nditions (circle)	
					Cloudy	Snowy	Temperature:	77
					Sunny	Fog	Barometric	//
					Rainy	Other	Pressure:	in F
Purge Data								
	D 61			0 10	Water Quality	Parameters		_
Time	Pump Flow	Depth to GW	Temperature	Specific	Dissolved	pН	ORP	Turbidity
	Rate	(6)		Conductivity	Oxygen	0.11	(10	0.1771
	(mL/min)	(ft botc)	(°C)	(μS/cm)	(mg/L) +0.1 if < 1	S.U	(mV)	(NTU)
	Stable Water	Stable or		±1% of full-scale;	mg/L;		P 11	
Initial Stablization Criteria	Level	Decreasing	+0 5°C	default ±20 µS/cm	±10% if > 1	+0.1 S U	±10mV	<50 NTU
	/	J			mg/L			
1209	Bailet	5	21.1	3290	4.99	6.18	43.9	218
					-			
	1		-					
	L.Con.							
	1			-1/2	ď			
				Var				
				9-				
							-	

Project Data								
Site:	Staten Island S	SSI			Contract No:	W912DQ-19-I	D-3005	
	USACE			D	elivery Order:	W912DQ21F3	3015	
Sample Data								
Sample ID(s): 6M-10-	1220			Field Dupli	cate: YES NO	ID:	None	
Sample Time: 12	10			MS/MSD collec	cted: YES NO	ID:	None	
Analysis Data (circle require								
VOCs				Waste	-	Metals		
Pesticides	PAHs	Herbicides	PCBs	Explosives	TCLP	Sulfides		
Vell Data								
Soil Boring/Sediment ID:	513-10				Depth to water:		6	ft btoc
Date:	9-27-	21		Tota	depth of well:			ft btoc
Sampler(s):	David Lindsey	Ben Hooks		Height of	purge column:			ft
Sample type:					Pump,	Controller sett	ings	
Sample Depth:	6-	7	ft bgs		Pressure:	Briler		psi
Field Fe II:			mg/L	Refill/	discharge time:			sec
						Weather Con	ditions (circle)	
					Cloudy	Snowy	Temperature:	78
					Sunny	Fog	Barometric	18
					Rainy	Other:	Pressure:	in l
Purge Data								
					Water Quality	Parameters		
Time	Pump Flow	Depth to GW	Temperature	Specific	Dissolved	рН	ORP	Turbidity
	Rate			Conductivity	Oxygen			
	(mL/min)	(ft botc)	(°C)	(µS/cm)	(mg/L)	S.U.	(mV)	(NTU)
	Stable Water	Stable or		+1% of full-scale;	±0.1 if < 1			
Initial Stablization Criteria	Level	Decreasing	+0.5°C	±1% of full-scale; default ±20 μS/cm	mg/L; ±10% if > 1	+0.1 S.U.	±10mV	<50 NTU
	Devei	Decreasing		deraun 120 µ3/em	mg/L			
1219	bulen	6	20.6	3308	4.93	6.20	45.1	94.3
	4 101	P	00.17	7,00	1112			17.7
			_				-	
			_					
						9-27		
					P			
	-			1.				
	-					-		
					9-			
				N. Page				
	1						V	
			-					
					-			

Health and Safety Checklist (Page 1 of 1)	
Project Name/Number: Staten Island SI / 3005	
Site: Staken Island, New York	_
Date: 9-27-2021	
Briefed on-site Personnel regarding: Padiological hazare	ds, water haggrals
51. ppery surfaces (Rocks) tripping hazards	, large moving trucks,

Complete weekly for each site. Answer each question by checking the appropriate column [yes, no, not observed (N/O), or not applicable (N/A)]. If a "no" is checked, provide an explanation on the

Noncompliance or Corrective Actions form.

Documentation	Yes	No	N/O	N/A
1. Is the Site Health and Safely Plan (SSHP) on the Site?	V			
2. Has the SSHP been reviewed, dated, and signed within the last year?	/			
3. Are the tasks being completed reflected in the hazard task analysis?	/			
4. Are emergency maps posted at the site and maintained in vehicles?	/			
5. Were daily safety checklists completed and fire extinguishers checked?	/			
6. Were applicable Material Safety Data Sheets at the Site?	/			
Observations	Yes	No	N/O	N/A
7. Is required personal protective equipment available and correctly used, maintained, and stored?	/		4	
8. Is the following emergency equipment located at each site:	V(41))		
-Fire extinguisher?				
-Eyewash (15 minutes fresh water)?	/			
-Communications (walkie-talkie or phone)?	/			
-First aid kit?				
9. Is the buddy system in use?				
10. Is the site organized to allow the use of lifting equipment, avoid tripping hazards and spreading contamination?				
11. Was a random employee asked if he/she knew site hazard and emergency procedures?	/			
12. Is the drill rig kill switch clearly marked and easily accessible?	/			

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Date:

9-27-2021

Investigation-Derived Waste Management Checklist (Page 1 of 1)	
Project Name/Number: Staten Island	
Site: Staten Island, New York	
Sampling Date: 9-27-2021	
Boring/Monitoring Well Number: 58-24, 58-23,	

Complete weekly for each site. Answer each question by checking the appropriate column [yes, no, not observed (N/O), or not applicable (N/A)]. If a "no" is checked, provide an explanation on the Noncompliance or Corrective Actions form.

Investigation-Derived Waste Management	Yes	No	N/O	N/A
Was all IDW managed according to the Waste Management Plan?				
2. Were soil cuttings, drilling fluids, decontamination water, development water, and PPE containerized?				
3. Were all containers properly labeled and stored?				
4. Were all containers in satisfactory condition?				

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Date:

9-27-2021

Project Name/Number: Staten Island SSI	_	_		
Site: Staten Island, NY				
Date: 9-20-2021 to 9-27-2021		_		
Complete as indicated. Answer each question by checking to observed (N/O), or not applicable (N/A)]. If a No is checke noncompliance and Corrective Actions form.				
Complete 4 weeks prior to start of field activities.				
Site Access and Security	Yes	No	N/O]
1. Has a copy of the Right of Entry Permit(s) been received?				
2. Are the time frames of the Right of Entry Permit(s) adequate for the entire job including IDW disposal?	/			
Permits and Licenses	Yes	No	N/O	
3. Are all subcontractors licensed to operate in the state?	/		1,,,	
4. Are license numbers of subcontractors recorded in the project files?	/	- 1		
5. Have subcontractors provided proof of insurance?				
6. Have variances been obtained from the state?				
If yes, provide a lists of variances obtained:				
Coordination with Property Owners and Tenants	Yes	No	N/O	
7. Has the property owner been contacted?				-
8. Did the property owner designate a contractor staging area?				
9. Did the property owner designate a contractor IDW staging area?				
10. Did the property owner approve a source for water?				-
10. Did the property owner approve a source for water:				_
Coordination with Environmental Authorities	Yes	No	N/O	
11. Has the State approved the Work Plan?	/			
12. Has the State been informed of planned sampling events?	/			
13. Has USEPA approved the Work Plan?				
14. Has USEPA been informed of planned sampling events?				

Mobilization/Demobilization Check list (Page 2 of 3)

Complete 1 week prior to start of field activities. Safety Plannin g and Equip ment	Yes	No	N/O	N/A
15. Has the SSHP been submitted to the subcontractors for	,			
review?	/			
16. Have all personnel read and signed the SSHP?	/			
17. Was the local hospital contacted to verify the phone				
number and address?	/			
18. Can the hospital treat anticipated chemical exposures?		11		
19. Have all field personnel been fit-tested for respirator use?				/
20. Were all training certificates, including subcontractors, in a	14			
file to take to the field?	/			
21. Are all training certificates current?	/			1
22. Are all MSDSs in a file to take to the field?	1			
23. Are all required instruments reserved and complete with	1			
calibration standards and manuals?				
24. Do the instruments meet manufacture maintenance and	,			
calibration standards?	V			
25. Does the PID have the correct lamp?				/
26. Does the LEL meter have the correct sensors?				/
27. Are the detector tubes current and stored properly?				/
Complete within 1 week of Notice to Proceed.				
Logistical Planning	Yes	No	N/O	N/A
28. Have the Work Plan documents been approved by USACE?	/			
29. Has the SSHP been approved by Health and Safety		2		
Services?				~
30. Has Notice to Proceed from USACE been received?	V			
31. Are the project personnel available and scheduled?	100			
32. Are subcontractors available?	~			
33. Do subcontractors' SOWs correspond to the approved Work Plan?	./			
34. Has the laboratory agreed to the planned sample volume load?	/			
35. Has the bottle order been placed?	1			
36. Have the correct sample containers been received?				
37. Has USACE been notified of schedule?	1			
Complete not less than 1 week before fieldwork is scheduled to b	egin.			
Utility Clearances	Yes	No	N/O	N/A
38. Has the State or Local utility clearance agency been				
contacted and a meeting scheduled?	1			
39. Has a representative from each notified utility agency been				
called to confirm the utility meeting?	V			
40. Was a utility work authorization number recorded?	/			
41. Was the property owner asked about the existence of any				
underground utilities or tanks?	V		1	
42. Has a UXO survey been conducted at the site?				-
43. If yes to Question 42, is a report available?	/			

Mobilization/Demobilization Check list (Page 3 of 3)

Environmental Site Protection	Yes	No	N/O	N/A
44. Are drilling and sampling locations accessible without				
property damage?	/			
45. Is work area limited to prevent property damage?	/			
46. Is IDW area greater than 100 feet away from a major				
stream, tributary, or drinking water well?				/
47. If field activities damage property, will measures be taken				,
to restore the Site (explain below)?				V

Demobilization	Yes	No	N/O	N/A
48. Was the site returned, as much as possible, to its original	,			
condition?	/			
49. Was each work area policed for trash?	V.			
50. Did the site point of contact inspect the site?	V			
51. Was the integrity of each drum of IDW inspected?				V

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Date:

9-28-2021

	-9			

Sample Collection Checklist (Page 1 of 1)	,			
Project Name/Number: Staten Island 55	I/6	,		
Sampling Date: 9-27-2021				
Answer each question by checking the appropriate column			ved (N/O),	or not
applicable (N/A)]. If "no" is checked, provide an explanation		orm.		
General	Yes	No	N/O	N/A
Were new protective gloves worn between sampling				
locations and/or intervals?	V			
2. Were samples collected using methods described in the				
Work Plan?				
3. Were sample containers filled in the correct order?	1			
4. Was sampling equipment appropriate for the purpose and				
site conditions?				
5. Was sampling equipment decontaminated or				
disposable/dedicated equipment used between each sample?	V			
6. Were procedures for collecting QA/QC samples followed as				
per the Work Plan?				
7. Were sampling locations properly identified by land survey				
or GPS locator?	V			
8. Were bottles adequately protected from contamination prior				
to sample identification?	V	-		
Soil samples for chemical analysis	Yes	No	N/O	N/A
9. Were samples collected according to the Work Plan?				
10. Was a field sampling form completed?	-			
11. Were the analytical parameters and QA/QC samples				
recorded on the Field Data Sheet?				
12. Was headspace in sample containers for volatiles				/
eliminated?				
Air samples for chemical analysis	Yes	No	N/O	N/A
13. Were the following forms filled out completely for each				
building sampled for Vapor Intrusion?				
-the Building Questionnaire				V
-the Field Data Air Sampling Form				
-the Indoor Air Quality Building Survey				1
-the Air Sampling Log, including barometric pressure				V
14. Were samples collected according to the Work Plan?	1			
15. Were sampling port and canister valves open and closed in	./			
correct sequence?				

The QC inspector shall sign this checklist upon completion of all items on the checklist.

QC Inspector Signature:

Corrective Actions:

Date:

9-27-2021

Project Name/Number: Staten Island				
Site: Staten Island, New York				
Sampling Date: 9-27-2021	-	5 910	yed w	a fre
Sampling Date: 7-27-2021 Boring/Monitoring Well Number(s): 58-23,58-24,	58-	06,58	07,53-	09, 5/3
				_
				3
Sample ID(s): 5D-09-0750, 5D-06	-0754	50-07	-0758	
5D-03-0815 SD-10-0816, SD-07-091	SA- NU	P- N7	50-01	-0813
50-03-0815 SD-10-0811 SD-04-091	o 50-	ms	Sh was	- 0.00
(1-2-12-26)	-	,	-13-1-13	
55-22-0935, 55125 58-25-0940, 55-24-	0941, 5	5-21-	1000	_
Complete daily. Answer each question by checking the appr	ropriate co	olumn [ye	es, no, not	observe
	^		T	
or not applicable (N/A)]. If a "no" is checked, provide an ex-	xplanatior	on the N	voncompii	lance or
or not applicable (N/A)]. If a "no" is checked, provide an ex- Corrective Actions form.	xplanatior	on the N	voncompii	iance or
Corrective Actions form. Packing, Storing, and Shipment of Samples	xplanatior Yes	on the N	Noncompil N/O	N/A
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and				
Corrective Actions form. Packing, Storing, and Shipment of Samples	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment?	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date,	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler?	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler? 5. Were signed and dated custody seals properly placed on the	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler? 5. Were signed and dated custody seals properly placed on the cooler and the cooler sealed with strapping tape?	Yes			
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler? 5. Were signed and dated custody seals properly placed on the cooler and the cooler sealed with strapping tape? 6. Was a shipping label attached to the cooler?	Yes /	No	N/O	
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler? 5. Were signed and dated custody seals properly placed on the cooler and the cooler sealed with strapping tape?	Yes /	No	N/O	
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler? 5. Were signed and dated custody seals properly placed on the cooler and the cooler sealed with strapping tape? 6. Was a shipping label attached to the cooler? The QC inspector shall sign this checklist upon completion of all	Yes /	No	N/O	
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler? 5. Were signed and dated custody seals properly placed on the cooler and the cooler sealed with strapping tape? 6. Was a shipping label attached to the cooler?	Yes V items on the	No ne checklis	N/O	
Corrective Actions form. Packing, Storing, and Shipment of Samples 1. Were the samples handled according to the Work Plan and QAPP? 2. Did the samples remain in ice from collection until cooler was taped for shipment? 3. Were Chain of Custody forms filled out accurately and completely, including project name and number, sampling date, sampling time, analytical parameters, preservatives, size and number of containers for each analytical parameter, and media sampled? 4. Were Chain of Custody forms signed and dated by the preparer, placed in water resistant bagging, and included in the cooler? 5. Were signed and dated custody seals properly placed on the cooler and the cooler sealed with strapping tape? 6. Was a shipping label attached to the cooler? The QC inspector shall sign this checklist upon completion of all	Yes V items on the	No	N/O	

SB-24-1000, SB-24-1000 SB-MS-24, SB-MSD-24, SS-23-1014, SS-13-1015 SS-20-1020, SB-23-0102, SB-DUP-23, SB-06-1205, SB-09-1210, SB-07-1215 SB-10-1720

301 Brushton Ave Suite A Pittsburgh, PA 15221 Toll Free (800) 393-4009 Local (412) 436-2600 Fax (412) 436-2616

YSI 6-Series Calibration Certificate

Cal Standard	Lot#	Expiration	Pre-Cal Reading	Post-Cal Reading	Acceptable Range
PH 7 @ 25 ^C	8012081	12/17/2021	7.08	7.00	(6.86 to 7.14)
			pH mV value	-23.4	(0 mV +/- 50mV)
Cal Standard	Lot#	Expiration	Pre-Cal Reading	Post-Cal Reading	Acceptable Range
PH:4 @ 25 ^C	7007637	8/14/2022	4.05	4.00	(3.92 to 4.08)
		1	pH mV value	146.80	(141.6mV to 156.6mV)
Cal Standard PH 10 @ 25 ^C	Lot # 7007076	Expiration 7/1/2022	Pre-Cal Reading 9.94 pH mV value	Post-Cal Reading 10.00 -189.30	Acceptable Range (9.80 to 10.20) (-188.4mV to -203.4mV)
Cal Standard	Lot#	Expiration	Pre-Cal Reading	Post-Cal Reading	Acceptable Range
Conductivity	8012061	12/16/2022	1.211	1.409	(1.338 to 1.479)
Dissolved Oxygen			Pre-Cal Reading	Post-Cal Reading	

100% Saturation	8	8.43	mg/L
Check Standard	Temp °C	Relative Reading	Acceptable Range
ORP [24.0	220.0	(+/- 20mV)
	mV Offset	24.3	(0 + / - 100)

Turbidity	Pre-Cal Reading	Post-Cal Reading
0 NTU	0.0	0.0
124 NTU	100.0	124.0

Model

YSI Pro DSS

Cable Length

10 Meter

Cable SN

S/N

S/N

Barcode

U94329X

Order #

466038

Calibrated By

Nevin Yenchenko

▼

Date of Calibration

9/20/2021

1

All calibrations performed by FEI conform to manufacturer's specifications. Please report any issues within 24 hours of receiving equipment.

^{*}Solutions provided by LabChem (412-826-5230)

Daily Quality Control Report (Page 1 of 2)

Project Name/Number: Staten Island Supp	oleme	ental Site Inspection	on W912DQ21F3	<u>8015</u>	
Site: Staten Island, New York					
Date: 9/27/2021					
Weather: ⊠Clear, □Overcast, □Rain, □]Thu	ınderstorm, □Sno	ow.		
Temperature:	0-70	°F, ⊠70-85 °F, [7 85+ °F		
Wind: Still, Gusty, Moderate, F					
Humidity: ⊠ Dry, ☐ Moderate, ☐ Humid	_	Birection. <u>west</u>			
Activity		Contractor/ Subcontractor	Equipment	Number of Workers	Total Hours Worked
Safety tailgate meeting		4		4	1
Calibrate/set-up equipment		2	Air monitors, Gamma scan, YSI water quality meter	2	2
Collect sediment, surface and subsurface samples		2		2	8
Scan soil samples		1	Gamma scan	1	2
Downhole scan; compile data		1	Gamma scan	1	6
Sample groundwater		2		2	6
Demobilize site; drop off samples/rental equipment		4		4	13
<u>Problems Encountered</u>		rective Action Take			
Due to the location of SB-13 and SB-20 each 20, only a surface sample was accessible. The two subsurface samples for SB-13 and SB-20 each (4 total) were replaced by SB-23 and SB-24. SB-13 and SB-20 were changed to surface samples only.					
Tests: (List type and location of the tests	perfo	ormed and the resu	lts of these tests.)	
Surface and sediment samples were collect	cted,	groundwater was	sampled from 4 l	oorings	
Two additional borings were advanced (S not shipped last week.	B-23	and SB-24). Sam	ples shipped for	remaining s	samples
SB-23, SB-24, SB-19, SB-16, SB-3, SB-2 samples SS-21, SS-22, and SS-25 were ac SB-08, SB-17, and SB-18.			-		
Total Daily Hours Worked by all Personne	l: [38	7		

Daily Quality Control Report (Page 2 of 2)

Safety: Activity Safety Inspection		
Safety Deficiencies Observed		Corrective Action Taken
<u>N/A</u>		
Remarks:		
Fieldwork activities have been c	ompleted.	
Safety Statistics		<u></u>
Number of First Aid Incidents:	0	
Number of Recordable Incidents:	0	
Number of Lost Time Days:	0	
The FOM shall complete and sign a	DOCR daily all	DQCRs to be submitted at conclusion of field work.
The Folyi shan complete and sign a	DQCK daily, all	Decks to be submitted at conclusion of field work.
FOM Signature: //		Date:

9-27-2021

PROJECT NOTEBOOK

GEO CONSULTANTS

NOTEBOOK

USACE Project Manager	USACE Project Manager	USACE Froiner Manager	COMINACI	17.1				
USACE Project Manager CENAN 716-289-7888 316-382-595 USACE Technical Project Manager CENWK 816-383-3863 816-382-5115 USACE Technical Project Manager CENWK 816-383-5110 816-385-5110 State Regulator NYSDEC 518-402-873 816-385-5110 816-385-5115 Field Operations Manager GEO Consultants 270-462-3882 270-627-3733 270-627-3733 Site Safety and Health Officer GEO Consultants 270-462-3882 270-627-3733 270-627-382 Subcontractor Health Physicist Leidos 314-770-3026 314-281-3092 314-281-3092 Subcontractor Health Physicist Leidos 317-715-302 314-281-3032 318-272-1312 Subcontractor Health Physicist Leidos 317-715-302 314-281-303 318-272-302 Subcontractor Health Physicist Leidos 717-315-392 918-520-364 318-20-393 Laboratory Project Manager ARRO Environmental 615-773-592 918-520-393 918-520-303 Surveying Manager Rogers Surveying 717-818-486-3910 917-529-7590	USACE Project Manager CENWK 816-889-7888 816-982-5955	USACE Project Manager CENWK 216-389-388 State New Load Manager CENWK 216-389-388 State New Load Manager CENWK 216-389-3110 State Negulator NYSEE C State A02-857-5113 State Negulator CENWK 216-380-5113 State Negulator CENWK 216-380-5113 State Negulator CECOnsultants 270-467-3882 276-540-3324 State Safety and Health Officer CEC Consultants 270-467-3882 276-271-393 State Safety and Health Officer CEC Consultants 270-467-3882 State Safety Annager Centent Tenant State New York 10310 State Safety Annager Centent Tenant State New York 10310 State Safety Annager Centent Tenant State New York 10310 State Safety Annager State Safety Safe		litie	Oranization	Telephone Number	Mobile Number	E-mail Address
USACE Technical Project Manager CENWK 816-389-3863 816-982-5995 USACE Technical Project Manager CENWK 816-389-3863 816-982-5115 State Regulator CENWK 816-585-5110 816-585-5115 Project Manager GEO Consultants 281-393-7786 575-640-3424 Field Operations Manager GEO Consultants 270-462-3882 270-627-333 Site Safety and Health Officer GEO Consultants 270-462-3882 208-221-7397 Project Safety and Health Officer GEO Consultants 270-462-3882 618-727-1921 Subcontractor Health Physicist Leidos 314-770-3026 314-289-9032 Subcontractor Health Physicist Leidos 317-715-312 314-289-9032 Site Radiation Safety Officer Leidos 717-315-9328 610-360-1345 Laboratory Project Manager AARCO Environmental 631-586-5910 607-437-5512 Surveying Manager AARCO Environmental 631-586-5910 607-437-5512 Current Tenant Reders Surveying 717-818-1234 917-529-7590 Emergency Services Richmond University Me	USACE Technical Project Manager CENWK 816-389-3863 816-982-5995	USACE Health Project Manager CENWK 816.585-5119 816-585-5115	Dan Kennedy	USACE Project Manager	CENAN	716-289-7888		daniel.m.kennedy@usace.army.mil
USACE Health Physicist CENWK 816-585-5115	USACE Health Physicist CENWK 816-585-5110 816-585-5115 State Regulator GEO Consultants 218-402-8879 270-620-3834 Field Operations Manager GEO Consultants 270-462-3882 270-627-3733 Site Safety and Health Officer GEO Consultants 270-462-3882 208-221-7397 Subcontractor Health Physicist Leidos 314-770-3024 314-816-0892 Subcontractor Health Physicist Leidos 314-770-3024 314-816-0892 Subcontractor Health Physicist Leidos 314-770-3024 314-816-0892 Site Radiation Safety Officer Leidos 314-770-3024 314-816-0892 Laboratory Project Manager Terrcon Consultants 615-773-5923 918-520-7887 Laboratory Project Manager Terrcon Consultants 615-773-5923 918-520-7887 Laboratory Project Manager AARCO Environmental 615-773-5923 918-520-7887 Laboratory Project Manager Rogers Surveying 718-47-7311 917-335-4536 Laboratory Project Manager Rogers Surveying 718-47-7311 917-335-4536 Current Tenant Remergency Services Richmond University Medical Center 800-424-8802 Richmond University Medical Center 800-222-1222 Richmond County Sherriff Richmond County Sherriff 800-222-1222 Richmond County Sherriff 818-826-8407 718-815-8407 Richmond County Sherriff 818-826-8407 718-815-8407 Richmond County Sherriff 818-826-8407 818-826-8407 Richmond County Sherriff 818-826-8407 818-826-8407 Richmond County Sherriff 818-826-8407 818-826-8407 818-826-8407 Richmond County Sherriff 818-826-8407	USAGE Height Physicist CENNWT 816-585-5110	Ann Ewy	USACE Technical Project Manager	CENWK	816-389-3863	816-982-5995	ann.ewy@usace.army.mil
State Regulator NYSDEC 518-402-8579 Field Operations Manager GEO Consultants 281-339-7786 575-640-3424 Field Operations Manager GEO Consultants 270-462-3882 270-627-3733 Site Safety and Health Officer GEO Consultants 270-462-3882 270-627-3733 Subcontractor Health Physicist Leidos 314-770-3026 314-581-6085 Subcontractor Health Physicist Leidos 341-770-3074 314-249-9092 Site Radiation Safety Officer Leidos 717-315-9328 610-360-1345 Laboratory Project Manager Terron Consultants 513-612-9027 513-623-5064 Laboratory Project Manager ARRCO Environmental 631-5773-5923 918-520-7887 Laboratory Project Manager ARRCO Environmental 631-623-0027 513-623-0027 Surveying Manager Rogers Surveying 717-312-922 917-529-7590 Richmond University Medical Center 347-865-2700 917-529-7590 Richmond University Medical Center 355 Bard Avenue 800-424-8802 911-529-7590 Richmond Country Sherriff 911 917-80-720<	State Regulator	Project Manager GCC Consultants 218-402-8879	Dave Hays	USACE Health Physicist	CENWK	816-585-5110	816-585-5115	david c have@usace army mil
Field Operations Manager GEO Consultants 281-339-7786 575-640-3424	Field Operations Manager GEO Consultants 281-339-7786 575-640-3424 Site Safety and Health Officer GEO Consultants 270-462-3882 270-627-3733 Site Safety and Health Officer GEO Consultants 270-462-3882 208-221-7397 Project Safety and Health Officer GEO Consultants 270-462-3882 618-777-1921 Subcontractor Health Physicist Leidos 341-770-3026 314-281-9092 Site Radiation Safety Officer Leidos 341-770-3026 314-281-9092 Site Radiation Safety Officer Leidos 717-315-9328 610-360-1345 Laboratory Project Manager Pace Analytical 615-773-5923 918-520-7887 Laboratory Project Manager Pace Analytical 615-773-5923 918-520-7887 Laboratory Project Manager Pace Analytical 615-773-5923 918-520-7887 Laboratory Project Manager Pace Analytical 613-786-5910 607-437-5512 Surveying Manager Rogers Surveying 718-447-7311 917-335-4536 Current Tenant Staten Island, New York 10310 800-424-8802 Chemical Spill Notification Roders Surveying 800-424-8802 Richmond County Sherriff 911 718-815-8407 Poison Control 800-222-1222 Richmond County Sherriff 911 718-815-8407 Staten Island County Sherriff 911 718-815-8407 Staten Sta	Froject Manager GEO Consultants 281:339-7786 575-640:3328 576:640:3328 576:640:3328 576:540:3328 576:540:3338 576:540:5382 576:540:53338 576:540:5382 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:53338 576:540:540:540:540:540:540:540:540:540:540	Tom Papura	State Regulator	NYSDEC	518-402-8579	0.000	thomas nanita@dec ny gov
Field Operations Manager GEO Consultants 270-462-3882 270-627-3733	Field Operations Manager GEO Consultants 270-462-3882 270-627-3733	Field Operations Manager GEO Consultants 270-462-3882 270-627-373-3	Margaret Dubbin	Project Manager	GEO Consultants	281-339-7786	575-640-3474	mdubhin@reoconsultantscorp com
Site Safety and Health Officer GEO Consultants 270-462-3882 208-221-7397 Project Safety and Health Officer GEO Consultants 270-462-3882 618-727-1921 Subcontractor Health Physicist Leidos 314-770-3026 314-581-6085 Subcontractor Health Physicist Leidos 341-770-3074 314-249-9092 Site Radiation Safety Officer Leidos 717-315-9328 610-360-1345 Laboratory Project Manager Terron Consultants 513-612-9027 513-623-1312 Laboratory Project Manager AARCO Environmental 631-386-5910 607-437-5512 Surveying Manager AARCO Environmental 718-447-7311 917-335-4536 Current Tenant Rogers Surveying 718-447-7311 917-529-7590 Richmond University Medical Center 355 Bard Avenue 917-529-7590 Staten Island, New York 10310 Robit Charles 800-424-8802 Poison Control Poison Control Richmond County Sherriff 911 911	Site Safety and Health Officer GEO Consultants 270-462-3882 208-221-7397	Site safety and Health Officer GEO Consultants 270-462-3882 208-221-7397	Ben Hooks	Field Operations Manager	GEO Consultants	270-462-3882	270-627-3733	hooksb@geoconsultantscorp.com
Project Safety and Health Officer GEO Consultants 270-462-3882 618-727-1921 Subcontractor Health Physicist Leidos 314-770-3026 314-581-6085 Subcontractor Health Physicist Leidos 341-770-3074 314-249-9092 Site Radiation Safety Officer Leidos 717-315-9328 610-360-1345 Laboratory Project Manager Terron Consultants 513-612-9027 518-620-7887 Laboratory Project Manager AARCO Environmental 631-386-5910 607-437-5512 Surveying Manager AARCO Environmental 631-386-5910 607-437-5512 Current Tenant Rogers Surveying 718-447-7311 917-359-7590 Richmond University Medical Center 347-865-2700 917-529-7590 Richmond University Medical Center 355 Bard Avenue 717-818-1234 717-818-1234 Staten Island, New York 10310 Roders Surveying 717-818-1232 Roders Surveying Richmond County Sherriff 800-424-8802 911 Richmond County Sherriff 911	Project Safety and Health Officer GEO Consultants 270-462-3882 618-727-1921	Project Safety and Health Officer GEO Consultants 270-462-3882 518-777-1921	David Lindsey	Site Safety and Health Officer	GEO Consultants	270-462-3882	208-221-7397	lindseyd@geoconsultantscorp.com
Subcontractor Health Physicist Leidos 314-770-3026 314-581-6085 Subcontractor Health Physicist Leidos 341-770-3074 314-249-9092 Site Radiation Safety Officer Leidos 717-315-9328 610-360-1345 Precject Personnel Leidos 717-315-9328 610-360-1345 Laboratory Project Manager Terron Consultants 513-612-9027 918-520-7887 Laboratory Project Manager AARCO Environmental 631-386-5910 607-437-5512 Surveying Manager Rogers Surveying 718-447-7311 917-335-4536 Current Tenant Rogers Surveying 718-447-7311 917-529-7590 enant will go through David Lindsey) Emergency Services 917-529-7590 Richmond University Medical Center 355 Bard Avenue 911 Staten Island, New York 10310 Robison Control 800-424-8802 Poison Control 800-221-1222 Richmond County Sherriff 911	Subcontractor Health Physicist Leidos 314-770-3026 314-581-6085 Subcontractor Health Physicist Leidos 341-770-3074 314-249-9092 Site Radiation Safety Officer Leidos 717-315-9328 610-360-1345 Laboratory Project Personnel Leidos 717-315-9328 610-360-1345 Laboratory Project Manager Terron Consultants 513-612-9027 918-520-7887 Laboratory Project Manager AARCO Environmental 631-386-5910 607-437-5512 Surveying Manager Roger's Surveying 718-447-7311 917-335-4536 Land Owner Roger's Surveying 718-447-7311 917-529-7590 Renatementy Board Lindsey) Emergency Services 1717-818-1234 1717-818-1234 Richmond University Medical Center 355 Bard Avenue 800-424-8802 911 Staten Island, New York 10310 Robison Control 800-222-1222 911 Richmond County Sherriff 911 718-815-8407 911	Subcontractor Health Physicist Leidos 314-770-3026 314-581-6685	John Wells	Project Safety and Health Officer	GEO Consultants	270-462-3882	618-727-1921	wellsj@geoconsultantscorp.com
Subcontractor Health Physicist Leidos 341-770-3074 314-249-9092	Subcontractor Health Physicist Leidos 341-770-3074 314-249-9092 Site Radiation Safety Officer Leidos 717-315-9328 610-360-1345 Preoject Personnel Leidos 717-315-9328 610-360-1345 Laboratory Project Manager Terricon Consultants 513-612-9027 918-520-7887 Laboratory Project Manager Terricon Consultants 513-612-9027 918-520-7887 Surveying Manager AARCO Environmental 631-586-5910 607-437-5512 Surveying Manager Rogers Surveying 718-447-7311 917-335-4536 Eand Owner Rogers Surveying 718-447-7311 917-329-7590 enant will go through David Lindsey) Emergency Services 177-818-1234 177-529-7590 Richmond University Medical Center 355 Bard Avenue 800-424-8802 917-529-7590 Chemical Spill Notification Richmond County Sherriff 911 Richmond County Sherriff 911 118-815-8407 718-815-8407	Subcontractor Health Physicst Leidos 341-770-3074 314-249-9092	Steve Passig	Subcontractor Health Physicist	Leidos	314-770-3026	314-581-6085	michael.s.passig@leidos.com
Site Radiation Safety Officer	Site Radiation Safety Officer	Site Radiation Safety Officer Leidos Edos	Chuck Finkenbine	Subcontractor Health Physicist	Leidos	341-770-3074	314-249-9092	charles.d.finkenbine@leidos.com
Preoject Personnel	Preoject Personnel	Preciect Personnel Leidos 717-315-9328 610-360-1345 Laboratory Project Manager / Technician Perc Analyticia 615-735-923 918-50-7887 Laboratory Project Manager Terrono Consultants 513-612-9027 513-623-1312 Early Freed Personnel Personnel 13-612-9027 13-612-9027 Early Freed Personnel	Megan Sherman	Site Radiation Safety Officer	Leidos		636-352-5964	megan.p.sherman@leidos.com
Laboratory Project Manager	Laboratory Project Manager	Laboratory Project Manager Pace Analytical 615-773-5923 918-520-7887 Laboratory Project Manager Tercon Consultants 513-612-9027 513-623-3122 Surveying Manager Rogers Surveying 718-447-7311 917-335-4536 Current Tenant Rogers Surveying 718-447-7311 917-335-4536 Current Tenant Current Tenant Rogers Surveying 718-447-7311 917-335-4536 Current Tenant Rogers Surveying 718-447-7311 917-335-4536 Richmond Undersity Medical Center 347-865-2700 917-529-7590 Richmond Undersity Medical Center 355 Bard Avenue 800-424-8802 Staten Island, New York (1310 800-221-1222 Richmond County Sherriff 911 911 Staten Island, New York (1310 800-221-1222 Richmond County Sherriff 911 911 Staten Island, New York (1310 800-221-1222 Richmond County Sherriff 911 911 Staten Island, New York (1310 800-221-1222 Richmond County Sherriff 911 911 Staten Island, New York (1310 800-221-1222 Richmond County Sherriff 911 718-815-8407 Staten Island, New York (1310 800-221-1222 Richmond County Sherriff 911 718-815-8407 Staten Island, New York (1310 800-221-1222 Richmond County Sherriff 911 718-815-8407 Staten Island, New York (1310 800-221-1222 Staten Island, New York (1310 800-221-1222 800-221-1222 Staten Island, New York (1310 80	Jeff Warren	Preoject Personnel	Leidos	717-315-9328	610-360-1345	jeffrey.j.warren@leidos.com
Laboratory Project Manager Terrcon Consultants 513-612-9027 513-623-1312 Drilling Manager AARCO Environmental 631-586-5910 607-437-5512 Surveying Manager Rogers Surveying 718-447-7311 917-335-4536 Land Owner Land Owner 347-865-2700 917-529-7590 Current Tenant will go through David Lindsey Emergency Services Richmond University Medical Center 355 Bard Avenue 811 811-84802 Staten Island, New York 10310 800-424-8802 800-424-8802 Poison Control Richmond County Sherriff 911 917-529-7590 Staten Island, New York 10310 800-424-8802 911 911 912-629-7590 Richmond County Sherriff 911 917-529-7590 911 917-529-7590 Richmond County Sherriff 911 917-529-7590	Laboratory Project Manager	Laboratory Project Manager	Donna Edison	Laboratory Project Manager/Technician	Pace Analytical	615-773-5923	918-520-7887	donna.eidson@pacelabs.com
Drilling Manager	Drilling Manager	Surveying Manager	Tim Goodall	Laboratory Project Manager	Terrcon Consultants	513-612-9027	513-623-1312	tim.goodall@terracon.com
Surveying Manager Rogers Surveying 718-447-7311 917-335-4536 Land Owner 347-855-2700 917-529-7590 Current Tenant Emergency Services 917-529-7590 Emergency Services 911 917-529-7590 Emergency Services 911 917-529-7590 Emergency Services 911 917-529-7590 Statem Island, New York 10310 717-818-1234 Chemical Spill Notification 800-424-8802 Poison Control 800-222-1222 Richmond County Sherriff 911 911 Statem Island, New York 10310 90-222-1222 Richmond County Sherriff 911 917-8042 Chemical Spill Notification 911 911 911 Chemical Spill Notification 911 911 911 Chemical Spill Notification 911 911 911 911 Chemical Spill Notification 911	Surveying Manager Rogers Surveying 718-447-7311 917-335-4536 Land Owner 347-865-2700 917-529-7590 Current Tenant Statem Will go through David Lindsey) Emergency Services 911 917-529-7590 Emergency Services 911 917-529-7590 Statem Island, New York 10310 800-424-8802 911 Chemical Spill Notification 800-424-8802 911 Richmond County Sherriff 911 718-815-8407 718-815-8407	Surveying Manager Rogers Surveying 718.4477311 917-335-4536 Land Owner 347.865-2700 917-529-7550 Current Tenant Emergatery Services 911 917-529-7550 Staten Island, New York 10310 800-424-8802 910 Poison Control 800-424-8802 911	Chuck Blumberg	Drilling Manager	AARCO Environmental	631-586-5910	607-437-5512	cblumberg@aarcoenvironmental.com
Land Owner	Land Owner	Current Tenant	Daniel Rogers	Surveying Manager	Rogers Surveying	718-447-7311	917-335-4536	drogers@rogerssurveying.com
Current Tenant enant will go through David Lindsey) Emergency Services Richmond University Medical Center 355 Bard Avenue Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff 911 800-424-8802 911 811 811 811 811 811 811 811 811 811	Emergency Services Richmond University Medical Center 355 Bard Avenue Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff 911 717-818-1234 800-424-8802 Poison Control Richmond County Sherriff 911 718-815-8407	Current Lenant Current Lenant Current Lenant	Thomas Garrity*	land Owner		247 865 2700		
Richmond University Medical Center 855 Bard Avenue Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff 911 800-424-8802 800-222-1222	Richmond University Medical Center 355 Bard Avenue Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff 800-222-1222 Richmond County Sherriff 911 718-815-8407	Energency Services Energen	Frank*	Current Tenant		247-902-740	917-529-7590	
Emergency Services Richmond University Medical Center 355 Bard Avenue Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff	Richmond University Medical Center 355 Bard Avenue Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff	Emergency Services	Contact with land owner and tel	nant will go through David Lindsev)			2000	
Richmond University Medical Center 355 Bard Avenue Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff	Richmond University Medical Center 3S5 Bard Avenue Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff	Richmond University Medical Center 911 355 Bard Avenue 355 Bard Avenue 355 Bard Avenue 717-818-1234 717-818-1234 717-818-1234 717-818-1232 718-815-802 718-815-8407						
355 Bard Avenue Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff	Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff	Staten Island, New York 10310 Chemical Spill Notification Chemical Spill Notification Richmond County Sherriff Richmond County Sherriff Sustence Sustanto Richmond County Sherriff Sustanto Richmond County Sherriff Sustanto Richmond County Sherriff Sustanto Richmond County Sherriff Title-815-8407 N	Hospital	Richmond University Medical Center				
Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff	Staten Island, New York 10310 Chemical Spill Notification Poison Control Richmond County Sherriff	Staten Island, New York 10310 717-818-1234 Chemical Spill Notification 800-424-8802 Poison Control 800-222-1222 Richmond County Sherriff 911 State 188-815-8407 Nate 188-815-8407 Nate 188-815-8407 State 188-815-8407 Nate 188-815-8407 Chemical Spill Notification 188-815-8407 Chemical Spill Notific		355 Bard Avenue		911		
Chemical Spill Notification Poison Control Richmond County Sherriff	Chemical Spill Notification Poison Control Richmond County Sherriff	Chemical Spill Notification Richmond County Sherriff Richmond County Sherriff 911 718-815-8407		Staten Island, New York 10310		717-818-1234		
Poison Control Richmond County Sherriff	Poison Control Richmond County Sherriff	Richmond County Sherriff Richmond County Sherriff 800-222-1222 718-815-8407 718-815-8407		Chemical Spill Notification				
Richmond County Sherriff	Richmond County Sherriff	Richmond County Sherriff Richmond County Sherriff 91.1 718-815-8407 N	os, National Response Center			800-424-8802		
Richmond County Sherriff	Richmond County Sherriff	Richmond County Sherriff 151.	ational capital Folson Center	Polson Control	74	7771-777-008		
		ISLAND USE TIFE N N	SEO Saint Marks Place	Richmond County Sherriff		110		
	The state of the s		aten Island, New York 10301			718-815-8407		
STATEN ISLAND WORKEHOUSE WORK STIF		Sections converts	O some weekensylve			,	1	
STATEN PLAND WORK STIF	Control to the state of the sta	Suchers Conference (statement)	0		1		2	
WORK STEE WORK STEE	No. of the control of	Shrefers confer		1	*	1: 6		=
WORK STIE WORK STIE NOOK STIE	No. of the control of	- Andres confer		0				(Hanomin's produit, 274 (C)
Z	Community and Co				-			Andreas source
Z	And the second state of th				0			
	See through a conference of the conference of th					S)		
Z	Andrea to see							

sales@bookfactory.com | 937.226.7100 | +44(0)20.3137.7038 ©2017 BookFactory® BookFactory is a Veteran-Owned Firm. Proudly Made in the USA.

	TABLE OF CONTENTS	
		BOOK
PAGE	SUBJECT	DATE
1	Site ARRIVAL	9-19-21
2	Site dearing	9-20-21
3	5ite cleaning, gamma unikowa survey	9-21-21
4	L ' '	
5	Sample collection, decising, gamma unifere survey, downhole gamma log	9-22-21
6		
7		
8	Sample collection days are a games welling some for lake a mine!	9-23-21
9	Sample collection. descring, 9 amon walkonse survey, downhole gamona log	1
10		
11		
12	Sometro collections does late and land to	9-24-71
13	Sample collection, digging fest pits, down hale gamma logging	9-24-21
14		
15		
16	Sample collectore, downhole gamma logging	
17	J =	
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		

BOOK TITLE Staten Island PROJECT SIW 551 Continued from Page // Sunday 9-19-2021

1335 David Lindsy and Bun Hooks arrived on site, sunny 79°F current tenant Frank Viassi, was also onsite. Conducted safety tailgate meeting. 1345 Conducted site assessment. Observed new site conditions, new buildings/ Structures, took photos of physical changes from working plan documents to current six conditions 1358 Discussed Possible access points to surface characterization area with Frank

1415 Depart site, getting materials for tomorrow's field work 15 25 30 Continued to Page NA SIGNATURE DATE 9-19-21 DISCLOSED TO AND UNDERSTOOD BY DATE PROPRIETARY INFORMATION

2 PAGE

TITLE	PROJECT SIW	551
Continued from Page NA Monday	September 20, 2021	
	e on-sit . Sunny 6	54°F
	os on sik, already here, waith	
0709 Sufety tuilgate meeting		7-
0715 Megan Sterman with Le		
0730 Briefed megan on safe		
		um, de termine different gone placement
0755 met with Frank , wiren	t tenant, on-sile crew so	+ up safety and decon somes.
DRIS David left to get some	central excipment and to a	heek route to emergency medical confe
0820 Ben began to mark 50.7.	bonnes	, , , , , , , , , , , , , , , , , , , ,
		tions for access to sal borings
0945 David returns with bru	1	
1000 Megen signed work permit 1		sions sheet.
1010 Megan Scons egripment	to be used for brush a	clearing / grubbine
1030 Setting up air monito	oring Stations David les	aves to get simples I five 1
1035 Seff checking down hale	comma commin envisor	ent
1110 Jeff leaves side to re-	treve topod seviment /repor	is current triped anniquent
1230 Finish setting up air m	nonitoring or posset/stat	bu c
1232 Ben starts clearing bru	. 0	
1240 David leaves to get wood		
1400 David returns with wood c		brush elegation
1420 David calls driller again		,
harden edde har it owner with carrier to a		
1640 Megan inspects brush deanh		
1645 Mechanical issues with w		Where range
1675 Mechanical (15025 WITH W	lace /	Made Co. of a 1 Co. 2
1650 sign site Clean up. Putti	away air wonitors / co	ollecting Sample pads from monitor
1760 GEO and Leidos empl	oyees depart sin	
	PL 9-20-21	
	PL	Continued to Page V
SIGNATURE SUCCESSION OF THE SU		PATE 9-20-21
DISCLOSED TO AND UNDERSTOOD BY	DATE	PROPRIETARY INFORMATION

TITLE	PROJECT	
Continued from Page NA	Tuesday 9-21-2021	
0700 Arrived on s	ite (David Lindsey and Ben Hook	is), Jeff already at s.k, cloudy 63°F.
0707 Megan arr	ived on site	7 - 12 - 1
	DL 9-21-21 op - 5- 5afety tailgate meeting	David Ben, Megan Tell
0720 Begin selfing	up equipment / air monitors	100 100 100 100
0730 David on pre	ograss status meeting with us	ACE.
	ntinue with brush clearing	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	callbrating / checking scanning.	
DRCC Private call	actioning of the popular	wing to use restrooms on site (much office
1020 D if all a	restrooms, should be deliver	rea polary.
1030 DAVIA CAIIS 5	riveyous, they inform 600 they	can not make it out til tomorrom
1040 Wiegan begins g	Du 9-21-21	/
The state of the s	air monitor to The west of	approx. 100 teet
	Return weed whacker	
1200 Jeff testing 1	new tripped	4.21-21
1230 Megan Stops g	amma valkover, completed po	rtion in gruegatative area, putside of
Concrete pad, i	in upper portion of area (n	of near Shorelike)
	aiting for shoreline to subside	
1250 David returns	to site with gas for equipm	ent
1255 David on phone	call with Ann and Dave (USA	rea) to discuss progress, workseled
Inform Ann a	nd Dave that damper soon (we	Ikam) image will be sent to them ASAP.
		ta-potties will be dilined fomorrow
	veyors to stress importance of	
1711 The the	ling company to update status on e se (tenant) to make sure blocks w	access to spil banks
	(tended) to mule sure Plochs in	ill be moved today to gain access
to soil bonnings	11.1 4 81.1	
1596 Ben leaves to hi	otel to work on integrating gramm	na scan survey that operated map
1900 Dan Kennedy CU	sace) Arrived on site, NY District.	PM. David shows him around sit
1405 Megan returns	to gamma unknower survey to	scan closer to shorelim
1415 David and Da	n view surface characterization	Area, observe Megan peterming scan
1530 Ben returns to site	with updated site map, with change	in physical features on sontinued to Page of
JOHATURE	1	9-21-21
DISCLOSED TO AND UNDERSTOOD BY	DATE	- 1- Di -
		PROPRIETARY INFORMATION

TITLE Tuesday 9-21-21 Continued from Page 1602 Megan stops gamma walkover survey along shoreline 1603 Ann and Dave (USALE) are sent updated map showing gamme scan results from This morning with changes in site conditions. Map sent vis test. 1610 Megan, Dan, Ben, and David Leave Scan area after removing his monitors 1630 Dan and David talk with Frank cobout moving blocks for drilling equipment to gain access to swife character gation area, Frank says blocks will be moved today 1655 Finish cleaning up site 1700 Dan departs 5, te, states that he will be back on-s, te tomorrow afternoon 1705 Megan and Jelf depart site 1730 David and Ben leave to pick up supplies (TVC pipe) for tomorrows dr. 11/14 effort 1815 David and Ben Return to make sux blocks are removed, ramp installed for deil rig 1830 David and Ben depast 5, Fe 15 20 Al tour 25 30 SIGNATURE DATE 9-21-24 DISCLOSED TO AND UNDERSTOOD BY DATE PROPRIETARY INFORMATION

TITLE

_		PROJECT	
(Continued from Page NA Widnesday	9-22-21	
	0700 Arrived on-site cloud		
	0710 conducted to gate safety mes		an Jeff
	0720 moved LecontainiNation 3.		
5	where blacks will bemove	I for acres (leill R)	()
	0730 Phone meeting with USACE	(Ann De v De)	to the Contract
-	Ren Double (20) Discourse	1 tal malkage	weet 1, viegan (leines) vivyares
-	End has a set of the	s-relections	SURVEY ROSUlts, where to move
t	Discipling of stainers	PIC I to with	everet physical site condition
			along block wall, south of SB-
H			-10 will need to more wes
-	along other brick wall. SE	5-13 will be hand	augened to depth of 2-3
-	(it possible), Move SD-1	o to area mar =	D-03/50-04. 50-01/50-02
-	Will weet with driver to d	etermine accessability	of 58-8, 58-3, 58-1, 58-2.
-	Megan will conduct anot	her gamma scan sur	ver, walking east and west,
	to try and fill in gayes	indata from walkouse	Sour performed yesterday,
	on higher, vegetable area	, GEO and Leido	s will conduct phone call
	to discuss placement of b		
1	0740 prilling company emailed	, stating that frilling	company crew had blow-out
	on mobilization, Will be	delayed in arriving	
0	on mobilization, Will be 0820 & David calls surveyors to	check states on applica	I , left voice mail.
1	0910 Set up to begin collect	thing surface sample	5
0	1995 55-05 Callected 55-05-	0915 Sen reading	4614 Lecon hard share
0	9915 55-05 collected 55-05-0	976 Scan Reubil	= 4520 decon chave 1
P	930 Dailies mand on a 1 / Pales	+ landage a 1 Tal	Ge Grace To baseled 1-1110
5	930 Dailing occu on-site (Rober	Live and contilled	of fair
	or on tool gale safety were	Sean as land he	a) delling egosponent
0	936 55-06 collected 55-06-0936	San Reality 4306	decon many supper
	0943 55-07 collected 55-07-0943		
	1030 Devices having trouble wit		A second
			n first 5-foot section, decon sugar
12	055 Mom DRILL RIG Over 2 to 3 feet	, 1-foot retry with	sand catcher attachment.
1	1105 0-2 foot collected 58-66-05	501, geotechimion Sample S	B-06-0007 collected Continued to Page 6
SI	GNATURE	V	DATE
	ISOLOGIA TO AND UNDERGOES DA	DATE	
DI	ISCLOSED TO AND UNDERSTOOD BY		

PAGE

TITLE	PRO	OJECT			
Continued from Page 5	Wednesday 9-2	221			
			technical sample collected 58-06-0205		
			approximately 4 to 5-feet decon,		
1128 Called USACE	(Ann and Dure) to	discuss strategy	going founded, stopping at grounder		
1130 Jeff set up to	perform downhole game	na scan festing e	g experient		
			16062 Detector # 357755		
_	n 3881 - checking 5.	, , ,			
		mple 55-04			
		mple 55-05			
	Sec.	mple 55-06	4306		
1	Sav	mple 55-07	4/20		
1205 Set up on					
1215 58-07 0+0		collected SB-07.	-0/07 (1220)		
1225 5B-07 2 to					
	/		(less than 50% recovery oncor		
	down hole gamma sca				
1258 Jeff complete					
			direct push destling. Decision		
			's brought in drillers leave for news		
1301 DeTHING manny	ger snidit is of	to keep driling	can lak today it needed,		
			ly equipment (original mucho cocc)		
1305 Jaff set up	on 53-07 for downhole	gamma logging			
1325 Ben marking 1	ocations for 58-0	1,58-02,58-03,	and 58-08		
1325 Ben marking 1. 1326 Megan Leaves to	retrieve for additional	Scanning equipment	 		
	1330 Deicers arrive with new macro come, set up on 58-05				
1335 Set up on 58-85	(again), move over	2 feet to east, af	ter hitting hard rock / debis		
1340 In # tinished down	hole gamme scan SB-07				
1345 O to 5- feet co	Ne UP on \$8-07 5805	700R REQUERY	sample collected 58-05-0505		
	10 Up on SB-05 ,p				
1530 5 to 10-feet (1)					
1354 Megan arrives bac	k gn-s,7	proxamately_ 4 to 5			
	k gn-s,7	proxamotely 4 to 5	- Seet Continued to Page 7		
1354 Megan arrives bac 1356 groundwater encount	ead in 68-05 at ap	proxámately 4 to 5	- feet Continued to Page 7		

TITLE

PROJECT	
Continued from Page 6 wednesday \$72-21	
1357 Setter up on 68-07, trying new ma	cro core drilling again
1402 of steet con up poor Recovery	
1408 5 to 7- feet up , 100x recovery, encou.	hered groundwater
1415 Dan Kennedy arrives on s. 2	
1435 Phone call with USACE about pook	ences land 111
we have moved over in a variety of direction	
better season I have a Hackments, etc. Discussion	11 / the 1 / 1 / 1
better representation of what is it ground	
USACE know of one plan going forward	
1500 Discussed with Leides, will proceed with original	plan idaily best we can to
obtain better core samples.	
1510 Set up on SB-of with hallow skin aug.	
1528 More location of 58-04 several times, h.	
1536 0 to 2- feet cope UP, no recovery,	switching to direct pesh, macro care land
1542 2 to 4-test come up, no Recovery,	
1550 Jeff setting up downhole gamma logging.	
1600 Begin downhole gamma Scanning of SB-05	
1602 Moving over again for 58-04, decon barr.	el
1610 0 to 4 feet core up. Sample collected 5	6B to 4+0102
1630 4 to 6-feet core sp. Sample collected SB-	040406 Refusal at 6-feet, growloads
also encountered at approp 6-sect below g	
1635 Seanning out equipment	
1640 Jef filishes downhole gamma scan on SB-03	5
1650 Perus Leaving site	
1655 Scenning of down hole gamma scan equipmen	+
1700 start packaging up samples	
1707 Dan departs s.te	
1770 Jet and megan depost site	
1725 call surveyoes to ensure they will be onsite	tomorrow
1780 Ben and David depart site.	DL 9-77-71 Continued to Page NA
SIGNATURE	DATE
DISCLOSED TO AND UNITEDISTORD BY	9-22-4
DISCLOSED TO AND UNDERSTOOD BY	PROPRIETARY INFORMATION

$\overline{}$	-	•		
				_
- 10	. 1	ı	_	_

TROJECT	
Continued from Page NIA Thursday 9-23-21	
0700 Arrived on-site, cloudy 62°F, drivers on-s	it , Jet I megan onsite
0715 Safety Toilgate meeting	
0720 Loading up sental agripment, David leaves	s to petures pertal equipment
0735 Set up on SB-10, getting equipment	ready, setting up air monitors
0750 SS -10-0750 sumple collected, gamma	wedkower start again (Megan)
0820 0 to 4' core up, sample collected	SB-10-0517
0821 Sample collected SB-10-0004 ge	otechnical sample
0825 4-8' core up, sample collected	
0827 Sample collected SB-10-0408 gcotec	hnizal sample
0830 Decon drilling equipment, install PVC Pi	pe in 5B-10
0835 Survey crew arrive on-site, safety be	riefing
0840 SS-09-0840 Sample collected.	· ·
0850 Begin drilling SB-09	
0913 0-5' core up, sample collected SB-09	-0117, Poor recovery
0920 5-6 core up, met refusal at 6 and ground	lunter, sumple collected SB-09-05
0925 Decon drilling equipment	
0928 PVC installed in SB-09	
0930 Dan (USACE) arrived, safety briefing	
0935 Jeff set up on SB-04	
0940 Start downhole gamma scan on SB-04	<u> </u>
1000 Moving drilling rig to SB - 11, Scanning	drilling rig out of decon zone
1020 Jeff completed downhole scanning of SB-	04, decon equipment
1030 Jeff Set up and began downhole Scan	of SB-10
1045 Began drilling on SB-11	
+10 1050 Jest completes downhole scan at	
1100 SS-11-1100 Sample collected, SB-11 unde	er concrete pad.
1101 Jeff set up and begin downhole garmin	ng Scan on SB-09
1105 pavid returns with supplies	
1105 2 to 5 - feet cree up 5 mple collected 58-11.	
1110 5 to 10- feet core up sample collected SB-1	1 - 0506 Pvc h 12 Continued to Page 9
SIGNATURE	9-23-21
DISCLOSED TO AND UNDERSTOOD BY DATE	
	PROPRIETARY INFORMATION

TITLE

TITLE PROJI	<u> </u>
Continued from Page 8 Thrshy 9-23-21	
11/2 Decon deres Rig attachments	
1113 set up on 58-12	
1115 55-12-1115 Sample collected	
11120 2 to 4- Cect core up, sample collect	LJ SB-12-0304
1125 5 to 10-feet core up, sample collected	
1128 Sample collected 58-12-0608, 9	
1130 Je a finished downhole gamma	
	10 to 12 - Foot core of , decon dancing attachem
1132 more daring Rig to 38-15	, accon military amount
1135 58-15-1135 Sumple collected	. L 2 Cent core w
1138 Jeff set up and began down toke	James scan
1100 core 2 to 4-feet up	11 11 SR 15-00/01
1145 core 4 to 8-feet up, samples con	Restal DO a 13 O TO B
15 13 000	1 1 1 - 22 10 (- 11 -
1135 core up 6 to 12-feet water enco	when at - think to-test page
1158 Decon drilling a factoments	
1200 mont to 58-14	and College to the total
	y coal or fly ash. Frank stakes that
they do not use or stone thy ar	coal ash on-sire.
1205 53-14-1205 Sample collected	58 4 204
1210 2 to 4-feet care up, sample collected,	
1215 4 to 8-feet core up, samples collected	58-14-0406 geokehnical sample
1215 Sample collected 58-14-0608	1 /
1216 Jeff completed downhole gamma	
	le collected 58-14-0812 geotechnia / sample
1228 Decom Depumb ATTAchum +s	
1232 Poeta- Potties arrive	
1233 Sund email to USACE to notify the	n that There is no fly/coal ash used
or stored or site	
1235 &+ up on 88-16 SIGNATURE	Continued to Page /p
7	9-23-21
DISCLOSED TO AND UNDERSTOOD BY	
	PROPRIETARY INFORMATION

Continued from Progen a Thursday 9.25-21 1245 core up 0-2 feet , sample collected SS-16-1245 1300 Moved 5 times (affect) SB-16 due to refusal at 4-feet, a to 2 feet come up, Sample collected SS-16-1300, this sample will peptace ss-11-1245 due to leantrom no 1385 Hydro Survey complete, secondary survey can continue with airl survey. 1318 Geotechnical sm-ple collected, SB-16-0002 foom a to 2-feet come of 58-16 1310 Jelf set up down hole gamen scan at SB-11 1324 Down hole gamen a start on SB-16, sample to SB-16-0235 1335 Sample taken from 2 to 4-feet come of SB-16, sample to SB-16-0235 1335 Sample taken from 2 to 4-feet come of SB-16, sample to SB-16-0204, geoletharial sam 1340 Decon dariente ties apachable gamen scan on SB-11 1345 Set up Down his of gamen start some and numbers, wind starge discotion 1345 Set up Down large on SB-28 SB-08 1345 Set up Down large on SB-28 SB-08 1345 Set up Down large and some scan on SB-11 1400 SS-08-1400 sample collected, hard should decon 1410 ben nobed that soled was to sales to the collect of SB-16 moved was to sales to SB-16 moved was to sales	BOOK PAGE TITLE		PROJECT	
1245 con up 0-2 feet, snimple collected \$5-16-1245 1300 Moved 5 times (affect) \$8-16 due to Refusal at 4-feet, a to 2 feet come up, Sample collected \$55/6-1300, this sample un'll peplace \$55/11-1245 due to leantism ac 1385 Hydro survey complete, remaining survey can another with airs due to leantism ac 1386 Septemberial smiple collected, \$8-16-0002 fearm o to 2-feel come of \$8-16 1318 Geotechnical smiple collected, \$8-16-0002 fearm o to 2-feel come of \$8-16 1310 Jell set up down hole gamen scan at \$8-11 1324 Down hole square a start on \$8-11 1325 I to 4-feet lope up on \$8-16, sample to \$8-16-0235 1335 Sample taken from 2 to 4-feet come of \$8-16, sample to \$8-16-0205, geolechnical som 1340 Decon darenas tog Aspachament, norm and runnings wind charge direction 1340 Decon darenas tog Aspachament, norm and runnings wind charge direction 1340 Decon darenas tog Aspachament, norm and runnings wind charge direction 1340 Decon darenas tog Aspachament some on \$8-11 1400 S5-08-1400 sample collected, have showed decon 1410 Ben noted that \$8-08 may not be accepte by dc.71 king with now location 1410 Ben noted that \$8-08 may not be accepte by dc.71 king with now location 1412 Began scanning out dereung five \$8-08 per formed by hand august. Smyole 1412 Began scanning out dereung five as \$8-08 per formed by hand august. Smyole 1412 Began scanning out dereung five and altachaments 1415 Dan Kennedy and David observed banck "Slag" pieces along a familia 1415 Dan Kennedy and David observed banck "Slag" pieces along a familia 1430 Dereund well figure of gamen sample (TCLP) \$8-16-0 amo 1430 Dereund collect figure of gamen unlicours sawith from Leidos to discuss 1435 Jell completes downhole gamen scan on \$8-12 1430 Telleville collect figure of gamen scan on \$8-12 1430 Telleville completes downhole gamen scan on \$8-12 1535 Jell completes downhole gamen scan on \$8-12	Continued from Page 9	Thursday	9-23-21	
1300 Moved 5 times (offset) 58-16 due to Reform at 4-least, a to 2 least case up, Sample collected S5-16-1300, this sample will applace 55-11-1245 due to location ac 1305 Hydro survey complete, Remaining survey can continue with airvil survey. 1318 Geofedmial sample collected, 58-16-0002, favor a to 22-tect case of 58-16 1310 Je 6 set up down hole gamen 3 can at 58-11 1324 Down hole gamen Steet on 58-11 1325 I to 4-fact boke up on 58-16, sample taken 58-16-0235 1335 Sample taken from 2 to 4 faut case of 58-16, sample to 38-16-0235 1336 Sample taken from 2 to 4 faut case of 58-16, sample to 38-16-0235 1337 Sample taken from 2 to 4 faut case of 58-16, sample to 38-16-0235 1337 Sample taken from 2 to 4 faut case of 58-16, sample to 38-16-0224, geoloshaini and 1340 Decon da see with 169, agrachaments, more as the mailtans, wind change direction 1340 Decon da see with 169, agrachaments, more as the mailtans, wind change direction 1340 Decon da see with 169 agrachaments, more as the mailtans, wind change direction 1340 Decon da see with 169 agrachaments, more as the mailtans, wind change direction 1340 Decon da see with 169 agrachaments, more as the mailtans, wind change direction 1340 Decon da see with 58-08 was more to 58-08 1410 San nohd That 58-08 was more to the west to offset 58-08 nooved west, 58-08 was more to 58-11 1410 San nohd That 58-08 was more to 58-08 per formed by humb augus. Sample collected 58-08-10 and less than 1600 and 16				45
Sample collected SS-16-1300, this sample will applece SS-16-1245 due to localism as 1305 Hydro Survey complete, Remaining survey can continue with airvil survey. 1318 Gestechnical sample collected, SB-16-0002 toom o to 2-tech code of SB-16 1320 Down held gamma Stock on SB-11 1324 Down held gamma Stock on SB-11 1325 I to 4-fact bone from 2 to 4 fact code of SB-16 1335 Sample taken from 2 to 4 fact code of SB-16, sample to SB-16-0235 1335 Sample taken from 2 to 4 fact code of SB-16, sample to SB-16-0224, geolethain land 1340 Decon dascelle tile appearance of SB-16, sample to SB-16-0224, geolethain land 1340 Decon dascelle tile appearance of SB-16, sample to SB-16-0224, geolethain land 1340 Decon dascelle tile appearance of SB-16, sample to SB-16-16-0224, geolethain land 1340 Decon dascelle tile appearance of SB-16, sample to SB-16-16-0224, geolethain land 1340 Decon dascelle tile appearance on SB-11 1400 SS-08-1400 sample collected, have showl decon 1410 Scon-1400 sample collected, have showl decon 1410 Began sample collected sample appearance of common sample 1412 Regan sample collected sample after discussion with the sample decides to discuss 1415 Dan Hennedy am David observed black "slag" pieces along sture (ha 1416 Dan Hennedy am David observed black "slag" pieces along sture (ha 1417 Regan sample collect a sample after discussion with the area Dave 1418 Recieved update figure of gamma scan on SB-12 1419 Decon-1400 update figure of gamma scan on SB-12 1410 Definition of the sample gamma scan on SB-12 1410 Definition of the sample gamma scan on SB-12 1515 Tell completes darmhole gamma scan on SB-12 1515 Tell completes darmhole gamma scan on SB-12 1516 Down on the sample collected sompletes of the sample todos of the sour ball todos				
1305 Hydre survey complete, Remaining survey can continue with airit survey. 1318 Geotesharian sumple collected, SB-16-0002, facom at 2-cect code of 58-16 1300 Jelf set up downhole gamorm 3 can at 58-11 1325 I to 4-feet lope up on 58-11 1325 I to 4-feet lope up on 58-16, sample taken 58-16-0204, geolesharian I sam 1335 Sample fation from 2 to 4-feet code of 58-16, sample the 58-16-0204, geolesharian I sam 1340 Decon daireand till Aprochamato, more as monitores, wind charge direction 1345 Set up Darre Rig on 58-08 1345 Set up Darre Rig on 58-08 1350 Jelf completed downhole gamon sean on 58-11 1400 55-08-1400 sample collected, have showed decon 1410 Ean noted that 58-08 was mored to the most to offset 58-10 and 58-07 moved west, 58-08 may not be accorded by have avgree. Sample collected 58-08-002, have avgree decon. 1412 Began scanning out darreng the 38-08 performed by have avgree. Sample collected 58-08-002, have avgree decon. 1415 Dan Kennedy and David absended black "slag" pieces along a have limited had higher readings in malkower gamon 3can and 17 was decided to collect a sample after discussion with Arm and Dave for waste characterization sample (TCLP) SB-16-0000 1430 Described upolate figure of gamon scan on 58-12 1435 Jelf complete figure of gamon scan on 58-12 1440 Jelf Begins downhole gamon scan on SB-12 1555 Jelf completes downhole gamon scan on SB-12				
1318 geotesharial simple collected, SB-16-0002 foom 0 to 2-feet code of 58-16 130 Jelf set up downhole gamon 3 can at 58-11 1324 Down hole gamma Start on 58-11 1325 I to 4-feet lope up on 58-16, sample \$58-16-0204, geolesharial sam 1340 Decon dairenag from 2 to 4 foot code of 58-16, sample \$58-16-0204, geolesharial sam 1340 Decon dairenag from 2 to 4 foot code of 58-16, sample \$58-16-0204, geolesharial sam 1340 Decon dairenag from 2 to 4 foot code of 58-16, sample \$58-16-0204, geolesharial sam 1340 Decon dairenag from 58-08 some of 58-08 will charge direction 1340 Decon dairenag from 58-08 58-08 13413 Some from the from 2 to 4 food from 58-10 1410 So-08-1400 sample collected, have showed decon 1410 Ben noted that 58-08 was mored to the west to offset 58-10 and 58-07 moved west, 58-08 may not be accepted by have along with rew location 1410 Ben noted that 58-08 was mored to the west to offset 58-10 and 58-07 moved west, 58-08 may not be accepted by have are suffered as a formation of the food of the food offset offset of the food offset off				
1324 Down hole gamma Start on 58-11 1324 Down hole gamma Start on 58-11 1325 2 to 4-least book up on 58-16, sample taken 58-16-0235 1335 Sample taken from 2 to 4-fact crow of 58-16, sample # 58-16-0204, geolophamin sam 1340 Decom date rule # 169, Agrachments, more ask monthes, wind charge discotion Dr. 92321 1345 Sat up Date Rig on 58-08 241350 Jell completed downhole gamma scan on 58-11 1400 55-08-1400 sample collected, hard showl decom 1410 Ben noted that 58-08 was mond to the west to object 58-10 and 58-07 moved west; \$8-08 may not be accossle by dill sig with now location close to 58-00, and augus decor. 1412 Began scanning out determs sty and alfactments 1415 Dan Kennedy and David observed locat "Slag" pieces along a town (har that higher readings in malkower gamma scan and it was decided to collected gamma for what higher readings in malkower gamma scan and it was decided to collected gamma scan sample (TCLP) SB-16-0000 1430 Delucind chew off-site 1431 Recioused upolate figure of gamma walkower possible from Leidos to discuss with USACE. 1435 Jell segins downhole gamma scan on 58-12 1535 Jell completes downhole gamma scan on 58-12 1550 Jell offsite, padae for wealthet betant shows lain, not shalling now hole. 10010				
1324 Down hold gamma Stert on 58-11 1325 2 to 4-feet bope up on 58-16, sample taken 58-16-0235 1335 Sample taken from 2 to 4-foot coar of 58-16, sample # 58-16-0204, geotechnical same 1340 Decom decents for Arachametr, where are monitors, wind charge direction 201-02521 1345 Set up Dain Rig on 38-08 58-08 1345 Set up Dain Rig on 38-08 58-08 1410 Sen noted that 58-08 was moved to the west to obtact 58-10 and 58-07 moved west, 58-08 may not be accostle by dr. 11 Rig with new location close to 58-09 moved west, 58-08 may not be accostle by dr. 11 Rig with new location close to 58-00-002, hand argue decore. 1412 Began scanning out desiring for 58-08 performed by hand argue. Simpoke collected 58-08-002, hand argue decore. 1415 Dan Kennedy and David observed black "slag" pieces along a han limit that had higher readity in walkower gamma 35am and it was decided to collect a sample after discussion with Ann and Dave for waste characterization sample (TCLP) SB-16-0000 1430 Desiring chew off-sik 1431 Recional uplate figure of gamma scan on 58-12 1440 Jeff Begins downhole gamma scan on 58-12 1535 Jeff completes downhole gamma scan on 58-12 1545 Remove air monitores, san out explanant 1550 Jeff offsite, ander for weather toxinat shows lain, not shading as whole. DONE DONE DONE DONE DONE DONE ONE				
1325 2 to 4-keet lope up an 58-16, sample taken 58-16-0235 1335 sample taken from 2 to 4-tout come of 58-16, sample # 58-16-0204, geolechnical sam 1340 Decom de receive #66 agraciaments, anone are monitores, wind charge direction 1345 Set up Deric Rig on 58-55 1345 Set up Deric Rig on 58-55 14135 Jeff completed downhole gamma sean on 58-11 1400 55-08-1400 sample collected, have showed decon 1410 Ben noted that 58-08 was moved to the west to object 58-10 and 58-09 moved west, 58-08 may not be accepted by dr. 11 rig with new location close to showelite. Seil boxing some 58-08 per formed by hand avgee. Singele collected 58-08-0102, hand avgee decon. 1412 Began scanning out deriving fine 58-08 per formed by hand avgee. Singele collected to 58-08-0102, hand avgee decon. 1415 Dan Kennedy and David observed black "slag" pieces along a have the that had higher readings in walkower gamma scan and it was decided to collect a sample after discussion with Ann and Dave tot waste characterization sample (TCLP) SB-16-0000 1430 Derected update figure of gamma walkower possible from Leidos to discuss with USACE, 1435 Jeff setting up downhole gamma scan on 58-12 1440 Self Begins downhole gamma scan on 58-12 1535 Jeff completes downhole gamma scan on 58-12 1545 Remove also monitores, san out explanament 1550 Jeff off site, padae for wealthe format shows lain not staking accompanal or 1000. DATE DESCLOSED TO AND UNDERSTOOD BY DATE				
1335 Sample falson from 2 to 4-fast come of 58-16, sample # 58-16-0204, geolechnical same 1340 Decom da receive # 250-08 1345 Set ye Darn Reg on ## 58-08 20 433-21 1490 Set ye Darn Reg on ## 58-08 20 433-21 1490 Set completed downhole gamma scan on 58-11 1490 Sen noted that 58-08 was mond to the meet to object \$8-10 and 58-09 moved west, \$8-08 may not be accepted by dr.71 reg with new location closes to shoveline. Soil boring for \$8.08 per formed by hand augus. Smyoke collected \$8-08-002, hand augus decor. 1412 Began scanning out berning rule augus decor. 1414 Began scanning out descriptions of lack "slag" pieces along shore the third higher readings in walkower gamma 3can and it was decided to collect a sample after discussion with Ann and Dave for washe characterization sample (TCLP) \$8-16-0000 1430 Dequined chew off-sik 1431 Recioused upolate figure of gamma walkower assists from Leidos to discuss with usate. 1433 Set setting up downhole gamma scan on \$8-12 1440 Set Begins downhole gamma scan on \$8-12 1535 Jett completes downhole gamma scan on \$8-12 1535 Tett completes downhole gamma scan on \$8-12 1550 Jeft off sike, padace for weather believed shows lain not stacking accompance of 1980 DISCLOSED TO AND UNDERSTOOD BY DISCLOSED TO AND UNDERSTOOD BY		•		akun 5B-16-0235
1345 Set up Desur Rig on Strokensents, more as monthers, wind charge direction 1345 Set up Desur Rig on Stroke 50-08 22 +21-21 14105 Set up Desur Rig on Stroke gamma Scan on SB-11 1400 55-08-1400 sample collected, hard showed decon 1410 Een noted that 58-08 was moved to the most to obset SB-10 and SB-09 moved west, SB-08 may not be acceptle by dr. 11 king with now location closes to shockles. Soil being the SB-0B performed by hand augus. Single collected SB-08-002, hand augus decor. 1412 Began scanning out dessend augus decor. 1415 Dan Kennedy and David observed to lack "Slag" pieces along a time the that had higher readings in walkers agamma scan and it was decided to collect a sample after discussion with Ann and Dave for waste characterization sample (TCLP) SB-16-0000 1430 Dessend uplate figure of gamma walkers assults from Leidos to discuss with USACE. 1435 Sett setting up downhole gamma scan on SB-12 1440 Jeft Begins downhole gamma scan on SB-12 1555 Tett completes downhole gamma scan on SB-12 1550 Jeft offsite, padaa for weather tokenst shows lain, not shaking a continued to Pago III DISCLOSED TO AND UNDERSTOOD BY				
1345 set up Deine Rig on 58-08 241350 Jeff completed downhole gamma scan on 58-11 1400 55-08-1400 sample collected, have showl decon 1410 Ben nobel that 58-08 was mored to the west to object 58-10 and 58-09 moved west, 58-08 may not be acceptle by dr. 11 kig w. 9th new location close to showeline. Soil being love 58-08 per formed by hand augus. Somjete collected 58-08-0102, hand augus decon. 1412 Began scanning out dereway Rig and attachments 1415 Dan Kennedy and David observed black "slag" pieces along starelle that had higher reading in walkower gamma scan and it was decided to collect a sample after discussion with Ann and Dave top waste characterization sample (TCLP) SB-16-0000 1430 Deruma chew off-site 1431 Recional upolate figure of gamma walkower possible from Leidos to discuss with USACE. 1435 Jeff completes downhole gamma scan on 58-12 1440 Jeff Begins downhole gamma scan on 58-12 1535 Jeff completes downhole gamma scan on SB-12 1535 Jeff completes downhole gamma scan on SB-12 1550 Jeff offsite, padara for weather forenet shows lain not starting and continued to Pago 11 DIECLOSED TO AND UNDERSTOOD BY DATE DISCLOSED TO AND UNDERSTOOD BY DATE				
141350 Jeff completed downhole gamma scan on SB-11 1400 55-08-1400 sample collected, hard showl decon 1410 Ben noted that 58-08 was moved to the west to offset 58-10 and SB-09 moved west, 58-08 may not be accorded by dr. 71 king with new location closed to shoveline. Soil boring has 58-08 performed by hand avgee. Sample collected 5B-08-0102, hand avgee decon. 1412 Began scanning out descend and almohaments 1415 Dan Kennedy and David observed black "slag" pieces along show the that had buffer reading in walkower gamma scan and it was decided to collect a sample after discussion with Ann and Dave for waste characterization sample (TCLP) SB-16-0000 1430 Described uplake figure of gamma walkower essetts from Leidos to discuss with USACE. 1433 Sectional upplake figure of gamma scan on SB-12 1440 Jeff Begins downhole gamma scan on SB-12 1535 Teff completes downhole gamma scan on SB-12 1535 Teff completes downhole gamma scan on SB-12 1550 Jeff offsite, padae for waster forms language and copylined to Page 11 SIGNATURE DATE DATE	1345 St NO DRI	DL9	-23-21 r SB-08	
1400 55-08-1400 sample collected, hard should deem 1410 Ben noted that 58-08 was moved to the west to obsect 58-10 and 58-09 moved west, 58-08 may not be accessle by dr. 71 king with new location closes to showellies. Soil being for 58-08 performed by himself august. Simple collected 58-08-0102, hand august decen. 1412 Began scanning out destining the argust altachments 1415 Dan Kennedy and David observed black "slag" pieces along show the thort had higher readings in malkower gamena scan and it was decided to collect a sample after discussion with Ann and Dave for waste characterization sample (TCLP) SB-16-0000 1430 Described about the figure of gamena walkower possitis from Leidos to discuss with usact. 1431 Recieved upolate figure of gamena walkower possitis from Leidos to discuss with usact. 1435 Self setting up downhole gamen scan on SB-12 1440 Jeff Begins downhole gamma scan on SB-12 1535 Jeff completes downhole gamma scan on SB-12 1535 Teff completes downhole gamma scan on SB-12 1535 Teff completes downhole gamma scan on SB-12 1535 Jeff offsite, padae for weather toxinst shows lain not speaking new hole. DISCLOSED TO AND UNDERSTOOD BY DATE				-11
1410 Ben noted that 58-08 was mond to the west to obset 58-10 and SB-09 moved west, 58-08 may not be acceptle by dr. 71 king with new location closed to showline. Soil boring has SB-08 performed by hand avged. Simple collected 58-08-0102, hand avged decon. 1412 Began scanning out descency Rig and attractments 1415 Dan Kennedy and David observed black "slag" pieces along share the that had higher readys in wolkower gamen scan and it was decided to collect a sample after discussion with Ann and Dave for waste characterization sample (TCLP) SB-16-0000 1430 Described Alew off-site 1431 Recieved upolate figure of gamen walkower possibly from Leidos to discuss with USACE. 1435 Jeff sething up downhole gamen scan on SB-12 1440 Jeff Begins downhole gamen scan on SB-12 1535 Jeff completes downhole gamen scan on SB-12 1536 Remove give monitores, san out equipment 1550 Jeff offsite, padae for weather forcest shows lain not starting as where 9-28-2 1 DISCLOSED TO AND UNDERSTOOD BY DATE				
SB-09 moved west, 58-08 may not be accossle by dr. 11 king with new location close to shoelike. Soil being fore 58-08 performed by hand augus. Simple collected 58-08-0102, hand augus decon. 1412 Began Scanning out deriving Rig and altochoments 1415 Dan Kennedy and David observed black "slag" pieces along a Larette that had higher readings in walkower gamena scan and it was decided to collect a sample after discussion with Ann and Dave tot waste characterization sample (TCLP) SB-16-0000 1430 Deriving chew off-site 1431 Received uprate figure of gamena walkower results from Leidos to discuss with Usace. 1435 Jeff setting up downhole gamen scan on SB-12 1440 Jeff Begins downhole gamen scan on SB-12 1535 Jeff completes downhole gamen scan on SB-12 1535 Jeff completes downhole gamen scan on SB-12 1550 Jeff offsite, ander for weather forcast shows lain, not starting as Copyliqued to Page 11 DISCLOSED TO AND UNDERSTOOD BY DATE O-7-73-2 1				
close to shockline. Soil boring for SB-OB performed by hand augus. Somple collected SB-OB-0102, hand augus decon. 1412 Began scanning out deserved algorithments 1415 Dan Kennedy and David observed black "slag" pieces along showline. That had higher readings in walkower gamma scan and it was decided to collect a sample after discussion with Ann and Dave for waste characterization sample (TCLP) SB-16-0000 1430 Desured chew off-site 1431 Recieved upolate figure of gamma walkower possits from Leidos to discuss with usacl. 1435 Jest setting up downhole gamma scan on SB-12 1440 Jest Begins downhole gamma scan on SB-12 1535 Jest completes downhole gamma scan on SB-12 1545 Remove air monitores, san out equipment 1550 Jest off offsite, padar for weather tokenst shows early not starting new hole. DISCLOSED TO AND UNDERSTOOD BY DATE				
collected SB-CB-0102, hand augus decon. 1412 Began Scanning out desseng Rig and attachments 1415 Dan Kennedy and David observed belack "slag" pieces along a hare the that had higher readings in walkouse gamma scan and it was decided to collect a sample after discussion with Ann and Dave ton waste characterization sample (TCLP) SB-16-0000 1430 Describe after off-site 1431 Recieved upolate figure of gamma walkouse posits from Leidos to discuss with USACE. 1435 Jest setting up downhole gamma scan on SB-12 1440 Jest Begins downhole gamma scan on SB-12 1535 Jest completes downhole gamma scan on SB-12 1545 Remove aire monitores, san out equipment 1550 Jest offsite, padace for weather forcest shows lain not starting new hole. DATE ODATE 1077-21				
1412 Began scanning out deserve and attachments 1415 Dan Kennedy and David observed to lack "slag" pieces along show the that had higher readings in walkower gamen scan and it was decided to collect a sample after discussion with Ann and Dave top waste characterization sample (TCLP) SB-16-0000 1430 Describe chew off-site 1431 Recieved uprate figure of gamen walkower possits from Leidos to discuss with USACE. 1435 Jeff setting up downhold gamen scan on SB-12 1440 Jeff Begins downhold gamen scan on SB-12 1535 Jeff completes downhold gamen scan on SB-12 1545 Remove as monitores, san out equipment 1550 Jeff offsite, padera for weather forcest shows lain not starting new bole. DATE ODATE 9-28-2 1				any many any
1415 Dan Kennedy and David observed black "slag" pieces along above the that had higher readilys in walkaver gamma soon and it was decided to collect a sample after discussion with Ann and Dave tot waste characterization sample (TCLP) SB-16-0000 1430 Dajurnia chew off-site 1431 Recieved upolate figure of gamma walkover results from Leidos to discuss with usace. 1435 Seff setting up downhole gamma soon on SB-12 1440 Jeff Begins downhole gamma soon on SB-12 1535 Jeff completes downhole gamma soon on SB-12 1545 Remove air monitores, san out equipment 1550 Jeff offsite, padare for weather forcast shows lain not starting new hole. DATE 1-72-21 DISCLOSED TO AND UNDERSTOOD BY DATE			the second of th	
that had higher readings in walkower gamma scan and it was decided to collect a sample after discussion with Ann and Dave tot waste characterization sample (TCLP) SB-16-0000 1430 Dejuling them off-site 1431 Recieved upolate figure of gamma walkower results from Leidos to discuss with USACE. 1435 Jeff setting up downhole gama scan on SB-12 1440 Jeff Begins downhole gamma scan on SB-12 1535 Jeff completes downhole gamma scan on SB-12 1545 Remove give monitores, san out equipment 1550 Jeff offsite, padow for weather foreast shows lain not starting as Copiliqued to Page 11 DISCLOSED TO AND UNDERSTOOD BY DATE DATE	1415 Degan sca	I have	My Mig made attack	1 " 01 1 1 - 1
decided to collect a sample after discussion with Ann and Dave for waste characterization sample (TCLP) SB-16-0000 1430 Depends chew off-site 1431 Recieved upolate figure of gamma walkones essits from Leidos to discuss with USACE. 1435 Jeff setting up downhole gamma scan on SB-12 1440 Jeff Begins downhole gamma scan on SB-12 1535 Jeff completes downhole gamma scan on SB-12 1545 Remove air monitores, san out equipment 1550 Jeff offsite, padace for weather forcest shows lain, not starting new hole. DISCLOSED TO AND UNDERSTOOD BY DATE DATE				
1430 Dejunia chew et-sik 1431 Recieved upolate figure of gamma walkoure results from Leidos to diseves with USACE. 1435 Jeff setting up downhole gama scan on 58-12 1440 Jeff Begins downhole gamma scan on 58-12 1535 Jeff completes downhole gamma scan on 58-12 1545 Remove air monitores, san out equipment 1550 Jeff offsite, padare for weather forcast shows lain, not strating new hole. DISCLOSED TO AND UNDERSTOOD BY DATE OATE				
1430 Dajuting them off-site 1431 Recieved upolate figure of gamma walkoner results from Leidos to discuss with USACE. 1435 Jeff setting up downhole gamma scan on SB-12 1440 Jeff Begins downhole gamma scan on SB-12 1535 Jeff completes downhole gamma scan on SB-12 1545 Remove air monitores, san out equipment 1550 Jeff offsite, padara for weather forcast shows lain not starting new hole. DATE DISCLOSED TO AND UNDERSTOOD BY DATE				
1431 Recieved upolate figure of gamma walkouse results from Leidos to discuss with USACE. 1435 Jeff setting up downhole gamma scan on 58-12 1440 Jeff Begins downhole gamma scan on 58-12 1535 Jeff completes downhole gamma scan on 58-12 1545 Remove aix monitores, san out equipment 1550 Jeff offsite, padas for weather forcast shows lain not starting new hole. DATE DISCLOSED TO AND UNDERSTOOD BY DATE	1420 -	characterization	sample (1CLP) 5/5-16-0000
With USACE. 1435 Jeff setting up downhole gamma scan on SB-12 1440 Jeff Begins downhole gamma scan on SB-12 1535 Jeff completes downhole gamma scan on SB-12 1545 Remove air monitores, san out equipment 1550 Jeff offsite, padora for weather forcast shows Rain not starting new hole. DATE DISCLOSED TO AND UNDERSTOOD BY DATE				11 1 1 1 1 1 1 1
1435 Jeff setting up downhole gamma scan on SB-12 1440 Jeff Begins downhole gamma scan on SB-12 1535 Jeff completes downhole gamma scan on SB-12 1545 Remove aiz monitores, san out equipment 1550 Jeff offsite, padora for weather forcast shows Rain not starting new hole. DATE DISCLOSED TO AND UNDERSTOOD BY DATE		4	gamma walkouse Res	sults from Leidos to answes
1440 Self Begins downhole gamma scan on SB-12 1535 Jeff completes downhole gamma scan on SB-12 1545 Remove asiz monitores, san out equipment 1550 Jeff offsite, padase for weather forcest shows lain not starting new hole. DATE DISCLOSED TO AND UNDERSTOOD BY DATE	Taken and the second second second		10	
1535 Jeff completes downhole gamma scan en SB-12 1545 Remove aix monitores, san out equipment 1550 Jeff offsite, padare for weather forcest shows fain not starting new hole. SIGNATURE DATE DISCLOSED TO AND UNDERSTOOD BY DATE				/2
1595 Remove air monitores, san out equipment 1550 Jeff offs. 2, padar for weather forcast shows bain, not starting new hole. DATE 1-23-2 1 DISCLOSED TO AND UNDERSTOOD BY DATE	1940 Jet Begins	downhole gamma	scan on 58-12	
1550 Jeff offs. R. padare for weather forcast shows Rain not starting new More. DATE OISCLOSED TO AND UNDERSTOOD BY DATE DATE	1555 Jeff complete	s downhole gamma	scan on SB-12	
DISCLOSED TO AND UNDERSTOOD BY DATE	1595 Remove air m	onitopes, san ou	of ejuipment	Continue C V
DISCLOSED TO AND UNDERSTOOD BY DATE	1550 Jeff off	ite, padas for	weather forcast shows Re	nin not starting new hote.
	TOP	n		9-23-21
	DISCLOSED TO AND UNDERSTOOD E	зү /	DATE	DDODDIETADY MECDMATICM

BOOK

TITLE		PROJECT			BOOK	PA
Continued from Page 10	Thursday	9-23-21				
1565 Begin p	acting yo say	oles				
	edy oft- 22					
	F. s. 7c		N .			
92	y crew of s.	Z				
	I Ben ofsik	2			9,	
* Below are Reading		gamma scan) of	Carmo be	bons		
55-08-1400	4276			7		
58-08-0102	4459			16		
55-09-0840	7348					5.
58-09-0117	7312					
\$8-09-0500	7164					
55-10-0750	6780					4
58-10-0517	6320					
5B-10-0465	6114				111	
55-11-1100	4314	7				
58-11-0405	4524					
515-11-0506	4524					
35-12-1115	5125					
58-12-0301	4929					17
53-12-0506	4980					
55-14-1705	4215				1 1	
58-14-2540	4547					
38-14 0608	4482					
55-15-1135	4229			- 0		
58-15-0406	4436					
58-15-0608	4619					
55-16-1300	7116					
53-16-0235	7121					
55-16-0000	65,000					
		Dr 9-23-21		Con	tinued to Page	NA
SIGNATURE	2 1		DATE	_		
200				9-23.	-21	
DISCLOSED TO AND UNDERSTOOD BY	Y	DATE	PRO	PRIETAR	Y INFORM	ATION

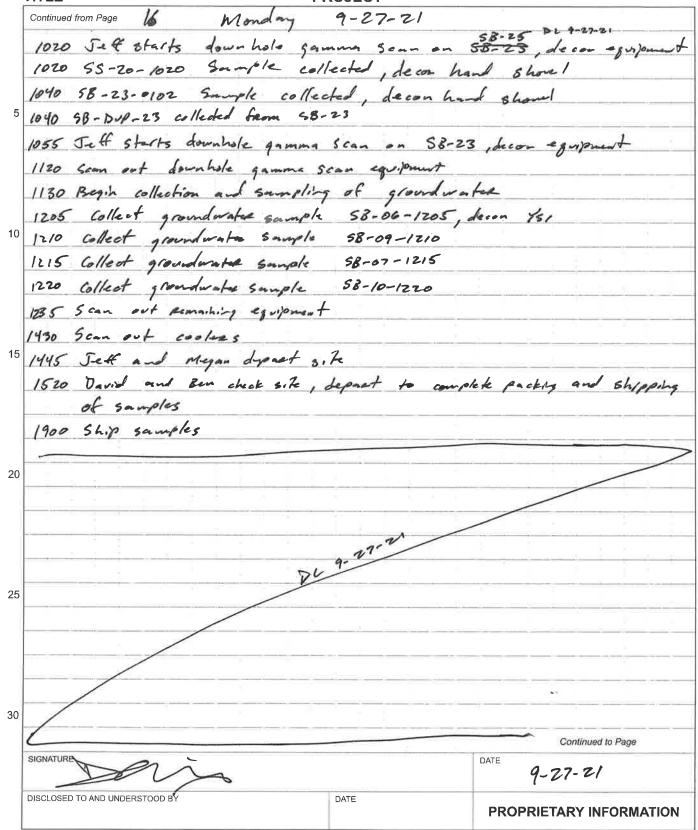
TITLE PROJEC	Т
Continued from Page NA Friday 9-24-21	
0700 ARRIVED on-side partly cloudy 6:	3°F
0720 PRILLERS MARINE	
0750 Daily salety Tailgate meeting	
0742 Civil survey com one site to complete	CVV. I guavey, safety backing
0750 Began hand augeping and vaily posthola	digger for soil burings along shorehis
0800 Phone call with USACE for project po	
0806 Placing gik monitous in work near,	
0810 55-03-0810 sample collected for	
0815 5B-03-0501 sample collected	
0820 58-03-0102 sample collected (1-2-64) 10-01-11
0822 Phone meeting update: Discussed	
Scan walkouse dontor, placement of	testypits, costern edge of higher
0825 Reading asea (gamma unleanes scanning	Rendry), Makesum to bound appa around SB-02
1825 SS-01-0825 Sample collected to	om 88-01
0827 SB-01-0501 sample collected	0.5 to 1-foot)
0830 58-01-0102 sample collected (1 to 2- God)
0835 SS-02-0835 sample collected fe	on 58-02
0840 58-02-0501 Sample collected Geo	m 58-oz
0845 58-02-0102 Sample collected fro	m SB-02, decon Showel, digger
0846 Recieved yoda ted figure from Crides, gamm.	
0855 Scan decemy Rig out of sustace character	
0910 Jeff set up downhole gamma sonn equipment	
0920 Jet Begins downhole som at 58-14	
0930 Same in of min exercitive for test pit diggit	
0945 Begin to dig tot pit #1, stapping inside higher	
of higher pending upon to bound agen to 1	
1015 Top 2-Foot layer removed from TS (test p.t)	# (Sample collected 13 - 01 - 00 5 Scan litt
1020 \$5 -01-0204 , end 1,54, of T3.#1 sample co	llected, scan litt, growth encounteed 6-fe
1021 Downhole gamma scan complete on SB-1	
1022 David leaves to get water pump for departuring i	F needed Continued to Page 3
Denn	9-24-21
DISCLOSED TO AND UNDERSTOOD BY DATE	
	PROPRIETARY INFORMATION

IIILE PROJ	ECI
Continued from Page Friday September 2	24, 2021
1025 Jeff starts down hole gamma los	
1035 Decon mini excavator	
1050 Move to test pit 2 while w	witing for pump
1055 Sample TS-020002 collected	1 0
	le collected from test pit I and test
p.+2, we-01-0002	
1105 Sample TS-02-0304 collected	d, lift scanned
1115 Jeff completed down hole game	
1120 David Returns	
	lunder and very hard surface at 6 feet
	+ subsiding Apren appex 2-feet wide, 6-feet
	for apport 15 minutes, 40-gallons per uniture
with no change in elevation. water	
Video sent to Ann and Dave cont	
1150 Decision made to move to TS#3,	
1215 First lift of TS#3 Removed, sample	
1225 David to start hand augusting som	
	collected T5-03-0204, 1.44 scanned.
1230 55-17-1230 collected from 58-1	
	atu and hard suffece but at approv 5 to 6-fee
1240 SB-17-0102 sample collected, sh	
1245 Begin dewastering of T5#3	-11
1250 55-18-1250 sample collected	
1255 Silvilar gresults for demostering for T	5 #3, not changing water clevation after
10 minutes of deamfeeing	
1300 58-18-0125 sample collected, show	I, hole digges decon
	et pits back into fest pits where they original
1310 Sumple collected from 518-19, 5	
1315 Sample collected from SB-17, Si	
1320 Sumple collected from 88-19, 58	
SIGNATURE	DATE
DISCLOSED TO AND UNDERSTOOD BY DAT	9-24-21
DAI	PROPRIETARY INFORMATION

TITLE		PROJECT	
Continued from Page	3 Frida	7 9-24-21	
1435 Change a		Les to change in a	and direction
		k collected TS-04-00	
		removed, lift semmed	
			ample collected TS-04-0406
			25 #3 and #4 WC-02-0001
20200		excuration, other equipment	
			DUP-01 and T5- Nup-02
			101-01 and 13-NOT-02
	care deposts si		
1750 Packing co	oles for shippines	t of some samples,	Cooleds Scarrand
+ Relies -	Leidos chem	deposet site, 460 to	Ship Samples
		m sample bags coll	leater today
55-01-0825	4203		
5B-01-0501	3966		
SB-01-010Z	3758		
55-02-9835	4199		
58-02-0840	4178		
50-02-0845	4245		
55-03-0810	4530		
58-03 - 0815	4290		
58-03 - 0820	4070		
55-17-1230	5317		
58-17-1240	6123		
55-18-1250	4705		
53-18-0125	4652		
55-19-1310	4400		
58-19-0102	4470		
5219-0225	4566		
WC-01-000Z	12,287	<u> </u>	
WC-02-0001	5249		
		De 9-24-21	Continued to Page MA
SIGNATURE	10.		DATE
DIOCHOSED TO AND LINES TO	TOOD DV	DATE	9-24-21
DISCLOSED TO AND UNDERS	STOOD BA	DATE	PROPRIETARY INFORMATION

Continued trans Propo N/A Monday 7-27-21 Costs Arrive on sile, cloudy (partly) 66°F O705 Tailgale Safety meeting Bern Daniel, palegan , Jeff O706 Tailgale Safety meeting Bern Daniel, palegan , Jeff O706 Daniel on call with Leidos and VSACE to discuss placement / location of Assembling samples O707 Setting up are maintees, calibrating VSI winter Riality materia, form twile gamma scan epos O708 Deciver Field Change leguest fatom whether you thank dayou as dig Soil bearings O708 Deciver Field Change leguest fatom whether you thank dayou as dig Soil bearings O708 Deciver Field Change leguest fatom whether you thank dayou as dig Soil bearings O708 Deciver Field Change leguest fatom whether you thank dayou as dig Soil bearings O708 Deciver Field Change leguest fatom whether you make to access some of the sail documents of 3 samples in every Soil bearings. O708 Samples in every Soil bearing (I suchece sample, 2 subsurface samples whe has determined where Remaining 1 samples will be. Surface samples at SB-03, Remaining 2 samples will be forward between Soil as and SB-07 (SB-21), Surface samples at SB-10 (SB-22), Singles samples will be forward Sb-07 (SB-21), Surface samples at SB-10 (SB-22), Singles samples puril be forward samples between SB-07 and SB-11 (Slope For 2), Singles samples puril be forward samples between SB-08 and SB-11 (Slope For 2), Singles samples O708 Sample between SB-08. O708 Sample between SB-08. O709 SB-09-0750 Sample collected, decon hand showel O800 SB-08-080 Sample collected, decon hand showel O800 SB-08-080 Sample collected, decon hand showel O800 SB-08-080 Sample collected, decon hand showel O800 SB-08-0818 Sample collected, decon hand showel O805 SB-08-0818 Sample collected, decon hand showel O805 SB-08-0818 Sample collected, decon hand showel O805 SB-08-0818 Sample collected, decon hand showel			- 13
Continued train Page N/A Manday 9-27-21 0655 Arrive on site, cloudy (party) 60°F 0705 Tailgale safety meeting Ben, Danis, pages , Jeff 0700 David on call with Leides and VSACE to discuss placement / beating of Assembling samples 0701 Setting up are manitimes, calibrating 451 when availing meeting downthale gamma scan epop 0702 Leisewel Field change legisest from votes to thank hand agree or dig Soil burrings 0720 Leisewel Field change legisest from votes to thank hand agree or dig Soil burrings 0721 Phone discussion: with dell and votes to access some of the Saildoceaps. There are left ones samples available to gater more class. Instead of 3 samples it every Sail burring (Israker sample, 2 everywhere sample) yie has determined where Remaining 1 scakphons will be. Surface sample at 58-13, Remaining 2 samples will be faculad between \$8-05 and \$8-07 (\$8-21), Surface samples will be faculad between \$8-05 and \$8-07 (\$8-21), Surface samples will be faculad between \$8-05 and \$8-07 (\$8-21), Surface samples will be faculad between \$8-05 and \$8-07 (\$8-21), Surface samples at \$8-10 (\$8-22), Surface samples pril be located between \$8-07 and \$8-10 (\$8-22), Surface samples 4 58-01, 2 samples between \$8-07 and \$8-10 (\$8-22), Surface samples 0745 Begin to collect sediment samples during for the (Ben and Dany) 0750 \$5-09-0750 Sample collected, decon hand shovel 0805 \$5-08-0805 Sample collected, decon hand shovel 0805 \$6-08-0805 Sample collected, decon hand shovel	TITLE	PROJECT	BOOK PAG
0055 Arrive on whe, cloudy (parthy) bet 1 0705 Tailgale sately methy ben, Daniel, Megan, Jeff D700 David on call with Leides and VSACE to discuss placement / location at flewaring samples 0707 Setting up and monitions, calibrating 151 winter evaluating methy four hole gamma scan equ 0700 Jesiewas Faild change legices from vites to there have larger at dig Soil borrings where descripting could not access the soil browings. 0721 Phone discussion: wite drill era wratte to access some at the sail documents. There are left once samples qualible to gather more class. Instead of 3 gamples in every Sail borring (I surface sample, 2 subsurface sample when determined where Remarking Islandians will be. Surface sample at 58-13, Remarking 2 samples will be located between 58-05 and 58-07 (58-21). Surface sample at 58-00, remaining samples will be located between 58-07 and 58-10 (58-22). Surface sample at 58-01, 2 samples between 58-07 and 58-10 (68-22). Surface sample of 58-09 and 58-05. 0745 Begin to collect sediment samples during low title (Ben and Daniel) 0757 Sh-09-0750 Sample collected, decon hand showel 0805 Sh-09-0759 Sample collected, decon hand showel 0805 Sh-08-0805 Sample collected, decon hand showel 0805 Sh-08-0805 Sample collected, decon hand showel 0805 Sh-08-0805 Sample collected, decon hand showel 0815 Sh-08-0815 Sample collected, decon hand showel 0815 Sh-08-0815 Sample collected, decon hand showel 0815 Sh-08-0815 Sample collected, decon hand showel	Continued from Page NA	Manday 9-27-21	
0705 Tailgale Satisty meeting Ben, Danis, Magan, Jeff 0706 David on call with Leidos and USARE to discuss placement I decation of Assumbling Samples 0707 Satting up are monitores, calibrating 451 when evalua module formation of 0708 Leicone Field Change Legaret from 1840 to them had enjoyed at dig Sail burshys where descriping could not access the sail busings. 0721 Phone discussion: wite obtill rig unable to access some of the Sail documents, There are left once samples qualified to gather more clara. Inspead of 3 samples in every Sail borring (I surface sample, 2 subsurface Sample whe has determined where Remarking I safforms will be. Surface sample at 58-13, Remaining 2 samples will be located between 58-05 and S8-07 (SB-21), Surface sample at 58-20, Remaining samples will be located between SB-07 and SB-10 (SB-22), Surface sample at SB-01, 2 samples between SB-07 and SB-10 (SB-22). Surface sample 2 samples between SB-08 and SB-01 (Close to 58-09) (SB-23). 2 samples between SB-08 and SB-01 (Close to 58-09) (SB-23). 2 samples between SB-08 and SB-09 (SB-24). I sample 0750 SB-09-0750 Sample collected, decon hand showel 0805 SB-08-0805 Sample collected, decon hand showel	0655 Arrive on site.	cloudy (partly) 66°F	
permoling samples 0707 Setting up not monitions, calibrating 451 winter quality water form hole gamma scan equiport section Field change legises from valet to the found hard expert of the soil bookings where descripts are left ones samples available to access some of the sail decenses, there are left ones samples available to gather mon class. Instead of 3 gamples in every sail booking (I suchece sample, 2 entropiers samples we have determined where remarking I scappions will be. Surface sample at 58-13, Remarking 12 samples will be located between 58-05 and 58-07 (SB-21), Surface samples at 58-20, remaining samples will be located between 58-05 and 58-07 (SB-21), Surface samples at 58-20, remaining samples at 58-01, 2 samples between 58-07 and 58-10 (SB-22), Surface sample at 58-20, remaining samples at 58-01, 2 samples between 58-08 and 58-09 (SB-24). I sample 58-08 and 58-09 (SB-24). I sample 68-08 and 58-09 (SB-24). I sample 68-08 and 58-09 (SB-24). I sample 68-08 sample collected, decon hand showel 68-08-08-08-08-08-08-08-08-08-08-08-08-08			
Remaining samples 0707 Setting up not monitores, calibrating YSI winter Runling whether four hole gamma scan equiporate field change legises from vited to them have acted for the four days at dig Soil bookings where discussions: with obsil and unable to access some at the Soildocings, 0721 Phone discussions: with obsil and unable to access some at the Soildocings, Truce are left once samples qualifold to galter more clata. Instead of 3 samples in every soil booking (Isvahice sample, 2 subsurface sample) We have determined where remaining Israfisms will be. Surface sample at 58-13, Remaining 2 samples will be Israted between 58-05 and S8-07 (SB-21), Surface samples will be Israted between 58-05 and S8-07 (SB-21), Surface samples at 58-20, remaining samples will be located between SB-07 and SB-10 (SB-22), Surface sample at SB-01, 2 samples between SB-07 and SB-10 (SB-22), Surface sample at SB-01, 2 samples between SB-08 and SB-10 (SB-22), Israte sample 0745 Begin to collect sediment samples during low table (Ben and Danish) 0750 SD-09-0750 sample collected, decon hand showel 0758 SD-07-0758 sample collected, decon hand showel 0805 SD-08-0805 Sample collected, decon hand showel 0805 SD-08-0805 Sample collected, decon hand showel 0805 SD-08-0805 Sample collected, decon hand showel 0815 SD-03-0815 Sample collected, decon hand showel	0706 David on call with	Leiles and USACE to discuss Alacan	ent / books at
0707 Selting up and monitions, calibrating 451 winter Reality whether four hole gamma scan epis or feeth field change legisles from vited to them hand enged at dig 50.1 borrys whate drive any could not access the soil borrings. 0721 Phone discussion: with drill any whate to access some of the soil borrings, there are left ones samples available to gather more clata. Instead of 3 gamples in every sail borring (Isvaker sample, 2 subsueface sample inches determined where Remarking Islandisms will be. Surface sample at 58-13, Remarking 12 samples will be located between 58-05 and 58-07 (SB-21). Surface sample at 58-20, Remarking samples will be located between 58-05 and 58-07 (SB-21). Surface sample at 58-20, Remarking samples will be located between 58-07 and 58-10 (SB-28.). Surface sample at 58-07 Remarking samples will be located between 58-08 and 58-10 (SB-28.). I sample 58-08 and 58-09 (SB-24). I sample control of SB-08. 2 samples between 58-08 and 58-09 (SB-24). I sample between 58-08 and 58-09 (SB-24). I sample between 58-08. 0745 Begin to collect sediment samples during low title (Ben and Danist) 0750 SB-09-0750 Sample collected, decon hand showel 0805 SD-08-0805 Sample collected, decon hand showel 0805 SD-08-0805 Sample collected, decon hand showel 0805 SD-08-0805 Sample collected, decon hand showel 0813 SD-01-0813 Sample collected, decon hand showel 0815 SD-03-0815 Sample collected, decon hand showel 0815 SD-03-0815 Sample collected, decon hand showel		100000000000000000000000000000000000000	, seca) 150 S
DT20 Excess Field thange leginest from votes to thank hand expect of dig Soil bookings whole desire sig could not access the soil bookings. DT21 Phone discussion: wite drill any make to access some of the soil doesings, there are left ones samples available to gather more clata. Instead of 3 samples in every soil booking (I suchee sample, 2 subsurface sample we have determined where remaining Is captions will be. Surface sample at 58-13, Remaining 2 samples will be located between 58-05 and \$8-07 (\$8-21), Surface sample at 58-20, Remaining samples will be located between \$8-07 and \$8-10 (\$8-22), Surface sample at 58-01, 2 samples between \$8-07 and \$8-10 (\$8-22), Surface sample at 58-01, 2 samples between \$8-08 and \$8-10 (\$8-22), I sample between \$8-08 and \$8-08 (\$8-24). I sample between \$8-08 and \$8-08 (\$8-09 (\$8-25). DT45 Begin to collect sediment samples during low title (\$80 and \$8-00). DT50 \$8-08-0750 Sample collected, decon hand \$6-000 (\$8-08-08-08-08-08-08-08-08-08-08-08-08-08	0707 settire up aix moni	was alibration you water outle makes.	lown hale on some
whole dase any could not access the soil bookings. 1721 Phone discussion: wite drill any make to access some of the soil decemps, There are left once samples available to gather more clata. Instead of 3 samples in every soil borry (1 surface sample, 2 subsurface sample, we have determined where remaining 1 reafisms will be. Surface sample at 5B-13, remaining 2 samples will be located between 5B-05 and 5B-07 (5B-21), surface sample at 5B-20, remaining samples will be located between 5B-07 and 5B-10 (5B-22). Surface sample at 5B-01, 2 samples between 520 and 5B-10 (1000 to 58-07) (5B-23). 2 samples between 5B-08 and 5B-08 (1000 to 58-04). Is a male between 5B-02 and 5B-05. 0745 Begin to collect sediment samples during low title (Ben and Danish) 0750 5D-09-0750 Sample collected, shorel decon 0754 SD-06-0754 Sample collected, decon hand shorel 0800 5D-05-0800 sample collected, decon hand shorel 0800 5D-05-0800 sample collected, decon hand shorel 0805 SD-08-0805 Sample collected, decon hand shorel 0813 5D-01-0813 sample collected, decon hand shorel 0815 SD-03-0815 sample collected, decon hand shorel 0815 SD-03-0815 sample collected, decon hand shorel 0816 SD-100816 sample collected, decon hand shorel 0817 SD-01-0813 sample collected, decon hand shorel 0818 SD-03-0815 sample collected, decon hand shorel 0819 SD-100816 sample collected, decon hand shorel	2000 2 00 of Full of	00 9-27-21	divined at the Carl bushing
0721 Phone discussion: with drill rig unable to access some of the soil documes, There are left once samples available to gater more clata. Instead of 3 samples in every sail borring (I surface sample, 2 subsurface sample we have determined where remaining I captums will be. Surface sample at 58-13, Remaining 2 samples will be located between 58-85 and 58-07 (58-21), Surface sample at 58-20, remaining samples will be located between 58-07 and 58-10 (58-22). Surface sample at 58-01, 2 samples between 58-07 and 58-10 (16 per to 58-09) (58-23). 2 samples between 58-08 and 58-09 (58-24). I sample between 58-02 and 58-05. 0745 Begin to collect sediment samples during low title (Ben and Danish) 0750 50-09-0750 sample collected, shoul decon 0754 50-06-0754 Sample collected, decon hand showel 0805 50-08-0805 sample collected, decon hand showel 0805 50-08-0805 sample collected, decon hand showel 0805 50-08-0805 sample collected, decon hand showel 0813 50-01-0813 sample collected, decon hand showel 0815 50-03-0815 sample collected, decon hand showel 0815 50-03-0815 sample collected, decon hand showel 0815 50-03-0815 sample collected, decon hand showel 0815 50-100816 sample collected, decon hand showel			200 02 2119 5017 201195
There are left once samples available to gather more alata. Instead of 3 samples in every soil borring (Isvahere sample, 2 subsurface sample when determined where Remaining Israpisms will be. Surface sample at 58-13, Remaining 2 samples will be located between 58-05 and 58-07 (58-21), Surface sample at 58-20, Remaining samples will be located between 58-07 and 58-10 (58-22), Surface sample at 58-01, 2 samples between 5209 and 58-10 (58-22), Surface sample at 58-01, 2 samples between 5209 and 58-10 (610000 to 58-09) (58-23). 2 samples between 58-08 and 58-09 (58-24). Is ample between 58-02 and 58-05. 0745 Begin to collect sediment samples during low title (Ben and Danish) 0750 50-09-0750 sample collected, shoul decon 0754 50-06-0754 Sample collected, decon hand shoul 0805 50-07-0758 sample collected, decon hand shoul 0805 50-08-0805 sample collected, decon hand shoul 0805 50-08-0805 sample collected, decon hand shoul 0810 50-07-0813 sample collected, decon hand shoul 0815 50-03-0815 sample collected, decon hand shoul			f the ite
of 3 samples in every soil borring (I suchece sample, 2 subsue face sample we have determined where Remaining I scapions will be. Surface sample at 5B-13, Remaining 2 samples will be located between 5B-05 and 5B-07 (5B-21), Surface sample at 5B-20, Remaining samples will be located between 5B-07 and 5B-10 (5B-22), Surface sample at 5B-10 (5B-22), Surface sample at 5B-01, 2 samples between 5B-07 and 5B-10 (6B-22), Surface sample at 5B-01, 2 samples between 5B-08 and 5B-01 (Close to 5B-09) (5B-23). 2 samples between SB-08 and 5B-09 (5B-24), I sample between 5B-02 and 5B-05. 0745 Begin to collect sediment samples during low title (Ben and Danish) 0750 5D-09-0750 Sample collected, shoul decon 0754 5D-06-0754 Sample collected, decon hand 8 hours 0758 5D-07-0758 Sample collected, decon hand 8 hours 0800 5D-05-0800 Sample collected, decon hand 8 hours 0805 5D-08-0805 Sample collected, decon hand 8 hours 0810 5D-07-0813 Sample collected, decon hand 8 hours 0813 5D-01-0813 Sample collected, decon hand 8 hours 0815 5D-03-0815 Gample collected, decon hand 8 hours 0815 5D-03-0815 Gample collected, decon hand 8 hours 0815 5D-03-0816 Sample collected, decon hand 8 hours 0805 5D-100816 Sample collected, decon hand 8 hours 0805 5D-100816 Sample collected, decon hand 6 hours 0806 5D-100816 Sample collected, decon hand 6 hours 0807 5D-100816 Sample collected, decon hand 6 hours 0808 5D-100816 Sample collected, decon hand 6 hours 0809 5D-100816 Sample collected, decon hand 6 hours 0809 5D-100816 Sample collected, decon hand 6 hours			
We have determined where remarking locations will be. Surface sample at 58-13, Remarking 2 samples will be located between 58-05 and 58-07 (58-21), Surface sample at 58-20, Remarking samples will be located between 58-07 and 58-10 (58-22), Surface sample at 58-09, Remarking samples will be located between 58-07 and 58-10 (58-22), Surface sample at 58-01, 2 samples between 58-08 and 58-11 (close to 58-09) (58-23). 2 samples between 58-08 and 58-09 (58-24). I sample between 58-02 and 58-05. 0745 Begin to collect sediment samples during low title (Ben and Danish) 0750 5D-09-0750 sample collected, should decon 0754 5D-06-0754 Sample collected, decon hand 8 hourd 0805 5D-07-0758 sample collected, decon hand 8 hourd 0805 5D-08-0805 sample collected, decon hand 8 hourd 0810 5D-07-0818 and 5D-DUP-02 samples collected, decon hand 5 hourd 0813 5D-01-0813 sample collected, decon hand 8 hourd 0815 5D-03-0815 sample collected, decon hand 8 hourd 0815 5D-100816 sample collected, decon hand 6 hourd 0805 Set bugins down hole gamma 8 can on 38-01, decon equipment	There are left or	2 samples available to faith in	con Mary. Inspend
Surface sample at 58-13, Remaining 2 samples will be located between 58-05 and \$8-07 (\$8-21), Surface sample at 58-20, Remaining samples will be located between \$8-07 and \$8-10 (\$8-22). Surface sample at 58-01, 2 samples between \$800 and \$8-10 (\$8-22). Surface sample at 58-01, 2 samples between \$8-08 and \$8-11 (close to \$8-09) (\$8-23). 2 samples between \$8-08 and \$8.09 (\$8-24). Is ample between \$8-02 and \$8-05. 0745 Begin to collect sediment samples during for title (Ben and Danish) 0750 \$0-09-0750 Sample collected, shoul decon 0754 \$0-06-0754 Sample collected, decon hand shoul 0800 \$0-05-0800 Sample collected, decon hand shoul 0805 \$0-08-0805 Sample collected, decon hand shoul 0805 \$0-08-0805 Sample collected, decon hand shoul 0813 \$0-01-0813 Sample collected, decon hand shoul 0815 \$0-03-0815 Sample collected, decon hand shoul 0816 \$0-100816 Sample collected, decon hand shoul 0805 \$4-08-0816 Sample collected, decon hand shoul 0815 \$0-100816 Sample collected, decon hand shoul	ot 3 samples	he every soll poring (I sufface samp	ile , 2 subsurface sample
58-85 and 58-07 (58-21), Surface Sample at 58-20, Remaining Samples will be located between 58-07 and 58-10 (58-22). Surface Sample at 58-01, 2 samples between 58-09 and 58-11 (close to \$8-09) (58-23). 2 samples between 58-08 and 58-09 (58-24). I sample between 58-02 and 58-05. 0745 Begin to collect sediment samples during low title (Ben and Danis) 0750 50-09-0750 Sample collected, shoul decon 0754 \$0-09-0754 Sample collected, decon hand 8 hours 0758 50-07-0758 Sample collected, decon hand 8 hours 0800 50-05-0800 Sample collected, decon hand 8 hours 0805 50-08-0805 Sample collected, decon hand 8 hours 0810 50-02-0818 and 50-00-02 samples collected, decon hand 8 hours 0813 50-01-0813 Sample collected, decon hand 8 hours 0815 50-03-0815 Sample collected, decon hand 8 hours 0816 50-100816 Sample collected, decon hand 8 hours 0816 50-100816 Sample collected, decon hand 8 hours 0817 50-100816 Sample collected, decon hand 8 hours 0818 50-100816 Sample collected, decon hand 8 hours 0819 50-100816 Sample collected, decon hand 8 hours 0810 50-100816 Sample collected, decon hand 8 hours	We have determined	where Remaining Irragions will be.	11 1.11/26
will be located between 58-07 and 58-10 (58-22). Surface Sample at 58-01, 2 gamples between 58-08 and 58-11 (close to 58-09) (58-23). 2 gamples between 58-08 and 58-09 (58-24). 15 ample between 58-02 and 58-05. 0745 Begin to collect sediment samples during low title (Ben and Danish) 0750 50-09-0750 Sample collected, shoul decon 0754 SA-06-0754 Sample collected, decon hand 8 horel 0758 5D-07-0758 Sample collected, decon hand 8 horel 0800 5D-05-0800 Sample collected, decon hand 8 hovel 0805 SD-08-0805 Sample collected, decon hand 8 hovel 0810 GD-02-0818 and 5D-Dup-02 Samples collected, decon hand 5 hovel 0813 5D-01-0813 Sample collected, decon hand 6 hovel 0815 SD-03-0816 Sample collected, decon hand 6 hovel 0816 SD-100816 Sample collected, decon hand 6 hovel 0816 SD-100816 Sample collected, decon hand 6 hovel) Vita & Sample at	36-13 , Lemaining 2 samples will	he located herveen
at 5B-01, 2 samples between 58-08 and 5B-11 (close to 58-09) (5B-23). 2 samples between 58-08 and 5B-09 (5B-24). Is ample between 5B-02 and 5B-05. 0745 Begin to collect sediment samples during low title (Ben and Danish) 0750 5B-09-0750 Sample collected, shoul decon 0754 SB-06-0754 Sample collected, decon hand 8 hours 0758 5B-07-0758 Sample collected, decon hand 8 hours 0800 5D-08-0800 Sample collected, decon hand 8 hours 0805 SD-08-0805 Sample collected, decon hand 8 hours 0810 SB-02-0818 and 5D-DUP-02 samples collected, decon hand 5 hours 0813 SD-01-0813 Sample collected, decon hand 8 hours 0815 SD-03-0815 Sample collected, decon hand 8 hours 0816 SD-100816 Sample collected, decon hand 8 hours 0817 SD-100816 Sample collected, decon hand 8 hours 0818 SD-100816 Sample collected, decon hand 8 hours 0819 SD-100816 Sample collected, decon hand 8 hours 0810 SD-100816 Sample collected, decon hand 8 hours	58-05 and 58-	or (58-21), Suitain Sample at 38-6	10, Remaining Samples
2 samples between \$8-08 and \$8.09 (\$8-24). Isample between \$8-02 and \$8-05. 0745 Begin to collect sediment samples during low title (Ben and Dany) 0750 \$6-09-0750 Sample collected, shoul decon 0754 \$6-06-0754 Sample collected, decon hand 8 hovel 0758 \$6-07-0758 Sample collected, decon hand 6 hovel 0800 \$6-05-0800 Sample collected, decon hand 6 hovel 0805 \$6-08-0805 Sample collected, decon hand 5 hovel 0810 \$6-02-0818 and \$6-00-02 Samples collected, decon hand 5 hovel 0813 \$6-01-0813 Sample collected, decon hand 6 hovel 0815 \$6-03-0815 Sample collected, decon hand 6 hovel 0816 \$6-100816 Sample collected, decon hand 6 hovel 0816 \$6-100816 Sample collected, decon hand 6 hovel	will be located	between 5B-07 and 58-10 (38-1	22). Surface Sample
beforeen 58-02 and 58-05. 0745 Begin to collect sediment samples during low title (Ben and Danis) 0750 58-09-0750 Sample collected, shoul decon 0754 SA-06-0754 Sample collected, decon hand shoul 0758 SD-07-0758 Sample collected, decon hand shoul 0800 5A-05-0800 Sample collected, decon hand shoul 0805 SD-08-0805 Sample collected, decon hand shoul 0810 GD-02-0818 and SD-DUP-02 Samples collected, decon hand shoul 0813 5D-01-0813 Sample collected, decon hand shoul 0815 SD-03-0815 Sample collected, decon hand shoul 0815 SD-03-0816 Sample collected, decon hand shoul 0816 SD-100816 Sample collected, decon hand shoul 0805 Set bugins down hale gamma scan on SB-01, decon equipment	at 50-01, 2 fa.	uples between 58-09 and 58-11 (closes to 56	8-09) (58-23).
0745 Begin to collect sediment samples during low title (Ben and Danis) 0750 5D-09-0750 Sample collected, shoul decon 0754 SD-06-0754 Sample collected, decon hand showl 0758 SD-07-0758 Sample collected, decon hand showl 0800 5D-05-0800 Sample collected, decon hand showl 0805 SD-08-0805 Sample collected, decon hand showl 0810 SD-02-0818 and SD-Dup-02 Samples collected, decon hand showl 0813 SD-01-0813 Sample collected, decon hand showl 0815 SD-03-0815 Sample collected, decon hand showl 0815 SD-03-0815 Sample collected, decon hand showl 0815 SD-100816 Sample collected, decon hand showl 0805 Set bugins down hole gamma Scan on SB-01, decon equipment			4). 15a-p/2
0750 Sb-09-0750 Sample collected, shoul decon 0754 Sb-06-0754 Sample collected, decon hand showl 0758 Sb-07-0758 Sample collected, decon hand showl 0800 Sb-05-0800 Sample collected, decon hand showl 0805 Sb-08-0805 Sample collected, decon hand showl 0810 Sb-02-0818 and Sb-bup-02 Samples collected, decon hand showl 0813 Sb-01-0813 Sample collected, decon hand showl 0815 Sb-03-0815 Sample collected, decon hand showl 0816 Sb-100816 Sample collected, decon hand showl 0805 Jeff bugins down hole gamma scan on SB-01, decon equipment			
0754 SD-06-0754 Sample collected, decon hand showel 0758 SD-07-0758 Sample collected, decon hand showel 0800 SD-05-0800 Sample collected, decon hand showel 0805 SD-08-0805 Sample collected, decon hand showel 0810 SD-02-0818 and SD-Dup-02 Samples collected, decon hand showel 0813 SD-01-0813 Sample collected, decon hand showel 0815 SD-03-0815 Sample collected, decon hand showel 0816 SD-100816 Sample collected, decon hand showel 0905 Jeff bugins down hole gamma scan on SB-01, decon equipment			k (Ben and Davis)
0758 5D-07-0758 Sample collected, decon hand showel 0800 5D-05-0800 Sumple collected, decon hand showel 0805 5D-08-0805 Sample collected, decon hand showel 0810 GD-02-0818 and 5D-Dup-02 Samples collected, decon hand showel 0813 5D-01-0813 Sample collected, decon hand showel 0815 5D-03-0815 Sample collected, decon hand showel 0815 SD-03-0815 Sample collected, decon hand showel 0816 SD-100816 Sample collected, decon hand showel 0905 Jeff bugins down hole gamma scan on SB-01, decon equipment	0750 56-09-0750	sample collected, shoul decon	
0800 5D-05-0800 sumple collected, decon hand shovel 0805 SD-08-0805 Sample collected, decon hand shovel 0810 SD-02-0818 and SD-Dup-02 samples collected, decon hand shovel 0813 SD-01-0813 Sample collected, decon hand shovel 0815 SD-03-0815 Sample collected, decon hand shovel 0815 SD-03-0815 Sample collected, decon hand shovel 0816 SD-100816 Sample collected, decon hand shovel 0905 Jeff bugins down hole gamma scan on SB-01, decon equipment	0754 54-06-0754	Sample collected, decon had 8	horel
0805 SD-08-0805 Sample collected, decon hand showel 0810 SD-02-0818 and SD-Dup-oz samples collected, decon hand showel 0813 SD-01-0813 Sample collected, decon hand showel 0815 SD-03-0815 Sample collected, decon hand showl 0816 SD-100816 Sample collected, decon hand showl 0905 Jeff bugins down hole gamma scan on SB-01, decon equipment	0758 515-07-0758	Sample collected, decon hand sh	oue!
0810 55-02-0818 and 5D-DUP-OZ samples collected, decon hand showed 0813 5D-01-0813 Sample collected, decon hand showed 0815 5D-03-0815 Sample collected, decon hand showed 0815 SD-100816 Sample collected, decon hand showed 0816 SD-100816 Sample collected, decon hand showed 0905 Jeff bugins down hole gamma scan on SB-01, decon equipment	0800 51-05-0800	sumple collected, decon hand show	rel
0813 50-01-0813 Sample collected, decor hand shove! 0815 50-03-0815 Sample collected, decor hand Shove! 0816 50-100816 Sample collected, decor hand shove! 0905 Jeff bugins down hole gamma scan on SB-01, decor equipment	0805 512-08-0805 5	emple collected, decon hand show	re!
0815 50-03-0815 Sample collected, decon hand Shore! 0816 50-100816 Sample collected, decon hand shore! 0905 Jeff bugins down hole gamma scan on SB-01, decon equipment			
0905 Jeff bugins down hole gamma scan on SB-01, decon equipment	0813 50-01-0813 SM	mple collected, decorpored shove!	
0816 SD-100816 Sample collected, decon hand show (0905 Jeff bugins down hole gamma scan on SB-01, decon equipment	0815 50-03-0815 5	uple collected, decon hand Shoul	
0905 Jett bugins down hole gamma scan on SB-01, decon equipment			
0910 SD-04-0910 Sample collected, along with SD-MS and SD-MS-DUP, decon hand showed	0910 SD-04-0910 Sample	collected, along with SD-ms and SD-ms	5-Dup, decon hand shoul
ofto Jeff Begins downhole gamma scan on SB-04, decon equipment Continued to Page 16			

DISCLOSED TO AND UNDERSTOOD BY


9-27-21

DATE

PROPRIETARY INFORMATION

BOOK

TITLE

1.00:	DZ NIZ ***	П	TW DRIL				_				SB-1	
1 COMPAI		SACE						o Envir		SHEE OF	SHEETS	
3_PROJE	Stat	er Islan.	1 Warehou	SC	4	LOCATION SA	ate	en Islan	-9 N	1		
5 NAME (F ORILLER	Jose G	1 Warehov arcia Hand auge		6	MANUFACTURER'S D	ESIGNA					
	ND TYPES OF	DRILLING	Hund auge	1	8.	8. HOLE LOCATION						
AND OF	IVIF CINO EQUI	WEIGHT.			9	SURFACE ELEVATIO	N					
					10.	DATE STARTED		-1	11. DATE COMP	PLETED		
12 OVERE	URDEN THIC	(NESS			15	10. DATE STARTED 11. DATE COMPLETED 9/27/2021 15. DEPTH GROUNDWATER ENCOUNTERED 2. 4						
		2	.6					-				
13 DEPTH	DRILLED INT	W/	a		16	DEPTH TO WATER	AND EL	APSED TIME AFTE	R DRILLING COI	MPLETED		
14 TOTAL	DEPTH OF H	2.0	o		17	OTHER WATER LEV	'EL MEA	ASUREMENTS (SPE	ECIFY)			
18 GEOTE	CHNICAL SAM	N/a	DISTURBED	ISTURBED	19. TOTAL NUM	BER OF	CORE BOXES					
20. SAMP	LES FOR CHE	MICAL ANALYSIS	VOC	META	LS	OTHER (SPECIFY)	01	THER (SPECIFY)	OTHER (S	PECIFY)	2 1. TOTAL COR	
	2. DISPOSITION OF HOLE BACKFULED					Rad.					%	
22 DISPO	SITION OF HO	DLE	BACKFILLED	MONITORIN		Cramma Scan						
					FIELD SCREE	ENING GEOTECH SA		ANALYTICAL	BLOW			
ELEV.	DEPTH DESCRIPTION OF MATERIALS b 0			PID d	S OR CORE BO	OX NO	SAMPLE NO. f	COUNTS 9	Crami	REMARKS		
	=	Brto gray sand (coarse with fine gravel, cob at surface. moist to		parse)	0.0	0-0.	5			4	203	
	3			Cobbles								
	==	loose	:	10	0.0	0.5-	1		396		166	
		-dark gro	y to black,	w/mL						2		
	3					. 1-2				3758		
	=				0.0					3	100	
	2-	- mediv	m dense									
	Ξ	-wctat	0.41									
	-	- wctat										
	=	EOB et	2-60								0 22	
	3 =	Holes	atriated								B-06 For neter	
	=										for neter	
	=									back	kground	
		a dawn h	ols damma							1	862	
	- 1	Scan	oke gamma completed							9/	24/21	
	U = 1	9/27								''	'	
	=	.1-1	Same.									
	ORM UN 89 55		DJECT	1.1	1	avehouse			HOLE NO.	SB-)	

•

48

T State T STAT	Jose Go	6	2	4 LO		Environme ten Island	ental	SHE OF	SHEETS			
DRILLER TYPES OF E	Jose Go	urcia	2		Sta	La Icland						
DRILLER TYPES OF E	Jose Go	urcia		C 140		ACK ISTANCE						
PLING EQUIP	ORILLING	6		6 MA	NUFACTURER'S D	DESIGNATION OF DRILL	Na					
	PMENT			8 HO	8 HOLE LOCATION							
RDEN THICK		tond auge		9.80	RFACE ELEVATIO	N						
RDEN THICK												
RDEN THICK				10, DA	TE STARTED	2021	11. DATE COM	17/20	21			
	NESS 2.1					TER ENCOUNTERED						
RILLED INTO	BOCK	-la		16. DI	16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED							
EPTH OF HO		- 211		17. 0	HER WATER LEV	/EL MEASUREMENTS (S	SPECIFY)					
HNICAL SAM	PLES	DISTURBED	UND	ISTURBED	19_TOTAL NUM	BER OF CORE BOXES	. /.					
S EOD CHEN		VOC	T META	is Tot	HER (SDECIEV)	OTHER (SPECIEV	-	(SDECIEV)	21. TOTAL COR			
LOT ON GITEN	MICAL ANAL 1313		WEIA					(SFECILT)	RECOVERY			
ITION OF HO	LE	BACKFILLED	MONITORIN		-				%			
		X	X		nma Slan	B	Me	He				
DEPTH	DESC	RIPTION OF MATERIALS					BLOW		REMARKS			
b		d		PID d	e	f f	9	Crami				
=	brown to	dkignay s	and	0.0		0-6.5		41	94			
_	with	gravel 1005	e to									
Ξ	with trace of bles		es	0.0		0.5-1.0		41	78			
1-					1			4245				
4	Brownishw	ed, ML, wit	h tance		4	1-2.0						
	Sund/a	gravel, firm	tosoff,	0.6				1 47	-42			
=			Jan 1									
2-	· Rock o	v cement -	Refusal									
=	EOB o	at 2.1'										
					A.							
=												
3							1					
=												
=												
-	down	hole gamma										
=	Scov	a completed					1					
_=	4	7/27/2021										
Ξ												
=												
II R	DEPTH b	brown te with a medii with Brownish Sund/o moist 2 - Rock o EOB o	DEPTH DESCRIPTION OF MATERIALS brown to dkyray S with gravel loss medium dense m with trace cobbi Brownish red, ML, with Sund/gravel, frim moist 2 - Rock or cement - 1 EOB at 2.1'	DEPTH DESCRIPTION OF MATERIALS brown to dragray sand with grave I wose to medium dense moist with trace cabbles Brownish red, ML, with tance sand/gravel, firm to soft, moist 2 - Rock or cement - Refusal EOB at 2-1'	TION OF HOLE BACKFILLED BACKFILLED MONITORING WELL OTH Care DEPTH DESCRIPTION OF MATERIALS Brown to dkyray sand With grand loose to medium dense, moist with trace cabbles Description of Materials Brownish red, ML, with tance Sand/gravel, firm tosoff, Moist COB COB Brownish red, ML, with tance Sand/gravel, firm tosoff, Moist COB COB COB COB COB COB COB CO	SFOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) RAD TION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) CHEMICAL AND OTHER (SPECIFY) CHEMICAL AND OTHER (SPECIFY) CHEMICAL AND OTHER (SPECIFY) CHEMICAL CHEMICAL AND SCAN FIELD SCREENING RESULTS PID d O O With gravel Loose to Medium dense, woist with trace cubbles O O Brownish ved, ML, with trace Sund/gravel, firm toself, Moist FOR at 2.1' Bown hole gamma S con completed 9/27/2021	SFOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) CAD TION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) CHIMMICA CHIMICA CHIMMICA CHIMICA CHIMICA CHIMMICA CHIMICA CHIMMICA CHIMICA SFOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTH	SFOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) (LAD) TION OF HOLE BACKFILLED MONITORING WELL CHIM WAS STAT DESCRIPTION OF MATERIALS PID GEORGE BOX NO O-O-S GRAMM O-O O-O-S UTIL Brown ish red, mL, with tauce Sand/gravel, firm toseff, No Weist Pobs at 2.1' Pown hole gamma Scon completed 9/27/2021				

0011011		н	TW DRIL							HOLE	SB-3		
COMPAN	Y NAME S	taten 151	and Wareho	ouse 21	DRILLING SUB	CONTRACTOR Aa	rco f	Env.			T 1 SHEETS		
3. PROJEC		USACE			4,	LOCATION Stan	len	Island	NY				
5 NAME O	F DRILLER	J. Garci			6,	MANUFACTURER'S D		TION OF DRILL	1/00				
	D TYPES OF	DRILLING			8,	8, HOLE LOCATION							
AND SAN	MPLING EQUII	PMENT	Hovel auger		9	9. SURFACE ELEVATION							
					10	10 DATE STARTED 11. DATE COMPLETED 9/27/2021							
12 OVERBL	JRDEN THICK	KNESS	.5		15	15, DEPTH GROUNDWATER ENCOUNTERED							
13 DEPTH (DRILLED INT	O ROCK	n/a		16	DEPTH TO WATER	AND ELAF	PSED TIME AFTE	R DRILLING CO	MPLETED			
4 TOTAL (DEPTH OF H	OLE /.5			17	OTHER WATER LEV	EL MEAS	UREMENTS (SPE	CIFY)				
8 GEOTEC	CHNICAL SAM	IPLES ,	DISTURBED	UNDI	STURBED	19 TOTAL NUME	BER OF C	CORE BOXES	v/a	_			
20 SAMPL	ES FOR CHE	MICAL ANALYSIS	VOC	METAL	.s	OTHER (SPECIFY)	ОТН	HER (SPECIFY)	OTHER (S	SPECIFY)	2 1, TOTAL CORE		
						Rad					RECOVERY %		
22, DISPOS	SITION OF HO	DLE	BACKFILLED	MONITORING		OTHER (SPECIFY)	23. SIG	SNATURE OF INS	PECTOR				
			X		FIELD SCREI	Johna Scon	MDI E	ANIAI UTIONI T	Di Over				
ELEV a	DEPTH b		CRIPTION OF MATERIALS		PID d			ANALYTICAL SAMPLE NO f	BLOW COUNTS 9	Cyami	REMARKS		
	Ξ	Dork gray to reddish-gray soul with five gravel, 10050, wet			0.0	-OBP	۱	0-0.5		45	530		
	=		***							1 .			
	. =	mL. f	in medium de	id with	0.0			0.5-1.0		4290			
	1 =	wet		7									
	=	-hole salv	to black som		0.0			1-2		4070			
	-	EnDoft	poring at 1.5	,		- 1							
	2-									1			
	Ξ												
	=												
	目									1			
	=									1			
	=												
		D. A.											
	Ξ	Comp	leted on 127/2021	6 N									
	-	9	127/2021										
4	Ξ					11							

. .

			HTW	DRIL								HOLE	NO SB-4
1 COMPA	NY NAME	SACE		2	DRILLING	SUBCONTR	Actor	col	Environn	untal	SHEE OF	T 1 SHEETS	
3 PROJE	CT Star	ten Isla	and U	varchov	se		4. LOCAT	ION St.	ater	Island	(N)X		
5 NAME (OF DRILLER		Gorcia				6, MANUF	ACTURER'S D	ESIGNA	TION OF DRILL	Foliab	e	
	ND TYPES OF D	RILLING		w/ 4" H.	S. augers	•	1	OCATION					
AND SA	MPLING EQUIP	MENT	3" 0	asing	22		9 SURFACE ELEVATION						
							10. DATE STARTED 1			11. DATE COMPLETED			
2 OVERE	BURDEN THICK	NESS					15 DEPT	H GROUNDWA	TER EN	COUNTERED			
											5.5' ER DRILLING CON	AD) ETED	
	I DRILLED INTO	~	da									IPLETED	
4 TOTAL	DEPTH OF HC	OLE 6					17 OTHE	R WATER LEVI	EL MEA	SUREMENTS (SF	PECIFY)		
8 GEOTE	CHNICAL SAME	PLES		DISTURBED	UNI	DISTURBED	19	L TOTAL NUME	BER OF	CORE BOXES			
20. SAMP	SAMPLES FOR CHEMICAL ANALYSIS VOC M						-	R (SPECIFY)	ОТ	HER (SPECIFY)	OTHER (SF	PECIFY)	2 1. TOTAL CORE
22 Diebe						NG WELL	Ra		22 61	IGNATURE OF IN	SPECTOR		%
.z. DISPC	. DISPOSITION OF HOLE BACKFILLED ** ** ** ** ** ** ** ** **					WELL	OTHER	R (SPECIFY)	23 5	IGNATURE OF IN	SECION		
ELEV.	DEPTH		DESCRIPTIO	N OF MATERIALS	-		CREENING SULTS	GEOTECH SA		ANALYTICAL SAMPLE NO.	BLOW COUNTS		REMARKS
а	b	.04 41		w/ mots, s		PID		e	X 140.	0-0.5	9	Gam	mah 520
y			,	lakbrown I, truce i edium de moist. re shoe ecovery		PI	.8/2):			1.0-2.0	4-2-1-1	68	-41
	3-11-11-11-11-11-11-11-11-11-11-11-11-11	r Reddi	sh brow	in to do			wery 12.0			4.0-6.0	1-1-1		SIZ (cuttings)
	50RM 1UN 89 55		PROJECT	aten 15	, , ,	Rec	ه ن.				HOLE NO.	B-4	

СТ		HTW DRILLING LOG (ten Island workness	SPECTOR B. 7	looks			SHEET SHEETS
٧.	DEPTH.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS	REMARKS
1	b	- wet at 5.5'	d .	e		9	h
	6 =	End of Bring at 6' (ground w	uter)				
	Ξ	Find of Boring et 6' (growns w NC Installed to 5.5'					
	=	PVC Installed to Sid					
	=						
	=						
	Ξ						
	=				1		
Į.	=						
	=						
	=						
	-						
	Ξ						
	_=						
	Ξ						

	ANY NAME	HTW DRII	LING L	LUNG SUBCONTE	NG SUBCONTRACTOR AAVCC ENU. SHEET 1 OF 1:					
	USA		2. DRII	LLING SUBCONTR	Acion	rco Enu.		OF SHEETS	2	
3 PROJ	State	- Island Workho	use	4 LOCAT	ion Sta		J WY	117		
5 NAME	OF DRILLER J	· Garac		6. MANUF	ACTURER'S DI	ESIGNATION OF DRILL	wabe			
	AND TYPES OF DRILLING		r for each re		OCATION					
		le see line	tar each re		CE ELEVATION					
		-		10. DATE	10. DATE STARTED 11. DATE COMPLETED					
2 OVEE	BURDEN THICKNESS				10. DATE STARTED 11. DATE COMPLETED 9/22/2021 15. DEPTH GROUNDWATER ENCOUNTERED					
		10			6w @ 6.01					
3 DEPT	H DRILLED INTO ROCK	~/~		16. DEPT	TO WATER A	NO ELAPSED TIME AF	2021 C	collapse to	7.5	
4 TOTA	L DEPTH OF HOLE	10		17 OTHE	R WATER LEVE	EL MEASUREMENTS (SPECIFY)			
8 GEOT	ECHNICAL SAMPLES	DISTURBED	UNDISTU	JRBED 19	TOTAL NUME	BER OF CORE BOXES		2		
20. SAM	PLES FOR CHEMICAL AN	ALYSIS VOC	METALS	OTHER	(SPECIFY)	OTHER (SPECIFY)	OTHER (S			
			RI	46		RECC	VERY %			
22. DISP	OSITION OF HOLE	BACKFILLED	MONITORING WI	ELL OTHER	(SPECIFY)	23. SIGNATURE OF	NSPECTOR	.11		
		1 1	15		GEOTECH SA	MPLE ANALYTICAL	BLOW			
ELEV.	DEPTH b	b c		RESULTS d	OR CORE BO		COUNTS	REMARKS Gome h		
	- 0-0.5 debr ML w/ toot		o+s			0-0.5		4614		
	=	= 1 opsoil = 0.5-1.4 Gray-brown to dk brown Sand w/g loose, dry						9619		
	0.5			0.0						
	1 -1 -	brown Sand u	gravel							
		loose, dry								
		look, any								
	=					0.5-5.0		7679		
	=	Red-brown ML Sandy, soft +	+0 CL,			0.5-5.0		7679		
	=	Red-brown ML	+0 CL,			0.5-5.0		7679		
	=	fed-brown ML Sandy, soft + moist	to CL, e firm,			0.5-5.0		7679		
	=	Ped-brown ML Sandy, soft +	to CL, e firm,			0.5-5.0		7679		
	1.4-	Ped-brown ML Sandy, soft + moist - brick fragme	to CL, e firm,			0.5-5.0		7679		
	=	Ped-brown ML Sandy, soft + moist - brick fragme	to CL, e firm,	<i>Q</i> . D		0.5-5.0		7679		
	1.4-	Ped-brown ML Sandy, soft + moist -brick fragme present	to CL, e Girm,	0.0		0.5-5.0		7679		
	1.4-	Ped-brown ML Sandy, soft + moist - brick fragme	to CL, e Girm,	0.0		0.5-5.0		7679		
	1.4-	Ped-brown ML Sandy, soft + moist -brick fragme present	to CL, e Girm,	0.0		0.5-5.0		7679		
	2-1.4-	Ped-brown ML Sandy, soft + moist -brick fragme present	to CL, e firm, nts			0.5-5.0		7679		
	2-1.4-	Ped-brown ML Sandy, soft + moist -brick fragme present	to CL, e firm, nts			0.5-5.0		7679		
	2-1.4-	Ped-brown ML Sandy, soft + moist -brick fragme present	to CL, e firm, nts	0.0 Rec 2.2 5.0		0.5-5.0		7679		

ROJECT		HTW DRILLING LOG	-								
UECI	51	Warhouse		Hooks	,		SHEET OF 2 SHEETS 2				
LEV.	DEPTH.	DESCRIPTION OF MATERIALS C	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO.	BLOW COUNTS 9	REMARKS h				
	7	Rock in shoe -wet at 6.0	6.0		5.0-6.0						
	3	- hard drilling	Rec: 117 5.0				7274				
FOR	10	EnD of boring at 10' 3" casing driven to 29.5' and 2" PVC installed for gama Scan. Gamma Scan completed: 9/ 12021				HOLE NO.					

		H	TW DRIL	LING	LOG	•					HOLE	SB-6
COMPA	NY NAME (SACE		2.	DRILLING SI	UBCONTR	ACTOR A	rare	(0		SHEE	T 1 SHEETS 2
PROJE	S.	toter Isl	end work	Louse		4, LOCAT	ION St	oto	in Isla	لم		
NAME	OF DRILLER	Tosc				6, MANUF			ATION OF DRILL	Geopr	obe	
	ND TYPES OF	DRILLING	2" Sp1.+ spo	٧٠		8, HOLE L	OCATION			-		
AND SA	AMPLING EQUI	PMENI	3" casing			9. SURFACE ELEVATION						
						10. DATE STARTED _ /						
2 OVER	BURDEN THIC	KNESS				10. DATE STARTED 9/22/21 15. DEPTH GROUNDWATER ENCOUNTERED						
		6				15 DEPTH GROUNDWATER ENCOUNTERED SATurate J at "4" 16 DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED						
3 DEPTH	1 DRILLED INT	TO ROCK				16. DEPTI	1 IO WATER A	AND ELA	APSED TIME AFT	ER DRILLING CO	MPLETED	
4 TOTAL	DEPTH OF H	lole 6				17 OTHE	R WATER LEVI	EL MEA	SUREMENTS (SF	PECIFY)		
3 GEOTE	CHNICAL SAM	MPLES	DISTURBED	UND	DISTURBED	19	TOTAL NUME	BER OF	CORE BOXES			
20. SAMP	LES FOR CHE	MICAL ANALYSIS	VOC	META	ALS	OTHER	(SPECIFY)	ОТ	THER (SPECIFY)	OTHER (S	PECIFY)	2 1, TOTAL CORE
	DISPOSITION OF HOLE BACKFILLED MONITORIN										%	
2 DISPO	OSITION OF HO	DLE	IG WELL	OTHER (SPECIFY) 23 SIGNATURE OF INSPECTOR								
		1	*		FIELD SCF	REENING	GEOTECH SA		ANALYTICAL	BLOW	Ī-	
ELEV.	DEPTH b	DESC	CRIPTION OF MATERIALS		PIO G		OR CORE BO	X NO.	SAMPLE NO. f	COUNTS 9	Gome	
_	- dk br ML w/ Reut								6-0.5	6-8-9-	430	06
	_=	de reddir	h-brown to own sound in gravel, los						05-2.0	12		
	=	and G	eur semal i	4/50 P مح	ا ه	0					7,	47
	1 -	moist	J. T.	,							''	, , ,
	_											
	=				Rec 1.3/	۵.۵						
	2-				1.57	2.0		-	2-3		1	
	Ξ				0.0				2-3	4/6/8/8		
	=	2.4-3.5 Restish-1	brown CL. Wi	th send	0.0	,				18/	1	
	, -	moist +	e met, soft	•						/8		
	3 -										6	872
_								- 18				
	=	Saturated			lec							
	4 =	Grovel, fue.	grines with	fireto	1.1/	12.0		A				
	1	coorse son	grained with	aler K	1					2.		
	=	loose	head ' sofus	10+12,	Rec 0.4/					2,		
	Ξ	[00 80				7.0				2	6	991
	-											
ID!	FORM		JECT C+a+c	- Islam	J					HOLE NO	-	3-6
≺K.	JUN 89 55	O	STOR	- 111						1447	> 5	5~6

IECT		HTW DRILLING LOC	INSPEC					SHEET 2
	DEPTH		FIE	LD SCREENING		ANALYTICAL	BLOW	OF I SHEETS Z
V.	b	DESCRIPTION OF MATERIALS		RESULTS d	OR CORE BOX NO.	SAMPLE NO.	COUNTS	REMARKS h
	=				11			
	=							
	=							
	6							
,	Ξ	End of boring - Saturated						
		· ·						
	Ξ							
	=							
						,		
	=	- PUC to 25.5 Ret						
W	=							
	=							
	-							
	Ξ						4	
	=							
	Ξ					0		
	=							
					-7255			
		4410 detector (cal 9/8 2221 meter (cal 8/	3/22	Sw 3	35 7755			
	=	2221 meter (eal 8)	6/22)	Sn 1°	16062			
	=							
	=	- background at SB-10 area						
	Ξ	SB-10 area						
	==							
	=	Buckground: 6800 9/22/21						
	=	9/22/21						
	=							
	_=							
	3						1	
	_=							
	Ξ							
FOR								

		H	TW DRILL	LING I	_OG					HOLE	NO 5 3-7
COMPANY NAM	ME US	ACE		2 D	RILLING SUBC	CONTRACTOR	2560	Eau.		SHEE	T 1 SHEETS
PROJECT			rd Workhou	je	4, L	OCATION 5	tate	n Islam	JNY		
NAME OF DRI		5.6			6 N	MANUFACTURER'S	DESIGN	ATION OF DRILL	Geoproh		
SIZES AND TYP		NG - 2	" 301 + 500	on	8.1	OLE LOCATION			Cr Copion		
AND SAMPLIN	G EQUIPMENT	-	3" casing		9, 5	SURFACE ELEVATI	ION		11. DATE COMPLETED		
					10.	DATE STARTED	•	, 1			
2 OVERBURDE	N THICKNESS	1			16	9 DEPTH CROUNDY	/22/		9/	23/2	21
		9.4	,					~ 4.5			
3 DEPTH DRILL	ED INTO ROC	K ~/-	\		16	DEPTH TO WATE	R AND EL	APSED TIME AFTE	R DRILLING COMI	PLETED	
4 TOTAL DEPT	H OF HOLE	9.4	•		17	OTHER WATER LE	EVEL MEA	ASUREMENTS (SP	ECIFY)		
GEOTECHNIC.	AL SAMPLES		DISTURBED	UNDIS	STURBED	19_TOTAL NU	MBER OF	CORE BOXES			
0 SAMPLES FO	OR CHEMICAL	ANALYSIS	VOC	METALS	S C	OTHER (SPECIFY)		THER (SPECIFY) OTHE		ECIFY)	2 1. TOTAL COR RECOVERY
	DISPOSITION OF HOLE BACKETHED MONITO					Rad	L				%
DISPOSITION OF HOLE BACKFILLED MONITORING WE						OTHER (SPECIFY)	23 S	SIGNATURE OF IN:	SPECTOR		
					FIELD SCREE	SCAT NING GEOTECH	SAMPLE	ANALYTICAL	BLOW		
	РТН Ь	DESC	RIPTION OF MATERIALS		RESULTS d	OR CORE		SAMPLE NO. f	COUNTS 9		REMARKS h
1	mer limitarilari	vh brown and, (for frowl or to m.	n to red-bym ine-roasse) w ind MrL, loo indense, dry moist	se	Rec 1.1/2	۵		1.0-2.5	1889	6:	256
3		blick	fragment		0.0 Pec 1.0/e			2-3	15 15 7 17	6	914
4	=	with con	nue gravel,		0.0 Rec 0.5/2.				13 45 14 10	6	267

		TW DRILLING LOG					HOLE NO. 58-7
DJECT	Stete	u Island		lacks.			SHEET SHEETS 2
ELEV.	DEPTH.	DESCRIPTION OF MATERIALS C	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO.	BLOW COUNTS 9	REMARKS h
		* 4					
		End of boring - saturated					-
		-3" cosing advanced to 9.4" (refusal) and PVC installed					
						,	
						-	

		HTW DRIL						HOLE	
1 COMPA	INY NAME US	ACB	2, DF	RILLING SUBCONTE	RACTOR A	arco		SHEE OF	SHEETS
3 PROJE	Stoler	Island		4 LOCA	TION	Staten 1	fond		
5 NAME	OF DRILLER			6 MANU		ESIGNATION OF DRILL		be	
	ND TYPES OF DRILLING	G 4" Morroca	ore	8 HOLE	LOCATION		7.0010	<u> </u>	
		7		9 SURFA	ACE ELEVATION	N			
				10 DATE	STARTED 7	123/21	11. DATE COMP	LETED/	,
12 OVER	BURDEN THICKNESS	9.8				TER ENCOUNTERED	1//-	7 - 1	
13 DEPTI	H DRILLED INTO ROCK			16, DEPT	'H TO WATER A	AND ELAPSED TIME AF	TER DRILLING CO	MPLETED	
14 TOTA	L DEPTH OF HOLE			17 OTHE	ER WATER LEV	EL MEASUREMENTS (SPECIFY)		
I8 GEOTI	ECHNICAL SAMPLES	DISTURBED	UNDIS	TURBED 19	9 TOTAL NUME	BER OF CORE BOXES			
20 SAMI	PLES FOR CHEMICAL ANALY	sis VOC	METALS	OTHE	R (SPECIFY)	OTHER (SPECIFY)	OTHER (S	PECIFY)	2 1. TOTAL CORE
22. DISP	OSITION OF HOLE	BACKFILLED	MONITORING N	WELL OTHE	R (SPECIFY)	23 SIGNATURE OF	NSPECTOR		%
		×	1,1	den	a bole				
ELEV a	DEPTH b	DESCRIPTION OF MATERIALS		FIELD SCREENING RESULTS d	1	AMPLE ANALYTICAL	BLOW COUNTS 9		REMARKS h
	2	Toppoil- debrate 2 de br sond u nd gravel, mais ret, loose to m.	u/ mc st to dense	6.0 fu.1.7/4		0.5-1.7		731	2

. .

DEPTH. DEPTH. DESCRIPTION OF MATERIALS CESCRIPTION OF MATERIALS FIELD SCREENING RESULTS FIELD SCREENING OF COUNTS RESULTS O. 0 REMARKS 1 REMARKS 1 O. 0 REMARKS 1 O. 0 REMARKS 1 O. 0 REMARKS 1	DEPTH DESCRIPTION OF MATERIALS FIELD SCREENING RESULTS RESULTS RESULTS REPTH OR OR OR BOX NO REMARKS REMA	OJECT		W DRILLING LOG	INSPECTOR			SHEET
Solvented Rec: 1-1/4 Rec: 1-1/4	Solvented Rec: 1-1/4 Rec: 1-1/4				RESULTS	OR CORE BOX NO.	COUNTS	
8 — End of boring at 8' - solvented	8 — End of boring at 8' - solvented			ne+	0.0		5-6	7164
			8		Rev. 1-1/4			
	bgs and 2" PVC Installed							
		FORM						

	NY NAME US ACE		2 0	ORILLING SUBCONT	RACTOR	Anres		HOLE NO SHEETS	
PROJE		kh-1 40 1		4 LOCA	TION ST	Aurcu Poter Island	J NY	OF SHEETS	
NAME	OF DRILLER 7	Gorcean	0 <u>8</u> C	6 MANU		DESIGNATION OF DRIL		ahe	
	ND TYPES OF DRILLING	2" Macro 4 3" (as'ay 5	, ,	8 HOLE	LOCATION		reopr		
AND SA	MPLING EQUIPMENT	3" (as'ay 5	•	9 SURF	ACE ELEVATION	N			
				10 DAT	STARTED. /	,	11 DATE COME	LETED .	
OVEDE	URDEN THICKNESS				STARTED /		11 DATE COMP	12/21	
		9.5'				TER ENCOUNTERED			
	DRILLED INTO ROCK	m/c		16 DEP	TH TO WATER A	AND ELAPSED TIME A	FTER DRILLING COI	MPLETED	
4 TOTAL	DEPTH OF HOLE	7.5'		17. OTH	ER WATER LEV	EL MEASUREMENTS	(SPECIFY)		
GEOTE	CHNICAL SAMPLES	DISTURBED	UNDIS	STURBED	19. TOTAL NUMI	BER OF CORE BOXES	3		
O. SAMP	LES FOR CHEMICAL ANALY	rsis VOC	METALS		R (SPECIFY)	OTHER (SPECIF)	OTHER (S		AL CORE
2 DISPO	SITION OF HOLE	BACKFILLED	MONITORING	P. OTHE	R (SPECIFY)	23. SIGNATURE OF	INSPECTOR.		%
2 . 3 101 C	OTTON OF HOLE	×	MONTONINO	Gom		her	./	_	
ELEV.	DEPTH	DESCRIPTION OF MATERIALS		FIELD SCREENING RESULTS	GEOTECH SA			REMARKS	
a	b	47		d	е	f	9	Gannah	
	= 0.1	Touchil	37,717.~				0-0.5	6780	
		(30.1			40				
	buc	Lesa Jungray,	gonly	P1D-			0.5-1.7	6320	
	bac	che to Joshgray, rue (fine), mois	sonly it M.	P10- G.O.			0.5-1.7	6320	
	buc Jr dev	Brown, silt, men Topsoil the so Josephany, ruel (fine), mais	sondy t M.				0.5-1.7	6780 6320	ı
				910 - 6.0 - 4.0 Strong			0.5-1.7	6320 6780	ı
	- 1.5-12	Red-brown, n	16, sendy				0.5-1.7	6320 67808	ı
	7-5-12 w:1	ked-brown, meist	16, sendy				0.5-1.7	6320 6780 ₆₁	1
	7-5-12 w:1	Red-brown, n	16, sendy	4.0 Strong odor			0.5-1.7	6320 6780	ı
	7-5-12 w:1	ked-brown, meist	16, sendy				0.5-1.7	6320	•
	7-5-12 w:1	ked-brown, meist	16, sendy	4.0 Strong odor			0.5-1.7	6320	
	7.5-12 2 will	ked-brown, meist	16, sendy	4.0 Strong odor			0.5-1.7	6320	
	7.5-12 2 will	ked-brown, meist	16, sendy	4.0 Strong odor			0.5-1.7	6320 6780g	•
	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ked-brown, meist	16, sendy	4.0 Strong odor			0.5-1.7	6320 6780g	
	7.5-12 2 will	ked-brown, meist	16, sendy	4.0 Strong odor			0.5-1.7	6320 6780g	
	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ked-brown, meist	16, sendy	4.0 Strong odor			4-6.5	6320 6780g	
	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ked-brown, meist	16, sendy	4.0 Strong odor					

JECT		HTW DRILLING LOG (ISPECTOR				SHEET
-			FIELD SCREENING	GEOTECH SAMPLE	ANALYTICAL	PLOW/	OF SHEETS
LEV.	DEPTHb	DESCRIPTION OF MATERIALS C	RESULTS d	OR CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS h
	<u>ا</u>	wet w/coorse growel	6.0				6114
	7	wy coorse g.	lec ·				
	8 =		1.2/40				
		- softwarted, coarsegravel	6.0				6667
	9	- Pock in shoe					
	"		lec 6.2/4				
	12		-				
		3° casing to 9.5' (refusal) 2" puc well installed					

	COMPANY NAME USACE					•					HOLE	NO -11
COMPA	Y NAME	USACE		2	DRILLING S	SUBCONTR	ACTOR A	o+c	Env.		SHEE	ET 1 SHEETS
3 PROJE	СТ .	toter Isl	lor d			4 LOCAT	ION 5	toter	s Env.			
5 NAME C	F DRILLER	I. Gorci	ea .			6 MANUF		_	TION OF BRILL	Feograb	_	
	ID TYPES OF D	ORILLING 2	YY Mac	rocore		8 HOLE L	OCATION					
AND SA	MPLING EQUIP	WENT 3	" X S' Cosin	7		9 SURFA	CE ELEVATION	N				
						10 DATE	STARTED _		, 1	11. DATE COMPLI	ETED	
12 OVERE	URDEN THICK	NESS .				15 DEPTH	9/ GROUNDWA	23/		11. DATE COMPLE 9/23	12/	
		15			-							
	DRILLED INTO	^/a				16 DEPTH	H TO WATER A	AND ELA	APSED TIME AFTI	ER DRILLING COMP	PLETED	
14 TOTAL	DEPTH OF HO	15'				17 OTHE	R WATER LEVE	EL MEA	SUREMENTS (SP	ECIFY)		
I8 GEOTE	CHNICAL SAM	PLES	DISTURBED	UND	STURBED	19	TOTAL NUME	BER OF	CORE BOXES			
20 SAMP	LES FOR CHEM	MICAL ANALYSIS	VOC	META	LS	-	(SPECIFY)	ОТ	HER (SPECIFY)	OTHER (SPE	ECIFY)	2 1, TOTAL CORE
00 0100	OITION CT		BA OVER V	140411=0=	O MELL		L J	00.5	ONATURE OF	ODECTOR .		%
zz. DISPC	SITION OF HO	LE	BACKFILLED	MONITORIN	G WELL	GIM	(SPECIFY)	23 SI	IGNATURE OF IN	SPECIOR		
FIFT	DEDT	2000	IRISTIAN OF WATER			REENING	GEOTECH SA		ANALYTICAL	BLOW	-	DEMARKS
a	DEPTH b	DESC	C C	5		ULTS d	OR CORE BO	X NO.	SAMPLE NO.	COUNTS 9		REMARKS h
	=	Concre	te							0.0.5	4:	314
	==				-							
	Ξ	DGA	fill to 3	.6					\ }			
	, =											
	=											
	Ξ											
	2											
	=											
	=											
	, 3											
	3 =											
	=										4	524
	3	3.6- Gry	-br send w	/mL,	Rec	14.0						
	y	dry t	o moist lo	ose to	1.3	/4.0						
		m de	nsc.							4-5		
	-	3										
	=									' '		
	Thum.											

DJECT	HTW DRILLING	INSPECTOR				SHEET
LEV. DEF	DESCRIPTION OF WINTERNAL	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS 9	OF SHEETS REMARKS h
6.					5-6	
8	Red-brown ML Woist, firm	fec 1.8 4.0				
9.	w/growl, soft to	N. 50ft				. 11/2/
10.	= - wet					U4:31
10						
12		Rec 1.7 4.0				
12.	EOB at 121 BGS 3" RUSING a duoncee 15' Bgs, PVC in	l to stilled				see 38-6 for neter into -Background 4132 on 9/23/21

I COMPANY NAM	ME	TW DRIL		RILLING SUBCONTI	RACTOR ,			SHEE	B-12
3_PROJECT	USACE			4 LOCA	TION	torco	- 11/	OF	SHEETS
5 NAME OF DRII	Staten 151		nouse	C MANUA	S76	fen Island ESIGNATION OF DRILL	NY		
	1. 60.					ESIGNATION OF DRILL	Creo prol	re	
7 SIZES AND TYP AND SAMPLING	PES OF DRILLING G EQUIPMENT 2"	×5' Cosin	rocore	8, HOLE	LOCATION				
			/	9. SURF	ACE ELEVATION	V			
				10 DATE	STARTED		11 DATE COMPLI	ETED,	
12 OVERBURDEI	N THICKNESS			15 DEP	9/23/2	TER ENCOUNTERED	7/2	3/7	/
	13								
13 DEPTH DRILL	ED INTO ROCK			16 DEP	TH TO WATER A	AND ELAPSED TIME AFTE	R DRILLING COM	PLETED	
14 TOTAL DEPT	H OF HOLE			17, OTH	ER WATER LEV	EL MEASUREMENTS (SP	ECIFY)		
18 GEOTECHNIC	1	DISTURBED	UNDIS	TURBED 1	9. TOTAL NUME	BER OF CORE BOXES			
20. SAMPLES FO	OR CHEMICAL ANALYSIS	VOC	METALS	OTHE	R (SPECIFY)	OTHER (SPECIFY)	OTHER (SPE	ECIFY)	2 1. TOTAL COR
				1	41				RECOVERY %
22. DISPOSITION	OF HOLE	BACKFILLED	MONITORING		R (SPECIFY)	23. SIGNATURE OF INS	SPECTOR		
			1	Gon	1				
		RIPTION OF MATERIALS		FIELD SCREENING RESULTS	OR CORE BO		BLOW COUNTS		REMARKS
a I	- 0-0.5 (0			d	e	0:05	9	_	h New Com
	3							>	125
	- 0.5-1.5 I	PHA							
1.									
	=		1						
74	=								
	1.5-12 blad	the to alk-gray	y soud	0.5		0.0.5		51	rs
2	dense	il, ML, dry	, m.	PID 2.8				-,	
	-1			2.0					
	- brick	, , , , ,							
	3								
3	7								
	= - wood,	sordy				3-4		4	729
		·		fec 2.6					
		ML, moist,	firm,	fec 2.6 4.0					
			1						
4	= "						/4		
Ψ.				0.0					
4				0.0					

	HTW DRILLING LO	INSPECTOR				SHEET
DEPTH.	DESCRIPTION OF MATERIALS C	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS	OF SHEETS REMARKS h
6	-gravelhy			6-8		4980 4959
8		acc 3.2/4.0				
5—	wet at 8.0'					4977
10						4837
n —		Rec 2.4/4.8				4836
limilim	EBB at 12' bys 3" Cosing/Puc to 15' by	3				

		HTW DRIL	LING L	_OG				HOLE	B. 14
1 COMPAN	DICACE			RILLING SUBCONTE	RACTOR	larco		SHE	ET 1 SHEETS
3 PROJEC	51.4	r Island War Gercia 2" x 4' M 3" x 5' M	chouse	4 LOCAT	TION 5+	oten 15	lond NY		
5 NAME C	F DRILLER	T. Garcia	7,0020	6 MANUI	ACTURER'S D	ESIGNATION OF I	DRILL		
	ID TYPES OF DRILLING	2" × 4' M	ocrocore	8 HOLE	LOCATION	Creque			
AND SA	MPLING EQUIPMENT	3" × 5 .00	SING	9 SURFA	CE ELEVATIO	N			
				10 DATE	STARTED	/	11. DATE COM	PLETED /	
12 OVERB	URDEN THICKNESS				STARTED 9/23	TER ENCOUNTER	11. DATE COM	13/2	.)
		15'						MOLETED	
	DRILLED INTO ROCK						E AFTER DRILLING CO	DMPLETED	
14 TOTAL	DEPTH OF HOLE	5'		17 OTHE	R WATER LEV	EL MEASUREMEN	TS (SPECIFY)		
8 GEOTE	CHNICAL SAMPLES	DISTURBED	UNDIS	TURBED 19	TOTAL NUM	BER OF CORE BO	XES		
20, SAMPI	ES FOR CHEMICAL ANALYS	sis VOC	METALS	OTHER	R (SPECIFY)	OTHER (SPE	OTHER (SPECIFY)	2 1. TOTAL CORE
22 DISPO	SITION OF HOLE	BACKFILLED	MONITORING		R (SPECIFY)	23 SIGNATURE	OF INSPECTOR		%
		X		Gan					
ELEV	DEPTH	DESCRIPTION OF MATERIALS		FIELD SCREENING RESULTS	GEOTECH SA				REMARKS
	1.5-7. 2 blac m.	S Sond w/gra L to red-br., dense, dry to wood, brick	loose to	Pec 2.7.5		2.5			92
	DRM	PROJECT					HOLE NO		

OJECT	HTW DRILLING LOG	INSPECTOR				SHEET
LEV DEPTH b	DESCRIPTION OF MATERIALS C	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO	BLOW COUNTS 9	OF SHEETS REMARKS h
8	7.5-12 fl-br ML, w/smd morst, firm to soft	pec 2.4 4.0		6-8		4482
9	wet	fec 1.4/4.0				4334
	EOB at 12' BGS 3" cozing to 15', PVC to 15'					

		HTW DRIL	LING	LOG					HOLE	B-15
COMPA	NY NAME US ACE		2 [ORILLING SUBCO	ITRACTOR	A	ca Envi		SHEE	T 1 SHEETS
3 PROJE		Islan 1 Worch	ייירי.	4 LO	CATION 57	otes	TCO ENU LION OF DRILL	1 NY		
5 NAME (OF DRILLER	Islan 1 Worch		6. MAI	NUFACTURER'S D	ESIGNA	TION OF DRILL	Leve Du	20	
	ND TYPES OF DRILLING	- AT INO	Crocore.	8. HO	LE LOCATION			/ Copie	7	
AND GA	NWPEING EGOIPMENT	3" x 5' Cas	ng	9 SUF	RFACE ELEVATION					
				10 DA	TE STARTED	,	<i>/</i> T	11. DATE COMP	LETED /	
12 OVERE	BURDEN THICKNESS	,		15 DE	PTH GROUNDWA	73/ TER EN	01	9/0	ospe	
13 DEPTH	DRILLED INTO ROCK	15'		16. DE	PTH TO WATER A	AND ELA	APSED TIME AFTE	R DRILLING COM	APLETED	
14 TOTAL	DEPTH OF HOLE	n/a					SUREMENTS (SPE			
	ECHNICAL SAMPLES	0 DISTURBED	LIMITA	STURBED	19 TOTAL NUME			-0.17		
								1		Ua
20 SAMP	PLES FOR CHEMICAL ANALY:	sis VOC	METAL		HER (SPECIFY)	ОТ	HER (SPECIFY)	OTHER (SF	PECIFY)	2 1. TOTAL COR RECOVERY
22. DISPO	OSITION OF HOLE	BACKFILLED	MONITORING		HER (SPECIFY)	23 SI	GNATURE OF INS	PECTOR		70
		*		G	mma					
ELEV.	DEPTH b	DESCRIPTION OF MATERIALS		FIELD SCREENIN RESULTS d	GEOTECH SA OR CORE BO		ANALYTICAL SAMPLE NO. f	BLOW COUNTS 9		REMARKS h
	3 - 2-7-3.	1 Rd-brown m firm, son Ly 6.3 bl. to dky sand w/grow loose, dry to	L, muist	0.0 lec 3.5/4	•		(.5-2.0		42	21
				0.0						

TIVV DIVILLING LOC	INSPECTOR				SHEET
DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO	ANALYTICAL SAMPLE NO	BLOW COUNTS	OF SHEETS REMARKS
C	a	е	5-6	9	4436
6.3-12 Rd-bo ML, sondy moist, fine to soft	6.0				
	acc you		7.8		4619
-wet/solvroted Strong petroleum odory Sheen/strin	/				4426
	6.6				
	Pec 1.2/4.0				
EOB at 12' bgs 3"casing/pvc to 15"					
	DESCRIPTION OF MATERIALS 6.3-12 Rd-br ML, Sondy Morist, fine to soft - wet/soturoted Strong petroleum odor, Sheen/strin	DESCRIPTION OF MATERIALS 6.3-12 Rd-br ML, Sondy, Moist, firm to soft Pec Fig. Chen/strin Cac 1.2/4.0	DESCRIPTION OF MATERIALS FIELD SCREENING RESULTS OR CORE BOX NO. 6.3-12 Rd-b, ML, sondy, Norist, firm to soft Rec 3/6/ Strong Petroleum o Lor/ Sheen/strin O. C Rec 1.2/4.0	DESCRIPTION OF MATERIALS PIELD SCREENING OR CORE BOX NO. SAMPLE NO. S-6.3-12 Rd-br ML, sondy, NOO'ST, firm to soft Rec 4.0 Strong petroleum o dor/ Sheen/s frin O. C Rec 1.2/4.0	DESCRIPTION OF MATERIALS FIELD SCREENING RESULTS OR CORE BOX NO. SAMPLE NO. COUNTS SAMPLE NO. COUNTS STORE 6.3-12 Rd-b, ML, sondy, Norist, firm to soft Rec 3/2 Strong Petroleum of y Sheen/strin O.C Rec 1.2/4.0

1 COMPA	HTW DRILLING LO												SB-16	
		USAC					SUBCONTR	ACTOR A	arc	0		SHE!	SHEETS	
3. PROJE	СТ	Sta	len	Island.	weeho	ise	4. LOCAT	'ION						
5 NAME (OF DRILLER						6 MANUF	ACTURER'S D	ESIGNA	ATION OF DRILL	Geof	robe	,	
	ND TYPES OF		4'	macro			8. HOLE LOCATION							
							9. SURFA	CE ELEVATION	N					
							10, DATE	STARTED /2	2/2	2.1	11. DATE COMP	LETED 2	,	
12 OVERE	BURDEN THIC	KNESS	3.4				15. DEPT	H GROUNDWA	TER EN	COUNTERED	1/0	2/2		
13 DEPTH	I DRILLED INT	O ROCK					16. DEPT	H TO WATER A	AND ELA	APSED TIME AFTE	R DRILLING COM	MPLETED		
14 TOTAL	DEPTH OF H	OLE	3.4				17. OTHE	R WATER LEV	EL MEA	SUREMENTS (SPI	ECIFY)			
8 GEOTE	CHNICAL SAN	//PLES		DISTURBED	UNDI	STURBED	19	. TOTAL NUME	BER OF	CORE BOXES				
20. SAMP	LES FOR CHE	MICAL ANALYS	sis	Voc	METAL	s	OTHER	R (SPECIFY)	ТО	HER (SPECIFY)	OTHER (SI	PECIFY)	2 1. TOTAL COR	
							Ro	2 d			REC		RECOVERY %	
22. DISPO	SITION OF HO	DLE	BACKFILLED MONITORING WELL OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR											
			_	×			REENING	GEOTECH SA		ANALYTICAL	BLOW			
ELEV.	a b				ULTS d	OR CORE BO	X NO	SAMPLE NO. f	COUNTS 9		REMARKS h			
	Ξ			n, ML, me						0-0.5		7	116	
			Soto	Topsoil										
	,	0.6-3	3.4	Redbr to with s l, dry,										
	=	61	ML	. w . th S	md,	0.	O							
	=	2	grave	() GIAA)	+11~		_							
	=													
	2 -									2-3		7	121	
	Ξ				1									
	=													
	3-													
		-Brick	ov C	oncrete re	tusal	Pec 2	3.4							
	=	tob	3.4'	Refusal										
	=				-,									
	=	*		was offe										
			5 time	nes with	Consisten	r								
	Ξ		15+0	sal										

			HT	W DRIL	LING.	LOG	.OG						SB-23
COMPAN	Y NAME (TEC				DRILLING S	UBCONTR	ACTOR	ha			SHEE	SHEETS
3 PROJEC	СТ						4 LOCATION Staten Island						
5 NAME C	F DRILLER						6 MANUFACTURER'S DESIGNATION OF DRILL						
	ID TYPES OF D		Н	and Auger	-		8. HOLE LOCATION						
		113					9 SURFA	CE ELEVATION	N				
							10 DATE	Phylo	4		11 DATE COMPI	ETED 1/21	
12 OVERB	URDEN THICK	NESS	2.	5			15 DEPT	H GROUNDWA	TER EN	COUNTERED			
13 DEPTH	DRILLED INTO	ROCK					16 DEPT	HTO WATER A	AND ELA	APSED TIME AFTE	R DRILLING CON	IPLETED	
14 TOTAL	DEPTH OF HO	DLE					17 OTHE	R WATER LEV	EL MEA	SUREMENTS (SPI	ECIFY)		
18 GEOTECHNICAL SAMPLES DISTURBED UNDISTU					DISTURBED	19	TOTAL NUME	BER OF	CORE BOXES				
20 SAMPI	LES FOR CHEM	IICAL ANALYS	is	VOC	MET	ALS	OTHER	(SPECIFY)	ОТ	HER (SPECIFY)	OTHER (SF	PECIFY)	2 1, TOTAL CORE
							2	-1					RECOVERY %
22. DISPOSITION OF HOLE		BACKFILLED MONITORING W		NG WELL	OTHER (SPECIFY) 23 SIGNATURE OF IT		IGNATURE OF INS	PECTOR					
				X			Gim	ma					
ELEV a	DEPTH b		DESCRIP	TION OF MATERIALS	3		REENING JLTS d	GEOTECH SA OR CORE BO e		ANALYTICAL SAMPLE NO. f	BLOW COUNTS 9		REMARKS h
	2-	0.3-2.4	w/ gran	topsoil, my to block over, dry o	Saul formoiet					6.5-1.5		46	,15
			1										
_	ORM UN 89 55		PROJEC	т							HOLE NO.		

HTW DRILLING LOG HOLE NO. SB-24 1 COMPANY NAME 2. DRILLING SUBCONTRACTOR SHEET 1 USACE ~/a SHEETS 3. PROJECT 4. LOCATION Staten Island worehouse 5 NAME OF DRILLER 6 MANUFACTURER'S DESIGNATION OF DRILL Hand Avger 7 SIZES AND TYPES OF DRILLING **B. HOLE LOCATION** AND SAMPLING EQUIPMENT 9, SURFACE ELEVATION 10. DATE STARTED 12 OVERBURDEN THICKNESS 15. DEPTH GROUNDWATER ENCOUNTERED 13 DEPTH DRILLED INTO ROCK 16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED 14 TOTAL DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY) 18 GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED 19, TOTAL NUMBER OF CORE BOXES 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) 2 1. TOTAL CORE OTHER (SPECIFY) OTHER (SPECIFY) RECOVERY Rad 22. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR X FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW ELEV_ DEPTH DESCRIPTION OF MATERIALS RESULTS OR CORE BOX NO. SAMPLE NO. COUNTS REMARKS а 6-0.5 dkbr mu, moist, 0-0.5 4668 05-2.5 dk grang to bl Said w/mc, grand look, moist 0.5-2 5359 EOB at 2.5'

MRK JUN 89 55

PROJECT

HOLE NO.

APPENDIX B

QUALITY CONTROL SUMMARY REPORT

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, N. Apr	ew York ril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

OUALITY CONTROL SUMMARY REPORT

This Quality Control Summary Report (QCSR) contains the examination of the quality of the analytical data for samples collected at the former Staten Island Warehouse (SIW) Formerly Utilized Sites Remedial Action Program Site. The intent of this assessment is to document the usability of the data based on project measurement performance criteria, precision, accuracy, representativeness, comparability, completeness, and sensitivity.

Analytical test methods and sample volume, preservation, holding time, and quality control requirements were met, as presented in the Uniform Federal Policy-Quality Assurance Protection Policy (UFP-QAPP). Standard methodology was used for sample collection, identification, documentation, handling, packaging, shipping, and chain-of-custody. Surface soil, subsurface soil, sediment, and test pit samples collected were analyzed for Ra-226 (Pb-214, Bi-214), Th-234, Ac-228, and K-40 by gamma spectroscopy (Method DOE Ga-01-R/901.1 (21 day)), and U isotopes (U-234, U-235, U-238) by alpha spectrometry (Method D3972 U-02). Groundwater samples collected were analyzed for gross alpha/gross beta by gas proportional counting (Method EPA 900/9310), Ra-228 (Method EPA 904/9320), Total Uranium (ASTM D5174/D5174M), and Ra-226 (Method SM-7500-RA-B M). All of the analyses were performed and reported by Pace Analytical, Mt. Juliet, TN. A list of the Sample Delivery Groups (SDGs) is presented in Table 1. Radiological data packages received from the analytical laboratory were validated and qualified in accordance with the Kansas City District Radionuclide Data Quality Evaluation Guidance (CENWK) referenced in the UFP-QAPP and the Stage 3 and 4 guidelines provided in the U.S Department of Defense (DoD) General Data Validation Guidelines. Additional documentation required for data validation was obtained from the laboratory as necessary during the validation process. Through proper implementation of the project data verification, validation, and assessment process, project information has been determined to be acceptable for use, with the exception of 3 rejected results. The overall quality of the data meets or exceeds the established project objectives. Assessment of the data for quality and usability is presented below.

PRECISION

Precision is a measure of mutual agreement among individual measurements performed under the same laboratory controls. Field precision is assessed through the evaluation of field duplicate results. Analytical precision is assessed through the evaluation of laboratory duplicate, laboratory control sample duplicate, and matrix spike (MS)/ matrix spike duplicate (MSD) results.

Precision for radiological results was evaluated by calculating the relative percent difference (RPD), and/or normalized absolute difference (NAD), which accounts for uncertainty in the laboratory results. The RPD is calculated for all sample/duplicate pairs if a detectable result is reported for both the parent and duplicate. The RPD is not calculated when the analyte in one or both of the samples is not detected. In the cases where the RPD is not calculated, the comparison is counted as acceptable in the overall number of comparisons. The calculated RPD results were compared to performance criteria of less than or equal to 25% for gamma analysis and less than or equal to 20 percent (%) for alpha, gross alpha and beta, Radium-228, Uranium, and Radium-226 analyses. Where RPD values were greater than the project criteria, precision was evaluated by calculating the NAD. NAD values of less than or equal to 3 are considered acceptable per the UFP-OAPP. RPD and NAD are calculated as follows:

$$RPD = \left[\frac{|S - D|}{\frac{S + D}{2}}\right] \times 100$$

$$NAD = \left[\frac{|S - D|}{\sqrt{\sigma_{\rm S}^2 + \sigma_{\rm D}^2}} \right] \times 100$$

Where:

 $S = Parent \ Sample \ Result$

D = Duplicate Sample Result

 σ_S^2 = Parent Sample Combined Standard Uncertainty (CSU)

 σ_D^2 = Duplicate Sample CSU

Calculated NAD values less than or equal to 3 were considered acceptable. Using NAD performance criteria of greater than 3 provides greater than 99.9% confidence that the numbers are not in agreement. Values greater than 3 were evaluated for qualification as estimated (J) but still usable for project decisions.

Field Precision

Field duplicate samples were collected to ascertain the contribution to variability (i.e., precision) due to the combination of environmental media, sampling consistency, and analytical precision that contribute to the precision for the entire system of collecting and analyzing samples. The field duplicate samples were collected from the same spatial and temporal conditions as the primary environmental sample. The field duplicate samples are submitted to the laboratory along with the original parent samples. Both samples are analyzed under the same laboratory conditions.

Eleven parent and field duplicate soil sample pairs were compared for 3 analytes for alpha spectroscopy and 6 analytes for gamma spectroscopy, for a total of 99 comparisons, which are presented in Tables 2 and 3. One comparison (shown in bold, Table 3) exceeded the factor of 4 criteria specified in the UFP-QAPP for field duplicates, representing a 1.01% exceedance rate. No groundwater field duplicates were collected. Comparisons that did not meet the criteria can indicate a lack of precision in field sampling and perhaps a lack of sampling representativeness. The affected samples were qualified as estimated (J) but still usable for project decisions.

Laboratory Precision

Laboratory precision was evaluated by calculating the RPD and NAD between results for laboratory duplicate samples and their associated parent samples, laboratory control samples/ laboratory control sample duplicates (LCS/LCSD), and MS/MSD. These Quality Control (QC) samples were analyzed at a rate of one per analytical batch. Precision was considered acceptable if the RPD was less than or equal to 25% for gamma analysis and less than or equal to 20% for alpha, gross alpha and beta, Radium-228, Uranium, and Radium-226 analyses, or if the NAD was less than 3.

Sixteen parent and laboratory duplicate sample pairs were analyzed (5 duplicates for 3 alpha analytes; 6 duplicates for 6 gamma analytes; 1 duplicate for gross alpha; 1 duplicate for gross beta; 1 duplicate for Radium-228; 1 duplicate for Uranium; 2 duplicates for Radium-226), resulting in a total of 57 comparisons, which are presented in Tables 4 through 9. One comparison (shown in bold) exceeded the criteria, representing a 1.8% exceedance rate.

Six LCS/LCSD pairs were compared for 3 analytes for gamma spectroscopy, for a total of 18 comparisons. All comparisons were within the criteria, as shown in Table 10.

Ten MS/MSD pairs were analyzed (5 pairs for 2 alpha analytes; 1 pair for gross alpha; 1 pair for gross beta; 1 pair for Radium-228; 1 pair for Uranium; 2 pairs for Radium-226), resulting in a total of 16 comparisons. All comparisons were within the criteria, as shown in Tables 11 through 15.

For comparisons that did not meet the criteria, there is an indication of the precision goal not being met, and all samples for that analyte in the batch were qualified as estimated (J) but still usable for project decisions.

Accuracy

Accuracy is defined as the degree to which the reported measurement represents the true value. Analytical accuracy is assessed through the evaluation of laboratory blanks, equipment blanks, Laboratory Control Samples (LCSs), and MS recoveries.

Laboratory Method Blanks (MB)/Equipment Blanks (EB)

Laboratory method blanks are analyzed to evaluate the potential contamination of samples due to preparation and analytical procedures. Laboratory method blanks are prepared and analyzed exactly like the field samples and are designed to represent the matrix of interest as closely as possible. Laboratory method blanks were prepared and analyzed with each analytical batch. Equipment rinsate blanks were analyzed to verify the absence of any contamination of field equipment. Two equipment rinsate blank samples were collected.

Sixteen laboratory method blanks were analyzed for a total of 57 analytes, which are presented in Tables 16 through 21. Two analytes (shown in bold) were greater than the Minimum Detectable Activity, resulting in a 3.5% exceedance rate. When the criteria were not met, there is an indication of laboratory contamination. Samples for that analyte in the batch were evaluated for qualification: samples less than 5 times the blank value were qualified as non-detect (U), and samples with results greater than 5 times but less than 10 times the blank result were qualified as estimated (J) but still usable for project decisions.

Two equipment blanks were analyzed for a total of 10 analytes, which are presented in Table 22. One analyte (shown in bold) was greater than the Minimum Detectable Activity, resulting in 3.5% exceedance. When the criteria were not met, there is an indication of field equipment contamination. All samples for that analyte in the batch were evaluated for qualification: samples less than 5 times the blank value were qualified as non-detect (U), and samples with results greater than 5 times but less than 10 times the blank result were qualified as estimated (J) but still usable for project decisions.

Laboratory Control Samples (LCS)

The LCS is a laboratory spike sample that originates from a source other than the source of the calibration standards and serves as a zero-blind check on the laboratory's accuracy/bias. The LCSs were prepared and analyzed along with each analytical batch. Accuracy/bias is measured through a comparison of a known amount of radionuclide versus the results of the measured amount of radionuclide.

Twenty-one LCS and LCSDs were analyzed for a total of 51 analytes; the percent recoveries are presented in Tables 23 through 28. The percent recovery for 2 analytes (shown in bold) were within the laboratory control limits, but outside the project control limits, resulting in 3.9% exceedance rate. When the criteria were not met, there is an indication of laboratory accuracy not meeting the accuracy goal, and all samples for that analyte in the batch were qualified as estimated (J) but still usable for project decisions.

Matrix Spike (MS)

MS analyses are performed by the laboratory to estimate the extent of accuracy/bias in the analytical measurements of radiological constituents. The analytical laboratory performed MS/MSD analyses by adding a known quality of each analyte to representative media, and analyzing the spiked media. Accuracy/bias in the result was quantified by determining the percent recovery of the spike amount.

However, per the DoD Quality Systems Manual (QSM), MSs are not required for radiochemical analysis if an isotopic tracer or chemical carrier is used in the analysis to determine chemical recovery (yield) for the chemical separation and sample mounting procedures. MSs are not required for gross alpha, gross beta, or gamma analysis.

Twenty MS/MSDs were analyzed for a total of 32 analytes; the percent recoveries are presented in Tables 29 through 33. When the criteria were not met, there is an indication of matrix interference. The percent recovery for 2 analytes (shown in bold) exceeded the control limits, resulting in a 6.2% exceedance rate. However, because a non-project sample was used for the MS where the 2 analytes exceeded the limits, qualification for matrix interference would not necessarily be applicable to project samples.

Calibrations

For gamma spectrometry, the CENWK states that if the efficiency calibration delta values (difference between the measured and the calibration curve efficiency) are greater than 5% for any one radionuclide, the calibration shall be deemed unusable. The CENWK also states that any samples counted on detectors with delta % greater than 5% should be qualified as rejected. The UFP-QAPP further states that the 95% confidence limit (CL) of fitted function over range shall be \leq 8%. Table 34 shows gamma spectrometer detectors/geometries with radionuclides that had delta values greater than 5% and or a 95% CL (1.96 sigma) greater than 8%. It is likely that the deficiencies for both parameters are due to the calibration being performed with less than the minimum 10,000 net counts in each peak, in at least six calibration peaks that bracket the range of use, as is specified in the DoD QSM. This is evidenced by the uncertainty reported for the peaks, even though the raw counts for the calibration were not provided. This indicates that there is greater than normal uncertainty in the results due to an uncertain bias from calibration. Based on the CENWK guidance, the samples counted on these detectors/geometries were qualified as rejected during validation. However, it was recommended that the project consider these results as estimated (J) and potentially usable for the project, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than normally allowed.

For gamma spectrometry, the CENWK states that if the activity of each radioisotope in the calibration verification standard is not within 10% relative of the true, decay corrected activity, the calibration shall be deemed unusable. The UFP-QAPP also sets a limit of 10% relative to the true value. Based on the CENWK, any samples counted on detectors with check source value of greater than 10% should be qualified as rejected. Table 35 shows detectors/geometries with quantified peaks outside of the 10% limit for the calibration verification check source. It is likely that the deficiencies for this parameter are due to the calibration verification being performed with less than the minimum 10,000 net counts in each peak as is specified in the CENWK. Indeed, the raw net counts for all peaks were less than the 10,000 net counts for all peaks and all detectors. This indicates that there is greater than normal uncertainty in the results due to an uncertain bias from the calibration verification. Based on the CENWK guidance, the samples counted on these detectors/geometries were qualified as rejected during validation. However, it was recommended that the project consider these results as estimated (J) and potentially usable for the project, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

During the data quality assessment discussion, the calibration issues noted above, which affected the samples qualified as "X" (unusable) during validation, were evaluated. The project team determined that these calibration issues were not significant enough to impact the data usability, and the affected results could be used and qualified as estimated (J). The final qualifiers are reflected in the tables referenced in Section 5 of the main report. The data are acceptable for use.

REPRESENTATIVENESS

Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter that is most concerned with the proper design of the sampling program. The representativeness criteria are best satisfied by making certain that sampling locations are properly selected; and a sufficient number of samples are collected. Representativeness is addressed by describing sampling techniques and rationale used to select sampling locations. Factors that affect the representativeness of analytical data include proper preservation, holding times, use of standard sampling and analytical methods, and determination of matrix or isotope interferences. Sample preservation, holding times, analytical methodologies, and soil sampling methodologies were documented to be adequate and consistently applied.

Representativeness is also evaluated through the review of the field precision as described above. The 2021 Supplemental Site Inspection (SSI) performed at the SIW Site was designed using guidance in the U.S. Environmental Protection Agency (USEPA) Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). Additionally, representativeness was achieved through adherence to sampling and analytical procedures described in the UFP-QAPP. EPA-approved and American Society for Testing and Materials (ASTM)-approved and standardized sampling procedures were used where practical to ensure the representativeness of sample data. Data collected during this SSI followed the guidance, standards and procedures discussed above and are representative of conditions found at the Site.

COMPARABILITY

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. The comparability of the data, a relative measure, is influenced by sampling and analytical procedures. By providing specific protocols to be used for obtaining and analyzing samples, data sets should be comparable regardless of who obtains the sample or performs the analysis. The analytical laboratory was responsible for enhancing comparability using the following controls:

- Use of current, standard EPA-approved methodology for sample preservation, holding, and analysis;
- Consistent reporting units for each parameter in similar matrices;
- EPA-traceable standards, when available; and
- Analysis of EPA QC samples, when available.

By following these controls, the data obtained during the 2021 SSI has met the objectives outlined in the UFP-OAPP.

Data Intercomparison

Results from different but comparable analytical techniques from different subsample aliquots of the same sample were compared for consistency. All Uranium-235 and Uranium-238 results from the alpha analysis and gamma analysis were compared by calculating the RPD and NAD. If the NAD was greater than 3, results were considered incomparable and qualified as estimated (J). Results that exceeded the NAD criteria are demonstrated in Tables 36 and 37. Three samples (SS-DUP-17, TS-02-0002, and TS-02-0304) were qualified with X due to incomparable results between alpha and gamma Uranium-238 which impacted both the detect decision and the action level. However, during data usability assessment, in all 3 cases, it was determined that there was a spectral interference problem with the gamma Thorium-234 background, causing a problem with the gamma data, but there was agreement between the Pa-234m equilibrium daughter of Uranium-238 and the Uranium-238 results by alpha spectroscopy. Therefore, the gamma

Uranium-238 results for those 3 samples were rejected (R), and the Uranium-238 results using alpha spectroscopy were accepted as usable and qualified accordingly.

COMPLETENESS

Completeness is a measure of the degree to which the amount of sample data collected meets the scope and a measure of the relative number of analytical data points that meet the acceptance criteria, including accuracy, precision, and any other criteria required by the specific analytical method used. Completeness is defined as a comparison of the actual numbers of valid data points and expected numbers of points expressed as a percentage. If data cannot be reported without qualifications, project completion goals may still be met if the qualified data, i.e., data of known quality even if not perfect, are suitable for the specified project goals. A total of 822 analyses were obtained, reviewed, and integrated into the assessment. Three analyses were rejected due to incomparability, yielding completeness for this project of 99.6%, which achieved the goal of 90% as specified in the UFP-QAPP.

SENSITIVITY

Sensitivity is the capability of a method or instrument to discriminate between measurement responses representing different levels of a variable of interest. It represents the minimum difference in concentration that can be distinguished between two samples with a high degree of confidence. The sensitivity is evaluated by determining if the required detection level (RDL) was met. The non-detect sample results were then evaluated to determine if the RDL was met by comparing to a sample specific minimum detectable activity (MDA) that was calculated by multiplying the CSU by 3.5. If the RDL is greater than 3.5×CSU, the sample result met the RDL. If not, it was noted in the validation report that the RDL was not met. For gamma spectroscopy, a total of 2 in Uranium-235 analyses, 1 in Actinium-228 analyses, and 45 in Thorium-234 analyses did not meet the RDL.

For validation purposes, the detectability was evaluated by calculating the critical level. The critical level was determined by multiplying CSU by 1.65. If the sample result was less than the critical level, it is determined to be non-detect and qualified as U. For gamma spectroscopy, a total of 24 Uranium-235, 1 Actinium-228, and 45 Thorium-234 results were qualified as non-detect. For alpha spectroscopy analyses, a total of 21 Uranium-235 results were qualified as non-detect. For ground water samples, 3 gross alpha, 2 gross beta, 3 Uranium-235, 1 Radium-226, and 3 Radium-228 results were qualified as non-detect.

DATA MANAGEMENT AND DOCUMENTATION

Management of the analytical data generated during the characterization effort was conducted in accordance with the general requirements of the Project Work Plan.

ANALYTICAL DATA

Samples collected during the characterization effort were identified by a unique number code that accompanied the sample from collection through analysis and data review. Standardized chain-of-custody procedures were followed from sample collection through sample analysis. The condition of shipping coolers and enclosed sample containers was documented upon receipt at the analytical laboratory. The laboratory transmitted the completed chain-of-custody form and cooler receipt checklist to the Project Manager (PM) to confirm each sample shipment.

Analytical data reports containing results of the requested analyses were transmitted to the GEO PM and included in Appendix C of the 2021 SSI Report. Each data package contained an electronic data deliverable spreadsheet summarizing the analytical results, as well as an electronic file containing the entire case

narrative and supporting data. The electronic files were uploaded to the corporate server and backed up on
a compact disc. Laboratory data reports are included in Appendix D of the 2021 SSI Report.

Table 1. Sample Delivery Groups (SDGs).

SDG #	Laboratory Sample ID	Project Sample ID	Analyses	Matrix
	L1409189-01	TS-01-0002	Gamma Spec & Iso U	Test Pit
	L1409189-02	TS-01-0204	Gamma Spec & Iso U	Test Pit
	L1409189-03	TS-02-0002	Gamma Spec & Iso U	Test Pit
	L1409189-04	TS-02-0304	Gamma Spec & Iso U	Test Pit
L1409189	L1409189-05	TS-03-0002	Gamma Spec & Iso U	Test Pit
L1409189	L1409189-06	TS-03-0204	Gamma Spec & Iso U	Test Pit
	L1409189-07	TS-04-0002	Gamma Spec & Iso U	Test Pit
	L1409189-08	TS-04-0406	Gamma Spec & Iso U	Test Pit
	L1409189-09	TS-DUP-01	Gamma Spec & Iso U	Test Pit
	L1409189-10	TS-DUP-02	Gamma Spec & Iso U	Test Pit
	L1409907-01	SS-15-1135	Gamma Spec & Iso U	Soil
	L1409907-02	SB-15-0406	Gamma Spec & Iso U	Soil
	L1409907-03	SB-15-0608	Gamma Spec & Iso U	Soil
	L1409907-04	SS-10-0750	Gamma Spec & Iso U	Soil
L1409907	L1409907-05	SB-10-0517	Gamma Spec & Iso U	Soil
	L1409907-06	SB-10-0465	Gamma Spec & Iso U	Soil
	L1409907-07	SS-09-0840	Gamma Spec & Iso U	Soil
	L1409907-08	SB-09-0117	Gamma Spec & Iso U	Soil
	L1409907-09	SB-09-0506	Gamma Spec & Iso U	Soil
	L1410500-01	SS-04-0926	Gamma Spec & Iso U	Soil
	L1410500-02	SB-04-0102	Gamma Spec & Iso U	Soil
	L1410500-03	SB-04-0406	Gamma Spec & Iso U	Soil
L1410500	L1410500-04	SS-02-0835	Gamma Spec & Iso U	Soil
	L1410500-05	SB-02-0501	Gamma Spec & Iso U	Soil
	L1410500-06	SB-02-0102	Gamma Spec & Iso U	Soil
	L1410500-07	SB-DUP-02	Gamma Spec & Iso U	Soil
	L1410504-01	SS-11-1100	Gamma Spec & Iso U	Soil
	L1410504-02	SB-11-0405	Gamma Spec & Iso U	Soil
	L1410504-03	SB-11-0506	Gamma Spec & Iso U	Soil
	L1410504-04	SS-12-1115	Gamma Spec & Iso U	Soil
L1410504	L1410504-05	SB-12-0304	Gamma Spec & Iso U	Soil
L1410304	L1410504-06	SB-12-0506	Gamma Spec & Iso U	Soil
	L1410504-07	SS-14-1205	Gamma Spec & Iso U	Soil
	L1410504-08	SB-14-2540	Gamma Spec & Iso U	Soil
	L1410504-09	SB-14-0608	Gamma Spec & Iso U	Soil
	L1410504-10	SB-DUP-11	Gamma Spec & Iso U	Soil
	L1410508-01	SS-05-0915	Gamma Spec & Iso U	Soil
	L1410508-02	SB-05-0505	Gamma Spec & Iso U	Soil
	L1410508-03	SB-05-0510	Gamma Spec & Iso U	Soil
	L1410508-04	SS-03-0810	Gamma Spec & Iso U	Soil
	L1410508-05	SB-03-0815	Gamma Spec & Iso U	Soil
L1410508	L1410508-06	SB-03-0102	Gamma Spec & Iso U	Soil
	L1410508-07	SS-01-0825	Gamma Spec & Iso U	Soil
	L1410508-08	SB-01-0501	Gamma Spec & Iso U	Soil
	L1410508-09	SB-01-0102	Gamma Spec & Iso U	Soil
	L1410508-10	SB-DUP-01	Gamma Spec & Iso U	Soil
	L1410508-11	SS-DUP-03	Gamma Spec & Iso U	Soil

Table 1. Sample Delivery Groups (SDGs).

SDG #	Laboratory Sample ID	Project Sample ID	Analyses	Matrix
	L1410508-01	SS-05-0915	Gamma Spec & Iso U	Soil
	L1410508-02	SB-05-0505	Gamma Spec & Iso U	Soil
	L1410508-03	SB-05-0510	Gamma Spec & Iso U	Soil
	L1410508-04	SS-03-0810	Gamma Spec & Iso U	Soil
	L1410508-05	SB-03-0815	Gamma Spec & Iso U	Soil
L1410508	L1410508-06	SB-03-0102	Gamma Spec & Iso U	Soil
	L1410508-07	SS-01-0825	Gamma Spec & Iso U	Soil
	L1410508-08	SB-01-0501	Gamma Spec & Iso U	Soil
	L1410508-09	SB-01-0102	Gamma Spec & Iso U	Soil
	L1410508-10	SB-DUP-01	Gamma Spec & Iso U	Soil
	L1410508-11	SS-DUP-03	Gamma Spec & Iso U	Soil
	L1410531-01	SS-16-1300	Gamma Spec & Iso U	Soil
	L1410531-02	SB-16-0235	Gamma Spec & Iso U	Soil
	L1410531-03	SS-17-1230	Gamma Spec & Iso U	Soil
	L1410531-04	SB-17-0102	Gamma Spec & Iso U	Soil
	L1410531-05	SS-18-1250	Gamma Spec & Iso U	Soil
L1410531	L1410531-06	SB-18-0102	Gamma Spec & Iso U	Soil
	L1410531-07	SS-19-1310	Gamma Spec & Iso U	Soil
	L1410531-08	SB-19-0102	Gamma Spec & Iso U	Soil
	L1410531-09	SB-19-0203	Gamma Spec & Iso U	Soil
	L1410531-10	SB-DUP-16	Gamma Spec & Iso U	Soil
	L1410531-11	SS-DUP-17	Gamma Spec & Iso U	Soil
	L1410640-01	SS-25-0940	Gamma Spec & Iso U	Soil
	L1410640-02	SS-22-0935	Gamma Spec & Iso U	Soil
	L1410640-03	SS-21-1000	Gamma Spec & Iso U	Soil
	L1410640-04	SS-20-1020	Gamma Spec & Iso U	Soil
T 1410640	L1410640-05	SS-24-0941	Gamma Spec & Iso U	Soil
L1410640	L1410640-06	SB-24-0102	Gamma Spec & Iso U	Soil
	L1410640-07	SB-DUP-23	Gamma Spec & Iso U	Soil
	L1410640-08	SB-23-0102	Gamma Spec & Iso U	Soil
	L1410640-09	SS-23-1014	Gamma Spec & Iso U	Soil
	L1410640-10	SS-13-1015	Gamma Spec & Iso U	Soil
	L1410673-01	SS-08-1400	Gamma Spec & Iso U	Soil
	L1410673-02	SB-08-0102	Gamma Spec & Iso U	Soil
	L1410673-03	SS-06-0936	Gamma Spec & Iso U	Soil
	L1410673-04	SB-06-0203	Gamma Spec & Iso U	Soil
L1410673	L1410673-05	SB-06-0501	Gamma Spec & Iso U	Soil
	L1410673-06	SS-07-1220	Gamma Spec & Iso U	Soil
	L1410673-07	SB-07-0102	Gamma Spec & Iso U	Soil
	L1410673-08	SB-07-0203	Gamma Spec & Iso U	Soil
	L1410673-09	SS-DUP-06	Gamma Spec & Iso U	Soil

Table 1. Sample Delivery Groups (SDGs) Continued.

SDG#	Laboratory Sample ID	Project Sample ID	Analyses	Matrix
	L1410682-01	SD-01-0813	Gamma Spec & Iso U	Sediment
	L1410682-02	SD-02-0810	Gamma Spec & Iso U	Sediment
	L1410682-03	SD-03-0815	Gamma Spec & Iso U	Sediment
	L1410682-04	SD-04-0910	Gamma Spec & Iso U	Sediment
	L1410682-05	SD-05-0800	Gamma Spec & Iso U	Sediment
L1410682	L1410682-06	SD-06-0754	Gamma Spec & Iso U	Sediment
	L1410682-07	SD-07-0758	Gamma Spec & Iso U	Sediment
	L1410682-08	SD-08-0805	Gamma Spec & Iso U	Sediment
	L1410682-09	SD-09-0750	SD-09-0750 Gamma Spec & Iso U	
	L1410682-10	SD-10-0816 Gamma Spec & Iso U		Sediment
	L1410682-11	SD-DUP-02	Gamma Spec & Iso U	Sediment
	L1411184-01	GW-06-1205	Gross alpha/gross beta, Ra-228, Total U, & Ra-226	Ground Water
1 1 4 1 1 1 0 4	L1411184-02	GW-09-1210	Gross alpha/gross beta, Ra-228, Total U, & Ra-226	Ground Water
L1411184	L1411184-03	GW-07-1215	Gross alpha/gross beta, Ra-228, Total U, & Ra-226	Ground Water
	L1411184-04	GW-10-1220	Gross alpha/gross beta, Ra-228, Total U, & Ra-226	Ground Water
1 1/11107	L1411187-01	EQ-SD-1410	Gross alpha/gross beta, Ra-228, Total U, & Ra-226	Ground Water
L1411187	L1411187-02	EQ-SB-1520	Gross alpha/gross beta, Ra-228, Total U, & Ra-226	Ground Water

Table 2. Field Duplicate Results by Alpha Spectroscopy

		U-234			U-235		U-238			
Sample ID	Parent Result (pCi/g)	Factor of 4 of Parent Result (pCi/g)	Duplicate Result (pCi/g)	Parent Result (pCi/g)	Factor of 4 of Parent Result (pCi/g)	Duplicate Result (pCi/g)	Parent Result (pCi/g)	Factor of 4 of Parent Result (pCi/g)	Duplicate Result (pCi/g)	
SD-DUP-02	0.618	2.47	0.881	0.0291	0.116	0.0275	0.686	2.74	0.913	
TS-DUP-01	9	36	9.93	0.384	1.54	0.357	9.07	36.3	9.77	
TS-DUP-02	9.29	37.2	9.85	0.476	1.90	0.572	9.69	38.8	10.1	
SB-DUP-02	0.809	3.24	0.787	0.00939	0.0376	-0.00463	0.752	3.01	0.795	
SB-DUP-23	2.94	11.8	2.05	0.272	1.09	0.0447	2.9	11.6	2.54	
SB-DUP-01	0.597	2.39	1.24	0.041	0.164	0.0837	0.634	2.54	1.35	
SS-DUP-03	3.43	13.7	3.86	0.14	0.56	0.169	3.96	15.8	3.63	
SB-DUP-16	1.04	4.16	0.928	0.0321	0.128	0.0315	1.16	4.64	0.874	
SS-DUP-17	22	88	14.3	0.97	3.88	0.526	22.1	88.4	14.6	
SB-DUP-11	1.46	5.84	2.01	0.0359	0.144	0.128	1.8	7.2	2.09	
SS-DUP-06	1.45	5.8	2.77	0.0943	0.377	0.0417	1.2	4.8	3.02	

DUP: duplicate; ID: identification number; pCi/g: picocuries per gram; SB: soil boring; SD: sediment; SS: surface sample; TS: test pit; U-234: Uranium-234;U-235: Uranium-235; U-238: Uranium-238

Table 3. Field Duplicate Results by Gamma Spectroscopy

		Ac-228			Bi-214 (Ra-226	()	Pb-214			
Sample ID	Parent Result (pCi/g)	Factor of 4 of Parent Result (pCi/g)	Duplicate Result (pCi/g)	Parent Result (pCi/g)	Factor of 4 of Parent Result (pCi/g)	Duplicate Result (pCi/g)	Parent Result (pCi/g)	Factor of 4 of Parent Result (pCi/g)	Duplicate Result (pCi/g)	
SD-DUP-02	1.09	4.36	0.902	0.972	3.89	1.01	1.01	4.04	1.19	
TS-DUP-01	1.9	7.6	1.29	35.1	140	32	35.8	143	34.8	
TS-DUP-02	1.27	5.08	1.57	11.9	47.6	12.7	13.3	53.2	13.7	
SB-DUP-02	1.27	5.08	1.13	1.1	4.4	1.13	1.36	5.44	1.22	
SB-DUP-23	1.07	4.28	0.864	3.85	15.4	2.76	3.54	14.2	4.97	
SB-DUP-01	1.45	5.8	1.51	1.14	4.56	1.13	1.07	4.28	1.02	
SS-DUP-03	2.51	10.04	0.632	2.23	8.92	0.543	2.62	10.5	0.795	
SB-DUP-16	1.43	5.72	1.25	1.34	5.36	1.07	1.3	5.2	1.14	
SS-DUP-17	2.21	8.84	1.72	19.8	79.2	9.7	21.8	87.2	11.8	
SB-DUP-11	2.02	8.08	5.04	1.9	7.6	3.8	1.91	7.64	4.31	
SS-DUP-06	1.01	4.04	0.986	1.31	5.24	2.08	1.3	5.2	2.41	

Ac-228: actinium-228; Bi-214: Bismuth-214; DUP: duplicate; ID: identification number; Pb—214: Lead-214; pCi/g: picocuries per gram; Ra-226: Radium-226; SB: soil boring; SD: sediment; SS: surface sample; TS: test pit

Table 3. Field Duplicate Results by Gamma Spectroscopy (continued)

		K-40			U-235		Th-234			
Sample ID	Parent Result (pCi/g)	Factor of 4 of Parent Result (pCi/g)	Duplicate Result (pCi/g)	Parent Result (pCi/g)	Factor of 4 of Parent Result (pCi/g)	Duplicate Result (pCi/g)	Parent Result (pCi/g)	Factor of 4 of Parent Result (pCi/g)	Duplicate Result (pCi/g)	
SD-DUP-02	17.1	68.4	16	0.151	0.604	0.159	1.48	5.92	0.805	
TS-DUP-01	13	52	14.1	2.74	11.0	0.498	-4.94	-19.8	1.86	
TS-DUP-02	5.4	21.6	5.81	0.361	1.44	1.48	3.21	12.8	6.53	
SB-DUP-02	15.1	60.4	13.9	0.174	0.696	0.1	1.02	4.08	0.463	
SB-DUP-23	8.34	33.36	7.54	0.54	2.16	0.391	1.49	5.96	-2.13	
SB-DUP-01	6.56	26.24	8.19	0.131	0.524	0.181	-3.88	-15.5	-2.31	
SS-DUP-03	11	44	1.94	0.37	1.48	0.0184	3.45	13.8	3.17	
SB-DUP-16	13.4	53.6	15.8	0.103	0.412	0.131	1.16	4.64	0.874	
SS-DUP-17	9.98	39.92	8.94	1.28	5.12	0.0293	18.5	74	-5.2	
SB-DUP-11	10.6	42.4	19.7	0.187	0.748	0.608	-1.46	-5.84	2.29	
SS-DUP-06	14.3	57.2	7.9	1.5	6	0.263	1.4	5.6	-2.35	

DUP: duplicate; K-40: Potassium-40; ID: identification number; pCi/g: picocuries per gram; SB: soil boring; SD: sediment; SS: surface sample; Th-234: Thorium-234; TS: test pit; U-235: Uranium-235;

Table 4. Laboratory Duplicate Results by Alpha Spectroscopy

	U-2	234	U-2	235	U-238				
Lab Sample ID	RPD (%)	NAD(%)	RPD (%)	NAD (%)	RPD (%)	NAD (%)			
R3715413-5	15.8	2.2	46.9	1.5	19.5	2.7			
R3720206-5	17.0	1.4	129	2.5	6.76	0.56			
R3724488-5	0.85	0.076	59.6	1.1	19.2	1.8			
R3725650-5	2.78	0.27	62.6	0.96	2.48	0.26			
R3726763-5	7.19	0.81	282	1.3	17.8	1.91			

ID: identification number; NAD: normalized absolute difference; %: percent; RPD: relative percent difference; U-234: Uranium-234; U-235: Uranium-235; U-238: Uranium-238

Table 5. Laboratory Duplicate Results by Gamma Spectroscopy

	Ac-	228		214 -226)	Pb-	214	K-	40	U-2	235	Th-	-234
Lab Sample ID	RPD (%)	NAD (%)	RPD (%)	NAD (%)	RPD (%)	NAD (%)	RPD (%)	NAD (%)	RPD (%)	NAD (%)	RPD (%)	NAD (%)
R3722645-3	38.1	1.1	2.36	0.28	14.4	1.7	25.3	1.7	0.43	0.02	97.8	1.1
R3723176-2	2.26	0.14	3.95	0.39	2.38	0.23	22.6	1.5	44.9	1.4	19.2	0.25
R3724570-4	5.71	0.31	9.09	0.73	6.69	0.62	0.94	0.073	15.3	0.53	434	3.7
R3725159-4	77.4	0.81	0.66	0.023	18.7	0.73	84.3	1.5	768	2.4	114	0.92
R3725157-4	18.9	0.92	22.2	1.5	11.4	1.01	6.16	0.47	45.2	0.15	259	2.8
R3725727-2	27.3	1.59	1.39	0.094	30.6	2.6	12.7	1.09	22.2	0.48	53.6	0.90

Ac-228: Actinium-228; Bi-214: Bismuth-214; K-40: Potassium-40; ID: identification number;

NAD: normalized absolute difference; Pb-40: Lead-40; Ra-226: Radium-226; RPD: relative percent difference;

Th-234: Thorium-234; U-235: Uranium-235

Table 6. Laboratory Duplicate Results for Gross Alpha/Beta Measurements

	Gross Alpha		Gross	Beta
Lab Sample ID	RPD (%) NAD (%)		RPD (%)	NAD(%)
R3719591-5	15.7	0.13	66.8	1.95

ID: identification number; NAD: normalized absolute difference; %: percent; RPD: relative percent difference

Table 7. Laboratory Duplicate Results for Ra-228

	Ra-228				
Lab Sample ID	RPD (%)	NAD (%)			
R3723073-5	240	0.43			

ID: identification number; NAD: normalized absolute difference;

%: percent; RA-228: Radium-228; RPD: relative percent difference

Table 8. Laboratory Duplicate Results for Uranium

	Uranium			
Lab Sample ID	RPD (%) NAD (%)			
R3719923-5	0	0		

ID: identification number; NAD: normalized absolute difference; %: percent; RPD: relative percent difference

Table 9. Laboratory Duplicate Results for Ra-226

•	Ra-226			
Lab Sample ID	RPD (%)	NAD (%)		
R3714970-5	83.2	0.077		
R3722405-5	2227	0.49		

ID: identification number; NAD: normalized absolute difference; %: percent; Ra-226: Radium-226; RPD: relative percent difference

Table 10. LCS Duplicate Results by Gamma Spectroscopy

	Am-241		Cs-137		Co-60		
Lab Sample ID	RPD (%)	NAD (%)	RPD (%)	NAD (%)	RPD (%)	NAD (%)	
R3722645-4	5.06	0.99	17.1	4.0	0.14	0.034	
R3723176-4	4.22	0.83	0.92	0.20	0.04	0.009	
R3724570-2	3.18	0.44	4.84	0.82	0.79	0.16	
R3725159-3	6.63	1.00	6.49	1.26	8.09	1.8	
R3725157-2	7.33	0.99	0.43	0.074	1.07	0.22	
R3725727-4	8.26	1.09	5.45	1.12	3.16	0.73	

Am-241: Americium-241; Co-60: Cobalt-60; Cs-137: Cesium-137; ID: identification number;

NAD: normalized absolute difference; %: percent; Ra-226: Radium-226; RPD: relative percent difference

Table 11. Matrix Spike Duplicate Results by Alpha Spectroscopy

	U-2	234	U-238			
Lab Sample ID	RPD (%) NAD (%)		RPD (%)	NAD (%)		
R3715413-4	1.53	0.39	3.75	0.95		
R3720206-4	0.34	0.074	7.56	1.66		
R3724488-4	5.74	1.62	5.32	1.50		
R3725650-4	2.49	0.49	2.49	0.49		
R3726763-4	4.29	0.86	5.22	1.04		

ID: identification number; NAD: normalized absolute difference; %: percent; RPD: relative percent difference U-234: Uranium-234; U-238: Uranium-238

Table 12. Matrix Spike Duplicate Results for Gross Alpha/Beta Measurements

	Gross Alpha		Gross	s Beta
Lab Sample ID	RPD (%) NAD (%)		RPD (%)	NAD (%)
R3719591-4	5.26	0.48	1.56	0.38

ID: identification number; NAD: normalized absolute difference; %: percent; RPD: relative percent difference

Table 13. Matrix Spike Duplicate Results for Ra-228

	Ra-228			
Lab Sample ID	RPD (%)	NAD (%)		
R3723073-4	6.28	1.46		

ID: identification number; NAD: normalized absolute difference; %: percent; Ra-228: Radium-228; RPD: relative percent difference

Table 14. Matrix Spike Duplicate Results for Uranium

_	Ura	Uranium			
Lab Sample ID	RPD (%)	NAD (%)			
R3719923-4	1.01	0.301			

ID: identification number; NAD: normalized absolute difference; %: percent; RPD: relative percent difference

Table 15. Matrix Spike Duplicate Results for Radium-226

	Ra-226			
Lab Sample ID	RPD (%)	NAD (%)		
R3714970-4	5.74	0.69		
R3722405-4	2.01	0.26		

ID: identification number; NAD: normalized absolute difference; %: percent; Ra-226: Radium-226; RPD: relative percent difference

Table 16. Alpha Spectroscopy Method Blank Results

	U-234		U-234 U-235		U-238	
Lab Sample ID	Result (pCi/g)	VQ	Result (pCi/g)	VQ	Result (pCi/g)	VQ
R3715413-1	0.0526	U	0.00566	U	0.147	J
R3720206-1	0.0345	U	-0.0164	U	0.0806	J
R3724488-1	-0.031	U	-0.0049	U	0.103	J
R3725650-1	-0.0275	U	-0.0232	U	0.0641	J
R3726763-1	0.106	J	-0.0049	U	0.0867	J

ID: identification number; J: estimated value; pCi/g: picocuries per gram; U: non-detect; U-234: Uranium-234; U-235: Uranium-235; U-238: Uranium-238; VQ: validation qualifier

Table 17. Gamma Spectroscopy Method Blank Results

	Ac-228		Bi-214 (Ra-226) Pl		Pb-	o-214		-40	U-235		Th-234	
Lab Sample ID	Result (%)	VQ	Result (%)	VQ	Result (%)	VQ	Result (%)	VQ	Result (%)	VQ	Result (%)	VQ
R3722645-1	0.168	U	-0.0053	U	-0.0063	U	-0.379	U	0.0456	U	1.01	J
R3723176-3	0.118	U	0.138	J	0.106	J	-0.303	U	-0.0158	U	0.275	U
R3724570-3	-0.0742	U	0.0623	U	-0.0131	U	-0.123	U	0.0659	J	0.975	
R3725159-2	-0.0422	U	-0.0035	U	0.0248	U	0.219	U	0.0374	U	1.12	J
R3725157-3	0.105	U	0.0117	U	0.00454	U	0.221	U	0.119	J	1.85	
R3725727-3	-0.0081	U	0.0976	J	-0.0277	U	-0.186	U	0.0353	J	0.756	U

Ac-228: actinium-228; Bi-214: Bismuth-214; K-40: Potassium-40; ID: identification number; J: estimated value; NAD: normalized absolute difference; Pb-40: Lead-40; pCi/g: picocuries per gram Ra-226: Radium-226; RPD: relative percent difference; Th-234: Thorium-234; U: non-detect; U-235: Uranium-235; VQ: validation qualifier

Table 18. Gross Alpha/Beta Method Blank Results

	Gross Alpha	l	Gross Beta			
Lab Sample ID	Result (pCi/L)	VQ	Result (pCi/L)	VQ		
R3719591-1	0.165	U	-0.314	U		

ID: identification number pCi/L: picocuries per liter; U: non-detect; VQ: validation qualifier

Table 19. Ra-228 Method Blank Result

	Ra-228				
Lab Sample ID	Result (pCi/L)	VQ			
R3723073-1	-0.151	U			

ID: identification number; pCi/L: picocuries per liter; Ra-28: Radium-228;

U: non-detect; VQ: validation qualifier

Table 20. Uranium Method Blank Result

	Uranium			
Lab Sample ID	Result (%)	VQ		
R3719923-1	U	U		

ID: identification number; U: non-detect; VQ: validation qualifier

Table 21. Ra-226 Method Blank Result

	Ra-226				
Lab Sample ID	Result (PCi/L)	VQ			
R3714970-1	0.00799	U			
R3722405-1	-0.000464	U			

ID: identification number; pCi/L: picocuries per liter;

Ra-226: Radium-226; U: non-detect; VQ: validation qualifier

Table 22. Equipment Blanks

	Gross Alpha		Gross Beta		Ra-228		Uranium		Ra-226	
Lab Sample ID	Result (pCi/L)	VQ								
EQ-SD-1410	-0.0607	U	0.125	U	-0.256	U	ND	U	0.0348	U
EQ-SB-1520	0.11	U	-1.54	U	-0.575	U	ND	U	0.468	

EQ: equipment blank; ID: identification number; ND: not detected at the associated level; pCi/L: picocuries per liter; Ra-226: Radium-226; Ra-228: Radium-228; U: non-detect; VQ: validation qualifier

Table 23. LCS Results for Alpha Spectroscopy

	U-234	U-238
Lab Sample ID	Recovery (%)	Recovery (%)
R3715413-2	98.1	96.5
R3720206-2	72.7*	81.3
R3724488-2	96.1	105
R3725650-2	75.5	72.9*
R3726763-2	90.1	90.2
Control Limits	75-125	75-125
*Laboratory limits	60.9-117	68.1-121

ID: identification number; LCS: laboratory control sample; %: percent;

U-234: Uranium-234; U-238: Uranium-238

Table 24. LCS Results for Gamma Spectroscopy

Table 24. Les Results for Gamma Spectroscopy				
	Am-241	Cs-137	Co-60	
Lab Sample ID	Recovery (%)	Recovery (%)	Recovery (%)	
R3722645-2	104	102	95.5	
R3722645-4	98.7	100	95.4	
R3723176-1	103	102	95.1	
R3723176-4	98.5	101	95.1	
R3724570-1	99.6	100	95.5	
R3724570-2	96.4	95.4	94.8	
R3725159-1	98.7	106	99.2	
R3725159-3	106	98.8	91.4	
R3725157-1	97.7	98.4	96.9	
R3725157-2	105	98	95.8	
R3725727-1	108	105	99.2	
R3725727-4	99.3	99.5	96.1	
Control Limits	80-120	80-120	80-120	

Am-241: Americium-241; Co-60: Cobalt-60; Cs-137: Cesium-137; ID: identification number; LCS: laboratory control sample; %: percent

Table 25. LCS Results for Gross Alpha/Beta

	Gross Alpha	Gross Beta
Lab Sample ID	Recovery (%)	Recovery (%)
R3719591-2	93.2	120
Control Limits	80-120	80-120

ID: identification number; LCS: laboratory control sample; %: percent

Table 26. LCS Results for Ra-228

	Ra-228	
Lab Sample ID	Recovery (%)	
R3723073-2	103	
Control Limits	80-120	

ID: identification number; LCS: laboratory control sample;

%: percent; Ra-228: Radium-228

Table 27. LCS Results for Uranium

	Uranium
Lab Sample ID	Recovery (%)
R3719923-2	112
Control Limits	80-120

ID: identification number; LCS: laboratory control samples;

%: percent

Table 28. LCS Results for Ra-226

	Ra-226
Lab Sample ID	Recovery (%)
R3714970-2	102
R3722405-2	105
Control Limits	80-120

ID: identification number; LCS: laboratory control sample;

%: percent; Ra-226: Radium-226

Table 29. Matrix Spike Results for Alpha Spectroscopy

	U-234	U-238
Lab Sample ID	Recovery (%)	Recovery (%)
R3715413-3	104	112
R3715413-4	106	106
R3720206-3	98.9	103
R3720206-4	98.5	113
R3724488-3	102	118
R3724488-4	109	113
R3725650-3	97.9	98.6
R3725650-4	101	101
R3726763-3	105	105
R3726763-4	110	112
Control Limits	60-140	60-140

ID: identification number; LCS: laboratory control sample; %: percent;

U-234: Uranium-234; U-238: Uranium-238

Table 30. Matrix Spike Results for Gross Alpha/Beta

	Gross Alpha	Gross Beta
Lab Sample ID	Recovery (%)	Recovery (%)
R3719591-3	129	125
R3719591-4	122	123
Control Limits	75-125	75-125

ID: identification number; %: percent

Table 31. Matrix Spike Results for Ra-228

	Ra-228
Lab Sample ID	Recovery (%)
R3723073-3	114
R3723073-4	107
Control Limits	75-125

ID: identification number; %: percent; Ra-228: Radium-228

Table 32. Matrix Spike Results for Uranium

	Uranium
Lab Sample ID	Recovery (%)
R3719923-3	110
R3719923-4	112
Control Limits	75-125

ID: identification number; %: percent

Table 33. Matrix Spike Results for Ra-226

	Ra-226
Lab Sample ID	Recovery (%)
R3714970-3	92.1
R3714970-4	97.7
R3722405-3	75.4
R3722405-4	77.1
Control Limits	75-125

ID: identification number; %: percent; Ra-226: Radium-226

Table 34. Gamma Detector Calibrations Outside of Acceptance Criteria

Detector	Geometry	Energy Peaks (#)	Delta (%)	Energy Peaks (#)	95% CL
1	C6	1	6.3		
2	C1	1	8.2	5	8.9 – 11.9
2	C6	3	-9.4 – 7.9		
2	Р3	1	5.3		
3	C6	1	18.8	8	8.4 – 10.6
4	C6	1	-6.5		
4	Р3	1	18.3	1	8.8
5	C6	2	-16.4 – 6.5	9	8.8 - 14.7
9	C1	1	-12.9		
9	Р3	1	12.7		
10	Р3	1	22.4	2	8.2 - 8.3
11	C6	1	-5.3	2	8.2 - 12.7
12	Р3	1	24.5	1	9.6

#: number; %: percent; CL: confidence limit

Table 35. Gamma Detector Calibration Verifications Outside of Acceptance Criteria

Detector	Geometry	Energy Peaks	Difference (%)
1	C6	1	10.8
1	C6	1	12.2
1	C6	1	-10.6
2	Р3	1	10.2
3	C6	1	14.34
3	C6	1	25.5

%: percent

Table 36. U-235 Data Intercomparison

			oha		nma			
Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	Result (pCi/g)	CSU (pCi/g)	RPD (%)	NAD	Qualifier
SD-02-0810	U-235	0.0291	0.019	0.151	0.03225	135	3.2	J
SD-03-0815	U-235	0.0455	0.029	0.218	0.04335	131	3.3	J
SD-06-0754	U-235	0.0877	0.031	0.25	0.03175	96.1	3.6	J
SD-07-0758	U-235	0.104	0.031	0.308	0.0439	99.0	3.8	J
SB-15-0406	U-235	0.0477	0.021	0.344	0.0458	151	5.9	J
SB-15-0608	U-235	0.0168	0.021	0.176	0.036	165	3.8	J
SB-09-0117	U-235	0.0304	0.024	0.238	0.056	155	3.4	J
TS-01-0002	U-235	0.106	0.026	0.356	0.04475	108	4.8	J
TS-01-0204	U-235	0.0888	0.028	0.359	0.063	121	3.9	J
TS-02-0002	U-235	3.8	0.138	13.5	1.965	112	4.9	J
TS-02-0304	U-235	0.384	0.054	2.74	0.2095	151	10.8	J
TS-03-0002	U-235	0.159	0.038	0.55	0.0525	110	6.0	J
TS-04-0406	U-235	0.11	0.029	0.475	0.051	125	6.2	J
TS-DUP-02	U-235	0.572	0.056	1.48	0.088	88.5	8.7	J
SS-04-0926	U-235	0.248	0.038	0.466	0.0585	61.1	3.1	J
SB-02-0501	U-235	0.00939	0.02	0.174	0.03525	179	4.1	J
SS-24-0941	U-235	0.0692	0.022	0.377	0.0515	138	5.5	J
SB-24-0102	U-235	0.105	0.031	0.319	0.0442	101	4.0	J
SB-DUP-23	U-235	0.0447	0.022	0.391	0.0715	159	4.6	J
SS-03-0810	U-235	0.14	0.04315	0.37	0.052	90.2	3.4	J
SS-16-1300	U-235	0.101	0.027	0.385	0.077	116	3.5	J
SS-17-1230	U-235	1.19	0.088	2.17	0.115	58.3	6.8	J
SS-18-1250	U-235	0.0309	0.017	0.228	0.04285	152	4.3	J
SB-11-0405	U-235	0.0359	0.022	0.187	0.0381	136	3.4	J
SB-11-0506	U-235	0.0294	0.025	0.241	0.0447	157	4.1	J
SS-12-1115	U-235	0.00489	0.019	0.223	0.03345	191	5.7	J
SB-14-0608	U-235	0.114	0.033	0.322	0.0467	95.4	3.6	J
SB-DUP-11	U-235	0.128	0.034	0.608	0.0785	130	5.6	J
SS-08-1400	U-235	0.0317	0.018	1.92	0.0497	193	36	J
SB-08-0102	U-235	0.0518	0.02	0.204	0.0442	119	3.1	J
SB-06-0203	U-235	0.00867	0.022	0.358	0.0575	191	5.7	J
SB-06-0501	U-235	0.197	0.032	0.62	0.053	103	6.8	J
SB-07-0102	U-235	0.145	0.027	0.296	0.03726	68.5	3.3	J
SS-DUP-06	U-235	0.0417	0.025	0.263	0.0583	145	3.5	J

CSU: combined standard uncertainty: DUP: duplicate; J:estimated value; ID: identification number; NAD: normalized absolute difference %: percent; pCi/g: picocuries per gram; RPD: relative percent difference; SB: soil boring; SD: sediment; SS: surface sample; TS: test pit; U-235: Uranium-235

Table 37. U-238 Data Intercomparison

			pha	Gan	nma			
Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	Result (pCi/g)	CSU (pCi/g)	RPD (%)	NAD	Qualifier
SD-01-0813	U-238	3.09	0.1805	0.819	0.52	116	4.1	J
SD-07-0758	U-238	2.39	0.146	-0.71	0.63	369	4.8	J
SD-10-0816	U-238	1.57	0.1295	-2.52	0.8	861	5.0	J
TS-04-0406	U-235	0.11	0.029	0.475	0.051	125	6.2	J
TS-01-0002	U-238	3.27	0.171	1.16	0.665	95.3	3.1	J
TS-02-0002	U-238	73.3	1.05	-7.05	5.2	242	15.1	X
TS-02-0304	U-238	9.07	0.2745	-4.94	2.415	678	5.8	X
TS-04-0002	U-238	9.69	0.3055	3.21	1.07	100	5.8	J
TS-DUP-01	U-238	9.77	0.343	1.86	1.53	136	5.0	J
SS-20-1020	U-238	0.995	0.102	-0.599	0.4915	805	3.2	J
SB-DUP-23	U-238	2.54	0.176	-2.13	1.095	2278	4.2	J
SS-05-0915	U-238	2.8	0.178	-6.81	1.59	479	6.0	J
SB-05-0510	U-238	1.43	0.1285	-1.29	0.705	3885	3.8	J
SB-03-0815	U-238	3.07	0.176	0.79	0.64	118	4.9	J
SB-01-0501	U-238	0.634	.079	-3.88	1.11	278	4.1	J
SB-DUP-01	U-238	1.35	0.115	-2.31	1.07	762	3.4	J
SS-17-1230	U-238	24.9	0.51	12.3	2.255	68	5.5	J
SS-DUP-17	U-238	14.6	0.3905	-5.2	1.695	421	11.4	X
SB-11-0405	U-238	1.8	0.135	-1.46	0.735	1917	4.4	J
SB-14-2540	U-238	3.1	0.207	1.57	0.406	65.5	3.4	J
SB-14-0608	U-238	2.27	0.1515	-3.93	1.12	747	5.5	J
SS-08-1400	U-238	1.59	0.119	-2.27	0.86	1135	4.4	J

CSU: combined standard uncertainty; DUP: duplicate; ID: identification number; J: estimated value; NAD: normalized absolute difference; %: percent; pCi/g: picocuries per gram; RPD: relative percent difference; SB: soil boring; SD: sediment; SS: surface sample; TS: test pit; U-235: Uranium-235; U-238: Uranium-238; X: incomparable results between alpha and gamma Uranium-238

Company Name/Address:		7 6 4	Billing Infor	mation:					Analysis	/ Contai	ner / Preservative		_	Chain of Custody	Page of
Geo Consultants - Kevil	, KY	-	Accounts 325 Kent Kevil, KY	ucky Ave		Pres Chk								Pace	e Analytical [®]
Kevil, KY 42053 Report to:			Email To: lir	nail To: lindseyd@geoconsultantscorp.com			oPres							12065 Lebanon Rd Mou Submitting a sample via	
David Lindsey	M4 / 1						Nop							constitutes acknowledg Pace Terms and Conditi	ment and acceptance of the ons found at:
Project Description: Staten Isl Warehouse, Port Richmond		City/State Collected:	10	Please Circ PT MT CT			DPE-1							https://info.pacelabs.co terms.pdf	
hone: 270-462-3882	Client Project FUSRAP	#		Lab Project # P.O. #			16ozH							SDG # UH	168
ollected by (print): B. HOOKS	Site/Facility I	D#					n-Iso							Acctnum: GEOCONKKY	
ollected by (signature): mmediately racked on Ice N Y X		y10 D	Day	Quote #	sults Needed	No.	C-NORM21,							Prelogin: P87 PM: 732 - Doni PB:	3895 na Eidson
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	GSPE							Shipped Via: Fo	Sample # (lab only)
TS-01-0002	grab	SCM	0-2	9/24/	124 1015	1	X		777						-01
TS-01-0264	grale	SCM	2-4		1020	1	X							Pro-sure la	102
TS-02-0002	grab	SCM	0-12		1055	1	X		4						-03
TS-02-03-04	grab	SCM	3-4		1105	1	X								-04
T5-03 -0002	grab	SCM	0-2		1215	1	X								-05
75-03 -0204	grab	SCM	2-4		1230	1	X						475		-06
TS-04 -0002	grab	SCM	0-2		1500	1	X				The last of the la				-07
TS-04 -0406	grab	SCM	4-6		1430	1	X								-08
TS-DUP-01	grab	SCM			1900	1	X							1982	-09
TS-DUP-02	grob	SCM		1	1900	1	X				Jan 1				-10
	emarks:no ice — _	required	A T		- Trail		L50	Юсрг	7 pH Flov	A. In	Temp	COC Sea	ned/	le Receipt Ch esent/Intact Accurate: ive intact: tles used:	
V - Drinking Water - Other	amples returned _ UPS FedEx			Tri	acking # 531	89	9945	1528	3					volume sent: If Applicab adspace:	le _Y _N
elinguished by (Signature)		ate:	Time:	715 Re	Received by: (Signature) Trip Blank Received: Yes No HCL / Meol			HCL/ MeoH			n Correct/Che <0.5 mR/hr:	ecked: $X = N$			
projection of the state of the	D	ate:	Time:	Re	ceived by: (Signat	ure)			Temp.	4145	S Bottles Received:	If preser	vation	required by Lo	gin: Date/Time
elinquished by : (Signature)	D	ate:	Time:	Re	ceived for lab by	(Signat	ture) /	M	Date:	15/7	Time: 0945	Hold:			Condition: NCF / OK

L1409189

D I: 1 ... 1 M II 100

Collected date/time: 09/24/21 10:15

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	3.21		0.346	0.128	10/12/2021 09:23	WG1753087
URANIUM-235	0.106	J	0.0677	0.061	10/12/2021 09:23	WG1753087
URANIUM-238	3.27	J	0.342	0.061	10/12/2021 09:23	WG1753087
(T) URANIUM-232	78.1			30.0-110	10/12/2021 09:23	WG1753087

^¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.74	X	0.298	0.417	10/26/2021 13:03	WG1756346
Bismuth-212	2.11	X	0.887	1.42	10/26/2021 13:03	WG1756346
Bismuth-214 (Ra-226)	2.90	X	0.310	0.215	10/26/2021 13:03	WG1756346
Lead-212	1.41	X	0.214	0.29	10/26/2021 13:03	WG1756346
Lead-214	3.39	X	0.330	0.227	10/26/2021 13:03	WG1756346
Potassium-40	5.83	X	1.41	2.02	10/26/2021 13:03	WG1756346
Thallium-208	0.560	X	0.101	0.125	10/26/2021 13:03	WG1756346
Uranium-235	0.356	$\stackrel{\sqcup}{=} X(J)$	0.0895	0.675	10/26/2021 13:03	WG1756346
Thorium-234 (U-238)	1.16	<u>⊎</u> X(J)	1.33	2.65	10/26/2021 13:03	WG1756346

L1409189

Radiochemistry by Method D3972 U-02

Collected date/time: 09/24/21 10:20

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	2.54		0.311	0.123	10/12/2021 09:23	WG1753087
URANIUM-235	0.0888	<u>J</u>	0.0778	0.0955	10/12/2021 09:23	WG1753087
URANIUM-238	2.63		0.310	0.0757	10/12/2021 09:23	WG1753087
(T) URANIUM-232	77.1			30.0-110	10/12/2021 09:23	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	2.67	X	0.578	0.888	10/26/2021 13:05	WG1756346
Bismuth-212	3.19	X	1.74	2.93	10/26/2021 13:05	WG1756346
Bismuth-214 (Ra-226)	4.02	X	0.515	0.422	10/26/2021 13:05	WG1756346
Lead-212	2.19	X	0.352	0.431	10/26/2021 13:05	WG1756346
Lead-214	4.65	X	0.532	0.458	10/26/2021 13:05	WG1756346
Potassium-40	12.6	X	2.69	2.14	10/26/2021 13:05	WG1756346
Thallium-208	1.01	X	0.203	0.223	10/26/2021 13:05	WG1756346
Uranium-235	0.359	(\cup) X,J	0.126	0.886	10/26/2021 13:05	WG1756346
Thorium-234 (U-238)	2.95	X	1.51	2.53	10/26/2021 13:05	WG1756346

L1409189

Collected date/time: 09/24/21 10:55 Radiochemistry by Method D3972 U-02

, ,						
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	73.6		2.11	0.279	10/11/2021 17:29	WG1753087
URANIUM-235	3.80	J	0.480	0.103	10/11/2021 17:29	WG1753087
URANIUM-238	73.3	(X)	2.10	0.159	10/11/2021 17:29	WG1753087
(T) URANIUM-232	50.7	(-1)		30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.36	<u>(U)</u> X	1.49	3.34	10/26/2021 13:20	WG1756346
Bismuth-212	2.56	U X	6.28	11.5	10/26/2021 13:20	WG1756346
Bismuth-214 (Ra-226)	347	X	30.0	1.72	10/26/2021 13:20	WG1756346
Lead-212	-63.7	⊎ X	6.44	3.08	10/26/2021 13:20	WG1756346
Lead-214	377	X	38.7	2.12	10/26/2021 13:20	WG1756346
Potassium-40	8.07	<u></u>	5.53	9.8	10/26/2021 13:20	WG1756346
Thallium-208	0.751	± X	0.514	0.874	10/26/2021 13:20	WG1756346
Uranium-235	13.5	X(J)	3.93	6.18	10/26/2021 13:20	WG1756346
Thorium-234 (U-238)	-7.05	<u>⊎</u> (X)	10.4	19.7	10/26/2021 13:20	<u>WG1756346</u>

L1409189

Radiochemistry by Method D3972 U-02

Collected date/time: 09/24/21 11:05

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/g		+/-	pCi/g	date / time		
URANIUM-234	9.00		0.551	0.119	10/11/2021 17:29	WG1753087	
URANIUM-235	0.384	J	0.121	0.0799	10/11/2021 17:29	WG1753087	
URANIUM-238	9.07	(X)	0.549	0.0571	10/11/2021 17:29	WG1753087	
(T) URANIUM-232	88.2			30.0-110	10/11/2021 17:29	WG1753087	

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.90	X	0.715	1.48	10/26/2021 13:50	WG1756346
Bismuth-212	-14.4	U X	13.1	5.4	10/26/2021 13:50	WG1756346
Bismuth-214 (Ra-226)	35.1	X	3.31	0.771	10/26/2021 13:50	WG1756346
Lead-212	4.42	X	0.684	0.789	10/26/2021 13:50	WG1756346
Lead-214	35.8	X	4.05	0.842	10/26/2021 13:50	WG1756346
Potassium-40	13.0	X	2.98	3.96	10/26/2021 13:50	WG1756346
Thallium-208	0.799	X	0.260	0.422	10/26/2021 13:50	WG1756346
Uranium-235	2.74	X(J)	0.419	2.7	10/26/2021 13:50	WG1756346
Thorium-234 (U-238)	-4.94	$\frac{1}{2}$ (X)	4.83	10.1	10/26/2021 13:50	WG1756346

L1409189

Collected date/time: 09/24/21 12:15

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	4.20		0.427	0.137	10/11/2021 17:29	WG1753087
URANIUM-235	0.159	J	0.0931	0.0882	10/11/2021 17:29	WG1753087
URANIUM-238	4.67		0.445	0.101	10/11/2021 17:29	WG1753087
(T) URANIUM-232	84.0			30.0-110	10/11/2021 17:29	WG1753087

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.61	X	0.305	0.463	10/26/2021 14:13	WG1756346
Bismuth-212	2.35	X	0.896	1.36	10/26/2021 14:13	WG1756346
Bismuth-214 (Ra-226)	3.51	X	0.349	0.226	10/26/2021 14:13	WG1756346
Lead-212	1.49	X	0.229	0.31	10/26/2021 14:13	WG1756346
Lead-214	4.06	X	0.388	0.256	10/26/2021 14:13	WG1756346
Potassium-40	6.51	X	1.56	2.21	10/26/2021 14:13	WG1756346
Thallium-208	0.634	X	0.110	0.128	10/26/2021 14:13	WG1756346
Uranium-235	0.550	<u>⊎</u> X(J)	0.105	0.788	10/26/2021 14:13	WG1756346
Thorium-234 (U-238)	3.16	X	1.77	2.73	10/26/2021 14:13	WG1756346

L1409189

Collected date/time: 09/24/21 12:30

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	3.22		0.351	0.131	10/11/2021 17:29	WG1753087
URANIUM-235	0.118		0.0765	0.0766	10/11/2021 17:29	WG1753087
URANIUM-238	3.10		0.342	0.112	10/11/2021 17:29	WG1753087
(T) URANIUM-232	81.6			30.0-110	10/11/2021 17:29	WG1753087

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	2.83	X	0.570	0.742	10/26/2021 15:07	WG1756346
Bismuth-212	3.86	X	1.92	3.55	10/26/2021 15:07	WG1756346
Bismuth-214 (Ra-226)	3.26	X	0.476	0.456	10/26/2021 15:07	WG1756346
Lead-212	3.11	X	0.446	0.376	10/26/2021 15:07	WG1756346
Lead-214	3.38	X	0.496	0.457	10/26/2021 15:07	WG1756346
Potassium-40	7.14	X	2.00	2.26	10/26/2021 15:07	WG1756346
Thallium-208	0.798	X	0.190	0.245	10/26/2021 15:07	WG1756346
Uranium-235	0.292	$\underline{(\cup)}\mathbf{X}$	0.146	1.33	10/26/2021 15:07	WG1756346
Thorium-234 (U-238)	3.90	± X	2.82	5.15	10/26/2021 15:07	WG1756346

TS-04-0002

SAMPLE RESULTS - 07

Collected date/time: 09/24/21 15:00

L1409189

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	9.29		0.604	0.191	10/11/2021 17:29	WG1753087
URANIUM-235	0.476		0.137	0.0647	10/11/2021 17:29	WG1753087
URANIUM-238	9.69	J	0.611	0.147	10/11/2021 17:29	WG1753087
(T) URANIUM-232	80.4			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.27	X	0.303	0.583	10/26/2021 15:25	WG1756346
Bismuth-212	2.29	X	0.992	1.57	10/26/2021 15:25	WG1756346
Bismuth-214 (Ra-226)	11.9	X	0.919	0.289	10/26/2021 15:25	WG1756346
Lead-212	-0.0401	<u>⊎</u> X	0.231	0.437	10/26/2021 15:25	WG1756346
Lead-214	13.3	X	1.07	0.334	10/26/2021 15:25	WG1756346
Potassium-40	5.40	X	1.44	2.16	10/26/2021 15:25	WG1756346
Thallium-208	0.537	X	0.108	0.148	10/26/2021 15:25	WG1756346
Uranium-235	0.361	(U)X	0.570	1.01	10/26/2021 15:25	WG1756346
Thorium-234 (U-238)	3.21	\bigcirc X	2.14	3.67	10/26/2021 15:25	WG1756346

TS-04-0406

SAMPLE RESULTS - 08

Collected date/time: 09/24/21 14:30

L1409189

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	2.43		0.308	0.169	10/11/2021 17:29	WG1753087
URANIUM-235	0.110	J	0.0672	0.0585	10/11/2021 17:29	WG1753087
URANIUM-238	2.32		0.292	0.132	10/11/2021 17:29	WG1753087
(T) URANIUM-232	85.1			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	2.45	X	0.382	0.462	10/26/2021 16:28	WG1756346
Bismuth-212	2.79	X	1.07	1.69	10/26/2021 16:28	WG1756346
Bismuth-214 (Ra-226)	2.74	X	0.313	0.265	10/26/2021 16:28	WG1756346
Lead-212	2.38	X	0.290	0.329	10/26/2021 16:28	WG1756346
Lead-214	3.20	X	0.331	0.257	10/26/2021 16:28	WG1756346
Potassium-40	5.68	X	1.48	2.07	10/26/2021 16:28	WG1756346
Thallium-208	0.863	X	0.137	0.154	10/26/2021 16:28	WG1756346
Uranium-235	0.475	$\stackrel{\cup}{=} X(J)$	0.102	0.784	10/26/2021 16:28	WG1756346
Thorium-234 (U-238)	2.35	± X	1.80	3.06	10/26/2021 16:28	WG1756346

TS-DUP-01

SAMPLE RESULTS - 09

Collected date/time: 09/24/21 19:00

L1409189

Radiochemistry by Method D3972 U-02

	• •					
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	9.93		0.693	0.127	10/11/2021 17:29	WG1753087
URANIUM-235	0.357		0.136	0.0824	10/11/2021 17:29	WG1753087
URANIUM-238	9.77	J	0.686	0.101	10/11/2021 17:29	WG1753087
(T) URANIUM-232	65.7			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.29	X	0.508	1.05	10/26/2021 16:35	WG1756346
Bismuth-212	-2.59	⊎ X	8.79	3.77	10/26/2021 16:35	WG1756346
Bismuth-214 (Ra-226)	32.0	X	2.92	0.539	10/26/2021 16:35	WG1756346
Lead-212	-4.48	⊎ X	0.635	0.924	10/26/2021 16:35	WG1756346
Lead-214	34.8	X	3.65	0.603	10/26/2021 16:35	WG1756346
Potassium-40	14.1	X	2.59	3.02	10/26/2021 16:35	WG1756346
Thallium-208	0.596	X	0.182	0.272	10/26/2021 16:35	WG1756346
Uranium-235	0.498	<u>(∪)</u> X	1.12	1.91	10/26/2021 16:35	WG1756346
Thorium-234 (U-238)	1.86	(U) X I	3.06	6.08	10/26/2021 16:35	WG1756346

L1409189

D 1: 1 ... 1 M 11 1 D00

Collected date/time: 09/24/21 19:00

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	9.85		0.562	0.141	10/11/2021 17:29	WG1753087
URANIUM-235	0.572	J	0.138	0.0657	10/11/2021 17:29	WG1753087
URANIUM-238	10.1		0.563	0.0829	10/11/2021 17:29	WG1753087
(T) URANIUM-232	77.7			30.0-110	10/11/2021 17:29	WG1753087

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.57	X	0.338	0.592	10/26/2021 17:35	WG1756346
Bismuth-212	1.06	±X	1.16	2.13	10/26/2021 17:35	WG1756346
Bismuth-214 (Ra-226)	12.7	X	0.986	0.315	10/26/2021 17:35	WG1756346
Lead-212	-0.110	<u>⊎</u> X	0.242	0.465	10/26/2021 17:35	WG1756346
Lead-214	13.7	X	1.10	0.32	10/26/2021 17:35	WG1756346
Potassium-40	5.81	X	1.52	2.25	10/26/2021 17:35	WG1756346
Thallium-208	0.498	X	0.116	0.171	10/26/2021 17:35	WG1756346
Uranium-235	1.48	X(J)	0.176	0.989	10/26/2021 17:35	WG1756346
Thorium-234 (U-238)	6.53	X	3.08	3.85	10/26/2021 17:35	WG1756346

Leidos Radiological Analytical Data Validation

Event Name: Staten Island Warehouse FUSRAP Site

SDG Number: L1409189
Laboratory: Pace Analytical

Analysis: Gamma Spec/Iso U (soil)

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 3 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. The requested analyses include: ^{234/235/238}U by alpha spectrometry (Method D3972 U-02); ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ²³⁴Th, ²²⁸Ac, ⁴⁰K, and ²³⁵U by gamma spectrometry (Method DOE Ga-01-R/901.1 (21 day)). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Case Narrative

Analytical Holding Times and Preservation

Method Calibration/Calibration Verification

Method Blanks
Background Checks

Analytical Tracer Recoveries

MS/MSD Recoveries and Differences LCS/LCSD Recoveries and Differences

Laboratory Duplicates/Replicates

Re-analysis and Secondary Dilution Minimum Detectable Activities (MDAs)

Reporting Levels

Chemical/Spectroscopic Separation Specificity (alpha spectroscopy) Project Duplicates and Splits Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

Data Intercomparison

Definition of Data Validation Qualifiers:

"U" - Indicates a normal, non-detected (< critical value) result.

"J" - Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable depending upon the intended use of the data and reason for data rejection.

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September, 2021.

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District, September 2017.

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February, 2018.

Sample Name Cross-Reference

Project Sample Name	Matrix	Lab Sample Name
TS-01-0002	Test Pit	L1409189-01
TS-01-0204	Test Pit	L1409189-02
TS-02-0002	Test Pit	L1409189-03
TS-02-0304	Test Pit	L1409189-04
TS-03-0002	Test Pit	L1409189-05
TS-03-0204	Test Pit	L1409189-06
TS-04-0002	Test Pit	L1409189-07
TS-04-0406	Test Pit	L1409189-08
TS-DUP-01	Test Pit	L1409189-09
TS-DUP-02	Test Pit	L1409189-10

Validation Report By:	Amanda Leigh Dick	03/07/2022
	(print)	Date
	amanda Leigh Dick	
	(sign)	
Peer Reviewed By:	Thomas L. Rucker, Ph.D.	03/11/2022
	(print)	Date
	72 Rucker	
	(sign)	

1.0 GAMMA SPECTROMETRY

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

For gamma spectrometry, the CENWK states that if the efficiency calibration delta values (difference between the measured and the calibration curve efficiency) are greater than 5% for any one radionuclide, the calibration shall be deemed unusable. The QAPP further states that the 95% CL of fitted function over range shall be \leq 8%. The following gamma spectrometer detectors/geometries had one or more radionuclides with delta values greater than 5% and or a 95% CL (1.96 σ) greater than 8%:

Initial Calibration

Detector	Geometry	# Energy Peaks	Delta %	# Ener gy Peak s	95% CL	SDG Samples Affected	Qualifier
1	C6	1	6.3			TS-01-0204	X
3	C6	1	18.8	8	8.4 – 10.6	TS-02-0304, TS-03-0204	X
4	C6	1	-6.5			TS-01-0002, TS-03-0002, TS-04-0002, TS-04-0406, TS-DUP-02	X
5	C6	2	-16.4- 6.5	9	8.8 – 14.7	TS-02-0002, TS-DUP-01	X

Based on the CENWK any samples counted on detector with Delta% greater than 5% should be qualified as unusable (X). However, this parameter was not listed in the QAPP. The QAPP parameter, 95% CL of the fitted curve, does not have guidance on how to qualify results outside its limits. It is likely that both of these parameter deficiencies are due to the calibration being performed with less than the minimum 10,000 net counts in each peak in at least six calibration peaks that bracket the range of use as is specified in the DoD Quality Systems Manuel (QSM). The raw counts for the calibration were not provided, but this is evidenced by the uncertainty reported for the peaks. This means there is greater than normal uncertainty in the results due to an uncertain bias from calibration. The samples counted on theses detectors/geometries have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Continuing Calibration

For gamma spectrometry, the CENWK states that if the activity of each radioisotope in the calibration standard is not within 10% relative of the true, decay corrected activity, the calibration shall be deemed unusable. The QAPP also sets a limit of 10% relative to the true value. The following detectors/geometries have one or more quantified peak outside of the 10% limit for the calibration verification check source:

Continuing Calibration

Detector	Geometry	# Energy Peaks	% Difference	SDG Samples Affected	Qualifier
1	C6	1	12.2	TS-01-0204	X
3	C6	1	14.3	TS-02-0304, TS-03-0204	X

Based on the CENWK any samples counted on detector with check source value of greater than 10% should be qualified as unusable (X). It is likely that this parameter's deficiencies are due to the calibration verification being performed with less than the minimum 10,000 net counts in each peak as is specified in the CENWK as the raw net counts for all peaks were less than the 10,000 net counts for all peaks and all detectors. This means there is greater than normal uncertainty in the results due to an uncertain bias from the calibration verification. These samples have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The following samples results did not meet the RDL project goal:

Samples That Did Not Meet The RDL

Sample ID	Analyte	CSU (pCi/g)	3.5*CSU	RDL (pCi/g)
TS-02-0002	Ac-228	0.7435	2.60225	1
TS-02-0002	Th-234	5.2	18.2	1
TS-02-0304	Th-234	2.414	8.449	1
TS-DUP-01	U-235	0.5585	1.95475	0.5
TS-DUP-01	Th-234	1.528	5.348	1

The following samples have results greater than the project action limits: TS-01-0002: Ra- 226 (2.294 pCi/g), TS-01-0204: Ra-226 (4.02 pCi/g), TS-02-0002: Ra-226 (347 pCi/g), TS-02-0304: Ra-226 (35.1 pCi/g), TS-03-0002: Ra- 226 (3.51 pCi/g), TS-03-0204: Ra-226 (3.26 pCi/g), TS-04-0406: Ra-226 (2.74 pCi/g), TS-DUP-01: Ra-226 (32.0 pCi/g), TS-DUP-02: Ra-226 (12.7 pCi/g).

No samples exhibited excess uncertainty.

The following sample had a negative result with an uncertainty smaller than its absolute value. The CENWK states this result needs to be rejected. However, since this result is likely being influenced by a slight negative bias and may still be useful, professional judgment was used to qualify the result. TS-02-0304: Th-234.

It is recommended that sample concentrations less than the L_c be qualified as non-detect (U) as follows: TS-01-0204: U-235; TS-02-0002: Ac-228 and Th-234; TS-02-0304: Th-234; TS-03-0204: U-235; TS-04-0002: U-235; and TS-DUP-01: U-235 and Th-234.

Method Blank

There was no indication of blank contamination for the gamma spectrometry analysis.

Laboratory Control Sample:

The percent recoveries for the laboratory control samples (LCSs) were within acceptable limits.

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD (DER).

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = Parent Sample Result

D = Field Split/Duplicate Parent Sample Result

 $U_S =$ Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The laboratory duplicates for the gamma spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (<25%, <3).

All analyte results for field duplicate TS-DUP-01 were within a factor of 4 from the original result. All analyte results for field duplicate TS-DUP-02 were within a factor of 4 from the original result except for U-235. The U-235 result for field duplicate TS-DUP-02 was outside the upper limit of a factor of 4 from the original result but less than a factor of 5. It is recommended that the Uranium-235 result from TS-DUP-02 be qualified as estimated (J). Please see table below.

Staten Island Field Duplicate

Field Duplicate IDs	Analyte	Original Result (pCi/g)	Factor of 4 of Original Result (pCi/g)	Factor of 5 of Original Result (pCi/g)	Original- (Factor 4 - Original) (pCi/g)	Duplicate Result (pCi/g)	Qualifier
TS-DUP-02	U-235	0.361	1.444	1.805	-0.722	1.48	J

Identification and Quantification:

The following target radionuclides: ²²⁸Ac, ²²⁶Ra, ⁴⁰K, ²³⁴Th, and ²³⁵U in the samples were reported. The energies of the radionuclides were less than 2 keV from their theoretical energies.

The laboratory used a peak search sensitivity factor of 3. When the peak search sensitivity factor is set at a value greater than 2.3, the peak search report will not report peaks as low as the MDA. Therefore, there is a greater than 5% chance that concentrations greater than the reported MDA will not appear in the peak search. However, the List Isotope Activities report calculates the net activities for the target analytes and this list has been use to report all target analyte activities. Therefore, the only impact is that small but detected non-target analytes may not have been reported.

2.0 ALPHA SPECTROMETRY

Holding Time and Preservation

All holding times and preservation requirements were met for the alpha spectrometry analyses.

Initial Calibration

The initial calibration met project acceptance criteria for all reported analytes.

Continuing Calibration

The continuing calibration met project acceptance criteria for all reported analytes.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The RDL project goal of <0.5 pCi/g was met for all samples.

The following samples had results greater than the project action limit: TS-02-0002: U-234 α (73.6 pCi/g), U-235 α (3.80 pCi/g), U-238 α (73.3 pCi/g), TS-02-0304: U-234 α (9.00 pCi/g), U-235 α (0.384 pCi/g), U-238 α (9.07 pCi/g), TS-03-0002: U-234 α (4.20 pCi/g), U-238 α (4.67 pCi/g), TS-04-0002: U-234 α (9.29 pCi/g), U-235 α (0.476 pCi/g), U-238 α (9.69 pCi/g), TS-DUP-01: U- 234 α (9.93 pCi/g), U-235 α (0.357 pCi/g), U-238 α (9.77 pCi/g), and TS-DUP-02: U-234 α (9.85 pCi/g), U-235 α (0.572 pCi/g), U-238 α (10.1 pCi/g).

No sample results exhibited excess uncertainty.

The sample-specific critical level (L_c) was calculated as 1.65 times the sample uncertainty. No sample results were qualified.

Matrix Spike

A non-SDG sample was used as a matrix spike. The percent recoveries were within acceptable limits.

Method Blank

There was no indication of blank contamination for the alpha spectrometry analysis.

Laboratory Control Sample:

The percent recoveries for the laboratory control samples (LCSs) were within acceptable limits.

Duplicate Analysis:

$$RPD = \left(\frac{\left|S - D\right|}{\frac{S + D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = D Parent Sample Result $D = Field Split/Duplicate Parent Sample Result
<math>U_S = D$ Parent Sample CSU (1 sigma) $U_D = D$ Field Split/Duplicate Parent Sample CSU (1 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The RPDs and the NADs (DERs) are within acceptable limits (<20% and <3) for the laboratory duplicate analyses for all alpha spectrometry analyses.

All field duplicate results were within a factor of 4 from the original result.

Sample-Specific Chemical Recovery:

The tracer recoveries were within acceptable limits.

Spectral Analysis:

Significant tailing was observed in the Uranium-234 and Uranium-238 peaks in sample TS-02-0002. Minor tailing was observed in the Uranium-238 peak in sample TS-DUP-02. However, there was no peak interference. Therefore, no qualification is required.

Quantification:

No quantification issues were observed.

3.0 DATA INTERCOMPARISON

<u>U Alpha to U Gamma:</u>

In comparing the uranium results from alpha spectrometry analysis to the uranium results from gamma spectrometry, the following samples were outside the project requirements of <25% RPD and/or NAD <3 indicating subsampling representativeness problems. Both the alpha and the gamma results in the following samples are recommended to be qualified as either estimated (J) or unusable (X), depending on the magnitude of the difference, due to incomparable results:

Radiochemistry - Data Intercomparison

				_				
		Al	pha	Ga	amma			
Sample ID	Analyte	Result	CSU	Result	CSU	RPD%	DER	Qualifier
		(pCi/g)	(pCi/g)	(pCi/g)	(pCi/g)			
TS-01-0002	U-235	0.106	0.026	0.356	0.04475	108.23%	4.830	J
TS-01-0204	U-235	0.0888	0.028	0.359	0.063	120.68%	3.919	J
TS-02-0002	U-235	3.8	0.138	13.5	1.965	112.14%	4.924	J
TS-02-0304	U-235	0.384	0.054	2.74	0.2095	150.83%	10.890	J
TS-03-0002	U-235	0.159	0.038	0.55	0.0525	110.30%	6.033	J
TS-04-0406	U-235	0.11	0.029	0.475	0.051	124.79%	6.221	J
TS-DUP-02	U-235	0.572	0.056	1.48	0.088	88.50%	8.705	J
TS-01-0002	U-238	3.27	0.171	1.16	0.665	95.26%	3.073	J
TS-02-0002	U-238	73.3	1.05	-7.05	5.2	242.57%	15.146	X
TS-02-0304	U-238	9.07	0.2745	-4.94	2.415	678.45%	5.764	X
TS-04-0002	U-238	9.69	0.3055	3.21	1.07	100.47%	5.823	J
TS-DUP-01	U-238	9.77	0.343	1.86	1.53	136.03%	5.045	J

¹The U-238 results for gamma were taken from the Th-234 daughter measurement

LEIDOS Laboratory Data Verification Checklist						
Project:	Staten Island Wareho	ouse FUSRAP Site	Page 1	of 3		
SDG No:	L1409189 Analyte Group: Gamma Spectroscopy and Isoto Sample Matrix: Test Pit					
Disposition of I NCR No. (if app	_	N/A N/A	Y	- - -		
1. Case Narrative						
	Read SDG Case N	arrative		Y		
	Check Laboratory sample ID vs. Project sample ID lists					
	Check that discussion covers each analytical type included in the SDG					
	Check for identified nonconforming items (e.g., missed holding times, etc.)					
2. Chain-of-Custo	dy (COC)					
	Check COC sample	e collection, shipping, and re	eceiving dates	Y		
	Check that COC signal	gnature blocks are complete	•	Y		
	Check COC project	t sample IDs vs. Lab IDs and	d Result Form IDs	Y		
	Match COC reques data package conte	sted analyses with Case Nar ent (Result Forms)	rative and with	Y		
3. Analytical Resu	Its Form					
	Verify that a Result	Form is present for each sa	ample and analysis	Y		
	On each Result Fo	rm check: SDG No. Sample ID Lab ID Date Collected Date Extracted Date Analyzed Result Matrix Result Units		Y Y Y Y Y Y Y		

			Page 2 of 3	3	
4. Project Verifica	ation				
	Check project and	alyte list vs. analytes reported	_	Y	
	Check project req	juested methods vs. analytical methods performed	<u> </u>	Y	
	Check analyte rep	porting levels vs. project reporting level goals	_	Y	
5. Analytical Qual	lity Control Informat	tion			
	Trace Check for surroga	er ete-recovery results (e.g., org. form II)	_	Y	
	Check for LCS re	sults (e.g., org. form III, inorg. form XII)	_	Y	
	Check for method	blank results (e.g., org. form IV, inorg. form III)	_	Y	
	Check for MS/MS	D results (e.g., inorg. form V)	_	Y	
	Check for laboratory duplicate results (e.g., inorg. form VI)				
	Check for Method	Calibration and Run Documentation			
	organic:	instrument performance check	_	N/A	
		initial calibration data	_	N/A	
		continuing calibration data	_	N/A	
		internal standard areas	_	N/A	
		internal standard retention times	_	N/A	
		sample clean-up documentation	_	N/A	
		(org. forms V through X)			
	metal:	initial calibration data		N/A	
		continuing calibration data		N/A	
		method detection limits		N/A	
		method linear range	_	N/A	
		sample run sequence	_	N/A	
		(inorg. forms II, IV, and VIII through XIV)		14/21	
	other:	initial calibration data		Y	
	(Radiological)	continuing calibration data	_	T. V.	
	(i tadiological)	method detection limits	_	V	
		sample run sequence	_	V	
		sample full sequence	_	Y	

i. Incorrect Inform		Page 3 of 3
	Identify missing items or incorrect information (i.e., missing forms, unsincorrect sample IDs, etc.)	igned forms,
	Contact the laboratory or project personnel to obtain missing information	on
Document of	corrections below:	
	The calibration documentation are missing for both alpha and gamma a Calibration standard COAs are not found in the package. A revision was issued from the laboratory containing the some of the	nnalyses.
	missing information.	
		<u>.</u>
		<u>.</u>
. Nonconforming	Items	
J		
	Document all nonconforming items that can not be resolved above in a Non-Conformance Report (NCR), complete form, file, and follow-up	
	NCR # Item	
	0-19-10-0	
Reviewed By:	amanda Leigh Dick Date:	03/07/2022
QA Review By:	Date:	

LEIDOS Laboratory Data Package Detail Form Project: 1 of 1 Staten Island Warehouse FUSRAP Site Page SDG No: **Analyte Group:** L1409189 Gamma Spec. & Isotopic Uranium Field Matrix Lab Analysis Notes: Sample ID ID# Gamma Spec & Iso U TS-01-0002 L1409189-01 TP TS-01-0204 L1409189-02 **TP** Gamma Spec & Iso U TS-02-0002 Gamma Spec & Iso U L1409189-03 TP TP TS-02-0304 L1409189-04 Gamma Spec & Iso U TS-03-0002 TP Gamma Spec & Iso U 1409189-05 L1409189-06 TP Gamma Spec & Iso U TS-03-0204 TS-04-0002 L1409189-07 TP Gamma Spec & Iso U TS-04-0406 L1409189-08 TP Gamma Spec & Iso U L1409189-09 TP Gamma Spec & Iso U TS-DUP-01 Gamma Spec & Iso U TS-DUP-02 L1409189-10 ТР Comments:

LEIDOS Radiochemical Data Review Checklist

	rtaaroont	emicai Data Revie			
Project:	Staten Island Warehouse FUS	SRAP Site	Page 1 of 21		
SDG No:	L1409189	_ Analysis: Method:	Gamma Spectroscopy & Iso Uranium		
Laboratory:	Pace Analytical	Matrix:	DOE Ga-01-R/901.1 & D3972 U-02 Test Pit		
data have been sun	ckage has been reviewed and the nmarized. The general criteria conation of the following:		ntrol/quality assurance performance alytical integrityof the data were		
	Case Narrative Chemical and/or Tracer Recoveries Analytical Holding Times Matrix Spike Results Sample Preservation Duplicate Error Ratios and RPDs Method Calibration LCS Recoveries				
	Method and Project Blanks	Re-analysis and Se	condary Dilution		
Overall Remarks:	CENWK, QSM 5.3; see QAPF	ofor specific requirem	ents		
Results qualified	as indicated due to detection	limits field dunlica	tes, and incomparable results.		
Tresums quantified	as marcarea and to detection	mmo, mad dapmoa	teo, una meomparate results.		
-					
-					
Definition of Qualifie					
	"U", not detected at the associ "UJ", not detected and associa "J", associated value estimate "R", associated value unusable "=", compound properly identif	ated value estimated I d e or analyte identity un			
Reviewed by:	amanda Lei	gh Dick	Date: 03/07/2022		
QA Reviewed by:			Date:		

LEIDOS Page 2 of 21

Radiochemical Data Review Checklist

I. Case Narrative

n cass namany	
Verify direct statements	s made within the Laboratory Case Narrative (note discrepancies).
Remarks: T	he Uranium-235 gamma result from field duplicate TS-DUP-02 was greater than
a factor of four of the	he parent sample. DVQ: "J".
K	K-40, Ra-226, and Th-234 exceeded the project MDA goal for several samples.
Additionally, severa	al sample results were greater than the project action limit.
S	ample TS-02-0304 had a negative result with an uncertainty greater than its absolute
value.	
Sar	mples counted on gamma detectors with a delta value greater than 5% were qualified
as "X".	
II Po-analysis and	Secondary Dilutions
•	
Verify that re-analysis a appropriate results to re	and secondary dilutions were performed and reported as necessary. Determine eport.
Remarks: No	o samples were re-analyzed or diluted.

Page 3 of 21

LEIDOS

Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

Sample #	Radionuclide:	Date Collected	Date Analyzed	Action
		00001.00.	7 11.01.19 = 0 0	

Actions:

1. If holding times are exceeded *, all results are qualified as estimated (J/UJ) *o	r improperly	v preserved
--	--------------	-------------

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

demarks:	All holding times were met and the samples were properly preserved.		

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
K-40	< 1 pCi/g	2.02 pCi/g	TS-01-0002
Th-234	< 1 pCi/g	2.65 pCi/g	TS-01-0002
K-40	< 1 pCi/g	2.14 pCi/g	TS-01-0204
Th-234	< 1 pCi/g	2.53 pCi/g	TS-01-0204
Ac-228	< 1 pCi/g	3.34 pCi/g	TS-02-0002
Ra-226	< 1 pCi/g	1.72 pCi/g	TS-02-0002
K-40	< 1 pCi/g	9.80 pCi/g	TS-02-0002
U-235 γ	< 1 pCi/g	6.18 pCi/g	TS-02-0002
Th-234	< 1 pCi/g	19.7 pCi/g	TS-02-0002
Ac-228	< 1 pCi/g	1.48 pCi/g	TS-02-0304
K-40	< 1 pCi/g	3.96 pCi/g	TS-02-0304
U-235 γ	< 1 pCi/g	2.70 pCi/g	TS-02-0304
Th-234	< 1 pCi/g	10.1 pCi/g	TS-02-0304
K-40	< 1 pCi/g	2.21 pCi/g	TS-03-0002
Th-234	< 1 pCi/g	2.73 pCi/g	TS-03-0002
K-40	< 1 pCi/g	2.26 pCi/g	TS-03-0204

Actions:

see CENWK 4.1.3.3a and QAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks: The following samples had results above the project action limit: TS-01-0002: Ra-226 (2.294 pCi/g), TS-01-0204: Ra-226 (4.02 pCi/g), TS-02-0002: U-234 α (73.6 pCi/g), U-235 α (3.80 pCi/g), U-238 α (73.3 pCi/g), Ra-226 (347 pCi/g), TS-02-0304: U-234 α (9.00 pCi/g), U-235 α (0.384 pCi/g), U-238 α (9.07 pCi/g), Ra-226 (35.1 pCi/g), TS-03-0002: U-234 α (4.20 pCi/g), U-238 α (4.67 pCi/g), Ra-226 (3.51 pCi/g), TS-03-0204: Ra-226 (3.26 pCi/g), TS-04-0002: U-234 α (9.29 pCi/g), U-235 α (0.476 pCi/g), U-238 α (9.69 pCi/g), Ra-226 (11.9 pCi/g), TS-04-0406: Ra-226 (2.74 pCi/g), TS-DUP-01: U-234 α (9.93 pCi/g), U-235 α (0.357 pCi/g), U-238 α (9.77 pCi/g), Ra-226 (32.0 pCi/g), TS-DUP-02: U-234 α (9.85 pCi/g), U-235 α (0.572 pCi/g), U-238 α (10.1 pCi/g), Ra-226 (12.7 pCi/g).

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
U-235 γ	< 1 pCi/g	1.33 pCi/g	TS-03-0204
Th-234	< 1 pCi/g	5.15 pCi/g	TS-03-0204
K-40	< 1 pCi/g	2.16 pCi/g	TS-04-0002
U-235 γ	< 1 pCi/g	1.01 pCi/g	TS-04-0002
Th-234	< 1 pCi/g	3.67 pCi/g	TS-04-0002
K-40	< 1 pCi/g	2.07 pCi/g	TS-04-0406
Th-234	< 1 pCi/g	3.06 pCi/g	TS-04-0406
Ac-228	< 1 pCi/g	1.05 pCi/g	TS-DUP-01
K-40	< 1 pCi/g	3.02 pCi/g	TS-DUP-01
U-235 γ	< 1 pCi/g	1.91 pCi/g	TS-DUP-01
Th-234	< 1 pCi/g	6.08 pCi/g	TS-DUP-01
K-40	< 1 pCi/g	2.25 pCi/g	TS-DUP-02
Th-234	< 1 pCi/g	3.85 pCi/g	TS-DUP-02
U-235 γ		Result > LC	TS-01-0002
Th-234		Result > LC	TS-01-0002
U-235 α		Result > LC	TS-01-0204

Actions: see CENWK 4.1.3 and QAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks: For concentrations greater than ten times the MDC, the calculation CSU > 0.25*Rs was used to indentify excess reported uncertainty. No samples exhibited excess uncertainty.

The following sample had a negative results with an uncertainty smaller than its absolute value. The CENWK states these results need to be rejected. However, since these results are likely being influenced by a slight negative bias and may still be useful, professional judgment was used to qualify results.

TS-02-0304

LEIDOS

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
	Level Goal		TG 01 0204
<u>U-235 γ</u>		Result < LC	TS-01-0204
Ac-228		Result < LC	TS-02-0002
K-40		Result > LC	TS-02-0002
Th-234		Result < LC	TS-02-0002
Th-234		Result < LC	TS-02-0304
U-235 γ		Result > LC	TS-03-0002
U-235 γ		Result < LC	TS-03-0204
Th-234		Result > LC	TS-03-0204
U-235 γ		Result < LC	TS-04-0002
Th-234		Result > LC	TS-04-0002
U-235 γ		Result > LC	TS-04-0406
Th-234		Result > LC	TS-04-0406
U-235 γ		Result < LC	TS-DUP-01
Th-234		Result < LC	TS-DUP-01

Actions: see CENWK 4.1.3 and QAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks:	The sample-specific detection limit (LC) was calculated for sample results less than Sample concentrations less than the LC were qualified "U". Please see calculation sheet.
the effical level.	sample concentrations less than the LC were qualified "O". I lease see calculation sheet.
For results that w	ere less than the critical level, the calculation k * CSU =RDL was used to determine</td
whether the RDL	has been met. The following samples had results that did not meet the RDL:
TS-02-0002, TS-0	02-0304, TS-04-0002, and TS-DUP-01.

Page 5 of 21

Radiochemical Data Review Checklist

V.A1. Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.2 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: None

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions:	see CFNWK	131	2 and	$\bigcap \Delta DD$
AUTOTIS	SEE CENVVN	4.5 1	/ AUIO	UAPP

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

temarks:	All initial and continuing calibration project acceptance criteria was met.
A monthly ba	ckground was performed without any discrepancies.

I FIDOS

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.1 and QAPP

Initial efficiency calibration must be demonstrated on each detector for each geometry. Initial energy calibration must be demonstrated on each detector for each geometry. Resolution (FWHM) must be demonstrated for each detector for each geometry.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.2 and QAPP

Continuing calibration efficiency verification must be performed for each detector at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed monthly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: Delta Values

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value
6.247%	898.04 keV	1	< 5%		
5.283%	159.00 keV	2	< 5%		
7.914%	898.04 keV	2	< 5%		
18.765%	136.47 keV	3	< 5%		
6.524%	159.00 keV	5	< 5%		
5.272%	513.99 keV	2	< 5%		

Actions: see CENWK 4.3.1.1 and QAPP

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks: A long monthly background was performed. No high results were noted.

Samples counted on detectors with delta values greater than 5% and /or 95% CL (1.96 σ) greater than 8%: were qualified as X

No documentation of an energy calibration was given. Additionally, there was no indication that a Peakto-Compton ratio calibration was performed.

Daily source checks were performed for each detector. The FWHM was less than 3 keV for confirmed isotopes with the exception of Detector 1 at the 897.74 energy.

Page 7 of 21

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis

see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide.

Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

Deviations: Samples not selected for Analysis.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions:	see CENWK 4.3.1	 1.4 and ∩∆PP			
	oration quench cur		rmation is not acce	antahle	
1. II ti lo ii iitai oaik	•	results as estimat		prabio,	
2. If the continuing	g calibration efficie		` '	ole,	
`	-	results as estimat	· ·	•	
3. If background of	counts are not acce	ptable, qualify the	affected data as es	stimated (J).	
Remarks:					
Nemaiks.	-				

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

see CENWK 4.3.1.3.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters

see CENWK 4.3.1.3.1 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations: Samples not selected for analysis.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions: see CENWK 4.3.1.3 and QAPP

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:			

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

see CENWK 4.2.1 and QAPP

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted.

If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory	Method Blanks: M	B R3715413-1 & N	MB R3722645-1	
Date	Lab ID#	Radionulcide	Result and Error	MDA Result and Error
10/11/2021	MB R3715413-1	U-238	0.147 pCi/g & 0.124 pCi/g	0.157 pCi/g & 0.124 pCi/g
The Blank	result subtracted from	its uncertainty was	less than the MDA. No DV	VQ per QAPP.
10/26/2021	MB R3722645-1	Ac-228	0.168 pCi/g & 0.151 pCi/g	0.376 pCi/g & 0.151 pCi/g
The Blank	result subtracted from	its uncertainty was	less than the MDA. No DV	VQ per QAPP.
10/26/2021	MB R3722645-1	Th-234	1.01 pCi/g & 0.582 pCi/g	1.06 pCi/g & 0.582 pCi/g
The Blank	result subtracted from	its uncertainty was	s less than the MDA. No D	VQ per QAPP.
Associated	l Project Blanks (e.g.	, equipment rinsa	ites, etc.)	
Date	Lab ID #	Radionuclide	Result and Error	MDA Result and Error
Remarks:			A. No qualification needed	-
project blai	nks associated with this	s SDG. Additional	ly, the Zblank value was l	less than 3.

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

see CENWK 4.2.1 and QAPP

Calculate action levels based on 10X the highest blank concentration. see CENWK 4.2.1.3 and QAPP

Deviations: Please see previous page.

	Max. Activity	Action Level	Samples Affected
Radionuclide	Detected		

Actions: see CENWK 4.2.1 and QAPP

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

Example:	Blank Result	Uncert.	MDA or	Normalized absolute	Qualification
				<u>difference</u>	
acceptable	0.3	0.45	0.5	>2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
- 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:			

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

see CENWK 4.1.2 and QAPP

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

Deviations: None

Deviations. None	,		A (' T I
Radionuclide	Sample ID	%R	Action Taken

2. If recovery is between 23. If recovery is between 24. If recovery is less than	see CENWK 4.1.2 and QAPP 30-110%, no qualification is nece 20 10 -30%, qualify the data as es 110-120 150 %, qualify the data as 20 10%, qualify the data as reject an 120 150%, qualify the data as	stimated (J). s estimated sted (R).	(J).	outside lab limits but within 20-120%: J if corrective actions taken, otherwise R
Remarks:	All tracer recoveries were wi	thin projec	et acceptar	nce limits.

Page 12 of 21

Radiochemical Data Review Checklist

VIII. Laboratory Co	ntrol Sample Information	see CENWK 4.2.2 and QAPP
viii. Laboratory oo		3CC OLIVVIX 4.2.2 and QALL

General LCS Criteria:
percent recovery (%R)

Alpha					
aqueous	solid				
80-120	70-130				
	75 405				

Gamma, GPC, KPA: 80-120

75-125

Laboratory LCS Identifications: LCS R3715413-2

LCS R3722645-2 & LCSD R3722645-4

_				-	-
חם	Vi s	ti/	me:		one
	VIC	LLIV	nio.	- 13	\mathbf{c}

Remarks:

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied

Actions:	see CFNWK 4.2.2 and QAPP
ACHOUS.	See CENVIN 4.2.2 and GAPP

Alpha (Aqueous) <u><50%</u> and Gamma, GPC, KPA R <50% 50-74% 126-150% >150% <40% Alpha (Solid) <u>40-69%</u> <u>131-160%</u> >160% R

·			

All LCS percent recoveries were within project limits.

Page 13 of 21

Radiochemical Data Review Checklist

IX. Matrix Spike Information

General MS Criteria:	Aqueous	Solid	see CENWK 4.2.3 and QAPP
percent recovery (%R)	50-120	40-130	

Project Sample(s) Spiked: Non-SDG sample was spiked (L1410500-01)

MS R3715413-3 10/11/21 17:29 & MSD R3715413-4

Deviations: None

Actions:

Aqueous

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied

		R	J	J	use professional judgement R
all samples in batch		*see CENW	/K 4.2.3 a	nd QAPP*	
	Solid	<u><10%</u>	<u>10-39%</u>	131-160%	>160% >150%
		R	J	J	use professional judgement R
Remarks:	A	ll matrix spike rec	covery re	sults were	within project QC limits.

<20% 20-49% 121-160% >160% >150%

see CENWK 4.2.3 and QAPP

Page 14 of 21

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis

see CENWK 4.2.4, 4.2.5 and QAPP

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER).

Duplicate actions should apply to all samples associated with the duplicate pair.

Duplicate Sample Identification: DUP R3715413-5 & MSD R3715413-4

DUP R3722645-3 & LCSD R3722645-4

Deviations:

				Samples Affected
Radionuclide	DER	RPD	RER	
U-235 γ				TS-DUP-02. Result > Parent result *4. DVQ: "J".
U-235 α		46.93%	1.464	DUP R3715413-5. NAD less than 3. No DVQ.
Αc-228 γ		38.06%	1.090	DUP R3722645-3. NAD less than 3. No DVQ.
Th-234 γ		97.83%	1.131	DUP R3722645-3. NAD less than 3. No DVQ.
Κ-40 γ		25.30%	1.682	DUP R3722645-3. NAD less than 3. No DVQ.
	_		_	

Actions:

see CENWK 4.2.4 (lab dup) 4.2.5 (field dup) and QAPP

- 1. If both sample and duplicate activities are within 2X the MDA comparison is acceptable.
- 2. If the DER is greater than 1.00, qualify the data as estimated (J).
- 3. If the RPD is greater than 50% qualify the data as estimated (J).
- 4. If one sample is <MDA and the other sample is >2X the MDA, qualify the data as estimated (J).

Remarks:	All laboratory duplicates met project acceptance criteria. Field DUP TS-DUP-
02 had a U-235 result of	outside of the upper limits. Field DUP TS-DUP-01 sample results met project
acceptance critieria.	

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

see CENWK 4.1.8, 4.1.9.2 and QAPP

Each alpha isotopic peak should be clear and free of interference from other energy peaks. Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Deviations:

Radionuclide	Deficiency	Samples Affected
Uranium-234	A little tailing	LCS R3715413-2
Uranium-234	A little tailing	MSD R3715413-4
Uranium-238	A little tailing	MSD R3715413-4
Uranium-234	Significant tailing.	TS-02-0002
Uranium-238	Significant tailing.	TS-02-0002
Uranium-238	A little tailing.	TS-DUP-02

•	_				
Δ	ct	ın	n	c	=

see CENWK 4.1.8, 4.1.9.2 and QAPP

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:	There were no overlapping or interefent peaks. All identified peaks were
within 40 keV from their t	heoretical energies. Major tailing was observed in TS-02-0002. With minor
tailing occurring in TS-DU	P-02, LCS, and MSD.

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density

see CENWK 4.1.9. 4.1.7 and QAPP

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations: None

Deficiency	Samples Affected
	Deficiency

Actions:

see CENWK 4.1.9, 4.1.7 and QAPP

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 5. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

|--|

All identified radionuclide energies were less than 2 keV from the theoretical energy.

All project radionuclides of interest met identification criteria.

The energy spectra did not contain overlapping or interferent peaks.

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy) Data Intercomparison

Each sample tentatively identified radionuclide energy must be within 2 keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra.

All peaks greater than 3X the background standard deviation must be identified and quantified.

The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships). Results from different but comparable analytical techniques

from different sub-sample aliquots of the same sample shall be compared for consistency.

Deviations:

Radionuclide	Deficiency	Samples Affected
U-235	Alpha and Gamma results not comparable.	TS-01-0002. DVQ: "J"
U-235	Alpha and Gamma results not comparable.	TS-01-0204. DVQ: "J"
U-235	Alpha and Gamma results not comparable	TS-02-0002, DVO : "J"
U-235	Alpha and Gamma results not comparable	TS-02-0304, DVO: "J"
U-235	Alpha and Gamma results not comparable	TS-03-0002: DVO: "J"
U-235	Alpha and Gamma results not comparable	TS-04-0406. DVQ: "J"
U-235	Alpha and Gamma results not comparable	TS-DUP-02. DVQ: "J"
U-238	Alpha and Gamma results not comparable	TS-01-0002. DVQ: "J"
U-238	Alpha and Gamma results not comparable	TS-02-0002. DVQ: "X"
U-238	Alpha and Gamma results not comparable	TS-02-0304. DVQ: "X"
U-238	Alpha and Gamma results not comparable	TS-04-0002. DVQ: "J"
U-238	Alpha and Gamma results not comparable	TS-DUP-01: DVQ: "J"

Actions:

- 1. Qualify all tentatively identified radionuclides as estimated (J).
- 2. If the energy of the tentatively identified radionuclide peak is more than 2-keV from the theoretical energy, use professional judgement to qualify the data.
- 3. If the reviewer judges anything regarding the identification of the tentatively identified radilnuclide

as suspect, qualify the data as rejected (R). If the results do not agree within the reported uncertainty of measurement, results shall be qualified as "J" or "R", depending on the magnitude of the uncertainty.

Remarks:	The samples not liste	ed above had co	mparable alpha	and gamma U-2	235 results.
Please see ca	alculation sheets.				
		_	_		_

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

see CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Deviations:

Actions:

Radionuclide/Method	Deficiency	Samples Affected
U-234	Tailing	TS-02-0002
U-238	Tailing	TS-02-0002
U-238	Tailing	TS-DUP-02

1. Based on t	the instrument performance indicators, the data reviewer must use professional judgement ot qualify the data.
Remarks:	Tailing was observed in the samples listed above. No sample results were qualified.

see CENWK and QAPP

LEIDOS Page 19 of 21

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Radionuclide:	se see calculatiom sheets. Method:	
amarke:		
emarks <u>:</u>		
Remarks <u>:</u>		
demarks <u>:</u>		
alculation Check:	Mothodu	
alculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
alculation Check:	Method:	

LEIDOS Page 20 of 21

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Radionuclide:	Method:	
Remarks:		
Calculation Check:	Method:	
Calculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

Remarks:	Samples qualified as indicated based on the CENWK & the QAPP.

Geo Consultants - Kev 325 Kentucky Ave	il, KY \	KY Accounts Payable 325 Kentucky Ave Kevil, KY 42053				Pres Chk	Pres				Contain	ner / Preser	vative			Chain of Custo	Pageof. Ce Analytica
Report to: David Lindsey	Email To: lindseyd@geoconsultantscorp.o				om		3	yr	٧٢							Submitting a sample constitutes acknowle	Mount Juliet, TN 37122 via this chain of custody edgment and acceptance of
Project Description:		City/State Please C Collected: PT MT						s/Imi			Table 1					Pace Terms and Con https://info.pacelab terms.pdf	ditions found at: s.com/hubfs/pas-standard-
Phone: 270-462-3882	Client Proje	ct#					res	еОН10								SDG#	E151
Collected by (print): B. Hooks	Site/Facility	ID#		P.O. #			4ozClr-NoPres	mb/M	Pres	S					9	100000000000000000000000000000000000000	OCONKKY
Collected by (signature): Solution Collected by (signature):	Rush? Same Next Two I	Day 5 Day 10 I	e Notified) e Day ay (Rad Only) Day (Rad Only)	Quote # Date Resul	ts Needed	No.	DODSV8270 402C	DODV8260 40mlAmb/MeOH10ml/Syr	Metals 2o2Clr-NoPres	1L-Cir-NoPres					- 1 × 1	Prelogin: P8 PM: 732 - Do PB: BA	73893 nna Eidson 911712
Sample ID	Comp/Gra	b Matrix *	Depth	Date	Time	Cntrs	saoo	VOOC	Metal	TCLP 1			-+			Shipped Via: Remarks	FedEX Ground Sample # (lab or
WC-01 - 0002	comp	ss	0-2	9/24/21	1100	4	X	Х	X	X							-011-07
WC-02-0001	comp	SS	0-2	9/24/21	1400	4	X	X	X	X							when
						-					176					Lie	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	Remarks: Samples returneUPSFedi	ed via:	1	Tracki	ng#				A 19	pH _		Temp		COC S Bottl Corre Suffi	eal Pringled/igned/ies arrict bot cient	le Receipt (esent/Intac Accurate: ive intact: tles used: volume sent If Applica adspace:	NP - Y
Relinquished by : (Signature)		Date: Time: Received by: (Signature)							180	Trip Blank	Receiv	ed: Yes/1 HCL/ TBR	No MeoH	Prese	rvatio	n Correct/Cl <0.5 mR/hr:	necked: Y
Relinquished by : (Signature)		Date:	Time	e: Receiv	yed by: (Signati	ure)			į	TempA2	46	Bottles Re	eceived:	If pres	ervation	required by Lo	ogin: Date/Time
Relinquished by : (Signature)		Date:	Tim	e: Recei	ed for lab by:	(Signati	ure)			Date:	(7)	Time:	ius	Hold:			Condition: NCF / OK

Pace Analytical® ANALYTICAL REPORT

October 19, 2021

Geo Consultants - Kevil, KY

Sample Delivery Group:

L1409499

Samples Received:

09/25/2021

Project Number:

Description:

Report To:

David Lindsey

325 Kentucky Ave

Kevil, KY 42053

Entire Report Reviewed By:

Donna Eidson

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
WC-01-0002 L1409499-01	5
WC-01-0002 L1409499-02	8
WC-02-0001 L1409499-03	10
WC-02-0001 L1409499-04	13
Qc: Quality Control Summary	15
Mercury by Method 7470A	15
Mercury by Method 7471A	16
Metals (ICP) by Method 6010B	17
Metals (ICPMS) by Method 6020	19
Volatile Organic Compounds (GC/MS) by Method 8260B	20
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	29
GI: Glossary of Terms	36
Al: Accreditations & Locations	37
Sc: Sample Chain of Custody	38

SAMPLE SUMMARY

	07 (IVII LL (3 0 11111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			Collected by	Collected date/time	Received da	te/time
WC-01-0002 L1409499-01 Solid			B. Hooks	09/24/21 11:00	09/25/21 09:	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Mercury by Method 7471A	WG1753288	1	10/07/21 13:48	10/08/21 12:19	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1755398	5	10/13/21 03:21	10/13/21 20:12	JPD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1753015	1.39	09/24/21 11:00	10/07/21 17:18	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1756712	1.39	09/24/21 11:00	10/14/21 13:02	BMB	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1753791	10	10/07/21 17:45	10/08/21 13:57	AMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1753791	100	10/07/21 17:45	10/11/21 14:56	AMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
WC-01-0002 L1409499-02 Waste			B. Hooks	09/24/21 11:00	09/25/21 09:	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Preparation by Method 1311	WG1752313	1	10/06/21 16:45	10/06/21 16:45	TDW	Mt. Juliet, TN
Preparation by Method 1311	WG1753668	1	10/08/21 17:39	10/08/21 17:39	CJW	Mt. Juliet, TN
Mercury by Method 7470A	WG1754241	1	10/09/21 12:57	10/11/21 08:21	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1754232	1	10/11/21 01:43	10/13/21 20:03	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1753430	1	10/08/21 03:41	10/08/21 03:41	ADM	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1758658	1	10/18/21 06:05	10/18/21 14:53	JNJ	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WC-02-0001 L1409499-03 Solid			B. Hooks	09/24/21 14:00	09/25/21 09:	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Mercury by Method 7471A	WG1753288	1	10/07/21 13:48	10/08/21 12:06	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1755398	5	10/13/21 03:21	10/13/21 19:56	JPD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1753015	1.63	09/24/21 14:00	10/07/21 17:37	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1756712	1.63	09/24/21 14:00	10/14/21 13:21	BMB	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1753791	10	10/07/21 17:45	10/08/21 15:01	AMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1753791	100	10/07/21 17:45	10/11/21 15:17	AMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
WC-02-0001 L1409499-04 Waste			B. Hooks	09/24/21 14:00	09/25/21 09:	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Preparation by Method 1311	WG1752313	1	10/06/21 16:45	10/06/21 16:45	TDW	Mt. Juliet, TN
Preparation by Method 1311	WG1753668	1	10/08/21 17:39	10/08/21 17:39	CJW	Mt. Juliet, TN
Mercury by Method 7470A	WG1754241	1	10/09/21 12:57	10/11/21 08:23	BMF	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1754232	1	10/11/21 01:43	10/13/21 20:06	CCE	Mt. Juliet, TN
Valatila Ovacaia Campaunda (CC/MC) bu Mathad 00000	WC17F2420	1	10/00/21 04:01	10/00/21 04:01	ADM	MA Julian TAI

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

WG1753430

WG1758658

10/08/21 04:01

10/18/21 06:05

10/08/21 04:01

10/18/21 15:57

ADM

JNJ

Mt. Juliet, TN

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Donna Eidson Project Manager Analyte

Arsenic

Barium Cadmium

Chromium

Selenium

Lead

Silver

SAMPLE RESULTS - 01

Collected date/time: 09/24/21 11:00 Mercury by Method 7471A

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	0.710		0.0400	1	10/08/2021 12:19	WG1753288

Dilution

5 5

5

5

5

5

5

Analysis

date / time

10/13/2021 20:12

10/13/2021 20:12

10/13/2021 20:12

10/13/2021 20:12

10/13/2021 20:12

10/13/2021 20:12

10/13/2021 20:12

Batch

WG1755398

WG1755398

WG1755398

WG1755398

WG1755398

WG1755398

WG1755398

Result

mg/kg

9.32

313

1.58

32.9

942

ND

ND

Qualifier

RDL

1.00

2.50

1.00

5.00

2.00

2.50

0.500

mg/kg

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	_
Acetone	ND		0.0695	1.39	10/07/2021 17:18	WG1753015
Acrylonitrile	ND		0.0174	1.39	10/07/2021 17:18	WG1753015
Benzene	0.00806		0.00139	1.39	10/07/2021 17:18	WG1753015
Bromobenzene	ND		0.0174	1.39	10/07/2021 17:18	WG1753015
Bromodichloromethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
Bromoform	ND		0.0348	1.39	10/07/2021 17:18	WG1753015
Bromomethane	ND		0.0174	1.39	10/07/2021 17:18	WG1753015
n-Butylbenzene	ND		0.0174	1.39	10/14/2021 13:02	WG1756712
sec-Butylbenzene	ND		0.0174	1.39	10/07/2021 17:18	WG1753015
tert-Butylbenzene	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
Carbon tetrachloride	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
Chlorobenzene	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
Chlorodibromomethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
Chloroethane	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
Chloroform	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
Chloromethane	ND		0.0174	1.39	10/07/2021 17:18	WG1753015
2-Chlorotoluene	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
4-Chlorotoluene	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
1,2-Dibromoethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
1,2-Dibromo-3-Chloropropane	ND		0.0348	1.39	10/07/2021 17:18	WG1753015
Dibromomethane	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
1,2-Dichlorobenzene	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
1,3-Dichlorobenzene	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
1,4-Dichlorobenzene	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
Dichlorodifluoromethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
1,1-Dichloroethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
1,2-Dichloroethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
1,1-Dichloroethene	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
cis-1,2-Dichloroethene	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
trans-1,2-Dichloroethene	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
1,2-Dichloropropane	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
1,3-Dichloropropane	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
2,2-Dichloropropane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
1,1-Dichloropropene	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
cis-1,3-Dichloropropene	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
trans-1,3-Dichloropropene	ND		0.00695	1.39	10/07/2021 17:18	WG1753015
Di-isopropyl ether	ND		0.00139	1.39	10/07/2021 17:18	WG1753015
Ethylbenzene	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
Hexachloro-1,3-butadiene	ND		0.0348	1.39	10/07/2021 17:18	WG1753015

SAMPLE RESULTS - 01

L1409499

Collected date/time: 09/24/21 11:00

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Isopropylbenzene	0.00462		0.00348	1.39	10/07/2021 17:18	WG1753015
p-Isopropyltoluene	0.0120		0.00695	1.39	10/07/2021 17:18	WG1753015
2-Butanone (MEK)	ND		0.139	1.39	10/07/2021 17:18	WG1753015
Methylene Chloride	ND		0.0348	1.39	10/07/2021 17:18	WG1753015
4-Methyl-2-pentanone (MIBK)	ND		0.0348	1.39	10/07/2021 17:18	WG1753015
Methyl tert-butyl ether	ND		0.00139	1.39	10/07/2021 17:18	WG1753015
Naphthalene	0.0379		0.0174	1.39	10/07/2021 17:18	WG1753015
n-Propylbenzene	0.0347		0.00695	1.39	10/07/2021 17:18	WG1753015
Styrene	ND		0.0174	1.39	10/07/2021 17:18	WG1753015
1,1,1,2-Tetrachloroethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
1,1,2,2-Tetrachloroethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
Tetrachloroethene	0.0181		0.00348	1.39	10/07/2021 17:18	WG1753015
Toluene	0.0117		0.00695	1.39	10/07/2021 17:18	WG1753015
1,2,3-Trichlorobenzene	ND		0.0174	1.39	10/14/2021 13:02	WG1756712
1,2,4-Trichlorobenzene	ND		0.0174	1.39	10/07/2021 17:18	WG1753015
1,2,3-Trimethylbenzene	0.0511		0.00695	1.39	10/07/2021 17:18	WG1753015
1,2,4-Trimethylbenzene	0.133		0.00695	1.39	10/07/2021 17:18	WG1753015
1,3,5-Trimethylbenzene	0.0565		0.00695	1.39	10/07/2021 17:18	WG1753015
1,1,1-Trichloroethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
1,1,2-Trichloroethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
Trichloroethene	0.00393	<u>J4</u>	0.00139	1.39	10/07/2021 17:18	WG1753015
Trichlorofluoromethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
1,1,2-Trichlorotrifluoroethane	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
1,2,3-Trichloropropane	ND		0.0174	1.39	10/07/2021 17:18	WG1753015
Vinyl chloride	ND		0.00348	1.39	10/07/2021 17:18	WG1753015
Xylenes, Total	0.0462		0.00904	1.39	10/07/2021 17:18	WG1753015
(S) Toluene-d8	101		85.0-116		10/07/2021 17:18	WG1753015
(S) Toluene-d8	101		85.0-116		10/14/2021 13:02	WG1756712
(S) 4-Bromofluorobenzene	95.2		79.0-119		10/07/2021 17:18	WG1753015
(S) 4-Bromofluorobenzene	97.1		79.0-119		10/14/2021 13:02	WG1756712
(S) 1,2-Dichloroethane-d4	95.4		71.0-136		10/07/2021 17:18	WG1753015
(S) 1,2-Dichloroethane-d4	114		71.0-136		10/14/2021 13:02	WG1756712

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND	<u>J3</u>	0.333	10	10/08/2021 13:57	WG1753791
Acenaphthylene	0.374	<u>J3</u>	0.333	10	10/08/2021 13:57	WG1753791
Anthracene	0.371	<u>J3 J6</u>	0.333	10	10/08/2021 13:57	WG1753791
Benzidine	ND	<u>J6</u>	16.7	10	10/08/2021 13:57	WG1753791
Benzo(a)anthracene	1.46	<u> 13 16</u>	0.333	10	10/08/2021 13:57	WG1753791
Benzo(b)fluoranthene	2.09	<u> 13 16</u>	0.333	10	10/08/2021 13:57	WG1753791
Benzo(k)fluoranthene	0.693	<u> 13 16</u>	0.333	10	10/08/2021 13:57	WG1753791
Benzo(g,h,i)perylene	1.45	<u>J6</u>	0.333	10	10/08/2021 13:57	WG1753791
Benzo(a)pyrene	1.52	<u>J6</u>	0.333	10	10/08/2021 13:57	WG1753791
Bis(2-chlorethoxy)methane	ND		3.33	10	10/08/2021 13:57	WG1753791
Bis(2-chloroethyl)ether	ND		3.33	10	10/08/2021 13:57	WG1753791
2,2-Oxybis(1-Chloropropane)	ND		3.33	10	10/08/2021 13:57	WG1753791
4-Bromophenyl-phenylether	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791
2-Chloronaphthalene	ND	<u>J3</u>	0.333	10	10/08/2021 13:57	WG1753791
4-Chlorophenyl-phenylether	ND		3.33	10	10/08/2021 13:57	WG1753791
Chrysene	1.42	<u>J3 J6</u>	0.333	10	10/08/2021 13:57	WG1753791
Dibenz(a,h)anthracene	ND	<u>J3 J6</u>	0.333	10	10/08/2021 13:57	WG1753791
3,3-Dichlorobenzidine	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791
2,4-Dinitrotoluene	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791
2,6-Dinitrotoluene	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791

Cn

GI

WC-01-0002

Collected date/time: 09/24/21 11:00

SAMPLE RESULTS - 01

L1409499

Ss

Cn

Gl

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL "	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Fluoranthene	2.83	<u>J3 V</u>	0.333	10	10/08/2021 13:57	<u>WG1753791</u>
Fluorene	ND	<u>J3</u>	0.333	10	10/08/2021 13:57	<u>WG1753791</u>
Hexachlorobenzene	ND		3.33	10	10/08/2021 13:57	WG1753791
Hexachloro-1,3-butadiene	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791
Hexachlorocyclopentadiene	ND	<u>J6</u>	3.33	10	10/08/2021 13:57	WG1753791
Hexachloroethane	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791
Indeno(1,2,3-cd)pyrene	1.41	<u>J3 J6</u>	0.333	10	10/08/2021 13:57	WG1753791
Isophorone	ND		3.33	10	10/08/2021 13:57	WG1753791
Naphthalene	ND		0.333	10	10/08/2021 13:57	WG1753791
Nitrobenzene	ND		3.33	10	10/08/2021 13:57	WG1753791
n-Nitrosodimethylamine	ND	<u>J6</u>	3.33	10	10/08/2021 13:57	WG1753791
n-Nitrosodiphenylamine	ND		3.33	10	10/08/2021 13:57	WG1753791
n-Nitrosodi-n-propylamine	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791
Phenanthrene	1.78	<u>J3 J6</u>	0.333	10	10/08/2021 13:57	WG1753791
Benzylbutyl phthalate	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791
Bis(2-ethylhexyl)phthalate	ND		3.33	10	10/08/2021 13:57	WG1753791
Di-n-butyl phthalate	ND		3.33	10	10/08/2021 13:57	WG1753791
Diethyl phthalate	ND		3.33	10	10/08/2021 13:57	WG1753791
Dimethyl phthalate	ND	<u>J6</u>	3.33	10	10/08/2021 13:57	WG1753791
Di-n-octyl phthalate	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791
Pyrene	2.34	J3 J6	0.333	10	10/08/2021 13:57	WG1753791
1,2,4-Trichlorobenzene	ND		3.33	10	10/08/2021 13:57	WG1753791
4-Chloro-3-methylphenol	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791
2-Chlorophenol	ND	_	3.33	10	10/08/2021 13:57	WG1753791
2,4-Dichlorophenol	ND		3.33	10	10/08/2021 13:57	WG1753791
2,4-Dimethylphenol	ND		3.33	10	10/08/2021 13:57	WG1753791
4,6-Dinitro-2-methylphenol	ND		33.3	100	10/11/2021 14:56	WG1753791
2,4-Dinitrophenol	ND		33.3	100	10/11/2021 14:56	WG1753791
2-Nitrophenol	ND		3.33	10	10/08/2021 13:57	WG1753791
4-Nitrophenol	ND		3.33	10	10/08/2021 13:57	WG1753791
Pentachlorophenol	ND	<u>J3</u>	3.33	10	10/08/2021 13:57	WG1753791
Phenol	ND	_	3.33	10	10/08/2021 13:57	WG1753791
2,4,6-Trichlorophenol	ND		3.33	10	10/08/2021 13:57	WG1753791
(S) 2-Fluorophenol	78.3		35.0-115		10/08/2021 13:57	WG1753791
(S) 2-Fluorophenol	0.000	<u>J7</u>	35.0-115		10/11/2021 14:56	WG1753791
(S) Phenol-d5	74.7	<u> </u>	33.0-122		10/08/2021 13:57	WG1753791
(S) Phenol-d5	0.000	<u>J7</u>	33.0-122		10/11/2021 14:56	WG1753791
(S) Nitrobenzene-d5	0.000	<u>57</u> <u>J7</u>	37.0-122		10/11/2021 14:56	WG1753791
(S) Nitrobenzene-d5	69.6	<u></u>	37.0-122		10/08/2021 13:57	WG1753791
(S) 2-Fluorobiphenyl	82.0		44.0-115		10/08/2021 13:57	WG1753791
(S) 2-Fluorobiphenyl	0.000	<u>J7</u>	44.0-115		10/11/2021 14:56	WG1753791
(S) 2,4,6-Tribromophenol	85.9	<u>57</u>	39.0-132		10/08/2021 13:57	WG1753791
(S) 2,4,6-Tribromophenol	0.000	17	39.0-132		10/11/2021 14:56	WG1753791
(S) p-Terphenyl-d14	75.5	<u>J7</u>	54.0-127		10/08/2021 13:57	WG1753791 WG1753791
(5) p-respirellyi-ui4	75.5		54.U-127		10/08/2021 13:5/	WG1/53/91

Sample Narrative:

(S) p-Terphenyl-d14

L1409499-01 WG1753791: Dilution due to matrix impact on instrumentation at lower dilution

<u>J7</u>

54.0-127

0.000

10/11/2021 14:56

WG1753791

SAMPLE RESULTS - 02

L140949

Collected date/time: 09/24/21 11:00 Preparation by Method 1311

alternative at the second										
	Result	Qualifier	Prep	Batch						
Analyte			date / time							
TCLP Extraction	-		10/8/2021 5:39:13 PM	WG1753668						
TCLP ZHE Extraction	-		10/6/2021 4:45:24 PM	WG1752313						
Fluid	1		10/8/2021 5:39:13 PM	WG1753668						
Initial pH	8.32		10/8/2021 5:39:13 PM	WG1753668						
Final pH	5.70		10/8/2021 5:39:13 PM	WG1753668						

Mercury by Method 7470A

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Mercury	ND		0.0100	0.20	1	10/11/2021 08:21	WG1754241

Cn

7 GI

Metals (ICP) by Method 6010B

	Result	Qualifier RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l	mg/l	mg/l		date / time	
Arsenic	ND	0.100		1	10/13/2021 20:03	WG1754232
Barium	1.78	0.100		1	10/13/2021 20:03	WG1754232
Cadmium	ND	0.100		1	10/13/2021 20:03	WG1754232
Chromium	ND	0.100		1	10/13/2021 20:03	WG1754232
Lead	4.92	0.100		1	10/13/2021 20:03	WG1754232
Selenium	ND	0.100		1	10/13/2021 20:03	WG1754232
Silver	ND	0.100		1	10/13/2021 20:03	WG1754232

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	ND		0.0500	0.50	1	10/08/2021 03:41	WG1753430
Carbon tetrachloride	ND		0.0500	0.50	1	10/08/2021 03:41	WG1753430
Chlorobenzene	ND		0.0500	100	1	10/08/2021 03:41	WG1753430
Chloroform	ND		0.250	6	1	10/08/2021 03:41	WG1753430
1,2-Dichloroethane	ND	<u>J4</u>	0.0500	0.50	1	10/08/2021 03:41	WG1753430
1,1-Dichloroethene	ND		0.0500	0.70	1	10/08/2021 03:41	WG1753430
2-Butanone (MEK)	ND		0.500	200	1	10/08/2021 03:41	WG1753430
Tetrachloroethene	ND		0.0500	0.70	1	10/08/2021 03:41	WG1753430
Trichloroethene	ND		0.0500	0.50	1	10/08/2021 03:41	WG1753430
Vinyl chloride	ND		0.0500	0.20	1	10/08/2021 03:41	WG1753430
(S) Toluene-d8	103		89.0-112			10/08/2021 03:41	WG1753430
(S) 4-Bromofluorobenzene	87.7		85.0-114			10/08/2021 03:41	WG1753430
(S) 1,2-Dichloroethane-d4	113		81.0-118			10/08/2021 03:41	WG1753430

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
1,4-Dichlorobenzene	ND		0.100	7.50	1	10/18/2021 14:53	WG1758658
2,4-Dinitrotoluene	ND		0.100	0.13	1	10/18/2021 14:53	WG1758658
Hexachlorobenzene	ND		0.100	0.13	1	10/18/2021 14:53	WG1758658
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	10/18/2021 14:53	WG1758658
Hexachloroethane	ND		0.100	3	1	10/18/2021 14:53	WG1758658
Nitrobenzene	ND		0.100	2	1	10/18/2021 14:53	WG1758658
Pyridine	ND	<u>J3 J4 J6</u>	0.100	5	1	10/18/2021 14:53	WG1758658
3&4-Methyl Phenol	ND		0.100	400	1	10/18/2021 14:53	WG1758658
2-Methylphenol	ND		0.100	200	1	10/18/2021 14:53	WG1758658
Pentachlorophenol	ND		0.100	100	1	10/18/2021 14:53	WG1758658
2,4,5-Trichlorophenol	ND		0.100	400	1	10/18/2021 14:53	WG1758658
2,4,6-Trichlorophenol	ND		0.100	2	1	10/18/2021 14:53	WG1758658

WC-01-0002

Sample Narrative:

SAMPLE RESULTS - 02

Collected date/time: 09/24/21 11:00

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

 $L1409499-02\ WG1758658: Duplicate\ Analysis\ performed\ due\ to\ QC\ failure.\ Reporting\ most\ compliant\ data.$

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
(S) 2-Fluorophenol	24.7		19.0-119			10/18/2021 14:53	WG1758658
(S) Phenol-d5	15.3		10.0-67.0			10/18/2021 14:53	WG1758658
(S) Nitrobenzene-d5	48.4		44.0-120			10/18/2021 14:53	WG1758658
(S) 2-Fluorobiphenyl	59.2		44.0-119			10/18/2021 14:53	WG1758658
(S) 2,4,6-Tribromophenol	49.4		43.0-140			10/18/2021 14:53	WG1758658
(S) p-Terphenyl-d14	51.2		50.0-134			10/18/2021 14:53	WG1758658

WC-02-0001

SAMPLE RESULTS - 03

Collected date/time: 09/24/21 14:00

Mercury by Method 7471A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Mercury	0.524	J3 J5 J6	0.0400	1	10/08/2021 12:06	WG1753288

Cp

³Ss

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	1.12	<u>O1</u>	1.00	5	10/13/2021 19:56	WG1755398
Barium	5.23	J5 O1	2.50	5	10/13/2021 19:56	WG1755398
Cadmium	ND		1.00	5	10/13/2021 19:56	WG1755398
Chromium	ND		5.00	5	10/13/2021 19:56	WG1755398
Lead	6.75	J5 O1	2.00	5	10/13/2021 19:56	WG1755398
Selenium	ND		2.50	5	10/13/2021 19:56	WG1755398
Silver	ND		0.500	5	10/13/2021 19:56	WG1755398

⁷Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
Acetone	ND	0.0815	1.63	10/07/2021 17:37	WG1753015
Acrylonitrile	ND	0.0204	1.63	10/07/2021 17:37	WG1753015
Benzene	0.0116	0.00163	1.63	10/07/2021 17:37	WG1753015
Bromobenzene	ND	0.0204	1.63	10/07/2021 17:37	WG1753015
Bromodichloromethane	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
Bromoform	ND	0.0408	1.63	10/07/2021 17:37	WG1753015
Bromomethane	ND	0.0204	1.63	10/07/2021 17:37	WG1753015
n-Butylbenzene	ND	0.0204	1.63	10/14/2021 13:21	WG1756712
sec-Butylbenzene	ND	0.0204	1.63	10/07/2021 17:37	WG1753015
tert-Butylbenzene	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
Carbon tetrachloride	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
Chlorobenzene	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
Chlorodibromomethane	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
Chloroethane	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
Chloroform	0.00493	0.00408	1.63	10/07/2021 17:37	WG1753015
Chloromethane	ND	0.0204	1.63	10/07/2021 17:37	WG1753015
2-Chlorotoluene	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
4-Chlorotoluene	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
1,2-Dibromoethane	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
1,2-Dibromo-3-Chloropropane	ND	0.0408	1.63	10/07/2021 17:37	WG1753015
Dibromomethane	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
1,2-Dichlorobenzene	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
1,3-Dichlorobenzene	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
1,4-Dichlorobenzene	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
Dichlorodifluoromethane	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
1,1-Dichloroethane	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
1,2-Dichloroethane	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
1,1-Dichloroethene	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
cis-1,2-Dichloroethene	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
trans-1,2-Dichloroethene	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
1,2-Dichloropropane	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
1,3-Dichloropropane	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
2,2-Dichloropropane	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
1,1-Dichloropropene	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
cis-1,3-Dichloropropene	ND	0.00408	1.63	10/07/2021 17:37	WG1753015
trans-1,3-Dichloropropene	ND	0.00815	1.63	10/07/2021 17:37	WG1753015
Di-isopropyl ether	ND	0.00163	1.63	10/07/2021 17:37	WG1753015
Ethylbenzene	0.00591	0.00408	1.63	10/07/2021 17:37	WG1753015

(S) 1,2-Dichloroethane-d4

Collected date/time: 09/24/21 14:00

SAMPLE RESULTS - 03

L1409499

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Hexachloro-1,3-butadiene	ND		0.0408	1.63	10/07/2021 17:37	WG1753015
Isopropylbenzene	ND		0.00408	1.63	10/07/2021 17:37	WG1753015
p-Isopropyltoluene	ND		0.00815	1.63	10/07/2021 17:37	WG1753015
2-Butanone (MEK)	ND		0.163	1.63	10/07/2021 17:37	WG1753015
Methylene Chloride	ND		0.0408	1.63	10/07/2021 17:37	WG1753015
4-Methyl-2-pentanone (MIBK)	ND		0.0408	1.63	10/07/2021 17:37	WG1753015
Methyl tert-butyl ether	ND		0.00163	1.63	10/07/2021 17:37	WG1753015
Naphthalene	ND		0.0204	1.63	10/07/2021 17:37	WG1753015
n-Propylbenzene	0.00901		0.00815	1.63	10/07/2021 17:37	WG1753015
Styrene	ND		0.0204	1.63	10/07/2021 17:37	WG1753015
1,1,1,2-Tetrachloroethane	ND		0.00408	1.63	10/07/2021 17:37	WG1753015
1,1,2,2-Tetrachloroethane	ND		0.00408	1.63	10/07/2021 17:37	WG1753015
Tetrachloroethene	0.106		0.00408	1.63	10/07/2021 17:37	WG1753015
Toluene	0.0290		0.00815	1.63	10/07/2021 17:37	WG1753015
1,2,3-Trichlorobenzene	ND		0.0204	1.63	10/14/2021 13:21	WG1756712
1,2,4-Trichlorobenzene	ND		0.0204	1.63	10/07/2021 17:37	WG1753015
1,2,3-Trimethylbenzene	ND		0.00815	1.63	10/07/2021 17:37	WG1753015
1,2,4-Trimethylbenzene	0.0322		0.00815	1.63	10/07/2021 17:37	WG1753015
1,3,5-Trimethylbenzene	0.0118		0.00815	1.63	10/07/2021 17:37	WG1753015
1,1,1-Trichloroethane	ND		0.00408	1.63	10/07/2021 17:37	WG1753015
1,1,2-Trichloroethane	ND		0.00408	1.63	10/07/2021 17:37	WG1753015
Trichloroethene	0.0279	<u>J4</u>	0.00163	1.63	10/07/2021 17:37	WG1753015
Trichlorofluoromethane	ND		0.00408	1.63	10/07/2021 17:37	WG1753015
1,1,2-Trichlorotrifluoroethane	ND		0.00408	1.63	10/07/2021 17:37	WG1753015
1,2,3-Trichloropropane	ND		0.0204	1.63	10/07/2021 17:37	WG1753015
Vinyl chloride	ND		0.00408	1.63	10/07/2021 17:37	WG1753015
Xylenes, Total	0.0462		0.0106	1.63	10/07/2021 17:37	WG1753015
(S) Toluene-d8	96.6		85.0-116		10/07/2021 17:37	WG1753015
(S) Toluene-d8	104		85.0-116		10/14/2021 13:21	WG1756712
(S) 4-Bromofluorobenzene	102		79.0-119		10/07/2021 17:37	WG1753015
(S) 4-Bromofluorobenzene	95.9		79.0-119		10/14/2021 13:21	WG1756712
(S) 1,2-Dichloroethane-d4	106		71.0-136		10/07/2021 17:37	WG1753015

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

71.0-136

101

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND		0.333	10	10/08/2021 15:01	<u>WG1753791</u>
Acenaphthylene	ND		0.333	10	10/08/2021 15:01	WG1753791
Anthracene	ND		0.333	10	10/08/2021 15:01	WG1753791
Benzidine	ND		16.7	10	10/08/2021 15:01	WG1753791
Benzo(a)anthracene	0.488		0.333	10	10/08/2021 15:01	WG1753791
Benzo(b)fluoranthene	0.688		0.333	10	10/08/2021 15:01	WG1753791
Benzo(k)fluoranthene	ND		0.333	10	10/08/2021 15:01	WG1753791
Benzo(g,h,i)perylene	0.546		0.333	10	10/08/2021 15:01	WG1753791
Benzo(a)pyrene	0.521		0.333	10	10/08/2021 15:01	WG1753791
Bis(2-chlorethoxy)methane	ND		3.33	10	10/08/2021 15:01	WG1753791
Bis(2-chloroethyl)ether	ND		3.33	10	10/08/2021 15:01	WG1753791
2,2-Oxybis(1-Chloropropane)	ND		3.33	10	10/08/2021 15:01	WG1753791
4-Bromophenyl-phenylether	ND		3.33	10	10/08/2021 15:01	WG1753791
2-Chloronaphthalene	ND		0.333	10	10/08/2021 15:01	WG1753791
4-Chlorophenyl-phenylether	ND		3.33	10	10/08/2021 15:01	WG1753791
Chrysene	0.518		0.333	10	10/08/2021 15:01	WG1753791
Dibenz(a,h)anthracene	ND		0.333	10	10/08/2021 15:01	WG1753791
3,3-Dichlorobenzidine	ND		3.33	10	10/08/2021 15:01	WG1753791
2,4-Dinitrotoluene	ND		3.33	10	10/08/2021 15:01	WG1753791

10/14/2021 13:21

WG1756712

²Tc

Cn

SAMPLE RESULTS - 03

Collected date/time: 09/24/21 14:00

L1409499

Ss

Cn

Gl

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
2,6-Dinitrotoluene	ND		3.33	10	10/08/2021 15:01	WG1753791
Fluoranthene	1.03		0.333	10	10/08/2021 15:01	WG1753791
Fluorene	ND		0.333	10	10/08/2021 15:01	WG1753791
Hexachlorobenzene	ND		3.33	10	10/08/2021 15:01	WG1753791
Hexachloro-1,3-butadiene	ND		3.33	10	10/08/2021 15:01	WG1753791
Hexachlorocyclopentadiene	ND		3.33	10	10/08/2021 15:01	WG1753791
Hexachloroethane	ND		3.33	10	10/08/2021 15:01	<u>WG1753791</u>
Indeno(1,2,3-cd)pyrene	0.457		0.333	10	10/08/2021 15:01	WG1753791
Isophorone	ND		3.33	10	10/08/2021 15:01	<u>WG1753791</u>
Naphthalene	ND		0.333	10	10/08/2021 15:01	WG1753791
Nitrobenzene	ND		3.33	10	10/08/2021 15:01	WG1753791
n-Nitrosodimethylamine	ND		3.33	10	10/08/2021 15:01	WG1753791
n-Nitrosodiphenylamine	ND		3.33	10	10/08/2021 15:01	WG1753791
n-Nitrosodi-n-propylamine	ND		3.33	10	10/08/2021 15:01	WG1753791
Phenanthrene	0.610		0.333	10	10/08/2021 15:01	WG1753791
Benzylbutyl phthalate	ND		3.33	10	10/08/2021 15:01	WG1753791
Bis(2-ethylhexyl)phthalate	ND		3.33	10	10/08/2021 15:01	WG1753791
Di-n-butyl phthalate	ND		3.33	10	10/08/2021 15:01	WG1753791
Diethyl phthalate	ND		3.33	10	10/08/2021 15:01	WG1753791
Dimethyl phthalate	ND		3.33	10	10/08/2021 15:01	WG1753791
Di-n-octyl phthalate	ND		3.33	10	10/08/2021 15:01	WG1753791
Pyrene	0.860		0.333	10	10/08/2021 15:01	WG1753791
1,2,4-Trichlorobenzene	ND		3.33	10	10/08/2021 15:01	WG1753791
4-Chloro-3-methylphenol	ND		3.33	10	10/08/2021 15:01	WG1753791
2-Chlorophenol	ND		3.33	10	10/08/2021 15:01	WG1753791
2,4-Dichlorophenol	ND		3.33	10	10/08/2021 15:01	WG1753791
2,4-Dimethylphenol	ND		3.33	10	10/08/2021 15:01	WG1753791
4,6-Dinitro-2-methylphenol	ND		33.3	100	10/11/2021 15:17	WG1753791
2,4-Dinitrophenol	ND		33.3	100	10/11/2021 15:17	WG1753791
2-Nitrophenol	ND		3.33	10	10/08/2021 15:01	WG1753791
4-Nitrophenol	ND		3.33	10	10/08/2021 15:01	WG1753791
Pentachlorophenol	ND		3.33	10	10/08/2021 15:01	WG1753791
Phenol	ND		3.33	10	10/08/2021 15:01	WG1753791
2,4,6-Trichlorophenol	ND		3.33	10	10/08/2021 15:01	WG1753791
(S) 2-Fluorophenol	53.8		35. <i>0</i> -115	10	10/08/2021 15:01	WG1753791
(S) 2-Fluorophenol	0.000	17	35.0-115		10/11/2021 15:17	WG1753791
(S) Phenol-d5	0.000	<u>J7</u> <u>J7</u>	33.0-112		10/11/2021 15:17	WG1753791
(S) Phenol-d5	56.2	<u>37</u>	33.0-122			WG1753791
, ,	0.000	17			10/08/2021 15:01	
(S) Nitrobenzene-d5 (S) Nitrobenzene-d5	51.7	<u>J7</u>	37.0-122 37.0-122		10/11/2021 15:17	WG1753791 WG1753791
1 /			37.0-122 44.0-115		10/08/2021 15:01	WG1753791
(S) 2-Fluorobiphenyl	57.8	17			10/08/2021 15:01	WG1753791
(S) 2-Fluorobiphenyl	0.000	<u>J7</u>	44.0-115		10/11/2021 15:17	WG1753791
(S) 2,4,6-Tribromophenol	68.0	17	39.0-132		10/08/2021 15:01	WG1753791
(S) 2,4,6-Tribromophenol	0.000	<u>J7</u>	39.0-132		10/11/2021 15:17	WG1753791
(S) p-Terphenyl-d14	0.000	<u>J7</u>	54.0-127		10/11/2021 15:17	WG1753791

Sample Narrative

(S) p-Terphenyl-d14

 $L1409499-03\ WG1753791:\ Dilution\ due\ to\ matrix\ impact\ on\ instrumentation\ at\ lower\ dilution$

54.0-127

55.7

10/08/2021 15:01

WG1753791

SAMPLE RESULTS - 04

Collected date/time: 09/24/21 14:00

Preparation by Method 1311

	Result	Qualifier	Prep	<u>Batch</u>
Analyte			date / time	
TCLP Extraction	-		10/8/2021 5:39:13 PM	WG1753668
TCLP ZHE Extraction	÷		10/6/2021 4:45:24 PM	WG1752313
Fluid	1		10/8/2021 5:39:13 PM	WG1753668
Initial pH	5.58		10/8/2021 5:39:13 PM	WG1753668
Final pH	4.95		10/8/2021 5:39:13 PM	WG1753668

³Ss

Mercury by Method 7470A

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Mercury	ND		0.0100	0.20	1	10/11/2021 08:23	WG1754241

Cn

°Qc

⁷Gl

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Arsenic	ND		0.100		1	10/13/2021 20:06	WG1754232
Barium	1.19		0.100		1	10/13/2021 20:06	WG1754232
Cadmium	ND		0.100		1	10/13/2021 20:06	WG1754232
Chromium	ND		0.100		1	10/13/2021 20:06	WG1754232
Lead	1.45		0.100		1	10/13/2021 20:06	WG1754232
Selenium	ND		0.100		1	10/13/2021 20:06	WG1754232
Silver	ND		0.100		1	10/13/2021 20:06	WG1754232

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	ND		0.0500	0.50	1	10/08/2021 04:01	WG1753430
Carbon tetrachloride	ND		0.0500	0.50	1	10/08/2021 04:01	WG1753430
Chlorobenzene	ND		0.0500	100	1	10/08/2021 04:01	WG1753430
Chloroform	ND		0.250	6	1	10/08/2021 04:01	WG1753430
1,2-Dichloroethane	ND	<u>J4</u>	0.0500	0.50	1	10/08/2021 04:01	WG1753430
1,1-Dichloroethene	ND		0.0500	0.70	1	10/08/2021 04:01	WG1753430
2-Butanone (MEK)	ND		0.500	200	1	10/08/2021 04:01	WG1753430
Tetrachloroethene	ND		0.0500	0.70	1	10/08/2021 04:01	WG1753430
Trichloroethene	ND		0.0500	0.50	1	10/08/2021 04:01	WG1753430
Vinyl chloride	ND		0.0500	0.20	1	10/08/2021 04:01	WG1753430
(S) Toluene-d8	104		89.0-112			10/08/2021 04:01	WG1753430
(S) 4-Bromofluorobenzene	92.2		85.0-114			10/08/2021 04:01	WG1753430
(S) 1,2-Dichloroethane-d4	114		81.0-118			10/08/2021 04:01	WG1753430

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
1,4-Dichlorobenzene	ND		0.100	7.50	1	10/18/2021 15:57	WG1758658
2,4-Dinitrotoluene	ND		0.100	0.13	1	10/18/2021 15:57	WG1758658
Hexachlorobenzene	ND		0.100	0.13	1	10/18/2021 15:57	WG1758658
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	10/18/2021 15:57	WG1758658
Hexachloroethane	ND		0.100	3	1	10/18/2021 15:57	WG1758658
Nitrobenzene	ND		0.100	2	1	10/18/2021 15:57	WG1758658
Pyridine	ND	<u>J4</u>	0.100	5	1	10/18/2021 15:57	WG1758658
3&4-Methyl Phenol	ND		0.100	400	1	10/18/2021 15:57	WG1758658
2-Methylphenol	ND		0.100	200	1	10/18/2021 15:57	WG1758658
Pentachlorophenol	ND		0.100	100	1	10/18/2021 15:57	WG1758658
2,4,5-Trichlorophenol	ND		0.100	400	1	10/18/2021 15:57	WG1758658
2,4,6-Trichlorophenol	ND		0.100	2	1	10/18/2021 15:57	WG1758658

WC-02-0001

Sample Narrative:

SAMPLE RESULTS - 04

Collected date/time: 09/24/21 14:00

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

 $L1409499-04\ WG1758658: Duplicate\ Analysis\ performed\ due\ to\ QC\ failure.\ Reporting\ most\ compliant\ data.$

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
(S) 2-Fluorophenol	27.3		19.0-119			10/18/2021 15:57	WG1758658
(S) Phenol-d5	17.4		10.0-67.0			10/18/2021 15:57	WG1758658
(S) Nitrobenzene-d5	53.2		44.0-120			10/18/2021 15:57	WG1758658
(S) 2-Fluorobiphenyl	64.2		44.0-119			10/18/2021 15:57	WG1758658
(S) 2,4,6-Tribromophenol	56.0		43.0-140			10/18/2021 15:57	WG1758658
(S) p-Terphenyl-d14	57.5		50.0-134			10/18/2021 15:57	WG1758658

WG1754241

QUALITY CONTROL SUMMARY

L1409499-02,04

Mercury by Method 7470A

Method Blank (MB)

Mercury

(MB) R3714681-1 10/	R3714681-1 10/11/21 08:11								
	MB Result	MB Qualifier	MB MDL						
Analyte	mg/l		mg/l						

U

(LCS) R3714681-2	10/11/21 08:13
------------------	----------------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Mercury	0.0300	0.0358	119	82.0-119	

GI

0.00330

MB RDL mg/l

0.0100

(OS) L1408461-01 10/11/21 08:15 • (MS) R3714681-3 10/11/21 08:17 • (MSD) R3714681-4 10/11/21 08:19

(,	Spike Amount		•	MSD Result		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Mercury	0.0300	ND	0.0352	0.0353	117	118	1	82.0-119			0.269	20

WG1753288

QUALITY CONTROL SUMMARY

L1409499-01,03

Mercury by Method 7471A

Method Blank (MB)

(MB) R3714139-1 10/0	08/21 12:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Mercury	U	U	0.0180	0.0400

(LCS) R3714139-2 10/08/2112:04										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Mercury	0.500	0.485	96.9	80.0-124						

⁶Qc

(OS) L1409499-03 10/08/21 12:06 • (MS) R3714139-3 10/08/21 12:09 • (MSD) R3714139-4 10/08/21 12:11

(,		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Mercury	0.500	0.524	1.18	0.873	131	69.9	1	80.0-124	J5	J3 J6	29.8	20

PAGE:

16 of 38

WG1754232

QUALITY CONTROL SUMMARY

L1409499-02,04

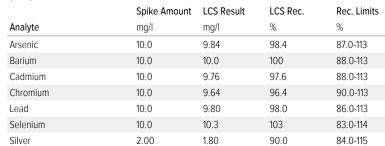
Method Blank (MB)

(MB) R3716422-1 10/13/21 19:27

Metals (ICP) by Method 6010B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U	U	0.0330	0.100
Barium	U	<u>U</u>	0.0330	0.100
Cadmium	U	<u>U</u>	0.0330	0.100
Chromium	U	<u>U</u>	0.0330	0.100
Lead	U	<u>U</u>	0.0330	0.100
Selenium	U	<u>U</u>	0.0330	0.100

<u>U</u>



U

(LCS) R3716422-2 10/13/21 19:29

Silver

L1412273-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0330

0.100

LCS Qualifier

(OS) L1412273-02 10/13/21 19:32 • (MS) R3716422-4 10/13/21 19:37 • (MSD) R3716422-5 10/13/21 19:40

` '												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	10.0	ND	9.53	9.46	95.3	94.6	1	87.0-113			0.749	20
Barium	10.0	0.132	10.2	10.1	101	100	1	88.0-113			0.807	20
Cadmium	10.0	ND	9.61	9.59	96.1	95.9	1	88.0-113			0.298	20
Chromium	10.0	ND	9.67	9.63	96.7	96.3	1	90.0-113			0.361	20
Lead	10.0	ND	9.72	9.65	97.2	96.5	1	86.0-113			0.707	20
Selenium	10.0	ND	9.78	9.72	97.8	97.2	1	83.0-114			0.629	20
Silver	2.00	ND	1.77	1.75	88.4	87.6	1	84.0-115			0.848	20

QUALITY CONTROL SUMMARY

Metals (ICP) by Method 6010B

1409499-02,04

L1412282-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1412282-04 10/13/21 19:43 • (MS) R3716422-6 10/13/21 19:45 • (MSD) R3716422-7 10/13/21 19:48

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	10.0	ND	9.93	10.0	99.3	100	1	87.0-113			0.801	20
Barium	10.0	1.54	11.2	11.3	97.1	98.1	1	88.0-113			0.902	20
Cadmium	10.0	ND	9.85	9.88	98.5	98.8	1	88.0-113			0.295	20
Chromium	10.0	ND	9.67	9.74	96.7	97.4	1	90.0-113			0.692	20
Lead	10.0	ND	9.81	9.88	98.1	98.8	1	86.0-113			0.684	20
Selenium	10.0	ND	10.3	10.3	102	103	1	83.0-114			0.768	20
Silver	2 00	ND	1 79	1.81	89.6	90.4	1	84 0-115			0.797	20

QUALITY CONTROL SUMMARY

L1409499-01,03

Method Blank (MB)

Metals (ICPMS) by Method 6020

(MB) R3716093-1 10/13/21 19:49 MB RDL MB Result MB Qualifier MB MDL mg/kg mg/kg mg/kg Analyte Arsenic U U 0.100 1.00 0.152 2.50 Barium Cadmium U 0.0855 1.00 U U 0.297 5.00 Chromium U <u>U</u> 0.0990 2.00 Lead U U 0.180 2.50 Selenium Silver U <u>U</u> 0.0865 0.500

Sr

Laboratory Control Sample (LCS)

(LCS) R3716093-2	10/13/21 19:53				·
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	96.6	96.6	82.0-118	
Barium	100	91.4	91.4	86.0-116	
Cadmium	100	105	105	84.0-116	
Chromium	100	101	101	83.0-119	
Lead	100	98.3	98.3	84.0-118	
Selenium	100	101	101	80.0-119	
Silver	20.0	19.8	98.9	83.0-118	

L1409499-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1409499-03 10/13/21 19:56 • (MS) R3716093-5 10/13/21 20:06 • (MSD) R3716093-6 10/13/21 20:09

Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD **RPD Limits** % % Analyte mg/kg mg/kg mg/kg mg/kg % % % 100

Arsenic	100	1.12	102	III	101	110	5	82.0-118			7.80	20	
Barium	100	5.23	663	658	658	653	5	86.0-116	<u>J5</u>	<u>J5</u>	0.809	20	
Cadmium	100	ND	101	106	101	106	5	84.0-116			5.01	20	
Chromium	100	ND	108	116	104	112	5	83.0-119			6.99	20	
Lead	100	6.75	1300	1420	1290	1410	5	84.0-118	<u>J5</u>	<u>J5</u>	8.87	20	
Selenium	100	ND	95.3	101	95.3	101	5	80.0-119			5.44	20	
Silver	20.0	ND	18 5	19 7	92.4	98.3	5	83 0-118			6.20	20	

QUALITY CONTROL SUMMARY

L1409499-01,03

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3715774-3 10/07/21	14:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Acetone	U	U	0.0365	0.0500
Acrylonitrile	U	U	0.00361	0.0125
Benzene	U	U	0.000467	0.00100
Bromobenzene	U	U	0.000900	0.0125
Bromodichloromethane	U	<u>U</u>	0.000725	0.00250
Bromoform	U	U	0.00117	0.0250
Bromomethane	U	<u>U</u>	0.00197	0.0125
sec-Butylbenzene	U	U	0.00288	0.0125
tert-Butylbenzene	U	<u>U</u>	0.00195	0.00500
Carbon tetrachloride	U	U	0.000898	0.00500
Chlorobenzene	U	<u>U</u>	0.000210	0.00250
Chlorodibromomethane	U	U	0.000612	0.00250
Chloroethane	U	<u>U</u>	0.00170	0.00500
Chloroform	U	U	0.00103	0.00250
Chloromethane	U	<u>U</u>	0.00435	0.0125
2-Chlorotoluene	U	U	0.000865	0.00250
4-Chlorotoluene	U	<u>U</u>	0.000450	0.00500
1,2-Dibromo-3-Chloropropane	U	U	0.00390	0.0250
1,2-Dibromoethane	U	<u>U</u>	0.000648	0.00250
Dibromomethane	U	U	0.000750	0.00500
1,2-Dichlorobenzene	U	<u>U</u>	0.000425	0.00500
1,3-Dichlorobenzene	U	U	0.000600	0.00500
1,4-Dichlorobenzene	U	<u>U</u>	0.000700	0.00500
Dichlorodifluoromethane	U	U	0.00161	0.00250
1,1-Dichloroethane	U	<u>U</u>	0.000491	0.00250
1,2-Dichloroethane	U	U	0.000649	0.00250
1,1-Dichloroethene	U	<u>U</u>	0.000606	0.00250
cis-1,2-Dichloroethene	U	U	0.000734	0.00250
trans-1,2-Dichloroethene	U	<u>U</u>	0.00104	0.00500
1,2-Dichloropropane	U	U	0.00142	0.00500
1,1-Dichloropropene	U	<u>U</u>	0.000809	0.00250
1,3-Dichloropropane	U	U	0.000501	0.00500
cis-1,3-Dichloropropene	U	U	0.000757	0.00250
trans-1,3-Dichloropropene	U	U	0.00114	0.00500
2,2-Dichloropropane	U	U	0.00138	0.00250
Di-isopropyl ether	U	<u>U</u>	0.000410	0.00100
Ethylbenzene	U	<u>U</u>	0.000737	0.00250
Hexachloro-1,3-butadiene	U	<u>U</u>	0.00600	0.0250
Isopropylbenzene	U	<u>U</u>	0.000425	0.00250
p-Isopropyltoluene	U	<u>U</u>	0.00255	0.00500

Sc

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1409499-01,03

Method Blank (MB)

(MB) R3715774-3 10/07/21	14:38				1
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
2-Butanone (MEK)	0.112		0.0635	0.100	<u> </u>
Methylene Chloride	0.00782	<u>J</u>	0.00664	0.0250	3
4-Methyl-2-pentanone (MIBK)	U	<u>U</u>	0.00228	0.0250	
Methyl tert-butyl ether	U	<u>U</u>	0.000350	0.00100	4
Naphthalene	U	<u>U</u>	0.00488	0.0125	
n-Propylbenzene	U	<u>U</u>	0.000950	0.00500	Ŀ
Styrene	U	<u>U</u>	0.000229	0.0125	5
1,1,1,2-Tetrachloroethane	U	<u>U</u>	0.000948	0.00250	L
1,1,2,2-Tetrachloroethane	U	<u>U</u>	0.000695	0.00250	6
Tetrachloroethene	U	<u>U</u>	0.000896	0.00250	
Toluene	U	<u>U</u>	0.00130	0.00500	
1,1,2-Trichlorotrifluoroethane	U	<u>U</u>	0.000754	0.00250	7
1,2,4-Trichlorobenzene	U	<u>U</u>	0.00440	0.0125	
1,1,1-Trichloroethane	U	<u>U</u>	0.000923	0.00250	8
1,1,2-Trichloroethane	U	<u>U</u>	0.000597	0.00250	
Trichloroethene	U	<u>U</u>	0.000584	0.00100	Ŀ
Trichlorofluoromethane	U	<u>U</u>	0.000827	0.00250	9
1,2,3-Trichloropropane	U	<u>U</u>	0.00162	0.0125	L
1,2,3-Trimethylbenzene	U	<u>U</u>	0.00158	0.00500	
1,2,4-Trimethylbenzene	U	<u>U</u>	0.00158	0.00500	
1,3,5-Trimethylbenzene	U	<u>U</u>	0.00200	0.00500	
Vinyl chloride	U	<u>U</u>	0.00116	0.00250	
Xylenes, Total	U	<u>U</u>	0.000880	0.00650	
(S) Toluene-d8	100			85.0-116	
(S) 4-Bromofluorobenzene	96.4			79.0-119	
(S) 1,2-Dichloroethane-d4	97.6			71.0-136	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3715774-1 10/07/	21 13:21 • (LCSD)	R3715774-2 1	0/07/21 13:40							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.625	0.799	0.733	128	117	36.0-164			8.62	20
Acrylonitrile	0.625	0.682	0.709	109	113	65.0-134			3.88	20
Benzene	0.125	0.126	0.131	101	105	77.0-121			3.89	20
Bromobenzene	0.125	0.125	0.125	100	100	78.0-121			0.000	20
Bromodichloromethane	0.125	0.140	0.142	112	114	75.0-127			1.42	20
Bromoform	0.125	0.121	0.118	96.8	94.4	67.0-132			2.51	20
Bromomethane	0.125	0.141	0.142	113	114	53.0-143			0.707	20

Styrene

0.125

0.124

0.126

99.2

101

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1409499-01,03

Laboratory Control (LCS) R3715774-1 10/07/21						(-
(LCS) ((S713774-1 10/07/21	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	L
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
sec-Butylbenzene	0.125	0.110	0.120	88.0	96.0	73.0-126			8.70	20	
tert-Butylbenzene	0.125	0.121	0.129	96.8	103	73.0-125			6.40	20	- [
Carbon tetrachloride	0.125	0.132	0.142	106	114	70.0-135			7.30	20	
Chlorobenzene	0.125	0.115	0.117	92.0	93.6	79.0-120			1.72	20	Ī
Chlorodibromomethane	0.125	0.121	0.121	96.8	96.8	74.0-126			0.000	20	
Chloroethane	0.125	0.135	0.134	108	107	59.0-139			0.743	20	_ !
Chloroform	0.125	0.128	0.134	102	107	78.0-123			4.58	20	
Chloromethane	0.125	0.130	0.139	104	111	50.0-136			6.69	20	
2-Chlorotoluene	0.125	0.123	0.123	98.4	98.4	75.0-122			0.000	20	
4-Chlorotoluene	0.125	0.116	0.124	92.8	99.2	72.0-124			6.67	20	
1,2-Dibromo-3-Chloropropane	0.125	0.101	0.114	80.8	91.2	61.0-132			12.1	20	١.
1,2-Dibromoethane	0.125	0.128	0.124	102	99.2	78.0-122			3.17	20	
Dibromomethane	0.125	0.132	0.133	106	106	78.0-125			0.755	20	
1,2-Dichlorobenzene	0.125	0.112	0.117	89.6	93.6	78.0-121			4.37	20	Ϊī
1,3-Dichlorobenzene	0.125	0.111	0.119	88.8	95.2	77.0-121			6.96	20	
1,4-Dichlorobenzene	0.125	0.108	0.115	86.4	92.0	75.0-120			6.28	20	
Dichlorodifluoromethane	0.125	0.128	0.143	102	114	29.0-149			11.1	20	
1,1-Dichloroethane	0.125	0.131	0.137	105	110	76.0-125			4.48	20	
1,2-Dichloroethane	0.125	0.141	0.155	113	124	73.0-128			9.46	20	
1,1-Dichloroethene	0.125	0.135	0.140	108	112	70.0-131			3.64	20	
cis-1,2-Dichloroethene	0.125	0.127	0.125	102	100	77.0-123			1.59	20	
trans-1,2-Dichloroethene	0.125	0.131	0.137	105	110	74.0-125			4.48	20	
1,2-Dichloropropane	0.125	0.133	0.136	106	109	76.0-123			2.23	20	
1,1-Dichloropropene	0.125	0.134	0.140	107	112	76.0-125			4.38	20	
1,3-Dichloropropane	0.125	0.120	0.121	96.0	96.8	77.0-121			0.830	20	
cis-1,3-Dichloropropene	0.125	0.134	0.135	107	108	74.0-126			0.743	20	
trans-1,3-Dichloropropene	0.125	0.127	0.128	102	102	71.0-130			0.784	20	
2,2-Dichloropropane	0.125	0.111	0.113	88.8	90.4	67.0-133			1.79	20	
Di-isopropyl ether	0.125	0.134	0.137	107	110	69.0-127			2.21	20	
Ethylbenzene	0.125	0.119	0.120	95.2	96.0	76.0-122			0.837	20	
Hexachloro-1,3-butadiene	0.125	0.105	0.124	84.0	99.2	61.0-135			16.6	20	
Isopropylbenzene	0.125	0.120	0.128	96.0	102	68.0-134			6.45	20	
p-Isopropyltoluene	0.125	0.118	0.125	94.4	100	73.0-127			5.76	20	
2-Butanone (MEK)	0.625	0.777	0.769	124	123	51.0-148			1.03	20	
Methylene Chloride	0.125	0.118	0.118	94.4	94.4	70.0-128			0.000	20	
4-Methyl-2-pentanone (MIBK)	0.625	0.663	0.659	106	105	65.0-135			0.605	20	
Methyl tert-butyl ether	0.125	0.141	0.139	113	111	73.0-125			1.43	20	
Naphthalene	0.125	0.100	0.115	80.0	92.0	62.0-129			14.0	20	
n-Propylbenzene	0.125	0.118	0.123	94.4	98.4	73.0-125			4.15	20	

76.0-124

1.60

20

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1409499-01,03

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

5774-2 10/07/21 13	CSD) R3715	113.21	10/07/21	3) R3715774-1	(I CS)

'	, ,										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
1,1,1,2-Tetrachloroethane	0.125	0.121	0.124	96.8	99.2	78.0-125			2.45	20	
1,1,2,2-Tetrachloroethane	0.125	0.111	0.106	88.8	84.8	70.0-124			4.61	20	
Tetrachloroethene	0.125	0.115	0.120	92.0	96.0	73.0-128			4.26	20	
Toluene	0.125	0.115	0.119	92.0	95.2	77.0-121			3.42	20	
1,1,2-Trichlorotrifluoroethane	0.125	0.109	0.111	87.2	88.8	66.0-136			1.82	20	
1,2,4-Trichlorobenzene	0.125	0.103	0.122	82.4	97.6	67.0-129			16.9	20	
1,1,1-Trichloroethane	0.125	0.138	0.151	110	121	73.0-130			9.00	20	
1,1,2-Trichloroethane	0.125	0.125	0.120	100	96.0	78.0-121			4.08	20	
Trichloroethene	0.125	0.148	0.156	118	125	77.0-123		<u>J4</u>	5.26	20	
Trichlorofluoromethane	0.125	0.127	0.136	102	109	62.0-140			6.84	20	
1,2,3-Trichloropropane	0.125	0.131	0.128	105	102	73.0-125			2.32	20	
1,2,3-Trimethylbenzene	0.125	0.111	0.117	88.8	93.6	82.0-118			5.26	20	
1,2,4-Trimethylbenzene	0.125	0.120	0.124	96.0	99.2	75.0-123			3.28	20	
1,3,5-Trimethylbenzene	0.125	0.116	0.121	92.8	96.8	73.0-124			4.22	20	
Vinyl chloride	0.125	0.143	0.148	114	118	56.0-135			3.44	20	
Xylenes, Total	0.375	0.356	0.376	94.9	100	78.0-124			5.46	20	
(S) Toluene-d8				95.8	96.3	85.0-116					
(S) 4-Bromofluorobenzene				102	103	79.0-119					
(S) 1,2-Dichloroethane-d4				113	110	71.0-136					

L1412206-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1412206-03 10/07/21 22:39 • (MS) R3715774-4 10/07/21 23:36 • (MSD) R3715774-5 10/07/21 23:54

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acetone	19.1	2.89	11.0	10.8	47.7	46.5	27.2	36.0-164			1.83	20
Acrylonitrile	19.1	ND	17.8	17.4	105	102	27.2	65.0-134			2.27	20
Benzene	3.81	ND	2.86	3.89	83.7	114	27.2	77.0-121		<u>J3</u>	30.5	20
Bromobenzene	3.81	ND	3.18	4.05	93.5	119	27.2	78.0-121		<u>J3</u>	24.1	20
Bromodichloromethane	3.81	ND	3.26	3.97	95.9	117	27.2	75.0-127			19.6	20
Bromoform	3.81	ND	3.22	3.48	94.7	102	27.2	67.0-132			7.76	20
Bromomethane	3.81	ND	2.84	4.04	83.5	119	27.2	53.0-143		<u>J3</u>	34.9	20
sec-Butylbenzene	3.81	2.36	4.58	5.85	65.3	103	27.2	73.0-126	<u>J6</u>	<u>J3</u>	24.4	20
tert-Butylbenzene	3.81	ND	2.81	4.08	82.6	120	27.2	73.0-125		<u>J3</u>	36.9	20
Carbon tetrachloride	3.81	ND	2.68	4.31	78.8	127	27.2	70.0-135		<u>J3</u>	46.6	20
Chlorobenzene	3.81	ND	2.62	3.50	77.1	103	27.2	79.0-120	<u>J6</u>	<u>J3</u>	28.8	20
Chlorodibromomethane	3.81	ND	3.18	3.73	93.5	110	27.2	74.0-126			15.9	20
Chloroethane	3.81	ND	2.49	3.63	73.2	107	27.2	59.0-139		<u>J3</u>	37.3	20
Chloroform	3.81	ND	2.91	3.87	85.6	114	27.2	78.0-123		<u>J3</u>	28.3	20

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Geo Consultants - Kevil, KY
 L1409499
 10/19/21 18:36
 23 of 38

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1409499-01,03

L1412206-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1412206-03 10/07/2	1 22:39 • (MS) I	R3715774-4 10	/07/21 23:36 •	(MSD) R371577	'4-5 10/07/21 2	23:54						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloromethane	3.81	ND	2.61	3.92	76.8	115	27.2	50.0-136		<u>J3</u>	40.1	20
2-Chlorotoluene	3.81	ND	2.95	3.99	86.8	117	27.2	75.0-122		<u>J3</u>	30.0	20
4-Chlorotoluene	3.81	ND	2.88	3.93	84.7	116	27.2	72.0-124		<u>J3</u>	30.8	20
1,2-Dibromo-3-Chloropropane	3.81	ND	2.87	3.35	84.4	98.5	27.2	61.0-132			15.4	20
1,2-Dibromoethane	3.81	ND	3.46	3.70	102	109	27.2	78.0-122			6.70	20
Dibromomethane	3.81	ND	3.48	3.87	102	114	27.2	78.0-125			10.6	20
1,2-Dichlorobenzene	3.81	ND	2.92	3.50	85.9	103	27.2	78.0-121			18.1	20
1,3-Dichlorobenzene	3.81	ND	2.73	3.50	80.3	103	27.2	77.0-121		<u>J3</u>	24.7	20
1,4-Dichlorobenzene	3.81	ND	2.72	3.38	80.0	99.4	27.2	75.0-120		<u>J3</u>	21.6	20
Dichlorodifluoromethane	3.81	ND	2.65	4.44	77.9	131	27.2	29.0-149		<u>J3</u>	50.5	20
1,1-Dichloroethane	3.81	ND	2.86	3.98	84.1	117	27.2	76.0-125		<u>J3</u>	32.7	20
1,2-Dichloroethane	3.81	ND	3.60	4.16	106	122	27.2	73.0-128			14.4	20
1,1-Dichloroethene	3.81	ND	2.54	4.14	74.7	122	27.2	70.0-131		<u>J3</u>	47.9	20
cis-1,2-Dichloroethene	3.81	ND	2.83	3.81	83.2	112	27.2	77.0-123		<u>J3</u>	29.5	20
trans-1,2-Dichloroethene	3.81	ND	2.59	3.84	76.2	113	27.2	74.0-125		<u>J3</u>	38.9	20
1,2-Dichloropropane	3.81	ND	3.46	4.12	102	121	27.2	76.0-123			17.4	20
1,1-Dichloropropene	3.81	ND	2.68	4.19	78.8	123	27.2	76.0-125		<u>J3</u>	44.0	20
1,3-Dichloropropane	3.81	ND	3.23	3.68	95.0	108	27.2	77.0-121			13.0	20
cis-1,3-Dichloropropene	3.81	ND	3.45	4.28	101	126	27.2	74.0-126		<u>J3</u>	21.5	20
trans-1,3-Dichloropropene	3.81	ND	3.49	4.12	103	121	27.2	71.0-130			16.6	20
2,2-Dichloropropane	3.81	ND	2.88	4.18	84.7	123	27.2	67.0-133		<u>J3</u>	36.8	20
Di-isopropyl ether	3.81	ND	3.50	4.20	103	124	27.2	69.0-127			18.2	20
Ethylbenzene	3.81	0.503	2.99	3.99	73.1	103	27.2	76.0-122	<u>J6</u>	<u>J3</u>	28.7	20
Hexachloro-1,3-butadiene	3.81	ND	3.19	4.79	93.8	141	27.2	61.0-135		<u>J3 J5</u>	40.1	20
Isopropylbenzene	3.81	0.596	3.07	4.07	72.8	102	27.2	68.0-134		<u>J3</u>	28.0	20
p-Isopropyltoluene	3.81	0.156	3.19	4.41	89.2	125	27.2	73.0-127		<u>J3</u>	32.1	20
2-Butanone (MEK)	19.1	ND	23.2	24.2	136	142	27.2	51.0-148			4.22	20
Methylene Chloride	3.81	ND	2.77	3.55	81.5	104	27.2	70.0-128		<u>J3</u>	24.7	20
4-Methyl-2-pentanone (MIBK)	19.1	ND	20.1	20.4	118	120	27.2	65.0-135			1.48	20
Methyl tert-butyl ether	3.81	ND	3.75	4.11	110	121	27.2	73.0-125			9.16	20
Naphthalene	3.81	9.67	9.55	11.6	0.000	56.8	27.2	62.0-129	<u>J6</u>	<u>J6</u>	19.4	20
n-Propylbenzene	3.81	2.47	4.84	6.11	69.7	107	27.2	73.0-125	<u>J6</u>	<u>J3</u>	23.2	20
Styrene	3.81	ND	2.89	3.64	85.0	107	27.2	76.0-124		<u>J3</u>	23.0	20
1,1,1,2-Tetrachloroethane	3.81	ND	3.00	3.60	88.2	106	27.2	78.0-125			18.2	20
1,1,2,2-Tetrachloroethane	3.81	ND	3.65	4.03	107	119	27.2	70.0-124			9.90	20
Tetrachloroethene	3.81	ND	2.30	3.51	67.6	103	27.2	73.0-128	<u>J6</u>	<u>J3</u>	41.7	20
Toluene	3.81	ND	2.57	3.53	75.6	104	27.2	77.0-121	<u>J6</u>	<u>J3</u>	31.5	20
1,1,2-Trichlorotrifluoroethane	3.81	ND	2.31	3.98	67.9	117	27.2	66.0-136		<u>J3</u>	53.1	20
1,2,4-Trichlorobenzene	3.81	ND	2.90	3.98	85.3	117	27.2	67.0-129		<u>J3</u>	31.4	20
1,1,1-Trichloroethane	3.81	ND	2.80	4.17	82.4	123	27.2	73.0-130		<u>J3</u>	39.3	20

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1409499-01,03

L1412206-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1412206-03 10/07/21 22:39 • (MS) R3715774-4 10/07/21 23:36 • (MSD) R3715774-5 10/07/21 23:54

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
1,1,2-Trichloroethane	3.81	ND	3.46	3.86	102	114	27.2	78.0-121			10.9	20
Trichloroethene	3.81	ND	2.93	4.12	86.2	121	27.2	77.0-123		<u>J3</u>	33.8	20
Trichlorofluoromethane	3.81	ND	2.57	4.26	75.6	125	27.2	62.0-140		<u>J3</u>	49.5	20
1,2,3-Trichloropropane	3.81	ND	3.63	4.10	107	121	27.2	73.0-125			12.2	20
1,2,3-Trimethylbenzene	3.81	0.384	2.96	3.78	75.8	99.9	27.2	82.0-118	<u>J6</u>	<u>J3</u>	24.3	20
1,2,4-Trimethylbenzene	3.81	0.273	3.02	4.07	80.8	112	27.2	75.0-123		<u>J3</u>	29.6	20
1,3,5-Trimethylbenzene	3.81	ND	2.72	3.77	77.7	109	27.2	73.0-124		<u>J3</u>	32.4	20
Vinyl chloride	3.81	ND	2.76	4.44	81.2	131	27.2	56.0-135		<u>J3</u>	46.7	20
Xylenes, Total	11.5	ND	7.69	10.6	74.3	103	27.2	78.0-124	<u>J6</u>	<u>J3</u>	31.8	20
(S) Toluene-d8					99.9	98.9		85.0-116				
(S) 4-Bromofluorobenzene					103	99.6		79.0-119				
(S) 1,2-Dichloroethane-d4					107	104		71.0-136				

OS: Non-target compounds too high to run at a lower dilution.

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1409499-01,03

Method Blank (MB)

(MB) R3717414-3 10/14/21	10:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
n-Butylbenzene	U	<u>U</u>	0.00525	0.0125
1,2,3-Trichlorobenzene	U	<u>U</u>	0.00733	0.0125
(S) Toluene-d8	102			85.0-116
(S) 4-Bromofluorobenzene	96.9			79.0-119
(S) 1,2-Dichloroethane-d4	115			71.0-136

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3717414-1 10/14/21 08:44 • (LCSD) R3717414-2 10/14/21 09:04												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
n-Butylbenzene	0.125	0.101	0.103	80.8	82.4	70.0-128			1.96	20		
1,2,3-Trichlorobenzene	0.125	0.117	0.125	93.6	100	66.0-130			6.61	20		
(S) Toluene-d8				100	101	85.0-116						
(S) 4-Bromofluorobenzene				98.8	99.9	79.0-119						
(S) 1,2-Dichloroethane-d4				116	116	71.0-136						

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1409499-02,04

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3715765-3 10/08/2	1 03:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.0167	0.0500
Carbon tetrachloride	U		0.0167	0.0500
Chlorobenzene	U		0.0167	0.0500
Chloroform	U		0.0833	0.250
1,2-Dichloroethane	U		0.0167	0.0500
1,1-Dichloroethene	U		0.0167	0.0500
2-Butanone (MEK)	U		0.167	0.500
Tetrachloroethene	U		0.0167	0.0500
Trichloroethene	U		0.0167	0.0500
Vinyl chloride	U		0.0167	0.0500
(S) Toluene-d8	101			89.0-112
(S) 4-Bromofluorobenzene	87.9			85.0-114
(S) 1.2-Dichloroethane-d4	110			81.0-118

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

113

113

(LCS) R3715765-1 10/08/21 01:39 • (LCSD) R3715765-2 10/08/21 01:59												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Benzene	0.250	0.285	0.277	114	111	79.0-120			2.85	20		
Carbon tetrachloride	0.250	0.289	0.287	116	115	72.0-136			0.694	20		
Chlorobenzene	0.250	0.282	0.271	113	108	82.0-118			3.98	20		
Chloroform	0.250	0.297	0.288	119	115	79.0-124			3.08	20		
1,2-Dichloroethane	0.250	0.339	0.325	136	130	73.0-128	<u>J4</u>	<u>J4</u>	4.22	20		
1,1-Dichloroethene	0.250	0.249	0.243	99.6	97.2	71.0-131			2.44	20		
2-Butanone (MEK)	1.25	1.35	1.23	108	98.4	56.0-143			9.30	20		
Tetrachloroethene	0.250	0.260	0.255	104	102	74.0-129			1.94	20		
Trichloroethene	0.250	0.267	0.266	107	106	79.0-123			0.375	20		
Vinyl chloride	0.250	0.303	0.304	121	122	58.0-137			0.329	20		
(S) Toluene-d8				100	100	89.0-112						
(S) 4-Bromofluorobenzene				94.0	91.1	85.0-114						

81.0-118

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1409499-02,04

L1411414-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1411414-06 10/08/21 04:42 • (MS) R3715765-4 10/08/21 10:07 • (MSD) R3715765-5 10/08/21 10:28

\ /	٠,		,	,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.250	ND	0.171	0.228	68.4	91.2	1	79.0-120	<u>J6</u>	<u>J3</u>	28.6	20
Carbon tetrachloride	0.250	ND	0.148	0.235	59.2	94.0	1	72.0-136	<u>J6</u>	<u>J3</u>	45.4	20
Chlorobenzene	0.250	ND	0.179	0.230	71.6	92.0	1	82.0-118	<u>J6</u>	<u>J3</u>	24.9	20
Chloroform	0.250	ND	ND	ND	76.0	99.6	1	79.0-124	<u>J6</u>	<u>J3</u>	26.9	20
1,2-Dichloroethane	0.250	ND	0.258	0.308	103	123	1	73.0-128			17.7	20
1,1-Dichloroethene	0.250	ND	0.123	0.187	49.2	74.8	1	71.0-131	<u>J6</u>	<u>J3</u>	41.3	20
2-Butanone (MEK)	1.25	0.884	2.17	2.09	103	96.5	1	56.0-143			3.76	20
Tetrachloroethene	0.250	ND	0.135	0.209	54.0	83.6	1	74.0-129	<u>J6</u>	<u>J3</u>	43.0	20
Trichloroethene	0.250	ND	0.140	0.214	56.0	85.6	1	79.0-123	<u>J6</u>	<u>J3</u>	41.8	20
Vinyl chloride	0.250	ND	0.160	0.240	64.0	96.0	1	58.0-137		<u>J3</u>	40.0	20
(S) Toluene-d8					101	101		89.0-112				
(S) 4-Bromofluorobenzene					96.9	94.2		85.0-114				
(S) 1,2-Dichloroethane-d4					112	111		81.0-118				

(OS) L1412116-02 10/08/21 07:04 • (MS) R3715765-6 10/08/21 10:48

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Benzene	0.250	ND	0.281	112	1	79.0-120	
Carbon tetrachloride	0.250	ND	0.299	120	1	72.0-136	
Chlorobenzene	0.250	ND	0.276	110	1	82.0-118	
Chloroform	0.250	ND	0.299	120	1	79.0-124	
1,2-Dichloroethane	0.250	ND	0.336	134	1	73.0-128	<u>J5</u>
1,1-Dichloroethene	0.250	ND	0.252	101	1	71.0-131	
2-Butanone (MEK)	1.25	ND	1.18	94.4	1	56.0-143	
Tetrachloroethene	0.250	ND	0.271	108	1	74.0-129	
Trichloroethene	0.250	ND	0.316	126	1	79.0-123	<u>J5</u>
Vinyl chloride	0.250	ND	0.319	128	1	58.0-137	
(S) Toluene-d8				104		89.0-112	
(S) 4-Bromofluorobenzene				95.7		85.0-114	
(S) 1,2-Dichloroethane-d4				113		81.0-118	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1409499-01,03

Method Blank (MB)

(MB) R3714770-2 10/08/2°	1 12:10				-
(, , , , , , , , , , , , , , , , , , ,	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	1
Acenaphthene	U	U	0.00539	0.0333	— L
Acenaphthylene	U	U	0.00469	0.0333	
Anthracene	U	<u>U</u>	0.00593	0.0333	- 1
Benzidine	U	U	0.0626	1.67	ı i
Benzo(a)anthracene	U	<u>U</u>	0.00587	0.0333	
Benzo(b)fluoranthene	U	U	0.00621	0.0333	L
Benzo(k)fluoranthene	U	<u>U</u>	0.00592	0.0333	_ [
Benzo(g,h,i)perylene	U	U	0.00609	0.0333	
Benzo(a)pyrene	U	<u>U</u>	0.00619	0.0333	
Bis(2-chlorethoxy)methane	U	U	0.0100	0.333	
Bis(2-chloroethyl)ether	U	<u>U</u>	0.0110	0.333	_
2,2-Oxybis(1-Chloropropane)	U	U	0.0144	0.333	
4-Bromophenyl-phenylether	U	<u>U</u>	0.0117	0.333	_
2-Chloronaphthalene	U	U	0.00585	0.0333	a i
4-Chlorophenyl-phenylether	U	<u>U</u>	0.0116	0.333	- 1
Chrysene	U	U	0.00662	0.0333	ı l
Dibenz(a,h)anthracene	U	<u>U</u>	0.00923	0.0333	_ [
3,3-Dichlorobenzidine	U	U	0.0123	0.333	
2,4-Dinitrotoluene	U	<u>U</u>	0.00955	0.333	
2,6-Dinitrotoluene	U	U	0.0109	0.333	
Fluoranthene	U	<u>U</u>	0.00601	0.0333	
Fluorene	U	U	0.00542	0.0333	
Hexachlorobenzene	U	<u>U</u>	0.0118	0.333	
Hexachloro-1,3-butadiene	U	U	0.0112	0.333	
Hexachlorocyclopentadiene	U	<u>U</u>	0.0175	0.333	
Hexachloroethane	U	U	0.0131	0.333	
Indeno(1,2,3-cd)pyrene	U	<u>U</u>	0.00941	0.0333	
Isophorone	U	U	0.0102	0.333	
Naphthalene	U	<u>U</u>	0.00836	0.0333	
Nitrobenzene	U	U	0.0116	0.333	
n-Nitrosodimethylamine	U	<u>U</u>	0.0494	0.333	
n-Nitrosodiphenylamine	U	U	0.0252	0.333	
n-Nitrosodi-n-propylamine	U	<u>U</u>	0.0111	0.333	
Phenanthrene	U	U	0.00661	0.0333	
Benzylbutyl phthalate	U	<u>U</u>	0.0104	0.333	
Bis(2-ethylhexyl)phthalate	U	U	0.0422	0.333	
Di-n-butyl phthalate	U	<u>U</u>	0.0114	0.333	
Diethyl phthalate	U	U	0.0110	0.333	
Dimethyl phthalate	U	<u>U</u>	0.0706	0.333	
Di-n-octyl phthalate	U	U	0.0225	0.333	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1409499-01,03

Method Blank (MB)

(MB) R3714770-2 10/08/2	21 12:10				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Pyrene	U	<u>U</u>	0.00648	0.0333	
1,2,4-Trichlorobenzene	U	<u>U</u>	0.0104	0.333	
4-Chloro-3-methylphenol	U	<u>U</u>	0.0108	0.333	
2-Chlorophenol	U	<u>U</u>	0.0110	0.333	
2,4-Dichlorophenol	U	<u>U</u>	0.00970	0.333	
2,4-Dimethylphenol	U	<u>U</u>	0.00870	0.333	
4,6-Dinitro-2-methylphenol	U	<u>U</u>	0.0755	0.333	
2,4-Dinitrophenol	U	<u>U</u>	0.0779	0.333	
2-Nitrophenol	U	<u>U</u>	0.0119	0.333	
4-Nitrophenol	U	<u>U</u>	0.0104	0.333	
Pentachlorophenol	U	<u>U</u>	0.00896	0.333	
Phenol	U	<u>U</u>	0.0134	0.333	
2,4,6-Trichlorophenol	U	<u>U</u>	0.0107	0.333	
(S) 2-Fluorophenol	71.2			35.0-115	
(S) Phenol-d5	66.1			33.0-122	
(S) Nitrobenzene-d5	60.1			37.0-122	
(S) 2-Fluorobiphenyl	69.1			44.0-115	
(S) 2,4,6-Tribromophenol	77.2			39.0-132	
(S) p-Terphenyl-d14	71.5			54.0-127	

Laboratory Control Sample (LCS)

(LCS) R3714770-1 10/08/21 11:49												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/kg	mg/kg	%	%								
Acenaphthene	0.666	0.420	63.1	40.0-123								
Acenaphthylene	0.666	0.427	64.1	32.0-132								
Anthracene	0.666	0.453	68.0	47.0-123								
Benzidine	1.33	0.233	17.5	10.0-48.0								
Benzo(a)anthracene	0.666	0.502	75.4	49.0-126								
Benzo(b)fluoranthene	0.666	0.470	70.6	45.0-132								
Benzo(k)fluoranthene	0.666	0.448	67.3	47.0-132								
Benzo(g,h,i)perylene	0.666	0.477	71.6	43.0-134								
Benzo(a)pyrene	0.666	0.469	70.4	45.0-129								
Bis(2-chlorethoxy)methane	0.666	0.352	52.9	36.0-121								
Bis(2-chloroethyl)ether	0.666	0.482	72.4	31.0-120								
2,2-Oxybis(1-Chloropropane)	0.666	0.421	63.2	33.0-131								
4-Bromophenyl-phenylether	0.666	0.472	70.9	46.0-124								
2-Chloronaphthalene	0.666	0.420	63.1	41.0-114								

PAGE:

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1409499-01,03

Laboratory Control Sample (LCS)

(LCS) R3714770-1 10/08/2	21 11:49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
4-Chlorophenyl-phenylether	0.666	0.444	66.7	45.0-121	
Chrysene	0.666	0.458	68.8	50.0-124	
Dibenz(a,h)anthracene	0.666	0.470	70.6	45.0-134	
3,3-Dichlorobenzidine	1.33	0.756	56.8	22.0-121	
2,4-Dinitrotoluene	0.666	0.523	78.5	46.0-126	
2,6-Dinitrotoluene	0.666	0.466	70.0	46.0-124	
Fluoranthene	0.666	0.475	71.3	50.0-127	
Fluorene	0.666	0.451	67.7	43.0-125	
Hexachlorobenzene	0.666	0.462	69.4	45.0-122	
Hexachloro-1,3-butadiene	0.666	0.349	52.4	32.0-123	
Hexachlorocyclopentadiene	0.666	0.442	66.4	13.0-123	
Hexachloroethane	0.666	0.397	59.6	28.0-117	
Indeno(1,2,3-cd)pyrene	0.666	0.507	76.1	45.0-133	
Isophorone	0.666	0.356	53.5	30.0-122	
Naphthalene	0.666	0.340	51.1	35.0-123	
Nitrobenzene	0.666	0.356	53.5	34.0-122	
n-Nitrosodimethylamine	0.666	0.401	60.2	23.0-120	
n-Nitrosodiphenylamine	0.666	0.429	64.4	38.0-127	
n-Nitrosodi-n-propylamine	0.666	0.429	64.4	36.0-120	
Phenanthrene	0.666	0.444	66.7	50.0-121	
Benzylbutyl phthalate	0.666	0.487	73.1	46.0-132	
Bis(2-ethylhexyl)phthalate	0.666	0.487	73.1	51.0-133	
Di-n-butyl phthalate	0.666	0.466	70.0	51.0-128	
Diethyl phthalate	0.666	0.464	69.7	50.0-124	
Dimethyl phthalate	0.666	0.431	64.7	48.0-124	
Di-n-octyl phthalate	0.666	0.481	72.2	45.0-140	
Pyrene	0.666	0.451	67.7	47.0-110	
1,2,4-Trichlorobenzene	0.666	0.357	53.6	34.0-118	
4-Chloro-3-methylphenol	0.666	0.378	56.8	45.0-122	
2-Chlorophenol	0.666	0.456	68.5	34.0-121	
2,4-Dichlorophenol	0.666	0.381	57.2	40.0-122	
2,4-Dimethylphenol	0.666	0.373	56.0	30.0-127	
4,6-Dinitro-2-methylphenol	0.666	0.532	79.9	29.0-132	
2,4-Dinitrophenol	0.666	0.478	71.8	10.0-105	
2-Nitrophenol	0.666	0.424	63.7	36.0-123	
4-Nitrophenol	0.666	0.500	75.1	30.0-132	
Pentachlorophenol	0.666	0.499	74.9	25.0-133	
Phenol	0.666	0.407	61.1	34.0-121	
2,4,6-Trichlorophenol	0.666	0.471	70.7	39.0-126	
(S) 2-Fluorophenol			69.7	35.0-115	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1409499-01,03

Laboratory Control Sample (LCS)

Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
mg/kg	mg/kg	%	%	
		65.9	33.0-122	
		58.6	37.0-122	
		67.3	44.0-115	
		82.3	39.0-132	
	Spike Amount	Spike Amount LCS Result	Spike Amount mg/kg LCS Result mg/kg LCS Rec. % 65.9 58.6 67.3 67.3	Spike Amount mg/kg LCS Result mg/kg LCS Rec. Rec. Limits % 65.9 33.0-122 58.6 37.0-122 67.3 44.0-115

Cn

L1409499-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(0	S) L1409499-01	10/08/21 13:57 •	(MS) R3714770-	3 10/08/21 14:18 • (MSI	D) R3714770-4	10/08/21 14:40

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acenaphthene	0.650	ND	0.415	0.508	54.0	68.7	10	40.0-123		<u>J3</u>	20.2	20
Acenaphthylene	0.650	0.374	0.623	0.800	38.3	65.9	10	32.0-132		<u>J3</u>	24.9	20
Anthracene	0.650	0.371	0.597	0.780	34.8	63.3	10	47.0-123	<u>J6</u>	<u>J3</u>	26.6	20
Benzidine	1.30	ND	ND	ND	0.000	0.000	10	10.0-48.0	<u>J6</u>	<u>J6</u>	0.000	20
Benzo(a)anthracene	0.650	1.46	1.19	1.50	0.000	6.19	10	49.0-126	<u>J6</u>	<u>J3 J6</u>	23.0	20
Benzo(b)fluoranthene	0.650	2.09	1.53	1.89	0.000	0.000	10	45.0-132	<u>J6</u>	<u>J3 J6</u>	21.1	20
Benzo(k)fluoranthene	0.650	0.693	0.770	0.963	11.8	41.8	10	47.0-132	<u>J6</u>	<u>J3 J6</u>	22.3	20
Benzo(g,h,i)perylene	0.650	1.45	1.24	1.48	0.000	4.64	10	43.0-134	<u>J6</u>	<u>J6</u>	17.6	20
Benzo(a)pyrene	0.650	1.52	1.26	1.54	0.000	3.10	10	45.0-129	<u>J6</u>	<u>J6</u>	20.0	20
Bis(2-chlorethoxy)methane	0.650	ND	ND	ND	58.3	67.2	10	36.0-121			13.5	20
Bis(2-chloroethyl)ether	0.650	ND	ND	ND	71.1	80.3	10	31.0-120			11.6	20
2,2-Oxybis(1-Chloropropane)	0.650	ND	ND	ND	58.8	67.2	10	33.0-131			12.7	20
4-Bromophenyl-phenylether	0.650	ND	ND	ND	66.6	82.2	10	46.0-124		<u>J3</u>	20.3	20
2-Chloronaphthalene	0.650	ND	0.382	0.474	58.8	73.4	10	41.0-114		<u>J3</u>	21.5	20
4-Chlorophenyl-phenylether	0.650	ND	ND	ND	66.8	79.1	10	45.0-121			16.3	20
Chrysene	0.650	1.42	1.09	1.43	0.000	1.55	10	50.0-124	<u>J6</u>	<u>J3 J6</u>	27.0	20
Dibenz(a,h)anthracene	0.650	ND	0.531	0.652	35.7	54.6	10	45.0-134	<u>J6</u>	<u>J3</u>	20.5	20
3,3-Dichlorobenzidine	1.30	ND	ND	ND	36.8	27.8	10	22.0-121		<u>J3</u>	28.7	20
2,4-Dinitrotoluene	0.650	ND	ND	ND	69.4	86.7	10	46.0-126		<u>J3</u>	21.6	20
2,6-Dinitrotoluene	0.650	ND	ND	ND	64.5	81.3	10	46.0-124		<u>J3</u>	22.5	20
Fluoranthene	0.650	2.83	1.48	2.04	0.000	0.000	10	50.0-127	$\underline{\vee}$	<u>J3 V</u>	31.8	20
Fluorene	0.650	ND	0.459	0.593	51.5	72.6	10	43.0-125		<u>J3</u>	25.5	20
Hexachlorobenzene	0.650	ND	ND	ND	65.8	80.3	10	45.0-122			19.2	20
Hexachloro-1,3-butadiene	0.650	ND	ND	ND	60.3	76.2	10	32.0-123		<u>J3</u>	22.6	20
Hexachlorocyclopentadiene	0.650	ND	ND	ND	0.000	0.000	10	13.0-123	<u>J6</u>	<u>J6</u>	0.000	20
Hexachloroethane	0.650	ND	ND	ND	46.6	62.7	10	28.0-117		<u>J3</u>	28.8	20
Indeno(1,2,3-cd)pyrene	0.650	1.41	1.20	1.48	0.000	10.8	10	45.0-133	<u>J6</u>	<u>J3 J6</u>	20.9	20
Isophorone	0.650	ND	ND	ND	58.6	67.8	10	30.0-122	_		13.9	20

Sr

PAGE: 32 of 38

(S) 2-Fluorobiphenyl

(S) p-Terphenyl-d14

(S) 2,4,6-Tribromophenol

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1409499-01,03

L1409499-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1409499-01 10/08/21 13:57 • (MS) R3714770-3 10/08/21 14:18 • (MSD) R3714770-4 10/08/21 14:40

_	СР
	² Tc
	3

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Naphthalene	0.650	ND	0.441	0.536	39.1	54.0	10	35.0-123			19.4	20
Nitrobenzene	0.650	ND	ND	ND	60.0	66.3	10	34.0-122			9.29	20
n-Nitrosodimethylamine	0.650	ND	ND	ND	0.000	0.000	10	23.0-120	<u>J6</u>	<u>J6</u>	0.000	20
n-Nitrosodiphenylamine	0.650	ND	ND	ND	63.5	74.1	10	38.0-127			14.8	20
n-Nitrosodi-n-propylamine	0.650	ND	ND	ND	59.5	73.7	10	36.0-120		<u>J3</u>	20.6	20
Phenanthrene	0.650	1.78	0.852	1.31	0.000	0.000	10	50.0-121	<u>J6</u>	<u>J3 J6</u>	42.4	20
Benzylbutyl phthalate	0.650	ND	ND	ND	74.5	92.4	10	46.0-132		<u>J3</u>	20.9	20
Bis(2-ethylhexyl)phthalate	0.650	ND	ND	ND	72.3	88.9	10	51.0-133			19.9	20
Di-n-butyl phthalate	0.650	ND	ND	ND	65.1	80.0	10	51.0-128			20.0	20
Diethyl phthalate	0.650	ND	ND	ND	68.8	76.0	10	50.0-124			9.38	20
Dimethyl phthalate	0.650	ND	ND	ND	0.000	0.000	10	48.0-124	<u>J6</u>	<u>J6</u>	0.000	20
Di-n-octyl phthalate	0.650	ND	ND	ND	69.8	87.8	10	45.0-140		<u>J3</u>	22.1	20
Pyrene	0.650	2.34	1.41	1.88	0.000	0.000	10	47.0-110	<u>J6</u>	<u>J3 J6</u>	28.6	20
1,2,4-Trichlorobenzene	0.650	ND	ND	ND	59.5	71.8	10	34.0-118			18.1	20
4-Chloro-3-methylphenol	0.650	ND	ND	ND	66.3	87.2	10	45.0-122		<u>J3</u>	26.6	20
2-Chlorophenol	0.650	ND	ND	ND	61.8	69.7	10	34.0-121			11.3	20
2,4-Dichlorophenol	0.650	ND	ND	ND	65.5	75.9	10	40.0-122			14.0	20
2,4-Dimethylphenol	0.650	ND	ND	ND	52.5	62.8	10	30.0-127			17.4	20
4,6-Dinitro-2-methylphenol	0.650	ND	ND	ND	0.000	0.000	10	29.0-132	<u>J6</u>	<u>J6</u>	0.000	20
2,4-Dinitrophenol	0.650	ND	ND	ND	140	136	10	10.0-105	<u>J5</u>	<u>J5</u>	4.02	20
2-Nitrophenol	0.650	ND	ND	ND	67.2	80.5	10	36.0-123			17.3	20
4-Nitrophenol	0.650	ND	ND	ND	71.5	84.7	10	30.0-132			16.2	20
Pentachlorophenol	0.650	ND	ND	ND	55.4	68.6	10	25.0-133		<u>J3</u>	20.7	20
Phenol	0.650	ND	ND	ND	60.3	72.0	10	34.0-121			17.0	20
2,4,6-Trichlorophenol	0.650	ND	ND	ND	71.1	84.7	10	39.0-126			16.8	20
(S) 2-Fluorophenol					64.5	74.8		35.0-115				
(S) Phenol-d5					63.1	71.8		33.0-122				
(S) Nitrobenzene-d5					66.5	75.2		37.0-122				

67.1

73.8

59.4

77.1

86.1

75.9

44.0-115

39.0-132

54.0-127

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1409499-02,04

Method Blank (MB)

(MB) R3717973-2 10/18/2	1 12:47				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
1,4-Dichlorobenzene	U		0.0333	0.100	
2,4-Dinitrotoluene	U		0.0333	0.100	
Hexachlorobenzene	U		0.0333	0.100	
Hexachloro-1,3-butadiene	U		0.0333	0.100	
Hexachloroethane	U		0.0333	0.100	
Nitrobenzene	U		0.0333	0.100	
2-Methylphenol	U		0.0333	0.100	
3&4-Methyl Phenol	U		0.0333	0.100	
Pentachlorophenol	U		0.0333	0.100	
2,4,5-Trichlorophenol	U		0.0333	0.100	
2,4,6-Trichlorophenol	U		0.0333	0.100	
Pyridine	U		0.0333	0.100	
(S) 2-Fluorophenol	28.4			19.0-119	
(S) Phenol-d5	17.3			10.0-67.0	
(S) Nitrobenzene-d5	57.8			44.0-120	
(S) 2-Fluorobiphenyl	68.6			44.0-119	
(S) 2,4,6-Tribromophenol	57.0			43.0-140	
(S) p-Terphenyl-d14	63.6			50.0-134	

Laboratory Control Sample (LCS)

(LCS) R3717973-1 10/18/2	1 12:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
1,4-Dichlorobenzene	0.500	0.342	68.4	29.0-112	
2,4-Dinitrotoluene	0.500	0.473	94.6	57.0-128	
Hexachlorobenzene	0.500	0.369	73.8	53.0-125	
Hexachloro-1,3-butadiene	0.500	0.355	71.0	22.0-124	
Hexachloroethane	0.500	0.343	68.6	21.0-115	
Nitrobenzene	0.500	0.323	64.6	45.0-121	
2-Methylphenol	0.500	0.233	46.6	30.0-117	
3&4-Methyl Phenol	0.500	0.245	49.0	29.0-110	
Pentachlorophenol	0.500	0.390	78.0	35.0-138	
2,4,5-Trichlorophenol	0.500	0.409	81.8	50.0-125	
2,4,6-Trichlorophenol	0.500	0.337	67.4	53.0-123	
Pyridine	0.500	0.0281	5.62	13.5-58.9	<u>J4</u>
(S) 2-Fluorophenol			30.5	19.0-119	
(S) Phenol-d5			19.4	10.0-67.0	
(S) Nitrobenzene-d5			56.9	44.0-120	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1409499-02,04

Laboratory Control Sample (LCS)

(LCS) R3717973-1 10/18/21 12:25

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
(S) 2-Fluorobiphenyl			76.4	44.0-119	
(S) 2,4,6-Tribromophenol			71.0	43.0-140	
(S) p-Terphenyl-d14			64.9	50.0-134	

L1409499-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
1,4-Dichlorobenzene	0.500	ND	0.334	0.322	66.8	64.4	1	29.0-112			3.66	20
2,4-Dinitrotoluene	0.500	ND	0.445	0.441	89.0	88.2	1	57.0-128			0.903	20
Hexachlorobenzene	0.500	ND	0.355	0.354	71.0	70.8	1	53.0-125			0.282	20
Hexachloro-1,3-butadiene	0.500	ND	0.342	0.334	68.4	66.8	1	22.0-124			2.37	20
Hexachloroethane	0.500	ND	0.327	0.321	65.4	64.2	1	21.0-115			1.85	20
Nitrobenzene	0.500	ND	0.309	0.307	61.8	61.4	1	45.0-121			0.649	20
2-Methylphenol	0.500	ND	0.232	0.235	46.4	47.0	1	30.0-117			1.28	20
3&4-Methyl Phenol	0.500	ND	0.234	0.242	46.8	48.4	1	29.0-110			3.36	20
Pentachlorophenol	0.500	ND	0.373	0.376	74.6	75.2	1	35.0-138			0.801	20
2,4,5-Trichlorophenol	0.500	ND	0.378	0.395	75.6	79.0	1	50.0-125			4.40	20
2,4,6-Trichlorophenol	0.500	ND	0.308	0.328	61.6	65.6	1	53.0-123			6.29	20
Pyridine	0.500	ND	ND	ND	0.000	9.26	1	13.5-58.9	<u>J6</u>	<u>J3 J6</u>	200	20
(S) 2-Fluorophenol					31.4	31.5		19.0-119				
(S) Phenol-d5					19.7	19.7		10.0-67.0				
(S) Nitrobenzene-d5					55.0	55.8		44.0-120				
(S) 2-Fluorobiphenyl					72.4	73.1		44.0-119				
(S) 2,4,6-Tribromophenol					70.5	69.5		43.0-140				

59.1

50.0-134

Sample Narrative:

(S) p-Terphenyl-d14

OS: Duplicate Analysis performed due to QC failure. Reporting most compliant data.

[†]Cn

PAGE:

35 of 38

61.1

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

	1
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
01	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
U	Below Detectable Limits: Indicates that the analyte was not detected.
V	The sample concentration is too high to evaluate accurate spike recoveries.

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Geo Consultants - Kevil, KY
 L1409499
 10/19/21 18:36
 36 of 38

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

PAGE:

37 of 38

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:	in the con-		Billing Inform	nation:			3		Analysis / Co	ntainer / Prese	ervative		Chain of Custody	Page of _		
Geo Consultants - Kevi	I, KY	- SI	Accounts 325 Kentu			Pres Chk							- Pace	Analytical		
325 Kentucky Ave Kevil, KY 42053			Kevil, KY 42053													
Report to: David Lindsey		LE-T.	Email To: lindseyd@geoconsultantscorp.com										Submitting a sample via constitutes acknowledge Pace Terms and Condition	12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-standard-		
Project Description: Staten Isl Warehouse, Port Richmond		City/State Collected:	Staten Island New SPEMT CT ET										terms.pdf	*		
Phone: 270-462-3882	82 Client Project # FUSRAP			Lab Project #		The second second	16ozHDPE-NoPres						SDG# B1	86		
Collected by (print): David Lindey	Site/Facility 10		P.O.#			U-ISO 1						Acctnum: GEOCONKKY Template:T195295				
Collected by (signature): Rush? (Lab MUST Same Day F			e Notified) Quote #				ORM21,						Prelogin: P873895 PM: 732 - Donna Eidson			
Immediately Packed on Ice N Y	ay 10 D Day	y (Rad Only) Date Results Needed Day (Rad Only)			No.	Z						PB:	dEV Crouns			
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	GSPE					-	Shipped Via: Fe	Sample # (lab on		
55-15-1135	1	SCM	1.5-2	9-23-21	1135	1	X							-01		
SB-15-0406	V	SCM	4-6	9-23-21		1	X	C. Sala						-02		
58-15-0608	/	SCM		9-23-21		1	X							-03		
55-10-0750	1	SCM		9-23-21			X				= = = = = = = = = = = = = = = = = = = =			-04		
98-10-05/7		SCM		9-23-21		1	X							-05		
58-10-0465	1	SCM		9-23-21		355	X			200		4		-06 -07		
55-09-0848	V	SCM		9-23-21			X							-08		
SB-09-0117	V /	SCM	THE PARTY	9-23-21	11 250 17	1	X							-09		
58-09-0506	1	SCM	5-6	9-23-21	0420	1	X									
* Matrix:	Remarks:no ice					1.	1 /		-11	Town		Sa COO COO	ample Receipt Ch	ecklist		
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater									pH Temp		COC Signa Bottles Correct	COC Seal Present/Intact: NP COC Signed/Accurate: Bottles arrive intact: Correct bottles used:				
DW - Drinking Water OT - Other	Samples returned UPS FedEx			-	sing # 53/	-	945	151		7 v			ufficient volume sent: If Applicable OA Zero Headspace: Yeservation Correct/Checked: Yeservation Correct/Checked:			
Relinquished by : (Signature)	1	oate: 9-27-2	Time	Recei	ived by: (Signa	ture)			Trip Blank	0 H	s / No HCL / MeoH BR	RAD Scre	en <0.5 mR/hr:	1×-		
Relinquished by : (Signature)	D	ate:	Time	Recei	ived by: (Signa	iture)		time A	Temp: 47		es Received:		tion required by Lo			
Relinquished by : (Signature)	D	Date:	Time	: Rece	ived for lab by	: (Signa	ture)		Date: 9/28	/21 Time	9145	Hold:		Condition:		

4500 CPM

L1409907

Collected date/time: 09/23/21 11:35 Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.628		0.229	0.228	10/11/2021 17:29	WG1753087
URANIUM-235	0.0345	<u></u> - <u> </u>	0.0574	0.0865	10/11/2021 17:29	WG1753087
URANIUM-238	0.838		0.221	0.145	10/11/2021 17:29	WG1753087
(T) URANIUM-232	49.0			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.526	X	0.229	0.467	10/26/2021 19:19	WG1756346
Bismuth-212	0.968	± X	0.837	1.58	10/26/2021 19:19	WG1756346
Bismuth-214 (Ra-226)	0.978	X	0.193	0.222	10/26/2021 19:19	WG1756346
Lead-212	0.835	X	0.163	0.196	10/26/2021 19:19	WG1756346
Lead-214	0.697	X	0.165	0.266	10/26/2021 19:19	WG1756346
Potassium-40	13.1	X	2.03	1.1	10/26/2021 19:19	WG1756346
Thallium-208	0.379	X	0.101	0.132	10/26/2021 19:19	WG1756346
Uranium-235	0.126	<u>(∪)</u> X	0.0714	0.692	10/26/2021 19:19	WG1756346
Thorium-234 (U-238)	1.70	J X	1.34	2.55	10/26/2021 19:19	WG1756346

L1409907

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 11:45

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.30		0.323	0.172	10/11/2021 17:29	WG1753087
URANIUM-235	0.0477	<u>J</u>	0.0615	0.0847	10/11/2021 17:29	WG1753087
URANIUM-238	2.40		0.314	0.0967	10/11/2021 17:29	WG1753087
(T) URANIUM-232	73.8			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	2.12	X	0.415	0.453	10/26/2021 19:36	WG1756346
Bismuth-212	1.96	⊎ X	1.26	2.24	10/26/2021 19:36	WG1756346
Bismuth-214 (Ra-226)	2.35	X	0.334	0.316	10/26/2021 19:36	WG1756346
Lead-212	2.06	X	0.285	0.308	10/26/2021 19:36	WG1756346
Lead-214	2.44	X	0.307	0.294	10/26/2021 19:36	WG1756346
Potassium-40	9.56	X	2.00	1.67	10/26/2021 19:36	WG1756346
Thallium-208	0.893	X	0.160	0.168	10/26/2021 19:36	WG1756346
Uranium-235	0.344	$\stackrel{\cup}{=} X(J)$	0.0916	0.622	10/26/2021 19:36	WG1756346
Thorium-234 (U-238)	2.31	X	1.14	1.76	10/26/2021 19:36	WG1756346

L14099

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 11:50

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.834		0.186	0.161	10/11/2021 17:29	WG1753087
URANIUM-235	0.0168	(\cup) J	0.0614	0.0949	10/11/2021 17:29	WG1753087
URANIUM-238	0.807		0.154	0.0721	10/11/2021 17:29	WG1753087
(T) URANIUM-232	82.3			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.36	X	0.232	0.277	10/26/2021 19:38	WG1756346
Bismuth-212	1.10	<u></u> ×	0.737	1.36	10/26/2021 19:38	WG1756346
Bismuth-214 (Ra-226)	0.942	X	0.150	0.189	10/26/2021 19:38	WG1756346
Lead-212	1.13	X	0.164	0.199	10/26/2021 19:38	WG1756346
Lead-214	1.20	X	0.186	0.198	10/26/2021 19:38	WG1756346
Potassium-40	14.2	X	1.68	1.03	10/26/2021 19:38	WG1756346
Thallium-208	0.337	X	0.0741	0.094	10/26/2021 19:38	WG1756346
Uranium-235	0.176	$(\cup)^{X}_{X,J}$	0.0720	0.612	10/26/2021 19:38	WG1756346
Thorium-234 (U-238)	1.43	₹ X	1.17	2.25	10/26/2021 19:38	WG1756346

SB-10-0750 SS-10-0750 Collected date/time: 09/23/21 07:50

SAMPLE RESULTS - 04

.1409907

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.17		0.335	0.204	10/11/2021 17:29	WG1753087
URANIUM-235	0.212		0.107	0.0924	10/11/2021 17:29	WG1753087
URANIUM-238	2.35		0.335	0.158	10/11/2021 17:29	WG1753087
(T) URANIUM-232	62.6			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.75	X	0.421	0.632	10/26/2021 16:09	WG1756374
Bismuth-212	0.869	U X	1.38	2.82	10/26/2021 16:09	WG1756374
Bismuth-214 (Ra-226)	2.58	X	0.387	0.377	10/26/2021 16:09	WG1756374
Lead-212	2.05	X	0.325	0.323	10/26/2021 16:09	WG1756374
Lead-214	2.49	X	0.386	0.401	10/26/2021 16:09	WG1756374
Potassium-40	10.7	X	2.23	2.14	10/26/2021 16:09	WG1756374
Thallium-208	0.553	X	0.145	0.192	10/26/2021 16:09	WG1756374
Uranium-235	0.330	(U) X	0.122	1.09	10/26/2021 16:09	WG1756374
Thorium-234 (U-238)	1.51	(U) X	1.98	4.26	10/26/2021 16:09	WG1756374

L1409907

Collected date/time: 09/23/21 08:20 Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.55		0.316	0.122	10/11/2021 17:29	WG1753087
URANIUM-235	0.0727	₹	0.0760	0.0989	10/11/2021 17:29	WG1753087
URANIUM-238	2.73		0.320	0.064	10/11/2021 17:29	WG1753087
(T) URANIUM-232	81.3			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	2.31	X	0.484	0.711	10/26/2021 17:15	WG1756374
Bismuth-212	3.43	X	1.49	2.55	10/26/2021 17:15	WG1756374
Bismuth-214 (Ra-226)	2.64	X	0.383	0.366	10/26/2021 17:15	WG1756374
Lead-212	3.04	X	0.413	0.3	10/26/2021 17:15	WG1756374
Lead-214	2.35	X	0.367	0.415	10/26/2021 17:15	WG1756374
Potassium-40	9.04	X	1.95	1.75	10/26/2021 17:15	WG1756374
Thallium-208	0.833	X	0.177	0.221	10/26/2021 17:15	WG1756374
Uranium-235	0.222	<u>(U)</u> X	0.123	1.13	10/26/2021 17:15	WG1756374
Thorium-234 (U-238)	1.13	<u>(U)</u> X	2.06	4.55	10/26/2021 17:15	WG1756374

L1409907

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 08:25

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.909		0.200	0.114	10/11/2021 17:29	WG1753087
URANIUM-235	0.0986		0.0701	0.0682	10/11/2021 17:29	WG1753087
URANIUM-238	1.16		0.220	0.0954	10/11/2021 17:29	WG1753087
(T) URANIUM-232	83.6			30.0-110	10/11/2021 17:29	WG1753087

Radiochemistry by Method DOE Ga-01-R/901.1 (21 day)

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.935	X	0.285	0.483	10/26/2021 17:30	WG1756374
Bismuth-212	0.281	<u>⊎</u> X	0.933	1.9	10/26/2021 17:30	WG1756374
Bismuth-214 (Ra-226)	1.09	X	0.220	0.262	10/26/2021 17:30	WG1756374
Lead-212	1.07	X	0.182	0.217	10/26/2021 17:30	WG1756374
Lead-214	1.16	X	0.191	0.251	10/26/2021 17:30	WG1756374
Potassium-40	16.2	X	2.50	1.29	10/26/2021 17:30	WG1756374
Thallium-208	0.409	X	0.109	0.136	10/26/2021 17:30	WG1756374
Uranium-235	0.0877	$\underline{(U)}\mathbf{X}$	0.0657	0.507	10/26/2021 17:30	WG1756374
Thorium-234 (U-238)	0.740	<u></u>	0.672	1.41	10/26/2021 17:30	WG1756374

Cn

L1409907

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 08:40

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.72		0.283	0.139	10/11/2021 17:29	WG1753087
URANIUM-235	0.0733	₹	0.0723	0.0901	10/11/2021 17:29	WG1753087
URANIUM-238	1.99		0.298	0.114	10/11/2021 17:29	WG1753087
(T) URANIUM-232	74.7			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.15	X	0.336	0.594	10/26/2021 17:32	WG1756374
Bismuth-212	0.917	⊎ X	1.10	2.17	10/26/2021 17:32	WG1756374
Bismuth-214 (Ra-226)	1.61	X	0.270	0.313	10/26/2021 17:32	WG1756374
Lead-212	1.42	X	0.265	0.352	10/26/2021 17:32	WG1756374
Lead-214	1.94	X	0.323	0.324	10/26/2021 17:32	WG1756374
Potassium-40	11.9	X	2.23	2.08	10/26/2021 17:32	WG1756374
Thallium-208	0.389	X	0.109	0.139	10/26/2021 17:32	WG1756374
Uranium-235	0.221	(\cup) X	0.116	0.95	10/26/2021 17:32	WG1756374
Thorium-234 (U-238)	1.34	<u>(∪)</u> X	1.68	3.48	10/26/2021 17:32	WG1756374

L1409907

Collected date/time: 09/23/21 09:13

Radiochemistry by Method D3972 U-02

Radiochemistry by Method DOE Ga-01-R/901.1 (21 day)

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.59		0.288	0.175	10/11/2021 17:29	WG1753087
URANIUM-235	0.0304	<u>(U)</u> J	0.0761	0.12	10/11/2021 17:29	WG1753087
URANIUM-238	1.48		0.272	0.147	10/11/2021 17:29	WG1753087
(T) URANIUM-232	74.5			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.52	X	0.406	0.649	10/26/2021 18:17	WG1756374
Bismuth-212	2.81	X	1.45	2.46	10/26/2021 18:17	WG1756374
Bismuth-214 (Ra-226)	1.35	X	0.293	0.408	10/26/2021 18:17	WG1756374
Lead-212	1.75	X	0.290	0.287	10/26/2021 18:17	WG1756374
Lead-214	1.50	X	0.287	0.384	10/26/2021 18:17	WG1756374
Potassium-40	11.1	X	2.20	1.44	10/26/2021 18:17	WG1756374
Thallium-208	0.454	X	0.144	0.208	10/26/2021 18:17	WG1756374
Uranium-235	0.238	<u>(∪)</u> X, J	0.112	1.05	10/26/2021 18:17	WG1756374
Thorium-234 (U-238)	1.13	(U) X	1.81	4.02	10/26/2021 18:17	WG1756374

Collected date/time: 09/23/21 09:20

L1409907

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.94		0.279	0.146	10/11/2021 17:29	WG1753087
URANIUM-235	0.0611	₹	0.0714	0.096	10/11/2021 17:29	WG1753087
URANIUM-238	1.92		0.267	0.0869	10/11/2021 17:29	WG1753087
(T) URANIUM-232	83.0			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.48	X	0.350	0.445	10/26/2021 18:33	WG1756374
Bismuth-212	2.04	<u></u> X	1.28	2.25	10/26/2021 18:33	WG1756374
Bismuth-214 (Ra-226)	1.79	X	0.285	0.255	10/26/2021 18:33	WG1756374
Lead-212	1.51	X	0.239	0.274	10/26/2021 18:33	WG1756374
Lead-214	1.87	X	0.269	0.312	10/26/2021 18:33	WG1756374
Potassium-40	8.93	X	2.06	1.92	10/26/2021 18:33	WG1756374
Thallium-208	0.597	X	0.138	0.161	10/26/2021 18:33	WG1756374
Uranium-235	0.150	$\underline{(\cup)}\mathbf{X}$	0.0775	0.615	10/26/2021 18:33	WG1756374
Thorium-234 (U-238)	2.14	X	1.03	1.69	10/26/2021 18:33	WG1756374

Leidos Radiological Analytical Data Validation

Staten Island Warehouse FUSRAP Site Event Name:

SDG Number: L1409907 Pace Analytical Laboratory:

Gamma Spec/Iso U (soil) Analysis:

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 3 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. The requested analyses include: ^{234/235/238}U by alpha spectrometry (Method D3972 U-02); ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ²³⁴Th, ²²⁸Ac, ⁴⁰K, and ²³⁵U by gamma spectrometry (Method DOE Ga-01-R/901.1 (21 day)). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Case Narrative

Analytical Holding Times and Preservation

Method Calibration/Calibration Verification

Method Blanks **Background Checks**

Analytical Tracer Recoveries

MS/MSD Recoveries and Differences LCS/LCSD Recoveries and Differences

Laboratory Duplicates/Replicates

Re-analysis and Secondary Dilution Minimum Detectable Activities (MDAs)

Reporting Levels

Chemical/Spectroscopic Separation Specificity (alpha spectroscopy) Project Duplicates and Splits Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

Data Intercomparison

Definition of Data Validation Qualifiers:

"U" - Indicates a normal, non-detected (< critical value) result.

"J" - Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable depending upon the intended use of the data and reason for data rejection.

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September,

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District,

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February, 2018.

Sample Name Cross-Reference

Project Sample Name	Matrix	Lab Sample Name
SS-15-1135	Soil	L1409907-01
SB-15-0406	Soil	L1409907-02
SB-15-0608	Soil	L1409907-03
SS-10-0750	Soil	L1409907-04
SB-10-0517	Soil	L1409907-05
SB-10-0465	Soil	L1409907-06
SS-09-0840	Soil	L1409907-07
SB-09-0117	Soil	L1409907-08
SB-09-0506	Soil	L1409907-09

Validation Report By:	Amanda Leigh Dick	03/05/2022	
	(print)	Date	
	amanda Leigh Dick		
	(sign)		
Peer Reviewed By:	Thomas L. Rucker, Ph.D.	03/11/2022	
	(print)	Date	
	72 Rucker		
	(sign)		

1.0 GAMMA SPECTROMETRY ANALYSIS

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

For gamma spectrometry, the CENWK states that if the efficiency calibration delta values (difference between the measured and the calibration curve efficiency) are greater than 5% for any one radionuclide, the calibration shall be deemed unusable. The QAPP further states that the 95% CL of fitted function over range shall be \leq 8%. The following gamma spectrometer detectors/geometries had one or more radionuclides with delta values greater than 5% and or a 95% CL (1.96 σ) greater than 8%:

Initial Calibration

Detector	Geometry	# Energy Peaks	Delta %	# Energy Peaks	95% CL	SDG Samples Affected	Qualifier
1	C6	1	6.3			SB-15-0406, SB-10-0465, SB-09-0506	X
2	C6	3	-9.4 – 7.9			SB-15-0608	X
3	C6	1	18.8	8	8.4 – 10.6	SS-15-1135, SS-10-0750, SB-10-0517, SB-09-0117	X
2	Р3	1	5.3			SS-09-0840	X

Based on the CENWK any samples counted on detector with Delta% greater than 5% should be qualified as unusable (X). However, this parameter was not listed in the QAPP. The QAPP parameter, 95% CL of the fitted curve, does not have guidance on how to qualify results outside its limits. It is likely that both of these parameter deficiencies are due to the calibration being performed with less than the minimum 10,000 net counts in each peak in at least six calibration peaks that bracket the range of use as is specified in the DoD Quality Systems Manuel (QSM). The raw counts for the calibration were not provided, but this is evidenced by the uncertainty reported for the peaks. This means there is greater than normal uncertainty in the results due to an uncertain bias from calibration. The samples counted on theses detectors/geometries have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Continuing Calibration

For gamma spectrometry, the CENWK states that if the activity of each radioisotope in the calibration standard is not within 10% relative of the true, decay corrected activity, the calibration shall be deemed unusable. The QAPP also sets a limit of 10% relative to the true value. The following detectors/geometries have one or more quantified peak outside of the 10% limit for the calibration verification check source:

Continuing Calibration

0 - 11 11 11							
Detector	Geometry	# Energy Peaks	% Difference	SDG Samples Affected	Qualifier		
1	C6	1	12.2	SB-15-0406, SB-10-0465, SB-09-0506	X		
3	C6	1	14.3	SS-15-1135, SS-10-0750, SB-10-0517, SB-09-0117	X		

Based on the CENWK any samples counted on detector with check source value of greater than 10% should be qualified as unusable (X). It is likely that this parameter's deficiencies are due to the calibration verification being performed with less than the minimum 10,000 net counts in each peak as is specified in the CENWK as the raw net counts for all peaks were less than the 10,000 net counts for all peaks and all detectors. This means there is greater than normal uncertainty in the results due to an uncertain bias from the calibration verification. These samples have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The following sample results did not meet the project RDL goal.

Samples That Did Not Meet The RDL

Sample ID	Analyte	CSU (pCi/g)	3.5*CSU	RDL (pCi/g)
SS-10-0750	Th-234	0.992	3.472	1
SB-10-0517	Th-234	1.0275	3.59625	1
SS-09-0840	Th-234	0.838	2.933	1
SB-09-0117	Th-234	0.904	3.164	1

The Ra-226 result was greater than the project action limit in the following samples: SB-15-0406: 2.35 pCi/g, SB-10-0750: 2.58 pCi/g, and SB-10-0517: 2.64 pCi/g.

No sample results exhibited excess uncertainty.

There were no samples that had negative results with uncertainties smaller than their absolute value.

It is recommended that sample concentrations less than the L_c be qualified as non-detect (U). The following sample results were qualified as U: SS-15-1135: U-235; SB-15-0608: U-235; SS-10-0750: U-235 and Th-234; SB-10-0517: U-235 and Th-234; SB-10-0465: U-235; SS-09-0840: U-235 and Th-234; SB-09-0117: U-235 and Th-234; SB-09-0506: U-235.

Method Blank

There was no indication of blank contamination for the gamma spectrometry analysis.

Laboratory Control Sample:

The percent recoveries for the laboratory control samples (LCSs) were within acceptable limits.

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD (DER).

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where:S =Parent Sample Result

 $D = U_S =$ Field Split/Duplicate Parent Sample Result

Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the gamma spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (<25%, <3).

There were no field duplicates associated with this SDG.

Identification and Quantification:

The following target radionuclides: 228 Ac, 226 Ra, 40 K, 234 Th, and 235 U in the samples were reported. The energies of the radionuclides were less than 2 keV from their theoretical energies.

The laboratory used a peak search sensitivity factor of 3. When the peak search sensitivity factor is set at a value greater than 2.3, the peak search report will not report peaks as low as the MDA. Therefore, there is a greater than 5% chance that concentrations greater than the reported MDA will not appear in the peak search. However, the List Isotope Activities report calculates the net activities for the target analytes and this list has been use to report all target analyte activities. Therefore, the only impact is that small but detected non-target analytes may not have been reported.

2.0 ALPHA SPECTROMETRY

Holding Time and Preservation

All holding times and preservation requirements were met for the alpha spectrometry analyses.

Initial Calibration

The initial calibration met project acceptance criteria.

Continuing Calibration

The continuing calibration met project acceptance criteria.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The RDL was met for all radionuclides of interest.

The following sample had a result greater than the project action limits: SB-10-0750: U-235 0.212 pCi/g.

No sample results exhibited excess uncertainty.

The sample-specific critical level (L_c) was calculated as 1.65 times the sample uncertainty. It is recommended that sample concentrations less than the L_c are qualified as non-detect (U). The following sample results were qualified U:

Sample-specific Critical Level (Lc)

Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	L _C (pCi/g)	Qualifier
SB-15-0608	U-235	0.0168	0.021	0.03465	U
SB-09-0117	U-235	0.0304	0.024	0.0396	U

Matrix Spike

A non-SDG sample was used as a matrix spike. The percent recoveries were within acceptable limits.

Method Blank

There was no indication of blank contamination for the alpha spectrometry analysis.

Laboratory Control Sample:

The percent recoveries were within acceptable limits. Please see table below.

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD (DER).

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = Parent Sample Result D = Field Split/Duplicate Parent Sample Result $U_S = Parent Sample CSU (1 sigma)$ $U_D = Field Split/Duplicate Parent Sample CSU (1)$ Field Split/Duplicate Parent Sample CSU (1 sigma) $U_D =$

The duplicates for the alpha spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (<20%, <3).

There were no field duplicates associated with this SDG.

Sample-Specific Chemical Recovery:

The tracer recoveries were within acceptable limits.

Spectral Analysis:

No spectral interferences were observed in all of the alpha spectrometry analyses.

Quantification:

No quantification issues were observed.

3.0 DATA INTERCOMPARISON

U Alpha to U Gamma:

In comparing the uranium results from alpha spectrometry analysis to the uranium results from gamma spectrometry, several samples were not agreement. It is recommended that the following sample results for U-235 (both alpha and gamma) be qualified as estimated (J) due to incomparable results:

Radiochemistry - Data Intercomparison

		Al	pha	Gar	nma			
Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	Result (pCi/g)	CSU (pCi/g)	RPD%	DER	Qualifier
SB-15-0406	U-235	0.0477	0.021	0.344	0.0458	151.29%	5.881	J
SB-15-0608	U-235	0.0168	0.021	0.176	0.036	165.15%	3.820	J
SB-09-0117	U-235	0.0304	0.024	0.238	0.056	154.69%	3.407	J

LEIDOS Laboratory Data Verification Checklist							
Project:	Staten Island War	ehouse FUSRAP Site	Page 1	of 3			
SDG No:	Analyte Group: Gamma Spectroscopy and Isotopic Sample Matrix: Soil Y						
Disposition of D NCR No. (if app		N/A N/A					
1. Case Narrative							
	Read SDG Case Na	arrative		Y			
	Check Laboratory s	ample ID vs. Project samp	le ID lists	Y			
	Check that discussi	on covers each analytical t	ype included in the SDG	Y			
	Check for identified nonconforming items (e.g., missed holding times, etc.)						
2. Chain-of-Custoo	dy (COC)						
	Check COC sample	e collection, shipping, and r	receiving dates	Y			
	Check that COC sig	nature blocks are complet	e	Y			
	Check COC project	sample IDs vs. Lab IDs ar	nd Result Form IDs	Y			
	Match COC request data package conte	ted analyses with Case Na nt (Result Forms)	rrative and with	Y			
3. Analytical Resul	ts Form						
	Verify that a Result	Form is present for each s	ample and analysis	Y			
	On each Result For	m check: SDG No. Sample ID Lab ID Date Collected Date Extracted Date Analyzed Result Matrix Result Units		Y Y Y Y Y Y Y			

			Page 2 of 3
I. Project Verific	ation		
	Check project ar	nalyte list vs. analytes reported	<u>Y</u>
	Check project re	quested methods vs. analytical methods performed	<u> </u>
	Check analyte re	eporting levels vs. project reporting level goals	Y
5. Analytical Qua	ality Control Informa	tion	
	Check for surrog	ate recovery results (e.g., org. form II)	Y
	Check for LCS re	esults (e.g., org. form III, inorg. form XII)	Y
	Check for metho	d blank results (e.g., org. form IV, inorg. form III)	Y
	Check for MS/MS	SD results (e.g., inorg. form V)	<u>Y</u>
	Check for labora	tory duplicate results (e.g., inorg. form VI)	<u>Y</u>
	Check for Metho	d Calibration and Run Documentation	
	organic:	instrument performance check	N/A
		initial calibration data	N/A
		continuing calibration data	N/A
		internal standard areas	N/A
		internal standard retention times	N/A
		sample clean-up documentation (org. forms V through X)	N/A N/A
	metal:	initial calibration data	N/A
		continuing calibration data	N/A
		method detection limits	N/A
		method linear range	N/A
		sample run sequence	N/A
		(inorg. forms II, IV, and VIII through XIV)	N/A
	other:	initial calibration data	
	(Radiological)	continuing calibration data	<u> </u>
		method detection limits	Y
		sample run sequence	Y

la a a sua at la fa sua		Page 3 of 3
. Incorrect Inform	lation	
	Identify missing items or incorrect information (i.e., missing forms, incorrect sample IDs, etc.)	unsigned forms,
	Contact the laboratory or project personnel to obtain missing information	mation
Document o	corrections below:	
Boomone	The calibration documentation are missing for both alpha and game Calibration standard COAs were missing as well.	ma analyses.
	A revision was issued by the laboratory containing some of the mis	sing items.
. Nonconforming	Items	
	Document all nonconforming items that can not be resolved above a Non-Conformance Report (NCR), complete form, file, and follow	
	NCR # Item	
Reviewed By:	Amanda Leigh Dick & CMJ Date:	03/05/2022
A Review By:	Date:	

LEIDOS Laboratory Data Package Detail Form Project: Staten Island Warehouse FUSRAP Site Page 1 of 1 SDG No: Analyte Group: Gamma Spectroscopy and Isotopic Uranium L1409907 Field Matrix **Analysis** Notes: Lab Sample ID ID# SS-15-1135 L1409907-01 soil Gamma Spec. and Isotopic Uranium Gamma Spec. and Isotopic Uranium L1409907-02 SB-15-0406 soil Gamma Spec. and Isotopic Uranium SB-15-0608 L1409907-03 soil Gamma Spec. and Isotopic Uranium SB-10-0750 L1409907-04 soil Gamma Spec. and Isotopic Uranium L1409907-05 SB-10-0517 soil Gamma Spec. and Isotopic Uranium SB-10-0465 L1409907-06 soil Gamma Spec. and Isotopic Uranium SS-09-0840 soil L1409907-07 Gamma Spec. and Isotopic Uranium SB-09-0117 L1409907-08 soil Gamma Spec. and Isotopic Uraniun SB-09-0506 L1409907-09 soil Comments:

LEIDOS Radiochemical Data Review Checklist Project: Page 1 of 21 Staten Island Warehouse FUSRAP Site SDG No: L1409907 Analysis: Radiological Method: Gamma Spectrometry and ISO U Matrix: Laboratory: Pace Analytical The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The general criteria used to assess the analytical integrityof the data were based on an examination of the following: Case Narrative Chemical and/or Tracer Recoveries **Analytical Holding Times** Matrix Spike Results Sample Preservation **Duplicate Error Ratios and RPDs** Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Secondary Dilution Overall Remarks: CENWK, QSM 5.3; see QAPP for specific requirements Samples qualified as indicated due to reporting levels and incomparable results. Definition of Qualifiers: "U", not detected at the associated level "UJ", not detected and associated value estimated N/A "J", associated value estimated "R", associated value unusable or analyte identity unfounded "=", compound properly identified and value positive 03/05/2022 Reviewed by: Date:

QA Reviewed by:

Date:

LEIDOS	Page	2 of 21

Radiochemical Data Review Checklist

I. Case Narra	tive
Verify direct stat	tements made within the Laboratory Case Narrative (note discrepancies).
Remarks: SS-09-0840, a	The RDL was not met for Thorium-234 in samples: SB-10-0751, SB-10-0517, and SB-09-0117.
	The Ra-226 result was greater than the project action limit in the following samples:
SB-15-0406:	2.35 pCi/g, SB-10-0750: 2.58 pCi/g, and SB-10-0517: 2.64 pCi/g.
II. Re-analysi	s and Secondary Dilutions
Verify that re-a appropriate res	nalysis and secondary dilutions were performed and reported as necessary. Determine ults to report.
Remarks:	No Issues.

LEIDOS Page 3 of 21

Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

Deviations: None				
	Radionuclide:	Date Collected	Date Analyzed	Action
No Issues				

Actions:	

 If holding times are exceeded 	*, all	results are q	₁ualified a	ıs estimated ((J/UJ	J) *or ir	nproperl	y preserved
---	--------	---------------	-------------	----------------	-------	-----------------	----------	-------------

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

lemarks:	All holding times were met and the samples were properly preserved.

Page 4 of 21

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

Deviations.			
	Project Reporting	MDA	Samples Affected
Radionuclide	Level Goal	Achieved	
U-238	0.5 pCi/g	0.145 pCi/g	No Issues
U-235	0.5 pCi/g	0.0 <u>865 pCi/g</u>	
U-234	0.5 pCi/g	0.228pCi/g	No Issues
Ra-226	0.5 pCi/g	0.222 pCi/g	No Issues
Th-234	<1 pCi/g		All samples exceeded MDA
Ac-228	<1 pCi/g	0.467 pCi/g	No Issues
K-40	<1 pCi/g	1.1 pCi/g	All samples exceeded MDA

Actions: see CENWK 4.1.3.3a and QAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks:			
-			

Page 5 of 21

Radiochemical Data Review Checklist

V.A1. Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.2 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: None

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions:	see CFNWK 4.3.1.2 and QAPP
ACTIONS:	See CENVIN 4.3 1.7 and GAPP

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks: The initial and continuing calibrations met project acceptance criteria.	
A monthly background was performed with no high values.	

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.1 and QAPP

Initial efficiency calibration must be demonstrated on each detector for each geometry.

Initial energy calibration must be demonstrated on each detector for each geometry.

Resolution (FWHM) must be demonstrated for each detector for each geometry.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.2 and QAPP

Continuing calibration efficiency verification must be performed for each detector at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed monthly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: Delta Values

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value
6.3%	898.04 keV	1	< 5%		
5.3%	159.00 keV	2	< 5%		
-9.04%	661.66 keV	2	< 5%		
7.9%	898.04 keV	2	< 5%		
18.8%	136.47 keV	3	< 5%		
-6.5%	136.47 keV	4	< 5%		
-16.4	136.47 keV	5	< 5%		
6.5%	159.00 keV	5	< 5%		
5.3%	513.99 keV	2	< 5%		

Actions: see CENWK 4.3.1.1 and QAPP

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks: A long monthly background and an efficiency curve was performed. Any samples

that were counted on detectors with delta values greater than 5% and/or 95% CL. (1.96 σ) greater than 8%: were qualified as "X".

No documentation of an energy calibration was given. Additionally, there was no indication that a Peak-to-Comption Ration Calibration was performed.

Page 7 of 21

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis

see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide.

Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value
					_

Actio	ns:	see CENWK	. 4.3.1.4 and	d QAPP	
4 14 41	اللمم لملائما مم				

- 1. If the initial calibration quench curve or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or control charts are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	Not applicable.	

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

see CENWK 4.3.1.3.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters

see CENWK 4.3.1.3.1 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value
			_		

Actions: see CENWK 4.3.1.3 and QAPP

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	Not applicable.		

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

see CENWK 4.2.1 and QAPP

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted.

If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory Method Blanks:

Date	Lab ID #	Radionulcide	Result and Error	MDA Result and Error
	No Issues	o <u>n Both blank</u> s		
		. <u>———</u>		
Associated	Project Blanks (e.ç	g., equipment rinsat	es, etc.)	
Date	Lab ID #	Radionuclide	Result and Error	MDA Result and Error
		·		
		·		
Remarks:				

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

see CENWK 4.2.1 and QAPP

Calculate action levels based on 10X the highest blank concentration. see CENWK 4.2.1.3 and QAPP

Deviations:

	Max. Activity	Action Level	Samples Affected
Radionuclide	Detected		·

Actions:	see CENWK 4.2.1 and QAPP
AULIUIIS.	300 OLINVIN T.Z. I dilu Q/NI I

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

Example:	Blank Result	<u>Uncert.</u>	MDA or	Normalized absolute	Qualification
acceptable	0.3	0.45	0.5	<u>difference</u> >2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
- 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:	No Issues.

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

see CENWK 4.1.2 and QAPP

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

Deviations:

Remarks:

Radionuclide Sample ID %R No Issues Action Taken	Deviations.			
	Radionuclide	Sample ID	%R	Action Taken
		1 -		

Actions:	see CFNWK 4.1.2 and OAPP

- 1. If recovery is between 30-110%, no qualification is necessary.
- 2. If recovery is between 20 10-30%, qualify the data as estimated (J).
- 3. If recovery is between 110-120150%, qualify the data as estimated (J).
- 4. If recovery is less than 20 10%, qualify the data as rejected (R).
- 5. If recovery if greater than 120 150%, qualify the data as rejected (R).

outside lab limits but within
20-120%: J if corrective actions
taken, otherwise R

The Isotopic Uranium Analysis has tracer recovery for all samples between 49% to 88.2
All of these recoveries are within acceptable recovery limits.

Page 12 of 21

Radiochemical Data Review Checklist

VIII. Laboratory Control Sample Information see CENWK 4.2.2 and QAPP

Alpha

General LCS Criteria:	
percent recovery (%R)	

	7114
aqueous	solid
80-120	70-130

Gamma, GPC, KPA: 80-120

Laboratory LCS Identifications: WG1753087

_	_	_		
De		. 4		
ים ו	VI 2	3 T I C	าท	С.

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied

۷ / Y 4.	4.2.2	ı anu	WAL	г
٧	' I'\ '	/ IN 4.2.2	rx 4.2.2 and	/K 4.2.2 and QAP

Alpha (Aqueous) and Gamma, GPC, KPA	<u><50%</u> R	<u>50-79%</u> J	<u>121-150%</u> J	>150% R
	<50%	50-74%	126-150%	>150%
Alpha (Solid)	<40%	40-69%	131-160%	>160%
	Ъ	1	ī	D

R	em	ar	ke	-
		a 1	\mathbf{n}	-

Isotopic Uranium-238 LCS recovery is 96.5%.	No qualification of the Istopic Uranium analysis.
Isotopic Uranium-234 LCS recovery is 98.1%.	No qualification of the Istopic Uranium analysis.

Page 13 of 21

Radiochemical Data Review Checklist

IX. Matrix Spike Information

General MS Criteria: percent recovery (%R)		Aqueous 50-120	Solid see CENWK 4.2.3 and QAPP 40-130
Project Sample(s) Spiked	:		MSL1410500-01 WG1753087
Deviations:			
Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
Actions:	see CENV	VK 4.2.3 ar	nd QAPP
Aqueous		<20%	<u>20-49%</u> <u>121-160%</u> <u>>160%</u> >150%
all samples in batch		R *see CFN	J J use professional judgement R WK 4.2.3 and QAPP*
Solid		<10%	<u>10-39%</u> <u>131-160%</u> <u>>160%</u> >150%
		R	J J use professional judgement R
Remarks:			
U-238 recovery for MS is 11	1.7% and M	1SD is 107.	3%
U-234 recovery for MS is 10	4.1% and M	1SD is 106.	0%

Page 14 of 21

ESE DM-05 Rev0 January 31, 2015

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis

see CENWK 4.2.4, 4.2.5 and QAPP

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER). Duplicate actions should apply to all samples associated with the duplicate pair.

Duplicate Sample Identification:				
Deviations:				
Radionuclide	DER	RPD	RER	Samples Affected
2. If the DER is greater than3. If the RPD is greater than	ate activitie n 1.00, qual n 50% quali	es are within ify the data fy the data	n 2X the M as estimat as estimat	
Remarks:				
U-238 recovery for MS is 11	1.7% and l	MSD is 107	7.3%. The	RPD forU-238 is 3.6%.
U-234 recovery for MS is 10	04.1% and I	MSD is 106	6.0%	The RPD for U-234 is 1.1%
All RPD/NAD results were within project requirements. Please see calculation sheets.				

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

see CENWK 4.1.8, 4.1.9.2 and QAPP

Each alpha isotopic peak should be clear and free of interference from other energy peaks. Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Deviations:

Radionuclide	Deficiency	Samples Affected

Actions:	see CENWK 4.1.8, 4.1.9.2 and Q	APP
----------	--------------------------------	-----

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks: No Issues.		

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density

see CENWK 4.1.9, 4.1.7 and QAPP

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations:

Radionuclide	Deficiency	Samples Affected

Actions:

see CENWK 4.1.9, 4.1.7 and QAPP

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 5. If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:
No Issues. Gamma Spectrometer system identified and calculated the the amount of the of the identified
radionuclides as expected.

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy)

Sample Aliquot Representativeness

Each sample tentatively identified radionuclide energy must be within 2 keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra.

All peaks greater than 3X the background standard deviation must be identified and quantified.

The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships). Results from different but comparable analytical

techniques from different sub-sample aliquots of the same sample shall be compared for consistency.

Deviations:

Radionuclide	Deficiency	Samples Affected
U-235	Alpha and gamma results not comparable	SB-15-0406. DVQ: "J"
U-235	Alpha and gamma results not comparable	SB-15-0608. DVQ: "J"
U-235	Alpha and gamma results not comparable	SB-09-0506. DVQ: "J"

Actions:

a	Qualify all tentati	المساكلة متسامل بالسن	محادثا منتجا المحد	
	. Quality all teritati			

If the results do not agree within the reported uncertainty of measurement, results shall be qualified as "J" or "R", depending on the magnitude of the uncertainty.

Remarks:	
See calculation sheet	

^{2.} If the energy of the tentatively identified radionuclide peak is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.

^{3.} If the reviewer judges anything regarding the identification of the tentatively identified radilnuclide as suspect, qualify the data as rejected (R).

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

see CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Deviations:

Actions:

Radionuclide/Method	Deficiency	Samples Affected

Based on the instrument performance indicators, the data reviewer must use professional judgement ot qualify the data.
Remarks:
No issuses.

see CENWK and QAPP

LEIDOS Page 19 of 21

XV. Analyte Quanti Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

d:
d:

LEIDOS Page 20 of 21

XV. Analyte Quanti Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Radionuclide:	Method:	
alculation Check:		
adionuclide:	Method:	
Remarks:		

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

Remarks:	SDG sample results were qualified per QAPP and CENWK guidance.
	·
-	
_	

Company Name/Address:			Billing Inform	mation:					A	nalvsis /	Contain	er / Pres	ervative			Chain of Custody	Page of
Geo Consultants - Kev	il, KY		Accounts 325 Kentu	ucky Ave		Pres Chk										Pac	e Analytical [®]
Kevil, KY 42053			Kevil, KY	42053												1	
Report to: David Lindsey	12		Email To: lin	dseyd@geocons	ultantscorp.c	om		yr								12065 Lebanon Rd Moi Submitting a sample via constitutes acknowledg Pace Terms and Conditi	this chain of custody ment and acceptance of the
Project Description:		City/State Collected:	haten I	Sland	Please Ci PT MT C			S/Im0.								https://info.pacelabs.co	
Phone: 270-462-3882	Client Project	t #		Lab Project #			res	1еон1								H15	9
Collected by (print):	Site/Facility I	0# n Islay		P.O. #			Ir-NoP	/wp/N	Pres	Se						Acctnum: GEC	
Collected by (signature):	Rush?	Lab MUST Be	Notified) Day	Quote #			O 4ozC	40ml/	CIr-No	1L-Clr-NoPres						Template: T19 Prelogin: P87 PM: 732 - Don	3890
Immediately Packed on Ice N Y	Next D Two Da Three I	ay 10 D	y (Rad Only) ay (Rad Only)	Date Result	s Needed	No. of	DODSV8270 4ozCir-NoPres	DODV8260 40mlAmb/MeOH10ml/Syr	Metals 2o2Clr-NoPres	1L-Clr						PB: 19F (2117 by
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	DODS	DOD	Meta	TCLP						Remarks	Sample # (lab only)
\$3-16-6000	Greb	SS	Sugge	9-27.21	1004	14	X	X	X	X							-01/07
		SS				1	^	^	^	^							
										-							
						1											
					- 3												
															Sample	e Receipt Ch	necklist
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Flow		_ Temp _ Other		COC Si Bottle	eal Pre igned/A es arri et bott	sent/Intact ccurate: ve intact: les used:	NP Y N N N
DW - Drinking Water OT - Other	Samples returne UPS FedE			Track		18	99	40	5/5	sol	0			VOA Ze	ero Hea	olume sent: If Applicab dspace: Correct/Che	_Y _N
Relinquished by : (Signature)		Oate:	-21 1Z	Recei	ved by: (Signa	ture)				Trip Blan	Now.	+	s / No ICL / MeoH BR			0.5 mR/hr:	ty_N
Relinquished by : (Signature)		Date:	Time:		ved by: (Signa	ture)				Temp:	2-10=	D 111	es Received:	If prese	ervation	required by Log	gin: Date/Time
Relinquished by : (Signature)	0	Date:	Time	Recei	ed for lab by	: (Signat	ture)			Date:	8/2	Time	30	Hold:			Condition: NCF / OF
					1		1			-1	00						

Pace Analytical® ANALYTICAL REPORT

October 18, 2021

Geo Consultants - Kevil, KY

Sample Delivery Group: L1410266

Samples Received: 09/28/2021

Project Number:

Description:

Site: STATEN ISLAND

Report To: David Lindsey

325 Kentucky Ave

Kevil, KY 42053

Entire Report Reviewed By:

Donna Eidson

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SB-16-0000 L1410266-01	5
Qc: Quality Control Summary	7
Mercury by Method 7470A	7
Metals (ICP) by Method 6010B	8
Volatile Organic Compounds (GC/MS) by Method 8260B	9
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	10
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SAMPLE SUMMARY

Collected by

Collected date/time Received date/time

SB-16-0000 L1410266-01 Waste		David L.	09/27/21 10:04	09/28/21 09	:30	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Preparation by Method 1311	WG1753667	1	10/08/21 11:48	10/08/21 11:48	CJW	Mt. Juliet, TN
Preparation by Method 1311	WG1754149	1	10/10/21 07:38	10/10/21 07:38	APH	Mt. Juliet, TN
Mercury by Method 7470A	WG1754656	1	10/11/21 11:39	10/11/21 13:36	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1754821	1	10/11/21 16:15	10/12/21 10:42	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1754410	1	10/11/21 14:00	10/11/21 14:00	BMB	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1755406	1	10/15/21 06:22	10/16/21 00:41	JNJ	Mt. Juliet, TN

PAGE: 3 of 14

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Donna Eidson Project Manager

Sample Delivery Group (SDG) Narrative

Analysis was performed from an improper container for the following samples.

Lab Sample ID Project Sample ID Method L1410266-01 SB-16-0000 1311

SAMPLE RESULTS - 01

L1410266

Collected date/time: 09/27/21 10:04 Preparation by Method 1311

	Result	Qualifier	Prep	Batch
Analyte			date / time	
TCLP Extraction	-		10/10/2021 7:38:17 AM	WG1754149
TCLP ZHE Extraction	-		10/8/2021 11:48:46 AM	WG1753667
Fluid	1		10/10/2021 7:38:17 AM	WG1754149
Initial pH	6.65		10/10/2021 7:38:17 AM	WG1754149
Final pH	4.87		10/10/2021 7:38:17 AM	WG1754149

³Ss

Mercury by Method 7470A

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Mercury	ND		0.0100	0.20	1	10/11/2021 13:36	WG1754656

Cn

⁶Qc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Arsenic	ND		0.100		1	10/12/2021 10:42	WG1754821
Barium	1.15		0.100		1	10/12/2021 10:42	WG1754821
Cadmium	ND		0.100		1	10/12/2021 10:42	WG1754821
Chromium	ND		0.100		1	10/12/2021 10:42	WG1754821
Lead	2.12	<u>01</u>	0.100		1	10/12/2021 10:42	WG1754821
Selenium	ND		0.100		1	10/12/2021 10:42	WG1754821
Silver	ND		0.100		1	10/12/2021 10:42	WG1754821

⁹Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	ND		0.0500	0.50	1	10/11/2021 14:00	WG1754410
Carbon tetrachloride	ND		0.0500	0.50	1	10/11/2021 14:00	WG1754410
Chlorobenzene	ND		0.0500	100	1	10/11/2021 14:00	WG1754410
Chloroform	ND		0.250	6	1	10/11/2021 14:00	WG1754410
1,2-Dichloroethane	ND		0.0500	0.50	1	10/11/2021 14:00	WG1754410
1,1-Dichloroethene	ND		0.0500	0.70	1	10/11/2021 14:00	WG1754410
2-Butanone (MEK)	ND		0.500	200	1	10/11/2021 14:00	WG1754410
Tetrachloroethene	ND		0.0500	0.70	1	10/11/2021 14:00	WG1754410
Trichloroethene	ND		0.0500	0.50	1	10/11/2021 14:00	WG1754410
Vinyl chloride	ND		0.0500	0.20	1	10/11/2021 14:00	WG1754410
(S) Toluene-d8	105		89.0-112			10/11/2021 14:00	WG1754410
(S) 4-Bromofluorobenzene	92.5		85.0-114			10/11/2021 14:00	WG1754410
(S) 1,2-Dichloroethane-d4	120	<u>J1</u>	81.0-118			10/11/2021 14:00	WG1754410

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
1,4-Dichlorobenzene	ND		0.100	7.50	1	10/16/2021 00:41	WG1755406
2,4-Dinitrotoluene	ND		0.100	0.13	1	10/16/2021 00:41	WG1755406
Hexachlorobenzene	ND		0.100	0.13	1	10/16/2021 00:41	WG1755406
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	10/16/2021 00:41	WG1755406
Hexachloroethane	ND		0.100	3	1	10/16/2021 00:41	WG1755406
Nitrobenzene	ND		0.100	2	1	10/16/2021 00:41	WG1755406
Pyridine	ND	<u>J3</u>	0.100	5	1	10/16/2021 00:41	WG1755406
3&4-Methyl Phenol	ND		0.100	400	1	10/16/2021 00:41	WG1755406
2-Methylphenol	ND		0.100	200	1	10/16/2021 00:41	WG1755406
Pentachlorophenol	ND		0.100	100	1	10/16/2021 00:41	WG1755406
2,4,5-Trichlorophenol	ND		0.100	400	1	10/16/2021 00:41	WG1755406
2,4,6-Trichlorophenol	ND		0.100	2	1	10/16/2021 00:41	WG1755406

SB-16-0000

SAMPLE RESULTS - 01

Collected date/time: 09/27/21 10:04

L1410266

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	December	0	DDI	Lineta	Dilenter	A 1 1-	Datab
	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
(S) 2-Fluorophenol	22.4		19.0-119			10/16/2021 00:41	WG1755406
(S) Phenol-d5	14.0		10.0-67.0			10/16/2021 00:41	WG1755406
(S) Nitrobenzene-d5	40.7	<u>J2</u>	44.0-120			10/16/2021 00:41	WG1755406
(S) 2-Fluorobiphenyl	50.0		44.0-119			10/16/2021 00:41	WG1755406
(S) 2,4,6-Tribromophenol	50.5		43.0-140			10/16/2021 00:41	WG1755406
(S) p-Terphenyl-d14	55.0		50.0-134			10/16/2021 00:41	WG1755406

WG1754656

QUALITY CONTROL SUMMARY

L1410266-01

Mercury by Method 7470A

Method Blank (MB)

(MB) R3714844-1 10/	MB) R3714844-1 10/11/21 13:32							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/l		mg/l	mg/l				
Mercury	U	U	0.00330	0.0100				

²Tc

Laboratory Control Sample (LCS)

(LCS) R3714844-2 10/11/21 13:34

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Mercury	0.0300	0.0328	109	82.0-119	

⁶Qc

L1410266-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1410266-01 10/11/21 13:36 • (MS) R3714844-3 10/11/21 13:39 • (MSD) R3714844-4 10/11/21 13:41

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Mercury	0.0300	ND	0.0334	0.0336	111	112	1	82 0-119			0.597	20

WG1754821

Arsenic

Barium

Cadmium

Chromium

Selenium

Lead

Silver

QUALITY CONTROL SUMMARY

L1410266-01

Method Blank (MB)

Metals (ICP) by Method 6010B

(MB) R3715327-1 1	10/12/21 10:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l

LCS Qualifier

0.100

0.100

0.100

0.100

0.100

0.100

0.100

ľ	Ср	
L		

U

U

U

U

U

U

(LCS) R3715327-2 10/12/21 10:39

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/l	mg/l	%	%
Arsenic	10.0	9.79	97.9	87.0-113
Barium	10.0	9.95	99.5	88.0-113
Cadmium	10.0	9.70	97.0	88.0-113
Chromium	10.0	9.63	96.3	90.0-113
Lead	10.0	9.65	96.5	86.0-113
Selenium	10.0	10.1	101	83.0-114
Silver	2.00	1.77	88.7	84.0-115

<u>U</u>

U

U

<u>U</u>

U

U

0.0330

0.0330

0.0330

0.0330

0.0330

0.0330

0.0330

L1410266-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1410266-01 10/12/21 10:42 • (MS) R3715327-4 10/12/21 10:48 • (MSD) R3715327-5 10/12/21 10:50

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	10.0	ND	9.89	9.87	98.9	98.7	1	87.0-113			0.204	20
Barium	10.0	1.15	11.2	11.1	101	99.3	1	88.0-113			1.19	20
Cadmium	10.0	ND	9.86	9.80	98.6	98.0	1	88.0-113			0.606	20
Chromium	10.0	ND	9.67	9.67	96.2	96.3	1	90.0-113			0.0163	20
Lead	10.0	2.12	11.8	11.6	97.0	95.1	1	86.0-113			1.63	20
Selenium	10.0	ND	10.3	10.2	103	102	1	83.0-114			0.825	20
Silver	2.00	ND	1.81	1.80	90.4	90.1	1	84.0-115			0.278	20

WG1754410

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1410266-01

Method Blank (MB)

(MB) R371	6112-3	10/11/21	12:32

(1112) 1107 10112 0 10711721 12				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.0167	0.0500
Carbon tetrachloride	U		0.0167	0.0500
Chlorobenzene	U		0.0167	0.0500
Chloroform	U		0.0833	0.250
1,2-Dichloroethane	U		0.0167	0.0500
1,1-Dichloroethene	U		0.0167	0.0500
2-Butanone (MEK)	U		0.167	0.500
Tetrachloroethene	U		0.0167	0.0500
Trichloroethene	U		0.0167	0.0500
Vinyl chloride	U		0.0167	0.0500
(S) Toluene-d8	106			89.0-112
(S) 4-Bromofluorobenzene	92.6			85.0-114
(S) 1,2-Dichloroethane-d4	119	J1		81.0-118

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3716112-1 10/11/21 10:19 • (LCSD) R3716112-2 10/11/21 10:41

200) 10/10/12 1 10/10/21 10/10 12 10/10/21 10/10											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.250	0.261	0.254	104	102	79.0-120			2.72	20	
Carbon tetrachloride	0.250	0.269	0.244	108	97.6	72.0-136			9.75	20	
Chlorobenzene	0.250	0.240	0.237	96.0	94.8	82.0-118			1.26	20	
Chloroform	0.250	0.272	0.267	109	107	79.0-124			1.86	20	
1,2-Dichloroethane	0.250	0.281	0.276	112	110	73.0-128			1.80	20	
1,1-Dichloroethene	0.250	0.266	0.236	106	94.4	71.0-131			12.0	20	
2-Butanone (MEK)	1.25	1.55	1.51	124	121	56.0-143			2.61	20	
Tetrachloroethene	0.250	0.234	0.228	93.6	91.2	74.0-129			2.60	20	
Trichloroethene	0.250	0.236	0.225	94.4	90.0	79.0-123			4.77	20	
Vinyl chloride	0.250	0.272	0.251	109	100	58.0-137			8.03	20	
(S) Toluene-d8				103	103	89.0-112					
(S) 4-Bromofluorobenzene				96.5	96.4	85.0-114					
(S) 1,2-Dichloroethane-d4				115	114	81.0-118					

WG1755406

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1410266-01

Method Blank (MB)

(MB) R3717280-2 10/15/2	1 23:16			
(1410) 113717200-2 10/13/2	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l	THE QUALITIES	mg/l	mg/l
1,4-Dichlorobenzene	U		0.0333	0.100
2,4-Dinitrotoluene	U		0.0333	0.100
Hexachlorobenzene	U		0.0333	0.100
Hexachloro-1,3-butadiene	U		0.0333	0.100
Hexachloroethane	U		0.0333	0.100
Nitrobenzene	U		0.0333	0.100
2-Methylphenol	U		0.0333	0.100
3&4-Methyl Phenol	U		0.0333	0.100
Pentachlorophenol	U		0.0333	0.100
2,4,5-Trichlorophenol	U		0.0333	0.100
2,4,6-Trichlorophenol	U		0.0333	0.100
Pyridine	U		0.0333	0.100
(S) 2-Fluorophenol	27.8			19.0-119
(S) Phenol-d5	16.7			10.0-67.0
(S) Nitrobenzene-d5	52.3			44.0-120
(S) 2-Fluorobiphenyl	63.1			44.0-119
(S) 2,4,6-Tribromophenol	56.5			43.0-140
(S) p-Terphenyl-d14	68.2			50.0-134

Laboratory Control Sample (LCS)

(LCS) R3717280-1 10/15/2	21 22:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
1,4-Dichlorobenzene	0.500	0.309	61.8	29.0-112	
2,4-Dinitrotoluene	0.500	0.499	99.8	57.0-128	
Hexachlorobenzene	0.500	0.362	72.4	53.0-125	
Hexachloro-1,3-butadiene	0.500	0.294	58.8	22.0-124	
Hexachloroethane	0.500	0.304	60.8	21.0-115	
Nitrobenzene	0.500	0.285	57.0	45.0-121	
2-Methylphenol	0.500	0.246	49.2	30.0-117	
3&4-Methyl Phenol	0.500	0.252	50.4	29.0-110	
Pentachlorophenol	0.500	0.434	86.8	35.0-138	
2,4,5-Trichlorophenol	0.500	0.400	0.08	50.0-125	
2,4,6-Trichlorophenol	0.500	0.319	63.8	53.0-123	
Pyridine	0.500	0.177	35.4	13.5-58.9	
(S) 2-Fluorophenol			31.9	19.0-119	
(S) Phenol-d5			18.8	10.0-67.0	
(S) Nitrobenzene-d5			45.6	44.0-120	

WG1755406

(S) p-Terphenyl-d14

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1410266-01

LCS Qualifier

Laboratory Control Sample (LCS)

(LCS) R3717280-1 10/15/21 22:54

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/l	mg/l	%	%
(S) 2-Fluorobiphenyl			69.0	44.0-119
(S) 2,4,6-Tribromophenol			70.5	43.0-140
(S) p-Terphenyl-d14			68.3	50.0-134

[†]Cn

L1410266-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1/10266-01 10/16/21 00:41 - (MS) P3717280-3 10/16/21 01:03 - (MSD) P3717280-4 10/16/21 01:25

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
1,4-Dichlorobenzene	0.500	ND	0.249	0.290	49.8	58.0	1	29.0-112			15.2	20
2,4-Dinitrotoluene	0.500	ND	0.439	0.512	87.8	102	1	57.0-128			15.4	20
Hexachlorobenzene	0.500	ND	0.314	0.361	62.8	72.2	1	53.0-125			13.9	20
Hexachloro-1,3-butadiene	0.500	ND	0.250	0.272	50.0	54.4	1	22.0-124			8.43	20
Hexachloroethane	0.500	ND	0.243	0.289	48.6	57.8	1	21.0-115			17.3	20
Nitrobenzene	0.500	ND	0.243	0.270	48.6	54.0	1	45.0-121			10.5	20
2-Methylphenol	0.500	ND	0.194	0.233	38.8	46.6	1	30.0-117			18.3	20
3&4-Methyl Phenol	0.500	ND	0.199	0.232	39.8	46.4	1	29.0-110			15.3	20
Pentachlorophenol	0.500	ND	0.362	0.419	72.4	83.8	1	35.0-138			14.6	20
2,4,5-Trichlorophenol	0.500	ND	0.349	0.389	69.8	77.8	1	50.0-125			10.8	20
2,4,6-Trichlorophenol	0.500	ND	0.279	0.319	55.8	63.8	1	53.0-123			13.4	20
Pyridine	0.500	ND	ND	0.136	18.9	27.2	1	13.5-58.9		<u>J3</u>	36.2	20
(S) 2-Fluorophenol					24.0	27.6		19.0-119				
(S) Phenol-d5					13.8	17.8		10.0-67.0				
(S) Nitrobenzene-d5					39.9	44.4		44.0-120	<u>J2</u>			
(S) 2-Fluorobiphenyl					57.2	67.0		44.0-119				
(S) 2,4,6-Tribromophenol					59.0	73.0		43.0-140				

65.1

50.0-134

57.8

DATE/TIME:

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Geo Consultants - Kevil, KY

	•
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
U	Below Detectable Limits: Indicates that the analyte was not detected.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:

L1410266

10/18/21 08:52

12 of 14

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

PAGE:

13 of 14

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Dilling to					1				26.5							
Geo Consultants - I	Kevil, KY			nformation:						A	nalvsis /	Contain	er / Preser	vative	1		Chain of Custo	ody Page of	_
				nts Payab			Pres	1	1								5	7	
325 Kentucky Ave Kevil, KY 42053				ntucky Av KY 42053			Clik						tel m		- 130	-	- Pa	ace Analytica	11
																	1		
Report to: David Lindsey			Email To	: lindseyd@g	geoconsultar	tscorp.	com	es.							- 183		12065 Lebanon Rd	Mount Juliet, TN 37122	
Project Description:		City/st					E.	NoPres									Submitting a sample constitutes acknowle	e via this chain of custody ledgment and acceptance of	f the
Staten Isl Warehouse, Port Richm	nond	City/St	d Jakan I	sland Il	low York P	Please (Circle:	N-3c			- 3					1-1	Pace Terms and Con https://info.pacelab terms.pdf	nditions found at: os.com/hubfs/pas-standard	
Phone: 270-462-3882	FUSE	Project #	4	Lab Proje	ject#			16ozHDPE-									SDG # LIL	1 10500	
Collected by (print):	Sey Site/F	acility ID #		P.O. #				U-ISO 16											
Collected by (signature):	/	ush? (Lab MUS	Be Notified)	Quote #	Ħ		4-										Template:T1	EOCONKKY	
AU'X		Same Day	ive Day	2				121				15.3					Prelogin: P8		
Immediately Packed on Ice N Y	- 1	Next Day Two Day Three Day	Day (Rad Only) 0 Day (Rad Only)	Date	e Results Nee	ded	No.	NOR									PM: 732 - Do		
Sample ID	Comp	/Grab Matrix	* Depth	Dat	te	Time	Cntrs	GSPEC-NORM21,									Shipped Via:	FedEX Groun	
55-04-0926	10	SCM	0-0,5	9-22	-21 09	726	1	X	3-86				energies.				2 married	-01	
5B-04-010Z	G	SCM			100	10	1	X		5,17						-	1		
53-04-0406	G	SCM	4-6	9-22-			1	X									1 Sec. 191	102	
55-02-0835	6	SCM	0-0,5			335	1	X	N. S. S.									-03	
53-02-0501	G	SCM	05-1	9-24-	Carlo Principal Comment	340	1	X							E. (2)			-04	-
SB-02-010Z	G	SCM	1-2	9-24-		45	1	X										-05	
SB-DUP-02	G	SCM	0.5-1	9/24	121 00	840	1	X					10		XV.		1000	-06	
55-MS-04	9	SCM	0-05		2/21 00	26	1	X							ent E			-07	
SS-MSD-04	Cy	SCM	0-0.5	9/22	10 00	126	1	X										-01	
		SCM		1/22	721 0 1	00	1	X			-					-		-07	
Matrix: - Soil AIR - Air F - Filter	Remarks:no	ice required		1 1	D=1			^								0]	ah sahili at	
W - Groundwater B - Bioassay W - WasteWater											pH _ Flow		Temp	_	COC Si	al Pr gned/	le Receipt (esent/Intac Accurate: ive intact:	t: NP Y	N N
N - Drinking Water F - Other	Samples retu	rned via: edEx Courie		Tr	racking #					ELVE	Flow_		Other		Correc	t bot	tles used: volume sent If Applica	. 4	N N
linquished by : (Signature)		Date:	Time:	Re	eceived by: (5	ignatu	re)		200	Treis	o Diank	Danahard	: Yes/N				adspace: n Correct/Cl	Y	N
		9-27-	21 14	20			- C. S. S. S.			1111	J DIGITA	D	HCL/I				<0.5 mR/hr:		N
linquished by : (Signature)	-5 easy 10	Date:	Time:	Rei	eceived by: (S	ignatu	e)		1	Ter	nn An	pic	TBR Bottles Rec	eived:	If prese	rvation	required by L	ogin: Date/Time	
inquished by : (Signature)		Dete	1 1 1 1 1 1 1							100		= 22.	0	7	14.00				
- / - Anglintale)		Date:	Time:	Red	ceived for lal	b.by: (5	ignatuje	1	The same	Dat			Time:/0	:15	Hold:			Condition	
			· · · · · · · · · · · · · · · · · · ·		110	my c	lin	2		9	/29	121	9:	300	,			NCF / 0	D

4500 cpm

SAMPLE RESULTS - 01

L1410500

Collected date/time: 09/22/21 09:26

Radiochemistry by Method D3972 U-02

	Result <u>C</u>	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.53		0.363	0.238	10/11/2021 17:29	WG1753087
URANIUM-235	0.248	J	0.112	0.0888	10/11/2021 17:29	WG1753087
URANIUM-238	2.65		0.345	0.145	10/11/2021 17:29	WG1753087
(T) URANIUM-232	67.6			30.0-110	10/11/2021 17:29	WG1753087

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.585	<u></u>	0.330	0.745	10/26/2021 14:12	WG1756346
Bismuth-212	0.826	<u>⊎</u> X	1.31	2.66	10/26/2021 14:12	WG1756346
Bismuth-214 (Ra-226)	4.60	X	0.535	0.388	10/26/2021 14:12	WG1756346
Lead-212	0.142	13 U X	0.227	0.411	10/26/2021 14:12	WG1756346
Lead-214	5.57	X	0.581	0.399	10/26/2021 14:12	WG1756346
Potassium-40	9.77	X	2.39	2.65	10/26/2021 14:12	WG1756346
Thallium-208	0.370	X	0.120	0.162	10/26/2021 14:12	WG1756346
Uranium-235	0.466	<u>⊎</u> X(J	0.117	0.715	10/26/2021 14:12	WG1756346
Thorium-234 (U-238)	2.02	<u></u> ₹ X	1.14	2.09	10/26/2021 14:12	WG1756346

SS-04-0102 SB-04-0102 Collected date/time: 09/22/21 16:10

SAMPLE RESULTS - 02

L1410500

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	4.81	J	0.442	0.173	10/18/2021 16:50	WG1754721
URANIUM-235	0.293		0.113	0.0804	10/18/2021 16:50	WG1754721
URANIUM-238	4.78		0.430	0.101	10/18/2021 16:50	WG1754721
(T) URANIUM-232	68.3			30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.86	X	0.449	0.732	10/26/2021 15:28	WG1756346
Bismuth-212	1.88	<u></u> X	1.34	2.45	10/26/2021 15:28	WG1756346
Bismuth-214 (Ra-226)	3.59	X	0.440	0.379	10/26/2021 15:28	WG1756346
Lead-212	1.18	X	0.317	0.495	10/26/2021 15:28	WG1756346
Lead-214	4.58	X	0.553	0.376	10/26/2021 15:28	WG1756346
Potassium-40	11.1	X	2.33	2.53	10/26/2021 15:28	WG1756346
Thallium-208	0.455	X	0.138	0.197	10/26/2021 15:28	WG1756346
Uranium-235	0.507	$(\cup)X$	0.152	1.15	10/26/2021 15:28	WG1756346
Thorium-234 (U-238)	4.85	X	2.65	4.12	10/26/2021 15:28	WG1756346

SAMPLE RESULTS - 03

L1410500

Radiochemistry by Method D3972 U-02

Collected date/time: 09/22/21 16:30

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/g		+/-	pCi/g	date / time		
URANIUM-234	1.84	J	0.277	0.163	10/18/2021 16:50	WG1754721	
URANIUM-235	0.0512	₹	0.0518	0.0617	10/18/2021 16:50	WG1754721	
URANIUM-238	2.04		0.277	0.103	10/18/2021 16:50	WG1754721	
(T) URANIUM-232	69.5			30.0-110	10/18/2021 16:50	WG1754721	

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.04	X	0.367	0.678	10/26/2021 16:30	WG1756346
Bismuth-212	1.56	± X	1.43	2.73	10/26/2021 16:30	WG1756346
Bismuth-214 (Ra-226)	1.07	X	0.275	0.396	10/26/2021 16:30	WG1756346
Lead-212	1.03	X	0.283	0.425	10/26/2021 16:30	WG1756346
Lead-214	1.31	\mathbf{X}	0.316	0.405	10/26/2021 16:30	WG1756346
Potassium-40	14.0	X	2.83	2.78	10/26/2021 16:30	WG1756346
Thallium-208	0.338	X	0.130	0.192	10/26/2021 16:30	WG1756346
Uranium-235	0.236	<u>(∪)</u> X	0.137	1.2	10/26/2021 16:30	WG1756346
Thorium-234 (U-238)	2.07	J X	2.05	4.06	10/26/2021 16:30	WG1756346

SAMPLE RESULTS - 04

L1410500

Radiochemistry by Method D3972 U-02

Collected date/time: 09/24/21 08:35

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	0.622	J	0.185	0.163	10/18/2021 16:50	WG1754721
URANIUM-235	0.00538	<u>(U)</u> J	0.0433	0.0799	10/18/2021 16:50	WG1754721
URANIUM-238	0.819		0.183	0.0912	10/18/2021 16:50	WG1754721
(T) URANIUM-232	77.0			30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.12	X	0.285	0.455	10/26/2021 17:37	WG1756346
Bismuth-212	1.20	<u></u> X	0.859	1.51	10/26/2021 17:37	WG1756346
Bismuth-214 (Ra-226)	1.09	X	0.209	0.24	10/26/2021 17:37	WG1756346
Lead-212	1.13	X	0.215	0.253	10/26/2021 17:37	WG1756346
Lead-214	1.12	X	0.197	0.217	10/26/2021 17:37	WG1756346
Potassium-40	13.2	X	2.06	1.01	10/26/2021 17:37	WG1756346
Thallium-208	0.271	X	0.0947	0.134	10/26/2021 17:37	WG1756346
Uranium-235	0.0995	(\cup) X	0.0858	0.723	10/26/2021 17:37	WG1756346
Thorium-234 (U-238)	0.808	<u>(∪)</u> X	1.22	2.37	10/26/2021 17:37	WG1756346

SAMPLE RESULTS - 05

L1410500

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.809	J	0.181	0.158	10/18/2021 16:50	WG1754721
URANIUM-235	0.00939	<u>(U)</u> J	0.0585	0.0928	10/18/2021 16:50	WG1754721
URANIUM-238	0.752		0.166	0.132	10/18/2021 16:50	WG1754721
(T) URANIUM-232	82.6			30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.27	X	0.225	0.278	10/26/2021 18:36	WG1756346
Bismuth-212	1.84	X	0.750	1.28	10/26/2021 18:36	WG1756346
Bismuth-214 (Ra-226)	1.10	X	0.155	0.164	10/26/2021 18:36	WG1756346
Lead-212	1.30	X	0.174	0.202	10/26/2021 18:36	WG1756346
Lead-214	1.22	X	0.185	0.195	10/26/2021 18:36	WG1756346
Potassium-40	15.1	X	1.70	0.865	10/26/2021 18:36	WG1756346
Thallium-208	0.487	X	0.0817	0.0843	10/26/2021 18:36	WG1756346
Uranium-235	0.174	(\cup) X, J	0.0705	0.615	10/26/2021 18:36	WG1756346
Thorium-234 (U-238)	1.02	⊎ X	1.19	2.37	10/26/2021 18:36	WG1756346

SS-02-0102 SB-02-0102

Collected date/time: 09/24/21 08:45

SAMPLE RESULTS - 06

L1410500

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.634	J	0.169	0.145	10/18/2021 16:50	WG1754721
URANIUM-235	0.0521	₹	0.0528	0.0658	10/18/2021 16:50	WG1754721
URANIUM-238	0.918		0.182	0.112	10/18/2021 16:50	WG1754721
(T) URANIUM-232	90.4			30.0-110	10/18/2021 16:50	WG1754721

[']Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.08	X	0.204	0.301	10/26/2021 18:38	WG1756346
Bismuth-212	1.35	X	0.620	1.02	10/26/2021 18:38	WG1756346
Bismuth-214 (Ra-226)	1.03	X	0.158	0.172	10/26/2021 18:38	WG1756346
Lead-212	0.873	X	0.137	0.178	10/26/2021 18:38	WG1756346
Lead-214	1.12	X	0.148	0.164	10/26/2021 18:38	WG1756346
Potassium-40	7.50	X	1.37	1.79	10/26/2021 18:38	WG1756346
Thallium-208	0.367	X	0.0701	0.0855	10/26/2021 18:38	WG1756346
Uranium-235	0.0332	(U) X	0.0506	0.442	10/26/2021 18:38	WG1756346
Thorium-234 (U-238)	0.369	<u>(U)</u> X	0.839	1.76	10/26/2021 18:38	WG1756346

SAMPLE RESULTS - 07

Collected date/time: 09/24/21 08:40

L1410500

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	0.787	J	0.166	0.0996	10/18/2021 16:50	WG1754721
URANIUM-235	-0.00463	<u>U</u>	0.0441	0.0811	10/18/2021 16:50	WG1754721
URANIUM-238	0.795		0.157	0.0525	10/18/2021 16:50	WG1754721
(T) URANIUM-232	95.2			30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.13	X	0.285	0.427	10/26/2021 18:41	WG1756346
Bismuth-212	2.18	X	1.03	1.73	10/26/2021 18:41	WG1756346
Bismuth-214 (Ra-226)	1.13	X	0.212	0.224	10/26/2021 18:41	WG1756346
Lead-212	1.09	X	0.216	0.266	10/26/2021 18:41	WG1756346
Lead-214	1.36	X	0.219	0.2	10/26/2021 18:41	WG1756346
Potassium-40	13.9	X	2.11	0.994	10/26/2021 18:41	WG1756346
Thallium-208	0.484	X	0.105	0.102	10/26/2021 18:41	WG1756346
Uranium-235	0.100	<u>(U)</u> X	0.0929	0.739	10/26/2021 18:41	WG1756346
Thorium-234 (U-238)	0.463	<u>(U)</u> X	1.18	2.42	10/26/2021 18:41	WG1756346

Leidos Radiological Analytical Data Validation

Event Name: Staten Island Warehouse FUSRAP Site

SDG Number: <u>L1410500</u> Laboratory: <u>Pace Analytical</u>

Analysis: Gamma Spec/Iso U (soil)

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 3 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. The requested analyses include: ^{234/235/238}U by alpha spectrometry (Method D3972 U-02); ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ²³⁴Th, ²²⁸Ac, ⁴⁰K, and ²³⁵U by gamma spectrometry (Method DOE Ga-01-R/901.1 (21 day)). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Case Narrative

Analytical Holding Times and Preservation Minimu Method Calibration/Calibration Verification Reporting

Method Blanks Background Checks

Analytical Tracer Recoveries

MS/MSD Recoveries and Differences LCS/LCSD Recoveries and Differences

Laboratory Duplicates/Replicates

Re-analysis and Secondary Dilution Minimum Detectable Activities (MDAs)

Reporting Levels

Chemical/Spectroscopic Separation Specificity (alpha spectroscopy) Project Duplicates and Splits Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

Data Intercomparison

Definition of Data Validation Qualifiers:

"U" - Indicates a normal, non-detected (< critical value) result.

"J" - Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable depending upon the intended use of the data and reason for data rejection.

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September, 2021.

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District, September 2017.

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February, 2018.

Sample Name Cross-Reference

Project Sample Name	Matrix	Lab Sample Name
SS-04-0926	Soil	L1410500-01
SB-04-0102	Soil	L1410500-02
SB-04-0406	Soil	L1410500-03
SS-02-0835	Soil	L1410500-04
SB-02-0501	Soil	L1410500-05
SB-02-0102	Soil	L1410500-06
SB-DUP-02	Soil	L1410500-07

Validation Report By	: Amanda Leigh Dick	03/08/2022
	(print)	Date
	Amanda Leigh Dick	
	(sign)	•
Peer Reviewed By:	Thomas L. Rucker, Ph.D.	03/11/2022
	(print)	Date
	72 Rucker	
	(sign)	

1.0 GAMMA SPECTROMETRY ANALYSIS

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

For gamma spectrometry, the CENWK states that if the efficiency calibration delta values (difference between the measured and the calibration curve efficiency) are greater than 5% for any one radionuclide, the calibration shall be deemed unusable. The QAPP further states that the 95% CL of fitted function over range shall be \leq 8%. The following gamma spectrometer detectors/geometries had one or more radionuclides with delta values greater than 5% and or a 95% CL (1.96 σ) greater than 8%:

Initial Calibration

Detector	Geometry	# Energy Peaks	Delta %	# Ener gy Peaks	95% CL	SDG Samples Affected	Qualifier
1	C6	1	6.3			SS-04-0926	X
2	C6	3	-9.4-7.9			SB-02-0501	X
4	C6	1	-6.5			SB-02-0102	X
5	C6	2	-16.4-6.5	9	8.8 – 14.7	SS-02-0835, SB-DUP-02	X
2	Р3	1	5.3			SB-04-0102, SB-04-0406	X

Based on the CENWK any samples counted on detector with Delta% greater than 5% should be qualified as unusable (X). However, this parameter was not listed in the QAPP. The QAPP parameter, 95% CL of the fitted curve, does not have guidance on how to qualify results outside its limits. It is likely that both of these parameter deficiencies are due to the calibration being performed with less than the minimum 10,000 net counts in each peak in at least six calibration peaks that bracket the range of use as is specified in the DoD Quality Systems Manuel (QSM). The raw counts for the calibration were not provided, but this is evidenced by the uncertainty reported for the peaks. This means there is greater than normal uncertainty in the results due to an uncertain bias from calibration. The samples counted on theses detectors/geometries have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Continuing Calibration

For gamma spectrometry, the CENWK states that if the activity of each radioisotope in the calibration standard is not within 10% relative of the true, decay corrected activity, the calibration shall be deemed unusable. The QAPP also sets a limit of 10% relative to the true value. The following detector/geometry has one quantified peak outside of the 10% limit for the calibration verification check source:

Continuing Calibration

Detector	Geometry	# Energy Peaks	% Difference	SDG Samples Affected	Qualifier
1	C6	1	12.2	SS-04-0926	X

Based on the CENWK any samples counted on detector with check source value of greater than 10% should be qualified as unusable (X). It is likely that this parameter's deficiencies are due to the calibration verification being performed with less than the minimum 10,000 net counts in each peak as is specified in the CENWK as the raw net counts for all peaks were less than the 10,000 net counts for all peaks and all detectors. This means there is greater than normal uncertainty in the results due to an uncertain bias from the calibration verification. These samples have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The following samples did not meet the RDL project goal of <1 pCi/g for Th-234: SS-02-0835, SB-02-0102, and SB-DUP-02. Please see table below.

Samples That Did Not Meet The RDL

Sample ID	Analyte	CSU (pCi/g)	3.5*CSU	RDL (pCi/g)
SS-02-0835	Th-234	0.611	2.1385	1
SB-02-0102	Th-234	0.41935	1.46773	1
SB-DUP-02	Th-234	0.5915	2.07025	1

The following samples had results that exceeded the project action limit: SS-04-0926: Ra-226 4.60 pCi/g SB-04-0102: Ra-226 3.59 pCi/g.

No samples exhibited excess uncertainty:

There were no samples that had negative results with uncertainties smaller than their absolute values.

It is recommended that sample concentrations less than the L_c be qualified as non-detect (U) as follows: SB-04-0102: U-235; SB-04-0406: U-235; SS-02-0835: U-235 and Th-234; SB-02-0501: U-235; SB-02-0102: U-235 and Th-234; and SB-DUP-02: U-235 and Th-234.

Method Blank

There was no indication of blank contamination for the gamma spectrometry analysis.

Laboratory Control Sample:

The percent recoveries for the laboratory control samples (LCSs) were within acceptable limits.

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD (DER).

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = D Parent Sample Result D = Field Split/Duplicate F $U_S = D$ Parent Sample CSU (1)

Field Split/Duplicate Parent Sample Result

Parent Sample CSU (1 sigma)

Field Split/Duplicate Parent Sample CSU (1 sigma) $U_D =$

The duplicates for the gamma spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (<25%, <3).

All field duplicate results were within a factor of 4 from the original result.

Identification and Quantification:

The following target radionuclides: 228 Ac, 226 Ra, 40 K, 234 Th, and 235 U in the samples were reported. The energies of the radionuclides were less than 2 keV from their theoretical energies.

The laboratory used a peak search sensitivity factor of 3. When the peak search sensitivity factor is set at a value greater than 2.3, the peak search report will not report peaks as low as the MDA. Therefore, there is a greater than 5% chance that concentrations greater than the reported MDA will not appear in the peak search. However, the List Isotope Activities report calculates the net activities for the target analytes and this list has been use to report all target analyte activities. Therefore, the only impact is that small but detected non-target analytes may not have been reported.

2.0 ALPHA SPECTROMETRY

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

The initial calibration met project acceptance criteria for all reported analytes.

Continuing Calibration

The continuing calibration met project acceptance criteria for all reported analytes.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The project RDL goal of <0.5 pCi/g was met for all radionuclides of interest.

The following sample had a Uranium-235 result above the project action limit: SS-04-0926: U-235 0.248 pCi/g and SB-04-0102: U-235 0.293 pCi/g.

No sample results exhibited excess uncertainty.

The sample-specific critical level (L_c) was calculated as 1.65 times the sample uncertainty. It is recommended that sample concentrations less than the L_c be qualified as non-detect (U) as follows:

Sample-Specific Critical Level (L_C)

Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	$\mathbf{L}_{\mathbf{C}}$	Qualifier
SS-02-0835	U-235	0.00538	0.014	0.0231	U
SB-02-0501	U-235	0.00939	0.02	0.033	U
SB-DUP-02	U-235	-0.0046	0.017	0.02805	U

Matrix Spike

The percent recoveries for the MS/MSD were within acceptable limits for all alpha spectrometry analyses.

Method Blank

There was no indication of blank contamination in the Method Blank.

Laboratory Control Sample:

The percent recoveries were within acceptable limits for LCS R3715413-2. The Uranium-234 percent recovery is outside the lower acceptable limit (75%-125%) for LCS R3720206-2. It is recommended that the following associated Uranium-234 sample results be qualified as estimated (J): SB-04-0102, SB-04-0406, SS-02-0835, SB-02-0501, SB-02-0102, and SB-DUP-02. Please see table below.

Radiochemistry - LCS % Recovery Calculation

	Sample ID	Analyte	Found Value (pCi/g)	True Value (pCi/g)	LCS (% Recovery)	Qualifier
,	LCS R3720206-2	U-234	3.48	4.78	72.803%	J

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD (DER).

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) *100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = Parent Sample Result

D = Field Split/Duplicate Parent Sample Result

 $U_S =$ Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the alpha spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (<20%, <3).

All field duplicate results were within a factor of 4 from the original result.

Sample-Specific Chemical Recovery:

The percent recoveries for tracers were within acceptable limits.

Spectral Analysis:

There was some tailing from the Uranium-234, Uranium-235, and Uranium-238 peaks from sample MSD R3715413-4. However, there was no peak interference. Therefore, no qualification is required. Sample SB-02-0501 had a Uranium-232 peak energy outside 40 keV from the theoretical energy. However, peak identification was not impacted. Therefore, no qualification is required.

Quantification:

No quantification issues were observed.

3.0 DATA INTERCOMPARISON

U Alpha to U Gamma:

In comparing the uranium results from alpha spectrometry analysis to the uranium results from gamma spectrometry, two samples were not in agreement. It is recommended that the following samples results for U-235 be qualified as estimated (J) due to incomparable results:

Radiochemistry - Data Intercomparison

		Alp	ha	Gar	nma			
Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	Result (pCi/g)	CSU (pCi/g)	RPD%	DER	Qualifier
SS-04-0926	U-235	0.248	0.038	0.466	0.0585	61.06%	3.125	J
SB-02-0501	U-235	0.00939	0.02	0.174	0.03525	179.52%	4.062	J

LEIDOS Laboratory Data Verification Checklist					
Project:	Staten Island Warehouse FUSRAP Site Page 1				
SDG No:	L1410500 Analyte Group: Gamma Spectroscopy and Isoto Sample Matrix: Soil			opic Uranium	
Disposition of I NCR No. (if app	_	N/A N/A	Y	- - -	
1. Case Narrative					
	Read SDG Case N	arrative		Y	
	Check Laboratory	sample ID vs. Project sample	ID lists	Y	
	Check that discussion covers each analytical type included in the SDG				
	Check for identified nonconforming items (e.g., missed holding times, etc.)				
2. Chain-of-Custo	dy (COC)				
	Check COC sample	e collection, shipping, and re	ceiving dates	Y	
	Check that COC signal	gnature blocks are complete		Y	
	Check COC project sample IDs vs. Lab IDs and Result Form IDs				
	Match COC requested analyses with Case Narrative and with data package content (Result Forms)				
3. Analytical Resu	Its Form				
	Verify that a Result	Form is present for each sa	mple and analysis	Y	
	On each Result Fo	rm check: SDG No. Sample ID Lab ID Date Collected Date Extracted Date Analyzed Result Matrix Result Units		Y Y Y Y Y Y Y	

		Page	e 2 of 3
4. Project Ver	rification		
	Check project ar	nalyte list vs. analytes reported	<u>Y</u>
	Check project re	quested methods vs. analytical methods performed	Y
	Check analyte re	eporting levels vs. project reporting level goals	<u>Y</u>
5. Analytical (Quality Control Informa	ation	
	Check for surrog	r pate recovery results (e.g., org. form II)	Y
	Check for LCS re	esults (e.g., org. form III, inorg. form XII)	<u>Y</u>
	Check for metho	d blank results (e.g., org. form IV, inorg. form III)	<u>Y</u>
	Check for MS/MS	SD results (e.g., inorg. form V)	Y
	Check for labora	tory duplicate results (e.g., inorg. form VI)	<u>Y</u>
	Check for Metho	d Calibration and Run Documentation	
	organic:	instrument performance check	N/A
	3.0	initial calibration data	N/A
		continuing calibration data	N/A
		internal standard areas	N/A
		internal standard retention times	N/A
		sample clean-up documentation	<u>N/A</u>
		(org. forms V through X)	
	metal:	initial calibration data	N/A
		continuing calibration data	N/A
		method detection limits	N/A
		method linear range	N/A
		sample run sequence	N/A
		(inorg. forms II, IV, and VIII through XIV)	
	other:	initial calibration data	V
	(Radiological)	continuing calibration data	V
	` ,	method detection limits	Y
		sample run sequence	V

Page 3 of 3
unsigned forms,
mation
sample IDs. this SDG.
atch the SS-02-0102.
ple matrix. ma analyses.
ssing items.
e in -up

6. Incorrect Information

Reviewed By:

QA Review By:

Identify missing items or incorrect information (i.e., missing forms, incorrect sample IDs, etc.)

Document Concollens Below.	Document	corrections	below:
----------------------------	----------	-------------	--------

	Contact the laboratory or project personnel to obtain missing information or correct information
Documen	t corrections below:
	The case narrative did not cover project sample IDs vs laboratory sample IDs. Additionally, it also did not cover each analytical type included in this SDG. No discrepancies were listed in the case narrative.
	The following project sample ID's from the results form do not match the project sample ID's from the COC: SS-04-0102, SS-02-0501, and SS-02-0102. According to the COC, these are subsurface samples.
	The sample result forms were missing the extraction dates and sample matrix. The calibration documentation are missing for both alpha and gamma analyses.
	Calibration standard COAs were missing.
	A revision was issued by the laboratory containing some of the missing items.
7. Nonconformir	ng Items
	Document all nonconforming items that can not be resolved above in a Non-Conformance Report (NCR), complete form, file, and follow-up
	NCR # Item
Reviewed Bv:	amende Leigh Dick Date: 03/08/2022

Date:

LEIDOS Laboratory Data Package Detail Form Project: Staten Island Warehouse FUSRAP Site Page 1 of 1 SDG No: Gamma Spectroscopy and Isotopic Uranium **Analyte Group:** L1410500 Field Matrix Lab Analysis Notes: Sample ID ID# SS-04-0926 L1410500-01 Soil Gamma Spec & Iso U SB-04-0102 L1410500-02 Soil Gamma Spec & Iso U Wrong Sample ID on Result forms. Soil SB-04-0406 L1410500-03 Gamma Spec & Iso U SS-02-0835 Soil L1410500-04 Gamma Spec & Iso U L1410500-05 Soil Gamma Spec & Iso U Wrong Sample ID on Result forms. SB-02-0501 SB-02-0102 L1410500-06 Soil Gamma Spec & Iso U Wrong Sample ID on Result forms. Gamma Spec & Iso U SB-DUP-02 L1410500-07 Soil Comments:

LEIDOS Radiochemical Data Review Checklist Page 1 of 21 Staten Island Warehouse FUSRAP Site **Analysis:** L1410500 Gamma Spectroscopy and Isotopic Uranium Method: DOE Ga-01-R/901.1 and D3972 U-02 Matrix: Pace Analytical Soil The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The general criteria used to assess the analytical integrityof the data were based on an examination of the following: Case Narrative Chemical and/or Tracer Recoveries **Analytical Holding Times** Matrix Spike Results Sample Preservation **Duplicate Error Ratios and RPDs** Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Secondary Dilution CENWK, QSM 5.3; see QAPP for specific requirements Sample results qualified as indicated due to LCS recoveries and incomparable results

Definition of Qualifiers:

Project:

SDG No:

Laboratory:

Overall Remarks:

"U", not detected at the associated level

"UJ", not detected and associated value estimated N/A

"J", associated value estimated

"R", associated value unusable or analyte identity unfounded

"=", compound properly identified and value positive

3/2022

Radiochemical Data Review Checklist

_			-	
Case	N)	rrat	IVA

Verify direct state	ements made within the Laboratory Case Narrative (note discrepancies).
Remarks:	The project MDA goal was exceeded for several Potassium-40 and Thorium-234 sample
results. Two s	samples had results that exceeded project action limits: SS-04-0926 and SB-04-0102.
	The alpha LCS (LCS R3720206-2) had an Uranium-234 recovery result less than the
75% project Q	C limit. All associated sample U-234 results were qualified "J".
	The RDL was not met for several samples. Please see page 9 of this report.
II. Re-analysis	and Secondary Dilutions
Verify that re-ana appropriate resu	alysis and secondary dilutions were performed and reported as necessary. Determine lts to report.
Remarks:	
	No samples were re-analyzed or diluted.
	No samples were re-analyzed or diluted.
	No samples were re-analyzed or diluted.
	No samples were re-analyzed or diluted.
	No samples were re-analyzed or diluted.
	No samples were re-analyzed or diluted.
	No samples were re-analyzed or diluted.
	No samples were re-analyzed or diluted.
	No samples were re-analyzed or diluted.
	No samples were re-analyzed or diluted.

Page 3 of 21

LEIDOS

Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

2 0 11 0 11 0 11 0 11 0				
Sample #	Radionuclide:	Date Collected	Date Analyzed	Action

_		_			
Λ	ct	ia	n	•	

 If holding times are exceeded 	'. all results are	qualified as estimated	(J/UJ)	*or improperly preserved
---	--------------------	------------------------	--------	--------------------------

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

Remarks:	All holding times were met and the samples were properly preserved.

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
Potassium-40	< 1 pCi/g	2.65 pCi/g	SS-04-0926
Thorium-234	< 1 pCi/g	2.09 pCi/g	SS-04-0926
Potassium-40	< 1 pCi/g	2.53 pCi/g	SB-04-0102
Thorium-234	< 1 pCi/g	4.12 pCi/g	SB-04-0102
Potassium-40	< 1 pCi/g	2.78 pCi/g	SB-04-0406
Thorium-234	< 1 pCi/g	4.06 pCi/g	SB-04-0406
Potassium-40	< 1 pCi/g	1.01 pCi/g	SS-02-0835
Thorium-234	< 1 pCi/g	2.37 pCi/g	SS-02-0835
Thorium-234	< 1 pCi/g	2.37 pCi/g	SB-02-0501
Potassium-40	< 1 pCi/g	1.79 pCi/g	SB-02-0102
Thorium-234	< 1 pCi/g	1.76 pCi/g	SB-02-0102
Thorium-234	< 1 pCi/g	2.42 pCi/g	SB-DUP-02
Actinium-228		LC <result< td=""><td>SS-04-0926. No DVQ.</td></result<>	SS-04-0926. No DVQ.
Uranium-235		LC <result< td=""><td>SS-04-0926. No DVQ.</td></result<>	SS-04-0926. No DVQ.
Thorium-234		LC <result< td=""><td>SS-04-0926. No DVQ.</td></result<>	SS-04-0926. No DVQ.
Uranium-235 γ		LC>Result	SB-04-0102. DVQ: "U"

Actions: see CENWK 4.1.3.3a and QAPP

Cont. on next page.

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks: The following samples had results that exceeded project action limits:

SS-04-0926: U-235 0.248 pCi/g, Ra-226 4.60 pCi/g

SB-04-0102: U-235 0.293 pCi/g, Ra-226 3.59 pCi/g

There were no samples that negative results with uncertainties smaller than their absolute values.

The sample-specific detection limit (LC) was calculated for sample results less than the critical level Sample concentrations less than the LC were qualified "U". Please see calculation sheet.

LEIDOS Page 4 of 21

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
Uranium-235 α		LC <result< td=""><td>SB-04-0406. No DVQ.</td></result<>	SB-04-0406. No DVQ.
Uranium-235 γ		LC>Result	SB-04-0406. DVQ: "U"
Thorium-234		LC <result< td=""><td>SB-04-0406. No DVQ.</td></result<>	SB-04-0406. No DVQ.
Uranium-235 α		LC>Result	SS-02-0835. DVQ: "U"
Uranium-235 γ		LC>Result	SS-02-0835. DVQ: "U"
Thorium-234		LC>Result	SS-02-0835. DVQ: "U"
Uranium-235 α		LC>Result	SB-02-0501. DVQ: "U"
Uranium-235 γ		LC>Result	SB-02-0501. DVQ: "U"
Thorium-234		LC <result< td=""><td>SB-02-0501. No DVQ.</td></result<>	SB-02-0501. No DVQ.
Uranium-235 α		LC <result< td=""><td>SB-02-0102. No DVQ.</td></result<>	SB-02-0102. No DVQ.
Uranium-235 γ		LC>Result	SB-02-0102. DVQ: "U"
Thorium-234		LC>Result	SB-02-0102. DVQ: "U"
Uranium-235 α		LC>Result	SB-DUP-02. DVQ: "U"
Uranium-235 γ		LC>Result	SB-DUP-02. DVQ: "U"
Thorium-234		LC>Result	SB-DUP-02. DVQ: "U"

Actions: see CENWK 4.1.3 and QAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks:

For results that were less than the critical level, the calculation k * CSU</=RDL was used to determine whether the RDL has been met. The following samples had results that did not meet the RDL: SS-02-0835: Th-234, SB-02-0102: Th-234, & SB-DUP-02: Th-234.

For concentration ten times the MDC, the calculation CSU>0.25*Rs was used to identify excess reported uncertainty. No samples exhibited excess uncertainty:

Page 5 of 21

Radiochemical Data Review Checklist

V.A1. Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.2 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: None

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

APF
Į

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).

3. If backgroun	nd counts or pulser counts are not acceptable, qualify the affected data as estimated (J).
Remarks:	The initial and continuing calibration met project acceptance criteria.
A backgroun	d count was performed the same month the samples were counted. The background did not
contain high	*

I FIDOS

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.1 and QAPP

Initial efficiency calibration must be demonstrated on each detector for each geometry. Initial energy calibration must be demonstrated on each detector for each geometry. Resolution (FWHM) must be demonstrated for each detector for each geometry.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.2 and QAPP

Continuing calibration efficiency verification must be performed for each detector at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed monthly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value
Delta Value: 6.3%	898.04 keV	Detector 1	Delta Value: < 5%		
Delta Value: 5.3%	159.00 keV	Detector 2	Delta Value: < 5%		
Delta Value: 7.9%	898.04 keV	Detector 2	Delta Value: < 5%		
Delta Value: 18.8%	136.47 keV	Detector 3	Delta Value: < 5%		
Delta Value: 6.5%	159.00 keV	Detector 5	Delta Value: < 5%		
Delta Value: 5.3%	513.99 keV	Detector 2	Delta Value: < 5%		
Delta Value: -9.4%	661.66 keV	Detector 2	Delta Value: < 5%		
Delta Value: -6.5%	136.47 keV	Detector 4	Delta Value: < 5%		
Delta Value: -16.4%	136.47 keV	Detector 5	Delta Value: < 5%		

Actions: see CENWK 4.3.1.1 and QAPP

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks: Daily source checks were performed for each detector. Co-60 energies were over 1.0 keV

of known energies for Detector 4 on 10/26/2021. All other energies were within the 1.0 keV limit. The

FWHM was greater than 3.0 keV for several energies with confirmed isotopes.

A long monthly back ground was performed. No high results were noted.

There was no mention of a Peak-to-Compton Ratio Calibration being performed.

Samples counted on detectors with high delta values and/or 95% CL (1.96 σ) greater than 8% were qualified as "X. The daily source check failed high on detector 1 (12.2%).

Page 7 of 21

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis

see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide.

Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

Deviations: SDG samples not selected for analysis.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value
_					

Actions:	see CENWK 4.3.1	4 and OAPP			
			rmation is not soo	antabla	
	•		rmation is not acce	еріавіе,	
	qualify all affected		` '		
2. If the continuing		•	•	ole,	
	qualify all affected		. ,		
3. If background c	ounts are not acce	ptable, qualify the	affected data as es	stimated (J).	
Damanlan					
Remarks:					

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

see CENWK 4.3.1.3.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters

see CENWK 4.3.1.3.1 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations: SDG samples not selected for analysis.

	ÎS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions: see CENWK 4.3.1.3 and QAPP

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:			

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

see CENWK 4.2.1 and QAPP

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted. If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory		lpha: MB R37154 amma: MB R3722	13-1 & MB R3720206-1	
Date	Lab ID #	Radionulcide	Result and Error	MDA Result and Error
1 <u>0/11/2021</u>	MB R3715413-1	<u>U-238</u>	0.147 pCi/g & 0.124 pCi/g	0.157 pCi/g & 0.124 pCi/g
	The Blank result sub	otracted from its u	ncertainty was less than the	MDA. No DVQ.
10/26/2021	MB R3722645-1	Ac-228	0.168 pCi/g & 0.151 pCi/g	0.376 pCi/g & 0.151 pCi/g
	The Blank result sul	otracted from its u	ncertainty was less than the	MDA. No DVQ.
10/26/2021	MB R3722645-1	Th-234	1.01 pCi/g & 0.582 pCi/g	1.06 pCi/g & 0.582 pCi/g
	The Blank result su	btracted from its u	ncertainty was less than the	e MDA. No DVQ.
Associated	d Project Blanks (e.g.	, equipment rins	ates, etc.)	
Date	Lab ID #	Radionuclide	Result and Error	MDA Result and Error
Remarks:	All blook regults was	ra lass than the M	OA. All alpha Zblk results	y wore loss than 2
	e no project blanks asso			s were less man 5.
There were	e no project dianks asso	ociated with this 51	DG.	
_				

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

see CENWK 4.2.1 and QAPP

Calculate action levels based on 10X the highest blank concentration. see CENWK 4.2.1.3 and QAPP

Deviations: No detects found.

	Max. Activity	Action Level	Samples Affected
Radionuclide	Detected		•

Actions: see CENWK 4.2.1 and QAPP

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

Example:	Blank Result	<u>Uncert.</u> `	MDA or	Normalized absolute difference	Qualification
acceptable	0.3	0.45	0.5	>2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
- 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:			

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

see CENWK 4.1.2 and QAPP

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

Deviations: None

Deviations: None				
Radionuclide	Sample ID	%R	Action Taken	

Actions:	see CENWK 4.1.2 and QAPP
----------	--------------------------

- 1. If recovery is between 30-110%, no qualification is necessary.
- 2. If recovery is between 20 10-30%, qualify the data as estimated (J).
- 3. If recovery is between 110-120150%, qualify the data as estimated (J).
- 4. If recovery is less than 20 10%, qualify the data as rejected (R).
- 5. If recovery if greater than 120 150%, qualify the data as rejected (R).

outside lab limits but within 20-120%: J if corrective actions taken, otherwise R

Remarks:	All tracer recoveries were within project QC limits. No standard
	rovided.
•	

Page 12 of 21

Radiochemical Data Review Checklist

VIII. Laboratory Control Sample Information see CENWK 4.2.2 and QAPP

General LCS Criteria: percent recovery (%R)

7 (1)				
aqueous	solid			
80-120	70-130			
	75-125			

Gamma, GPC, KPA: 80-120

Laboratory LCS Identifications:

Alpha: LCS R3715413-2 & LCS R3720206-2

Gamma: LCS R3722645-2 & LCSD R3722645-4

Deviations:

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
Uranium-234	10/18/21	72.7%	SB-04-0102, U-234 qualified "J".
			SB-04-0406. U-234 qualified "J".
			SS-02-0835. U-234 qualified "J".
			SB-02-0501. U-234 qualified "J".
			SB-02-0102. U-234 qualified "J".
			SB-DUP-02. U-234 qualified "J".

Actions:	SOO CENIMK	4.2.2 and OAPP

 Alpha (Aqueous)
 <50%</th>
 50-79%
 121-150%
 >150%

 and Gamma, GPC, KPA
 R
 J
 J
 R

 <50%</td>
 50-74%
 126-150%
 >150%

 Alpha (Solid)
 <40%</td>
 40-69%
 131-160%
 >160%

 R
 J
 J
 R

Remarks:	The LCS recovery results not listed above were within project QC limits.				

Page 13 of 21

Radiochemical Data Review Checklist

IX. Matrix Spike Information

General MS Criteria:	Aqueous	Solid	see CENWK 4.2.3 and QAPP
percent recovery (%R)	50-120	40-130	

Project Sample(s) Spiked: SS-04-0926

MS R3715413-3 & MSD R3715413-4

Deviations: None

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied

Actions:	see CENWK 4.2.3 and 0	QAPP		
Aqueous	<u><20%</u> <u>2</u>	0-49%	121-160%	>160% >150%
	R	J	J	use professional judgement R
all samples in batch	*see CENWK	(4.2.3 a	nd QAPP*	
Solid	<u><10%</u> <u>1</u>	0-39%	<u>131-160%</u>	>160% >150%
	R	J	J	use professional judgement R
Remarks:	All Matrix Spike reco	very re	sults were	within project QC limits.
	2	-		<u> </u>
		•		

Page 14 of 21

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis

see CENWK 4.2.4, 4.2.5 and QAPP

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER).

Duplicate actions should apply to all samples associated with the duplicate pair.

Duplicate Sample Identification: Alpha: DUP R3715413-5, MSD R3715413-4, DUP R3720206-5 & MSD R3720206-

Gamma: DUP R3722645-3 & LCSD R3722645-4

Project DUP: SB-DUP-02

Deviations:

				Samples Affected
Radionuclide	DER	RPD	RER	
U-235 (DUP R3715413-5)		46.93%	1.464	NAD less than 3. No qualification needed.
U-235 (DUP R3720206-5)		129.24%	2.530	NAD less than 3. No qualification needed.
Ac-228 (DUP R3722645-3)		38.06%	1.09	NAD less than 3. No qualification needed.
K-40 (DUP R3722645-3)		25.30%	1.682	NAD less than 3. No qualification needed.
Th-234 (DUP R3722645-3)		97.83%	1.131	NAD less than 3. No qualification needed.

Actions:

see CENWK 4.2.4 (lab dup) 4.2.5 (field dup) and QAPP

- 1. If both sample and duplicate activities are within 2X the MDA comparison is acceptable.
- 2. If the DER is greater than 1.00, qualify the data as estimated (J).
- 3. If the RPD is greater than 50% qualify the data as estimated (J).
- 4. If one sample is <MDA and the other sample is >2X the MDA, qualify the data as estimated (J).

The duplicate results not listed above had RPD% value less than 20%.				
sults were within project requirements. Please see calculation sheets.				

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

see CENWK 4.1.8, 4.1.9.2 and QAPP

Each alpha isotopic peak should be clear and free of interference from other energy peaks. Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Deviations:

Radionuclide	Deficiency	Samples Affected
U-234	Some tailing	MSD R3715413-4
U-235	Some tailing	MSD R3715413-4
U-238	Some tailing	MSD R3715413-4
U-232	Outside of 40 key of theoretical	SB-02-0501. No DVQ on tracer.

Actions:	see CENWK 4.1.8, 4.1.9.2 and QAPP
----------	-----------------------------------

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

There were no overlapping or interferent peaks. All SDG sample had
All radionuclides of interest were within 40 keV from their theoretical energies.

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density

see CENWK 4.1.9. 4.1.7 and QAPP

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations: Please see below.

Radionuclide	Deficiency	Samples Affected

Actions:

see CENWK 4.1.9, 4.1.7 and QAPP

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 5. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks: Each target radionuclide peaks were within 2 keV of the observed standard peak. However,
the peak search parameters were set at 3 keV instead of 2 keV. All radionuclides of interest were
identified.
There were no interferent or overlapping peaks.

LFIDOS

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy) Sample Aliquot Representativeness

Each sample tentatively identified radionuclide energy must be within 2 keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra.

All peaks greater than 3X the background standard deviation must be identified and quantified.

The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with

related radionuclides (e.g., parent daughter relationships).

Results from different but comparable analytical techniques from different sub-sample aliquots of the same sample shall be compared for consistency.

Deviations:

Deficiency	Samples Affected
Alpha and gamma results not comparable	SS-04-0926. DVQ: "J"
Alpha and gamma results not comparable	SB-02-0501. DVQ: "J"
	Alpha and gamma results not comparable

Actions:

- 1. Qualify all tentatively identified radionuclides as estimated (J).
- 2. If the energy of the tentatively identified radionuclide peak is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 3. If the reviewer judges anything regarding the identifeation of the tentatively identified radilnuclide, as suspect, qualify the data as

If the results do not agree within the reported uncertainty of measurement, results shall be qualified

	as "J" or "R", depending on the magnitude of the uncertainty.
Remarks:	
Please see calculation	n sheet
Ticase see calculation	ii sheet.

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

see CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Deviations:

Actions:

Radionuclide/Method	Deficiency	Samples Affected
U-234	Some tailing	MSD R3715413-4
U-238	Some tailing	MSD R3715413-4

1. Based on the	Based on the instrument performance indicators, the data reviewer must use professional judgement of qualify the data.	
Remarks:	All background levels were low. There were no known energy shifts or extraneous peaks.	

see CENWK and QAPP

LEIDOS Page 19 of 21

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Calculation Check: Plea Radionuclide:	Method:	
	I .	
_		
demarks:		
alculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
calculation Check: adionuclide:	Method:	
alculation Check:	Method:	

Page 20 of 21 LEIDOS

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data

Radionuclide:	e see calculation sheets. Method:	
emarks <u>:</u>		
alculation Check:	Method:	
calculation Check: adionuclide:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

Remarks:	Data qualified using parameters and guidance from the QAPP, CENWK, and QSM 5.1.
	-

ompany Name/Address:			Billing Inform	nation:					Analysis /	Containe	r / Preserv	ative			Chain of Custody	Page of
Geo Consultants - Kevil	, KY		Accounts 325 Kentu	7.		Pres Chk									Pac	e Analytica
25 Kentucky Ave Kevil, KY 42053			Kevil, KY	12053			S									
eport to: David Lindsey			Email To: lin	ail To: lindseyd@geoconsultantscorp.com			loPre						A STATE OF THE PARTY OF THE PAR		Pace Terms and Conditi	this chain of custody ment and acceptance o ions found at:
Project Description:		City/State			Please Cir		E-N				3				https://info.pacelabs.co terms.pdf	om/hubfs/pas-standard
Staten Isl Warehouse, Port Richmond			taken Isl	Lab Project #	PT MT CT	EI	IDP				-		1		SDG# LH	LOSAU
hone: 270-462-3882	Client Project	#		Lab Project #		42	U-ISO 16ozHDPE-NoPres					-			B2	25
ollected by (print): David Lindsun	Site/Facility ID	#	P.O. #		P.O.#		N-ISO								Acctnum: GEO	
Collected by (signature):	Same Da	y 5 Day	Day (Rad Only)	Quote # Date Result	ts Needed	No	GSPEC-NORM21,								Prelogin: P87 PM: 732 - Don	3895
mmediately Packed on Ice N / Y	Two Day		ay (Rad Only)			No. of	-U		10 10					1000	PB: Shipped Via: F	edEX Grou
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	GSPE								Remarks	Sample # (lab
55-11-1100	V	SCM	3-4'	9-23-21	1100	1	X					The second of th		7,23977		-01
58-11-0405	V	SCM	4-5'	9-23-21	1105	1	X								N. F	-07
SB-11-0506	V	SCM	5-6	9-23-21	1110	1	X					-5.7		27.6	e country in the	-03
55-12-1115	- V	SCM	2-3	9-23-21	1115	1	X				1					-04
58-12-0304		SCM	3-4	9-23-21	1/20		X		5/2							-05
58-12-0506	V	SCM	_	9-23-21	The second second second	1	X		7-	1			7		1	-01
55-14-1205	V	SCM	1.5-2	9-23-21	1205	1	X								-	-0
SB-14-2540	V	SCM	2.5-4	9-23-21	1216	1	X			-	7	- T			1 1 1 1 1 1 1	1-08
53-14-0608	V	SCM	6-8	923-21		1	X									-00
SB-DUP-11	4D	SCM	4-5	7/23/21	1105	1	X		100	13				2000	la Bassist Cl	1 - 10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:no ice					pH Flov		Temp Other		Sample Receipt Checklist COC Seal Present/Intact: Y COC Signed/Accurate: Bottles arrive intact: Correct bottles used:						
DW - Drinking Water OT - Other Samples returned via:UPSFedExCou				Track	sing#								VOA Ze	ero He	volume sent: <u>If Applicab</u> eadspace: on Correct/Ch	ole Y
Relinquished by : (Signature) Date: 9-27-21 143				ived by: (Signa	ture)					TBR	/ MeoH	RAD So	creen	<0.5 mR/hr:		
Relinquished by : (Signature)					ived by: (Signa	ture)		**				If preservation required by Login: Date/Time				
Relinquished by : (Signature)	D	ate:	Time	Rece	ived for lab by	(Signa	ture)		Date: 9/2	9/1	Time:	015	Hold:			NCF / C

L1410504

Collected date/time: 09/23/21 11:00

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	0.784	J	0.241	0.177	10/18/2021 16:50	WG1754721
URANIUM-235	0.0912	₹	0.0887	0.106	10/18/2021 16:50	WG1754721
URANIUM-238	0.800		0.235	0.148	10/18/2021 16:50	WG1754721
(T) URANIUM-232	56.0			30.0-110	10/18/2021 16:50	WG1754721

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/g		+ / -	pCi/g	date / time		
Actinium-228 (Ra-228)	0.812	X	0.273	0.511	11/02/2021 11:25	WG1756382	
Bismuth-212	1.18	± X	0.893	1.54	11/02/2021 11:25	WG1756382	
Bismuth-214 (Ra-226)	0.599	X	0.188	0.279	11/02/2021 11:25	WG1756382	
Lead-212	0.805	X	0.177	0.241	11/02/2021 11:25	WG1756382	
Lead-214	0.651	X	0.156	0.239	11/02/2021 11:25	WG1756382	
Potassium-40	10.8	X	1.95	1.52	11/02/2021 11:25	WG1756382	
Thallium-208	0.228	X	0.0902	0.143	11/02/2021 11:25	WG1756382	
Uranium-235	0.115	₹X	0.0782	0.139	11/02/2021 11:25	WG1756382	
Thorium-234 (U-238)	0.694	(U) X	1.08	2.28	11/02/2021 11:25	WG1756382	

L1410504

Collected date/time: 09/23/21 11:05 Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/g		+ / -	pCi/g	date / time		
URANIUM-234	1.46	J	0.250	0.127	10/18/2021 16:50	WG1754721	
URANIUM-235	0.0359	<u></u> J (U)	0.0562	0.0821	10/18/2021 16:50	WG1754721	
URANIUM-238	1.80	Ī	0.270	0.104	10/18/2021 16:50	WG1754721	
(T) URANIUM-232	84.9	•		30.0-110	10/18/2021 16:50	WG1754721	

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	2.02	X	0.265	0.325	11/02/2021 11:04	WG1756382
Bismuth-212	2.15	X	0.794	1.23	11/02/2021 11:04	WG1756382
Bismuth-214 (Ra-226)	1.90	X	0.211	0.18	11/02/2021 11:04	WG1756382
Lead-212	1.92	X	0.197	0.179	11/02/2021 11:04	WG1756382
Lead-214	1.91	X	0.200	0.191	11/02/2021 11:04	WG1756382
Potassium-40	10.6	X	1.37	1.08	11/02/2021 11:04	WG1756382
Thallium-208	0.699	X	0.0933	0.089	11/02/2021 11:04	WG1756382
Uranium-235	0.187	X(J)	0.0762	0.129	11/02/2021 11:04	WG1756382
Thorium-234 (U-238)	-1.46	(\cup) X I	1.47	3.28	11/02/2021 11:04	WG1756382

L1410504

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 11:10

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.02	J	0.236	0.171	10/18/2021 16:50	WG1754721
URANIUM-235	0.0294	<u>(U)</u> J	0.0742	0.117	10/18/2021 16:50	WG1754721
URANIUM-238	1.06		0.232	0.143	10/18/2021 16:50	WG1754721
(T) URANIUM-232	77.9			30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.38	X	0.346	0.515	11/02/2021 12:29	WG1756382
Bismuth-212	1.16	<u></u> X	1.08	1.93	11/02/2021 12:29	WG1756382
Bismuth-214 (Ra-226)	1.08	X	0.246	0.303	11/02/2021 12:29	WG1756382
Lead-212	1.40	X	0.225	0.258	11/02/2021 12:29	WG1756382
Lead-214	1.20	X	0.204	0.239	11/02/2021 12:29	WG1756382
Potassium-40	13.0	X	2.26	1.86	11/02/2021 12:29	WG1756382
Thallium-208	0.352	X	0.110	0.163	11/02/2021 12:29	WG1756382
Uranium-235	0.241	X(J)	0.0894	0.144	11/02/2021 12:29	WG1756382
Thorium-234 (U-238)	1.12	(U) X	1.27	2.64	11/02/2021 12:29	WG1756382

L1410504

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 11:15

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	0.939	J	0.210	0.151	10/18/2021 16:50	WG1754721
URANIUM-235	0.00489	<u>(U)</u> J	0.0575	0.0998	10/18/2021 16:50	WG1754721
URANIUM-238	0.988		0.198	0.0904	10/18/2021 16:50	WG1754721
(T) URANIUM-232	82.7			30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.985	X	0.288	0.402	11/02/2021 11:20	WG1756382
Bismuth-212	1.55	<u></u> X	1.15	2.08	11/02/2021 11:20	WG1756382
Bismuth-214 (Ra-226)	1.24	X	0.255	0.304	11/02/2021 11:20	WG1756382
Lead-212	1.44	X	0.195	0.167	11/02/2021 11:20	WG1756382
Lead-214	1.28	X	0.200	0.256	11/02/2021 11:20	WG1756382
Potassium-40	10.5	X	2.07	1.69	11/02/2021 11:20	WG1756382
Thallium-208	0.460	X	0.106	0.11	11/02/2021 11:20	WG1756382
Uranium-235	0.223	X(J)	0.0669	0.0971	11/02/2021 11:20	WG1756382
Thorium-234 (U-238)	1.04	$\frac{1}{2}$ $X(U)$	0.700	1.58	11/02/2021 11:20	WG1756382

L1410504

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 11:20

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.35	J	0.309	0.268	10/18/2021 16:50	WG1754721
URANIUM-235	0.0941	₹	0.0839	0.1	10/18/2021 16:50	WG1754721
URANIUM-238	1.43		0.278	0.163	10/18/2021 16:50	WG1754721
(T) URANIUM-232	60.7			30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.854	X	0.307	0.512	11/02/2021 11:23	WG1756382
Bismuth-212	1.35	±X	1.04	1.77	11/02/2021 11:23	WG1756382
Bismuth-214 (Ra-226)	3.39	X	0.462	0.26	11/02/2021 11:23	WG1756382
Lead-212	0.942	X	0.216	0.283	11/02/2021 11:23	WG1756382
Lead-214	3.34	X	0.437	0.303	11/02/2021 11:23	WG1756382
Potassium-40	8.80	X	1.92	1.68	11/02/2021 11:23	WG1756382
Thallium-208	0.163	X	0.0978	0.155	11/02/2021 11:23	WG1756382
Uranium-235	0.278	X	0.129	0.214	11/02/2021 11:23	WG1756382
Thorium-234 (U-238)	-0.236	<u>(∪)</u> X	1.43	3.17	11/02/2021 11:23	WG1756382

L1410504

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 11:25

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/g		+ / -	pCi/g	date / time		
URANIUM-234	1.20	J	0.239	0.198	10/18/2021 16:50	WG1754721	
URANIUM-235	0.0383	<u>U</u>	0.0842	0.124	10/18/2021 16:50	WG1754721	
URANIUM-238	1.69		0.249	0.129	10/18/2021 16:50	WG1754721	
(T) URANIUM-232	77.0			30.0-110	10/18/2021 16:50	WG1754721	

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.56	X	0.362	0.515	11/02/2021 11:21	WG1756382
Bismuth-212	1.13	U X	1.20	2.33	11/02/2021 11:21	WG1756382
Bismuth-214 (Ra-226)	1.76	X	0.285	0.31	11/02/2021 11:21	WG1756382
Lead-212	1.82	X	0.277	0.258	11/02/2021 11:21	WG1756382
Lead-214	1.64	X	0.269	0.299	11/02/2021 11:21	WG1756382
Potassium-40	11.3	X	2.05	1.83	11/02/2021 11:21	WG1756382
Thallium-208	0.605	X	0.134	0.166	11/02/2021 11:21	WG1756382
Uranium-235	0.196	<u>(∪)</u> X	0.0984	0.913	11/02/2021 11:21	WG1756382
Thorium-234 (U-238)	1.04	<u>(∪)</u> X	1.63	3.45	11/02/2021 11:21	WG1756382

L1410

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 12:05

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	0.324	J	0.119	0.121	10/18/2021 16:50	WG1754721
URANIUM-235	0.00191	<u>(U)</u> J	0.0224	0.0436	10/18/2021 16:50	WG1754721
URANIUM-238	0.258	J	0.0960	0.0871	10/18/2021 16:50	WG1754721
(T) URANIUM-232	118	<u>C1</u>		30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.462	<u></u> X	0.219	0.465	11/02/2021 14:22	WG1756382
Bismuth-212	0.551	<u>⊎</u> X	0.795	1.52	11/02/2021 14:22	WG1756382
Bismuth-214 (Ra-226)	0.502	X	0.157	0.228	11/02/2021 14:22	WG1756382
Lead-212	0.682	X	0.140	0.177	11/02/2021 14:22	WG1756382
Lead-214	0.556	X	0.132	0.197	11/02/2021 14:22	WG1756382
Potassium-40	11.1	X	1.82	1.45	11/02/2021 14:22	WG1756382
Thallium-208	0.145	X	0.0717	0.123	11/02/2021 14:22	WG1756382
Uranium-235	0.0667	₹ X	0.0620	0.115	11/02/2021 14:22	WG1756382
Thorium-234 (U-238)	-0.230	<u>(∪)</u> X	0.823	1.97	11/02/2021 14:22	WG1756382

L1410504

Collected date/time: 09/23/21 12:10

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.99	J	0.430	0.248	10/19/2021 11:26	WG1754721
URANIUM-235	0.176	Ī	0.105	0.0918	10/19/2021 11:26	WG1754721
URANIUM-238	3.10	J	0.414	0.142	10/19/2021 11:26	WG1754721
(T) URANIUM-232	55.9			30.0-110	10/19/2021 11:26	WG1754721

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.34	X	0.299	0.397	11/02/2021 12:25	WG1756382
Bismuth-212	0.354	⊎X	0.948	1.92	11/02/2021 12:25	WG1756382
Bismuth-214 (Ra-226)	2.35	X	0.315	0.23	11/02/2021 12:25	WG1756382
Lead-212	1.29	X	0.182	0.164	11/02/2021 12:25	WG1756382
Lead-214	2.44	X	0.288	0.251	11/02/2021 12:25	WG1756382
Potassium-40	9.61	X	1.83	1.33	11/02/2021 12:25	WG1756382
Thallium-208	0.419	X	0.104	0.132	11/02/2021 12:25	WG1756382
Uranium-235	0.266	X	0.0767	0.115	11/02/2021 12:25	WG1756382
Thorium-234 (U-238)	1.57	ر X(U), ل	0.812	1.59	11/02/2021 12:25	WG1756382

Collected date/time: 09/23/21 12:15

L1410504

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.08	J	0.311	0.204	10/18/2021 16:50	WG1754721
URANIUM-235	0.114	J	0.0986	0.124	10/18/2021 16:50	WG1754721
URANIUM-238	2.27	J	0.303	0.13	10/18/2021 16:50	WG1754721
(T) URANIUM-232	73.8			30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	<u>Qualifier</u>	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	2.73	X	0.317	0.333	11/02/2021 12:26	WG1756382
Bismuth-212	3.73	X	0.937	1.21	11/02/2021 12:26	WG1756382
Bismuth-214 (Ra-226)	2.44	X	0.255	0.206	11/02/2021 12:26	WG1756382
Lead-212	3.05	X	0.275	0.201	11/02/2021 12:26	WG1756382
Lead-214	2.83	X	0.267	0.216	11/02/2021 12:26	WG1756382
Potassium-40	9.98	X	1.42	1.33	11/02/2021 12:26	WG1756382
Thallium-208	0.933	X	0.116	0.11	11/02/2021 12:26	WG1756382
Uranium-235	0.322	X(J)	0.0934	0.151	11/02/2021 12:26	WG1756382
Thorium-234 (U-238)	-3.93	(U) X I	2.24	3.99	11/02/2021 12:26	WG1756382

L1410504

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 11:05

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.01	J	0.293	0.141	10/18/2021 16:50	WG1754721
URANIUM-235	0.128	J	0.0824	0.0826	10/18/2021 16:50	WG1754721
URANIUM-238	2.09	_	0.290	0.0943	10/18/2021 16:50	WG1754721
(T) URANIUM-232	83.6			30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	5.04	X	0.773	0.722	11/02/2021 14:35	WG1756382
Bismuth-212	4.96	X	2.31	3.85	11/02/2021 14:35	WG1756382
Bismuth-214 (Ra-226)	3.80	X	0.549	0.451	11/02/2021 14:35	WG1756382
Lead-212	4.71	X	0.534	0.331	11/02/2021 14:35	WG1756382
Lead-214	4.31	X	0.528	0.397	11/02/2021 14:35	WG1756382
Potassium-40	19.7	X	3.45	2.35	11/02/2021 14:35	WG1756382
Thallium-208	1.62	X	0.263	0.229	11/02/2021 14:35	WG1756382
Uranium-235	0.608	X(J)	0.157	0.226	11/02/2021 14:35	WG1756382
Thorium-234 (U-238)	2.29	± X(Ú)	1.60	3.31	11/02/2021 14:35	WG1756382

Leidos Radiological Analytical Data Validation

Event Name: Staten Island Warehouse FUSRAP Site

SDG Number: L1410504 Laboratory: Pace Analytical

Analysis: Gamma Spec/Iso U (soil)

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 3 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. The requested analyses include: ^{234/235/238}U by alpha spectrometry (Method D3972 U-02); ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ²³⁴Th, ²²⁸Ac, ⁴⁰K, and ²³⁵U by gamma spectrometry (Method DOE Ga-01-R/901.1 (21 day)). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Case Narrative

Analytical Holding Times and Preservation Minim Method Calibration/Calibration Verification Report

Method Blanks

Background Checks

Analytical Tracer Recoveries

MS/MSD Recoveries and Differences LCS/LCSD Recoveries and Differences

Laboratory Duplicates/Replicates

Re-analysis and Secondary Dilution Minimum Detectable Activities (MDAs)

Reporting Levels

Chemical/Spectroscopic Separation Specificity (alpha spectroscopy) Project Duplicates and Splits Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

Data Intercomparison

Definition of Data Validation Qualifiers:

"U" - Indicates a normal, non-detected (< critical value) result.

"J" - Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable depending upon the intended use of the data and reason for data rejection.

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September, 2021.

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District, September 2017.

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February, 2018.

Sample Name Cross-Reference

Project Sample Name	Matrix	Lab Sample Name
SS-11-1100	Soil	L1410504-01
SB-11-0405	Soil	L1410504-02
SB-11-0506	Soil	L1410504-03
SS-12-1115	Soil	L1410504-04
SB-12-0304	Soil	L1410504-05
SB-12-0506	Soil	L1410504-06
SS-14-1205	Soil	L1410504-07
SB-14-2540	Soil	L1410504-08
SB-14-0608	Soil	L1410504-09
SB-DUP-11	Soil	L1410504-10

Validation Report By:	Amanda Leigh Dick	03/05/2022	
	(print)	Date	
	Amanda Leigh Dick		
	(sign)	-	
Peer Reviewed By:	Thomas L. Rucker	03/10/22	
	(print)	Date	
	72 Rucker		
	(sign)	-	

1.0 GAMMA SPECTROMETRY ANALYSIS

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

For gamma spectrometry, the CENWK states that if the efficiency calibration delta values (difference between the measured and the calibration curve efficiency) are greater than 5% for any one radionuclide, the calibration shall be deemed unusable. The QAPP further states that the 95% CL of fitted function over range shall be \leq 8%. The following gamma spectrometer detectors/geometries had one or more radionuclides with delta values greater than 5% and or a 95% CL (1.96 σ) greater than 8%:

Initial Calibration

Detector	Geometry	# Energy Peaks	Delta %	# Energy Peaks	95% CL	SDG Samples Affected	Qualifier
1	C6	1	6.3			SS-12-1115, SB-14-2540	X
2	C6	3	-9.4- 7.9			SB-11-0405, SB-14-0608	X
3	C6	1	18.8	8	8.4 – 10.6	SB-12-0506	X
5	C6	2	-16.4- 6.5	9	8.8 – 14.7	SB-12-0304	X
4	Р3	1	18.3	1	8.8	SS-11-1100, SB-11-0506, SS-14-1205	X
10	Р3	1	22.4	2	8.2- 8.3	SB-DUP-11	X

Based on the CENWK any samples counted on detector with Delta% greater than 5% should be qualified as unusable (X). However, this parameter was not listed in the QAPP. The QAPP parameter, 95% CL of the fitted curve, does not have guidance on how to qualify results outside its limits. It is likely that both of these parameter deficiencies are due to the calibration being performed with less than the minimum 10,000 net counts in each peak in at least six calibration peaks that bracket the range of use as is specified in the DoD Quality Systems Manuel (QSM). The raw counts for the calibration were not provided, but this is evidenced by the uncertainty reported for the peaks. This means there is greater than normal uncertainty in the results due to an uncertain bias from calibration. The samples counted on theses detectors/geometries have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data

Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Continuing Calibration

For gamma spectrometry, the CENWK states that if the activity of each radioisotope in the calibration standard is not within 10% relative of the true, decay corrected activity, the calibration shall be deemed unusable. The QAPP also sets a limit of 10% relative to the true value. The following detector/geometry has one quantified peak outside of the 10% limit for the calibration verification check source:

Continuing Calibration Check

Detector	Geometry	# Energy Peaks	% Difference	SDG Samples Affected	Qualifier
3	C6	1	25.5	SS-12-1115, SB-14-2540	X

Based on the CENWK any samples counted on detector with check source value of greater than 10% should be qualified as unusable (X). It is likely that this parameter's deficiencies are due to the calibration verification being performed with less than the minimum 10,000 net counts in each peak as is specified in the CENWK as the raw net counts for all peaks were less than the 10,000 net counts for all peaks and all detectors. This means there is greater than normal uncertainty in the results due to an uncertain bias from the calibration verification. These samples have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The following samples did not meet the RDL project goal of <1 pCi/g: SS-11-1100, SB-11-0405, SB-11-0506, SS-12-1115, SB-12-0304, SB-12-0506, SS-14-1205, SB-14-2540, SB-14-0608, and SB-DUP-11. Please see table below.

Samples That Did Not Meet The RDL

Sample ID	Analyte	CSU (pCi/g)	3.5*CSU	RDL (pCi/g)
SS-11-1100	Th-234	0.5375	1.88125	1
SB-11-0405	Th-234	0.734	2.569	1
SB-11-0506	Th-234	0.633	2.2155	1
SS-12-1115	Th-234	0.34975	1.224125	1
SB-12-0304	Th-234	0.714	2.499	1
SB-12-0506	Th-234	0.816	2.856	1
SS-14-1205	Th-234	0.41125	1.439375	1
SB-14-2540	Th-234	0.40585	1.420475	1
SB-14-0608	Th-234	1.1215	3.92525	1
SB-DUP-11	Th-234	0.799	2.7965	1

The following samples had results greater that the project action limit: SB-12-0304 Ra-226 (3.39 pCi/g), SB-14-2540 Ra-226 (2.35 pCi/g), SB-14-0608 Ra-226 (2.44 pCi/g), SB-DUP-11 Ra-226 (3.80 pCi/g), SB-DUP-11 K-40 (19.7 pCi/g).

No sample results exhibited excess uncertainty.

The following sample had a negative result with an uncertainty smaller than its absolute value. The CENWK states these results need to be rejected. However, since these results are likely being influenced by a slight negative bias and may still be useful, professional judgment was used to qualify results. SB-14-0608: Th-234.

It is recommended that sample concentrations less than the L_c be qualified as non-detect (U) as follows: SS-11-1100: Th-234, SB-11-0405: Th-234, SB-11-0506: Th-234, SS-12-1115: Th-234, SB-12-0304: Th-234, SB-12-0506: U-235 and Th-234, SS-14-1205: Th-234, SB-14-2540: Th-234, SB-14-0608: Th-234, and SB-DUP-11: Th-234.

Method Blank

Thorium-234 was detected in the Method Blank for the gamma spectrometry analysis. It is recommended that sample results less than 5x the blank value be qualified as non-detect (U) as follows: SS-11-1100, SB-11-0405, SB-11-0506, SS-12-1115, SB-12-0304, SB-12-0506, SS-14-1205, SB-14-2540, SB-14-0608, and SB-DUP-11.

<u>Laboratory Control Sample</u>:

The percent recoveries for the laboratory control samples (LCSs) were within acceptable limits.

Duplicate Analysis:

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: $S = D = U_S = U_S$ Parent Sample Result

Field Split/Duplicate Parent Sample Result

Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the gamma spectrometry analysis have RPDs and NADs (DERs) with acceptable limits (<3).

All field duplicate results were within a factor of 4 from the original result.

Identification and Quantification:

The following target radionuclides: 228 Ac, 226 Ra, 40 K, 234 Th, and 235 U in the samples were reported. The energies of the radionuclides were less than 2 keV from their theoretical energies.

The laboratory used a peak search sensitivity factor of 3. When the peak search sensitivity factor is set at a value greater than 2.3, the peak search report will not report peaks as low as the MDA. Therefore, there is a greater than 5% chance that concentrations greater than the reported MDA will not appear in the peak search. However, the List Isotope Activities report calculates the net activities for the target analytes and this list has been use to report all target analyte activities. Therefore, the only impact is that small but detected non-target analytes may not have been reported.

2.0 ALPHA SPECTROMETRY

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

The initial calibration met project acceptance criteria.

Continuing Calibration

The continuing calibration met project acceptance criteria.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The project RDL goal of <0.5 pCi/g was met for all radionuclides of interest.

No sample results were seen above the project action limits.

No sample results exhibited excess uncertainty.

The sample-specific critical level (L_c) was calculated as 1.65 times the sample uncertainty. It is recommended that sample concentrations less than the L_c are qualified as non-detect (U) as follows: SB-11-0405, SB-11-0506, SS-12-1115, SB-12-0506, and SS-14-1205. Please see table below.

Sample-specific Critical Level (LC)

Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	LC (pCi/g)	Qualifier
SB-11-0405	U-235	0.0359	0.022	0.0363	U
SB-11-0506	U-235	0.0294	0.025	0.04125	U
SS-12-1115	U-235	0.00489	0.019	0.03135	U
SB-12-0506	U-235	0.0383	0.027	0.04455	U
SS-14-1205	U-235	0.00191	0.012	0.0198	U

Matrix Spike

A non-SDG sample was used as a matrix spike. The percent recoveries were within acceptable limits.

Method Blank

There was no indication of blank contamination in the Method Blank.

Laboratory Control Sample:

The Uranium-234 percent recovery for LCS R3720206-2 was below the lower acceptable limit (75%-125%). All alpha Uranium-234 results associated with this LCS are recommended to be qualified as estimated (J): SS-11-1100, SB-11-0405, SB-11-0506, SS-12-1115, SB-12-0304, SB-12-0506, SS-14-1205, SB-14-2540, SB-14-0608, and SB-DUP-11. Please see table below.

Radiochemistry - LCS % Recovery Calculation

Sample ID	Analyte	Found Value (pCi/g)	True Value (pCi/g)	LCS (% Recovery)
(LCS) R3720206-2	U-234	3.48	4.78	72.70%

Duplicate Analysis:

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) *100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = Parent Sample Result

D =Field Split/Duplicate Parent Sample Result

 $U_S =$ Parent Sample CSU (1 sigma)

 U_D = Field Split/Duplicate Parent Sample CSU (1siman)

The RPDs and NADs (DERs) are within acceptable limits for the duplicate analyses for all alpha spectrometry analyses.

All field duplicate results were within a factor of 4 from the original result. Please see table below.

Sample-Specific Chemical Recovery:

The tracer recovery was greater than the upper project limit requirement (30%-110%) for the following sample: SS-14-1205 (118.3%). It is recommended that all radionuclide results for that sample be qualified as estimated (J).

Spectral Analysis:

No spectral interferences were observed in all of the alpha spectrometry analyses. There was a small amount of background noise, but nothing that would interfere with sample results. All detected radionuclide peaks of interest were within 40keV from their theoretical energies. However, the Uranium-232 peak energy was outside its theoretical energy for sample SS-12-1115.

Quantification:

No quantification issues were observed.

3.0 DATA INTERCOMPARISON

U Alpha to U Gamma:

In comparing the uranium results from alpha spectrometry analysis to the uranium results from gamma spectrometry, several samples were not in agreement. The following sample results are recommended to be qualified as estimated (J) due to incomparable results:

SDG #: L1410504								
		Alp	ha	Gar	nma			
Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	Result (pCi/g)	CSU (pCi/g)	RPD%	DER	Qualifier
SB-11-0405	U-238	1.8	0.135	-1.46	0.735	1917.65%	4.362	J
SB-14-2540	U-238	3.1	0.207	1.57	0.406	65.52%	3.357	J
SB-14-0608	U-238	2.27	0.1515	-3.93	1.12	-746.99%	5.486	J
SB-11-0405	U-235	0.0359	0.022	0.187	0.0381	135.58%	3.434	J
SB-11-0506	U-235	0.0294	0.025	0.241	0.0447	156.51%	4.132	J
SS-12-1115	U-235	0.00489	0.019	0.223	0.03345	191.42%	5.670	J
SB-14-0608	U-235	0.114	0.033	0.322	0.0467	95.41%	3.637	J
SB-DUP-11	U-235	0.128	0.034	0.608	0.0785	130.43%	5.611	J

LEIDOS Laboratory Data Verification Checklist						
Project:	Staten Island Warehouse FUSRAP Site Page			of 3		
SDG No:	L1410504	Sample Matrix:		opic Uranium		
Disposition of I NCR No. (if app	_	N/A N/A	Y	- - -		
1. Case Narrative						
	Read SDG Case N	arrative		Y		
	Check Laboratory	sample ID vs. Project sample	ID lists	Y		
	Check that discuss	ion covers each analytical typ	pe included in the SDG	Y		
	Check for identified nonconforming items (e.g., missed holding times, etc.)					
2. Chain-of-Custo						
	·	e collection, shipping, and red	ceiving dates	<u>Y</u>		
	Check that COC signature blocks are complete					
	Check COC project sample IDs vs. Lab IDs and Result Form IDs					
	Match COC reques data package conte	sted analyses with Case Narra ent (Result Forms)	ative and with	Y		
3. Analytical Resu	ılts Form					
	Verify that a Result	Form is present for each sar	mple and analysis	Y		
	On each Result Fo	rm check: SDG No. Sample ID Lab ID Date Collected Date Extracted Date Analyzed Result Matrix Result Units		Y Y Y Y Y Y Y		

			Page 2 of 3			
4. Project Verificatio	on					
C	Check project analy	te list vs. analytes reported		Y		
C	Check project requ	ested methods vs. analytical methods performed	ı <u> </u>	Y		
C	Check analyte repo	rting levels vs. project reporting level goals	_	Y		
5. Analytical Quality	Control Informatio	n				
C	tracer Check for surrogate	e recovery results (e.g., org. form II)		Y		
C	Check for LCS resu	ults (e.g., org. form III, inorg. form XII)		Y		
C	Check for method b	plank results (e.g., org. form IV, inorg. form III)		Y		
C	Check for MS/MSD	results (e.g., inorg. form V)		Y		
C	Check for laborator		Y			
C	Check for Method C	r Method Calibration and Run Documentation				
	organic:	instrument performance check		N/A		
		initial calibration data		N/A		
		continuing calibration data		N/A		
		internal standard areas		N/A		
		internal standard retention times		N/A		
		sample clean-up documentation		N/A		
		(org. forms V through X)				
	metal:	initial calibration data		N/A		
		continuing calibration data		N/A		
		method detection limits		N/A		
		method linear range		N/A		
		sample run sequence		N/A		
		(inorg. forms II, IV, and VIII through XIV)		11/21		
	other:	initial calibration data		Y		
(1	Radiological)	continuing calibration data		Ÿ		
(J /	method detection limits		Y		
		sample run sequence		Y		

	Page 3 of 3
ncorrect Inform	· · · · · · · · · · · · · · · · · · ·
	Identify missing items or incorrect information (i.e., missing forms, unsigned forms, incorrect sample IDs, etc.)
	Contact the laboratory or project personnel to obtain missing information or correct information
Document of	orrections below:
	The case narrative did not cover analytical methods performed in this SDG. The case narrative also didn't cover project sample vs laboratory sample IDs. No sample discrepancies were listed in the case narrative.
	The calibration documentation are missing for both alpha and gamma analyses. The laboratory issued a revision with some of the missing information. Calibration standard COAs are not found in the package.
Nonconforming	Items
	Document all nonconforming items that can not be resolved above in a Non-Conformance Report (NCR), complete form, file, and follow-up
	NCR # Item
viewed Bv:	amanda Leigh Dick Date: 03/05/2022

Date:

ESE DM-05 Rev0 January 31, 2015

QA Review By:

LEIDOS Laboratory Data Package Detail Form Project: Staten Island Warehouse FUSRAP Site Page 1 of 1 SDG No: **Analyte Group:** Gamma Spectroscopy and Isotopic Uranium L1410504 Matrix Field Lab Analysis Notes: Sample ID ID# Gamma Spec. and Isotopic Uranium SS-11-1100 L1410504-01 Soil Gamma Spec. and Isotopic Uranium SB-11-0405 Soil L1410504-02 L1410504-03 Gamma Spec. and Isotopic Uranium SB-11-0506 Soil SS-12-1115 L1410504-04 Soil Gamma Spec. and Isotopic Uranium SB-12-0304 L1410504-05 Soil Gamma Spec. and Isotopic Uranium Gamma Spec. and Isotopic Uranium SB-12-0506 L1410504-06 Soil SS-14-1205 L1410504-07 Soil Gamma Spec. and Isotopic Uranium Gamma Spec. and Isotopic Uranium SB-14-2540 L1410504-08 Soil SB-14-0608 L1410504-09 Soil Gamma Spec. and Isotopic Uranium SB-DUP-11 L1410504-10 Soil Gamma Spec. and Isotopic Uranium Comments:

Radiochemical Data Review Checklist					
Project:	Staten Island Warehouse FUS	SRAP Site	Page 1 of 21		
SDG No:	L1410504	_ Analysis: Method:	Gamma Spectroscopy and Isotopic Uranium DOE Ga-01-R/901.1 and D3972 U-02		
Laboratory:	Pace Analytical	Matrix:	Soil		
data have been sur	ckage has been reviewed and the mmarized. The general criteria continuity of the following:		ntrol/quality assurance performance alytical integrityof the data were		
	Case Narrative Analytical Holding Times Sample Preservation Method Calibration Method and Project Blanks	Chemical and/or Tra Matrix Spike Results Duplicate Error Ratio LCS Recoveries Re-analysis and Sec	s os and RPDs		
Overall Remarks:	CENWK, QSM 5.3; see QAPF	of for specific requirem	ents		
Samples results a	ualified as indicated due to tra	acer recoveries, LCS	S recoveries and incomparable results,		
-			-		
			_		
Definition of Qualific	ers: "U", not detected at the associ	ated level			
	"UJ", not detected and associated value estimated "R", associated value unusable "=", compound properly identifications."	ated value estimated It d e or analyte identity un			
Reviewed by:	amanda Loig	h Dice	Date: 03/05/2022		
QA Reviewed by:			Date:		

LEIDOS Page 2 of 21

Radiochemical Data Review Checklist

I. Case Narrative

Jass Harra	
Verify direct sta	tements made within the Laboratory Case Narrative (note discrepancies).
Remarks:	Sample SS-14-1205 had a Uranium-232 tracer recovery result (118.3%) greater than the
QC limits (30	%-110%.). Sample results qualified "J".
	Thorium-234 was detected in the gamma Method Blank (MB R3724570-3). All sample
with results < 5	x the blank result were qualified as "U"
	Some sample results were greater than the project action limits.
	The alpha LCS had a low Uranium-234 percent recovery. All alpha Uranium-234
results were qu	
	Sample SB-14-0608 had a Th-234 negative result with an uncertainty less than its
absolute value	e.
	Several samples had incomparable U-235 and/or U-238 results.
II. Re-analysis	s and Secondary Dilutions
Verify that re-an appropriate resu	nalysis and secondary dilutions were performed and reported as necessary. Determine ults to report.
Remarks:	No sample results were re-analyzed or diluted.
	The damper results were to unaryzed of different

Page 3 of 21

LEIDOS

Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

Deviations. None	Deviations: None			
Sample #	Radionuclide:	Date Collected	Date Analyzed	Action

Actions:

 If holding times are exceeded 	'. all results are	qualified as estimated	(J/UJ)	*or improperly preserved
---	--------------------	------------------------	--------	--------------------------

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

lemarks:	All holding times were met and the samples were properly preserved.

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs SEE CENWK 4.1.3 and QAPP FOR CRITERIA

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
Potassium-40	<1 pCi/g	1.52 pCi/g	SS-11-1100. No DVQ.
Thorium-234 (U-238)	<1 pCi/g	2.28 pCi/g	SS-11-1100. No DVQ.
Potassium-40	<1 pCi/g	1.08 pCi/g	SB-11-0405. No DVQ.
Thorium-234 (U-238)	<1 pCi/g	3.28 pCi/g	SB-11-0405. No DVQ.
Potassium-40	<1 pCi/g	1.86 pCi/g	SB-11-0506. No DVQ.
Thorium-234 (U-238)	<1 pCi/g	2.64 pCi/g	SB-11-0506. No DVQ.
Potassium-40	<1 pCi/g	1.69 pCi/g	SS-12-1115. No DVQ.
Thorium-234 (U-238)	<1 pCi/g	1.58 pCi/g	SS-12-1115. No DVQ.
Potassium-40	<1 pCi/g	1.68 pCi/g	SB-12-0304. No DVQ.
Thorium-234 (U-238)	<1 pCi/g	3.17 pCi/g	SB-12-0304. No DVQ.
Potassium-40	<1 pCi/g	1.83 pCi/g	SB-12-0506, No DVQ.
Thorium-234 (U-238)	<1 pCi/g	3.45 pCi/g	SB-12-0506. No DVQ.
Potassium-40	<1 pCi/g	1.45 pCi/g	SS-14-1205. No DVQ.
Thorium-234 (U-238)	<1 pCi/g	1.97 pCi/g	SS-14-1205. No DVQ.
Potassium-40	<1 pCi/g	1.33 pCi/g	SB-14-2540. No DVQ.
Thorium-234 (U-238)	<1 pCi/g	1.59 pCi/g	SB-14-2540. No DVQ.

Actions: SEE CENWK 4.1.3.3a and QAPP FOR CRITERIA

Deviations continued on next page.

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks: The following sample had negative result with an uncertainty smaller than the absolute value. The CENWK states these results need to be rejected. However, since these results are likely being influenced by a slight negative bias and may still be useful, professional judgment was used to qualify the results. SB-14-0608

Sample SB-12-0304 had a Ra-226 result (3.39 pCi/g) greater than the project action limit of 2.294 pCi/g. Sample SB-14-2540 has a Ra-226 result (2.35 pCi/g) greater than the project action limit of 2.294 pCi/g. Sample SB-14-0608 has a Ra-226 result (2.44 pCi/g) greater than the project action limit of 2.294 pCi/g. Sample SB-DUP-11 has a Ra-226 result (3.80 pCi/g) greater than the project action limit of 2.294 pCi/g. Sample SB-DUP-11 has a K-40 result (19.7 pCi/g) greater than the project action limit of 18.81 pCi/g.

Radiochemical Data Review Checklist

Page 4 of 21 CONTINUED

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

SEE CENWK 4.1.3 and QAPP FOR CRITERIA

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Ashioved	Samples Affected
Naulullucliue	Level Goal	Achieved	
Potassium-40	<1 pCi/g	1.33 pCi/g,	SB-14-0608. No DVQ.
Thorium-234 (U-238)	<1 pCi/g	3.99 pCi/g,	SB-14-0608. No DVQ.
Potassium-40	<1 pCi/g	2.35 pCi/g,	SB-DUP-11. No DVQ.
Thorium-234 (U-238)	<1 pCi/g	3.31 pCi/g,	SB-DUP-11. No DVQ.

Actions: SEE CENWK 4.1.3 and QAPP FOR CRITERIA

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks:	The sample-specific detection limit (LC) was calculated for sample results less than
the critical leve	l. Sample concentrations less than the LC were qualified "U". Please see calculation sheet
For results that	were less than the critical level, the calculation k * CSU =RDL was used to determine</td
whether the RD	L has been met. The following samples had results that did not meet the RDL:
SS-11-1100: Th	-234, SB-11-0405: Th-234, SB-11-0506: Th-234, SS-12-1115: Th-234, SB-12-0304:
Th-234, SB-12-0	506: Th-234, SS-14-1205: U-235 & Th-234. SB-14-2540: Th-234, SB-14-0608: Th-234,

Radiochemical Data Review Checklist

Page 4 of 21 CONTINUED

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

SEE CENWK 4.1.3 and QAPP **FOR CRITERIA**

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

D	e	V	ıa	tı	0	n	S	:

	Project Reporting	MDA	Samples Affected
Radionuclide	Level Goal	Achieved	Gap. 66 7 65 66
Vadionaciae	Level Goal	Acriieved	
	+		
	+		
	+		
	+		

Actions: **SEE CENWK 4.1.3 and QAPP FOR CRITERIA**

 Document all radionuclide determinations that do not meet project reporting level goals. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ). If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).
Remarks:
For concentrations greater than 10 times the MDC, the calculation CSU>0.25*Rs was used to identify
excess reported uncertainty. No samples exhibited excess uncertainty

LFIDOS

Page 5 of 21

Radiochemical Data Review Checklist

V.A1. Calibration Alpha Spectroscopy

SEE CENWK 4.3.1.2.1 and QAPP FOR CRITERIA

Initial efficiency calibration must be demonstrated for each detector.

Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

SEE CENWK 4.3.1.2.1 and QAPP FOR CRITERIA

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency. Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: Please see below.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions: SEE CENWK 4.3.1.2.1 and QAPP FOR CRITERIA

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).

3. If background	d counts or pulser counts are not acceptable, qualify the affected data as estimated (J).			
Remarks:	An Energy and Efficiency calibration was performed for each detector. The calibrations			
met project a	cceptance criteria.			
A background	I count was performed the same month the samples were counted. The background did not			
contain high r	esults.			

LFIDOS

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

SEE CENWK 4.3.1.1.1 and QAPP FOR CRITERIA

Initial efficiency calibration must be demonstrated on each detector for each geometry.

Initial energy calibration must be demonstrated on each detector for each geometry.

Resolution (FWHM) must be demonstrated for each detector for each geometry.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy SEE CENWK 4.3.1.1.1 and QAPP FOR CRITERIA

Continuing calibration efficiency verification must be performed for each detector at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed monthly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: Delta Values

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value
6.247%	898.04 kev	1	< 5%		
5.283%	159 kev	2	< 5%		
-9.410%	661.66 kev	2	< 5%		
7.914%	898.04 kev	2	< 5%		
18.765%	136.47 kev	3	< 5%		
-16.417%	136.47 kev	5	< 5%		
6.524%	159 kev	5	< 5%		
18.276%	513.99 kev	4	< 5%		
22.438%	513.99 kev	10	< 5%		
24.525%	513.99 kev	12	< 5%		

Actions: SEE CENWK 4.3.1.1.1 and QAPP FOR CRITERIA

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks: A long monthly background was performed. No high results were noted.

Samples that counted on detectors with high delta values and/or 95% CL (1.96 σ) greater than 8%: were qualified "X".

No documentation of a energy calibration was provided. Additionally, there was no indication that a Peak-to-Compton ration calibration was performed.

Daily source checks were performed for each detector. Detector 3 source check for Cd-109 (25.5%) was outside the limit of 10% difference from standard.

Page 7 of 21

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide. Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters-Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect		Samples Affected	Value

Actions: SEE CENWK 4.3.1.4 and QAPP FOR CRITERIA

- 1. If the initial calibration quench curve or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or control charts are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	KPA N/A FOR THIS SDG

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

SEE CENWK 4.3.1.3.1 and QAPP FOR CRITERIA

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters SEE CENWK 4.3.1.3.1 and QAPP FOR CRITERIA

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect		Samples Affected	Value

Actions: SEE CENWK 4.3.1.3.1 and QAPP FOR CRITERIA

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	GPC N/A FOR THIS SDG

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

SEE CENWK 4.2.1 and QAPP FOR CRITERIA

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted.

If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory Method Blanks: Alpha: MB R3720206-1 Gamma: MB R3724570-3

Date	Lab ID #	Radionulcide	Result and Error	MDA Result and Error
1 <u>1/02/2021</u> 1 <u>1/02/2021</u>	MB R3724570-3	U-235	0.975 pCi/g and 0.514 pCi/g certainty was less than the N 0.0659 pCi/g and 0.0443 pCi/g certainty was less than the N	0.0783 pCi/g and 0.0443 pCi/g
Associated	d Project Blanks (e.g.,	equipment rinsa	tes, etc.)	
Date	Lab ID #	Radionuclide	Result and Error	MDA Result and Error
No project	blanks associated with	this SDG.		
·		570-3 not listed ab	less than the uncertainty are ove were less than the uncertainty.	· · · · · · · · · · · · · · · · · · ·

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

SEE CENWK 4.2.1 and QAPP FOR CRITERIA

Calculate action levels based on $\frac{5x}{10x}$ the highest blank concentration.

SEE CENWK 4.2.1.3 and QAPP FOR CRITERIA

Deviations: MB R3724570-3.

Radionuclide	Max. Activity Detected	Action Level	Samples Affected
Thorium-234	0.975 pCi/g	4.875 pCi/g	SS-11-1100. Result <al. "u".<="" dvq:="" td=""></al.>
			SB-11-0405. Result <al. "u".<="" dvq:="" td=""></al.>
			SB-11-0506. Result <al. "u".<="" dvq:="" td=""></al.>
			SS-12-1115. Result <al. "u".<="" dvq:="" td=""></al.>
			SB-12-0304. Result <al. "u".<="" dvq:="" td=""></al.>
			SB-12-0506. Result <al. "u".<="" dvq:="" td=""></al.>
			SS-14-1205. Result <al. "u".<="" dvq:="" td=""></al.>
			SB-14-2540. Result <al. "u".<="" dvq:="" td=""></al.>
			SB-14-0608. Result <al. "u".<="" dvq:="" td=""></al.>
			SB-DUP-11. Result <al. "u".<="" dvq:="" td=""></al.>

Actions: SEE CENWK 4.2.1 and QAPP FOR CRITERIA

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

Example:	Blank Result	Uncert.	MDA or	Normalized absolute	Qualification
				<u>difference</u>	
acceptable	0.3	0.45	0.5	>2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
- 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:			
			_

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

SEE CENWK 4.1.2 and QAPP FOR CRITERIA

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

Deviations:

			Action Taken
Radionuclide	Sample ID	%R	
Uranium-232	SS-14-1205	118.3%	Sample results qualified: J

Actions: SEE CENWK 4.1.2 and QAPP FOR CRITERIA

- 1. If recovery is between 30-110%, no qualification is necessary.
- 2. If recovery is between 20 10-30%, qualify the data as estimated (J).
- 3. If recovery is between 110-120150%, qualify the data as estimated (J).
- 4. If recovery is less than 20 10%, qualify the data as rejected (R).
- 5. If recovery if greater than 120 150%, qualify the data as rejected (R).

outside lab limits but within 20-120%: J if corrective actions taken, otherwise R

Remarks:	Tracer recovery results not listed above were within QC limts.			

Page 12 of 21

Radiochemical Data Review Checklist

VIII. Laboratory Control Sample Information	SEE CENWK 4.2.2 and QAPP FOR CRITERIA
---	---------------------------------------

Alpha

General LCS Criteria:	aqueous	
percent recovery (%R)	80-120	

, .,,	71104
aqueous	solid
80-120	70-130
	75 405

Gamma, GPC, KPA: 80-120

75-125

Laboratory LCS Identifications: <u>Alpha: LCS R3720206-2</u>

Gamma: LCS R3724570-1 and LCSD R3724570-2

Deviations:

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
Uranium-234	10/18/21	72.80%	All alpha U-234 results qualified with "J"
			*

Actions:	SEE CENWK 4.2.2 and QAPP FO	D CDITEDIA
ACTIONS:	SEE CENWK 4.2.2 and CAPP FC	RURITERIA

Alpha (Aqueous)	<u><50%</u>	<u>50-79%</u>	<u>121-150%</u>	<u>>150%</u>
and Gamma, GPC, KPA	R	J	J	R
	<50%	50-74%	126-150%	>150%
Alpha (Solid)	<40%	40-69%	131-160%	>160%
	R	J	J	R

Remarks.	The alpha LCS	<u>percent recovery</u>	<u>result for </u>	Uranium-238	was within (<u>JC limits</u>
	•	•				

All gamma LCS percent recovery results were within QC limits .				

Page 13 of 21

Radiochemical Data Review Checklist

IX. Matrix Spike Information

General MS Criteria:	Aqueous	Solid	SEE CENWK 4.2.3 and QAPP FOR CRITERIA
percent recovery (%R)	50-120	40-130	

Project Sample(s) Spiked: Non-SDG sample was spiked (L1410508-02)

MS R3720206-3 & MSD R3720206-4

Deviations: Project samples not selected for analysis

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied

Actions:	SEE CENWK 4.2.3	and QAPP	FOR CRIT	ERIA
Aqueou	s <20%	20-49%	121-160%	<u>>160%</u> >150%
	R	J	J	use professional judgement R
all samples in batch	*see CEN	√WK 4.2.3 a	and QAPP*	
Soli	d <10%	<u>10-39%</u>	<u>131-160%</u>	<u>>160%</u> >150%
	R	J	J	use professional judgement R
Remarks:	All matrix spike r	ecovery re	sults were	within project QC limits.

Page 14 of 21

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis SEE CENWK 4.2.4, 4.2.5 and QAPP FOR CRITERIA

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER).

Duplicate actions should apply to all samples associated with the duplicate pair.

Duplicate Sample Identification: Alpha: L1410504-01

Gamma: LCSD R3724570-2 Project Field DU: SB-DUP-11

Deviations:

			NAD	Samples Affected
Radionuclide	DER	RPD	RER	
(DUP) R3720206-5				
U-235 α		129%	2.530	NAD is less than 3. No DVQ.

Actions: SEE CENWK 4.2.4 (lab dup) 4.2.5 (field dup) and QAPP FOR CRITERIA

- 1. If both sample and duplicate activities are within 2X the MDA comparison is acceptable.
- 2. If the DER is greater than 1.00, qualify the data as estimated (J).
- 3. If the RPD is greater than 50% qualify the data as estimated (J).
- 4. If one sample is <MDA and the other sample is >2X the MDA, qualify the data as estimated (J).

All field duplicate results were within a factor 4 of the original result.
es either had RPD % results less than 20% or NAD results less than 3.

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

SEE CENWK 4.1.8, 4.1.9.2 and QAPP FOR CRITERIA

Each alpha isotopic peak should be clear and free of interference from other energy peaks.

Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Deviations: None

Radionuclide	Deficiency	Samples Affected
U-232	Outside 40keV from the theoretical energy	SS-12-1115. No DVQ on tracer.

Actions:	SEE CENWK 4 1 8 4 1 9 2 and OAPP FOR	CDITEDIA

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:	There were no overlapping or interferent peaks. There seemed to be a
small amount of tailing and	d noise. However, this did not seem to negatively impact sample results.
All detected radionuclide	peaks of interest were within 40keV from their theoretical energies.

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density SEE CENWK 4.1.9. 4.1.7 and QAPP FOR CRITERIA

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations: Please see below.

Radionuclide	Deficiency	Samples Affected

Actions: SEE CENWK 4.1.9, 4.1.7 and QAPP FOR CRITERIA

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:	The energy of all radionuclide peaks of interest was less than 2 keV from the theoretical
energy.	
	There were no overlapping or interferent peaks.
	All radionuclides of interest were identified.
The peak s	earch algorithm was set at 3.0, not the required 2 keV for all SDG samples.

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy) Sample Aliquot Representativeness

Each sample tentatively identified radionuclide energy must be within 2 keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra.

All peaks greater than 3X the background standard deviation must be identified and quantified.

The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with

related radionuclides (e.g., parent daughter relationships). Results from different but comparable analytical techniques

from different sub-sample aliquots of the same sample shall be compared for consistency.

Deviations:

Radionuclide	Deficiency	Samples Affected
U-235	Alpha and Gamma results incomparable.	SB-11-0405. DVQ: "J".
U-235	Alpha and Gamma results incomparable.	SB-11-0506. DVQ: "J"
U-235	Alpha and Gamma results incomparable.	SS-12-1115. DVQ: "J"
U-235	Alpha and Gamma results incomparable.	SB-14-0608, DVO: "J"
U-235	Alpha and Gamma results incomparable.	SB-DUP-11, DVO: "J".
U-238	Alpha and Gamma results incomparable.	SB-11-0405. DVQ: "J"
U-238	Alpha and Gamma results incomparable.	SB-14-2540. DVQ: "J"
U-238	Alpha and Gamma results incomparable.	SB-14-0608. DVQ; "J"

Actions:

- 1. Qualify all tentatively identified radionuclides as estimated (J).
- 2. If the energy of the tentatively identified radionuclide peak is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 3. If the reviewer judges anything regarding the identification of the tentatively identified radilnuclide as suspect, qualify the data as rejected (R).

If the results do not agree within the reported uncertainty of measurement, results shall be qualified as "J" or "R", depending on the magnitude of the uncertainty.

Remarks:			
Please see calculation sheet			

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

see CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Deviations: None

Radionuclide/Method	Deficiency	Samples Affected

Actions:	see CENWK and C	JAPP
----------	-----------------	-------------

1.	. Based on the instrument performance indicators	, the d	lata	reviewer	must	use	profes	siona
	judgement ot qualit	y the	data	١.				

marks:	No obvious discrepancies in sysmtem performance. A little noise in alpha spectra did
adversely	affect data. All background levels were low. There were no known energy shifts.

Page 19 of 21 LEIDOS

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data

Radionuclide:	e see calculation sheets Method:	
emarks:		
emarks: Calculation Check: adionuclide:	Method:	
alculation Check:	Method:	

LEIDOS Page 20 of 21

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Calculation Check: Please Radionuclide:	Method:	
emarks:		
emarks <u>:</u>		
emarks <u>:</u>		
emarks <u>:</u>		
alculation Check:	Mothod:	
alculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

Remarks:	Data qualified using parameters and guidance from the QAPP, CENWK, and QSM 5.1

Company Name/Address:	Billing Information:					146	Analysis / Container / Preservative						hain of Custody	Page of	
Geo Consultants - Kevil	, KY		325 Kentucky Ave			Pres Chk								Pace	Analytical
325 Kentucky Ave Kevil, KY 42053			Kevil, KY	12053		7	S								
Report to: David Lindsey	Prints of the		Email To: lindseyd@geoconsultantscorp.com				NoPre						S	2065 Lebanon Rd Mour ubmitting a sample via to constitutes acknowledgn ace Terms and Conditio ttps://info.pacelabs.cor	his chain of custody nent and acceptance of t ns found at:
Project Description: Staten Isl Warehouse, Port Richmond		City/State Collected: 5	takn I	sland	Please Cir PT MT C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DPE-					4.00		erms.pdf	1 - 4 - 0
Phone: 270-462-3882	Client Project FUSRAP	RAP					16ozHDPE-NoPres							B22	
Collected by (print): David Lindsey	Site/Facility II	D#		P.O. #			OSI-N'						4 7	Acctnum: GEO	
Collected by (signature):	100000000000000000000000000000000000000	Lab MUST Be		Quote #			M21,	100						relogin: P873	3895
Immediately Packed on Ice N Y	Next Da	y 5 Day	y (Rad Only)	Date Resu	lts Needed	No. of	C-NORM21							PM: 732 - Donn	edEX Ground
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	GSPE	1						Remarks	Sample # (lab or
55-05-0915	G	SCM	0-0.5	9-22-2	1 6915	1	X				-				-01
58-05-0505	G	SCM		9-22-2	Carlotte Company No.	1	X								-02
SB-05-0510	G	SCM		9-22-2		1	X	H							-03
55-03-0810	G	SCM	0-05	9-24-21		1	X	74			167		- p. 1985		7
58-03-0815	G	SCM	0.5-1		0815	The second second	X				2 278 P				-05
SB-03-010Z	G	SCM	1-2		10820		X		0.0				- W		-007 -07
55-01-0825	9	SCM	6-0.5	21207	10825		X							* ***	
SB-01-0501	G	SCM	0,5-1	-	1 0827	166	X						170		-08
SB-01-0102	G	SCM	21-2	9-24-2	10830	1	X								701
		SCM				1	X		1				Sample	Receipt Ch	ecklist
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:no ice	required							pH	Temp Other _		COC Signature	al Pre gned/A s arri	sent/Intact ccurate: ve intact:	
WW - WasteWater DW - Drinking Water OT - Other Samples returned via: UPSFedExCo				Trac	king#	M						Suffic.	ient v	les used: olume sent: If Applicab dspace:	Y
Relinquished by: (Signature) Date: 7 Time: 9/27/21 1220				Received by: (Signature)				Trip Blank R		/MeoH	Preser	/OA Zero Headspace: Preservation Correct/Checked: Y Y Z Y Z Y Y			
Relinquished by : (Signature)	1/2/1/100			eived by: (Signa	iture)			Temp: -,2	an Pottler	Received:	If preser	rvation	required by Lo	gin: Date/Time	
Relinquished by : (Signature)		Date:	Time	: Rec	eived for lab by	4//	/ /		Date: 9/29	Time:	015	Hold:			NCF / OF

2500 сри

		Billing	Information:						Analy	sis / Co	ntainer /	Preservat	ive			Chain of Custody	Page of _
Geo Consultants Co 325 Kentucky Ave Revil KY 42053		Accounts Payable 325 Kentucky Ave Keuil Ky 42053			Ave	Pres Chk									2	Pace National C	Analytical * anter far Testing & Inno
	>	Email	To:					- 37								12065 Lebanon Rd	国城社
David Lindsey		lind	serd age	marsial	Hayntscorp	con										Mount Juliet, TN 37 Phone: 615-758-58	58
roject Description:		City/Stat	e	-	Please C	ircle:	150		,							Phone: 800-767-58 Fax: 615-758-5859	
Phone:	ient Project #	Concett	Lab Pr	oject#	PIWI		ر-کل ا									SDG# UU B2	10508 27
	te/Facility ID #		P.O. #				rm21									Acctnum: Template:	
onected by (signature): mmediately Packed on Ice N Y	Rush? (Lab MI Same Day Next Day Two Day Three Day		nly)		lts Needed	No.	SPEC-Norm			- =						Prelogin: PM: PB:	
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Cntrs	GS					4		in the second		Shipped Via:	Sample # (lab
Q2 mc = 05	G	Scm	0.5-5	9/22/	21 1345	1	X	- 54				1					-02
SB-MSD-05	G				1 1345	1	X										-02
SB-DUP-01	G	Som	05-1	9/24/	10827	1	X						198				-10
SS- DUP-03	G	scm	0-0.5	9/24/	21 0810	1	X								3		-11
						(4)							2-11-11		- 54		
uk e e e e e e e e e e e e e e e e e e e	\$																100
0015															-	4	
	7.0														-	1	1
													-		_		
												1					1 111
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH _ Flow		Temp	_	COC S Bottl Corre	Seal E Signed les ar	ple Receipt C Present/Intac d/Accurate: rrive intact: bttles used:	: _NP _Y
DW - Drinking Water OT - Other	Samples returned UPS FedEx			T	racking #											If Applica Headspace:	
Relinquished by : (Signature)		te: 9/27/2	Time:	R	eceived by: (Sign	ature)			Ti	ip Blan	k Received	TBR	/ MeoH	Prese RAD S	ervati Screen	ion Correct/C n <0.5 mR/hr:	Z _Y
Relinquished by : (Signature)	Da	te:	Time:		eceived by: (Sign		27	1,00		emp: -	22 °C	Bottles Re	eceived:			on required by L	
Relinquished by : (Signature)	Da	te:	Time:	R	eceived for lab b	1.1	ature	1	D	ate:	9/21	Time:	015	Hold:			NCF /

L141050

Da alia ala amaiatur de di Matla a al DOG

Collected date/time: 09/22/21 09:15

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.78	J	0.366	0.161	10/18/2021 16:50	WG1754721
URANIUM-235	0.206	,	0.102	0.0771	10/18/2021 16:50	WG1754721
URANIUM-238	2.80	J	0.356	0.0771	10/18/2021 16:50	WG1754721
(T) URANIUM-232	58.2			30.0-110	10/18/2021 16:50	WG1754721

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/g		+/-	pCi/g	date / time		
Actinium-228 (Ra-228)	1.37	X	0.366	0.598	11/02/2021 12:27	WG1756382	
Bismuth-212	1.44	<u></u>	1.37	2.55	11/02/2021 12:27	WG1756382	
Bismuth-214 (Ra-226)	4.05	X	0.532	0.350	11/02/2021 12:27	WG1756382	
Lead-212	1.61	X	0.266	0.280	11/02/2021 12:27	WG1756382	
Lead-214	4.44	X	0.578	0.472	11/02/2021 12:27	WG1756382	
Potassium-40	10.3	X	2.07	2.02	11/02/2021 12:27	WG1756382	
Thallium-208	0.426	X	0.125	0.176	11/02/2021 12:27	WG1756382	
Uranium-235	0.379	X	0.129	0.215	11/02/2021 12:27	WG1756382	
Thorium-234 (U-238)	-6.81	(U) v i	3.18	5.34	11/02/2021 12:27	WG1756382	

L1410508

Collected date/time: 09/22/21 13:45 Radiochemistry by Method D3972 U-02

, ,							
	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/g		+ / -	pCi/g	date / time		
URANIUM-234	1.74	J	0.297	0.157	10/18/2021 16:50	WG1754721	
URANIUM-235	0.0665	크	0.0873	0.121	10/18/2021 16:50	WG1754721	
URANIUM-238	1.56		0.271	0.0963	10/18/2021 16:50	WG1754721	
(T) URANIUM-232	63.0			30.0-110	10/18/2021 16:50	WG1754721	

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.19	X	0.299	0.409	11/02/2021 14:24	WG1756382
Bismuth-212	2.30	X	1.02	1.52	11/02/2021 14:24	WG1756382
Bismuth-214 (Ra-226)	1.47	X	0.254	0.260	11/02/2021 14:24	WG1756382
Lead-212	1.20	X	0.174	0.164	11/02/2021 14:24	WG1756382
Lead-214	1.70	X	0.228	0.250	11/02/2021 14:24	WG1756382
Potassium-40	10.6	X	1.99	1.56	11/02/2021 14:24	WG1756382
Thallium-208	0.432	X	0.106	0.128	11/02/2021 14:24	WG1756382
Uranium-235	0.211	X	0.0725	0.114	11/02/2021 14:24	WG1756382
Thorium-234 (U-238)	0.960	<u></u>	0.703	1.60	11/02/2021 14:24	WG1756382

L1410508

Radiochemistry by Method D3972 U-02

Collected date/time: 09/22/21 13:50

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.35	J	0.274	0.201	10/18/2021 16:50	WG1754721
URANIUM-235	0.0181	U	0.0442	0.0744	10/18/2021 16:50	WG1754721
URANIUM-238	1.43	J	0.257	0.115	10/18/2021 16:50	WG1754721
(T) URANIUM-232	64.5	· ·		30.0-110	10/18/2021 16:50	WG1754721

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.12	X	0.228	0.358	11/02/2021 14:24	WG1756382
Bismuth-212	0.767	<u></u>	0.780	1.42	11/02/2021 14:24	WG1756382
Bismuth-214 (Ra-226)	1.20	X	0.184	0.198	11/02/2021 14:24	WG1756382
Lead-212	1.19	X	0.162	0.180	11/02/2021 14:24	WG1756382
Lead-214	1.49	X	0.183	0.195	11/02/2021 14:24	WG1756382
Potassium-40	11.4	X	1.59	1.30	11/02/2021 14:24	WG1756382
Thallium-208	0.332	X	0.0776	0.101	11/02/2021 14:24	WG1756382
Uranium-235	0.124	<u></u> ₹ X	0.0735	0.129	11/02/2021 14:24	WG1756382
Thorium-234 (U-238)	-1.29	(U) X.	J 1.41	3.12	11/02/2021 14:24	WG1756382

L1410508

D I: 1 : 1 M II 100

Collected date/time: 09/24/21 08:10

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	3.43	J	0.365	0.133	10/18/2021 16:50	WG1754721
URANIUM-235	0.140	J	0.0863	0.0888	10/18/2021 16:50	WG1754721
URANIUM-238	3.96		0.383	0.0635	10/18/2021 16:50	WG1754721
(T) URANIUM-232	81.2			30.0-110	10/18/2021 16:50	WG1754721

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	2.51	X	0.394	0.511	11/02/2021 12:03	WG1756382
Bismuth-212	2.58	X	1.10	1.79	11/02/2021 12:03	WG1756382
Bismuth-214 (Ra-226)	2.23	X	0.298	0.268	11/02/2021 12:03	WG1756382
Lead-212	2.80	X	0.304	0.216	11/02/2021 12:03	WG1756382
Lead-214	2.62	X	0.300	0.250	11/02/2021 12:03	WG1756382
Potassium-40	11.0	X	1.84	1.79	11/02/2021 12:03	WG1756382
Thallium-208	0.819	X	0.131	0.131	11/02/2021 12:03	WG1756382
Uranium-235	0.370	X(J)	0.104	0.172	11/02/2021 12:03	WG1756382
Thorium-234 (U-238)	3.45	X(Ú)	1.95	2.91	11/02/2021 12:03	WG1756382

Collected date/time: 09/24/21 08:15

L1410508

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	3.52		0.382	0.136	10/19/2021 19:21	WG1754722
URANIUM-235	0.182		0.103	0.106	10/19/2021 19:21	WG1754722
URANIUM-238	3.07	J	0.352	0.0837	10/19/2021 19:21	WG1754722
(T) URANIUM-232	67.3			30.0-110	10/19/2021 19:21	WG1754722

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.72	X	0.391	0.609	11/02/2021 15:45	WG1756382
Bismuth-212	0.0268	<u>⊎</u> X	1.15	2.28	11/02/2021 15:45	WG1756382
Bismuth-214 (Ra-226)	1.47	X	0.271	0.316	11/02/2021 15:45	WG1756382
Lead-212	1.67	X	0.239	0.251	11/02/2021 15:45	WG1756382
Lead-214	1.65	X	0.237	0.260	11/02/2021 15:45	WG1756382
Potassium-40	4.68	X	1.43	1.77	11/02/2021 15:45	WG1756382
Thallium-208	0.496	X	0.116	0.144	11/02/2021 15:45	WG1756382
Uranium-235	0.205	X	0.0911	0.156	11/02/2021 15:45	WG1756382
Thorium-234 (U-238)	0.790	(<u>U</u>) X.J	1.28	2.82	11/02/2021 15:45	WG1756382

L1410508

Radiochemistry by Method D3972 U-02

Collected date/time: 09/24/21 08:20

	Result	Qualifier Uncertaint	ty MDA	Analysis Date	Batch
Analyte	pCi/g	+/-	pCi/g	date / time	
URANIUM-234	3.21	0.341	0.148	10/19/2021 19:21	WG1754722
URANIUM-235	0.178	0.0854	0.0706	10/19/2021 19:21	WG1754722
URANIUM-238	3.19	0.336	0.130	10/19/2021 19:21	WG1754722
(T) URANIUM-232	78.1		30.0-110	10/19/2021 19:21	WG1754722

Cn

	Result	Qua	lifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g			+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.91		X	0.354	0.466	11/02/2021 12:04	WG1756382
Bismuth-212	1.82	7	X	1.09	1.90	11/02/2021 12:04	WG1756382
Bismuth-214 (Ra-226)	1.46		X	0.258	0.302	11/02/2021 12:04	WG1756382
Lead-212	1.90		X	0.246	0.214	11/02/2021 12:04	WG1756382
Lead-214	1.78		X	0.247	0.271	11/02/2021 12:04	WG1756382
Potassium-40	8.77		X	1.78	1.87	11/02/2021 12:04	WG1756382
Thallium-208	0.580		X	0.117	0.128	11/02/2021 12:04	WG1756382
Uranium-235	0.183		X	0.0963	0.174	11/02/2021 12:04	WG1756382
Thorium-234 (U-238)	2.06	<u>₹</u>	X(U)	1.51	2.87	11/02/2021 12:04	<u>WG1756382</u>

L1410508

Collected date/time: 09/24/21 08:25

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	3.45		0.358	0.128	10/19/2021 19:21	WG1754722
URANIUM-235	0.254		0.103	0.0749	10/19/2021 19:21	WG1754722
URANIUM-238	3.52		0.356	0.0749	10/19/2021 19:21	WG1754722
(T) URANIUM-232	83.6			30.0-110	10/19/2021 19:21	WG1754722

[']Cp

Cn

	Result	Qualifie	<u>r</u> Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	2.37	X	0.415	0.520	11/02/2021 17:03	WG1756382
Bismuth-212	3.18	X	1.29	1.92	11/02/2021 17:03	WG1756382
Bismuth-214 (Ra-226)	2.76	X	0.352	0.253	11/02/2021 17:03	WG1756382
Lead-212	2.66	X	0.305	0.252	11/02/2021 17:03	WG1756382
Lead-214	2.88	X	0.331	0.279	11/02/2021 17:03	WG1756382
Potassium-40	6.76	X	1.59	1.74	11/02/2021 17:03	WG1756382
Thallium-208	0.789	X	0.138	0.152	11/02/2021 17:03	WG1756382
Uranium-235	0.350	X	0.106	0.173	11/02/2021 17:03	WG1756382
Thorium-234 (U-238)	2.62	<u></u> ₹ X	(U) 1.69	3.04	11/02/2021 17:03	WG1756382

L1410508

Collected date/time: 09/24/21 08:27

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	0.597		0.179	0.164	10/19/2021 19:21	WG1754722
URANIUM-235	0.0410	₹	0.0476	0.0606	10/19/2021 19:21	WG1754722
URANIUM-238	0.634	J	0.158	0.0937	10/19/2021 19:21	WG1754722
(T) URANIUM-232	86.0	v		30.0-110	10/19/2021 19:21	WG1754722

[']Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.45	X	0.383	0.584	11/02/2021 14:26	WG1756382
Bismuth-212	2.69	X	1.29	1.94	11/02/2021 14:26	WG1756382
Bismuth-214 (Ra-226)	1.14	X	0.275	0.369	11/02/2021 14:26	WG1756382
Lead-212	1.66	X	0.268	0.263	11/02/2021 14:26	WG1756382
Lead-214	1.07	X	0.255	0.508	11/02/2021 14:26	WG1756382
Potassium-40	6.56	X	1.70	1.67	11/02/2021 14:26	WG1756382
Thallium-208	0.480	X	0.134	0.177	11/02/2021 14:26	WG1756382
Uranium-235	0.131	<u></u>	0.102	0.187	11/02/2021 14:26	WG1756382
Thorium-234 (U-238)	-3.88	<u>(∪)</u> X,J	2.22	4.71	11/02/2021 14:26	WG1756382

Collected date/time: 09/24/21 08:30

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.66		0.253	0.127	10/19/2021 19:21	WG1754722
URANIUM-235	0.124		0.0803	0.0847	10/19/2021 19:21	WG1754722
URANIUM-238	1.74		0.249	0.0605	10/19/2021 19:21	WG1754722
(T) URANIUM-232	85.4			30.0-110	10/19/2021 19:21	WG1754722

Radiochemistry by Method DOE Ga-01-R/901.1 (21 day)

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.929	X	0.289	0.388	11/02/2021 14:28	WG1756382
Bismuth-212	1.60	± X	1.08	1.78	11/02/2021 14:28	WG1756382
Bismuth-214 (Ra-226)	0.788	X	0.206	0.241	11/02/2021 14:28	WG1756382
Lead-212	0.940	X	0.207	0.258	11/02/2021 14:28	WG1756382
Lead-214	0.939	X	0.188	0.216	11/02/2021 14:28	WG1756382
Potassium-40	7.54	X	1.78	1.41	11/02/2021 14:28	WG1756382
Thallium-208	0.287	X	0.0982	0.122	11/02/2021 14:28	WG1756382
Uranium-235	0.144	<u></u>	0.101	0.175	11/02/2021 14:28	WG1756382
Thorium-234 (U-238)	0.856	<u>(U)</u> X	1.27	2.72	11/02/2021 14:28	WG1756382

Cn

Collected date/time: 09/24/21 08:27

L1410508

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.25		0.229	0.123	10/19/2021 19:21	WG1754722
URANIUM-235	0.0837		0.0694	0.0795	10/19/2021 19:21	WG1754722
URANIUM-238	1.35	J	0.230	0.0908	10/19/2021 19:21	WG1754722
(T) URANIUM-232	89.5			30.0-110	10/19/2021 19:21	WG1754722

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.51	X	0.430	0.651	11/02/2021 15:42	WG1756382
Bismuth-212	2.39	X	1.39	2.26	11/02/2021 15:42	WG1756382
Bismuth-214 (Ra-226)	1.13	X	0.298	0.389	11/02/2021 15:42	WG1756382
Lead-212	1.56	X	0.269	0.272	11/02/2021 15:42	WG1756382
Lead-214	1.02	X	0.271	0.551	11/02/2021 15:42	WG1756382
Potassium-40	8.19	X	2.05	1.83	11/02/2021 15:42	WG1756382
Thallium-208	0.460	X	0.150	0.213	11/02/2021 15:42	WG1756382
Uranium-235	0.181	<u></u>	0.111	0.198	11/02/2021 15:42	WG1756382
Thorium-234 (U-238)	-2.31	<u>(U)</u> X I	2.14	5.17	11/02/2021 15:42	WG1756382

SAMPLE RESULTS - 11

L1410508

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/g		+ / -	pCi/g	date / time		
URANIUM-234	3.86		0.411	0.150	10/19/2021 19:21	WG1754722	
URANIUM-235	0.169		0.0950	0.0877	10/19/2021 19:21	WG1754722	
URANIUM-238	3.63		0.396	0.128	10/19/2021 19:21	WG1754722	
(T) URANIUM-232	72.8			30.0-110	10/19/2021 19:21	WG1754722	

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.632	X	0.339	0.624	11/02/2021 17:12	WG1756460
Bismuth-212	1.15	U X	1.28	2.43	11/02/2021 17:12	WG1756460
Bismuth-214 (Ra-226)	0.543	X	0.256	0.450	11/02/2021 17:12	WG1756460
Lead-212	1.47	X	0.231	0.221	11/02/2021 17:12	WG1756460
Lead-214	0.795	X	0.223	0.390	11/02/2021 17:12	WG1756460
Potassium-40	1.94	<u></u> ₹ X	1.76	3.10	11/02/2021 17:12	WG1756460
Thallium-208	0.228	X	0.106	0.163	11/02/2021 17:12	WG1756460
Uranium-235	0.0184	(<u>U</u>) X	0.102	0.196	11/02/2021 17:12	WG1756460
Thorium-234 (U-238)	3.17	X	1.39	2.12	11/02/2021 17:12	WG1756460

Radiological Analytical Data Validation Comments on Data for Case Number L1410508

Event Name: Staten Island Warehouse FUSRAP Site

SDG Number: <u>L1410508</u> Laboratory: <u>Pace Analytical</u>

Analysis: Gamma Spec/Iso U (soil)

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 4 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. The requested analyses include: ^{234/235/238}U by alpha spectrometry (Method D3972 U-02); ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ²³⁴Th, ²²⁸Ac, ⁴⁰K, and ²³⁵U by gamma spectrometry (Method DOE Ga-01-R/901.1 (21 day)). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Case Narrative Re-analysis and Secondary Dilution Analytical Holding Times and Preservation Minimum Detectable Activities (MDAs) Method Calibration/Calibration Verification Reporting Levels Chemical/Spectroscopic Separation Method Blanks **Background Checks** Specificity (alpha spectroscopy) **Analytical Tracer Recoveries** Project Duplicates and Splits MS/MSD Recoveries and Differences Target Radionuclide Spectroscopic LCS/LCSD Recoveries and Differences Identification (gamma spectroscopy)

Laboratory Duplicates/Replicates Data Intercomparison

Definition of Data Validation Qualifiers:

"U" - Indicates a normal, non-detected (< critical value) result.

"J" - Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September, 2021.

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District, September 2017.

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February, 2018.

Client Identification	Laboratory Identification
SS-05-0915	L1410508-01
SB-05-0505	L1410508-02
SB-05-0510	L1410508-03
SS-03-0810	L1410508-04
SB-03-0815	L1410508-05
SB-03-0102	L1410508-06
SS-01-0825	L1410508-07
SB-01-0501	L1410508-08
SB-01-0102	L1410508-09
SB-DUP-01	L1410508-10
SS-DUP-03	L1410508-11

Validation Report By:	C. Martin Johnson	03/14/2022
	(print)	Date
	(sign)	*
Peer Reviewed By:	Thomas L. Rucker, Ph.D.	03/14/2022
	(print)	Date
	72 Rucker	
	(sign)	

1.0 GAMMA SPECTROMETRY ANALYSIS

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

For gamma spectrometry, the CENWK states that if the efficiency calibration delta values (difference between the measured and the calibration curve efficiency) are greater than 5% for any one radionuclide, the calibration shall be deemed unusable. The QAPP further states that the 95% CL of fitted function over range shall be \leq 8%. The following gamma spectrometer detectors/geometries had one or more radionuclides with delta values greater than 5% and or a 95% CL (1.96 σ) greater than 8%:

Initial Calibration

Detector	Geometry	# Energy Peaks	Delta %	# Energy Peaks	95% CL	SDG Samples Affected	Qualifier
1	C6	1	6.3			SB-05-0505	X
2	C6	3	-9.4- 7.9			SB-05-0510	X
3	C6	1	18.8	8	8.4 – 10.6	SS-05-0915, SB-01-0501, SB-DUP-01	X
5	C6	2	-16.4- 6.5	9	8.8 – 14.7	SB-01-0102	X
4	Р3	1	18.3	1	8.8	SB-03-0815, SS-01-0825	X
10	P3	1	22.4	2	8.2-8.3	SS-DUP-03	X
12	Р3	1	24.5	1	9.6	SS-03-0810, SB-03-0102	X

Based on the CENWK any samples counted on detector with Delta% greater than 5% should be qualified as unusable (X). However, this parameter was not listed in the QAPP. The QAPP parameter, 95% CL of the fitted curve, does not have guidance on how to qualify results outside its limits. It is likely that both of these parameter deficiencies are due to the calibration being performed with less than the minimum 10,000 net counts in each peak in at least six calibration peaks that bracket the range of use as is specified in the DoD Quality Systems Manuel (QSM). The raw counts for the calibration were not provided, but this is evidenced by the uncertainty reported for the peaks. This means there is greater than normal uncertainty in the results due to an uncertain bias from calibration. The samples counted on theses detectors/geometries have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data

Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Continuing Calibration

For gamma spectrometry, the CENWK states that if the activity of each radioisotope in the calibration standard is not within 10% relative of the true, decay corrected activity, the calibration shall be deemed unusable. The QAPP also sets a limit of 10% relative to the true value. The following detector/geometry has one quantified peak outside of the 10% limit for the calibration verification check source:

Continuing Calibration Check

Detector	Geometry	# Energy Peaks	% Difference	SDG Samples Affected	Qualifier
3	C6	1	25.5	SS-05-0915, SB-01-0501, SB-DUP-01	X

Based on the CENWK any samples counted on detector with check source value of greater than 10% should be qualified as unusable (X). It is likely that this parameter's deficiencies are due to the calibration verification being performed with less than the minimum 10,000 net counts in each peak as is specified in the CENWK as the raw net counts for all peaks were less than the 10,000 net counts for all peaks and all detectors. This means there is greater than normal uncertainty in the results due to an uncertain bias from the calibration verification. These samples have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The project MDA goal of <1 pCi/g was not achieved for Thorium 234 (U-238) in the samples as shown in the following table:

RDLs Not Met

Sample ID	Analyte	CSU (pCi/g)	3.5*CSU (pCi/g)	RDL (pCi/g)
SS-05-0915	Th-234 (U-238)	1.59	5.565	1
SB-05-0510	Th-234 (U-238)	0.705	2.4675	1
SB-03-0815	Th-234 (U-238)	0.64	2.24	1
SB-01-0501	Th-234 (U-238)	1.11	3.885	1
SB-01-0102	Th-234 (U-238)	0.635	2.2225	1
SB-DUP-01	Th-234 (U-238)	1.07	3.745	1

The sample-specific critical level (L_c) was calculated as 1.65 CSU. It is recommended that sample concentrations less than the L_c include were qualified as non-detect (U). Please see table below.

Non-detected Results

Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	L _C (pCi/g)	Qualifier
SS-05-0915	Th-234(U-238)	-6.81	1.59	2.616	U
SS-DUP-03	U-235	0.0184	0.051	0.084	U
SB-05-0510	Th-234(U-238)	-1.29	0.705	1.16	U
SB-03-0815	Th-234(U-238)	0.790	0.64	1.053	U
SB-01-0501	Th-234(U-238)	-3.88	1.11	1.826	U
SB-01-0102	Th-234(U-238)	0.856	0.635	1.045	U
SB-DUP-01	Th-234(U-238)	-2.31	1.07	1.76	U

$$Lc = 1.65 * CSU$$

Method Blank

Thorium-234 was detected in the Method Blank for the gamma spectrometry analysis. It is recommended that sample results less than 5x the blank value be qualified as non-detect (U) as follows: SS-05-0915, SB-05-0505, SB-05-0510, SS-03-0810, SB-03-0815, SB-03-0102, SS-01-0825, SB-01-0501, SB-01-0102, and SB-DUP-01.

Laboratory Control Sample:

The percent recoveries for the laboratory control samples (LCSs) were within acceptable limits.

Duplicate Analysis:

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) *100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = Parent Sample Result

D = Field Split/Duplicate Parent Sample Result

 $U_S =$ Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the gamma spectrometry analysis have DERs with acceptable limits.

Identification and Quantification:

The following radionuclides: ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ²³⁴Th, ²²⁸Ac, ⁴⁰K, and ²³⁵U in the samples were reported. The energies of the radionuclides were less than 2 keV from their theoretical energies.

The laboratory used a peak search sensitivity factor of 3. When the peak search sensitivity factor is set at a value greater than 2.3, the peak search report will not report peaks as low as the MDA. Therefore, there is a greater than 5% chance that concentrations greater than the reported MDA will not appear in the peak search. However, the List Isotope Activities report calculates the net activities for the target analytes and this list has been used to report all target analyte activities. Therefore, the only impact is that small but detected non-target analytes may not have been reported.

Calculations

Ten percent of the results were recalculated. No issues were observed.

2.0 ALPHA SPECTROMETRY

Holding Time and Preservation

All holding times and preservation requirements were met for the alpha spectrometry analyses.

Initial Calibration

There were no problems observed in the initial calibration.

Continuing Calibration

There were no problems observed in the continuing calibration.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The project RDL of <0.5 pCi/g was met for all radionuclides of interest.

No sample results were seen above the project action limits.

The sample-specific critical level (L_c) was calculated as 1.65 CSU. It is recommended that sample concentrations less than the L_c include be qualified as non-detect (U). Please see table below.

Non-detected Results

Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	L _C (pCi/g)	Qualifier
SB-05-0510	U-235	0.0181	0.0221	0.0364	U

$$Lc = 1.65 * CSU$$

Matrix Spike

A non-SDG sample was used as a matrix spike. The percent recoveries were within acceptable limits.

Method Blank

There was no indication of blank contamination for the alpha spectrometry analysis.

Laboratory Control Sample:

The Uranium-234 percent recovery for LCS R3720206-2 was below the lower acceptable limit (75%-125%). All alpha Uranium-234 results associated with this LCS are recommended to be qualified as estimated (J): SS-05-0915, SB-05-0505, SB-05-0510, and SS-03-0810. Please see table below.

Radiochemistry - LCS % Recovery Calculation

Sample ID	Analyte	Found Value (pCi/g)	True Value (pCi/g)	LCS (% Recovery)
(LCS) R3720206-2	U-234	3.48	4.78	72.70%

Duplicate Analysis:

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = Parent Sample Result

D =Field Split/Duplicate Parent Sample Result

 $U_S =$ Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The DERs are within acceptable limits for the duplicate analyses for all alpha spectrometry analyses.

Sample-Specific Chemical Recovery:

The tracer recoveries were within acceptable limits.

Spectral Analysis:

No spectral interferences were observed in all of the alpha spectrometry analyses. There was a small amount of background noise, but nothing that would interfere with sample results. All detected radionuclide peaks of interest were within 40keV from their theoretical energies.

Quantification:

No quantification issues were observed.

Calculations

Ten percent of the results were recalculated. No issues were observed.

3.0 DATA INTERCOMPARISON

U Alpha to U Gamma:

In comparing the uranium results from alpha spectrometry analysis to the uranium results from gamma spectrometry, several samples were not in agreement. The following U-235 and U-238 sample results are recommended to be qualified as estimated (J) due to incomparable results. Please see table below.

Radiochemistry - Data Intercomparison

		Alp		oha Gamma				
Sample ID	·				CSU (pCi/g)	RPD%	DER	Qualifier
SS-05-0915	U-238	2.80	0.178	-6.81	1.59	479.3%	6.01	J
SB-05-0510	U-238	1.43	0.1285	-1.29	0.705	3885.71%	3.80	J
SS-03-0810	U-235	0.140	0.04315	0.370	0.052	90.20%	3.40	J
SB-03-0815	U-238	3.07	0.176	0.790	0.64	118.13%	4.87	J
SB-01-0501	U-238	0.634	0.079	-3.88	1.11	278.1%	4.06	J
SB-DUP-01	U-238	1.35	0.115	-2.31	1.07	762.5%	3.40	J

LEIDOS Laboratory Data Verification Checklist Project: Page 1 of 3 Staten Island Warehouse FUSRAP Site SDG No: Gamma Spec and Iso U **Analyte Group:** L1410508 Soil Sample Matrix: EDD (Y/N): **Disposition of Data Package:** NCR No. (if applicable): 1. Case Narrative Read SDG Case Narrative Check Laboratory sample ID vs. Project sample ID lists Check that discussion covers each analytical type included in the SDG Check for identified nonconforming items (e.g., missed holding times, etc.) Υ 2. Chain-of-Custody (COC) Check COC sample collection, shipping, and receiving dates Check that COC signature blocks are complete Check COC project sample IDs vs. Lab IDs and Result Form IDs Match COC requested analyses with Case Narrative and with data package content (Result Forms) 3. Analytical Results Form Verify that a Result Form is present for each sample and analysis On each Result Form check: SDG No. Sample ID Lab ID **Date Collected** Date Extracted Date Analyzed Result Matrix Result Units

			Page 2 of 3
1. Project Verific	cation		
	Check project ar	nalyte list vs. analytes reported	Y
	Check project re	quested methods vs. analytical methods performed	Y
	Check analyte re	eporting levels vs. project reporting level goals	<u>Y</u>
5. Analytical Qua	ality Control Informa	ation	
	Check for surrog	pate recovery results (e.g., org. form II)	Y
	Check for LCS re	esults (e.g., org. form III, inorg. form XII)	Y
	Check for metho	d blank results (e.g., org. form IV, inorg. form III)	Y
	Check for MS/MS	Y	
	Check for labora	Y	
	Check for Method Calibration and Run Documentation		Υ
	organic:	instrument performance check initial calibration data continuing calibration data internal standard areas internal standard retention times sample clean-up documentation (org. forms V through X)	N/A N/A N/A N/A N/A
	metal:	initial calibration data continuing calibration data method detection limits method linear range sample run sequence (inorg. forms II, IV, and VIII through XIV)	N/A N/A N/A N/A
	other: (Radiological)	initial calibration data continuing calibration data method detection limits sample run sequence	Y Y Y Y

		Page 3 of 3
6. Incorrect Inform	nation	
	Identify missing items or incorrect information (i.e., missing forms incorrect sample IDs, etc.)	s, unsigned forms,
	Contact the laboratory or project personnel to obtain missing info or correct information	rmation
Document of	corrections below: Sample SS-DUP-03 had the incorrect sample ID in the data	ľ
	package. The package has SB-DUP-03 while the COC has SS-DUP-03. This discrepancy does not affect the data.	
	The package was missing standard COAs and calibration documentation. A revision was issued by the laboratory cor	ntaining
	some of the missing items.	
7. Nonconforming	Items	
	Document all nonconforming items that can not be resolved above a Non-Conformance Report (NCR), complete form, file, and follows:	
	NCR # Item	
Reviewed By:	C. Martin Johnson, Jr. Date:	3/14/2022
QA Review By:	Date:	

LEIDOS Laboratory Data Package Detail Form

Project:	Staten Island Wareho	ouse FU	SRAP Site	Page	1 of 1
SDG No:	L1410508		Analyte Group:	Alpha Spec and Gamma	Spec
Field	Lab	Matrix	Analysis	Notes:	
Sample ID	ID#	0.1			
SS-05-0915	L1410508-01	Soil	Isotopic Uranium and Gamma Spect		
SB-05-0505	L1410508-02	Soil	Isotopic Uranium and Gamma Spect		
SB-05-0510	L1410508-03	Soil	Isotopic Uranium and Gamma Spect		
SS-03-0810	L1410508-04	Soil	Isotopic Uranium and Gamma Spect		
SB-03-0815	L1410508-05	Soil	Isotopic Uranium and Gamma Spect		
SB-03-0102	L1410508-06	Soil	Isotopic Uranium and Gamma Spect		
SS-01-0825	L1410508-07	Soil	Isotopic Uranium and Gamma Spect		
SB-01-0501	L1410508-08	Soil	Isotopic Uranium and Gamma Spect		
SB-01-0102	L1410508-09	Soil	Isotopic Uranium and Gamma Spect		
SB-DUP-01	L1410508-10	Soil	Isotopic Uranium and Gamma Spect		
SS-DUP-03	L1410508-11	Soil	Isotopic Uranium and Gamma Spect		
Comments:					_
					_
					_
					_
					_
					_
				ESE DM 05 Boy0 Jan	uan/21 2015

LEIDOS Radiochemical Data Review Checklist

Project:	Staten Island Warehouse FUS	RAP Site	Page 1 of 21			
SDG No:	L1410508	_ Analysis:	Isotopic Uranium and Gamma Spec.			
Laboratory:	Pace Analytical	Method: Matrix:	Alpha Spec and Gamma Spec Soil			
data have been sun	The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The general criteria used to assess the analytical integrity of the data were based on an examination of the following:					
	Case Narrative Analytical Holding Times Sample Preservation Method Calibration Method and Project Blanks	Chemical and/or Trac Matrix Spike Results Duplicate Error Ratios LCS Recoveries Re-analysis and Seco	s and RPDs			
Overall Remarks:	CENWK, QSM 5.3; see QAPP	for specific requireme	nts			
Results qualified as	indicated due to detection levels	s, low LCS recoveries,	and detetects in the MB.			
-						
Definition of Qualific						
	"U", not detected at the associa "UJ", not detected and associa "J", associated value estimated "R", associated value unusable "=", compound properly identifications."	ted value estimated Na I or analyte identity unfo				
Reviewed by:	C. Martin Johnson, Jr.		Date: 3/14/2022			
QA Reviewed by:	_		Date:			

LEIDOS	Page 2 of 21

Radioch I. Case Narrative	nemical Data Review Checklist
/erify direct statements ma	de within the Laboratory Case Narrative (note discrepancies).
Remarks:	
No issues were d	liscussed in the case narrative.
II. Re-analysis and Seco	ondary Dilutions
verify that re-analysis and s appropriate results to repor	secondary dilutions were performed and reported as necessary. Determine t.
Remarks:	
No isssues.	

Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

Deviations: None				
Sample #	Radionuclide:	Date Collected	Date Analyzed	Action

Actions:

- 1. If holding times are exceeded *, all results are qualified as estimated (J/UJ) *or improperly preserved
- 2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

Remarks:
All holding times were met by the laboratory.
Isotopic Uranium was performed in October of 2021.
Gamma Spec was performed in November of 2021.

LEIDOS Page 4 of 21

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

	Project Reporting	MDA	Samples Affected
Radionuclide	Level Goal	Achieved	
Isotopic U			See Below
Gamma Spec			See Below

Actions:	see CENWK 4.1.3.	3a and QAPP
----------	------------------	-------------

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.

 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).

4. If the sample result is negative and its absolute value exceeds the MDA, qualify the result (R).
Remarks:
Not all of the MDA's were met. The MDA of 1.0 pCi/g was not achieved
for Th-234 (U-238).
The following set of samples did not meet the MDA for Th-234 (U-238) for
samples SS-05-0915, SB-05-0510, SB-03-0815, SB-01-0501, SB-01-0102,
SB-DUP-01 and SS-DUP-03.
<u> </u>

Page 5 of 21

Radiochemical Data Review Checklist

V.A1. Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.2 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions:	200	CENWK	121	2 and	
ACHOHS.	SEEL		4.0	- / AIIO	LUAPP

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks:			
No issues.			

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.1 and QAPP

Initial efficiency calibration must be demonstrated on each detector for each geometry. Initial energy calibration must be demonstrated on each detector for each geometry. Resolution (FWHM) must be demonstrated for each detector for each geometry. Standards must be traceable and documentation must be provided. Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.2 and QAPP

Continuing calibration efficiency verification must be performed for each detector at least quarterly. Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency. Continuing energy calibration must be demonstrated to be within 10% of the initial calibration. Continuing FWHM must be demonstrated to be within 10% of the initial FWHM. A long background count for each detector must be performed monthly. Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions: see CENWK 4.3.1.1 and QAPP

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks: Based on the calibration and check sources used for the calibration of the gamma spect there may be more uncertainty in the results than expected.

These samples have been qualified as unusable(X) based on the CENWK guidance. Hoevever, it is recommended that the project consider these results as estimated and potentially usable for

the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only

marginally greater than would normally be allowed.

Page 7 of 21

RT

Std. RT

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis

see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide.

Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Acceptable

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Area

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

N/A

Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value
		+			
	qualify all affecte	ency or control charts of results as estimate ceptable, qualify the a	ed (J).		
Remarks:	N/A				

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

see CENWK 4.3.1.3.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters

see CENWK 4.3.1.3.1 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations: N/A

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value
					_

Actions: see CENWK 4.3.1.3 and QAPP

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	N/A			

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

see CENWK 4.2.1 and QAPP

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted.

If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory Method Blanks:

Date	Lab ID #	Radionulcide	Result and Error (pCi/g)	MDA Result and Error (pCi/g
2-Nov-21 Plo	MB R3724570-3 ease see next pag	<u>Th-234</u> e.	0.975 & 0.514	0.894 & 0.514
Associated	d Project Blanks (e.g.,	equipment rinsa	tes, etc.)	
Date	Lab ID#	Radionuclide	Result and Error	MDA Result and Error
Remarks:				
No issue SDG.	s for the alpha spe	ectrometry. No	project blanks asso	ociated with this

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

see CENWK 4.2.1 and QAPP

5x Calculate action levels based on $\frac{5x}{100}$ the highest blank concentration. see CENWK 4.2.1.3 and QAPP

Deviations:

	Max. Activity	Action Level	Samples Affected
Radionuclide	Detected		
Th-234	0.975 pCi/g	4.875 pCi/g	SS-05-0915
			SB-05-0505
			SB-05-0510
			SS-03-0810
			SB-03-0815
			SB-03-0102
			SS-01-0825
			SB-01-0501
			SB-01-0102
			SB-DUP-01

Actions: see CENWK 4.2.1 and QAPP

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

Example:	Blank Result	<u>Uncert.</u> `	MDA or	Normalized absolute difference	Qualification
acceptable	0.3	0.45	0.5	>2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
- 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:	The samples listed above had results less than 5x the blank results. Therefore,
they were qualifie	d as U.

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

see CENWK 4.1.2 and QAPP

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

			Action Taken
Radionuclide	Sample ID	%R	

Actions:	see	CE	N	W	/K	4.	1.2	and	QAF	P
----------	-----	----	---	---	----	----	-----	-----	-----	---

- 1. If recovery is between 30-110%, no qualification is necessary.
- 2. If recovery is between 20 10-30%, qualify the data as estimated (J).
- 3. If recovery is between 110-120150%, qualify the data as estimated (J).
- 4. If recovery is less than 20 10%, qualify the data as rejected (R).
- 5. If recovery if greater than 120 150%, qualify the data as rejected (R).

outside lab limits but within
20-120%: J if corrective actions
taken, otherwise R

Remarks:			
No iggues			
No issues.			

Page 12 of 21

Seneral LCS Criteria: percent recovery (%R)		aqueous 80-120	pha solid 70-130 Gamma, GPC, KPA: 80-120
_aboratory LCS Identifica	tions:		75-125
·			
Deviations:			
Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
U-234	18-Oct-21	72.70%	SS-05-0915
			SB-05-0505
			SB-05-0510
			SS-03-0810
			33-03-0010
A . 4*	051,04	16.4.0.0	
Actions: Alpha (Aqueous)	see CENW		
and Gamma, GPC, KPA		<u><50%</u> R	<u>50-79%</u> <u>121-150%</u> <u>>150%</u> J J R
and Gamma, Gr G, Ri 7		<50%	50-74% 126-150% >150%
Alpha (Solid)		<40%	<u>40-69%</u> <u>131-160%</u> >160%
		R	J J R
Remarks:			
	ahove we	re qual	lified as estimated "J".
•			
The gamma analys	15 1180 80	ceptabl	ie LOS recoveries.

Page 13 of 21

Radiochemical Data Review Checklist

IX. Matrix Spike Informa	tion		
General MS Criteria: percent recovery (%R)		Aqueous 50-120	Solid see CENWK 4.2.3 and QAPP 40-130
Project Sample(s) Spiked:		SB-05-0	0505
Deviations			
Deviations: Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
Nadioridolide	Date	7013	Samples Affected/Qualifiers Applied
	1		
Actions:		VK 4.2.3 ar	
Aqueous		<u><20%</u> R	20-49% 121-160% >160% >150% J use professional judgement R
all samples in batch			WK 4.2.3 and QAPP*
Solid		<u><10%</u> R	10-39% 131-160% >160% >150% J use professional judgement R
		ĸ	J J use professional judgement R
Remarks:			
No issues.			

Page 14 of 21

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis

see CENWK 4.2.4, 4.2.5 and QAPP

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER).

Duplicate actions should apply to all samples associated with the duplicate pair.

Duplicate actions should ap		impies ass		
Duplicate Sample Identification:		DUP R372	24570-4	
Deviations:				
Radionuclide	DER	RPD	RER	Samples Affected
2. If the DER is greater than3. If the RPD is greater than	ate activitie 1.00, qual 150% quali	es are withing ify the data fy the data	n 2X the Mi as estimate as estimate	
Remarks:				
No qualification of s	No qualification of samples due to RPD/NAD results.			

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

see CENWK 4.1.8, 4.1.9.2 and QAPP

Each alpha isotopic peak should be clear and free of interference from other energy peaks. Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Radionuclide	Deficiency	Samples Affected

Actions:	see CENWK 4.1.8, 4.1.9.2 and Q	(APP
----------	--------------------------------	------

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:		
No Issues.		

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density

see CENWK 4.1.9, 4.1.7 and QAPP

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations:

Radionuclide	Deficiency	Samples Affected

Actions:

see CENWK 4.1.9, 4.1.7 and QAPP

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 5. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:			
No issues.			

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy)

Data Intercomparison

Each sample tentatively identified radionuclide energy must be within 2 keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra.

All peaks greater than 3X the background standard deviation must be identified and quantified.

The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with

related radionuclides (e.g., parent daughter relationships). Results from different but comparable analytical techniques from different sub-sample aliquots of the same sample shall be compared for consistency.

Radionuclide	Deficiency	Samples Affected
U-235	Alpha and gamma results not comparable.	SS-05-0915: DVQ: J
U-238	Alpha and gamma results not comparable.	SB-05-0510: DVQ: J
U-235	Alpha and gamma results not comparable.	SS-03-0810: DVQ: J
U-238	Alpha and gamma results not comparable.	SB-03-0815: DVQ: J
U-238	Alpha and gamma results not comparable.	SB-01-0501: DVQ: J
U-238	Alpha and gamma results not comparable.	SB-DUP-01: DVQ: J

Actions:

Deviations:

4	Ovalify all tantatival	, identified radionuclides	an antimated (I)
		/ identilied fadionuciides	

use professional judgement to qualify the data.

3. If the reviewer judges anything regarding the identification of the tentatively identified radilnuclide

as suspect, qualify the data as rejected (R). If the results do not agree within the reported uncertainty of measurement results shall be qualified as "I" or "R" depending on the magnitude of the uncertainty.

Remarks:
The samples listed above were qualified as estimated due to incomparable results.

^{2.} If the energy of the tentatively identified radionuclide peak is more than 2 keV from the theoretical energy,

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

see CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Radionuclide/Method	Deficiency	Samples Affected

Actions: 1. Based on the instrument pe	see CENWK and QAPP rformance indicators, the data reviewer must use professional judgement ot qualify the data.
Remarks:	
No issues.	

LEIDOS Page 19 of 21

XV. Analyte Quanti Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Calculation Check: Radionuclide:	Method:	
	•	
Remarks:		
Calculation Check:		
alculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
calculation Check: adionuclide:	Method:	
Calculation Check:	Method:	

LEIDOS Page 20 of 21

XV. Analyte Quanti Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Calculation Check: Radionuclide:	Method:	
tadioridonae.	Wothou.	
	<u>'</u>	
Not Applicable		
Remarks:		
Calculation Check:		
Calculation Check:	Method:	
	Method:	
Radionuclide:	Method:	
	Method:	

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

Remarks:
Results qualified as indicated per CENWK and QSM 5.3

Company Name/Address:			Billing Inform	nation:					Analysis / Co	ntainer / Prese	vative		Chain of Custo	ody Page of	
Geo Consultants - Kevi	I, KY	-	Accounts	Payable		Pres							10)	
325 Kentucky Ave Kevil, KY 42053			325 Kentu Kevil, KY		san ya akam () a	Chk	E							ace Analytical	
leport to: David Lindsey	10-		Email To: lin	dseyd@geoc	onsultantscorp.co	om	oPres						Submitting a samp constitutes acknow	Mount Juliet, TN 37122 le via this chain of custody viedgment and acceptance of t inditions found at:	
Project Description: Staten Isl Warehouse, Port Richmond		City/State Collected: 5	talen Isl	and, New	Please Ci		PE-N						https://info.pacela terms.pdf	bs.com/hubfs/pas-standard-	
Phone: 270-462-3882	Client Project			Lab Project #			16ozHDPE-NoPres						SDG #	1065	
Collected by (print): Lindsuy	Site/Facility II	D#		P.O. #			U-ISO 1							EOCONKKY	
Collected by (signature):		Lab MUST Be		Quote #	12 T-		121,1						Template: T		
Immediately Packed on Ice N Y	Same D Next Di Two Da Three D	ay 10 Da		Date Re	sults Needed	No.	C-NORM21,						PM: 732 - D	onna Eidson	
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Cntrs	GSPEC						Shipped Via Remarks	Sample # (lab on	
55-16-21300	/	SCM	0-05	9-23	21 1300	1	X							-01	
SB-16-0235	V	SCM	2-3.5	9-23-	21 1325	1	X							-02	
55-17-1230	1	SCM	0-0,5	9-24-	21 1230	1	X							-03	
58-17-0102	/	SCM	1-2	9-24-1	21 1240	1	X						100	-04	
55-18-1250	V	SCM	0,-0,5	19-24-7	1 1250	1	X							-05	
58-18-0102	V	SCM	1-2'	9-24-	21 1300	1	X							-06	
55-19-1310	V	SCM	0-0,5	9-24-	2/ 13/0	1	X						1948 pt.	-07	
58-19-0102	V	SCM	1-2	9-24-	21 1315	1	X					1		-08	
SB-19-0203	1	SCM	2-3	9-24-	21 1320	1	X	-						-09	
SB- DUP-16	V	SCM	2-3.5	9/23/	21 1325	1	X			1				-10	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:no ice	required			lo m				pH _ Flow _	Temp_Other_	70	COC Sea COC Sig Bottles Correct	Sample Receipt 1 Present/Inta ned/Accurate: arrive intac bottles used	ict: _NP _Y	
DW - Drinking Water OT - Other UPS FedE				Tı	racking #								Sufficient volume sent: If Applicable VOA Zero Headspace:		
Relinquished by : (Signature) Date: Time: Received by: (Signature) 9-27-21 1945				eceived by: (Signa	ature)		-7	Trip Blank		/ W L / MeoH R	Preservation Correct/Checked: Y R RAD Screen <0.5 mR/hr:				
Relinquished by : (Signature)		Date:	Time		eceived by: (Signa	ature)		ja .	Temp: 47 22.7t	1=22.4	Received:	If preser	vation required by	Login: Date/Time	
Relinquished by : (Signature)	1	Date:	Time	e: R	eceived for lab by	4	Date: Time: Hold: 9/24/21 10:15						Condition: NCF / OK		

ompany Name/Address:	16.00		Billing Infor	rmation:					Analysis	/ Conta	ainer / Pre	servative			C	hain of Custody	Page or
Geo Consultants - Kev	il, KY	net e sein		s Payable tucky Ave	ere de s	Pres Chk					100		F Carried		3/1	Pac) ce Analytical [°]
25 Kentucky Ave evil, KY 42053		Kevil, KY 42053					10				71. 70		*				
eport to: David Lindsey			Email To: li	ndseyd@geocor			NoPres				Jan -				5	onstitutes acknowled ace Terms and Condi	ia this chain of custody Igment and acceptance of the
roject Description: Staten Isl Warehouse, Port Richmond			stater 1	sland N	Please C PT MT		DPE-			B			3		0	erms.pdf	10621
hone: 270-462-3882	FUSRAP	t#		Lab Project #			16ozHDPE-								-	SDG #U4	10031
ollected by (print): Bentlying	Site/Facility	D#		P.O.#		- Control	.U-ISO 3								1	Acctnum: GE	
collected by (agnature): mmediately Packed on Ice N Y	Same I Next D	Lab MUST Be Day Five ay 5 Day 10 Day	Day (Rad Only) Date Results Needed ay (Rad Only)			No.	GSPEC-NORM21,1								F	remplate: T19 Prelogin: P87 PM: 732 - Dor PB:	73895 nna Eidson
Sample ID	Comp/Grab	T	Depth	Date	Time	Cntrs	SSPEC			The state of the s			A			Shipped Via: F	Sample # (lab only)
SB-MS-18	G	SCM	1-2	9/24/2		1	х			9. Vá	A				112		-06
SB-MSD-18	G	SCM	1-2	9/24/2	1 1300	1	X						3/2				-06
SS-DUP-17	G	SCM	1-2	9/24/2	1 1240	1	X										-11
		SCM		1.7		1	X								2/3		
	The state of the s	SCM				1	X										
		SCM				1	X					The T	9 F T F		100 mg		
¥		SCM				1	X										
										押							
						196.53		100								- A	
Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:no ice required									pH Temp Flow Other				Sample Receipt Checklist COC Seal Present/Intact: NP COC Signed/Accurate: Bottles arrive intact: Correct bottles used:			
DW - Drinking Water OT - Other	Drinking Water Samples returned via:													Sufficient volume sent: If Applicable VOA Zero Headspace:			ble Y N
Relinquished by : (Signature)	Date: Time: Received by: (Signature) 9/21/21 1445							in and	Trip Bl	ank Rec		HCL / Meo TBR		Preservation Correct/Checked: Y N RAD Screen <0.5 mR/hr: Y N			
Relinquished by : (Signature)		Date:	Time	e: Rec	eived by: (Sign	ature)			Temp	74.1	C Bott = 27.8	les Receive	ed:	If preserv	vation r	required by Lo	ogin: Date/Time
Relinquished by : (Signature)		Date:	Tim	e: Rec	eived for lab b	-1/	turey	1	Date: Time: 1015			Hold:			Condition: NCF / OK 22		

SAMPLE RESULTS - 01

L1410531

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 13:00

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.82		0.324	0.23	10/19/2021 19:21	WG1754722
URANIUM-235	0.101	J	0.0767	0.0779	10/19/2021 19:21	WG1754722
URANIUM-238	2.09		0.326	0.176	10/19/2021 19:21	WG1754722
(T) URANIUM-232	70.7			30.0-110	10/19/2021 19:21	WG1754722

Cn

Radiochemistry by Method DOE Ga-01-R/901.1 (21 day)

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.43	X	0.425	0.663	11/03/2021 09:48	WG1759843
Bismuth-212	1.39	± X	1.59	2.9	11/03/2021 09:48	WG1759843
Bismuth-214 (Ra-226)	3.34	X	0.467	0.416	11/03/2021 09:48	WG1759843
Lead-212	1.26	X	0.272	0.358	11/03/2021 09:48	WG1759843
Lead-214	4.08	X	0.467	0.384	11/03/2021 09:48	WG1759843
Potassium-40	10.7	X	2.33	2.28	11/03/2021 09:48	WG1759843
Thallium-208	0.306	X	0.126	0.189	11/03/2021 09:48	WG1759843
Uranium-235	0.385	X(J)	0.154	0.26	11/03/2021 09:48	WG1759843
Thorium-234 (U-238)	-5.03	<u>(∪)</u> X	2.96	6.01	11/03/2021 09:48	WG1759843

SAMPLE RESULTS - 02

L1410531

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 13:25

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.04		0.223	0.176	10/19/2021 19:21	WG1754722
URANIUM-235	0.0321	<u>₹</u>	0.0441	0.0606	10/19/2021 19:21	WG1754722
URANIUM-238	1.16		0.219	0.137	10/19/2021 19:21	WG1754722
(T) URANIUM-232	78.8			30.0-110	10/19/2021 19:21	WG1754722

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.43	X	0.346	0.502	11/03/2021 09:47	WG1759843
Bismuth-212	2.21	X	1.14	1.81	11/03/2021 09:47	WG1759843
Bismuth-214 (Ra-226)	1.34	X	0.267	0.298	11/03/2021 09:47	WG1759843
Lead-212	1.33	X	0.199	0.197	11/03/2021 09:47	WG1759843
Lead-214	1.30	X	0.210	0.277	11/03/2021 09:47	WG1759843
Potassium-40	13.4	X	2.41	1.71	11/03/2021 09:47	WG1759843
Thallium-208	0.473	X	0.112	0.124	11/03/2021 09:47	WG1759843
Uranium-235	0.103	<u></u> → X	0.0725	0.128	11/03/2021 09:47	WG1759843
Thorium-234 (U-238)	1.18	± X(U)	0.767	1.61	11/03/2021 09:47	<u>WG1759843</u>

L1410531

Collected date/time: 09/24/21 12:30

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	24.9		1.02	0.111	10/19/2021 19:21	WG1754722
URANIUM-235	1.19	J	0.226	0.0719	10/19/2021 19:21	WG1754722
URANIUM-238	24.9	J	1.02	0.0881	10/19/2021 19:21	WG1754722
(T) URANIUM-232	72.5			30.0-110	10/19/2021 19:21	WG1754722

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.61	X	0.333	0.546	11/03/2021 10:02	WG1759843
Bismuth-212	2.76	X	1.25	2.11	11/03/2021 10:02	WG1759843
Bismuth-214 (Ra-226)	15.5	X	1.28	0.308	11/03/2021 10:02	WG1759843
Lead-212	1.64	X	0.235	0.304	11/03/2021 10:02	WG1759843
Lead-214	17.2	X	1.48	0.335	11/03/2021 10:02	WG1759843
Potassium-40	11.1	X	1.77	1.92	11/03/2021 10:02	WG1759843
Thallium-208	0.337	X	0.107	0.174	11/03/2021 10:02	WG1759843
Uranium-235	2.17	X(J)	0.230	0.23	11/03/2021 10:02	WG1759843
Thorium-234 (U-238)	12.3	X(J)	4.51	4.29	11/03/2021 10:02	WG1759843

L1410531

Collected date/time: 09/24/21 12:40

Radiochemistry by Method D3972 U-02									
	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>			
Analyte	pCi/g		+/-	pCi/g	date / time				
URANIUM-234	22.0		0.841	0.144	10/19/2021 19:21	WG1754722			
URANIUM-235	0.970		0.179	0.0669	10/19/2021 19:21	WG1754722			
URANIUM-238	22.1		0.839	0.0843	10/19/2021 19:21	WG1754722			
(T) URANIUM-232	77.4			30.0-110	10/19/2021 19:21	WG1754722			

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	2.21	X	0.577	0.99	11/03/2021 10:04	WG1759843
Bismuth-212	1.14	⊎X	2.17	3.95	11/03/2021 10:04	WG1759843
Bismuth-214 (Ra-226)	19.8	X	1.64	0.526	11/03/2021 10:04	WG1759843
Lead-212	1.59	X	0.353	0.501	11/03/2021 10:04	WG1759843
Lead-214	21.8	X	1.80	0.535	11/03/2021 10:04	WG1759843
Potassium-40	9.98	X	2.48	3.21	11/03/2021 10:04	WG1759843
Thallium-208	0.569	X	0.174	0.275	11/03/2021 10:04	WG1759843
Uranium-235	1.28	X	0.899	0.346	11/03/2021 10:04	WG1759843
Thorium-234 (U-238)	18.5	X(J)	6.89	6.04	11/03/2021 10:04	<u>WG1759843</u>

L1410531

Collected date/time: 09/24/21 12:50

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.03		0.218	0.171	10/20/2021 07:56	WG1754722
URANIUM-235	0.0309	<u>J</u>	0.0429	0.059	10/20/2021 07:56	WG1754722
URANIUM-238	1.18		0.217	0.133	10/20/2021 07:56	WG1754722
(T) URANIUM-232	83.1			30.0-110	10/20/2021 07:56	WG1754722

^¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.02	X	0.257	0.385	11/03/2021 09:56	WG1759843
Bismuth-212	1.51	X	0.893	1.49	11/03/2021 09:56	WG1759843
Bismuth-214 (Ra-226)	1.00	X	0.209	0.22	11/03/2021 09:56	WG1759843
Lead-212	1.15	X	0.197	0.215	11/03/2021 09:56	WG1759843
Lead-214	1.30	X	0.203	0.182	11/03/2021 09:56	WG1759843
Potassium-40	9.59	X	1.69	1.04	11/03/2021 09:56	WG1759843
Thallium-208	0.391	X	0.0954	0.102	11/03/2021 09:56	WG1759843
Uranium-235	0.228	X(J)	0.0857	0.134	11/03/2021 09:56	WG1759843
Thorium-234 (U-238)	-0.109	(U) X	1.12	2.55	11/03/2021 09:56	WG1759843

L1410531

Collected date/time: 09/24/21 13:00

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	0.838		0.195	0.15	10/19/2021 19:21	WG1754722
URANIUM-235	0.00432	U	0.0399	0.0737	10/19/2021 19:21	WG1754722
URANIUM-238	0.756		0.168	0.0841	10/19/2021 19:21	WG1754722
(T) URANIUM-232	89.0			30.0-110	10/19/2021 19:21	WG1754722

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.11		0.219	0.289	11/03/2021 10:44	WG1759843
Bismuth-212	1.29		0.640	1.08	11/03/2021 10:44	WG1759843
Bismuth-214 (Ra-226)	1.22		0.173	0.142	11/03/2021 10:44	WG1759843
Lead-212	1.05		0.147	0.136	11/03/2021 10:44	WG1759843
Lead-214	1.44		0.172	0.163	11/03/2021 10:44	WG1759843
Potassium-40	12.1		1.68	1.23	11/03/2021 10:44	WG1759843
Thallium-208	0.376		0.0711	0.0763	11/03/2021 10:44	WG1759843
Uranium-235	0.203	₹	0.232	0.413	11/03/2021 10:44	WG1759843
Thorium-234 (U-238)	1.27	<u></u> ∙ U	0.787	1.36	11/03/2021 10:44	WG1759843

L1410531

Collected date/time: 09/24/21 13:10

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.962		0.193	0.158	10/19/2021 19:21	WG1754722
URANIUM-235	0.0521	₹	0.0679	0.0933	10/19/2021 19:21	WG1754722
URANIUM-238	0.955		0.182	0.132	10/19/2021 19:21	WG1754722
(T) URANIUM-232	79.2			30.0-110	10/19/2021 19:21	WG1754722

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.893	X	0.151	0.202	11/03/2021 10:48	WG1759843
Bismuth-212	1.37	X	0.537	0.819	11/03/2021 10:48	WG1759843
Bismuth-214 (Ra-226)	1.23	X	0.139	0.114	11/03/2021 10:48	WG1759843
Lead-212	1.30	X	0.133	0.107	11/03/2021 10:48	WG1759843
Lead-214	1.25	X	0.132	0.122	11/03/2021 10:48	WG1759843
Potassium-40	12.2	X	1.23	0.751	11/03/2021 10:48	WG1759843
Thallium-208	0.283	X	0.0495	0.0571	11/03/2021 10:48	WG1759843
Uranium-235	0.130	X	0.0521	0.0863	11/03/2021 10:48	WG1759843
Thorium-234 (U-238)	1.45	$\stackrel{\downarrow}{=} X(U)$	0.912	1.46	11/03/2021 10:48	WG1759843

L1410531

Collected date/time: 09/24/21 13:15

Radiochemistry by Method D3972 U-02									
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch			
Analyte	pCi/g		+/-	pCi/g	date / time				
URANIUM-234	0.694		0.204	0.187	10/20/2021 07:56	WG1754722			
URANIUM-235	0.0974		0.0693	0.0674	10/20/2021 07:56	WG1754722			
URANIUM-238	1.01		0.214	0.135	10/20/2021 07:56	WG1754722			
(T) URANIUM-232	<i>7</i> 5. <i>7</i>			30.0-110	10/20/2021 07:56	WG1754722			

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.830	X	0.272	0.452	11/03/2021 10:51	WG1759843
Bismuth-212	1.21	±X	0.865	1.47	11/03/2021 10:51	WG1759843
Bismuth-214 (Ra-226)	1.14	X	0.219	0.214	11/03/2021 10:51	WG1759843
Lead-212	1.19	X	0.172	0.161	11/03/2021 10:51	WG1759843
Lead-214	1.29	X	0.193	0.225	11/03/2021 10:51	WG1759843
Potassium-40	9.48	X	1.85	1.32	11/03/2021 10:51	WG1759843
Thallium-208	0.303	X	0.0902	0.118	11/03/2021 10:51	WG1759843
Uranium-235	0.152	X	0.0625	0.101	11/03/2021 10:51	WG1759843
Thorium-234 (U-238)	0.818	± X(U)	0.624	1.43	11/03/2021 10:51	<u>WG1759843</u>

Collected date/time: 09/24/21 13:20

L1410531

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.790		0.207	0.176	10/20/2021 07:56	WG1754722
URANIUM-235	0.0346	<u></u> <u></u> −	0.0474	0.0652	10/20/2021 07:56	WG1754722
URANIUM-238	0.998		0.202	0.101	10/20/2021 07:56	WG1754722
(T) URANIUM-232	80.2			30.0-110	10/20/2021 07:56	WG1754722

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.08	X	0.289	0.413	11/03/2021 11:53	WG1759843
Bismuth-212	1.40	₹X	1.07	1.89	11/03/2021 11:53	WG1759843
Bismuth-214 (Ra-226)	0.991	X	0.235	0.282	11/03/2021 11:53	WG1759843
Lead-212	1.18	X	0.179	0.18	11/03/2021 11:53	WG1759843
Lead-214	1.02	X	0.185	0.263	11/03/2021 11:53	WG1759843
Potassium-40	13.9	X	2.40	1.5	11/03/2021 11:53	WG1759843
Thallium-208	0.340	X	0.103	0.132	11/03/2021 11:53	WG1759843
Uranium-235	0.0650	<u></u> ₹X	0.0628	0.114	11/03/2021 11:53	WG1759843
Thorium-234 (U-238)	0.855	$\frac{1}{2}X(U)$	0.666	1.48	11/03/2021 11:53	WG1759843

L1410531

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 13:25

	Resu	lt <u>Qua</u>	alifier l	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		-	+ / -	pCi/g	date / time	
URANIUM-234	0.92	3	(0.194	0.124	10/20/2021 07:56	WG1754722
URANIUM-235	0.03	5 <u></u>	IJ (0.0558	0.0833	10/20/2021 07:56	WG1754722
URANIUM-238	0.87		(0.176	0.0595	10/20/2021 07:56	WG1754722
(T) URANIUM-232	84.2				30.0-110	10/20/2021 07:56	WG1754722

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.25	X	0.311	0.465	11/03/2021 11:56	WG1759843
Bismuth-212	0.478	U X	0.984	1.89	11/03/2021 11:56	WG1759843
Bismuth-214 (Ra-226)	1.07	X	0.231	0.258	11/03/2021 11:56	WG1759843
Lead-212	1.53	X	0.241	0.229	11/03/2021 11:56	WG1759843
Lead-214	1.14	X	0.200	0.217	11/03/2021 11:56	WG1759843
Potassium-40	15.8	X	2.34	1.17	11/03/2021 11:56	WG1759843
Thallium-208	0.441	X	0.106	0.113	11/03/2021 11:56	WG1759843
Uranium-235	0.131	<u></u> X	0.0905	0.156	11/03/2021 11:56	WG1759843
Thorium-234 (U-238)	0.408	<u>(U)</u> X	1.20	2.62	11/03/2021 11:56	WG1759843

SS-DUP-17

SS-DUP-1/ 09/24/21 Collected date/time: 09/23/21 12:40

SAMPLE RESULTS - 11

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	14.3		0.776	0.136	10/20/2021 07:56	WG1754722
URANIUM-235	0.526		0.155	0.0877	10/20/2021 07:56	WG1754722
URANIUM-238	14.6	(X)	0.781	0.1	10/20/2021 07:56	WG1754722
(T) URANIUM-232	83.7			30.0-110	10/20/2021 07:56	WG1754722

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.72	X	0.407	0.665	11/03/2021 10:51	WG1759843
Bismuth-212	2.39	X	1.40	2.39	11/03/2021 10:51	WG1759843
Bismuth-214 (Ra-226)	9.70	X	0.846	0.329	11/03/2021 10:51	WG1759843
Lead-212	2.25	X	0.297	0.335	11/03/2021 10:51	WG1759843
Lead-214	11.8	X	0.998	0.381	11/03/2021 10:51	WG1759843
Potassium-40	8.94	X	1.96	2.43	11/03/2021 10:51	WG1759843
Thallium-208	0.561	X	0.131	0.175	11/03/2021 10:51	WG1759843
Uranium-235	0.0293	<u></u> X	0.683	0.257	11/03/2021 10:51	WG1759843
Thorium-234 (U-238)	-5.20	⊎ (X)	3.39	6.43	11/03/2021 10:51	WG1759843

Leidos Radiological Analytical Data Validation

Event Name: Staten Island Warehouse FUSRAP Site

SDG Number: <u>L1410531</u> Laboratory: <u>Pace Analytical</u>

Analysis: Gamma Spec/Iso U (soil)

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 3 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. The requested analyses include: ^{234/235/238}U by alpha spectrometry (Method D3972 U-02); ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ²³⁴Th, ²²⁸Ac, ⁴⁰K, and ²³⁵U by gamma spectrometry (Method DOE Ga-01-R/901.1 (21 day)). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Re-analysis and Secondary Dilution

Case Narrative

Analytical Holding Times and Preservation Minimum Detectable Activities (MDAs)

Method Calibration/Calibration Verification Reporting Levels

Method Blanks
Chemical/Spectroscopic Separation
Background Checks
Specificity (alpha spectroscopy)
Analytical Tracer Recoveries
Project Duplicates and Splits
MS/MSD Recoveries and Differences
Target Redionvelide Spectroscopic

MS/MSD Recoveries and Differences

LCS/LCSD Recoveries and Differences

Target Radionuclide Spectroscopic

Identification (gamma spectroscopy)

Laboratory Duplicates/Replicates Data Intercomparison

Definition of Data Validation Qualifiers:

"U" - Indicates a normal, non-detected (< critical value) result.

"J" - Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable depending upon the intended use of the data and reason for data rejection.

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September, 2021.

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District, September 2017.

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February, 2018.

Sample Name Cross-Reference

Project Sample Name	Matrix	Lab Sample Name
SS-16-1300	Soil	L1410531-01
SB-16-0235	Soil	L1410531-02
SS-17-1230	Soil	L1410531-03
SB-17-0102	Soil	L1410531-04
SS-18-1250	Soil	L1410531-05
SB-18-0102	Soil	L1410531-06
SS-19-1310	Soil	L1410531-07
SB-19-0102	Soil	L1410531-08
SB-19-0203	Soil	L1410531-09
SB-DUP-16	Soil	L1410531-10
SS-DUP-17	Soil	L1410531-11

Validation Report By:	Amanda Leigh Dick (print)	03/08/2022 Date
	amanda Leigh Dick	
	(sign)	
Peer Reviewed By:	Thomas L. Rucker, Ph.D.	3/10/22
	(print)	Date
	72 Rucker	
		(sign)

1.0 GAMMA SPECTROMETRY ANALYSIS

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

For gamma spectrometry, the CENWK states that if the efficiency calibration delta values (difference between the measured and the calibration curve efficiency) are greater than 5% for any one radionuclide, the calibration shall be deemed unusable. The QAPP further states that the 95% CL of fitted function over range shall be \leq 8%. The following gamma spectrometer detectors/geometries had one or more radionuclides with delta values greater than 5% and or a 95% CL (1.96 σ) greater than 8%:

Initial Calibration

Detector	Geometry	# Energy Peaks	Delta %	# Energy Peaks	95% CL	SDG Samples Affected	Qualifier
1	C6	1	6.3			SB-16-0235, SB-19-0102, SB-19-0203	X
5	C6	2	-16.4- 6.5	9	8.8 – 14.7	SS-18-1250, SB-DUP-16	X
11	C6	1	-5.3	2	8.2 – 12.7	SS-19-1310	X
2	Р3	1	5.3			SS-16-1300, SS-DUP-17	X
4	P3	1	18.3	1	8.8	SB-17-0102	X
12	P3	1	24.5	1	9.6	SS-17-1230	X

Based on the CENWK any samples counted on detector with Delta% greater than 5% should be qualified as unusable (X). However, this parameter was not listed in the QAPP. The QAPP parameter, 95% CL of the fitted curve, does not have guidance on how to qualify results outside its limits. It is likely that both of these parameter deficiencies are due to the calibration being performed with less than the minimum 10,000 net counts in each peak in at least six calibration peaks that bracket the range of use as is specified in the DoD Quality Systems Manuel (QSM). The raw counts for the calibration were not provided, but this is evidenced by the uncertainty reported for the peaks. This means there is greater than normal uncertainty in the results due to an uncertain bias from calibration. The samples counted on theses detectors/geometries have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Continuing Calibration

For gamma spectrometry, the CENWK states that if the activity of each radioisotope in the calibration standard is not within 10% relative of the true, decay corrected activity, the calibration shall be deemed unusable. The QAPP also sets a limit of 10% relative to the true value. The following detector/geometry has one quantified peak outside of the 10% limit for the calibration verification check source:

Continuing Calibration

Detector	Geometry	# Energy Peaks	% Differences	SDG Samples Affected	Qualifier				
1	C6	1	-10.6	SB-16-0235, SB-19-0102, SB-19-0203	X				

Based on the CENWK any samples counted on detector with check source value of greater than 10% should be qualified as unusable (X). It is likely that this parameter's deficiencies are due to the calibration verification being performed with less than the minimum 10,000 net counts in each peak as is specified in the CENWK as the raw net counts for all peaks were less than the 10,000 net counts for all peaks and all detectors. This means there is greater than normal uncertainty in the results due to an uncertain bias from the calibration verification. These samples have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The project RDL goal of <1 pCi/g was not met for the following samples: SS-16-1300, SS-18-1250, SB-DUP-16, and SS-DUP-17.

Samples That Did Not Meet The RDL

Sample ID	Analyte	CSU (pCi/g)	3.5*CSU	RDL (pCi/g)
SS-16-1300	Th-234	1.4815	5.18525	1
SS-18-1250	Th-234	0.5595	1.95825	1
SB-DUP-16	Th-234	0.6005	2.10175	1
SS-DUP-17	Th-234	1.696	5.936	1

The following samples had results that exceeded the project action limits: SS-16-1300: Ra-226 γ 3.34 pCi/g, SS-17-1230: Ra-226 γ 15.5 pCi/g, SB-17-0102: Ra-226 γ 19.8 pCi/g, SS-16-1300: Ra-226 γ 3.34 pCi/g, SS-DUP-17: Ra-226 γ 9.70 pCi/g.

No samples exhibited excess uncertainty:

The following samples had negative results with uncertainties smaller than their absolute value. The CENWK states these results need to be rejected. However, since these results are likely being influenced by a slight negative bias and may still be useful, professional judgment was used to qualify results. SS-16-1300: Thorium-234 and SS-DUP-17: Thorium-234.

It is recommended that sample concentrations less than the L_c be qualified as non-detect (U). The following results are qualified as U: SS-16-1300: Th-234; SS-18-1250: Th-234; SB-DUP-16: Th-234; and SB-DUP-17: Th-234.

Method Blank

Thorium-234 was detected in the Method Blank for the gamma spectrometry analysis. To be conservative, the action level was calculated based on 5X the highest blank concentration. It is recommended that Th-234 results that are greater than 5x but less than 10x the blank result be qualified as estimated (J) as follows: SS-17-1230 and SB-17-0102. It is also recommended that Th-234 results that are less than 5x the blank result be qualified as non-detect (U) as follows: SB-18-0102, SS-19-1310, SB-19-0102.

Laboratory Control Sample:

The percent recoveries for the laboratory control samples (LCSs) were within acceptable limits.

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD.

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: $S = D = U_S = U_S$ Parent Sample Result

Field Split/Duplicate Parent Sample Result

Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the gamma spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (<25%, <3).

All field duplicate results were within a factor of 4 from the original result.

Identification and Quantification:

The following target radionuclides: ²²⁸Ac, ²²⁶Ra, ⁴⁰K, ²³⁴Th, and ²³⁵U in the samples were reported. The energies of the radionuclides were less than 2 keV from their theoretical energies.

The laboratory used a peak search sensitivity factor of 3. When the peak search sensitivity factor is set at a value greater than 2.3, the peak search report will not report peaks as low as the MDA. Therefore, there is a greater than 5% chance that concentrations greater than the reported MDA will not appear in the peak search. However, the List Isotope Activities report calculates the net activities for the target analytes and this list has been used to report all target analyte activities. Therefore, the only impact is that small but detected non-target analytes may not have been reported.

2.0 ALPHA SPECTROMETRY

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

The initial calibration met project acceptance criteria for all reported analytes.

Continuing Calibration

The continuing calibration met project acceptance criteria for all reported analytes.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The project RDL goal of <0.5 pCi/g was achieved for all radionuclides of interest.

The following samples had results that exceeded the project action limits: SS-17-1230: U-234 α 24.9 pCi/g, U-235 α 1.19 pCi/g, U-238 α 24.9 pCi/g, SB-17-0102: U-234 α 22.0 pCi/g, U-235 α 0.970 pCi/g, U-238 α 22.1 pCi/g, and SS-DUP-17: U-234 α 14.3 pCi/g, U-235 α 0.526 pCi/g, U-238 α 14.6 pCi/g.

No sample results exhibited excess uncertainty.

The sample-specific critical level (L_c) was calculated as 1.65 times the sample uncertainty. It is recommended that sample concentrations less than the L_c are qualified as non-detect (U) as follows:

Sample-specific Critical Level (L_C)

Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	Lc (pCi/g)	Qualifier
SB-18-0102	U-235	0.00432	0.015	0.02475	U
SB-DUP-16	U-235	0.0315	0.021	0.03465	U

Matrix Spike

The percent recoveries for the MS/MSD were within acceptable limits for the alpha spectrometry analysis.

Method Blank

There was no indication of blank contamination in the Method Blank.

Laboratory Control Sample:

The percent recoveries for the LCSs were within acceptable limits for the alpha spectrometry analysis.

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD.

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) *100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = Parent Sample Result

D = Field Split/Duplicate Parent Sample Result

 $U_S =$ Parent Sample CSU (1 sigma)

 U_D = Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the alpha spectrometry analysis have RPDs and/or NADs (DERS) with acceptable limits (<20%, <3).

All field duplicate results were within a factor of 4 from the original result.

Sample-Specific Chemical Recovery:

The tracer recoveries were within acceptable limits.

Spectral Analysis:

There was significant trailing in the Uranium-234 and U-238 peaks in samples SS-17-1230, SB-17-0102, SS-19-1310, and SS-DUP-17. The LCS, MS, and MSD also showed some peak tailing. However, there was no peak interference. Therefore, no qualification is required. The following samples had Uranium-235 peak energies outside 40 keV from the theoretical energy: SB-18-0102 and SB-19-0203. Per CENWK guidance, these results were not rejected because they were non-detect. The following samples had Uranium-232 peak energies outside 40 keV from the theoretical energy: SS-17-1230 and SS-19-1310. However, peak identification was not impacted. Therefore, no qualification is required.

Quantification:

No quantification issues were observed.

3.0 DATA INTERCOMPARISON

U Alpha to U Gamma:

In comparing the uranium results from alpha spectrometry analysis to the uranium results from gamma spectrometry, several samples were not in agreement indicating subsampling representativeness problems. The following sample results are recommended to be qualified as either estimated (J) or unusable (X), depending on the magnitude of the difference, due to incomparable results:

Radiochemistry - Data Intercomparison

		Al	pha	Gamma				
Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	Result (pCi/g)	CSU (pCi/g)	RPD%	DER	Qualifier
SS-16-1300	U-235	0.101	0.027	0.385	0.077	116.87%	3.481	J
SS-17-1230	U-235	1.19	0.088	2.17	0.115	58.33%	6.768	J
SS-18-1250	U-235	0.0309	0.017	0.228	0.04285	152.26%	4.276	J
SS-17-1230	U-238	24.9	0.51	12.3	2.255	67.74%	5.450	J
SS-DUP-17	U-238	14.6	0.3905	-5.2	1.695	421.28%	11.383	X

¹The U-238 results for gamma were taken from the Th-234 daughter measurement

LEIDOS Laboratory Data Verification Checklist						
Project:	Staten Island Wareho	ouse FUSRAP Site	Page 1	of 3		
SDG No:	L1410531	Analyte Group: Sample Matrix:	Gamma Spectroscopy and Isoto	pic Uranium		
Disposition of I NCR No. (if app	_	N/A N/A	<u>Y</u>	- - -		
1. Case Narrative						
	Read SDG Case N	arrative		Y		
	Check Laboratory	sample ID vs. Project sample	ID lists	Y		
	Check that discuss	ion covers each analytical typ	pe included in the SDG	Y		
	Check for identified	d nonconforming items (e.g.,	missed holding times, etc.)	<u>Y</u>		
2. Chain-of-Custo	• , ,					
	·	e collection, shipping, and re	ceiving dates	<u>Y</u>		
	Check that COC si	gnature blocks are complete		Y		
	Check COC projec	t sample IDs vs. Lab IDs and	Result Form IDs	Y		
	Match COC reques data package conte	sted analyses with Case Narr ent (Result Forms)	ative and with	Y		
3. Analytical Resu	lts Form					
	Verify that a Result	Form is present for each sa	mple and analysis	Y		
	On each Result Fo	rm check: SDG No. Sample ID Lab ID Date Collected Date Extracted Date Analyzed Result Matrix Result Units		Y Y Y Y Y Y Y		

			Page 2 of	3
4. Project Verifica	ation			
	Check project an	alyte list vs. analytes reported	_	Y
	Check project red	quested methods vs. analytical methods performed	 	Y
	Check analyte re	porting levels vs. project reporting level goals	_	Y
5. Analytical Qua	ality Control Informa	ition		
	Trace Check for surrog	rs ate recovery results (e.g., org. form II)	-	Y
	Check for LCS re	esults (e.g., org. form III, inorg. form XII)	_	Y
	Check for method	d blank results (e.g., org. form IV, inorg. form III)	_	Y
	Check for MS/MSD results (e.g., inorg. form V)			
	Check for laborate	tory duplicate results (e.g., inorg. form VI)	_	Y
	Check for Method	d Calibration and Run Documentation		
	organic:	instrument performance check	_	N/A
		initial calibration data	_	N/A
		continuing calibration data	_	N/A
		internal standard areas	_	N/A
		internal standard retention times	_	N/A
		sample clean-up documentation		N/A
		(org. forms V through X)		
	metal:	initial calibration data	_	N/A
		continuing calibration data	_	N/A
		method detection limits	_	N/A
		method linear range	_	N/A
		sample run sequence	_	N/A
		(inorg. forms II, IV, and VIII through XIV)	_	1 11 1
	other:	initial calibration data		Y
	(Radiological)	continuing calibration data		Ÿ
	- ,	method detection limits	_	Y
		sample run sequence	_	Y
			_	

		- Page	e 3 of 3
6. Incorrect Inform	ation		
	Identify missing items or incorrect information (i.e incorrect sample IDs, etc.)	e., missing forms, unsigne	ed forms,
	Contact the laboratory or project personnel to obtor correct information	ain missing information	
Document of	corrections below:		
2000	Sample DUP-17 has the incorrect collected date	e of 09/23/2021. Accordi	ng to
	the COC, the sample was collected on 09/24/2021		_
	will not impact the data results.		
	The calibration documentation are missing for bo Calibration standard COAs are not found in the pa		~
	A revision was issued by the laboratory with some	of the missing items	<u>.</u>
7. Nonconforming	Items		
3			
	Document all nonconforming items that can not be		
	a Non-Conformance Report (NCR), complete form	m, file, and follow-up	
	NCR # Item		
		_	
Paviowad Pv	amanda Leigh Dick	Date:	03/08/2022
Reviewed By:	very and	Dale	

Date:

ESE DM-05 Rev0 January 31, 2015

QA Review By:

LEIDOS Laboratory Data Package Detail Form Project: Staten Island Warehouse FUSRAP Site Page 1 of 1 SDG No: **Analyte Group:** Gamma Spectroscop and IIsotopic Uranium L1410531 Field Lab Matrix Analysis Notes: Sample ID ID# L1410531-01 SS-16-1300 Soil Gamma Spec. & Iso U SB-16-0235 Gamma Spec. & Iso U L1410531-02 Soil SS-17-1230 L1410531-03 Soil Gamma Spec. & Iso U SB-17-0102 L1410531-04 Soil Gamma Spec. & Iso U SS-18-1250 1410531-05 Soil Gamma Spec. & Iso U SB-18-0102 L1410531-06 Soil Gamma Spec. & Iso U SS-19-1310 L1410531-07 Soil Gamma Spec. & Iso U Gamma Spec. & Iso U L1410531-08 Soil SB-19-0102 L1410531-09 Soil Gamma Spec. & Iso U SB-19-0203 SB-DUP-16 L1410531-10 Soil Gamma Spec. & Iso U SS-DUP-17 Gamma Spec. & Iso U 1410531-11 Soil Comments:

LEIDOS Radiochemical Data Review Checklist

Project:	Staten Island Warehouse FUSRAF		Page 1 of 21
SDG No:	L1410531	_ Analysis: Method:	Gamma Spectroscopy and Isotopic Uranium DOE Ga-01-R/901.1 and D3972 U-02
Laboratory:	Pace Analytical	Matrix:	Soil
data have been sun	ckage has been reviewed and the nmarized. The general criteria unation of the following:		ntrol/quality assurance performance alytical integrityof the data were
	Case Narrative	Chemical and/or Tra	
	Analytical Holding Times	Matrix Spike Results	
	Sample Preservation Method Calibration	Duplicate Error Ration LCS Recoveries	us anu RFUs
	Method and Project Blanks	Re-analysis and Sec	condary Dilution
Overall Remarks:	CENWK, QSM 5.3; see QAPF	of for specific requirem	ents
Sample results au	alified as indicated due to U-	235/U-238 compara	bility and detects in the Method Blank
		*	_
Definition of Qualifie			
	"U", not detected at the associ		N/A
	"J", associated value estimate	d	
	"R", associated value unusable "=", compound properly identif		ıfounded
Reviewed by:	amende Leig	h Did	Date: 03/08/2022
QA Reviewed by:			Date:

LEIDOS Page 2 of 21

Radiochemical Data Review Checklist

I. Case Narrative
Verify direct statements made within the Laboratory Case Narrative (note discrepancies).
Remarks:
Several sample results were above the project action limits. Please see page 4 of this report. The RDL w
not met for Th-234 for several samples. Please see calculation sheets.
Th-234 was detected in the Gamma Method Blank. See Blank section of this report.
Several samples had Uranium-235/U-238 results that were incomparable between the two methods used for this SDG .
The following samples had negative results with uncertainties less than the absolute value: SS-DUP-17
and SS-16-1300 .
The alpha spectroscopy spectrum for the Laboratory Control Sample had poor resolution. In addition, the
following samples had tailing from the U-234 and U-238 peaks: MS R3724488-3, MSD R3724488-4,
SS-17-1230, SB-17-0102, SS-19-1310, and SS-DUP-17. There was no indication that manual
integration was performed on these peaks.
The following samples had Uranium-235 peak energies outside of 40 keV of the theoretical peak energy:
SB-18-0102 & SB-19-0203. Results were less than the MDA, so no qualification was needed.
II. Re-analysis and Secondary Dilutions
Verify that re-analysis and secondary dilutions were performed and reported as necessary. Determine appropriate results to report.
Remarks: SB-19-0102 was re-analyzed due to the sample position not being under detector. The
re-analysis is reported.

Page 3 of 21

LEIDOS

Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

Deviations. None	ı	ı	ı	
Sample #	Radionuclide:	Date Collected	Date Analyzed	Action

Λ -	4:	_		_	_
Ac	•т	n	n	c	-
-		u		-	-

 If holding times are exceeded 	'. all results are	qualified as estimated	(J/UJ)	*or improperly preserved
---	--------------------	------------------------	--------	--------------------------

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

Remarks:	All sample holding times were met and the samples were properly preserved.

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
Potassium-40	<1 pCi/g	2.28 pCi/g	SS-16-1300
Thorium-234	<1 pCi/g	6.01 pCi/g	SS-16-1300
Potassium-40	<1 pCi/g	1.71 pCi/g	SB-16-0235
Thorium-234	<1 pCi/g	1.61 pCi/g	SB-16-0235
Potassium-40	<1 pCi/g	1.92 pCi/g	SS-17-1230
Thorium-234	<1 pCi/g	4.29 pCi/g	SS-17-1230
Potassium-40	<1 pCi/g	3.21 pCi/g	SB-17-0102
Thorium-234	<1 pCi/g	6.04 pCi/g	SB-17-0102
Bismuth-214 (Ra-226)	0.5 pCi/g	0.501 pCi/g	SB-17-0102
Potassium-40	<1 pCi/g	1.04 pCi/g	SS-18-1250
Thorium-234	<1 pCi/g	2.55 pCi/g	SS-18-1250
Potassium-40	<1 pCi/g	1.23 pCi/g	SB-18-0102
Thorium-234	<1 pCi/g	1.36 pCi/g	SB-18-0102
Thorium-234	<1 pCi/g	1.46 pCi/g	SS-19-1310
Potassium-40	<1 pCi/g	1.32 pCi/g	SB-19-0102
Thorium-234	<1 pCi/g	1.43 pCi/g	SB-19-0102 Cont. on next page

Actions:

see CENWK 4.1.3.3a and QAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks: The following samples had results that exceeded the project action limits:

SS-16-1300: Ra-226 y 3.34 pCi/g

SS-17-1230: U-234 α 24.9 pCi/g, U-235 α 1.19 pCi/g, U-238 α 24.9 pCi/g, Ra-226 γ 15.5 pCi/g

SB-17-0102: U-234 α 22.0 pCi/g, U-235 α 0.970 pCi/g, U-238 α 22.1 pCi/g, Ra-226 γ 19.8 pCi/g

SS-DUP-17: U-234 α 14.3 pCi/g, U-235 α 0.526 pCi/g, U-238 α 14.6 pCi/g, and Ra-226 γ 9.70 pCi/g

The following samples had a negative result with an uncertainty greater than the absolute value. The CENWK states these results need to be rejected. However, since these results are likely being influenced by a slight negative bias and may still be useful, professional judgment was used to qualify results:

SS-16-1300 & SS-DUP-17

LEIDOS Page 4 of 21

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations: Continued from previous page

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
Potassium-40	<1 pCi/g	1.50 pCi/g	SB-19-0203
Thorium-234	<1 pCi/g	1.48 pCi/g	SB-19-0203
Potassium-40	<1 pCi/g	1.17 pCi/g	SB-DUP-16
Thorium-234	<1 pCi/g	2.62 pCi/g	SB-DUP-16
Potassium-40	<1 pCi/g	2.43 pCi/g	SS-DUP-17
Thorium-234	<1 pCi/g	6.43 pCi/g	SS-DUP-17

Actions: see CENWK 4.1.3 and QAPP

Cont. on next page.

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks:
For concentrations greater than ten times the MDC, the calculation CSU > 0.25*Rs was used to
identify excess reported uncertainty. No samples exhibited excess uncertainty
For results that were less than the critical level, the calculation k * CSU =RDL was used to determine</td
whether the RDL has been met. Th-234 did not meet the RDL for samples: SS-16-1300, SS-18-1250,
SR-DI IP-16 & SS-DI IP-17 Please see calculation sheet

LEIDOS Page 4 of 21

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

5 11 11 11	Project Reporting	MDA	Samples Affected
Radionuclide	Level Goal	Achieved	
. Document all radi . If the reported val . If the sample resu . If the sample resu	ult is negative and its abso	nat do not meet project report compass the project report lute value exceeds the MI	poorting level goals. Sing level goal, they are equivalent. DA, qualify the result as estimated (UJ). MDA, qualify the result (R).
. Document all radi 2. If the reported val 3. If the sample resu 4. If the sample resu	ionuclide determinations th lue with its uncertainty enculus also uncertainty enculus and its abso	nat do not meet project report compass the project report lute value exceeds the MI	ring level goal, they are equivalent. DA, qualify the result as estimated (UJ).
. Document all radi d. If the reported value. It the sample resu d. If the sample resu	ionuclide determinations th lue with its uncertainty enculus also uncertainty enculus and its abso	nat do not meet project report compass the project report lute value exceeds the MI	ring level goal, they are equivalent. DA, qualify the result as estimated (UJ).
. Document all radi . If the reported val . If the sample resu . If the sample resu	ionuclide determinations th lue with its uncertainty enculus also uncertainty enculus and its abso	nat do not meet project report compass the project report lute value exceeds the MI	ring level goal, they are equivalent. DA, qualify the result as estimated (UJ).
. Document all radi . If the reported val . If the sample resu . If the sample resu Remarks:	ionuclide determinations the uncertainty encult is negative and its absoult is negative and its absoult is negative and its abso	nat do not meet project report compass the project report lute value exceeds the MI lute value exceeds 2X the	ting level goal, they are equivalent. DA, qualify the result as estimated (UJ). MDA, qualify the result (R).
. Document all radi . If the reported val . If the sample resu . If the sample resu Remarks:	ionuclide determinations the lue with its uncertainty encure ult is negative and its absorbed its negative and its absorbed its absorbe	nat do not meet project report compass the project report lute value exceeds the MI lute value exceeds 2X the	ring level goal, they are equivalent. OA, qualify the result as estimated (UJ).
. Document all radical fit the reported value. If the sample results in the sample results in the sample results. If the sample results in the LC was calculated that were less than	ionuclide determinations the lue with its uncertainty encult is negative and its absorbed its negative and its absorbed its negative and its absorbed its absorbed in the LC and were quality.	than the detection limit.	ting level goal, they are equivalent. DA, qualify the result as estimated (UJ). MDA, qualify the result (R). The following samples had results
. Document all radions. If the reported value. If the sample results. If the sample results. If the sample results. If the sample results. The LC was calcutated that were less that SS-16-1300: The	ionuclide determinations the lue with its uncertainty encult is negative and its absorbed its negative and its absorbed its negative and its absorbed its negative and its absorbed in the LC and were qualified and the LC and were qualified and the LC and were qualified as a second control of the LC and the	than the detection limit.	ting level goal, they are equivalent. DA, qualify the result as estimated (UJ). MDA, qualify the result (R).
2. If the reported val 3. If the sample result. If the sample result. If the sample result. Remarks: The LC was calculated that were less than	ionuclide determinations the lue with its uncertainty encult is negative and its absorbed its negative and its absorbed its negative and its absorbed its negative and its absorbed in the LC and were qualified and the LC and were qualified and the LC and were qualified as a second control of the LC and the	than the detection limit.	ting level goal, they are equivalent. DA, qualify the result as estimated (UJ). MDA, qualify the result (R). The following samples had results

Page 5 of 21

Radiochemical Data Review Checklist

V.A1. Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.2 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: None

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions:	see CENWK 4.3.1.2 and OAF	סכ
ACHOUS	SEE UENWK 4 3 L Z 200 UAI	

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

All initial and continuing calibrations met project acceptance criteria.
nd count was performed the same month the samples were counted. The background did
nigh results.

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.1 and QAPP

Initial efficiency calibration must be demonstrated on each detector for each geometry. Initial energy calibration must be demonstrated on each detector for each geometry. Resolution (FWHM) must be demonstrated for each detector for each geometry. Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.2 and QAPP

Continuing calibration efficiency verification must be performed for each detector at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed monthly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: Delta Values

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value
6.3%	898.04 keV	Detector 1	< 5%		
-16.4%	136.47 keV	Detector 5	< 5%		
6.5 %	159.00 keV	Detector 5	< 5%		
-5.3%	136.47 keV	Detector 11	< 5%		
5.3%	513.99 keV	Detector 2	< 5%		
18.3%	513.99 keV	Detector 4	< 5%		
24.5%	513.99 keV	Detector 12	< 5%		

Actions: see CENWK 4.3.1.1 and QAPP

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks: A long monthly background was performed. No high results were noted.

No documentation of an energy calibration was given. Additionally, there was no indication that a Peak-to-Compton ratio calibration was performed.

Daily source checks were performed for each detector. The FWHM was less than 3 keV for confirmed isotopes. Detector 2 had Co-60 energy difference from the true energy greater than 1.0 keV.

Samples counted on a detector with a delta value greater than 5% and/or a 95% CL (1.96 σ) greater than 8% were qualified "X".

Page 7 of 21

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis

see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide.

Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

Deviations: Project samples not selected for analysis.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions:	see CENWK 4.3.1	A and OAPP					
			rmation is not asso	ontoblo			
1. II trie iriitiai caiit	oration quench curv			еріавіе,			
2. If the continuing	qualify all affected calibration efficier		, ,	alo			
Z. II tile continuing	qualify all affected	•	-	ль,			
3. If background o	counts are not acce		` '	stimated (.I)			
o. Il baokgroana o	ourns are not acce	ptable, quality the	arreoted data as e	Stimated (0).			
Remarks:							

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

see CENWK 4.3.1.3.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters

see CENWK 4.3.1.3.1 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations: Project samples not selected for analysis.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions: see CENWK 4.3.1.3 and QAPP

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:			

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

see CENWK 4.2.1 and QAPP

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted.

If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory Method Blanks: Alpha: MB R3724488-1 Gamma: MB R3725157-3

				MDA Result and Error
1 <u>0/19/2021</u>	MB R3724488-1	U-238 α	0.103 pCi/g & 0.103 pCi/g	0.136 pCi/g & 0.103 pCi/g
	The Blank result sub	tracted from its un	certainty was less than the	MDA. No DVQ.
11/03/2021	MB R3725157-3	Τ1-208 γ	0. <u>0607 pCi/g & 0.0498 pCi/g</u>	g 0 <u>.0842 pCi/g & 0.0498 pC</u> i/
	The Blank result sub	tracted from its un	certainty was less than the	MDA. No DVQ.
<u>11/03/202</u> 1	MB R3725157-3	Th-234 γ	1.85 pCi/g & 1.11 pCi/g	1.80 pCi/g & 1.11 pCi/g
	The Blank result sub	otracted from its ur	ncertainty was less than the	MDA. See next page.
1/03/2021	MB R3725157-3	U-235 γ	0.119 pCi/g & 0.0709 pCi/g	0.120 pCi/g & 0.0709 pCi/g
	The Blank result sub	tracted from its un	ncertainty was less than the	MDA. No DVQ.
Associated	l Project Blanks (e.g.	, equipment rinsa	ates, etc.)	
Date	Lab ID #	Radionuclide	Result and Error	MDA Result and Error
Remarks:	The alpha spectrosco	opy blank results w	vere non-detect. Additiona	llv, the Zblank value was
less than 3.			ectroscopy blank results no	
	project blanks were a			

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

see CENWK 4.2.1 and QAPP

5x

Calculate action levels based on 10X the highest blank concentration. see CENWK 4.2.1.3 and QAPP

Deviations: MB R3725157-3

Radionuclide	Max. Activity Detected	Action Level	Samples Affected
Th-234	1.85 pCi/g	3.7 pCi/g	SS-16-1300: Result < 5X. DVQ: U
			SB-16-0235. Result < 5X. DVQ: U
			SS-17-1230. Result $> 5x$, $<10x$. DVQ: J
			SB-17-0102. Result $> 5x$, $<10x$. DVQ: J
			SS-18-1250. Result < 5X. DVQ: U
			SB-18-0102. Result < 5X. DVQ: U
			SS-19-1310. Result < 5X. DVQ: U
			SB-19-0102. Result < 5X. DVQ: U
			SB-19-0203. Result < 5X. DVQ: U
			SB-DUP-16. Result < 5X. DVQ: U
			SS-DUP-17. Result < 5X. DVQ: U

Actions: see CENWK 4.2.1 and QAPP

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

			,		
Example:	Blank Result	Uncert.	MDA or	Normalized absolute	Qualification
				<u>difference</u>	
acceptable	0.3	0.45	0.5	>2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
- 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:			

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

see CENWK 4.1.2 and QAPP

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

Deviations: None

Deviations. None			
Radionuclide	Sample ID	%R	Action Taken

2. If recovery is between 23. If recovery is between 24. If recovery is less than	see CENWK 4.1.2 and QAPP 30-110%, no qualification is nece 20 10 -30%, qualify the data as es 110-120 150 %, qualify the data as 20 10%, qualify the data as rejec an 120 150%, qualify the data as	stimated (J) s estimated sted (R).	(J).	outside lab limits but within 20-120%: J if corrective actions taken, otherwise R
Remarks:	All tracer percent recovery re	sults were	within Q	C limits.

Page 12 of 21

Radiochemical Data Review Checklist

VIII. Laboratory	Control Sample Information	n see CENWK 4.2.2 and QAPP
viii. Laborator y	Control Campic Innomitation	3CC OLIVVIX 4.2.2 and QALL

Alpha

General LCS Criteria:	
percent recovery (%R)	

7 11 1 1 1 1 1						
aqueous	solid					
80-120	70-130					
	75 405					

Gamma, GPC, KPA: 80-120

75-125

Laboratory LCS Identifications: <u>Alpha: LCS R3724488-2</u>

Gamma: LCS R3725157-1 & LCSD R3725157-2

_							
Dev	113	1 ti /	n	c ·	N	011	
DE	via	LLIV	JII	Э.	-1-N	w	ıc

Remarks:

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied

Actions:	see CENWK 4.2.2 and QAPP
ACHORS.	See CENVIN 4.2.2 and GAPP

 Alpha (Aqueous)
 <50%</th>
 50-79%
 121-150%
 >150%

 and Gamma, GPC, KPA
 R
 J
 J
 R

 <50%</td>
 50-74%
 126-150%
 >150%

 Alpha (Solid)
 <40%</td>
 40-69%
 131-160%
 >160%

 R
 J
 J
 R

•			

All LCS percent recovery results were within OC limits.

Page 13 of 21

Radiochemical Data Review Checklist

	IX.	Matrix	Spike	Infor	matioı
--	-----	--------	-------	-------	--------

General MS Criteria:	Aqueous	Solid	see CENWK 4.2.3 and QAPP
percent recovery (%R)	50-120	40-130	

Project Sample(s) Spiked: <u>SB-18-0102 (L1410531-06)</u>
MS R3724488-3 & MSD R372

MS R3724488-3 & MSD R3724488-4

Deviations: None

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied

Actions:	see CE	NWK 4.2.3 an	d QAPP		
	Aqueous	<u><20%</u>	<u>20-49%</u>	121-160%	<u>>160%</u> >150%
		R	J	J	use professional judgement R
all samples in batch	1	*see CENV	VK 4.2.3 a	nd QAPP*	
	Solid	<u><10%</u>	<u>10-39%</u>	<u>131-160%</u>	<u>>160%</u> >150%
		R	J	J	use professional judgement R
Remarks:	_All m	atrix spike pe	rcent reco	very resul	Its were within QC limits.
				•	*

Page 14 of 21

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis

see CENWK 4.2.4, 4.2.5 and QAPP

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER).

Duplicate actions should apply to all samples associated with the duplicate pair.

Duplicate Sample Identification: <u>Alpha: MSD R3724488-4 & DUP R3724488-5</u>

Gamma: LCSD R3725157-2 & DUP R3725157-4

Field DU: SB-DUP-16 & SS-DUP-17

Deviations:

				Samples Affected
Radionuclide	DER	RPD	RER	·
U-235 α (DUP R3724488-5)		59.55%	1.085	NAD less than 3. No DVQ.
Ra-226y (DUP R3725157-4)		22.22%	1.531	NAD less than 3. No DVQ.
Th-234 γ (DUP R3725157-4)		259.00%	2.805	NAD less than 3. No DVQ.
U-235 γ (DUP R3725157-4)			0.150	NAD less than 3. No DVQ.

Actions:

see CENWK 4.2.4 (lab dup) 4.2.5 (field dup) and QAPP

- 1. If both sample and duplicate activities are within 2X the MDA comparison is acceptable.
- 2. If the DER is greater than 1.00, qualify the data as estimated (J).
- 3. If the RPD is greater than 50% qualify the data as estimated (J).
- 4. If one sample is <MDA and the other sample is >2X the MDA, qualify the data as estimated (J).

Remarks:	All laboratory duplicates either had RPD % results less than 20% or NAD results
less than 3.	All field duplicate results were within a factor 4 of the original result.

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

see CENWK 4.1.8, 4.1.9.2 and QAPP

Each alpha isotopic peak should be clear and free of interference from other energy peaks. Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Deviations:

Radionuclide	Deficiency	Samples Affected
All peaks	Poor resolution (Messy Spectrum)	LCS R3724488-2
U-234 & U-238	Significant tailing	MS R3724488-3
U-234 & U-238	Some tailing	MSD R3724488-4
U-234 & U-238	Significant tailing	SS-17-1230
U-234 & U-238	Significant tailing	SB-17-0102
U-232	Some tailing	SS-19-1310
U-234 & U-238	Significant tailing	SS-DUP-17
U-232	Peak less than 40 keV from theoretical energy	LCS R3724488-2.
U-235		SB-18-0102. Result < MDA. No DVO
U-235		SB-19-0203. Result < MDA. No DVQ
U-232	Peak less than 40 keV from theoretical energy	
U-232	Peak less than 40 keV from theoretical energy	

Actions:

see CENWK 4.1.8, 4.1.9.2 and QAPP

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:	The peaks listed above either had poor resolution or tailing. Manual
integration is needed for la	rge tailing peaks. There were no interferent peaks in the spectra.
A small amount of noise w	as seen in the spectra, but not enough to adversely affect the data.
The peaks not listed above	were within 40 keV of the theoretical energies.

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density

see CENWK 4.1.9. 4.1.7 and QAPP

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations: Please see below.

Radionuclide	Deficiency	Samples Affected

Actions:

see CENWK 4.1.9, 4.1.7 and QAPP

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 5. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks: Each target radionuclide peaks were within 2 keV of the observed standard peak. However	er,
the peak search parameters were set at 3 keV instead of 2 keV. All radionuclides of interest were	
_identified.	
There were no overlapping or interferent peaks.	

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy) Sample Aliquot Representativeness

Each sample tentatively identified radionuclide energy must be within 2-keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra.

All peaks greater than 3X the background standard deviation must be identified and quantified.

The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships). Results from different but comparable analytical techniques from different subsample aliquots of the same sample shall be compared for consistency. **Deviations:**

Radionuclide	Deficiency	Samples Affected
U-235	Alpha and gamma results are not comparable.	SS-17-1230. DVQ: "J"
U-235	Alpha and gamma results are not comparable	SS-16-1300. DVQ: "J".
U-235	Alpha and gamma results are not comparable	SS-18-1250. DVQ: "J".
U-238		SS-17-1230. DVQ: "J".
U-238		SS-DUP-17. DVO: "X"

Actions:

- 1. Qualify all tentatively identified radionuclides as estimated (J).
- 2. If the energy of the tentatively identified radionuclide peak is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 3. If the reviewer judges anything regarding the identification of the tentatively identified radilnuclide as suspect, qualify the data as rejected (R).

If the results do not agree within the reported uncertainty of measurement, results shall be qualified as "J" or "R", depending on the magnitude of the uncertainty.

Remarks:	as J of	, depending	g on the magnitude	de of the uncertaint	у.
Please see calculate	ion sheet.				

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

see CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Deviations:

Radionuclide/Method	Deficiency	Samples Affected
D3972 U-02 Isotopic Uranium	Peak resolution/peak tailing	LCS, MS, MSD,
		SS-17-1230
		SB-17-0102
		SS-19-1310
		SS-DUP-17

Actions:	see CENWK and Q	APP
----------	-----------------	-----

1.	Based on the instrument performance indicator	s, the	data	reviewer	must	use	professi	onal
	judgement ot qua	ify the	e data	۱.				

Remarks: A little noise in alpha spectra did not adversely affect data. However there was significant
tailing. All background levels were low. There were no known energy shifts or extraneous peaks.
·

LEIDOS Page 19 of 21

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Radionuclide:	Method:	
	•	
emarks:		
alculation Check: adionuclide:	Method:	

LEIDOS Page 20 of 21

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

d:
d:

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

Data qualified using parameters and guidance from the QAPP, CENWK, and QSM 5.1

			Information						Analysis / Co	ontainer / Pr	reservat	ive	1		Chain of Custody	Cage L of Z
GEO Consilhants. 325 Kentucky An Kevil Ky L Report to: David Lindsey Project Description:	- Kevil, 1 Le 12053	Email Lina	counter Kenter I, To: Isemples	paya ntucky Ky42	ble Are 053 Utantscorp	Pres Chk	Mafras		Alialysis / C	ontainer / Pr	eservat	ive		N or	12065 Lebanon Rd Mount Juliet, TN 3' Phone: 615-758-58	Analytical enter for Testing & Proposition 7122
Staten Island Washer Phone: 270-462-3882	nt Project # /Facility ID # Rush? {Lab MI	City/Sta Collecte	Lab P	roject#	Please C	Circle:	10RM 21, U-								Phone: 800-767-56 Fax: 615-758-5859 SDG # LLL Acctnum: Template:	
Immediately Packed on Ice N Y Sample ID	Same Day	Five Day 5 Day (Rad On 10 Day (Rad O	lly)	Date Result:	Needed Time	No. of Cntrs	GSPEC-L								Prelogin: PM: PB: Shipped Via:	Sample # (lab only)
55-25-0940	6	Sem	095	9-27-2	0940	1		A								1-01
SS-@22-0935	9	sem		The second secon	10935	100										-02
55-21-1000	G	Scm		되었는데 보고 있었다면 얼마나 없다면	11000					75		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-03
55-20-1020	9	^		St. America	1020				2207							-04
SB-ms-24	G	som			1000	1		17-4	0,000							-06
55-24-0941	G	Scm		9-27-2		1								5	7	-05
SB-LY-0102	6	scm			(1000	1										-06
SB-DUP-23	G	SCM			1/040	i	5.72									-07
5B-MSD-24	9	Scm			1000		123		H B							-06
SB-23-010Z	9	Scm	1-2	9-27-2	1040	ſ			10				100			-08
S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater W - Drinking Water Sam	narks: uples returned vi	ia:			sing#				pH Flow	Ten			Corre Suffi	Seal Prosigned, les arrect bot leient	Accurate: rive intact: tles used: volume sent: If Applical	NP N
Relinquished by : (Signature) Relinquished by : (Signature)	Date	DY 9/27	Time:	5	ived by: (Signat				Trip Blank Temp:	Received:	HCL / N TBR tles Rece	МеоН	Prese RAD S	ervatio Screen	eadspace: on Correct/Ch <0.5 mR/hr: n required by Lo	ecked: Y Y gin: Date/Time
	F -						30		21.50	=21.5	17	2				
Relinquished by : (Signature)	Date	2:	Time:	Rece	ved for lab by:	(Signat	ture)		Date: 9/29	/21 Tin		15	Hold:			Condition: NCF / OK

																	- The turns
GEO Consultants 325 Kentucky And Fevil, Ky 420 Report to: David Linder Project Description: Stalen Island Warefore		Email	seyd @	s fay	exple ky Ave 12053 Sulfenticon Please C PT MT C	rcle:			Anal	ysis / Co	ntainer	/ Preserval	ive			Pace A National Car 12065 Lebanon Rd Mount Juliet, TN 971 Phone: 615-758-585 Fax: 615-758-5859	
Phone: 270-462-3882	ent Project # e/Facility ID # Rush? (Lab MU		P.O. #	oject#			NORM 21,									Table # Acctnum: Template:	10640
mmediately Packed on Ice N Y Sample ID	Same Day Next Day Two Day Three Day Comp/Grab	5 Day (Rad O	Depth	Date Resul	ts Needed	No. of Cntrs	9SPEC-									Prelogin: PM: PB: Shipped Via: Remarks	Sample # (lab only)
	6	STIA	0-05	9-27-	2 1014	1.2.1	9									Remarks	-09
SS-23-1014 SS-13-1015	6				21 1015												-10
and.						2											
* Matrix: Rei SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	marks:									pH _ Flow _		Temp		COC S: Bottle	eal Prigned, es ar:	ole Receipt Chresent/Intact/Accurate: rive intact: ttles used:	
	mples returned v			Tra	acking #				66				1301		Correct bottles used: Sufficient volume sent: N If Applicable VOA Zero Headspace: Y N		
Relinquished by : (Signature) Relinquished by : (Signature)	Date	7-27-2	Time: 161 Time:	5	ceived by: (Signa					p Blank		TBR Bottles Re	МеоН	Prese: RAD S	rvatio	on Correct/Ch <0.5 mR/hr:	_X _N
Relinquished by : (Signature)	Date	e:	Time:	Re	ceived for lab by	. 11	iture)	1		11-57 ate: 9/24	9/21	Time:	015	Hold:			Condition: NCF / OK 2

L1410640

Radiochemistry by Method D3972 U-02

Collected date/time: 09/27/21 09:40

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.932		0.209	0.141	10/20/2021 07:56	WG1754722
URANIUM-235	0.0669	<u></u> <u></u> −	0.0665	0.0829	10/20/2021 07:56	WG1754722
URANIUM-238	1.14		0.223	0.121	10/20/2021 07:56	WG1754722
(T) URANIUM-232	76.0			30.0-110	10/20/2021 07:56	WG1754722

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.671	X	0.209	0.352	11/03/2021 11:57	WG1759843
Bismuth-212	0.597	U X	0.760	1.45	11/03/2021 11:57	WG1759843
Bismuth-214 (Ra-226)	1.99	X	0.263	0.201	11/03/2021 11:57	WG1759843
Lead-212	0.543	X	0.140	0.179	11/03/2021 11:57	WG1759843
Lead-214	2.12	X	0.250	0.231	11/03/2021 11:57	WG1759843
Potassium-40	7.58	X	1.54	1.45	11/03/2021 11:57	WG1759843
Thallium-208	0.260	X	0.0669	0.0789	11/03/2021 11:57	WG1759843
Uranium-235	-0.351	(U)X	0.311	0.603	11/03/2021 11:57	WG1759843
Thorium-234 (U-238)	1.70	X(U)	0.908	1.51	11/03/2021 11:57	WG1759843

Collected date/time: 09/27/21 09:35

Radiochemistry by Method D3972 U-02

* *						
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.869		0.241	0.22	10/20/2021 07:56	WG1754722
URANIUM-235	0.0179	U	0.0442	0.0745	10/20/2021 07:56	WG1754722
URANIUM-238	0.925		0.226	0.169	10/20/2021 07:56	WG1754722
(T) URANIUM-232	71.2			30.0-110	10/20/2021 07:56	WG1754722

Cn

	Result	<u>Qualifier</u>	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.737	X	0.299	0.566	11/03/2021 11:51	WG1759843
Bismuth-212	0.509	⊎X	0.956	1.84	11/03/2021 11:51	WG1759843
Bismuth-214 (Ra-226)	1.23	X	0.239	0.25	11/03/2021 11:51	WG1759843
Lead-212	0.814	X	0.175	0.226	11/03/2021 11:51	WG1759843
Lead-214	1.36	X	0.219	0.264	11/03/2021 11:51	WG1759843
Potassium-40	7.55	X	1.77	1.91	11/03/2021 11:51	WG1759843
Thallium-208	0.287	X	0.0906	0.128	11/03/2021 11:51	WG1759843
Uranium-235	0.108	± X	0.0837	0.153	11/03/2021 11:51	WG1759843
Thorium-234 (U-238)	-0.0622	(U) X	1.04	2.48	11/03/2021 11:51	WG1759843

L1410640

Radiochemistry by Method D3972 U-02

Collected date/time: 09/27/21 10:00

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.669		0.185	0.16	10/20/2021 21:27	WG1754725
URANIUM-235	0.0330	₹	0.0522	0.0762	10/20/2021 21:27	WG1754725
URANIUM-238	0.678	J	0.179	0.141	10/20/2021 21:27	WG1754725
(T) URANIUM-232	71.0			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.486	X	0.134	0.222	11/03/2021 12:04	WG1759843
Bismuth-212	0.519	<u></u> X	0.425	0.716	11/03/2021 12:04	WG1759843
Bismuth-214 (Ra-226)	0.901	X	0.124	0.128	11/03/2021 12:04	WG1759843
Lead-212	0.669	X	0.0952	0.105	11/03/2021 12:04	WG1759843
Lead-214	0.971	X	0.115	0.118	11/03/2021 12:04	WG1759843
Potassium-40	7.60	X	0.985	0.73	11/03/2021 12:04	WG1759843
Thallium-208	0.199	X	0.0432	0.0531	11/03/2021 12:04	WG1759843
Uranium-235	0.0561	₹ X	0.0469	0.081	11/03/2021 12:04	WG1759843
Thorium-234 (U-238)	0.477	<u>(∪)</u> X	0.625	1.34	11/03/2021 12:04	WG1759843

L1410640

Collected date/time: 09/27/21 10:20

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	1.04		0.222	0.145	10/20/2021 21:27	WG1754725
URANIUM-235	0.0370	₹	0.0581	0.0848	10/20/2021 21:27	WG1754725
URANIUM-238	0.995	J	0.204	0.0848	10/20/2021 21:27	WG1754725
(T) URANIUM-232	77.6			30.0-110	10/20/2021 21:27	WG1754725

[']Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.720	X	0.205	0.328	11/03/2021 11:55	WG1759843
Bismuth-212	0.570	⊎ X	0.705	1.33	11/03/2021 11:55	WG1759843
Bismuth-214 (Ra-226)	0.697	X	0.150	0.187	11/03/2021 11:55	WG1759843
Lead-212	0.918	X	0.145	0.168	11/03/2021 11:55	WG1759843
Lead-214	0.828	X	0.138	0.171	11/03/2021 11:55	WG1759843
Potassium-40	10.6	X	1.57	1.12	11/03/2021 11:55	WG1759843
Thallium-208	0.271	X	0.0674	0.0841	11/03/2021 11:55	WG1759843
Uranium-235	0.0753	≟ X	0.0672	0.123	11/03/2021 11:55	WG1759843
Thorium-234 (U-238)	-0.599	(\cup) X,J	0.983	2.37	11/03/2021 11:55	WG1759843

L1410640

Radiochemistry by Method D3972 U-02

Collected date/time: 09/27/21 09:41

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	2.11		0.316	0.188	10/20/2021 21:27	WG1754725
URANIUM-235	0.0692	J	0.0620	0.0697	10/20/2021 21:27	WG1754725
URANIUM-238	2.14	J	0.300	0.108	10/20/2021 21:27	WG1754725
(T) URANIUM-232	71.3			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.895	X	0.348	0.585	11/03/2021 13:45	WG1759843
Bismuth-212	2.08	±X	1.36	2.32	11/03/2021 13:45	WG1759843
Bismuth-214 (Ra-226)	3.91	X	0.487	0.347	11/03/2021 13:45	WG1759843
Lead-212	1.02	X	0.191	0.223	11/03/2021 13:45	WG1759843
Lead-214	4.16	X	0.456	0.332	11/03/2021 13:45	WG1759843
Potassium-40	6.76	X	1.87	1.97	11/03/2021 13:45	WG1759843
Thallium-208	0.329	X	0.117	0.166	11/03/2021 13:45	WG1759843
Uranium-235	0.377	X(J)	0.103	0.154	11/03/2021 13:45	WG1759843
Thorium-234 (U-238)	1.47	± X(U)	0.934	1.94	11/03/2021 13:45	WG1759843

L1410640

Collected date/time: 09/27/21 10:00 Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.98		0.288	0.138	10/20/2021 21:27	WG1754725
URANIUM-235	0.105	J	0.0807	0.0923	10/20/2021 21:27	WG1754725
URANIUM-238	2.21	J	0.292	0.0659	10/20/2021 21:27	WG1754725
(T) URANIUM-232	80.4	·		30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	2.97	X	0.385	0.382	11/03/2021 12:01	WG1759843
Bismuth-212	3.18	X	1.03	1.54	11/03/2021 12:01	WG1759843
Bismuth-214 (Ra-226)	2.64	X	0.309	0.236	11/03/2021 12:01	WG1759843
Lead-212	3.11	X	0.311	0.186	11/03/2021 12:01	WG1759843
Lead-214	2.80	X	0.302	0.216	11/03/2021 12:01	WG1759843
Potassium-40	13.8	X	1.88	1.54	11/03/2021 12:01	WG1759843
Thallium-208	0.773	X	0.118	0.117	11/03/2021 12:01	WG1759843
Uranium-235	0.319	X(J)	0.0884	0.143	11/03/2021 12:01	WG1759843
Thorium-234 (U-238)	2.20	$\frac{1}{2}X(U)$	1.41	2.7	11/03/2021 12:01	WG1759843

Collected date/time: 09/27/21 10:40

L1410640

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.05		0.325	0.155	10/20/2021 21:27	WG1754725
URANIUM-235	0.0447	<u>J</u>	0.0684	0.1	10/20/2021 21:27	WG1754725
URANIUM-238	2.54	J	0.352	0.114	10/20/2021 21:27	WG1754725
(T) URANIUM-232	71.6			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.864	X	0.339	0.597	11/03/2021 13:43	WG1759843
Bismuth-212	0.613	⊔ X	1.28	2.52	11/03/2021 13:43	WG1759843
Bismuth-214 (Ra-226)	2.76	X	0.405	0.367	11/03/2021 13:43	WG1759843
Lead-212	0.734	X	0.228	0.343	11/03/2021 13:43	WG1759843
Lead-214	3.54	X	0.419	0.385	11/03/2021 13:43	WG1759843
Potassium-40	7.54	X	1.97	2.21	11/03/2021 13:43	WG1759843
Thallium-208	0.251	X	0.124	0.199	11/03/2021 13:43	WG1759843
Uranium-235	0.391	X(J)	0.143	0.237	11/03/2021 13:43	WG1759843
Thorium-234 (U-238)	-2.13	(U) X.J	2.19	5.17	11/03/2021 13:43	WG1759843

L1410640

Collected date/time: 09/27/21 10:40

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.94		0.401	0.182	10/20/2021 21:27	WG1754725
URANIUM-235	0.272		0.129	0.107	10/20/2021 21:27	WG1754725
URANIUM-238	2.90	J	0.394	0.156	10/20/2021 21:27	WG1754725
(T) URANIUM-232	58.7			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/g		+ / -	pCi/g	date / time		
Actinium-228 (Ra-228)	1.07	X	0.496	0.971	11/03/2021 13:43	WG1759843	
Bismuth-212	0.924	<u>⊎</u> X	1.73	3.39	11/03/2021 13:43	WG1759843	
Bismuth-214 (Ra-226)	3.85	X	0.560	0.502	11/03/2021 13:43	WG1759843	
Lead-212	0.963	X	0.292	0.445	11/03/2021 13:43	WG1759843	
Lead-214	4.97	X	0.569	0.418	11/03/2021 13:43	WG1759843	
Potassium-40	8.34	X	2.16	1.99	11/03/2021 13:43	WG1759843	
Thallium-208	0.351	X	0.158	0.265	11/03/2021 13:43	WG1759843	
Uranium-235	0.540	X	0.175	0.27	11/03/2021 13:43	WG1759843	
Thorium-234 (U-238)	1.49	(U) X	2.12	4.7	11/03/2021 13:43	WG1759843	

L1410640

Collected date/time: 09/27/21 10:14

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.610		0.209	0.209	10/20/2021 21:27	WG1754725
URANIUM-235	0.0702	<u></u> <u></u>	0.0630	0.0707	10/20/2021 21:27	WG1754725
URANIUM-238	0.771	J	0.203	0.16	10/20/2021 21:27	WG1754725
(T) URANIUM-232	76.7			30.0-110	10/20/2021 21:27	WG1754725

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.592		0.173	0.257	11/03/2021 13:49	WG1759843
Bismuth-212	0.771	<u>→</u>	0.555	0.982	11/03/2021 13:49	WG1759843
Bismuth-214 (Ra-226)	0.983		0.156	0.148	11/03/2021 13:49	WG1759843
Lead-212	0.663		0.119	0.134	11/03/2021 13:49	WG1759843
Lead-214	1.19		0.157	0.167	11/03/2021 13:49	WG1759843
Potassium-40	8.28		1.40	1.21	11/03/2021 13:49	WG1759843
Thallium-208	0.279		0.0598	0.0635	11/03/2021 13:49	WG1759843
Uranium-235	0.202	<u>→</u>	0.221	0.391	11/03/2021 13:49	WG1759843
Thorium-234 (U-238)	0.877	₹ 1 1	0.604	1.21	11/03/2021 13:49	WG1759843

L1410640

Collected date/time: 09/27/21 10:15

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	0.813		0.199	0.169	10/20/2021 21:27	WG1754725
URANIUM-235	0.0394	<u>J</u>	0.0458	0.0584	10/20/2021 21:27	WG1754725
URANIUM-238	0.866	J	0.190	0.132	10/20/2021 21:27	WG1754725
(T) URANIUM-232	83.4			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.991	X	0.172	0.229	11/03/2021 12:02	WG1756460
Bismuth-212	1.26	X	0.556	0.861	11/03/2021 12:02	WG1756460
Bismuth-214 (Ra-226)	1.43	X	0.163	0.139	11/03/2021 12:02	WG1756460
Lead-212	1.17	X	0.133	0.123	11/03/2021 12:02	WG1756460
Lead-214	1.51	X	0.156	0.135	11/03/2021 12:02	WG1756460
Potassium-40	12.1	X	1.30	0.8	11/03/2021 12:02	WG1756460
Thallium-208	0.317	X	0.0563	0.0654	11/03/2021 12:02	WG1756460
Uranium-235	0.164	X(J)	0.0627	0.102	11/03/2021 12:02	WG1756460
Thorium-234 (U-238)	0.364	(U) X	0.745	1.7	11/03/2021 12:02	WG1756460

Leidos Radiological Analytical Data Validation

Event Name: Staten Island Warehouse FUSRAP Site

SDG Number: <u>L1410640</u> Laboratory: <u>Pace Analytical</u>

Analysis: Gamma Spec/Iso U (soil)

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 3 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. The requested analyses include: ^{234/235/238}U by alpha spectrometry (Method D3972 U-02); ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ²³⁴Th, ²²⁸Ac, ⁴⁰K, and ²³⁵U by gamma spectrometry (Method DOE Ga-01-R/901.1 (21 day)). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Case Narrative Re

Analytical Holding Times and Preservation Method Calibration/Calibration Verification

Method Blanks Background Checks

Analytical Tracer Recoveries

MS/MSD Recoveries and Differences LCS/LCSD Recoveries and Differences

Laboratory Duplicates/Replicates

Re-analysis and Secondary Dilution Minimum Detectable Activities (MDAs)

Reporting Levels

Chemical/Spectroscopic Separation Specificity (alpha spectroscopy) Project Duplicates and Splits Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

Data Intercomparison

Definition of Data Validation Qualifiers:

"U" - Indicates a normal, non-detected (< critical value) result.

"J" - Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable depending upon the intended use of the data and reason for data rejection.

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September, 2021.

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District, September 2017.

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February, 2018.

Sample Name Cross-Reference

Project Sample Name	Matrix	Lab Sample Name
SS-25-0940	Soil	L1410640-01
SS-22-0935	Soil	L1410640-02
SS-21-1000	Soil	L1410640-03
SS-20-1020	Soil	L1410640-04
SS-24-0941	Soil	L1410640-05
SB-24-0102	Soil	L1410640-06
SB-DUP-23	Soil	L1410640-07
SB-23-0102	Soil	L1410640-08
SS-23-1014	Soil	L1410640-09
SS-13-1015	Soil	L1410640-10

Validation Report By:	Amanda Leigh Dick	03/08/2022
	(print)	Date
	amanda Leigh Dick	
	(sign)	
Peer Reviewed By:	Thomas. L. Rucker	03/11/2022
	(print)	Date
	72 Rucker	
	(sign)	

1.0 GAMMA SPECTROMETRY ANALYSIS

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

For gamma spectrometry, the CENWK states that if the efficiency calibration delta values (difference between the measured and the calibration curve efficiency) are greater than 5% for any one radionuclide, the calibration shall be deemed unusable. The QAPP further states that the 95% CL of fitted function over range shall be \leq 8%. The following gamma spectrometer detectors/geometries had one or more radionuclides with delta values greater than 5% and or a 95% CL (1.96 σ) greater than 8%:

Initial Calibration

Detector	Geometry	# Energy Peaks	Delta %	# Energy Peaks	95% CL	SDG Samples Affected	Qualifier		
1	C6	1	6.3			SS-24-0941	X		
11	C6	1	-5.3	2	8.2 – 12.7	SS-21-1000, SS-13-1015	X		
2	P3	1	5.3			SS-20-1020, SB-DUP-23	X		
4	P3	1	18.3	1	8.8	SS-22-0935, SB-23-0102	X		
12	Р3	1	24.5	1	9.6	SB-24-0102	X		

Based on the CENWK any samples counted on detector with Delta% greater than 5% should be qualified as unusable (X). However, this parameter was not listed in the QAPP. The QAPP parameter, 95% CL of the fitted curve, does not have guidance on how to qualify results outside its limits. It is likely that both of these parameter deficiencies are due to the calibration being performed with less than the minimum 10,000 net counts in each peak in at least six calibration peaks that bracket the range of use as is specified in the DoD Quality Systems Manuel (QSM). The raw counts for the calibration were not provided, but this is evidenced by the uncertainty reported for the peaks. This means there is greater than normal uncertainty in the results due to an uncertain bias from calibration. The samples counted on theses detectors/geometries have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Continuing Calibration

For gamma spectrometry, the CENWK states that if the activity of each radioisotope in the calibration standard is not within 10% relative of the true, decay corrected activity, the calibration shall be deemed unusable. The QAPP also sets a limit of 10% relative to the true value. The following detector/geometry has one quantified peak outside of the 10% limit for the calibration verification check source:

Continuing Calibration

Detector	Geometry	# Energy Peaks	% Difference	SDG Samples Affected	Qualifier
1	C6	1	-10.6	SS-24-0941	X

Based on the CENWK any samples counted on detector with check source value of greater than 10% should be qualified as unusable (X). It is likely that this parameter's deficiencies are due to the calibration verification being performed with less than the minimum 10,000 net counts in each peak as is specified in the CENWK as the raw net counts for all peaks were less than the 10,000 net counts for all peaks and all detectors. This means there is greater than normal uncertainty in the results due to an uncertain bias from the calibration verification. These samples have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The following samples did not meet the RDL project goal of <1 pCi/g: SS-25-0940, SS-22-0935, SS-21-1000, SS-20-1020, SB-DUP-23, SB-23-0102, and SS-13-1015. Please see table below.

Samples That Did Not Meet The RDL

Sample ID	Analyte	CSU (pCi/g)	3.5*CSU	RDL (pCi/g)
SS-25-0940	U-235	0.1553	0.54355	0.5
SS-22-0935	Th-234	0.5185	1.81475	1
SS-21-1000	Th-234	0.3123	1.09305	1
SS-20-1020	Th-234	0.4917	1.72095	1
SB-DUP-23	Th-234	1.096	3.836	1
SB-23-0102	Th-234	1.0585	3.70475	1
SS-13-1015	Th-234	0.3723	1.30305	1

The following samples had results that exceeded the project action limit: SS-24-0941: Ra-226: 3.91 pCi/g, SB-24-0102: Ra-226: 2.64 pCi/g, SB-DUP-23: Ra-226: 2.76 pCi/g, and SB-23-0102: Ra-226: 3.85 pCi/g.

No samples exhibited excess uncertainty.

The following samples had negative results with uncertainties smaller than their absolute value. The CENWK states these results need to be rejected. However, since these results are likely being influenced by a slight negative bias and may still be useful, professional judgment was used to qualify results. SS-25-0940: U-235.

It is recommended that sample concentrations less than the L_c be qualified as non-detect (U): SS-25-0940: U-235; SS-22-0935: Th-234; SS-21-1000: Th-234; SS-20-1020: Th-234; SB-DUP-23: Th-234; SB-23-0102: Th-234; and SS-13-1015: Th-234.

Method Blank

Thorium-234 was detected in the Method Blank for the gamma spectrometry analysis. To be conservative, the action level was calculated based on 5X the highest blank concentration. It is recommended that the following samples with results less than 5X the blank result be qualified as non-detect (U): SS-25-0940, SS-22-0935, SS-21-1000, SS-20-1020, SS-24-0941, SB-24-0102, SB-DUP-23, SB-23-0102, and SS-23-1014.

Laboratory Control Sample:

The percent recoveries for the laboratory control samples (LCSs) were within acceptable limits.

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD (DER).

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = Parent Sample Result

D = Field Split/Duplicate Parent Sample Result

 $U_S =$ Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the gamma spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (<25%, <3).

All field duplicate results were within a factor of 4 from the original result.

<u>Identification and Quantification:</u>

The following target radionuclides: ²²⁸Ac, ²²⁶Ra, ⁴⁰K, ²³⁴Th, and ²³⁵U in the samples were reported. The energies of the radionuclides were less than 2 keV from their theoretical energies.

The laboratory used a peak search sensitivity factor of 3. When the peak search sensitivity factor is set at a value greater than 2.3, the peak search report will not report peaks as low as the MDA. Therefore, there is a greater than 5% chance that concentrations greater than the reported MDA will not appear in the peak search. However, the List Isotope Activities report calculates the net activities for the target analytes and this list has been use to report all target analyte activities. Therefore, the only impact is that small but detected non-target analytes may not have been reported.

2.0 ALPHA SPECTROMETRY

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

The initial calibration met project acceptance criteria.

Continuing Calibration

The continuing calibration met project acceptance criteria.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The project RDL goal of <0.5 pCi/g was met for all radionuclides of interest.

The following sample had a Uranium-235 result above the project action limit: SB-23-0102: 0.272 pCi/g.

No sample results exhibited excess uncertainty.

The sample-specific critical level (L_c) was calculated as 1.65 times the sample CSU. It is recommended that sample concentrations less than the L_c be qualified as non-detect (U) as follows:

Sample-Specific Critical Level (L_C)

Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	L _C (pCi/g)	Qualifier
SS-22-0935	U-235	0.0179	0.014	0.0231	U

Matrix Spike

The percent recoveries for the MS/MSD were within acceptable limits for all alpha spectrometry analyses.

Method Blank

There was no indication of blank contamination in the Method Blank.

Laboratory Control Sample:

The percent recoveries were within acceptable limits for LCS R3724488-2. The Uranium-238 percent recovery is outside the lower acceptable limit (75%-125%) for LCS R3725650-2. It is recommended that the following associated Uranium-238 sample results be qualified as estimated (J): SS-21-1000, SS-20-1020, SS-24-0941, SB-24-0102, SB-DUP-23, SB-23-0102, **SS-23-1014, and SS-13-1015.** Please see table below.

Radiochemistry - LCS % Recovery Calculation

Sample ID	Analyte	Found Value (pCi/g)	True Value (pCi/g)	LCS (% Recovery)	Qualifier
L1410640LCS	U-238	3.46	4.74	72.996%	J

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD (DER).

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) *100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = D =Parent Sample Result

Field Split/Duplicate Parent Sample Result

 $U_S =$ Parent Sample CSU (1 sigma) $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the alpha spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (<20%, <3).

All field duplicate results were within a factor of 4 from the original result.

Sample-Specific Chemical Recovery:

The percent recoveries for tracers were within acceptable limits.

Spectral Analysis:

Sample SS-21-100 exhibited Uranium-232 peak tailing. The following QC samples exhibited Uranium-234 and Uranium-238 peak tailing: LCS R3724488-2, MS R3724488-3, MSD R3724488-4, MS R3725650-3, and MSD R3725650-4. Sample SS-21-1000 also had Uranium-235 peak energy outside 40 keV from the theoretical energy. Per CENWK guidance, these results were not rejected because they were non-detect. The following QC samples also had peak energies outside 40 keV from their theoretical energy: LCS R3724488-2 and MB R3725650-1. However, peak identification was not impacted. Therefore, no qualification is required.

Quantification:

No quantification issues were observed.

3.0 DATA INTERCOMPARISON

U Alpha to U Gamma:

In comparing the uranium results from alpha spectrometry analysis to the uranium results from gamma spectrometry, several samples were not in agreement. The following sample uranium results (both alpha and gamma) are recommended to be qualified as estimated (J) due to incomparable results:

Radiochemistry - Data Intercomparion

		Alı	pha	Gar	nma			
Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	Result (pCi/g)	CSU (pCi/g)	RPD%	DER	Qualifier
SS-24-0941	U-235	0.0692	0.022	0.377	0.0515	137.97%	5.496	J
SB-24-0102	U-235	0.105	0.031	0.319	0.0442	100.94%	3.964	J
SB-DUP-23	U-235	0.0447	0.022	0.391	0.0715	158.96%	4.629	J
SS-13-1015	U-235	0.0394	0.018	0.164	0.03135	122.52%	3.447	J
SS-20-1020	U-238	0.995	0.102	-0.599	0.4915	805.05%	3.175	J
SB-DUP-23	U-238	2.54	0.176	-2.13	1.095	2278.05%	4.211	J

	Labor	LEIDOS atory Data Verification Cl	hecklist	
Project:	Staten Island Wareho	ouse FUSRAP Site	Page 1	of 3
SDG No:	L1410640	Analyte Group: Sample Matrix:	Gamma Spectroscopy and Isot	copic Uranium
Disposition of I NCR No. (if app	_	N/A N/A	_Y	- - -
1. Case Narrative				
	Read SDG Case N	larrative		Y
	Check Laboratory	sample ID vs. Project sample	ID lists	Y
	Check that discuss	ion covers each analytical typ	pe included in the SDG	Y
	Check for identified	d nonconforming items (e.g.,	missed holding times, etc.)	Y
2. Chain-of-Custo		a collection, objecting, and re-		
	·	e collection, shipping, and rec	ceiving dates	<u>Y</u>
		gnature blocks are complete t sample IDs vs. Lab IDs and	Pacult Form IDs	<u>т</u> Ү
		sted analyses with Case Narr		Y
3. Analytical Resu	lts Form			
	Verify that a Result	t Form is present for each sa	mple and analysis	Y
	On each Result Fo	rm check: SDG No. Sample ID Lab ID Date Collected Date Extracted Date Analyzed Result Matrix Result Units		Y Y Y Y Y Y Y

		Pag	ge 2 of 3
4. Project Ve	erification		
	Check project ar	nalyte list vs. analytes reported	<u>Y</u>
	Check project re	equested methods vs. analytical methods performed	Y
	Check analyte re	eporting levels vs. project reporting level goals	Y
5. Analytical	Quality Control Informa	ation	
	trace Check for surro g	er gate recovery results (e.g., org. form II)	Y
	Check for LCS r	esults (e.g., org. form III, inorg. form XII)	<u>Y</u>
	Check for metho	od blank results (e.g., org. form IV, inorg. form III)	<u>Y</u>
	Check for MS/M	SD results (e.g., inorg. form V)	Y
	Check for labora	atory duplicate results (e.g., inorg. form VI)	<u>Y</u>
	Check for Metho	od Calibration and Run Documentation	
	organic:	instrument performance check initial calibration data continuing calibration data internal standard areas internal standard retention times sample clean-up documentation (org. forms V through X)	N/A N/A N/A N/A N/A
	metal:	initial calibration data continuing calibration data method detection limits method linear range sample run sequence (inorg. forms II, IV, and VIII through XIV)	N/A N/A N/A N/A N/A
	other: (Radiological)	initial calibration data continuing calibration data method detection limits sample run sequence	Y Y Y Y

			F	Page 3 of 3
Incorrect Infor	mation			J
	Identify missing iten incorrect sample ID	ms or incorrect information (i 9s, etc.)	.e., missing forms, uns	signed forms,
	Contact the laborat or correct informati	ory or project personnel to o	btain missing informat	ion
Document	corrections below:			
	The case narrative of	did not cover project sample	IDs vs laboratory samp	ole IDs.
		o did not cover each analytic vere listed in the case narrativ	• •	SDG
	The sample result f	forms were missing the extra	ction dates and sample	matrix.
	The calibration docu	umentation are missing for bo	oth alpha and gamma a	nalyses .
	Calibration standar	rd COAs were missing.		
	A revision was iss	sued by the laboratory with so	ome of the missing iter	ns.
Nonconformin	g Items			
		onforming items that can not ee Report (NCR), complete for		
	NCR #	Item		
	-			
		0 1 -0		
viewed By:	ameinelei	Leigh Die	Date: _	03/06/2022
Review By:		σ	Date:	

LEIDOS Laboratory Data Package Detail Form Project: Staten Island Warehouse FUSRAP Site Page 1 of 1 SDG No: **Analyte Group:** L1410640 Gamma Spectroscopy & Isotopic Uranium Field Lab Matrix Analysis Notes: Sample ID ID# Soil SS-25-0940 L1410640-01 Gamma Spec & Iso U SS-22-0935 L1410640-02 Soil Gamma Spec & Iso U Soil SS-21-1000 L1410640-03 Gamma Spec & Iso U SS-20-1020 L1410640-04 Soil Gamma Spec & Iso U Gamma Spec & Iso U SS-24-0941 L1410640-05 Soil Soil Gamma Spec & Iso U SB-24-0102 L1410640-06 L1410640-07 Gamma Spec & Iso U SB-DUP-23 Soil Soil Gamma Spec & Iso U SB-23-0102 L1410640-08 Soil Gamma Spec & Iso U SS-23-1014 L1410640-09 Soil SS-13-1015 L1410640-10 Gamma Spec & Iso U Comments:

LEIDOS Radiochemical Data Review Checklist Project: Page 1 of 21 Staten Island Warehouse FUSRAP Site SDG No: **Analysis:** Gamma Spectroscopy & Isotopic Uranium L1410640 Method: DOE Ga-01-R/901.1 and D3972 U-02 Laboratory: Matrix: Pace Analytical Soil The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The general criteria used to assess the analytical integrityof the data were based on an examination of the following: Case Narrative Chemical and/or Tracer Recoveries **Analytical Holding Times** Matrix Spike Results Sample Preservation **Duplicate Error Ratios and RPDs** Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Secondary Dilution Overall Remarks: CENWK, QSM 5.3; see QAPP for specific requirements Results qualified as indicated due to detects in the MB and low LCS recoveries, and incomparable results Definition of Qualifiers:

"U", not detected at the associated level

"UJ", not detected and associated value estimated N/A

"J", associated value estimated

"R", associated value unusable or analyte identity unfounded

"=", compound properly identified and value positive

Reviewed by:	ameinelei	Leigh	Die	Date:	03/06/2022
QA Reviewed by:		P		Date:	
-	•				

LEIDOS Page 2 of 21

Radiochemical Data Review Checklist

I. Case Narrative

Remarks:	
Several samples	s were qualified for incomparable results between alpha and gamma analyses.
	Sample SS-25-0940 had a negative result with an uncertainty smaller than its
absolute value	
	Several samples did not meet the RDL. Please see page 9 of this report.
	Alpha LCS R3725650-2 had an Uranium-238 result (72.9%) that was lower than the
project QC limi	ts. The associated sample Uranium-238 results were qualified "J".
	Thorium-234 was detected in gamma MB R3725157-3. The associated samples that
were detect for [Th-234 and with results less than the action limit were qualified "U".
	Several alpha spec. analyses either had poor resolution or tailing.
I. Re-analysis a	and Secondary Dilutions
erify that re-anal	ysis and secondary dilutions were performed and reported as necessary. Determine
/erify that re-anal	ysis and secondary dilutions were performed and reported as necessary. Determine
erify that re-anal	ysis and secondary dilutions were performed and reported as necessary. Determine s to report.
erify that re-anal	ysis and secondary dilutions were performed and reported as necessary. Determine s to report.
erify that re-anal	ysis and secondary dilutions were performed and reported as necessary. Determine s to report.
/erify that re-anal	ysis and secondary dilutions were performed and reported as necessary. Determine s to report.
-	ysis and secondary dilutions were performed and reported as necessary. Determine s to report.
Verify that re-anal	ysis and secondary dilutions were performed and reported as necessary. Determine s to report.

Page 3 of 21

LEIDOS

Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

Doviduonor Ivone				
Sample #	Radionuclide:	Date Collected	Date Analyzed	Action

Actions:

 If holding times are exceeded 	'. all results are	qualified as estimated	(J/UJ)	*or improperly preserved
---	--------------------	------------------------	--------	--------------------------

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
Potassium-40	< 1 pCi/g	1.45 pCi/g	SS-25-0940
Thorium-234	< 1 pCi/g	1.51 pCi/g	SS-25-0940
Potassium-40	< 1 pCi/g	1.91 pCi/g	SS-22-0935
Thorium-234	< 1 pCi/g	2.48 pCi/g	SS-22-0935
Thorium-234	< 1 pCi/g	1.34 pCi/g	SS-21-1000
Potassium-40	< 1 pCi/g	1.12 pCi/g	SS-20-1020
Thorium-234	< 1 pCi/g	2.37 pCi/g	SS-20-1020
Potassium-40	< 1 pCi/g	1.97 pCi/g	SS-24-0941
Thorium-234	< 1 pCi/g	1.94 pCi/g	SS-24-0941
Potassium-40	< 1 pCi/g	1.54 pCi/g	SB-24-0102
Thorium-234	< 1 pCi/g	2.70 pCi/g	SB-24-0102
Potassium-40	< 1 pCi/g	2.21 pCi/g	SB-DUP-23
Thorium-234	< 1 pCi/g	5.17 pCi/g	SB-DUP-23
Bismuth-214 (Ra-226)	0.5 pCi/g	0.502 pCi/g	SB-23-0102
Potassium-40	< 1 pCi/g	1.99 pCi/g	SB-23-0102
Thorium-234	< 1 pCi/g	4.70 pCi/g	SB-23-0102

Actions:

see CENWK 4.1.3.3a and QAPP

Cont. on next page.

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks: The following sample had a negative result with an uncertainty smaller than the absolute value. The CENWK states these results need to be rejected. However, since these results are likely being influenced by a slight negative bias and may still be useful, professional judgment was used to qualify results: SS-25-0940: U-235 γ

The following samples had results that exceeded the project action limit:

SS-24-0941: Ra-226: 3.91 pCi/g

SB-24-0102: Ra-226: 2.64 pCi/g

SB-DUP-23: Ra-226: 2.76 pCi/g

SB-23-0102: U-235: 0.272 pCi/g and Ra-226: 3.85 pCi/g

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
Radionaciae	Level Goal	+	
Potassium-40	< 1 pCi/g	1.21 pCi/g	SS-23-1014
Thorium-234	< 1 pCi/g	1.21 pCi/g	SS-23-1014
Thorium-234	< 1 pCi/g	1.70 pCi/g	SS-13-1015
Uranium-235 α		LC <result< td=""><td>SS-25-0940. No DVQ.</td></result<>	SS-25-0940. No DVQ.
Uranium-235 γ		LC>Result	SS-25-0940. DVQ: "U"
Uranium-235 α		LC>Result	SS-22-0935. DVQ: "U"
Uranium-235 γ		LC <result< td=""><td>SS-22-0935. No DVQ</td></result<>	SS-22-0935. No DVQ
Thorium-234		LC>Result	SS-22-0935. DVQ: "U"
Uranium-235 α		LC <result< td=""><td>SS-21-1000. No DVQ</td></result<>	SS-21-1000. No DVQ
Uranium-235 γ		LC <result< td=""><td>SS-21-1000. No DVQ</td></result<>	SS-21-1000. No DVQ
Thorium-234		LC>Result	SS-21-1000. DVQ: "U"
Uranium-235 α		LC <result< td=""><td>SS-20-1020. No DVQ.</td></result<>	SS-20-1020. No DVQ.
Uranium-235 γ		LC <result< td=""><td>SS-20-1020. No DVQ.</td></result<>	SS-20-1020. No DVQ.
Thorium-234		LC>Result	SS-20-1020. DVQ: "U"
Uranium-235 α		LC <result< td=""><td>SS-24-0941. No DVQ.</td></result<>	SS-24-0941. No DVQ.
Thorium-234		LC <result< td=""><td>SS-24-0941. No DVQ.</td></result<>	SS-24-0941. No DVQ.

Cont. on next page

Actions:

see CENWK 4.1.3 and QAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks: The sample-specific detection limit (LC) was calculated for sample results less than the critical level. Sample concentrations less than the LC were qualified "U". Please see calculation sheet.

For results that were less than the critical level, the calculation k * CSU</=RDL was used to determine whether the RDL has been met. The following samples had results that did not meet the RDL:

SS-25-0940: U-235 γ, SS-22-0935: Th-234, SS-21-1000: Th-234, SS-20-1020: Th-234, SB-DUP-23:

Th-234, SB-23-0102: Th-234 & SS-13-1015: Th-234.

Page 4 of 21

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

	Project Reporting	MDA	Samples Affected
Radionuclide	Level Goal	Achieved	
Thorium-234		LC <result< td=""><td>SB-24-0102. No DVQ.</td></result<>	SB-24-0102. No DVQ.
Uranium-235 α		LC <result< td=""><td>SB-DUP-23. No DVQ.</td></result<>	SB-DUP-23. No DVQ.
Thorium-234		LC>Result	SB-DUP-23. DVQ: "U"
Thorium-234		LC>Result	SB-23-0102. DVQ: "U"
Uranium-235 α		LC <result< td=""><td>SS-23-1014. No DVQ.</td></result<>	SS-23-1014. No DVQ.
Uranium-235 γ		LC <result< td=""><td>SS-23-1014. No DVQ.</td></result<>	SS-23-1014. No DVQ.
Thorium-234		LC <result< td=""><td>SS-23-1014. No DVQ.</td></result<>	SS-23-1014. No DVQ.
Uranium-235 α		LC <result< td=""><td>SS-13-1015. No DVQ.</td></result<>	SS-13-1015. No DVQ.
Thorium-234		LC>Result	SS-13-1015. DVQ: "U"

Cont. on next page.

Actions:

see CENWK 4.1.3 and QAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks:	
----------	--

For concentration ten times the MDC, the calculation CSU>0.25*Rs was used to				
identify excess reported uncertainty. No samples exhibited excess uncertainty.				

Page 5 of 21

Radiochemical Data Review Checklist

V.A1. Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.2 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: None

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions:	see CENWK 4.3.1.2 and OAF	סכ
ACHOUS	SEE UENWK 4 3 L Z 200 UAI	

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	The initial and continuing calibrations met project acceptance criteria.
	d count was performed the same month the samples were counted. The background did not results.

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.1 and QAPP

Initial efficiency calibration must be demonstrated on each detector for each geometry. Initial energy calibration must be demonstrated on each detector for each geometry.

Resolution (FWHM) must be demonstrated for each detector for each geometry.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.2 and QAPP

Continuing calibration efficiency verification must be performed for each detector at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed monthly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: Delta Vales

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value
Delta Value: 8.2%	159.00 keV	Detector 2	Delta value: < 5%		
Delta Value: 7.6%	392.00 keV	Detector 2	Delta value: < 5%		
Delta Value: 6.3%	898.04 keV	Detector 1	Delta value: < 5%		
Delta Value: 6.5%	159.00 keV	Detector 5	Delta value: < 5%		
Delta Value: 5.3%	513.99 keV	Detector 2	Delta Value: < 5%		
Delta Value: 18.3%	513.99 keV	Detector 4	Delta Value: < 5%		
Delta Value: 24.5%	513.99 keV	Detector 12	Delta Value: < 5%		
Delta value: -7.1%	513.99 keV	Detector 1	Delta Value: < 5%		
Delta value: -6.3%	136.47 keV	Detector 2	Delta Value: < 5%		
Delta value: -12.9%	136.47 keV	Detector 9	Delta Value: < 5%		

Actions: see CENWK 4.3.1.1 and QAPP

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks: Deviations Cont.: Detector 11: Delta value -5.3% at 136.47 keV, Detector 5: Delta value -16.4% at 136.47 keV

All source checks had passing efficiencies, FHWM, and energies, but a few analytes were not within 10%.

There was no mention of a Peak-to-Compoton Ratio Calibration being performed

No standard documentation or standard preparation documentation was provided.

Samples counted on detectors with high delta values and/or a 95% CL (1.96 σ) greater than 8% were qualified as "X".

Page 7 of 21

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis

see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide.

Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

Deviations: SDG samples not selected for analysis.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions:	see CENWK 4.3.1	4 and OAPP						
	oration quench curv		rmation is not acco	ontable				
1. II tile illitiai calit	qualify all affected			epiable,				
2 If the continuing	g calibration efficier		` ,	مام				
Z. II tile continuing	qualify all affected			ль,				
3. If background o	counts are not acce			stimated (J).				
o baonground o		practo, quality trio		· · · · · · · · · · · · · · · · · · ·				
Remarks:								
	_	_	_	_				
,								

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

see CENWK 4.3.1.3.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters

see CENWK 4.3.1.3.1 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations: SDG samples not selected for analysis.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions: see CENWK 4.3.1.3 and QAPP

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:			

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

see CENWK 4.2.1 and QAPP

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted. If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory Method Blanks: Alpha: MB R3724488-1 & MB R3725650-1 Gamma: MB R3725159-2 & MB R3725157-3

Date	Lab ID #	Radionulcide	Result and Error	MDA Result and Error
1 <u>0/19/2021</u>	MB R3724488-1	<u>U-238 α</u>	0.103 pCi/g & 0.103 pCi/g	0.136 pCi/g & 0.103 pCi/g
	The Blank result sul	btr <u>acted from its u</u> r	ncertainty was less than the	MDA. No DVQ.
11/01/2021	MB R3725159-2	Th-234 γ	1.12 pCi/g & 0.601 pCi/g	1.17 pCi/g & 0.601 pCi/g
	The Blank result sub-	tracted from its uno	certainty was less than the N	MDA. No DVQ.
1 <u>1/03/2021</u>	MB R3725157-3	U-235 γ	0.119 pCi/g & 0.0709 pCi/g	0.120 pCi/g & 0.0709 pCi/g
	The Blank result sub	tracted from its und	ce <u>rtainty was less than the</u> N	MDA. No DVQ.
11/03/2021	MB)R3725157-3 The Blank result subtra	Th-234 γ	1.85 pCi/g & 1.11 pCi/g rtainty was less than the MI	1.80 pCi/g & 1.11 pCi/g
	Associated Project B		· ·	571. I lease see heat page.
Date	Lab ID #	Radionuclide	Result and Error	MDA Result and Error
			-	
Remarks:	The blank results no	t listed above were	below their respective unce	artainties and MDAs
	lly, the Zblank value w		below then respective uner	crtamities and WiDAs.
	blanks were associated			
110 project	oranks were associated	with this SDG.		_

I FIDOS

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

see CENWK 4.2.1 and QAPP

5X
Calculate action levels based on 10X the highest blank concentration. see CENWK 4.2.1.3 and QAPP

Deviations: MB R3725157-3

Radionuclide	Max. Activity Detected	Action Level	Samples Affected
Th-234 y	1.85 pCi/g	9.25 pCi/g	SS-25-0940: Result < 5X: DVQ: "U"
•		1 0	SS-25-0940. Result < 5X: DVQ: "U"
			SS-22-0935. Result < 5X: DVQ: "U"
			SS-21-1000. Result < 5X: DVQ: "U"
			SS-20-1020. Result < 5X: DVQ: "U"
			SS-24-0941. Result < 5X: DVQ: "U"
			SB-24-0102. Result < 5X: DVQ: "U"
			SB-DUP-23. Result < 5X: DVQ: "U"
			SB-23-0102. Result < 5X: DVQ: "U"
			SS-23-1014. Result < 5X: DVQ: "U"

Actions: see CENWK 4.2.1 and QAPP

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

			,		
Example:	Blank Result	Uncert.	MDA or	Normalized absolute	Qualification
				<u>difference</u>	
acceptable	0.3	0.45	0.5	>2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
- 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:	Th-234 sample results there were less than the action level were qualified "U" as
indicated in the (OAPP.

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

see CENWK 4.1.2 and QAPP

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

Deviations: None

			Action Taken
Radionuclide	Sample ID	%R	

Actions:	see CENWK	4.1.2	and	QAPP
	 00 44004			

- 1. If recovery is between 30-110%, no qualification is necessary.
- 2. If recovery is between 20 10-30%, qualify the data as estimated (J).
- 3. If recovery is between 110-120150%, qualify the data as estimated (J).
- 4. If recovery is less than 20 10%, qualify the data as rejected (R).
- 5. If recovery if greater than 120 150%, qualify the data as rejected (R).

outside lab limits but within 20-120%: J if corrective actions taken, otherwise R

Remarks:	All tracer recovery results were within project QC limits.				

Page 12 of 21

Radiochemical Data Review Checklist

VIII. Laboratory Control Sample Information	see CENWK 4.2.2 and QAPP

General LCS Criteria:	aqueous	solid	
percent recovery (%R)	80-120	70-130	Gamma, GPC, KPA: 80-120
		75 125	

Laboratory LCS Identifications: Alpha: LCS R3724488-2 & LCS R3725650-2

Gamma: LCS R3725159-1 & LCSD R3725159-3

LCS R3725157-1 & LCSD R3725157-2 **Deviations:**

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
Uranium-238	10/20/21	72.9%	The following samples had U-238 results qualified "J":
			SS-21-1000
			SS-20-1020
			SS-24-0941
			SB-24-0102
			SB-DUP-23
			SB-23-0102
			SS-23-1014
			SS-13-1015

Actions:	and CENIMIK 4.2.2 and OADD
Actions:	see CENWK 4.2.2 and QAPP

Alpha (Aqueous) <50% <u>50-79%</u> <u>121-150%</u> >150% and Gamma, GPC, KPA R <50% 50-74% 126-150% >150% Alpha (Solid) <40% 40-69% 131-160% >160% R R

Remarks:	The LCS recovery results not listed above were within project QC limits.

Page 13 of 21

Radiochemical Data Review Checklist

IX. Matrix Spike Information

General MS Criteria:	Aqueous	Solid	see CENWK 4.2.3 and QAPP
percent recovery (%R)	50-120	40-130	

Project Sample(s) Spiked: SB-24-0102

MS R3725650-3 & MSD R3725650-4

Deviations: None

Actions:

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied

Ac	lueous	<u><20%</u> <u>20-49%</u>	<u>6</u> 121-160%	<u>∕6</u> <u>>160%</u> >150%
		R J	J	use professional judgement R
all samples in batch		*see CENWK 4.2.3	and QAPP*	
	Solid	<u><10%</u> <u>10-39%</u>	<u>6 131-160%</u>	<u>∕</u>
		R J	J	use professional judgement R
Remarks:	-	All matrix spike recovery i	esults were	within project QC limits.

see CENWK 4.2.3 and QAPP

Page 14 of 21

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis

see CENWK 4.2.4, 4.2.5 and QAPP

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER).

Duplicate actions should apply to all samples associated with the duplicate pair.

Gamma: DUP R3725159-4, LCSD R3725159-3, DUP R3725157-4, & LCSD R3725157-2

Project DUP: SB-DUP-23

Duplicate Sample Identification: Alpha: DUP R3724488-5, MSD R3724488-4, DUP R3725650-5, & MSD R3725650-4

Deviations:

				Samples Affected
Radionuclide	DER	RPD	RER	·
U-235 α (DUP R3724488-5)		59.55%	1.085	NAD less than 3. No qualification needed.
U-235 α (DUP R3725650-5)		62.62%	0.963	NAD less than 3. No qualification needed.
Ac-228 γ (DUP R3725159-4)		77.40%	0.407	NAD less than 3. No qualification needed.
K-40 γ (DUP R3725159-4)		84.34%	2.915	NAD less than 3. No qualification needed.
Th-234 γ (DUP R3725159-4)		114.30%	0.924	NAD less than 3. No qualification needed.
Ra-226 γ (DUP R3725159-4)		163.42%	3.141	NAD greater than 3. Parent sample is Non-SDG.
Ra-226 γ (DUP R3725157-4)		22.22%	1.531	NAD less than 3. No qualification needed.
_				

Actions:

see CENWK 4.2.4 (lab dup) 4.2.5 (field dup) and QAPP

- 1. If both sample and duplicate activities are within 2X the MDA comparison is acceptable.
- 2. If the DER is greater than 1.00, qualify the data as estimated (J).
- 3. If the RPD is greater than 50% qualify the data as estimated (J).
- 4. If one sample is <MDA and the other sample is >2X the MDA, qualify the data as estimated (J).

) .

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

see CENWK 4.1.8, 4.1.9.2 and QAPP

Each alpha isotopic peak should be clear and free of interference from other energy peaks. Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Deviations:

Radionuclide	Deficiency	Samples Affected
U-238, U-234, U-232	Poor resolution/tailing	LCS R3724488-2
U-238 & U-234	Tailing	MS R3724488-3
U-238 & U-234	Tailing	MSD R3724488-4
U-238 & U-234	Tailing	MS R3725650-3
U-238 & U-234	Tailing	MSD R3725650-4
U-232	Tailing	SS-21-1000
U-232.	Outside of theoretical energy limit	LCS R3724488-2
U-235	Outside of theoretical energy limit	MB R3725650-1
U-235	Outside of theoretical energy limit	SS-21-1000. Results non-detect. No DVQ.

Actions:

see CENWK 4.1.8, 4.1.9.2 and QAPP

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:	There were no overlapping or interferent peaks. The samples listed
above either had poo	or resolution or tailing. However target peaks were easily distinguishable.
All SDG samples that	t were detected had radionuclide peaks within 40keV from their theoretical energies

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density

see CENWK 4.1.9. 4.1.7 and QAPP

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations: Please see below.

Deficiency	Samples Affected
	Deficiency

Actions:

see CENWK 4.1.9, 4.1.7 and QAPP

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 5. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:	Each target radionuclide peaks were wi	ithin 2 keV of the observed standard peak. How	vever,
		ad of 2 keV. All radionuclides of interest were	
identified.	*		

There were no interferent or overlapping peaks.

The matrix density was not calculated due to lack of documentation containing sample volume within the sample container and the density of the calibration standard.

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy) Sample Aliquot Representativeness

Each sample tentatively identified radionuclide energy must be within 2 keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra.

All peaks greater than 3X the background standard deviation must be identified and quantified.

The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Results from different but comparable analytical techniques from different sub-sample aliquots of the same sample shall be compared for consistency.

Deviations:

Radionuclide	Deficiency	Samples Affected
U-235	Alpha and gamma results not comparable	SS-24-0941. DVQ: "J".
U-235	Alpha and gamma results not comparable	SB-24-0102. DVQ: "J"
U-235	Alpha and gamma results not comparable	SB-DUP-23: DVQ:"J"
U-235	Alpha and gamma results not comparable	SS-13-1015. DVQ: "J"
U-238	Alpha and gamma results not comparable	SS-20-1020. DVQ: "J"
U-238	Alpha and gamma results not comparable	SB-DUP-23. DVQ: "J"

Actions:

1	Qualify	/ All t	ontatival	, identified	radionuclidae	20	actimated	/ I	١
Τ.	Qualif	, an t	Ciliativei	, identifica	TadioHuchucs	ao	Collinated	U	т

If the results do not agree within the reported uncertainty of measurement, results shall be qualified as "J" or "R", depending on the magnitude of the uncertainty.

Remarks:		_	-	
Please see calculation sheet.				
	•		•	·

^{2.} If the energy of the tentatively identified radionuclide peak is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.

^{3.} If the reviewer judges anything regarding the identification of the tentatively identified radilnuclide as suspect, qualify the data as rejected (R).

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

see CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Deviations:

Radionuclide/Method	Deficiency	Samples Affected
D3972 U-02 Isotopic Uranium	Peak resolution/peak tailing	LCS R3724488-2
		MS R3724488-3
		MSD R3724488-4
		MS R3725650-3
		MSD R3725650-4
		SS-21-1000

Actions:	see CENWK and QAPP
----------	--------------------

1. Based on the instrument performance indicators, the data reviewer must use professional judgement of qualify the data.

Remarks:	A s	mall amount o	of noise can	be seen in	the alpha s	oectra, but no	t enough to a	dversely affect
sample res	ults.	All backgrou	nd levels w	ere low. T	here were r	o known ene	rgy shifts or	extraneous peak

LEIDOS Page 19 of 21

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

adionuclide:	se see calculation sheets. Method:	
	1	
emarks <u>:</u>		
alaulatian Objects		
	Taxan a t	
	Method:	
adionuclide:	Method:	
Calculation Check: Radionuclide:	Method:	
Radionuclide:	Method:	
adionuclide:	Method:	

LEIDOS Page 20 of 21

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Radionuclide:	Method:	
Remarks:		
Calculation Check:	Method:	
Calculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

emarks:	Data qualified using parameters and guidance from the QAPP, CENWK, and QSM 5.1

14.44			Billing Inform	nation:					-	Analy	vsis / Con	tainer / Pre	servative			Chain of Custod	Page of
Geo Consultants - Kevil,	KY		Accounts 325 Kenti	ucky Ave		in the	Pres Chk								Pace Analy		e Analytical [®]
25 Kentucky Ave evil, KY 42053			Kevil, KY	42053													
eport to:			Email To: lin	dseyd@geod	consul	tantscorp.co	m	res			1				12065 Lebanon Rd Mount Juliet, TN 3 Submitting a sample via this chain of		
avid Lindsey				1	. P.			No					The same			Pace Terms and Cond	gment and acceptance of the tions found at: com/hubfs/pas-standard-
oject Description: taten Isl Warehouse, Port Richmond		City/State Collected:	aten Is	land Ne	wia	Please Cir PT MT C		6ozHDPE-NoPres			20					SDG # LH	
none: 270-462-3882	FUSRAP	:#		Lab Project	•			160zł								B2	231
Dayd Linday	Site/Facility I	D#		P.O. #	7.3			OSI-N'								Acctnum: GE	
ollected by (signature):	Rush?	(Lab MUST Be	Notified)	Quote #		J. Francisco								415	ļ, ģ	Prelogin: P87	
Den	Same (Day Five	Day	Date R	oculto	Needed		R.								PM: 732 - Dor	
mmediately Packed on Ice N Y	Next D	ay 10 D	ay (Rad Only)	Date n	esults	Necuco	No. of	C-NORM21	and cold						51	PB: Shipped Via: F	edEX Ground
Sample ID	Comp/Grab	Matrix *	Depth	Date		Time	Cntrs	GSPE								Remarks	Sample # (lab only)
SS-08-1400	G	SCM	6-0.5	9-23-2	ч	1400	1	X								3	-01
SB-08-010 Z	6	SCM	1-2	9-23	-21	1410	1	X									-02
55-06-0936	G	SCM	0-00	5 922	-21	0936	1	X				0				1.28	-03
5B-06-0203	G	SCM	2-3	9-22	-21	1115	1	X				8					-04
53-06-0501	6	SCM	0.5-1	9-22	-21	1105		X						- Held	208		-05
53-07-1220	6	SCM	0,5-1	9-22-	U	1224	100	X	1 2 2 2	-	2.05	NE-	-		4 4	1 6 30	-06
58-07-0102	6	SCM	1-2	9-22	-21	1220	-24-21	X			- 4					3/1	-07
SB-07-0203	6	SCM	2-3	9-22	-21	1225	1	X			7						-08
55-Dup-06	6	SCM	05-0	5 9/2 u	/21	0936	, 1	X									-09
22-201-00		SCM		1	1		1	X		See A	-	300					
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:no ic	e required			1 - 5						pH	Tem	p	COC S:	eal Project of Services arr	le Receipt C esent/Intact Accurate: ive intact:	hecklist Y N N N N
WW - WasteWater DW - Drinking Water OT - Other	Samples return UPS Fed	ed via: ExCourie			Trackir	ng#								Suffic VOA Ze	cient o	tles used: volume sent: If Applical adspace:	ole Y N
Relinquished by : (Signature)		Date: 9-27	Tim	e: 430	Receiv	ed by: (Signa	ature)			Tri	p Blank R	eceived: Y	HCL / MeoH TBR			n Correct/Ch <0.5 mR/hr:	
Relinquished by : (Signature)		Date:	Tim		Receiv	red by: (Signa	ature)			2 2 3 2	mp: A2	T.C	tles Received:		ervation	required by Lo	ogin: Date/Time
Relinquished by : (Signature)		Date:	Tim	ne:	Receiv	yed for lab by	(Signa	ature			ite:	, Tin	1015 005	Hold:			NCF / OK
No.					-/	0						100	com		a di	A Company	100

Collected date/time: 09/23/21 14:00

Radiochemistry by Method D3972 U-02 Ar

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	1.46		0.232	0.0928	10/20/2021 21:27	WG1754725
URANIUM-235	0.0317	<u>J</u>	0.0436	0.06	10/20/2021 21:27	WG1754725
URANIUM-238	1.59	J	0.238	0.0736	10/20/2021 21:27	WG1754725
(T) URANIUM-232	86.7			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.84	X	0.361	0.514	11/04/2021 09:38	WG1759852
Bismuth-212	1.77	<u></u>	1.05	1.78	11/04/2021 09:38	WG1759852
Bismuth-214 (Ra-226)	1.46	X	0.245	0.258	11/04/2021 09:38	WG1759852
Lead-212	1.75	X	0.234	0.229	11/04/2021 09:38	WG1759852
Lead-214	1.58	X	0.227	0.247	11/04/2021 09:38	WG1759852
Potassium-40	11.1	X	1.96	1.85	11/04/2021 09:38	WG1759852
Thallium-208	0.402	X	0.100	0.127	11/04/2021 09:38	WG1759852
Uranium-235	0.192	X(J)	0.0994	0.171	11/04/2021 09:38	WG1759852
Thorium-234 (U-238)	-2.27	<u>(∪)</u> X, Ĵ	1.72	3.83	11/04/2021 09:38	WG1759852

L1410673

Radiochemistry by Method D3972 U-02

Collected date/time: 09/23/21 14:10

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>			
Analyte	pCi/g		+ / -	pCi/g	date / time				
URANIUM-234	0.966		0.195	0.14	10/20/2021 21:27	WG1754725			
URANIUM-235	0.0518	J	0.0524	0.0652	10/20/2021 21:27	WG1754725			
URANIUM-238	1.12	J	0.191	0.0822	10/20/2021 21:27	WG1754725			
(T) URANIUM-232	79.9			30.0-110	10/20/2021 21:27	WG1754725			

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.32	X	0.283	0.376	11/04/2021 09:44	WG1759852
Bismuth-212	1.55	<u></u> X	0.966	1.59	11/04/2021 09:44	WG1759852
Bismuth-214 (Ra-226)	1.19	X	0.220	0.201	11/04/2021 09:44	WG1759852
Lead-212	1.63	X	0.238	0.185	11/04/2021 09:44	WG1759852
Lead-214	1.34	X	0.213	0.214	11/04/2021 09:44	WG1759852
Potassium-40	11.5	X	1.87	1.18	11/04/2021 09:44	WG1759852
Thallium-208	0.370	X	0.0961	0.113	11/04/2021 09:44	WG1759852
Uranium-235	0.204	X(J)	0.0884	0.144	11/04/2021 09:44	WG1759852
Thorium-234 (U-238)	0.653	(U) X	1.10	2.37	11/04/2021 09:44	WG1759852

L1410673

Radiochemistry by Method D3972 U-02

Collected date/time: 09/22/21 09:36

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.45		0.256	0.164	10/20/2021 21:27	WG1754725
URANIUM-235	0.0943		0.0727	0.0803	10/20/2021 21:27	WG1754725
URANIUM-238	1.20	J	0.219	0.0917	10/20/2021 21:27	WG1754725
(T) URANIUM-232	83.4			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.01	X	0.324	0.558	11/04/2021 10:58	WG1759852
Bismuth-212	1.62	±X	1.05	1.78	11/04/2021 10:58	WG1759852
Bismuth-214 (Ra-226)	1.31	X	0.255	0.242	11/04/2021 10:58	WG1759852
Lead-212	1.22	X	0.182	0.173	11/04/2021 10:58	WG1759852
Lead-214	1.30	X	0.211	0.266	11/04/2021 10:58	WG1759852
Potassium-40	14.3	X	2.45	1.52	11/04/2021 10:58	WG1759852
Thallium-208	0.396	X	0.114	0.146	11/04/2021 10:58	WG1759852
Uranium-235	0.150	X	0.0721	0.12	11/04/2021 10:58	WG1759852
Thorium-234 (U-238)	1.40	J X	0.797	1.63	11/04/2021 10:58	WG1759852

L1410673

Collected date/time: 09/22/21 11:15

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	2.54		0.376	0.177	10/20/2021 21:27	WG1754725
URANIUM-235	0.00867	<u>(U)</u> J	0.0946	0.158	10/20/2021 21:27	WG1754725
URANIUM-238	2.60	J	0.367	0.0884	10/20/2021 21:27	WG1754725
(T) URANIUM-232	57.1			30.0-110	10/20/2021 21:27	WG1754725

[']Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.08	X	0.292	0.476	11/04/2021 11:04	WG1759852
Bismuth-212	1.42	<u></u> X	0.976	1.65	11/04/2021 11:04	WG1759852
Bismuth-214 (Ra-226)	3.06	X	0.407	0.247	11/04/2021 11:04	WG1759852
Lead-212	1.41	X	0.237	0.246	11/04/2021 11:04	WG1759852
Lead-214	3.05	X	0.391	0.247	11/04/2021 11:04	WG1759852
Potassium-40	8.60	X	1.70	1.4	11/04/2021 11:04	WG1759852
Thallium-208	0.418	X	0.0990	0.105	11/04/2021 11:04	WG1759852
Uranium-235	0.358	X(J)	0.115	0.176	11/04/2021 11:04	WG1759852
Thorium-234 (U-238)	1.07	(\cup) X	1.38	2.96	11/04/2021 11:04	WG1759852

L1410673

Collected date/time: 09/22/21 11:05

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	5.01		0.468	0.19	10/20/2021 21:27	WG1754725
URANIUM-235	0.197	J	0.0998	0.086	10/20/2021 21:27	WG1754725
URANIUM-238	5.05	J	0.462	0.147	10/20/2021 21:27	WG1754725
(T) URANIUM-232	64.8			30.0-110	10/20/2021 21:27	WG1754725

[']Cp

Cn

Radiochemistry by Meth	od DOE Ga-	·01-R/901.1 ((21 day)
------------------------	------------	---------------	----------

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.23	X	0.322	0.491	11/04/2021 11:13	WG1759852
Bismuth-212	2.11	X	1.05	1.65	11/04/2021 11:13	WG1759852
Bismuth-214 (Ra-226)	5.69	X	0.539	0.264	11/04/2021 11:13	WG1759852
Lead-212	1.47	X	0.190	0.179	11/04/2021 11:13	WG1759852
Lead-214	6.02	X	0.550	0.24	11/04/2021 11:13	WG1759852
Potassium-40	10.5	X	1.76	1.6	11/04/2021 11:13	WG1759852
Thallium-208	0.548	X	0.112	0.142	11/04/2021 11:13	WG1759852
Uranium-235	0.620	X(J)	0.106	0.135	11/04/2021 11:13	WG1759852
Thorium-234 (U-238)	3.91	X	1.56	1.95	11/04/2021 11:13	WG1759852

(T) URANIUM-232

SAMPLE RESULTS - 06

L1410673

30.0-110

10/20/2021 21:27

WG1754725

Radiochemistry by Method D3972 U-02

Collected date/time: 09/22/21 09:43

	,					
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.719		0.213	0.164	10/20/2021 21:27	WG1754725
URANIUM-235	0.0213	U	0.0810	0.133	10/20/2021 21:27	WG1754725
URANIUM-238	0.810	J	0.205	0.0863	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.439	X	0.192	0.372	11/04/2021 09:47	WG1759852
Bismuth-212	0.830	<u></u> X	0.665	1.15	11/04/2021 09:47	WG1759852
Bismuth-214 (Ra-226)	0.429	X	0.137	0.198	11/04/2021 09:47	WG1759852
Lead-212	0.481	X	0.112	0.159	11/04/2021 09:47	WG1759852
Lead-214	0.449	X	0.112	0.162	11/04/2021 09:47	WG1759852
Potassium-40	7.48	X	1.41	1.22	11/04/2021 09:47	WG1759852
Thallium-208	0.176	X	0.0642	0.0983	11/04/2021 09:47	WG1759852
Uranium-235	0.0267	<u>(∪)</u> X	0.0492	0.0941	11/04/2021 09:47	WG1759852
Thorium-234 (U-238)	-0.101	(U) X	0.679	1.58	11/04/2021 09:47	WG1759852

L1410673

Radiochemistry by Method D3972 U-02

Collected date/time: 09/22/21 12:20

*	*					
	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.73		0.458	0.207	10/20/2021 21:27	WG1754725
URANIUM-235	0.145	J	0.116	0.124	10/20/2021 21:27	WG1754725
URANIUM-238	2.73	J	0.452	0.173	10/20/2021 21:27	WG1754725
(T) URANIUM-232	47.1			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.27	X	0.196	0.261	11/04/2021 11:19	WG1759852
Bismuth-212	1.85	X	0.618	0.905	11/04/2021 11:19	WG1759852
Bismuth-214 (Ra-226)	2.86	X	0.254	0.144	11/04/2021 11:19	WG1759852
Lead-212	1.64	X	0.165	0.139	11/04/2021 11:19	WG1759852
Lead-214	2.96	X	0.257	0.152	11/04/2021 11:19	WG1759852
Potassium-40	10.8	X	1.20	0.802	11/04/2021 11:19	WG1759852
Thallium-208	0.412	X	0.0647	0.0736	11/04/2021 11:19	WG1759852
Uranium-235	0.296	X(J)	0.0745	0.115	11/04/2021 11:19	WG1759852
Thorium-234 (U-238)	1.88	± X	1.09	1.95	11/04/2021 11:19	WG1759852

Collected date/time: 09/22/21 12:25

L1410673

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.40		0.259	0.141	10/20/2021 21:27	WG1754725
URANIUM-235	0.0400	<u></u> <u></u>	0.0622	0.0908	10/20/2021 21:27	WG1754725
URANIUM-238	1.48	J	0.260	0.114	10/20/2021 21:27	WG1754725
(T) URANIUM-232	79.5			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.837	X	0.270	0.457	11/04/2021 10:57	WG1759852
Bismuth-212	1.53	X	0.920	1.51	11/04/2021 10:57	WG1759852
Bismuth-214 (Ra-226)	1.33	X	0.229	0.195	11/04/2021 10:57	WG1759852
Lead-212	0.890	X	0.155	0.17	11/04/2021 10:57	WG1759852
Lead-214	1.15	X	0.188	0.25	11/04/2021 10:57	WG1759852
Potassium-40	9.30	X	2.00	2.06	11/04/2021 10:57	WG1759852
Thallium-208	0.226	X	0.0868	0.13	11/04/2021 10:57	WG1759852
Uranium-235	0.0878	<u>(∪)</u> X	0.290	0.53	11/04/2021 10:57	WG1759852
Thorium-234 (U-238)	1.52	<u></u>	0.839	1.55	11/04/2021 10:57	WG1759852

Collected date/time: 09/22/21 09:36

L1410673

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.77		0.367	0.173	10/20/2021 21:27	WG1754725
URANIUM-235	0.0417	<u>J</u>	0.0786	0.118	10/20/2021 21:27	WG1754725
URANIUM-238	3.02	J	0.376	0.145	10/20/2021 21:27	WG1754725
(T) URANIUM-232	73.0			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.986	X	0.323	0.519	11/04/2021 10:59	WG1759852
Bismuth-212	1.33	<u></u> X	1.14	2.04	11/04/2021 10:59	WG1759852
Bismuth-214 (Ra-226)	2.08	X	0.321	0.305	11/04/2021 10:59	WG1759852
Lead-212	1.21	X	0.225	0.28	11/04/2021 10:59	WG1759852
Lead-214	2.41	X	0.312	0.296	11/04/2021 10:59	WG1759852
Potassium-40	7.90	X	1.86	2.02	11/04/2021 10:59	WG1759852
Thallium-208	0.294	X	0.115	0.176	11/04/2021 10:59	WG1759852
Uranium-235	0.263	X(J)	0.117	0.198	11/04/2021 10:59	WG1759852
Thorium-234 (U-238)	-2.35	<u>(∪)</u> X	2.07	4.62	11/04/2021 10:59	WG1759852

Leidos Radiological Analytical Data Validation

Event Name: Staten Island Warehouse FUSRAP Site

SDG Number: <u>L1410673</u> Laboratory: <u>Pace Analytical</u>

Analysis: Gamma Spec/Iso U (soil)

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 3 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. The requested analyses include: ^{234/235/238}U by alpha spectrometry (Method D3972 U-02); ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ²³⁴Th, ²²⁸Ac, ⁴⁰K, and ²³⁵U by gamma spectrometry (Method DOE Ga-01-R/901.1 (21 day)). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Case Narrative

Analytical Holding Times and Preservation
Method Calibration/Calibration Verification

Method Blanks Background Checks

Analytical Tracer Recoveries

MS/MSD Recoveries and Differences LCS/LCSD Recoveries and Differences

Laboratory Duplicates/Replicates

Re-analysis and Secondary Dilution Minimum Detectable Activities (MDAs)

Reporting Levels

Chemical/Spectroscopic Separation Specificity (alpha spectroscopy) Project Duplicates and Splits Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

Data Intercomparison

Definition of Data Validation Qualifiers:

"U" - Indicates a normal, non-detected (< critical value) result.

"J" - Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable depending upon the intended use of the data and reason for data rejection.

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September, 2021.

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District, September 2017.

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February, 2018.

Sample Name Cross-Reference

Project Sample Name	Matrix	Lab Sample Name
SS-08-1400	Soil	L1410673-01
SB-08-0102	Soil	L1410673-02
SS-06-0936	Soil	L1410673-03
SB-06-0203	Soil	L1410673-04
SB-06-0501	Soil	L1410673-05
SS-07-1220	Soil	L1410673-06
SB-07-0102	Soil	L1410673-07
SB-07-0203	Soil	L1410673-08
SS-DUP-06	Soil	L1410673-09

Validation Report By:	Amanda Leigh Dick (print)	03/04/2022 Date
		Date
	amanda Leigh Dick	
	(sign)	
Peer Reviewed By:	Thomas L. Rucker	03/10/2022
	(print)	Date
	72 Rucker	
	(sign)	

1.0 GAMMA SPECTROMETRY ANALYSIS

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

For gamma spectrometry, the CENWK states that if the efficiency calibration delta values (difference between the measured and the calibration curve efficiency) are greater than 5% for any one radionuclide, the calibration shall be deemed unusable. The QAPP further states that the 95% CL of fitted function over range shall be \leq 8%. The following gamma spectrometer detectors/geometries had one or more radionuclides with delta values greater than 5% and or a 95% CL (1.96 σ) greater than 8%:

Initial Calibration

Detector	Geometry	# Energy Peaks	Delta %	# Energy Peaks	95% CL	SDG Samples Affected	Qualifier
1	C6	1	6.3			SS-06-0936	X
5	C6	2	-16.4- 6.5	9	8.8- 10.6	SB-08-0102, SB-06-0203	X
10	C6	1	24.1			SB-06-0501	X
11	C6	1	-5.3	2	8.2 – 12.7	SB-07-0102	X
2	Р3	1	5.3			SS-08-1400, SS-DUP-06	X
4	P3	1	18.3	1	8.8	SS-07-1220	X
9	P3	1	12.7			SB-07-0203	X

Based on the CENWK any samples counted on detector with Delta% greater than 5% should be qualified as unusable (X). However, this parameter was not listed in the QAPP. The QAPP parameter, 95% CL of the fitted curve, does not have guidance on how to qualify results outside its limits. It is likely that both of these parameter deficiencies are due to the calibration being performed with less than the minimum 10,000 net counts in each peak in at least six calibration peaks that bracket the range of use as is specified in the DoD Quality Systems Manuel (QSM). The raw counts for the calibration were not provided, but this is evidenced by the uncertainty reported for the peaks. This means there is greater than normal uncertainty in the results due to an uncertain bias from calibration. The samples counted on theses detectors/geometries have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside

the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Continuing Calibration

For gamma spectrometry, the CENWK states that if the activity of each radioisotope in the calibration standard is not within 10% relative of the true, decay corrected activity, the calibration shall be deemed unusable. The QAPP also sets a limit of 10% relative to the true value. The following detectors/geometries have one or more quantified peak outside of the 10% limit for the calibration verification check source: Detector 1 (Am-241) and Detector 2 (Am-241). Please see table below.

Continuing Calibration

Detector	Geometry	# Energy Peaks	% Difference	SDG Samples Affected	Qualifier
1	C6	1	10.8	SS-06-0936	X
2	Р3	1	10.2	SS-08-1400, SS-DUP-06	X

Based on the CENWK any samples counted on detector with check source value of greater than 10% should be qualified as unusable (X). It is likely that this parameter's deficiencies are due to the calibration verification being performed with less than the minimum 10,000 net counts in each peak as is specified in the CENWK as the raw net counts for all peaks were less than the 10,000 net counts for all peaks and all detectors. This means there is greater than normal uncertainty in the results due to an uncertain bias from the calibration verification. These samples have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The following samples did not meet the RDL project goal of <1 pCi/g for Th-234: SS-08-1400, SB-08-0102, SB-06-0203, SS-07-1220, and SS-DUP-06. Please see table below.

Samples That Did Not Meet The RDL

Sample ID	Analyte	CSU (pCi/g)	3.5*CSU	RDL (pCi/g)
SS-08-1400	Th-234	0.858	3.003	1
SB-08-0102	Th-234	0.549	1.9215	1
SB-06-0203	Th-234	0.689	2.4115	1
SS-07-1220	Th-234	0.33945	1.18808	1
SS-DUP-06	Th-234	1.0355	3.62425	1

The Bi-214 (Ra-226) result (5.69 pCi/g) is greater than the project action limit in SB-06-0501.

No sample results exhibited excess uncertainty.

The following samples had negative results with uncertainties smaller than their absolute value. The CENWK states these results need to be rejected. However, since these results are likely being influenced by a slight negative bias and may still be useful, professional judgment was used to qualify results. SS-08-1400: Thorium-234 and SS-DUP-06: Thorium-234.

It is recommended that sample concentrations less than the L_c be qualified as non-detect (U). The following results are qualified as U: SS-08-1400 Th-234, SB-08-0102: Th-234, SB-06-0203: Th-234, SS-07-1220: U-235 and Th-234, SB-07-0203: U-235, and SS-DUP-06: Th-234.

Method Blank

There was no indication of blank contamination for the gamma spectrometry analysis.

Laboratory Control Sample:

The percent recoveries for the laboratory control samples (LCSs) were within acceptable limits.

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD.

$$RPD = \left(\frac{\left|S - D\right|}{\frac{S + D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = Parent Sample Result

D =Field Split/Duplicate Parent Sample Result

 $U_S =$ Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the gamma spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (< 25%, < 3).

All field duplicate results were within a factor of 4 from the original result.

Identification and Quantification:

The following target radionuclides: 228 Ac, 226 Ra, 40 K, 234 Th, and 235 U in the samples were reported. The energies of the radionuclides were less than 2 keV from their theoretical energies.

The laboratory used a peak search sensitivity factor of 3. When the peak search sensitivity factor is set at a value greater than 2.3, the peak search report will not report peaks as low as the MDA. Therefore, there is a greater than 5% chance that concentrations greater than the reported MDA will not appear in the peak search. However, the List Isotope Activities report calculates the net activities for the target analytes and this list has been use to report all target analyte activities. Therefore, the only impact is that small but detected non-target analytes may not have been reported.

2.0 ALPHA SPECTROMETRY

Holding Time and Preservation

All holding times and preservation requirements were met for the alpha spectrometry analyses.

Initial Calibration

All initial calibration criteria met project acceptance criteria.

Continuing Calibration

All continuing calibration criteria met project acceptance criteria.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The project RDL goal of <0.5 pCi/g was met for all radionuclides of interest for all samples.

No sample results exhibited excess uncertainty.

The sample-specific critical level (L_c) was calculated as 1.65 times the sample uncertainty. It is recommended that sample concentrations less than the L_c be qualified as non-detect (U) as follows: SB-06-0203 and SS-07-1220. The following results are qualified as U:

Sample-specific Critical Level (L_C)

Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	L _C (pCi/g)	Qualifier
SB-06-0203	U-235	0.00867	0.022	0.0363	U
SS-07-1220	U-235	0.0213	0.021	0.03465	U

Matrix Spike

A non-SDG sample was used as a matrix spike. The percent recoveries were within acceptable limits.

Method Blank

There was no indication of blank contamination for the alpha spectrometry analysis.

Laboratory Control Sample:

The Uranium-238 percent recovery for the LCS R3725650-2 was below the lower acceptable limit (75%-125%). All alpha Uranium-238 results associated with this LCS are recommended to be qualified as estimated (J): SS-08-1400, SB-08-0102, SS-06-0936, SB-06-0203, SB-06-0501, SS-07-1220, SB-07-0102, SB-07-0203, and SS-DUP-06. Please see table below.

Radiochemistry - LCS % Recovery Calculation

Sample ID	Analyte	Found Value (pCi/g)	True Value (pCi/g)	LCS (% Recovery)	Qualifier
LCS R3725650-3	U-238	3.45	4.74	72.785%	J

Duplicate Analysis:

$$RPD = \left(\frac{\left|S - D\right|}{\frac{S + D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = Parent Sample Result

D =Field Split/Duplicate Parent Sample Result

 $U_S =$ Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The RPDs and the NADs (DERs) are within acceptable limits (<20%, < 3) for the duplicate analyses for all alpha spectrometry analyses.

All field duplicate results were within a factor of 4 from the original result.

Sample-Specific Chemical Recovery:

The tracer recoveries were within acceptable limits.

Spectral Analysis:

No spectral interferences were observed in all of the alpha spectrometry analyses.

Quantification:

No quantification issues were observed.

3.0 DATA INTERCOMPARISON

<u>U Alpha to U Gamma:</u>

In comparing the uranium results from alpha spectrometry analysis to the uranium results from gamma spectrometry, several samples were not in agreement. The following sample results are recommended to be qualified as estimated (J) due to incomparable results:

Radiochemistry - Data Intercomparion

		Al	pha	Ga	mma			
Sample ID	Analyte	Result (pCi/g)	Uncert. (pCi/g)	Result (pCi/g)	Uncert. (pCi/g)	RPD%	DER	Qualifier
SS-08-1400	U-235	0.0317	0.018	1.92	0.0497	193.50%	35.723	J
SB-08-0102	U-235	0.0518	0.02	0.204	0.0442	119.00%	3.137	J
SB-06-0203	U-235	0.00867	0.022	0.358	0.0575	190.54%	5.674	J
SB-06-0501	U-235	0.197	0.032	0.62	0.053	103.55%	6.832	J
SB-07-0102	U-235	0.145	0.027	0.296	0.03726	68.48%	3.282	J
SS-DUP-06	U-235	0.0417	0.025	0.263	0.0583	145.26%	3.489	J
SS-08-1400	U-238	1.59	0.119	-2.27	0.86	-1135.29%	4.446	J

LEIDOS Laboratory Data Verification Checklist					
Project:	Staten Island Wareho	ouse FUSRAP Site	Page 1 of 3		
SDG No:	L1410673 Analyte Group: Gamma Spectroscopy and Iso Sample Matrix: Soil			pic Uranium	
Disposition of I NCR No. (if app	_	N/A N/A	_Y	- - -	
1. Case Narrative					
	Read SDG Case N	arrative		Y	
	Check Laboratory	sample ID vs. Project sample	e ID lists	<u>Y</u>	
	Check that discuss	ion covers each analytical ty	pe included in the SDG	Y	
	Check for identified nonconforming items (e.g., missed holding times, etc.)				
2. Chain-of-Custo					
	•	e collection, shipping, and re	•	<u>Y</u>	
		gnature blocks are complete		<u>Y</u>	
	Check COC project	t sample IDs vs. Lab IDs and	d Result Form IDs	Y	
	Match COC reques data package conte	sted analyses with Case Narr ent (Result Forms)	rative and with	<u>Y</u>	
3. Analytical Resu	lts Form				
	Verify that a Result	Form is present for each sa	mple and analysis	Y	
	On each Result Fo	rm check: SDG No. Sample ID Lab ID Date Collected Date Extracted Date Analyzed Result Matrix Result Units		Y Y Y Y Y Y	

			Page 2 of 3
4. Project Verific	ation		
	Check project ar	nalyte list vs. analytes reported	Y
	Check project re	quested methods vs. analytical methods performed	<u> </u>
	Check analyte re	eporting levels vs. project reporting level goals	Y
5. Analytical Qua	ality Control Informa	ation	
	Trace Check for surrog	r late recovery results (e.g., org. form II)	Y
	Check for LCS re	esults (e.g., org. form III, inorg. form XII)	Y
	Check for metho	d blank results (e.g., org. form IV, inorg. form III)	<u> </u>
	Check for MS/MS	SD results (e.g., inorg. form V)	Y
	Check for labora	tory duplicate results (e.g., inorg. form VI)	<u> </u>
	Check for Metho	d Calibration and Run Documentation	
	organic:	instrument performance check	N/A
	· ·	initial calibration data	N/A
		continuing calibration data	N/A
		internal standard areas	N/A
		internal standard retention times	<u>N/A</u>
		sample clean-up documentation	N/A
		(org. forms V through X)	
	metal:	initial calibration data	NT/A
	metal.	continuing calibration data	<u>N/A</u>
		method detection limits	N/A
		method linear range	<u>N/A</u> N/A
		sample run sequence	
		(inorg. forms II, IV, and VIII through XIV)	N/A
	other:	initial calibration data	V
	(Radiological)	continuing calibration data	<u>I</u> V
	(* ::::::::: :::::::::::::::::::::::::::	method detection limits	V
		sample run sequence	V
		· ·	

6. Incorrect Infor	mation		P	age 3 of 3
	Identify missing ite incorrect sample IE	ms or incorrect information (i.e Ds, etc.)	., missing forms, uns	igned forms,
	Contact the laboration or correct information	tory or project personnel to obtaion	ain missing informati	on
Document	corrections below:			
	The calibration d	locumentation are missing for b	oth alpha and gamma	a analyses.
	Calibration standard	d COAs are not found in the page	ckage	<u>.</u>
	The leberatory ice	and a ravision with some of the	missing information	
	The laboratory issu	ued a revision with some of the	missing information.	<u>. </u>
. Nonconformin	a Itams			
. Noncomonnin				
		conforming items that can not be ce Report (NCR), complete form		
	NCR #	Item		
	000000000000000000000000000000000000000	fool non		
Reviewed By:	Willemalle	digh dill	Date: _	03/04/2022
DA Review Bv:			Date:	

ESE DM-05 Rev0 January 31

LEIDOS Laboratory Data Package Detail Form Project: Staten Island Warehouse FUSRAP Site Page 1 of 1 SDG No: **Analyte Group:** L1410673 Gamma Spectroscopy and Isotopic Uranium Field Lab Matrix Analysis Notes: Sample ID ID# L1410673-01 SS-08-1400 Soil Gamma Spec. and Isotopic Uranium Gamma Spec. and Isotopic Uranium SB-08-0102 Soil L1410673-02 Gamma Spec. and Isotopic Uranium SS-06-0936 L1410673-03 Soil Soil Gamma Spec. and Isotopic Uranium SB-06-0203 L1410673-04 Soil Gamma Spec. and Isotopic Uranium Soil L1410673-05 SB-06-0501 Gamma Spec. and Isotopic Uranium SS-07-1220 L1410673-06 Soil Gamma Spec. and Isotopic Uranium Soil SB-07-0102 L1410673-07 Gamma Spec. and Isotopic Uranium Soil SB-07-0203 L1410673-08 Soil Gamma Spec. and Isotopic Uranium L1410673-09 SS-DUP-06 Comments:

LEIDOS Radiochemical Data Review Checklist

Radiochemical Data Review Checklist						
Project:	Staten Island Warehouse FUS	SRAP Site	Page 1 of 21			
SDG No:	L1410673	Analysis:	Gamma Spectroscopy and Isotopic Uranium			
Laboratory:	Pace Analytical	Method: Matrix:	DOE Ga-01-R/901.1 & D3972 U-02 Soil			
,		_	5011			
data have been sur	ckage has been reviewed and the mmarized. The general criteria unation of the following:		ntrol/quality assurance performance alytical integrityof the data were			
	Case Narrative	Chemical and/or Tra	acer Recoveries			
	Analytical Holding Times	Matrix Spike Results				
	Sample Preservation Method Calibration	Duplicate Error Ration LCS Recoveries	os and RPDs			
	Method Calibration Method and Project Blanks	Re-analysis and Sec	condary Dilution			
0 "5 '	051111111111111111111111111111111111111	- ·				
Overall Remarks:	CENWK, QSM 5.3; see QAPI	of for specific requirement	ents			
Samples qualifie	ed as indicated due to LCS rec	coveries, reporting le	vels, and incomparable results.			
_						
			-			
Definition of Qualifi	ers:					
	"U", not detected at the associ		1/4			
	"UJ", not detected and associated value estimate		N/A			
	"R", associated value unusable	e or analyte identity un	founded			
	"=", compound properly identif	ied and value positive				
Reviewed by:	Umanda Lei	gh Dice	Date: 03/04/2022			
,	0	t	_			
QA Reviewed by:			Date:			

LEIDOS Page 2 of 21

Radiochemical Data Review Checklist

I. Case Narrative

Verify direct statem	nents made within the Laboratory Case Narrative (note discrepancies).
Remarks:	The LCS Uranium-238 percent recovery result (72.9%) was outside the lower limit of
project QC requi	rements (75%-125%). All SDG samples qualified Uranium-238 results with "J".
	The Bi-214 (Ra-226) result is greater than the project action limit in SB-06-0501.
The RDL was not	met for Thorium-234 in samples: SS-08-1400, SB-08-0102, SB-06-0203, SS-07-1220,
SB-07-0203, & S	SS-DUP-06.
The U-2	235 and/or U-238 results were not comparable between the alpha and gamma analyses for
several samples	. Results were qualified as "J"
	The following samples had negative results with uncertainties smaller than their absolute
value: SS-DUP-0	06 & SS-08-1400.
II. Re-analysis a	nd Secondary Dilutions
Verify that re-analy appropriate results	sis and secondary dilutions were performed and reported as necessary. Determine to report.
Remarks:	No sample results were re-analyzed or diluted.

Page 3 of 21

LEIDOS

Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

Deviations. None	Т		1	
Sample #	Radionuclide:	Date Collected	Date Analyzed	Action

Actions:

1. If holding times are exceeded *, all results are qualified as estimated (J/UJ) *o	r improperly	/ preserved
--	--------------	-------------

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

emarks:	All holding times were met and the samples were properly preserved.

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs SEE CENWK 4.1.3 and QAPP FOR CRITERIA

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
Potassium-40	<1pCi/g	1.85pCi/g	SS-08-1400. No DVQ.
Thorium-234 (U-238)	<1pCi/g	3.83 pCi/g	SS-08-1400. No DVQ.
Potassium-40	<1pCi/g	1.18 pCi/g	SB-08-0102. No DVQ.
Thorium-234 (U-238)	<1pCi/g	2.37 pCi/g	SB-08-0102. No DVQ.
Potassium-40	<1pCi/g	1.52 pCi/g	SS-06-0936, No DVQ.
Thorium-234 (U-238)	<1pCi/g	1.63 pCi/g	SS-06-0936. No DVQ.
Potassium-40	<1pCi/g	1.4 pCi/g	SB-06-0203. No DVQ.
Thorium-234 (U-238)	<1pCi/g	2.96 pCi/g	SB-06-0203. No DVQ.
Potassium-40	<1pCi/g	1.16 pCi/g	SB-06-0501. No DVQ.
Thorium-234 (U-238)	<1pCi/g	1.95 pCi/g	SB-06-0501. No DVQ.
Potassium-40	<1pCi/g	1.22 pCi/g	SS-07-1220. No DVQ.
Thorium-234 (U-238)	<1pCi/g	1.58 pCi/g	SS-07-1220. No DVQ.
Thorium-234 (U-238)	<1pCi/g	1.95 pCi/g	SB-07-0102. No DVQ.
Potassium-40	<1pCi/g	2.06 pCi/g	SB-07-0203, No DVQ.
Thorium-234 (U-238)	<1pCi/g	1.55 pCi/g	SB.07-0203.No DVQ.
Potassium-40	<1pCi/g	1.86 pCi/g	SS-DUP-06. No DVQ.

Actions: SEE CENWK 4.1.3.3a and QAPP FOR CRITERIA

Cont. on next page.

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks:

The Bi-214 (Ra-226) result (5.69 pCi/g) is greater than the project action limit in

SB-06-0501

For concentrations greater than ten times the MDC, the calculation CSU > 0.25*Rs was used to indentify excess reported uncertainty. No samples exhibited excess uncertainty.

The following samples had negative results with uncertainties smaller than their absolute value. The CENWK states these results need to be rejected. However, since these results are likely being influenced

by a slight negative bias and may still be useful, professional judgment was used to qualify results. SS-08-1400: Thorium-234 and SS-DUP-06: Thorium-234.

Radiochemical Data Review Checklist

Page 4 of 21 continued

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

SEE CENWK 4.1.3 and QAPP FOR CRITERIA

Deviations:

Radionuclide	Project Reporting Level Goal	MDA Achieved	Samples Affected
Thorium-234 (U-238)	< 1 pCi/g	4.62 pCi/g	SS-DUP-06. No DVQ.
Uranium-235 α		LC <result< td=""><td>SS-08-1400. No DVQ.</td></result<>	SS-08-1400. No DVQ.
Thorium-234 (U-238)		LC>Result	SS-08-1400. DVQ "U".
Uranium-235 α		LC <result< td=""><td>SB-08-0102. No DVQ.</td></result<>	SB-08-0102. No DVQ.
Thorium-234 (U-238)		LC>Result	SB-08-0102. DVQ "U".
Thorium-234 (U-238)		LC <result.< td=""><td>SS-06-0936. No DVQ.</td></result.<>	SS-06-0936. No DVQ.
Uranium-235 α		LC>Result	SB-06-0203. DVQ "U".
Thorium-234 (U-238)		LC>Result	SB-06-0203. DVQ "U".
Uranium-235 α		LC>Result	SS-07-1220. DVQ "U".
Uranium-235 γ		LC>Result	SS-07-1220. DVQ "U".
Thorium-234 (U-238)		LC>Result	SS-07-1220. DVQ "U".
Uranium-235 α		LC <result< td=""><td>SB-07-0203. No DVQ</td></result<>	SB-07-0203. No DVQ
Uranium-235 γ		LC>Result	SB-07-0203. DVQ "U".
Thorium-234 (U-238)		LC <result< td=""><td>SB-07-0203. No DVQ</td></result<>	SB-07-0203. No DVQ
Uranium-235 α		LC <result< td=""><td>SS-DUP-06. No DVQ.</td></result<>	SS-DUP-06. No DVQ.
Thorium-234 (U-238)		LC>Result	SS-DUP-06. DVQ "U".

Actions: SEE CENWK 4.1.3 and QAPP FOR CRITERIA

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks:	The sample-specific detection limit (LC) was calculated for sample results less than
the critical level	. Sample concentrations less than the LC were qualified "U". Please see calculation sheet.
For results tha	t were less than the critical level, the calculation k * CSU =RDL was used to determine</td
	DL has been met. The following samples had results that did not meet the RDL:
	Th-234, SB-08-0102: Th-234, SB-06-0203: Th-234, SS-07-1220: Th-234, and SS-DUP-06:
Th-234.	

Radiochemical Data Review Checklist

Page 4 of 21 continued

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs SEE CENWK 4.1.3 and QAPP FOR CRITERIA

Deviations:

	Project Reporting	MDA	Samples Affected
Radionuclide	Level Goal	Achieved	
Uranium-235 α		Result <mda< td=""><td>SS-08-1440. DVQ: "U".</td></mda<>	SS-08-1440. DVQ: "U".
Uranium-235 α		Result <mda< td=""><td>SB-08-0102. DVQ: "U".</td></mda<>	SB-08-0102. DVQ: "U".
Thorium-234 (U-238)		Result <mda< td=""><td>SS-06-0936. DVQ: "U".</td></mda<>	SS-06-0936. DVQ: "U".
Thorium-234 (U-238)		Result <mda< td=""><td>SB-07-0102. DVQ: "U"</td></mda<>	SB-07-0102. DVQ: "U"
Uranium-235 α		Result <mda< td=""><td>SB-07-0203. DVQ: "U"</td></mda<>	SB-07-0203. DVQ: "U"
Thorium-234 (U-238)		Result <mda< td=""><td>SB-07-0203. DVQ: "U"</td></mda<>	SB-07-0203. DVQ: "U"
Uranium-235 α		Result <mda< td=""><td>SS-DUP-06. DVQ: "U"</td></mda<>	SS-DUP-06. DVQ: "U"

Actions: SEE CENWK 4.1.3 and QAPP FOR CRITERIA

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks:	The results listed above were greater than their respective uncertainties, but less than
the MDA.	The original lab qualifier was changed from a "J" to "U" to keep in compliance with the
guidance.	

Radiochemical Data Review Checklist

Page 5 of 21

SEE CENWK 4.3.1.2.1 and QAPP FOR CRITERIA

V.A1. Calibration Alpha Spectroscopy

Initial efficiency calibration must be demonstrated for each detector. Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

SEE CENWK 4.3.1.2.2 and QAPP FOR CRITERIA

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency. Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: None

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions: SEE CENWK 4.3.1.2 and QAPP FOR CRITERIA

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	An energy and efficiency calibration was performed for each detector.	
All calibratio	ns met project acceptance criteria.	
		<u> </u>

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

SEE CENWK 4.3.1.1.1 and QAPP FOR CRITERIA

Initial efficiency calibration must be demonstrated on each detector for each geometry.

Initial energy calibration must be demonstrated on each detector for each geometry.

Resolution (FWHM) must be demonstrated for each detector for each geometry.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy SEE CENWK 4.3.1.1.2 and QAPP FOR CRITERIA

Continuing calibration efficiency verification must be performed for each detector at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed monthly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: Delta Values

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value
6.3%	898.04 keV	Detector 1	< 5%		
-16.4%	136.47 keV	Detector 5	< 5%		
6.5%	159.00 keV	Detector 5	< 5%		
24.1%	513.99 keV	Detector 10	< 5%		
-5.3%	136.47 keV	Detector 11	< 5%		
5.3%	513.99 keV	Detector 2	< 5%		
18.3%	513.99 keV	Detector 4	< 5%		
12.7%	513.99 keV	Detector 9	< 5%		
24.5%	513.99 keV	Detector 12	< 5%		

Actions: SEE CENWK 4.3.1.1 and QAPP FOR CRITERIA

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks:

A long monthly background was performed. No high results were noted.

An initial efficiency curve was performed, but no standard documentation was provided

Samples counted on detector with high delta values or or a 95% CL (1.96 σ) greater than 8%: were

qualified as X.

<u>Daily source checks were performed for each detector. The FWHM was less than 3 keV for confirmed isotopes.</u> Detector 2 had Co-60 energy difference from the true energy greater than 1.0 keV.

Page 7 of 21

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide. Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters-Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions: SEE CENWK 4.3.1.4 and QAPP FOR CRITERIA

- 1. If the initial calibration quench curve or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or control charts are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	KPA N/A FOR THIS SDG

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

SEE CENWK 4.3.1.3.1 and QAPP FOR CRITERIA

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters SEE CENWK 4.3.1.3.1 and QAPP FOR CRITERIA

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions: SEE CENWK 4.3.1.3 and QAPP FOR CRITERIA

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	GPC N/A FOR THIS SDG				

I FIDOS

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

SEE CENWK 4.2.1 and QAPP FOR CRITERIA

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted. If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory Method Blanks: Alpha: MB R3725650-1. Gamma: MB R3725727-3 Result and Error pCi/g MDA Result and Error pCi/g Date Lab ID# Radionulcide 11/04/2021 MB R3725727-3 Bi-214 (Ra-226) 0.0976 and 0.0950 0.181 and 0.0950 The Blank result subtracted from its uncertainty was less than the MDA. No DVQ per QAPP. 10/20/2021 U-238 0.0641 and 0.0967 0.137 and 0.0967 MB R3725650-1 The Blank result subtracted from its uncertainty was less than the MDA. No DVQ per QAPP. Associated Project Blanks (e.g., equipment rinsates, etc.) N/A Result and Error MDA Result and Error Date Lab ID # Radionuclide Remarks: All blank results were less than the MDA. No qualification needed per QAPP. There were no project blanks associated with this SDG. Additionally, the |Zblank| value was less than 3.

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

SEE CENWK 4.2.1 and QAPP FOR CRITERIA

Calculate action levels based on 10X the highest blank concentration. SEE CENWK 4.2.1.3 and QAPP FOR CRITERIA

Deviations: Please see previous page.

	Max. Activity	Action Level	Samples Affected
Radionuclide	Detected		

Actions: SEE CENWK 4.2.1 and QAPP FOR CRITERIA

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

Example:	Blank Result	Uncert.	MDA or	Normalized absolute	Qualification
				<u>difference</u>	
acceptable	0.3	0.45	0.5	>2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
 - 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:			
•			

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

SEE CENWK 4.1.2 and QAPP FOR CRITERIA

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

Deviations: None

Tolle	1	T	
			Action Taken
Radionuclide	Sample ID	%R	

Actions:	SEE CENWK A 1.2 and OAPD FOR CRITERIA	Δ

- 1. If recovery is between 30-110%, no qualification is necessary.
- 2. If recovery is between 20 10-30%, qualify the data as estimated (J).
- 3. If recovery is between 110-120150%, qualify the data as estimated (J).
- 4. If recovery is less than 20 10%, qualify the data as rejected (R).
- 5. If recovery if greater than 120 150%, qualify the data as rejected (R).

outside lab limits but within 20-120%: J if corrective actions taken, otherwise R

Remarks:	All tracer recovery results were within project QC limits.

Page 12 of 21

Radiochemical Data Review Checklist

VIII. Laboratory Control Sample Information

SEE CENWK	4.2.2 and	QAPP	FOR
-----------	-----------	-------------	-----

Alpha CRITERIA

General LCS Criteria: percent recovery (%R)

aqueous	solid
80-120	70-130
	75 405

Gamma, GPC, KPA: 80-120

75-125

Laboratory LCS Identifications: <u>Alpha: LCS R3725650-2</u>

Gamma: LCS R3725727-1 and LCSD R3725727-4

Deviations:

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
Uranium-238	10/20/2021	72.9%	All alpha U-238 results qualified J.

Actions:	SEE CENWK 4.2.2 and OAPP FOR CRITERIA
ACTIONS ¹	SEE CENVIN 4 / / AND CAPP FOR CRITERIA

All gamma LCS/LCSD recovery results were within QC limits. The alpha
n-234 was within QC limits as well.

Page 13 of 21

Radiochemical Data Review Checklist

IX. Matrix Spike Information

General MS Criteria:	Aqueous	Solid	SEE CENWK 4.2.3 and QAPP FOR CRITERIA
percent recovery (%R)	50-120	40-130	

Project Sample(s) Spiked: Non-SDG sample was spiked (L1410640-06)

MS R3725650-3 & MSD R3725650-4

Deviations: None

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied

Actions:	SEE	CENWK 4.2.3 at	nd QAPP	FOR CRITE	ERIA
	Aqueous	<u><20%</u>	<u>20-49%</u>	<u>121-160%</u>	>160% >150%
		R	J	J	use professional judgement R
all samples in batch	l	*see CEN\	NK 4.2.3 a	ind QAPP*	
	Solid	<u><10%</u>	<u>10-39%</u>	<u>131-160%</u>	<u>>160%</u> >150%
		R	J	J	use professional judgement R
Remarks:	<u>All</u>	matrix spike red	covery res	sults were	within project QC limits.
		9	•		

Page 14 of 21

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis SEE CENWK 4.2.4, 4.2.5 and QAPP FOR CRITERIA

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER).

Duplicate actions should apply to all samples associated with the duplicate pair.

Duplicate Sample Identification: Alpha: DUP R3725650-5 & MSD R3725650-4

Gamma: DUP R3725727-2 & LCSD R3725727-4

Field DU: SS-DUP-06 L1410673-09

Deviations: DUP R372

DOI RS/2			NAD	Samples Affected
Radionuclide	DER	RPD	RER	·
U-235 (DUP R3725650-5)		62.38%	0.347	NAD less than 3. No DVQ.
Th-234 (U-238) γ (DUP R3725727-2)		53.57%	0.451	NAD less than 3. No DVQ.
Ac-228 γ (DUP R3725727-2)		27.32%	0.794	NAD less than 3. No DVQ.

Actions:

SEE CENWK 4.2.4 (lab dup) 4.2.5 (field dup) and QAPP FOR CRITERIA

- 1. If both sample and duplicate activities are within 2X the MDA comparison is acceptable.
- 2. If the DER is greater than 1.00, qualify the data as estimated (J).
- 3. If the RPD is greater than 50% qualify the data as estimated (J).
- 4. If one sample is <MDA and the other sample is >2X the MDA, qualify the data as estimated (J).

Remarks:	All field duplicate results were within project requirements. Please see calculation
sheets. The RPD r	results not listed above were within project requirements. The CENWK guidance states
that the RPD result	s must be within 35% or the NAD result must be less than 1.96 for soil duplicate
analyses.	

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

SEE CENWK 4.1.8, 4.1.9.2 and QAPP FOR CRITERIA

Each alpha isotopic peak should be clear and free of interference from other energy peaks. Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Deviations: None.

Radionuclide	Deficiency	Samples Affected

Actions:	SEE CENIMIC 4 1 9	4 1 9 2 and OAPP FOI	CDITEDIA
ACHORS	SEE GENVA 4 I A	4 9 / ANN CJAPP FUJ	7 L.RIIERIA

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:	There were no overlapping peaks in the spectra. There was a small amoun
of background noise, but no	thing that would interfere with sample results. All radionuclide peaks were
within their region of intere	est. No manual integration was noted.
-	All detected radionuclide peaks of interest were within 40keV from their
theoretical energies.	

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density

SEE CENWK 4.1.9, 4.1.7 and QAPP FOR CRITERIA

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations: None.

Deficiency	Samples Affected
	Deficiency

Actions:

SEE CENWK 4.1.9, 4.1.7 and QAPP FOR CRITERIA

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 5. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks: The po	eak search algorithm was set at 3.0, not the required 2 keV for all SDG sam	ples.
All identified radio	onuclide energies were less than 2 keV from the theoretical energy.	
All project radion	uclides of interest met identification criteria.	
The energy spectra	a did not contain overlapping or interferent peaks.	

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy) Sample Aliquot Representativeness

Each sample tentatively identified radionuclide energy must be within 2 keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra.

All peaks greater than 3X the background standard deviation must be identified and quantified.

The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Results from different but comparable analytical techniques

from different sub-sample aliquots of the same sample shall be compared for consistency.

Deviations:

Radionuclide	Deficiency	Samples Affected
U-235	alpha and gamma results not comparable.	SS-18-1400, DVQ: "J"
U-235	alpha and gamma results not comparable.	SB-08-0102. DVQ: "J"
U-235	alpha and gamma results not comparable.	
U-235	alpha and gamma results not comparable.	SB-06-0501. DVQ: "J"
U-235	alpha and gamma results not comparable.	
U-235	alpha and gamma results not comparable.	SS-DUP-06. DVQ: "J"
U-238	alpha and gamma results not comparable.	SS-08-1400. DVQ "J"

Actions:

- 1. Qualify all tentatively identified radionuclides as estimated (J).
- 2. If the energy of the tentatively identified radionuclide peak is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 3. If the reviewer judges anything regarding the identification of the tentatively identified radilnuclide as suspect, qualify the data as rejected (R).

If the results do not agree within the reported uncertainty of measurement, results shall be qualified as "J" or "R", depending on the magnitude of the uncertainty.

Remarks:	<i>,</i> 1	8	8	,	
See calculation sheets.					

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

SEE CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Deviations: None

Domarke:

Radionuclide/Method	Deficiency	Samples Affected

Actions: SEE	Ξ	CENV	٧K	and	QA	PP
--------------	---	------	----	-----	----	----

1. Based on the instrument performance indicators,	the data reviewer must use professiona
judgement ot qualify	/ the data.

is free of p	eak tailing ar	<u>id/or splittin</u>	g and the re	solution was	clear.	

LEIDOS Page 19 of 21

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

alculation Check: N/A for adionuclide:	Method:	
adionadiae.	ivictiod.	
Remarks:		
Remarks <u>:</u>		
Remarks <u>:</u>		
Remarks <u>:</u>		
Calculation Check:	Mothod	
Calculation Check:	Method:	
Calculation Check: Radionuclide:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	

LEIDOS Page 20 of 21

XV. Analyte Quant Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Calculation Check: N/A for adionuclide:	Method:	
adio idolido.	iviotriou.	
Remarks:		
Calculation Check:	Mathod:	
alculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
adionuclide:	Method:	
Calculation Check: Radionuclide:	Method:	

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

Remarks:	SDG sample results were qualified per QAPP and CENWK guidance.
-	

Company Name/Address:			Billing Inform	mation:	- 201	Austr	11.00		Analysis / Con	ainer / Preservat	tive		Chain of Custody Page 1 of 2			
Geo Consultants - Kevi	I, KY		Accounts 325 Kenti Kevil, KY	ucky Ave		Pres Chk						4	- Pac	e Analytical [®]		
Kevil, KY 42053			Kevii, Ki	42033				2 m								
Report to: David Lindsey			Email To: lin	ndseyd@geocon			NoPres						12065 Lebanon Rd. Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-standard-			
Project Description: Staten Isl Warehouse, Port Richmond	The court	City/State Collected:	staten	Foland	Please Ci PT MT C		PE-				14.19		terms.pdf			
Phone: 270-462-3882	Client Project			Lab Project #			16ozHDPE-NoPr						SDG # UU			
Collected by (print):	Site/Facility I	D#		P.O. #			U-ISO 1						Acctnum: GE			
Collected by (signature):	Rush?	(Lab MUST Be		Quote #			M21,U						Prelogin: P8	73895		
Immediately Packed on Ice N Y Y	Next D Two D Three	ay 10 D	y (Rad Only) Day (Rad Only)	Date Resu	lts Needed	No.	GSPEC-NORM21,						PB:	edEX Ground		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	SSPE						Remarks	Sample # (lab only)		
Ch at 2012	G	SCM	Surface	9-27-2	10813	1	X			1	1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42	-01		
5D-01-0813 5D-02-0810	6	SCM	Sofac			1	X							-02		
SD-03~0815	9	SCM	Surface	0 . 1	CO COLOR		X							-03		
SD-04-0916	6	SCM	Surface	9-27-2	10910) 1	X						3 // 1	-04		
5D-05~0800	6	SCM	Suface	9-27-2	1 0800	1	X						7 15	-05		
SP-06-0754	6	SCM	Sursace	9-27-2	10754	1 1	X				17.7			-06		
50-07-0758	8	SCM	Surface	9-27-2	10758	3 1	X	1.44				1		-07		
50-08-0805	9	SCM	Suffice	9-27-2	1 0805	1	X							-08		
50-09-0750	6.	SCM	Surface		1 - 1 - 0	1	X		83 1					-09		
55-10-0816	6	SCM	Sursaci	9-27-2	10816	1	X				1	Car	mple Receipt (-10		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:no ico	e required							pH Flow	Temp		COC Seal COC Signe Bottles a	Present/Intac d/Accurate: rrive intact: ottles used:	E: NP Y N		
WW - WasteWater DW - Drinking Water OT - Other	Samples returne		r <u>1</u>	Trac	king#							Sufficien VOA Zero	t volume sent If Applica Headspace: ion Correct/C	bleYN		
Relinquished by : (Signature)	1	Date:	-4 16	Rec	eived by: (Signa	ature)			Trip Blank R	6 TBR	МеоН	RAD Scree	n <0.5 mR/hr:	J_¥ _N		
Relinquished by : (Signature)		Date:	Time		eived by: (Signa	ature)	# 1		Temp: 3		ceived:		ion required by L	ogin: Date/Time		
Relinquished by : (Signature)		Date:	Time	Rec	eived for lab by	V: (Signa	ture)	1	Date: 9/29	/21 Time:	015	Hold:		gondition: NCF / OK		

LSONCOM

			Information						Analy	ysis / Conta	ner / Prese	rvative			Chain of Custody	Page Zof Z
GEO CONSOLFANTS - 325 Kentroky F Kevil KY 420	- Kin 1 -1	4 1	Azcovi 325 1	who par	rable ky Awa 2053	Pres Chk		175 T							Pace Pational Co	Analytical* unter for Testing & Insovation
Kevil Ky 42	053	K	evi1	KYY	2053		Pres.		2 10 1						12065 Lebanon Rd	en Kalen
eport to: Savid Londsen roject Description:	-	lina	sayded	econsul	Lents carp.	46My	No	4							Mount Juliet, TN 37: Phone: 615-758-585 Phone: 800-767-585	8
Staten Island Wareh	ient Project #	Robbina f	ea:	roject#	PT MT (CT ET	-150								SDG # UU	101.27
hone:							2							4	Table #	OW
	te/Facility ID #		P.O. #	7000			NORMZ							100	Acctnum: Template:	
collected by (signature): mmediately Packed on Ice N Y	Rush? (Lab MSame Day Next Day Two Day Three Day		inly)	Date Results	Needed	No. of	とからして								Prelogin: PM: PB: Shipped Via:	
Sample ID	Comp/Grab	. 500	Depth	Date	Time	Cntrs	65							P	Remarks	Sample # (lab only)
SD-MS SD-MS-DUP	Gas	Scm	Surface	9-27-2	10910	1					A	1				-04
SD-MS-DUP	grab	SCM	Surge	9-27-2	10910	1								_		-04
SD- KDUP-02	- Grah	scm	BurGoe	9-27-2	10810											-11
		7.									100					
									-	- 63						
								7						A N		
														Com	ale Bessint C	hoghligt
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	emarks:									pH	Temp		Bott Corr	Signed les ar ect bo	/Accurate: rive intact: ttles used:	YN
DW - Drinking Water OT - Other	Samples returned UPS FedEx			Trac	king#	1911	147	- 11	V						volume sent: If Applicate leadspace:	ole Y N
Relinquished by : (Signature)	1	nte: 9 -27. z,	Time:		eived by: (Sign	ature)			Tr	ip Blank Re	0 +	s / No ICL / MeoH BR	Pres	ervati	on Correct/Ch <0.5 mR/hr:	necked: Y N
Relinquished by : (Signature)		ate:	Time:	Rec	eived by: (Sign	ature)	1		100	mp:2	°C Bottle	es Received:	If pre	servatio	on required by Lo	ogin: Date/Time
Relinquished by : (Signature)	Da	ate:	Time:	Rec	eived for lab b	y: (Sign	ature)	/		ate: /19/	/ Time	-	Hold:		SPORTS	Condition: NCF / OK 23

L1410682

Radiochemistry by Method D3972 U-02

Collected date/time: 09/27/21 08:13

* *						
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.66		0.347	0.166	10/20/2021 21:27	WG1754725
URANIUM-235	0.167		0.103	0.11	10/20/2021 21:27	WG1754725
URANIUM-238	3.09	J	0.361	0.0993	10/20/2021 21:27	WG1754725
(T) URANIUM-232	70.0			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	1.02	X	0.259	0.416	11/04/2021 11:00	WG1759852
Bismuth-212	1.34	± X	0.816	1.38	11/04/2021 11:00	WG1759852
Bismuth-214 (Ra-226)	2.03	X	0.270	0.215	11/04/2021 11:00	WG1759852
Lead-212	1.15	X	0.176	0.197	11/04/2021 11:00	WG1759852
Lead-214	2.34	X	0.264	0.211	11/04/2021 11:00	WG1759852
Potassium-40	10.5	X	1.69	1.27	11/04/2021 11:00	WG1759852
Thallium-208	0.356	X	0.0884	0.119	11/04/2021 11:00	WG1759852
Uranium-235	0.233	X	0.0784	0.133	11/04/2021 11:00	WG1759852
Thorium-234 (U-238)	0.819	(<u>∪</u>) X. J	1.04	2.23	11/04/2021 11:00	WG1759852

L1410682

Collected date/time: 09/27/21 08:10

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.618		0.187	0.184	10/20/2021 21:27	WG1754725
URANIUM-235	0.0291	<u></u> J (U)	0.0470	0.0686	10/20/2021 21:27	WG1754725
URANIUM-238	0.686	J	0.164	0.112	10/20/2021 21:27	WG1754725
(T) URANIUM-232	89.1			30.0-110	10/20/2021 21:27	WG1754725

[']Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.09	X	0.296	0.462	11/04/2021 12:08	WG1759852
Bismuth-212	2.22	X	1.02	1.5	11/04/2021 12:08	WG1759852
Bismuth-214 (Ra-226)	0.972	X	0.222	0.278	11/04/2021 12:08	WG1759852
Lead-212	1.18	X	0.175	0.174	11/04/2021 12:08	WG1759852
Lead-214	1.01	X	0.174	0.241	11/04/2021 12:08	WG1759852
Potassium-40	17.1	X	2.61	1.53	11/04/2021 12:08	WG1759852
Thallium-208	0.397	X	0.107	0.138	11/04/2021 12:08	WG1759852
Uranium-235	0.151	X(J)	0.0645	0.108	11/04/2021 12:08	WG1759852
Thorium-234 (U-238)	1.48	X	0.785	1.43	11/04/2021 12:08	WG1759852

L1410682

Radiochemistry by Method D3972 U-02

Collected date/time: 09/27/21 08:15

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.18		0.295	0.193	10/20/2021 21:27	WG1754725
URANIUM-235	0.0455	<u>J</u> (U)	0.0838	0.121	10/20/2021 21:27	WG1754725
URANIUM-238	2.18	J	0.276	0.125	10/20/2021 21:27	WG1754725
(T) URANIUM-232	80.1			30.0-110	10/20/2021 21:27	WG1754725

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.917	X	0.245	0.375	11/04/2021 12:10	WG1759852
Bismuth-212	0.918	±X	0.784	1.38	11/04/2021 12:10	WG1759852
Bismuth-214 (Ra-226)	1.50	X	0.242	0.215	11/04/2021 12:10	WG1759852
Lead-212	0.922	X	0.169	0.186	11/04/2021 12:10	WG1759852
Lead-214	1.59	X	0.229	0.182	11/04/2021 12:10	WG1759852
Potassium-40	8.58	X	1.58	1.27	11/04/2021 12:10	WG1759852
Thallium-208	0.232	X	0.0773	0.104	11/04/2021 12:10	WG1759852
Uranium-235	0.218	X(J)	0.0867	0.14	11/04/2021 12:10	WG1759852
Thorium-234 (U-238)	1.59	± X	1.17	2.08	11/04/2021 12:10	WG1759852

L1410682

Collected date/time: 09/27/21 09:10

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.887		0.186	0.102	10/21/2021 17:06	WG1754727
URANIUM-235	0.0599	₹	0.0543	0.061	10/21/2021 17:06	WG1754727
URANIUM-238	0.850		0.179	0.0854	10/21/2021 17:06	WG1754727
(T) URANIUM-232	95.7			30.0-110	10/21/2021 17:06	WG1754727

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.10	X	0.323	0.528	11/04/2021 14:46	WG1759852
Bismuth-212	1.28	± X	1.18	2.12	11/04/2021 14:46	WG1759852
Bismuth-214 (Ra-226)	1.16	X	0.263	0.319	11/04/2021 14:46	WG1759852
Lead-212	1.49	X	0.214	0.193	11/04/2021 14:46	WG1759852
Lead-214	1.56	X	0.240	0.289	11/04/2021 14:46	WG1759852
Potassium-40	13.3	X	2.46	1.53	11/04/2021 14:46	WG1759852
Thallium-208	0.497	X	0.125	0.144	11/04/2021 14:46	WG1759852
Uranium-235	0.114	₹ X	0.0794	0.14	11/04/2021 14:46	WG1759852
Thorium-234 (U-238)	1.13	₹X	0.793	1.75	11/04/2021 14:46	WG1759852

Collected date/time: 09/27/21 08:00

00,27,21,00.00

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.16		0.315	0.14	10/21/2021 17:06	WG1754727
URANIUM-235	0.0286	U	0.0578	0.0902	10/21/2021 17:06	WG1754727
URANIUM-238	1.69		0.276	0.114	10/21/2021 17:06	WG1754727
(T) URANIUM-232	79.1			30.0-110	10/21/2021 17:06	WG1754727

Ср

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.13	X	0.314	0.495	11/04/2021 14:53	WG1759852
Bismuth-212	1.80	₹X	1.11	1.87	11/04/2021 14:53	WG1759852
Bismuth-214 (Ra-226)	1.35	X	0.253	0.247	11/04/2021 14:53	WG1759852
Lead-212	1.48	X	0.241	0.222	11/04/2021 14:53	WG1759852
Lead-214	1.37	X	0.230	0.255	11/04/2021 14:53	WG1759852
Potassium-40	12.4	X	2.07	1.2	11/04/2021 14:53	WG1759852
Thallium-208	0.387	X	0.104	0.121	11/04/2021 14:53	WG1759852
Uranium-235	0.168	₹X	0.103	0.175	11/04/2021 14:53	WG1759852
Thorium-234 (U-238)	1.69	J X	1.45	2.67	11/04/2021 14:53	WG1759852

Collected date/time: 09/27/21 07:54

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	2.81		0.346	0.153	10/21/2021 17:06	WG1754727
URANIUM-235	0.0877	<u>J</u>	0.0828	0.105	10/21/2021 17:06	WG1754727
URANIUM-238	3.02		0.353	0.128	10/21/2021 17:06	WG1754727
(T) URANIUM-232	81.8			30.0-110	10/21/2021 17:06	WG1754727

[']Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.29	X	0.197	0.226	11/04/2021 11:20	WG1759852
Bismuth-212	1.05	±X	0.588	1.05	11/04/2021 11:20	WG1759852
Bismuth-214 (Ra-226)	2.57	X	0.259	0.139	11/04/2021 11:20	WG1759852
Lead-212	1.22	X	0.141	0.122	11/04/2021 11:20	WG1759852
Lead-214	2.47	X	0.247	0.152	11/04/2021 11:20	WG1759852
Potassium-40	10.3	X	1.25	0.87	11/04/2021 11:20	WG1759852
Thallium-208	0.364	X	0.0637	0.0712	11/04/2021 11:20	WG1759852
Uranium-235	0.250	X(J)	0.0635	0.103	11/04/2021 11:20	WG1759852
Thorium-234 (U-238)	1.91	X	0.994	1.67	11/04/2021 11:20	WG1759852

SD-07-0758

SAMPLE RESULTS - 07

Collected date/time: 09/27/21 07:58

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.83		0.267	0.14	10/21/2021 17:06	WG1754727
URANIUM-235	0.104	J	0.0795	0.0926	10/21/2021 17:06	WG1754727
URANIUM-238	2.39	J	0.292	0.0839	10/21/2021 17:06	WG1754727
(T) URANIUM-232	82.0			30.0-110	10/21/2021 17:06	WG1754727

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.947	X	0.244	0.419	11/04/2021 12:08	WG1759852
Bismuth-212	1.77	X	0.797	1.23	11/04/2021 12:08	WG1759852
Bismuth-214 (Ra-226)	1.90	X	0.251	0.201	11/04/2021 12:08	WG1759852
Lead-212	1.16	X	0.171	0.193	11/04/2021 12:08	WG1759852
Lead-214	1.98	X	0.234	0.224	11/04/2021 12:08	WG1759852
Potassium-40	10.2	X	1.62	1.35	11/04/2021 12:08	WG1759852
Thallium-208	0.336	X	0.0839	0.112	11/04/2021 12:08	WG1759852
Uranium-235	0.308	X(J)	0.0878	0.137	11/04/2021 12:08	WG1759852
Thorium-234 (U-238)	-0.710	(U) X . j	1.26	3.05	11/04/2021 12:08	WG1759852

L1410682

Collected date/time: 09/27/21 08:05

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	1.24		0.230	0.177	10/21/2021 17:06	WG1754727
URANIUM-235	0.102		0.0660	0.0661	10/21/2021 17:06	WG1754727
URANIUM-238	1.67		0.237	0.108	10/21/2021 17:06	WG1754727
(T) URANIUM-232	87.1			30.0-110	10/21/2021 17:06	WG1754727

¹Cp

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	1.35	X	0.308	0.446	11/04/2021 12:11	WG1759852
Bismuth-212	0.841	₹ X	0.959	1.79	11/04/2021 12:11	WG1759852
Bismuth-214 (Ra-226)	1.04	X	0.217	0.264	11/04/2021 12:11	WG1759852
Lead-212	1.09	X	0.185	0.227	11/04/2021 12:11	WG1759852
Lead-214	1.37	X	0.206	0.217	11/04/2021 12:11	WG1759852
Potassium-40	12.7	X	2.04	1.63	11/04/2021 12:11	WG1759852
Thallium-208	0.389	X	0.0967	0.126	11/04/2021 12:11	WG1759852
Uranium-235	0.150	X	0.0784	0.139	11/04/2021 12:11	WG1759852
Thorium-234 (U-238)	1.24	<u></u>	1.12	2.29	11/04/2021 12:11	WG1759852

L1410682

Radiochemistry by Method D3972 U-02

Collected date/time: 09/27/21 07:50

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+ / -	pCi/g	date / time	
URANIUM-234	0.995		0.223	0.196	10/21/2021 17:06	WG1754727
URANIUM-235	0.0208	U	0.0799	0.122	10/21/2021 17:06	WG1754727
URANIUM-238	1.22		0.215	0.127	10/21/2021 17:06	WG1754727
(T) URANIUM-232	78.1			30.0-110	10/21/2021 17:06	WG1754727

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+ / -	pCi/g	date / time	
Actinium-228 (Ra-228)	0.809	X	0.251	0.417	11/04/2021 12:12	WG1759852
Bismuth-212	0.740	<u></u>	0.733	1.4	11/04/2021 12:12	WG1759852
Bismuth-214 (Ra-226)	0.956	X	0.178	0.172	11/04/2021 12:12	WG1759852
Lead-212	1.03	X	0.151	0.143	11/04/2021 12:12	WG1759852
Lead-214	0.939	X	0.160	0.226	11/04/2021 12:12	WG1759852
Potassium-40	8.81	X	1.91	2.17	11/04/2021 12:12	WG1759852
Thallium-208	0.244	X	0.0750	0.102	11/04/2021 12:12	WG1759852
Uranium-235	0.106	<u>(U)</u> X	0.257	0.467	11/04/2021 12:12	WG1759852
Thorium-234 (U-238)	0.654	<u>⊎</u> X	0.601	1.47	11/04/2021 12:12	WG1759852

L1410682

Radiochemistry by Method D3972 U-02

Collected date/time: 09/27/21 08:16

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch			
Analyte	pCi/g		+ / -	pCi/g	date / time				
URANIUM-234	1.56		0.278	0.193	10/21/2021 17:06	WG1754727			
URANIUM-235	0.0674	₹	0.0729	0.0953	10/21/2021 17:06	WG1754727			
URANIUM-238	1.57	J	0.259	0.122	10/21/2021 17:06	WG1754727			
(T) URANIUM-232	71.4			30.0-110	10/21/2021 17:06	WG1754727			

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.836	X	0.245	0.386	11/04/2021 14:47	WG1759852
Bismuth-212	1.49	X	0.883	1.47	11/04/2021 14:47	WG1759852
Bismuth-214 (Ra-226)	1.32	X	0.225	0.243	11/04/2021 14:47	WG1759852
Lead-212	0.935	X	0.168	0.212	11/04/2021 14:47	WG1759852
Lead-214	1.39	X	0.199	0.218	11/04/2021 14:47	WG1759852
Potassium-40	8.05	X	1.56	1.51	11/04/2021 14:47	WG1759852
Thallium-208	0.208	X	0.0795	0.121	11/04/2021 14:47	WG1759852
Uranium-235	0.110	」 X	0.0821	0.148	11/04/2021 14:47	WG1759852
Thorium-234 (U-238)	-2.52	<u>(∪)</u> X, J	1.60	3.21	11/04/2021 14:47	WG1759852

SD-DUP-02

SAMPLE RESULTS - 11

Collected date/time: 09/27/21 08:10

L1410682

Radiochemistry by Method D3972 U-02

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/g		+/-	pCi/g	date / time	
URANIUM-234	0.881		0.200	0.11	10/21/2021 17:06	WG1754727
URANIUM-235	0.0275	₹ N	0.0471	0.071	10/21/2021 17:06	WG1754727
URANIUM-238	0.913		0.199	0.087	10/21/2021 17:06	WG1754727
(T) URANIUM-232	75.3			30.0-110	10/21/2021 17:06	WG1754727

Cn

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/g		+/-	pCi/g	date / time	
Actinium-228 (Ra-228)	0.902	X	0.389	0.738	11/04/2021 14:49	WG1759852
Bismuth-212	1.51	± X	1.43	2.59	11/04/2021 14:49	WG1759852
Bismuth-214 (Ra-226)	1.01	X	0.287	0.4	11/04/2021 14:49	WG1759852
Lead-212	1.38	X	0.250	0.311	11/04/2021 14:49	WG1759852
Lead-214	1.19	X	0.238	0.332	11/04/2021 14:49	WG1759852
Potassium-40	16.0	X	2.76	1.95	11/04/2021 14:49	WG1759852
Thallium-208	0.340	X	0.127	0.201	11/04/2021 14:49	WG1759852
Uranium-235	0.159	₹X	0.105	0.189	11/04/2021 14:49	WG1759852
Thorium-234 (U-238)	0.805	<u>(∪)</u> X	1.50	3.32	11/04/2021 14:49	WG1759852

Leidos Radiological Analytical Data Validation

Event Name: Staten Island Warehouse FUSRAP Site

SDG Number: <u>L1410682</u> Laboratory: <u>Pace Analytical</u>

Analysis: Gamma Spec/Iso U (sediment)

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 3 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. The requested analyses include: ^{234/235/238}U by alpha spectrometry (Method D3972 U-02); ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ²³⁴Th, ²²⁸Ac, ⁴⁰K, and ²³⁵U by gamma spectrometry (Method DOE Ga-01-R/901.1 (21 day)). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Case Narrative Re-analysis and Secondary Dilution
Analytical Holding Times and Preservation Minimum Detectable Activities (MDAs)

Method Calibration/Calibration Verification Reporting Levels

Method BlanksChemical/Spectroscopic SeparationBackground ChecksSpecificity (alpha spectroscopy)Analytical Tracer RecoveriesProject Duplicates and SplitsMS/MSD Recoveries and DifferencesTarget Radionuclide Spectroscopic

LCS/LCSD Recoveries and Differences

Identification (gamma spectroscopy)

Laboratory Duplicates/Replicates Data Intercomparison

Definition of Data Validation Qualifiers:

"U" - Indicates a normal, non-detected (< critical value) result.

"J" - Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable depending upon the intended use of the data and reason for data rejection.

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September, 2021.

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District, September 2017.

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February, 2018.

Sample Name Cross-Reference

Project Sample Name	Matrix	Lab Sample Name
SD-01-0813	Sediment	L1410682-01
SD-02-0810	Sediment	L1410682-02
SD-03-0815	Sediment	L1410682-03
SD-03-0613 SD-04-0910	Sediment	L1410682-04
SD-04-0910 SD-05-0800	Sediment	L1410682-04 L1410682-05
SD-06-0754	Sediment	L1410682-06
SD-07-0758	Sediment	L1410682-07
SD-08-0805	Sediment	L1410682-08
SD-09-0750	Sediment	L1410682-09
SD-10-0816	Sediment	L1410682-10
SD-DUP-02	Sediment	L1410682-11

Validation Report By:	Amanda Leigh Dick	03/0/8/2022
	(print)	Date
	amanda Leigh Dick	
	(sign)	
Peer Reviewed By:	Thomas L. Rucker	3/11/2022
	(print)	Date
	72 Rucker	
	(sign)	

1.0 GAMMA SPECTROMETRY ANALYSIS

Holding Time and Preservation

All holding times and preservation requirements were met for the gamma spectrometry analysis.

Initial Calibration

For gamma spectrometry, the CENWK states that if the efficiency calibration delta values (difference between the measured and the calibration curve efficiency) are greater than 5% for any one radionuclide, the calibration shall be deemed unusable. The QAPP further states that the 95% CL of fitted function over range shall be \leq 8%. The following gamma spectrometer detectors/geometries had one or more radionuclides with delta values greater than 5% and or a 95% CL (1.96 σ) greater than 8%:

Initial Calibration

Detector	Geometry	# Energy Peaks	Delta %	# Energy Peaks	95% CL	SDG Samples Affected	Qualifier
1	C6	1	6.3			SD-02-0810, SD-04-0910	X
5	C6	2	-16.4- 6.5	9	8.8 – 14.7	SD-03-0815, SD-05-0800	X
2	Р3	1	5.3			SD-07-0758, SD-10-0816	X
4	Р3	1	18.3	1	8.8	SD-01-0813, SD-08-0805, SD-DUP-02	X
9	Р3	1	12.7			SD-09-0750	X
12	P3	1	24.5	1	9.6	SD-06-0754	X

Based on the CENWK any samples counted on detector with Delta% greater than 5% should be qualified as unusable (X). However, this parameter was not listed in the QAPP. The QAPP parameter, 95% CL of the fitted curve, does not have guidance on how to qualify results outside its limits. It is likely that both of these parameter deficiencies are due to the calibration being performed with less than the minimum 10,000 net counts in each peak in at least six calibration peaks that bracket the range of use as is specified in the DoD Quality Systems Manuel (QSM). The raw counts for the calibration were not provided, but this is evidenced by the uncertainty reported for the peaks. This means there is greater than normal uncertainty in the results due to an uncertain bias from calibration. The samples counted on theses detectors/geometries have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Continuing Calibration

For gamma spectrometry, the CENWK states that if the activity of each radioisotope in the calibration standard is not within 10% relative of the true, decay corrected activity, the calibration shall be deemed unusable. The QAPP also sets a limit of 10% relative to the true value. The following detectors/geometries have one or more quantified peak outside of the 10% limit for the calibration verification check source:

Continuing Calibration

Detector	Geometry	# Energy Peaks	% Difference	SDG Samples Affected	Qualifier
1	C6	1	10.80%	SD-02-0810, SD-04-0910	X
2	P3	1	10.20%	SD-07-0758, SD-10-0816	X

Based on the CENWK any samples counted on detector with check source value of greater than 10% should be qualified as unusable (X). It is likely that this parameter's deficiencies are due to the calibration verification being performed with less than the minimum 10,000 net counts in each peak as is specified in the CENWK as the raw net counts for all peaks were less than the 10,000 net counts for all peaks and all detectors. This means there is greater than normal uncertainty in the results due to an uncertain bias from the calibration verification. These samples have been qualified as unusable (X) based on the CENWK guidance. However, it is recommended that the project consider these results as estimated and potentially usable for the project during Data Usability Assessment, due to the fact that the added uncertainty is only marginally outside the limits for a minimal number of radionuclide energies and only marginally greater than would normally be allowed.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The following samples did not achieve the RDL project goal of <1 pCi/g for Th-234: SD-01-0813, SD-07-0758, SD-10-0816, and SD-DUP-02.

Samples That Did Not Meet the RDL

	Sumples That Bia 110t weet the RBE								
Sample ID	Analyte	CSU (pCi/g)	3.5*CSU	RDL (pCi/g)					
SD-01-0813	Th-234	0.5215	1.82525	1					
SD-07-0758	Th-234	0.628	2.198	1					
SD-10-0816	Th-234	0.8	2.8	1					
SD-DUP-02	Th-234	0.7505	2.62675	1					

The Ra-226 result was greater than the project action limit in the following sample: SD-06-0754: 2.57 pCi/g,

No sample results exhibited excess uncertainty.

The following sample had a negative result with an uncertainty smaller than its absolute value. The CENWK states these results need to be rejected. However, since these results are likely being influenced by a slight negative bias and may still be useful, professional judgment was used to qualify results. SD-10-0816: Thorium-234.

It is recommended that sample concentrations less than the L_c be qualified as non-detect (U). The following samples are qualified as U: SD-01-0813: Th-234; SD-07-0758: Th-234, SD-09-0750: U-235; SD-10-0816: Th-234; and SD-DUP-02: Th-234.

Method Blank

There was no indication of blank contamination for the gamma spectrometry analysis.

Laboratory Control Sample:

The percent recoveries for the laboratory control samples (LCSs) were within acceptable limits.

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD (DER).

$$RPD = \left(\frac{|S-D|}{\frac{S+D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = D = Us = UsParent Sample Result

Field Split/Duplicate Parent Sample Result

Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the gamma spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (<25%, <3).

All field duplicate results were within a factor of 4 from the original result.

Identification and Ouantification:

The following target radionuclides: 228 Ac, 226 Ra, 40 K, 234 Th, and 235 U in the samples were reported. The energies of the radionuclides were less than 2 keV from their theoretical energies.

The laboratory used a peak search sensitivity factor of 3. When the peak search sensitivity factor is set at a value greater than 2.3, the peak search report will not report peaks as low as the MDA. Therefore, there is a greater than 5% chance that concentrations greater than the reported MDA will not appear in the peak search. However, the List Isotope Activities report calculates the net activities for the target analytes and this list has been used to report all target analyte activities. Therefore, the only impact is that small but detected non-target analytes may not have been reported.

2.0 **ALPHA SPECTROMETRY**

Holding Time and Preservation

All holding times and preservation requirements were met for the alpha spectrometry analyses.

Initial Calibration

The initial calibration met project acceptance criteria.

Continuing Calibration

The continuing calibration met project acceptance criteria.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The project RDL goal of <0.5 pCi/g was met for all radionuclides of interest.

All samples had results less than the project action limits.

No sample results exhibited excess uncertainty.

The sample-specific critical level (L_c) was calculated as 1.65 times the sample uncertainty. It is recommended that sample concentrations less than the L_c be qualified as non-detect (U). The following results were qualified as U:.

Sample-specific Critical Level (L_C)

Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	L _C (pCi/g)	Qualifier
SD-02-0810	U-235	0.0291	0.019	0.03135	U
SD-03-0815	U-235	0.0455	0.029	0.04785	U
SD-05-0800	U-235	0.0286	0.02	0.033	U
SD-09-0750	U-235	0.0208	0.026	0.0429	U
SD-DUP-02	U-235	0.0275	0.017	0.02805	U

Matrix Spike

The percent recoveries were within acceptable limits.

Method Blank

There was no indication of blank contamination for the alpha spectrometry analysis.

Laboratory Control Sample:

The Uranium-238 percent recoveries was lower than the acceptable limits (75%-125%) for LCS R3725650-2 (See table below). It is recommended that the U-238 results for the associated samples by qualified as estimated (J). The following samples were qualified J: SD-01-0813, SD-02-0810, and SD-03-0815.

Radiochemistry - LCS % Recovery Calculation

Sample ID	Analyte	Found Value (pCi/g)	True Value (pCi/g)	LCS (% Recovery)	Qualifier
(LCS) R3725650-2	U-238	3.46	4.74	72.996%	J

Duplicate Analysis:

The duplicate results were evaluated by calculation of the RPD and NAD (DER).

$$RPD = \left(\frac{\left|S - D\right|}{\frac{S + D}{2}}\right) * 100$$

$$NAD = \frac{\left| S - D \right|}{\sqrt{U_S^2 + U_D^2}}$$

Where: S = D = Us = UsParent Sample Result

Field Split/Duplicate Parent Sample Result

Parent Sample CSU (1 sigma)

 $U_D =$ Field Split/Duplicate Parent Sample CSU (1 sigma)

The duplicates for the alpha spectrometry analysis have RPDs and/or NADs (DERs) with acceptable limits (<20%, <3).

All field duplicate results were within a factor of 4 from the original result.

Sample-Specific Chemical Recovery:

The tracer recoveries were within acceptable limits.

Spectral Analysis:

No spectral interferences were observed in all of the alpha spectrometry analyses.

Quantification:

No quantification issues were observed.

3.0 DATA INTERCOMPARISON

<u>U Alpha to U Gamma:</u>

In comparing the uranium results from alpha spectrometry analysis to the uranium results from gamma spectrometry, several samples were not in agreement. It is recommended that the following sample results (both alpha and gamma) be qualified as estimated (J) due to incomparable results: SD-02-0810, SD-03-0815, SD-06-0754, and SD-07-0758.

Radiochemistry - Data Intercomparison

		Alp	ha	Gai	mma			
Sample ID	Analyte	Result (pCi/g)	CSU (pCi/g)	Result (pCi/g)	CSU (pCi/g)	RPD%	DER	Qualifier
SD-02-0810	U-235	0.0291	0.019	0.151	0.03225	135.37%	3.257	J
SD-03-0815	U-235	0.0455	0.029	0.218	0.04335	130.93%	3.307	J
SD-06-0754	U-235	0.0877	0.031	0.25	0.03175	96.12%	3.658	J
SD-07-0758	U-235	0.104	0.031	0.308	0.0439	99.03%	3.796	J
SD-01-0813	U-238	3.09	0.1805	0.819	0.52	116.19%	4.126	J
SD-07-0758	U-238	2.39	0.146	-0.71	0.63	369.05%	4.794	J
SD-10-0816	U-238	1.57	0.1295	-2.52	0.8	-861.05%	5.047	J

	Labora	LEIDOS atory Data Verification Cl	hecklist	
Project:	Staten Island Wareho	ouse FUSRAP Site	Page 1	of 3
SDG No:	L1410682	_ Analyte Group: Sample Matrix:	Iso Uranium and Gamm Sediment	a Spec
Disposition of I NCR No. (if app		N/A N/A		_ _ _
1. Case Narrative				
	Read SDG Case N	arrative		Y
	Check Laboratory	sample ID vs. Project sample	ID lists	Y
	Check that discuss	ion covers each analytical typ	pe included in the SDG	Y
	Check for identified	I nonconforming items (e.g.,	missed holding times, etc.)	Y
2. Chain-of-Custo	dy (COC)			
	Check COC sample	e collection, shipping, and red	ceiving dates	Y
	Check that COC signal	gnature blocks are complete		Y
	Check COC project	t sample IDs vs. Lab IDs and	Result Form IDs	Y
	Match COC reques data package conte	sted analyses with Case Narra ent (Result Forms)	ative and with	Y
3. Analytical Resu	lts Form			
	Verify that a Result	Form is present for each sar	mple and analysis	Y
	On each Result Fo	rm check: SDG No. Sample ID Lab ID Date Collected Date Extracted Date Analyzed Result Matrix Result Units		Y Y Y Y Y Y Y

			Page 2 of 3
. Project Verific	eation		
	Check project ar	nalyte list vs. analytes reported	Y
	Check project re	quested methods vs. analytical methods performed	Y
	Check analyte re	eporting levels vs. project reporting level goals	Y
. Analytical Qua	ality Control Informa	ation	
	Trace Check for surrog	er late recovery results (e.g., org. form II)	Y
	Check for LCS re	esults (e.g., org. form III, inorg. form XII)	<u>Y</u>
	Check for metho	d blank results (e.g., org. form IV, inorg. form III)	Y
	Check for MS/MS	SD results (e.g., inorg. form V)	Y
	Check for labora	tory duplicate results (e.g., inorg. form VI)	Y
	Check for Metho	d Calibration and Run Documentation	
	organic:	instrument performance check initial calibration data continuing calibration data internal standard areas internal standard retention times sample clean-up documentation (org. forms V through X)	N/A N/A N/A N/A N/A
	metal:	initial calibration data continuing calibration data method detection limits method linear range sample run sequence (inorg. forms II, IV, and VIII through XIV)	N/A N/A N/A N/A N/A
	other: (Radiological)	initial calibration data continuing calibration data method detection limits sample run sequence	Y Y Y Y

6. Incorrect Infor	mation		Page 3 of 3
	Identify missing items or incorrect informatincorrect sample IDs, etc.)	tion (i.e., missing forms, un	signed forms,
	Contact the laboratory or project personne or correct information	કી to obtain missing informa	tion
Document	corrections below:		
	Calibration Standard COAs were not four The calibration documentation are missing		analyses.
	The gamma duplicate (DUP R3725727-2) EDD and raw data. However, the MDA is or validation requirements.		
	The laboratory issued a revision with some	of the missing items.	
7. Nonconforming	g Items		
	Document all nonconforming items that ca a Non-Conformance Report (NCR), comp		
	NCR # Item		
Reviewed By:	amanda Leigh Dick & C.	MJ Date:	03/08/2022
QA Review By:		Date:	

	L	.abora	tory Data Package Deta	ail Form		
Project:	Staten Island Wareho	use FU	SRAP Site	_	Page _	of
SDG No:	L1410682		Analyte Group:	Radiological		
			. ,			
Field	Lab	Matrix	Analysis	Notes:		
Sample ID	ID#	0	la a III O a mana o O a a a			
SD-01-0813	L1410682-01		Iso. U, Gamma Spec			
SD-02-0810	L1410682-02		Iso. U, Gamma Spec			
SD-03-0815	L1410682-03		Iso. U, Gamma Spec			_
SD-04-0910	L1410682-04		lso. U, Gamma Spec			
SD-05-0800	L1410682-05		lso. U, Gamma Spec			
SD-06-0754	L1410682-06	Sed	lso. U, Gamma Spec	; 		
SD-07-0758	L1410682-07	Sed	lso. U, Gamma Spec			
SD-08-0805	L1410682-08	Sed	lso. U, Gamma Spec			
SD-09-0750	L1410682-09	Sed	Iso. U, Gamma Spec	;		
SD-10-0816	L1410682-10	Sed	lso. U, Gamma Spec			
SD-DUP-02	L1410682-11	Sed	lso. U, Gamma Spec	,		
Comments:						
			Sediment			
				FSF DM-05 R	ev0.lanuarv 3	1 2015

LEIDOS Radiochemical Data Review Checklist Project: Page 1 of 21 Staten Island Warehouse FUSRAP Site SDG No: L1410682 Analysis: **Isotopic U and Gamma Specrometry** Method: Matrix: Laboratory: Pace Analytical Sediment The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The general criteria used to assess the analytical integrityof the data were based on an examination of the following: Case Narrative Chemical and/or Tracer Recoveries Matrix Spike Results **Analytical Holding Times** Sample Preservation **Duplicate Error Ratios and RPDs** Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Secondary Dilution Overall Remarks: CENWK, QSM 5.3; see QAPP for specific requirements Results qualified as indicated due to LCS recoveries and incomparable results. Definition of Qualifiers: "U", not detected at the associated level "UJ", not detected and associated value estimated N/A "J", associated value estimated "R", associated value unusable or analyte identity unfounded "=", compound properly identified and value positive 03/08/2022 Reviewed by: Date:

QA Reviewed by:

Date:

LEIDOS	Page 2 of 21

Radiochemical Data Review Checklist

I. Case Narrative
Verify direct statements made within the Laboratory Case Narrative (note discrepancies).
Remarks:
The Uranium-238 percent recoveries was lower than the acceptable limits for LCS R3725650-2. The
associated samples are qualified as estimated (J): SD-01-0813, SD-02-0810, and SD-03-0815.
Samples that counted on gamma detectors with high delta values and/or a 95% CL (1.96 σ) greater than
were qualified: "X".
II. Re-analysis and Secondary Dilutions
Verify that re-analysis and secondary dilutions were performed and reported as necessary. Determine appropriate results to report.
Remarks: No samples were re-analyzed or diluted.

Page 3 of 21

LEIDOS Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

Deviations. None				
Sample #	Radionuclide:	Date Collected	Date Analyzed	Action

Actions:

 If holding times are exceeded 	f, all res	ults are qualified	l as estimated	l (J/U、	J) *or in	properly	/ preserved
---	------------	--------------------	----------------	---------	-----------	----------	-------------

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

Remarks:			
No Issues.			

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Page 4 of 21

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

	Project Reporting	MDA	Samples Affected
Radionuclide	Level Goal	Achieved	
U-234	0.5 pCi/g	0.102 - 0.193	No Issues
U-235	0.5 pCi/g	0.061 - 0.122	No Issues
U238	0.5 pCi/g	0.0839 - 0.128	No Issues
K-40	<1 pCi/g	0.87 - 2.17	
Ra-226	0.5 pCi/g	0.139 - 0.4	No issues
Ac-228	<1 pCi/g	0.226 - 0.738	No issues
Th-234	<1 pCi/g	1.43 - 3.32	

Actions: see CENWK 4.1.3.3a and QAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

Remarks:

K-40 results for these samples exceeded the MDA. Samples

SD-01-0813, SD-02-0810, SD-03-0815, SD-04-0910, SD-05-0800, SD-07-0758, SD-08-0805, SD-09-0750,

SD-10-0816, SD-DUP-02

Th-234 results for these samples exceeded the MDA. Samples

SD-01-0813, SD-02-0810, SD-03-0815, SD-04-0910, SD-05-0800, SD-07-0758, SD-07-0758, SD-08-0805, , SD-09-0750, SD-10-0816, SD-DUP-02

Page 5 of 21

Radiochemical Data Review Checklist

V.A1. Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.2 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: None

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

AΡ	4	2)	
	AF	API	APF	APP

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	No issues.		

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.1 and QAPP

Initial efficiency calibration must be demonstrated on each detector for each geometry.

Initial energy calibration must be demonstrated on each detector for each geometry.

Resolution (FWHM) must be demonstrated for each detector for each geometry.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.2 and QAPP

Continuing calibration efficiency verification must be performed for each detector at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed monthly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: Delta Values

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value
6.3%	898.04 keV	1	< 5%		
-16.4%	136.47 keV	5	< 5%		
6.5%	159.00 keV	5	< 5%		
24.1%	513.99 keV	10	< 5%		
-5.3%	136.47 keV	11	< 5%		
5.3%	513.99 keV	2	< 5%		
18.3%	513.99 keV	4	< 5%		
12.7%	513.99 keV	9	< 5%		
24.5%	513.99 keV	12	< 5%		

Actions: see CENWK 4.3.1.1 and QAPP

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	Samples counted on detectors with high delta values and/or a 95% CL (1.96 σ) greater
than 8% were o	malified: "X:

Daily source checks were performed on each detector. Detectors 1 and 2 had %D values greater than 10%.

Page 7 of 21

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis

see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide.

Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions:	see CENWK 4.3.1.4 and QAPP
Actions:	see CENVVK 4.3.1.4 and QAPP

- 1. If the initial calibration quench curve or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or control charts are not acceptable,
 - qualify all affected results as estimated (J).

3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	Not Applicable.

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

see CENWK 4.3.1.3.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters

see CENWK 4.3.1.3.1 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions: see CENWK 4.3.1.3 and QAPP

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	Not Applicable.	

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

see CENWK 4.2.1 and QAPP

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted.

If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory Method Blanks:

Laboratory	Method Dialiks.			
Date	Lab ID #	Radionulcide	Result and Error	MDA Result and Error
				-
Associated	l Project Blanks (e.g.,	. equipment rinsate	es, etc.)	
	,		, ,	
Date	Lab ID #	Radionuclide	Result and Error	MDA Result and Error
Remarks:				
None of t	the Method blanks	or samples me	eet the requirement	s to qualified the
samples	for Isotopic Uranio	um.		
_				
			eet the requirement	s to qualified the
samples	for gamma spectr	ometry analysis)	

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

see CENWK 4.2.1 and QAPP

Calculate action levels based on 10X the highest blank concentration. see CENWK 4.2.1.3 and QAPP

Deviations:

Radionuclide	Max. Activity Detected	Action Level	Samples Affected
Bi214 (Ra-226)	0.0976+/_ 0.0950	U	Gamma Spec Method Blank

Actions:	see CENWK 4.2.1 and QAP	P

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

Example:	Blank Result	<u>Uncert.</u>	MDA or	Normalized absolute	Qualification
acceptable	0.3	0.45	0.5	<u>difference</u> >2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
- 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:			

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

see CENWK 4.1.2 and QAPP

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

Deviations:

			Action Taken
Radionuclide	Sample ID	%R	
U-232	L1410682-01	70	No Issues
U-232	L1410682-02	89.1	No Issues
U-232	L1410682-03	80.1	No Issues
U-232	L1410682-04	95.7	No Issues
U-232	L1410682-05	79.1	No Issues
U-232	L1410682-06	81.8	No Issues
U-232	L1410682-07	82	No Issues
U-232	L1410682-08	87.1	No Issues
U-232	L1410682-09	78.1	No Issues
U-232	L1410682-10	71.4	No Issues
U-232	L1410682-11	75.3	No Issues

Actions:	see CENWK 4.1.2 and OAPP

- 1. If recovery is between 30-110%, no qualification is necessary.
- 2. If recovery is between 20 10-30%, qualify the data as estimated (J).
- 3. If recovery is between 110-120150%, qualify the data as estimated (J).
- 4. If recovery is less than 20 10%, qualify the data as rejected (R).
- 5. If recovery if greater than 120 150%, qualify the data as rejected (R).

outside lab limits but within
20-120%: J if corrective actions
taken, otherwise R

Remarks:	No issues		

Page 12 of 21

Radiochemical Data Review Checklist

VIII. Laboratory Control Sample Information

see CENWK 4.2.2 and QAPP

	/	Alpha	_
General LCS Criteria:	aqueous	solid	
percent recovery (%R)	80-120	70-130	Gamma, GPC, KPA: 80-120
		75-125	_
Laboratory LCS Identifications:			

Deviations:

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
U-238		72.996%	SD-01-0813 DVQ: J
			SD-02-0810 DVQ: J
			SD-03-0815 DVQ: J

Actions:	tions:		see C	see CENWK 4.2.2 and QAPP	

Alpha (Aqueous)	<u><50%</u>	<u>50-79%</u>	<u>121-150%</u>	>150%
and Gamma, GPC, KPA	R	J	J	R
	<50%	50-74%	126-150%	>150%
Alpha (Solid)	<40%	40-69%	131-160%	>160%
	D	1	1	D

Remarks:		

Page 13 of 21

Radiochemical Data Review Checklist

IX. Matrix Spike Information

General MS Criteria:		
percent recovery (%R)		

Αq	ueous	Solid
50	0-120	40-130

see CENWK 4.2.3 and QAPP

Project Sample(s) Spiked:	SD-04-0910
---------------------------	------------

Deviations:

Actions:

Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
MS			
U-234	21-Oct	105%	
U-238	21-Oct	105%	
MSD			
U-234	21-Oct	110%	
U-238	21-Oct	112%	

Aque	ous	<20%	20-49%	121-160%	>160% >150%
		R	J	J	use professional judgement R
all samples in batch	*	see CENV	VK 4.2.3 a	ind QAPP*	
S	olid	<10%	<u>10-39%</u>	<u>131-160%</u>	>160% >150%
		R	J	J	use professional judgement R
Remarks:	lo Issuses.				
U-238 recovery for MS is	105% and MSD	is 110%			
U-234 recovery for MS is	105% and MSD	is 112%			

see CENWK 4.2.3 and QAPP

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis

see CENWK 4.2.4, 4.2.5 and QAPP

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER).

Duplicate actions should apply to all samples associated with the duplicate pair.

Duplicate Sample Identification: DUP R3725650-5 & DUP R3726763-5

DUP R3725727-2

Deviations:

_				Samples Affected
Radionuclide	DER	RPD	RER	·

•				
л	∩+ı	\sim	ns	
-	LL	u	113	_

see CENWK 4.2.4 (lab dup) 4.2.5 (field dup) and QAPP

- 1. If both sample and duplicate activities are within 2X the MDA comparison is acceptable.
- 2. If the DER is greater than 1.00, qualify the data as estimated (J).
- 3. If the RPD is greater than 50% qualify the data as estimated (J).
- 4. If one sample is <MDA and the other sample is >2X the MDA, qualify the data as estimated (J).

R	er	n	aı	rk	S	:
---	----	---	----	----	---	---

ا 1	411	೧೯	82	04
	-	, ,, ,	()/	\ <i>1</i> —

U-238 recovery for MS is 105% and MSD is 112%. The RPD for U-238 is 5.33%.

U-234 recovery for MS is 105% and MSD is 110%. The RPD for U-234 is 5.33%.

L1410640-06

U-238 recovery for MS is 98.6% and MSD is 101%. The RPD for U-238 is 2.08%.

U-234 recovery for MS is 97.9% and MSD is 101%. The RPD for U-234 is 2.74%.

All laboratory and field duplicate RDP/NAD results met acceptance criteria.

ESE DM-05 Rev0 January 31, 2015

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

see CENWK 4.1.8, 4.1.9.2 and QAPP

Each alpha isotopic peak should be clear and free of interference from other energy peaks. Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Deviations:

Deviations.		
Radionuclide	Deficiency	Samples Affected

Actions:	see CENWK 4.1.8, 4.1.9.2	and QAPF
----------	--------------------------	----------

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:				
No issues.				

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density

see CENWK 4.1.9, 4.1.7 and QAPP

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations:

Radionuclide	Deficiency	Samples Affected

Actions:

see CENWK 4.1.9, 4.1.7 and QAPP

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 5. If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:
No Issues. Gamma Spectrometer system identified and calculated the the amount of the of the identified
radionuclides as expected.

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy) Sample Aliquot Representativeness

Each sample tentatively identified radionuclide energy must be within 2 keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra.

All peaks greater than 3X the background standard deviation must be identified and quantified.

The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with

related radionuclides (e.g., parent daughter relationships). Results from different but comparable analytical techniques from different sub-sample aliquots of the same sample shall be compared for consistency.

Deviations:

Radionuclide	Deficiency	Samples Affected
U-235	Alpha and Gamma results not comparable.	SD-02-0810. DVQ: "J"
U-235	Alpha and Gamma results not comparable.	SD-03-0815. DVQ: "J"
U-235	Alpha and Gamma results not comparable.	SD-06-0754. DVQ: "J"
U-235	Alpha and Gamma results not comparable.	SD-07-0758. DVQ: "J"
U-238	Alpha and Gamma results not comparable.	SD-01-0813. DVQ: "J"
U-238	Alpha and Gamma results not comparable.	SD-07-0758: DVQ: "J"
U-238	Alpha and Gamma results not comparable.	SD-10-0816. DVQ: "J"

Actions:

- 1. Qualify all tentatively identified radionuclides as estimated (J).
- 2. If the energy of the tentatively identified radionuclide peak is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 3. If the reviewer judges anything regarding the identification of the tentatively identified radilnuclide

as suspect, qualify the data as rejected (R). If the results do not agree within the reported uncertainty of measurement results shall be qualified as "J" or "X", depending on the magnitude of the uncertainty.

results shall be qualified as "J"	r "X", depending on the	e magnitude of the uncertainty.	
Remarks:			
Please see calculation sheet.			

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

see CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Deviations:

Actions:

Radionuclide/Method	Deficiency	Samples Affected

Based on the instrument performance indicators, the data reviewer must use professional judgement ot qualify the data.
Remarks:
No Issuses.

see CENWK and QAPP

LEIDOS Page 19 of 21

XV. Analyte Quanti Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Sadionuclide:	te See Calculation Sheets. Method:	
adionaciae.	Metriod.	
emarks:		
alculation Check:	Mathod:	
alculation Check:	Method:	
emarks: alculation Check: adionuclide:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	

LEIDOS Page 20 of 21

XV. Analyte Quanti Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Radionuclide:	Method:	
alculation Check:		
adionuclide:	Method:	
Remarks:		

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

Remarks:	SDG sample results were qualified per QAPP and CENWK guidance.

Geo Consultants - K	evil. Ky	or tenant a second	Billing I	nformation:			1	1 20					- 15.				Salar Salar
325 Kentucky Ave Kevil, KY 42053			325 Ke	nts Payable entucky Ave KY 42053		Pri		7		Analys	is / Con	tainer / Pres	ervative			_ Chain of Custo) Ce Analytic
David Lindsey		, p o W	Email To	lindsoud											1		
Project Description		A	10.	lindseyd@geoco	nsultantscorp	com.		247	183							12065 Lebanon Rd	Mount Juliet, TN 37122
Staten Isl Warehouse, Port Richmone		City/State Collected:			Please	Circle:						10.00				constitutes acknowl Pace Terms and Con	via this chain of custody edgment and acceptance ditions found at:
Phone: 270-462-3882 Bon Hodgs	Client Proje	ect#	-)	Lab Project #	PT MT	CT ET										terms.pdf	com/hubis/pas-standa
By (pointy:	Site/Facility	ID#	Hereit I	P.O.#		-	103	HN03	HN03							SDG # LIL	017
dected by (signature):	Rush?	// ab sauce a				1	H	d pp	Add F							Acctnum: GE	OCONKKY
Immediately Packed on Ice N Y	Next D	(Lab MUST Be I Day Five D ay 5 Day (y 10 Day	ay	Quote #	S Needed		500mlHDPE-HNO3	RA-226 1L-HDPE-Add HNO3	HDPE-A							Template:T1 Prelogin: P8	95315
Sample ID			(Kad Only)		- meeded	No.	500r	11-	11							PM: 732 - Do	nna Eidson
GW-06-1205 GW-09-1210 GW-07-1215	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	KPA-U	1-226	RA-228								edEX Groun
GW-09-1210	G	NPW		9/21/21	1205	3										Remarks	Sample # (lab
GW-07-1215	9	NPW		9/27/21	1210	3	X	X	X	- 741							-01
JW-10-1220	9	NPW		9/27/21	1215	3	X	X	X								-02
	6	NPW		9/27/21	1220	3	X	X	X						344		-03
		NPW		1 1		3	X	Х	X								-04
		NPW	15/ A			3	X	Х	X								
		NPW				3	X	X	X	- 1			25.0			2,00	
						3	X	X	X						253		
rix;	4 8	18.3				4				11		Carl	- 1				
Rema Rema Rema Rema Rema Rema Rema Rema	rks:no ice is re	quired	(- ((Gw-	.06)					pН					Sampl	e Receipt Ch	necklist
shed by : (Signature)	s returned via: FedExC	Ourier	tor t	Tracking#	nk it	Po	ssif)e		Flow_		Temp		COC Si	eal Pre igned/A es arri	sent/Intact ccurate: ve intact: les used:	: _NP
hed by : (Signature)	Date: 9/2	-/	ime:		: (Signature)				Tri	p Blank I	Receive	d: Yes/N	,	VOA Ze	ero Hea	olume sent: If Applicab dspace: Correct/Che	Y
ed by : (Signature)	Date:		/800 ime:	Received by:	(Signature)				Te	AOV	T.0	HCL/N TBR Bottles Rec	ЛеоН	RAD So	reen <	0.5 mR/hr:	<u>/</u>
- ondure)	Date:	Ti	me:	Received for	lab by: (Sign:	ature)		10	21.	4 to=2	11.4	1	2		rvation i	equired by Log	in: Date/Time
				10	will	15	1		Dat	re:	1	Time:		Hold:			Condition

Radiochemistry by Method 900

Collected date/time: 09/27/21 12:05

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
GROSS ALPHA	-54.6	<u>(U)</u> J	66.0	126	10/20/2021 11:54	WG1757645
GROSS BETA	125	J	75.6	96.1	10/20/2021 11:54	WG1757645

Ss

Radiochemistry by Method 904/9320

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+ / -	pCi/I	date / time	
RADIUM-228	-0.0171	U	0.439	0.811	10/26/2021 15:15	WG1757745
(T) Barium	96.6			62.0-143	10/26/2021 15:15	WG1757745
(T) Yttrium	95.1			79.0-136	10/26/2021 15:15	WG1757745

Radiochemistry by Method D5174

	Result	Qualifier	Uncertainty	RDL	Analysis Date	Batch
Analyte	mg/l		+/-	mg/l	date / time	
Uranium	0.00755			0.00100	10/21/2021 13:41	WG1760063

[°]Qc

Αl

Sc

Radiochemistry by Method SM7500Ra B M

	*					
	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-226	2.55		0.624	0.194	10/08/2021 17:39	WG1750907
(T) Barium-133	99.6			30 0-143	10/08/2021 17:39	WG1750907

L1411184

Collected date/time: 09/27/21 12:10 Radiochemistry by Method 900

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/l		+ / -	pCi/I	date / time	
GROSS ALPHA	548	J	214	223	10/20/2021 11:54	WG1757645
GROSS BETA	787	J	175	200	10/20/2021 11:54	WG1757645

Ss

Radiochemistry by Method 904/9320

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-228	0.447	_	0.402	0.729	10/26/2021 15:15	WG1757745
(T) Barium	95.3			62.0-143	10/26/2021 15:15	WG1757745
(T) Yttrium	100			79.0-136	10/26/2021 15:15	WG1757745

⁵Sr

Radiochemistry by Method D5174

	Result	Qualifier	Uncertainty	RDL	Analysis Date	Batch	
Analyte	mg/l		+ / -	mg/l	date / time		
Uranium	ND	IJ		0.00100	10/21/2021 13:43	WG1760063	

Αl

Sc

Radiochemistry by Method SM7500Ra B $\rm M$

	•					
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+ / -	pCi/l	date / time	
RADIUM-226	1.95		0.549	0.174	10/08/2021 17:39	WG1750907
(T) Barium-133	99.3			30.0-143	10/08/2021 17:39	WG1750907

L1411184

Radiochemistry by Method 900

Collected date/time: 09/27/21 12:15

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
GROSS ALPHA	663	J	239	234	10/20/2021 11:54	WG1757645
GROSS BETA	803	J	150	165	10/20/2021 11:54	WG1757645

Ss

Radiochemistry by Method 904/9320

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/I	date / time	
RADIUM-228	1.01		0.425	0.758	10/26/2021 15:15	WG1757745
(T) Barium	87.6			62.0-143	10/26/2021 15:15	WG1757745
(T) Yttrium	95.1			79.0-136	10/26/2021 15:15	WG1757745

Radiochemistry by Method D5174

	Result	Qualifier	Uncertainty	RDL	Analysis Date	Batch
Analyte	mg/l		+ / -	mg/l	date / time	
Uranium	0.152			0.00100	10/21/2021 13:48	WG1760063

Αl

Sc

Radiochemistry by Method SM7500Ra B $\rm M$

	<u></u>					
	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/l		+ / -	pCi/l	date / time	
RADIUM-226	2.76		0.630	0.163	10/08/2021 17:39	WG1750907
(T) Barium-133	101			30.0-143	10/08/2021 17:39	WG1750907

L1411184

Collected date/time: 09/27/21 12:20 Radiochemistry by Method 900

	Result	Qualifier	Uncertainty	MDA	Analysis Date	<u>Batch</u>	
Analyte	pCi/l		+ / -	pCi/I	date / time		
GROSS ALPHA	40.1	J	60.5	85.7	10/20/2021 11:55	WG1757645	
GROSS BETA	198	J	77.6	95.2	10/20/2021 11:55	WG1757645	

Radiochemistry by Method 904/9320

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-228	5.83		0.931	1.56	10/26/2021 15:15	WG1757745
(T) Barium	93.1			62.0-143	10/26/2021 15:15	WG1757745
(T) Yttrium	96.6			79.0-136	10/26/2021 15:15	WG1757745

Ss

⁵Sr

Radiochemistry by Method D5174

	Result	Qualifier	Uncertainty	RDL	Analysis Date	Batch
Analyte	mg/l		+/-	mg/l	date / time	
Uranium	0.0120			0.00100	10/21/2021 13:50	WG1760063

Sc

Radiochemistry by Method SM7500Ra B $\rm M$

	<u></u>					
	Result	<u>Qualifier</u> U	Incertainty	MDA	Analysis Date	<u>Batch</u>
Analyte	pCi/l	+	/-	pCi/l	date / time	
RADIUM-226	0.576	C	.319	0.196	10/08/2021 17:39	WG1750907
(T) Barium-133	96.5			30.0-143	10/08/2021 17:39	WG1750907

DATE/TIME:

10/31/21 20:58

Radiological Analytical Data Verification Comments on Data for Case Number L1411184

Event Name: Staten Island Warehouse FUSRAP Site

SDG Number: <u>L1411184</u>

Laboratory: Pace Analytical

Analysis: Gross Alpha/Beta, Ra-228, Uranium, Ra-226 (ground water)

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 4 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. This statement of work (SOW) contained four ground water samples for radiological analysis. The requested analyses include gross alpha/gross beta by gas proportional counting (Method EPA 900/9310), ²²⁸Ra (Method EPA 904/9320), Total Uranium (ASTM D5174/D5174M), and ²²⁶Ra (Method SM-7500-RA-B M). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Case Narrative
Analytical Holding Times and Preservation
Method Calibration/Calibration Verification
Method Blanks
Background Checks
Analytical Tracer Recoveries
MS/MSD Recoveries and Differences
LCS/LCSD Recoveries and Differences
Laboratory Duplicates/Replicates

Re-analysis and Secondary Dilution Minimum Detectable Activities (MDAs) Reporting Levels Chemical/Spectroscopic Separation Specificity (alpha spectroscopy) Project Duplicates and Splits Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September 2021.

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District, September 2017.

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February 2018.

Definition of Data Validation Qualifiers:

Validation Report By: C. Martin Johnson

- "U" Indicates a normal, non-detected (< critical value) result.
- "J" Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable depending upon the intended use of the data and reason for data rejection.

Client Identification	Laboratory Identification
GW-06-1205	L1411184-01
GW-09-1210	L1411184-02
GW-07-1215	L1411184-03
GW-10-1220	L1411184-04

03/13/2022

	(print)	Date	
	C. Martin Johns	en, Je.	
	(sign)		
Peer Reviewed By:	Thomas L. Rucker, Ph.D.	03/16/2022	
•	(print)	Date	
	72 Rucker		
	(sign)		

1.0 GROSS ALPHA AND GROSS BETA ANALYSIS

The laboratory reported the following Gross Alpha and Gross Beta analyses results in the samples.

Holding Time and Preservation

All holding times and preservation requirements were met for the gross alpha and beta analyses.

Initial Calibration

There were no problems observed in the initial calibration.

Continuing Calibration

There were no problems observed in the continuing calibration.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The sample-specific critical level (L_c) was calculated as 1.65 CSU. It is recommended that sample concentrations less than the L_c include were qualified as non-detect (U). Please see table below.

Non-detected Results

		Result	CSU	L_{C}	
Sample ID	Analyte	(pCi/L)	(pCi/L)	(pCi/L)	Qualifier
GW-06-1205	Gross Alpha	-54.6	33.0	54.2	U

Lc = 1.645 * CSU

Method Blank Analysis

The Gross alpha, Gross Beta samples results did not show any method blank contamination for the Gross Alpha and Gross Beta analyses.

Duplicate Analyses

Review of the duplicate for the Gross Alpha and Gross Beta analysis was performed and the Gross Alpha analysis was within limits with a duplicate RPD and NAD (DER) of 15.7% and 0.0665. The Gross Beta analysis was outside of the limits with a duplicate RPD of 66.8% but NAD was within limits at 0.972. Therefore, no qualification of results is necessary.

Laboratory Control Samples

The laboratory control samples for the Gross Alpha and Gross Beta had recoveries of 93.2% and 120%. Therefore, no qualification of the sample due to laboratory control samples is required.

Matrix Spike Samples

The matrix spike samples for the Gross Alpha and Gross Beta were not within the recovery limits of 80.0%. to 120% for water matrix. The MS recovery was 129% for Gross Alpha and 125% for Gross Beta. **Therefore, it recommended all Gross Alpha and Gross Beta results be qualified as estimated (J).**

Calculations

Ten percent of the results were recalculated. No issues were observed.

2.0 Ra-228 ANALYSIS

The laboratory reported the following Ra-228 by Gas Proportional Counter analyses to get the Ra-228 results.

Initial Calibration

There were no problems observed in the initial calibration.

Continuing Calibration

There were no problems observed in the continuing calibration.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The sample-specific critical level (L_c) was calculated as 1.65 CSU. It is recommended that sample concentrations less than the L_c include be qualified as non-detect (U). Please see table below.

Non-detected Results

		Result	CSU	L_{C}	
Sample ID	Analyte	(pCi/L)	(pCi/L)	(pCi/L)	Qualifier
GW-06-1205	Ra-228	-0.0171	0.22	0.36	U

Lc = 1.645 * CSU

Method Blank Analysis

The Ra-228 results did not show any method blank contamination in the method blank for the analyses of Ra-228.

Duplicate Analyses

The evaluation of duplicates for the Ra-228 analysis was perform and the analysis was within limits with a duplicate NAD of 0.213. Therefore, no qualification is required.

<u>Laboratory Control Samples</u>

The laboratory control samples for the Ra-228 analysis had recoveries of 103%. Therefore, no qualification of the sample due to laboratory control samples is required.

Matrix Spike Samples

The matrix spike samples for the Ra-228 is within the recovery limits of 70.0%. to 130%. The recoveries are 114% and 107%. Therefore, no qualification of the Ra-228 results is required.

Calculations

Ten percent of the results were recalculated. No issues were observed.

3.0 URANIUM ANALYSIS

The laboratory reported the following Uranium analysis by KPA analyses to get the uranium results.

Initial Calibration

There were no problems observed in the initial calibration.

Continuing Calibration

There were no problems observed in the continuing calibration.

Method Blank Analysis

The uranium results did not show any method blank contamination in the method blank for the analyses of uranium.

Duplicate Analyses

The duplicate for the uranium analysis was performed and the analysis showed non-detects for both the original samples and the duplicate samples. No qualification of the data due to duplicate samples.

Laboratory Control Samples

The laboratory control samples for the uranium analysis had recoveries of 112%. Therefore, no qualification of the samples due to laboratory control samples is required.

Matrix Spike Samples

The matrix spike samples for the uranium analysis had 110% recovery for the original sample and 112% recovery for the matrix spike duplicate. The recovery limits were 75.0 to 125%. The recovery limits of 70.0%. to 125% were required. Therefore, no qualification of the uranium results is required.

Calculations

Ten percent of the results were recalculated. No issues were observed.

4.0 Ra-226 ANALYSIS

The laboratory reported the following Ra-226 by Alpha Spectrometry analyses to get the Ra-226 results.

Initial Calibration

There were no problems observed in the initial calibration.

Continuing Calibration

There were no problems observed in the continuing calibration.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The sample-specific critical level (L_c) was calculated as 1.65 CSU. No results were less than the L_c . Therefore, no undetected qualifiers are required.

The Ra-226 results analysis results do not meet the RDLs.

Method Blank Analysis

The Ra-226 results did not show any method blank contamination in the method blank for the analyses of Ra-226.

Duplicate Analyses

The duplicate for the Ra-226 analysis was perform and the analysis was within limits with a duplicate NAD of 0.213. Therefore, no qualification required for the Ra-226 data.

<u>Laboratory Control Samples</u>

The laboratory control samples for the Ra-226 analysis had recoveries of 102%. Therefore, no qualification of the sample due to laboratory control samples is required.

Matrix Spike Samples

The matrix spike samples for the Ra-226 is within the recovery limits of 70.0%. to 130%. The recoveries are 92.1% and 97.7%. Therefore, no qualification of the Ra-226 results is required.

Calculations

Ten percent of the results were recalculated. No issues were observed.

LEIDOS Laboratory Data Verification Checklist Project: Page 1 of 3 Staten Island Warehouse FUSRAP Site SDG No: Gross Alpha/Beta; Ra-226,Ra228,Uranium **Analyte Group:** L1411184 **Ground Water** Sample Matrix: EDD (Y/N): **Disposition of Data Package:** Finished NCR No. (if applicable): N/A 1. Case Narrative Read SDG Case Narrative Check Laboratory sample ID vs. Project sample ID lists Check that discussion covers each analytical type included in the SDG Check for identified nonconforming items (e.g., missed holding times, etc.) Υ 2. Chain-of-Custody (COC) Check COC sample collection, shipping, and receiving dates Check that COC signature blocks are complete Check COC project sample IDs vs. Lab IDs and Result Form IDs Match COC requested analyses with Case Narrative and with data package content (Result Forms) 3. Analytical Results Form Verify that a Result Form is present for each sample and analysis On each Result Form check: SDG No. Sample ID Lab ID **Date Collected** Date Extracted Date Analyzed Result Matrix Result Units

			Page 2 of 3
4. Project Verifica	ation		
	Check project and	alyte list vs. analytes reported	Y
	Check project rec	quested methods vs. analytical methods performed	<u>Y</u>
	Check analyte rep	porting levels vs. project reporting level goals	<u>Y</u>
5. Analytical Qua	lity Control Informat	tion	
	Check for surroga	ate recovery results (e.g., org. form II)	Y
	Check for LCS re	esults (e.g., org. form III, inorg. form XII)	Y
	Check for method	d blank results (e.g., org. form IV, inorg. form III)	Y
	Check for MS/MS	SD results (e.g., inorg. form V)	Y
	Check for laborat	ory duplicate results (e.g., inorg. form VI)	Y
	Check for Method	d Calibration and Run Documentation	
	organic:	instrument performance check initial calibration data continuing calibration data internal standard areas internal standard retention times sample clean-up documentation (org. forms V through X)	N/A N/A N/A N/A N/A N/A
	metal:	initial calibration data continuing calibration data method detection limits method linear range sample run sequence (inorg. forms II, IV, and VIII through XIV)	N/A N/A N/A N/A
	other: (Radiological)	initial calibration data continuing calibration data method detection limits sample run sequence	Y Y Y Y

			Page 3 of 3	
3. Incorrect Inform	nation			
	Identify missing items or incorrect information (i.e., missing incorrect sample IDs, etc.)	g forms, ເ	unsigned forms,	
	Contact the laboratory or project personnel to obtain missi or correct information	ng inform	nation	
Document of	corrections below: None			
7. Nonconforming	Items			
. Noncomonning				
	Document all nonconforming items that can not be resolve a Non-Conformance Report (NCR), complete form, file, ar			
	NCR # Item			
Reviewed By:	C. Martin Johnson, Jr.	Date:	3/13/2022	
QA Review By:		Date:		

LEIDOS Laboratory Data Package Detail Form Project: Staten Island Warehouse FUSRAP Site Page 1 of 1 SDG No: L1411184 Analyte Group: Gross Alpha/Beta; Ra-226,Ra228,Uranium Field Lab Matrix Analysis Notes: Sample ID ID# GW-06-1205 L1411184-01 W Gross Alpha/Beta; Ra-226,Ra228,Uranium GW-09-1210 L1411184-02 W Gross Alpha/Beta; Ra-226,Ra228,Uranium GW-07-1215 L1411184-03 W Gross Alpha/Beta; Ra-226,Ra228,Uranium GW-10-1220 W L1411184-04 Gross Alpha/Beta; Ra-226,Ra228,Uranium Comments:

LEIDOS Radiochemical Data Review Checklist Project: Page 1 of 21 Staten Island Warehouse FUSRAP Site SDG No: Analysis: L1411184 Gross Alpha/Beta; Ra-226,Ra228,Uranium Method: Laboratory: Matrix: **Ground Water** Pace Analytical The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The general criteria used to assess the analytical integrityof the data were based on an examination of the following: Case Narrative Chemical and/or Tracer Recoveries **Analytical Holding Times** Matrix Spike Results Sample Preservation **Duplicate Error Ratios and RPDs** Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Secondary Dilution Overall Remarks: CENWK, QSM 5.3; see QAPP for specific requirements Definition of Qualifiers:

"U", not detected at the associated level

"UJ", not detected and associated value estimated N/A

"J", associated value estimated

"R", associated value unusable or analyte identity unfounded

"=", compound properly identified and value positive

Reviewed by:	C. Martin Johnson, Jr.	Date:	3/13/2022
QA Reviewed by:		Date:	

	EIDOS	Page 2 of 21
Rad I. Case Narrative	diochemical Data Review Checklist	
Verify direct statements	s made within the Laboratory Case Narrative (note discrepancies))
	o mado mami ano Educatory Gaco Mariativo (noto dicoropanolos)	<i>,</i> .
Remarks:		
_		_
II. Re-analysis and	Secondary Dilutions	
Verify that re-analysis a appropriate results to re	and secondary dilutions were performed and reported as necessareport.	ary. Determine
Remarks:		
No isssues.		

LEIDOS Page 3 of 21

Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

Sample #	Radionuclide:	Date Collected	Date Analyzed	Action
	-			
				
2. If holding times are e	exceeded *, all results are quexceeded by more than 2X, results are quexceeded.	eviewer may qualify		*or improperly preserved ed results as unusable (R)
		2.0.0.7.		

LEIDOS Page 4 of 21

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

	Project Reporting	MDA	Samples Affected
Radionuclide	Level Goal	Achieved	
Gross A		126 pCi/L	
Gross B		96.1 pCi/L	
Ra-226		0.194 pCi/L	
Ra-228		0.811 pCi/L	
KPA Uranium		0.001 mg/L	

Actions:	see CENWK 4.1.3.3a an	d OAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R)

ii ii iiio oampio roo	tak to riogativo aria no abbotato valao oxoboda 2x trio MBX, quality trio robat (11).
Remarks:	
No issues.	
110 1000001	

Page 5 of 21

Radiochemical Data Review Checklist

V.A1. Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.2 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions:	see CFN\	NK 13	1 2 and	
ACHOHS.	See CEIN	// N 4 .7	1 / 4110	IUAPP

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks:			
No issues.			

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.1 and QAPP

Initial efficiency calibration must be demonstrated on each detector for each geometry. Initial energy calibration must be demonstrated on each detector for each geometry. Resolution (FWHM) must be demonstrated for each detector for each geometry. Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.2 and QAPP

Continuing calibration efficiency verification must be performed for each detector at least quarterly. Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed monthly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions:	202	CFNV	VK 1'	2 1 1	and	$\bigcap \Delta DD$
ACHOHS.	SEE		V N 4.	ו וכ	anc	UAFF

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks:			
Not Used.			

Page 7 of 21

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis

see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide.

Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

- 1. If the initial calibration quench curve or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or control charts are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	
No issues.	

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

see CENWK 4.3.1.3.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters

see CENWK 4.3.1.3.1 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions: see CENWK 4.3.1.3 and QAPP

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:		
Remarks: No Deficiencies.		
-		

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

see CENWK 4.2.1 and QAPP

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted.

If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory Method Blanks:

Date	Lab ID #	Radionulcide	Result and Error	MDA Result and Error
20-Oct-21 20-Oct-21 26-Oct-21 21-Oct-21 8-Oct-21		Gross Alpha Gross Beta Ra-228 Uranium Ra-226	0.165 +/- 0.473 -0.314 +/- 1.21 -0.151 +/- 0.246 U 0.00799 +/- 0.0350	
Associated	Project Blanks (e.g.,	equipment rinsa	tes, etc.)	
Date	Lab ID #	Radionuclide	Result and Error	MDA Result and Error
Remarks:				
No issues	3.			

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

see CENWK 4.2.1 and QAPP

Calculate action levels based on 10X the highest blank concentration. see CENWK 4.2.1.3 and QAPP

Deviations:

1	Action Level	Samples Affected
Detected		
	Max. Activity Detected	

Actions:	see CENWK 4.2.1 and QAPP
AULIUIIS.	300 OEINVIN 7.2.1 and Q/N 1

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

Example:	Blank Result	Uncert.	MDA or	Normalized absolute	Qualification
				<u>difference</u>	
acceptable	0.3	0.45	0.5	>2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
- 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:			
No isssues.			

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

see CENWK 4.1.2 and QAPP

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

			Action Taken
Radionuclide	Sample ID	%R	

Actions:	see	CE	N	W	/K	4.	1.2	and	QAF	P
----------	-----	----	---	---	----	----	-----	-----	-----	---

- 1. If recovery is between 30-110%, no qualification is necessary.
- 2. If recovery is between 20 10-30%, qualify the data as estimated (J).
- 3. If recovery is between 110-120150%, qualify the data as estimated (J).
- 4. If recovery is less than 20 10%, qualify the data as rejected (R).
- 5. If recovery if greater than 120 150%, qualify the data as rejected (R).

outside lab limits but within
20-120%: J if corrective actions
taken, otherwise R

Remarks:					
No issues.					

Page 12 of 21

Radiochemical Data Review Checklist				
VIII. Laboratory Control	Sample Ir			
General LCS Criteria: percent recovery (%R)		aqueous 80-120	solid Solid Fig. 120 Solid Fig. 120 Fig. 125 Fig. 125	
Laboratory LCS Identifica	tions:		75-125	
Deviations:	T _			
Radionuclide	Date	%R	Samples Affected/Qualifiers Applied	
Gross Alpjha	20-Oct-21	93.20%	No qualification	
Gross Beta	20-Oct-21	120%	No qualification	
Ra-228	26-Oct-21	103%	No qualification	
Uranium	21-Oct-21	112%	No qualification	
Ra-226	26-Oct-21	102%	No qualification	
Actions:	see CENW	/K 4.2.2 ar	nd QAPP	
Alpha (Aqueous)		<50%	<u>50-79%</u> <u>121-150%</u> >150%	
and Gamma, GPC, KPA		R	J J R	
Alpha (Calid)		<50%	50-74% 126-150% >150% 40-69% 131-160% >160%	
Alpha (Solid)		<u><40%</u> R	<u>40-69%</u> <u>131-160%</u> >160% J J R	
Remarks:				
No issues.				

Page 13 of 21

Radiochemical Data Review Checklist

IX. Matrix Spike Information

General MS Criteria: percent recovery (%R)		Aqueous 50-120	Solid see CENWK 4.2.3 and QAPP 40-130
Project Sample(s) Spiked	:		
Deviations:			
Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
Gross Alpha	20-Oct-21	129%	J - estimated
Gross Beta	20-Oct-21	125%	J - estimated
Ra-228	26-Oct-21	114%	No Qualification
Uranium	21-Oct-21	110%	No Qualification
Ra-226	26-Oct-21	92.10%	No Qualification
Actions:	see CENW	/K 4.2.3 ar	nd QAPP
Aqueous		<u><20%</u>	<u>20-49%</u> <u>121-160%</u> <u>>160%</u> >150%
all samples in batch		R *coo CENIV	J J use professional judgement R WK 4.2.3 and QAPP*
Solid		<10%	10-39% 131-160% ≥160% >150%
		R	J J use professional judgement R
Remarks:			
Nolliai No.			
All Ground water sa	mnles au	ıalified	as estimated for Gross alpha and Gross
beta analyses.	inpics qu	Jannea	ao cominated for Cross diprid and Cross
Dota ariary 000.			
			_

Page 14 of 21

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis see CENWK 4.2.4, 4.2.5 and QAPP

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER).

Duplicate actions should ap	piy to ali sa	impies asso	ociated with	i the duplicate pair.
Duplicate Sample Identifi	cation:			
Deviations:		<u> </u>		Comples Affected
Radionuclide	DER	RPD	RER	Samples Affected
Gross Alpha		5.46%		No qualification
Gross Beta		1.44%		No qualification
Ra-228		6.27%		No qualification
Uranium		0.97%		No qualification
Ra-226		5.90%		No qualification
2. If the DER is greater than3. If the RPD is greater than	ate activitie 1.00, qual 150% quali	es are within ify the data fy the data	n 2X the Mi as estimat as estimate	` '
Remarks:				
No qualification of s	amples	due to I	MS MSI	D recoveries.

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

see CENWK 4.1.8, 4.1.9.2 and QAPP

Each alpha isotopic peak should be clear and free of interference from other energy peaks. Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Radionuclide	Deficiency	Samples Affected

Actions:	see CENWK 4.1.8, 4.1.	.9.2 and QAPF
----------	-----------------------	---------------

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:			
No Issues.			

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density

see CENWK 4.1.9, 4.1.7 and QAPP

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations:

Radionuclide	Deficiency	Samples Affected

Actions:

see CENWK 4.1.9, 4.1.7 and QAPP

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 5. If results have not been properly corrected for distinguishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:			
No issues.			

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy)

N/A

Each sample tentatively identified radionuclide energy must be within 2 keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations:

Radionuclide	Deficiency	Samples Affected

Actions:

- 1. Qualify all tentatively identified radionuclides as estimated (J).
- 2. If the energy of the tentatively identified radionuclide peak is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 3. If the reviewer judges anything regarding the identification of the tentatively identified radilnuclide as suspect, qualify the data as rejected (R).

Remarks:			
No issues.			

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

see CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Deviations:

Actions:

Radionuclide/Method	Deficiency	Samples Affected

 Based on the instrument performance indicators, the data reviewer must use professional judgement of qualify the data. 									
Remarks:		_							
No issues.									

see CENWK and QAPP

Page 19 of 21

XV. Analyte Quanti Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Calculation Check:

Radionuclide: Ra-226 Method: L1411184-04

> 13 Counts Ra-226 = 13-(0.001x150)-00.15 Counts bkd 150 x 0.965 x 0.25 x 0.278 x 2.22 150 minutes 0.965 Tracer Recovery

Ra-226 = 12.85 Counts 0.250 ml Sample Aliquot 22.3335 2.22 coversion factor

Ra-226 = 0.575 pCi/L

Remarks:____

Calculation Check:

Ra-226 Error =

Calculation Che	eck:			
Radionuclide:	Ra-226 Uncertainy	,	Method:	
Ra-22	26 Error =	1.96 x(SC	QRT(((13/150)/150) + (0.001/150))) 0.25 x 0.965 x 2.22)	
Ra-22	26 Error =		4.7384 0.14889	

0.318

Remarks:

No issues with the calculations.

LEIDOS Page 20 of 21

XV. Analyte Quanti Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Calculation Check: Radionuclide:	Method:	
tadioridonae.	Worked.	
	•	
Not Applicable		
Remarks:		
Calculation Check:		
Calculation Check:	Method:	
	Method:	
Radionuclide:	Method:	
	Method:	

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

Remarks:
The gross alpha and gross beta results for samples GW-06-1205, GW-09-1210,
Gw07-1215, and GW-10-1220 should be qualified as estimated (J).
OW 07 1213, and GW 10 1220 should be qualified as estimated (0).

		Billing	Information	:			F		A	nalysis /	Contai	ner / Prese	rvative			Chain of Custody	Page of
CIEO Consultants Corre 325 Kentucky Ave	0	32 K	courts f	Payable Lucky A LY 420	ve 53	Pres Chk	27	77	27							Pace A National Oa	Analytical ** noter for Testing & Inno
Yeuil XY 42053		Email		1 100							100						
Project Description:		City/Sta	seyd@ge		Please Ci	ircle:				V 2 - 41						12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859	8 66 64
Staten Island Phone: Clie 270 462-3882	ent Project #	Collected: Staten Island NY PT MT CT ET # Lab Project #									9/1					SDG # [] [] B018	1187
Collected by (signature):	Rush? (Lab MUS Same Day Next Day Two Day	Five Day 5 Day (Rad Or	nly)	and the second	Needed	No.	KPA-U	22.0	-228							Acctnum: Template: Prelogin: PM: PB:	
Packed on Ice N Y	Three Day Comp/Grab	Matrix*	Depth	Date	Time	of Cntrs	1.PA	RA	44		100					Shipped Via:	
					100		,×-									Remarks	Sample # (lab o
EQ-50-1410	Cornyo	W	Sulface Sylvan	9-27-21	1410	3		- 1					1 8/FS.		F :-		-01
EQ-SB-1520	Comp	W	40	9-22-21	1520	V											-07
	5376											41					
															2		
	7	100	-		-1851	light.											
					19 PH.	Ph.								-			
S - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay NW - WasteWater DW - Drinking Water San	narks:									pH Flov	v	Temp _ Other _		COC : Bott: Corre	Seal Property Signed, les arrect both	ple Receipt Chresent/Intact/Accurate: rive intact: ttles used: volume sent:	NP TY
Stanford de	UPSFedEx	_Courier _	-	Tracki		- 3%							0			If Applicabe eadspace:	_Y_
Relinquished by : (Signature)	Date:	27-21	Time: 1830		ved by: (Signati	ure)				Trip Bla	nk Rece		/ No CL / MeoH			on Correct/Che <0.5 mR/hr:	ecked:
Relinquished by : (Signature)	Date:		Time:		ved by: (Signati	ure)				Temp: 1	Apat		Received:	If pre	servatio	n required by Log	gin: Date/Time
Relinquished by : (Signature)	Date:		Time:	Receiv	ved for lab by:	(Signat	ture)	/		Date:	20/	Time:	9:15	Hold:			Condition

SAMPLE RESULTS - 01

L141

Radiochemistry by Method 900

Collected date/time: 09/27/21 14:10

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+ / -	pCi/l	date / time	
GROSS ALPHA	-0.0607	<u>(U)</u> J	0.498	0.814	10/20/2021 11:55	WG1757645
GROSS BETA	0.125	<u>(U)</u> J	1.43	1.94	10/20/2021 11:55	WG1757645

Ss

Radiochemistry by Method 904/9320

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/I	date / time	
RADIUM-228	-0.256	U	0.296	0.562	10/26/2021 15:15	WG1757745
(T) Barium	98.7			62.0-143	10/26/2021 15:15	WG1757745
(T) Yttrium	97.2			79.0-136	10/26/2021 15:15	WG1757745

Radiochemistry by Method D5174

	Result	Qualifier	Uncertainty	RDL	Analysis Date	Batch
Analyte	mg/l		+ / -	mg/l	date / time	
Uranium	ND	U		0.00100	10/21/2021 13:52	WG1760063

Sc

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+ / -	pCi/l	date / time	
RADIUM-226	0.0348	U	0.0860	0.179	10/26/2021 22:26	WG1750910
(T) Barium-133	97.0			30 0-143	10/26/2021 22:26	WG1750910

SAMPLE RESULTS - 02

Collected date/time: 09/27/21 15:20 Radiochemistry by Method 900

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
GROSS ALPHA	0.110	<u>(U)</u> J	0.572	0.883	10/20/2021 11:55	WG1757645
GROSS BETA	-1.54	(U) T	1.49	2.11	10/20/2021 11:55	WG1757645

Ss

Radiochemistry by Method 904/9320

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-228	-0.575	U	0.291	0.562	10/26/2021 15:15	WG1757745
(T) Barium	99.1			62.0-143	10/26/2021 15:15	WG1757745
(T) Yttrium	95.3			79.0-136	10/26/2021 15:15	WG1757745

Radiochemistry by Method D5174

	Result	Qualifier	Uncertainty	RDL	Analysis Date	Batch
Analyte	mg/l		+ / -	mg/l	date / time	
Uranium	ND	U		0.00100	10/21/2021 14:00	WG1760063

Αl

Sc

Radiochemistry by Method SM7500Ra B M

	-					
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+ / -	pCi/l	date / time	
RADIUM-226	0.468		0.300	0.258	10/26/2021 22:26	WG1750910
(T) Barium-133	93.4			30.0-143	10/26/2021 22:26	WG1750910

Radiological Analytical Data Verification Comments on Data for Case Number L1411187

Event Name: Staten Island Warehouse FUSRAP Site

SDG Number: <u>L1411187</u>

Laboratory: Pace Analytical

Analysis: Gross Alpha/Beta, Ra-228, Uranium, Ra-226 (ground water)

The above data package has been reviewed and the analytical quality control/quality assurance performance data have been summarized. The data validation was performed against the Quality Assurance / Quality Control Limits established in the Quality Assurance Project Plan (QAPP)¹ and in accordance with guidance from the Kansas City District Data Quality Evaluation Guidance² (CENWK) referenced in the QAPP and the Stage 3 guidelines provide in the DoD General Data Validation Guidelines³. It was based on the information and documentation supplied by the associated laboratory and project requirements. This statement of work (SOW) contained two equipment blank samples for radiological analysis. The requested analyses include gross alpha/gross beta by gas proportional counting (Method EPA 900/9310), ²²⁸Ra (Method EPA 904/9320), Total Uranium (ASTM D5174/D5174M), and ²²⁶Ra (Method SM-7500-RA-B M). The general criteria used to assess the analytical integrity of the data were based on an examination of the following, as applicable:

Case Narrative
Analytical Holding Times and Preservation
Method Calibration/Calibration Verification
Method Blanks
Background Checks
Analytical Tracer Recoveries
MS/MSD Recoveries and Differences
LCS/LCSD Recoveries and Differences
Laboratory Duplicates/Replicates

Re-analysis and Secondary Dilution Minimum Detectable Activities (MDAs) Reporting Levels Chemical/Spectroscopic Separation Specificity (alpha spectroscopy) Project Duplicates and Splits Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

¹ QAPP: "Final Uniform Federal Policy-Quality Assurance Project Plan Supplemental Site Inspection Staten Island Warehouse FUSRAP Site Port Richmond, Staten Island, New York, GEO Consultants Corporation, September 2021

² CENWK: "Radionuclide Data Quality Evaluation Guidance" U.S. Army Corps of Engineers, Kansas City District, September 2017.

³ "General Data Validation Guidelines" Department of Defense, Environmental Data Quality Workgroup, February 2018.

Definition of Data Validation Qualifiers:

(sign)

- "U" Indicates a normal, non-detected (< critical value) result.
- "J" Indicates an unusually uncertain or estimated result.

"X" -The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but the exclusion of the data is recommended. The problems (quantitative or qualitative) are severe; data may still be usable depending upon the intended use of the data and reason for data rejection.

Client Identification	Laboratory Identification
EQ-SD-1410	L1411187-01
EQ-SB-1520	L1411187-02

Validation Report By:	C. Martin Johnson	03/13/2022	
	(print)	Date	
	C. Martin John	son, gr.	
Peer Reviewed By:	Thomas L. Rucker, Ph.D. (print)	03/15/2022 Date	
	72 Rucker		

1.0 GROSS ALPHA AND GROSS BETA ANALYSIS

The laboratory reported the following Gross Alpha and Gross Beta results.

Holding Time and Preservation

All holding times and preservation requirements were met for the gross alpha and beta analyses.

Initial Calibration

There were no problems observed in the initial calibration.

Continuing Calibration

There were no problems observed in the continuing calibration.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The sample-specific critical level (L_c) was calculated as 1.65 CSU. It is recommended that sample concentrations less than the L_c include be qualified as non-detect (U). Please see table below.

Non-detected Results

		Result	CSU	L_{C}	
Sample ID	Analyte	(pCi/L)	(pCi/L)	(pCi/L)	Qualifier
EQ-SD-1410	Gross Alpha	0.498	0.407	0.6695	U
EQ-SB-1520	Gross Alpha	0.572	0.4415	0.7263	U
EQ-SD-1410	Gross Beta	1.43	0.715	1.18	U
EQ-SB-1520	Gross Beta	-1.54	0.745	1.23	U

Lc = 1.645 * CSU

Method Blank Analysis

The Gross alpha, Gross Beta samples results did not show any method blank contamination for the Gross Alpha and Gross Beta analyses.

Duplicate Analyses

Review of the duplicate for the Gross Alpha and Gross Beta analysis was performed and the Gross Alpha analysis was within limits with a duplicate RPD and NAD (DER) of 15.7% and 0.0665. The Gross Beta analysis was outside of the limits with a duplicate RPD of 66.8% but NAD was within limits at 0.972. Therefore, no qualification of results is necessary.

Laboratory Control Samples

The laboratory control samples for the Gross Alpha and Gross Beta had recoveries of 93.2% and 120%. Therefore, no qualification of the sample due to laboratory control samples is required.

Matrix Spike Samples

The matrix spike samples for the Gross Alpha and Gross Beta were not within the recovery limits of 80.0%. to 120% for water matrix. The MS recovery was 129% for Gross Alpha and 125% for Gross Beta. Therefore, it recommended all Gross Alpha and Gross Beta results be qualified as estimated (J).

2.0 Ra-228 ANALYSIS

The laboratory reported the following Ra-228 analysis by Gas Proportional Counter to get the Ra-228 results.

<u>Initial Calibration</u>

There were no problems observed in the initial calibration.

Continuing Calibration

There were no problems observed in the continuing calibration.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The sample-specific critical level (L_c) was calculated as 1.65 CSU. It is recommended that sample concentrations less than the L_c include be qualified as non-detect (U). Please see table below.

Non-detected Results

Sample ID	Analyte	Result (pCi/L)	CSU (pCi/L)	L _C (pCi/L)	Oualifier
EQ-SD-1410	Ra-228	-0.256	0.148	0.244	U
EQ-SB-1520	Ra-228	-0.575	0.146	0.239	U

Lc = 1.645 * CSU

Method Blank Analysis

The Ra-228 results did not show any method blank contamination in the method blank for the analyses of Ra-228.

Duplicate Analyses

The evaluation of duplicates for the Ra-228 analysis was performed and the analysis was within limits with a duplicate NAD of 0.213. Therefore, no qualification is required.

Laboratory Control Samples

The laboratory control samples for the Ra-228 analysis had a recovery of 103%. Therefore, no qualification of the sample due to laboratory control samples is required.

Matrix Spike Samples

The matrix spike samples for the Ra-228 is within the recovery limits of 70.0%. to 130%. The recoveries are 114% and 107%. Therefore, no qualification of the Ra-228 results is required.

Calculations

Ten percent of the results were recalculated. No issues were observed.

3.0 URANIUM ANALYSIS

The laboratory reported the following Uranium analysis by KPA to get the uranium results.

Initial Calibration

There were no problems observed in the initial calibration.

Continuing Calibration

There were no problems observed in the continuing calibration.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The total uranium results were reported as non-detected (ND). Therefore, all results were qualified as non-detect (U).

Method Blank Analysis

The uranium results did not show any method blank contamination in the method blank for the analyses of uranium.

Duplicate Analyses

The duplicate for the uranium analysis was performed and the analysis showed non-detects for both the original samples and the duplicate samples. No qualification of the data due to duplicate samples is required.

<u>Laboratory Control Samples</u>

The laboratory control sample for the uranium analysis had a recovery of 112%. Therefore, no qualification of the samples due to laboratory control samples is required.

Matrix Spike Samples

The matrix spike samples for the uranium analysis had 110% recovery for the original sample and 112% recovery for the matrix spike duplicate. The recovery limits were 75.0 to 125%. The recovery limits of 70.0% to 125% were required. Therefore, no qualification of the uranium results is required.

Calculations

Ten percent of the results were recalculated. No issues were observed.

4.0 Ra-226 ANALYSIS

The laboratory reported the following Ra-226 analysis by Alpha Spectrometry to get the Ra-226 results.

Initial Calibration

There were no problems observed in the initial calibration.

Continuing Calibration

There were no problems observed in the continuing calibration.

Minimum Detectable Activities (MDAs)/ Reporting Levels

The sample-specific critical level (L_c) was calculated as 1.65 CSU. It is recommended that sample concentrations less than the L_c include be qualified as non-detect (U). Please see table below.

Non-detected Results

		Result	CSU	L_{C}	
Sample ID	Analyte	(pCi/L)	(pCi/L)	(pCi/L)	Qualifier
EQ-SD-1410	Ra-226	0.0348	0.0430	0.711	U

Lc = 1.645 * CSU

Method Blank Analysis

The Ra-226 results did not show any method blank contamination in the method blank for the analyses of Ra-226.

The Ra-226 results analysis results do not meet the RDLs.

Duplicate Analyses

The duplicate for the Ra-226 analysis was performed and the analysis was within limits with a duplicate NAD of 0.213. Therefore, no qualification is required for the Ra-226 data.

Laboratory Control Samples

The laboratory control samples for the Ra-226 analysis had a recovery of 102%. Therefore, no qualification of the sample due to laboratory control samples is required.

Matrix Spike Samples

The matrix spike samples for the Ra-226 is within the recovery limits of 70.0%. to 130%. The recoveries are 92.1% and 97.7%. Therefore, no qualification of the Ra-226 results is required.

Calculations

Ten percent of the results were recalculated. No issues were observed.

LEIDOS Laboratory Data Verification Checklist Project: Page 1 of 3 Staten Island Warehouse FUSRAP Site SDG No: **Equipment Rinsate Blanks Analyte Group:** L1411187 Non -Potable Water Sample Matrix: EDD (Y/N): **Disposition of Data Package:** NCR No. (if applicable): N/A 1. Case Narrative Read SDG Case Narrative Check Laboratory sample ID vs. Project sample ID lists Check that discussion covers each analytical type included in the SDG Check for identified nonconforming items (e.g., missed holding times, etc.) Υ 2. Chain-of-Custody (COC) Check COC sample collection, shipping, and receiving dates Check that COC signature blocks are complete Check COC project sample IDs vs. Lab IDs and Result Form IDs Match COC requested analyses with Case Narrative and with data package content (Result Forms) 3. Analytical Results Form Verify that a Result Form is present for each sample and analysis On each Result Form check: SDG No. Sample ID Lab ID **Date Collected** Date Extracted Date Analyzed Result Matrix **Result Units**

			Page 2 of 3
1. Project Verific	ation		
	Check project ar	nalyte list vs. analytes reported	Y
	Check project re	quested methods vs. analytical methods performed	Y
	Check analyte re	eporting levels vs. project reporting level goals	Y
5. Analytical Qua	ality Control Informa	ation	
	Check for surrog	ate recovery results (e.g., org. form II)	
	Check for LCS re	esults (e.g., org. form III, inorg. form XII)	Y
	Check for metho	d blank results (e.g., org. form IV, inorg. form III)	Y
	Check for MS/M	SD results (e.g., inorg. form V)	Y
	Check for labora	tory duplicate results (e.g., inorg. form VI)	Y
	Check for Metho	d Calibration and Run Documentation	Υ
	organic:	instrument performance check initial calibration data continuing calibration data internal standard areas internal standard retention times sample clean-up documentation (org. forms V through X)	N/A N/A N/A N/A N/A N/A
	metal:	initial calibration data continuing calibration data method detection limits method linear range sample run sequence (inorg. forms II, IV, and VIII through XIV)	N/A N/A N/A N/A N/A
	other: (Radiological)	initial calibration data continuing calibration data method detection limits sample run sequence	Y Y Y Y

			Page 3 of 3	
3. Incorrect Inform	nation			
	Identify missing items or incorrect information (i.e., missing incorrect sample IDs, etc.)	g forms, ເ	unsigned forms,	
	Contact the laboratory or project personnel to obtain missi or correct information	ng inform	nation	
Document of	corrections below: None			
7. Nonconforming	Items			
. Noncomonning				
	Document all nonconforming items that can not be resolve a Non-Conformance Report (NCR), complete form, file, ar			
	NCR # Item			
Reviewed By:	C. Martin Johnson, Jr.	Date:	3/13/2022	
QA Review By:		Date:		

LEIDOS Laboratory Data Package Detail Form Project: Staten Island Warehouse FUSRAP Site Page 1 o f1 SDG No: Analyte Group: GrossA,B; Ra-226,Ra228,Uranium L1411187 Field Lab Matrix Analysis Notes: Sample ID ID# EQ-SD-1410 L1411187-01 W GrossA,B; Ra-226,Ra228,Uranium EQ-SB-1520 W L1411187-02 GrossA,B; Ra-226,Ra228,Uranium Comments:

LEIDOS Radiochemical Data Review Checklist

Project:	Staten Island Warehouse FUSRAP Site		Page 1 of 21
SDG No:	_L1411187	_ Analysis:	GrossA,B; Ra-226,Ra228,Uranium
Laboratory:	Pace Analytical	Method: Matrix:	Water
data have been sur	ckage has been reviewed and the marized. The general criteria un nation of the following:		rol/quality assurance performance ytical integrityof the data were
	Case Narrative Analytical Holding Times Sample Preservation Method Calibration Method and Project Blanks	Chemical and/or Trac Matrix Spike Results Duplicate Error Ration LCS Recoveries Re-analysis and Second	s and RPDs
Overall Remarks:	CENWK, QSM 5.3; see QAPF	ofor specific requireme	nts
Results qualified as	indicated due to MS/MSD recov	veries.	
Definition of Qualific	ers: "U", not detected at the associa "UJ", not detected and associa "J", associated value estimated "R", associated value unusable "=", compound properly identifi	ted value estimated Nation Nat	
Reviewed by:	C. Martin Johnson, Jr.		Date: 3/13/2022
QA Reviewed by:			Date:

Page 2 of 21

I. Case Narrat	Radiochemical Data Review Checklist tive
√erify direct sta	tements made within the Laboratory Case Narrative (note discrepancies).
Remarks:	Samples qualified due to high MS/MSD recoveries.
II. Re-analysis	s and Secondary Dilutions
Verify that re-ar appropriate res	nalysis and secondary dilutions were performed and reported as necessary. Determine ults to report.
Remarks:	
No isssue	 9S.

Page 3 of 21

LEIDOS

Radiochemical Data Review Checklist

III. Holding Times and Preservation

General analytical holding time for radionuclides is 6 months

Water samples require preservation with nitric acid to pH <2, for dissolved radionuclide determination Radioactive iodine holding time is 7 days

Consideration must always be given to the individual radionuclide half-life

Deviations: None

Sample #	Radionuclide:	Date Collected	Date Analyzed	Action

-					
Δ	Cti	C	n	S	•

 If holding times are exceeded 	f, all res	ults are qualified	l as estimated	l (J/U、	J) *or in	properly	/ preserved
---	------------	--------------------	----------------	---------	-----------	----------	-------------

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

Remarks:
All holding times were met by the laboratory.

LEIDOS Page 4 of 21

Radiochemical Data Review Checklist

IV. Minimum Detectable Activities (MDAs)/ Reporting Levels

see CENWK 4.1.3 and QAPP

Verify MDAs with project requested reporting levels for all radionuclides Compare reported activities and uncertainties with reported MDAs

Deviations:

	Project Reporting	MDA	Samples Affected
Radionuclide	Level Goal	Achieved	
Gross A		0.883	
Gross B		2.11	
Ra-226		0.258	
Ra-228		0.532	
KPA Uranium		0.001	

Actions: see CENWK 4.1.3 and QAPP

- 1. Document all radionuclide determinations that do not meet project reporting level goals.
- 2. If the reported value with its uncertainty encompass the project reporting level goal, they are equivalent.
- 3. If the sample result is negative and its absolute value exceeds the MDA, qualify the result as estimated (UJ).
- 4. If the sample result is negative and its absolute value exceeds 2X the MDA, qualify the result (R).

•	-		•	
Remarks:				
No issues.				

Page 5 of 21

Radiochemical Data Review Checklist

V.A1. Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Initial energy calibration must be demonstrated for each detector.

Resolution (FWHM) must be demonstrated for each detector.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.A2.Continuing Calibration Alpha Spectroscopy

see CENWK 4.3.1.2.2 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed weekly or bi-weekly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions:	200	CENWK	121	2 and	
ACHOHS.	SEEL		4.0	- / AIIO	LUAPP

- 1. If the initial calibration efficiencies, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks:			
No issues.			

Page 6 of 21

Radiochemical Data Review Checklist

V.B1. Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.1 and QAPP

Initial efficiency calibration must be demonstrated on each detector for each geometry. Initial energy calibration must be demonstrated on each detector for each geometry. Resolution (FWHM) must be demonstrated for each detector for each geometry. Standards must be traceable and documentation must be provided. Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.B2.Continuing Calibration Gamma Spectroscopy

see CENWK 4.3.1.1.2 and QAPP

Continuing calibration efficiency verification must be performed for each detector at least quarterly. Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Continuing energy calibration must be demonstrated to be within 10% of the initial calibration.

Continuing FWHM must be demonstrated to be within 10% of the initial FWHM.

A long background count for each detector must be performed monthly.

Pulser counts and demonstration of FWHM for each detector must be demonstrated daily.

Deviations: N/A

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affected	Range	Samples Affected	Value

Actions:	60	e CFN\	NK/	121	- 1	and	$\bigcap \Delta DD$
ACHOHS.	50	$\mathbf{e} \cdot \mathbf{c} \cdot \mathbf{n}$	/ V T\ 4	₽.O I		ancı	UAPP

- 1. If the initial calibration efficiency, energy, resolution, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency, energy, or FWHM are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts or pulser counts are not acceptable, qualify the affected data as estimated (J).

Remarks:			
N/A			

Page 7 of 21

Radiochemical Data Review Checklist

V.C1. Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis

see CENWK 4.3.1.4.1 and QAPP

Initial quench curves must be demonstrated for each radionuclide.

Initial calibration must be demonstrated for each radionuclide.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.C2. Continuing Calibration Liquid Scintillation Counters Kinetic Phosphorescence Analysis see CENWK 4.3.1.4.2 and QAPP

Continuing calibration efficiency verification must be performed afor each radionuclide.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Standards linear regression curve must be performed daily and documentation provided.

Control charts for tritium and carbon-14 chi square and figure of merit values should be documented.

A background count for each radionuclide window must be provided.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value
					_

- 1. If the initial calibration quench curve or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or control charts are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:	
No issues.	

Page 8 of 21

Radiochemical Data Review Checklist

V.D1. Calibration Gas Proportional Counters (GrossAB)

see CENWK 4.3.1.3.1 and QAPP

Initial efficiency calibration must be demonstrated for each detector.

Absorption curve must be demonstrated for each detector.

Plateau curve performance check must be demonstrated for each detector.

Data used to determine alpha and beta cross-talk must be demonstrated.

Standards must be traceable and documentation must be provided.

Standard preparation (dilutions, calculations, etc.) documentation must be provided.

V.D2.Continuing Calibration Gas Proportional Counters

see CENWK 4.3.1.3.1 and QAPP

Continuing calibration efficiency verification must be performed at least quarterly.

Continuing calibration efficiency must be demonstrated to be within 10% of the initial efficiency.

Cross-talk value for each detector must be documented.

Background count for each detector must be performed daily.

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Deficiency	Affected	Detectors Affect	Range	Samples Affected	Value

Actions: see CENWK 4.3.1.3 and QAPP

- 1. If the initial calibration absorption curve, plateau curve, % cross-talk, or standard information is not acceptable, qualify all affected results as estimated (J).
- 2. If the continuing calibration efficiency or percent cross-talk are not acceptable, qualify all affected results as estimated (J).
- 3. If background counts are not acceptable, qualify the affected data as estimated (J).

Remarks:		
Remarks: No Deficiencies.		
-		

Page 9 of 21

Radiochemical Data Review Checklist

VI. Blanks

see CENWK 4.2.1 and QAPP

Review associated laboratory and project blank samples. List documented contamination below:

If the blank result is less than the associated uncertainty (error), no qualification will be warranted.

If the blank result is greater than its associated uncertainty, but less than the MDA, then no qualification will be warrented.

If the blank result is greater than the associated uncertainty and greater than the MDA, then qualification of sample results may be appropriate.

Laboratory Method Blanks:

Date	Lab ID#	Radionulcide	Result and Error	MDA Result and Error
20-Oct-21		Gross Alpha	0.165 +/- 0.473	
20-Oct-21		Gross Beta	-0.314 +/- 1.21	
26-Oct-21	_	Ra-228	-0.151 +/- 0.246	_
21-Oct-21		Uranium	U	
26-Oct-21		Ra-226	-0.000464 +/- 0.0260	
Associated	Project Blanks (e.g.,	equipment rinsat	es, etc.)	
Date	Lab ID #	Radionuclide	Result and Error	MDA Result and Error
20-Oct-21	EQ-SD-1410	Groos Alpha	-0.0607 +- 0.498	
	EQ-SD-1410	Gross Beta	0.125 +/- 1.43	
	EQ-SD-1410	Ra-228	-0.256 +/- 0296	
	EQ-SD-1410	Uranium	ND	
	EQ-SD-1410	Ra-226	0.0348 +/- 0.0860	
Remarks:				
No issues	 S.			
-				

Page 10 of 21

Radiochemical Data Review Checklist

VI. Blanks (continued)

see CENWK 4.2.1 and QAPP

Calculate action levels based on 10X the highest blank concentration. see CENWK 4.2.1.3 and QAPP

Deviations:

1	Action Level	Samples Affected
Detected		
	Max. Activity Detected	

Actions:	see CENWK 4.2.1 and QAPP
AULIUIIS.	300 OEINVIN 7.2.1 and Q/N 1

1. If the blank result falls outside criteria, qualify associated sample results that are less than 10X the blank value as estimated (J).

Example:	Blank Result	<u>Uncert.</u>	MDA or	Normalized absolute	Qualification
acceptable	0.3	0.45	0.5	<u>difference</u> >2.58	none
acceptable	0.3	0.25	0.5	1.96 to 2.58	J
outside criteria	0.3	0.25	0.2	<1.96	J

- 2. If the absolute sample result is less than the MDA and the uncertainty is less than the result, qualify as non-detect (U).
- 3. If the absolute sample results is less than the MDA and the uncertainty is greater than the result, qualify as non-detect value uncertain (UJ).
- 4. If the sample result is greater than the MDA and the uncertainty is 50-100% of the result, qualify the data as estimated (J).
- 5. If the sample result is greater than the MDA and the uncertainty is greater than 100% of the result, qualify the data as rejected (R).
- 4. If the sample result is negative, and its absolute value exceeds 2X the MDA, qualify the data as rejected (R).

Remarks:			
No isssues.			

Page 11 of 21

Radiochemical Data Review Checklist

VII. Sample-Specific Carrier or Tracer Recovery

see CENWK 4.1.2 and QAPP

Sample-specific recoveries must be within limits as demonstrated by the applicable analytical procedures. Generally, recoveries of 30-110% are considered acceptable.

Documentation of traceable tracer solutions (NIST) and dilution documentation must be provided. Spot check sample-specific carrier or tracer recovery calculations.

Deviations:

			Action Taken
Radionuclide	Sample ID	%R	

Actions:	see	CE	N	W	/K	4.	1.2	and	QAF	P
----------	-----	----	---	---	----	----	-----	-----	-----	---

- 1. If recovery is between 30-110%, no qualification is necessary.
- 2. If recovery is between 20 10-30%, qualify the data as estimated (J).
- 3. If recovery is between 110-120150%, qualify the data as estimated (J).
- 4. If recovery is less than 20 10%, qualify the data as rejected (R).
- 5. If recovery if greater than 120 150%, qualify the data as rejected (R).

outside lab limits but within
20-120%: J if corrective actions
taken, otherwise R

Remarks:			
No iggues			
No issues.			

Page 12 of 21

		LLIDOO	1 age 12 01 21
Ra	diochemica	ıl Data Re	view Checklist
VIII. Laboratory Control	Sample Ir		
S Conserval I CO Onite view			oha
General LCS Criteria: percent recovery (%R)		aqueous 80-120	solid 70-130 Gamma, GPC, KPA: 80-120
percent recovery (7014)		00 120	75-125
Laboratory LCS Identifica	itions:		
Davietiene:			
Deviations: Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
Gross Alpjha			No qualification
	20-Oct-21		i
Gross Beta	20-Oct-21		No qualification
Ra-228	26-Oct-21	103%	No qualification
Uranium	21-Oct-21	112%	No qualification
Ra-226	26-Oct-21	105%	No qualification
	1		
	1		
	1		
Actions	OEN		
Actions: Alpha (Aqueous		/K 4.2.2 an ∠50%	
and Gamma, GPC, KPA		<u><50%</u> R	<u>50-79%</u> <u>121-150%</u> <u>>150%</u> J J R
2 Ca	-	<50%	50-74% 126-150% >150%
Alpha (Solid)	<40%	<u>40-69%</u> <u>131-160%</u> >160%
		R	J J R
Remarks:			
Nemarks.			

Page 13 of 21

FSF DM-05 Rev0 January 31, 2015

Radiochemical Data Review Checklist

	IX.	Matrix	Spike	Inforn	natior
--	-----	--------	-------	--------	--------

ixi matrix opino imornio			
General MS Criteria: percent recovery (%R)		Aqueous 50-120	Solid see CENWK 4.2.3 and QAPP 40-130
Project Sample(s) Spiked	:		
	,		
Deviations:			
Radionuclide	Date	%R	Samples Affected/Qualifiers Applied
Gross Alpha	20-Oct-21	129%	J - estimated
Gross Beta	20-Oct-21	125%	J - estimated
Ra-228	26-Oct-21	114%	No Qualification
Uranium	21-Oct-21	110%	No Qualification
Ra-226	26-Oct-21	75.40%	No Qualification
Actions:	see CENW	/K 4.2.3 ar	nd QAPP
Aqueous	;	<20%	<u>20-49%</u> <u>121-160%</u> <u>>160%</u> >150%
all complex in botch		R *******CENII	J J use professional judgement R WK 4.2.3 and QAPP*
all samples in batch Solid		<10%	WK 4.2.3 and QAPP 10-39% 131-160% >160% >150%
		R	J J use professional judgement R
Remarks:			
Nemains.			

Page 14 of 21

Radiochemical Data Review Checklist

X. Duplicate Sample or Matrix Spike Duplicate Analysis

see CENWK 4.2.4, 4.2.5 and QAPP

Identify the method utilized to evaluate duplicate analyses; duplicate error ration (DER), relative percent difference (RPD), or relative error ratio (RER).

Duplicate actions should ap	oply to all sa	amples asso	ociated with	n the duplicate pair.
Duplicate Sample Identif	ication:			
Deviations:				
Dadianalida	555	222		Samples Affected
Radionuclide Gross Alpha	DER	RPD 5.46%	RER	No qualification
Gross Alpha Gross Beta		1.44%		No qualification
Ra-228		6.27%		No qualification
Uranium		0.27 %		No qualification
Ra-226		1.76%		No qualification
Na-220		1.7070		140 qualification
	<u> </u>			
2. If the DER is greater than3. If the RPD is greater than	cate activition 1.00, qua 1.50% qual	es are withir lify the data ify the data	as estimates as estimates	
Remarks:				
No qualification of s	samples	due to f	RPD/NA	AD results.
-				

ESE DM-05 Rev0 January 31, 2015

Page 15 of 21

Radiochemical Data Review Checklist

XI. Chemical/Spectroscopic Separation Specificity (alpha spectroscopy)

see CENWK 4.1.8, 4.1.9.2 and QAPP

Each alpha isotopic peak should be clear and free of interference from other energy peaks. Each isotopic energy peak should be evaluated for peak shape (i.e., tailing, splitting, etc.)

The observed energy peak(s) for the radionuclide of interest must be confirmed as acceptable to theoretical.

Deviations:

Radionuclide	Deficiency	Samples Affected

Actions:	see CENWK 4.1.8, 4.1.9.2 and Q	(APP
----------	--------------------------------	------

- 1. If the energy of the radionuclide peak of interest is more than 40100keV from the theoretical energy, qualify the results as rejected (R).
- 2. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 3. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:		
No Issues.		

Page 16 of 21

Radiochemical Data Review Checklist

XII. Target Radionuclide Spectroscopic Identification (gamma spectroscopy)

also Matrix Density

see CENWK 4.1.9, 4.1.7 and QAPP

Each sample target radionuclide energy must be within 2 keV of the observed standard peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. At least 50% of the total gamma abundance must be accounted for by the quantified radionuclides. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations: N/A

Radionuclide	Deficiency	Samples Affected		

Actions:

see CENWK 4.1.9, 4.1.7 and QAPP

- 1. For target radionuclides that are not detected, qualify the results as described in section VI.
- 2. For target radionuclides that are detected but fail to meet identification crtieria,

use professional judgement to qualify the data as estimated (J).

- 3. If the energy of the radionuclide peak of interest is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 4. If the energy spectra contains any overlapping or interferent peaks that can not be resolved from the target peak, qualify the data as rejected (R).
- 5. If results have not been properly corrected for distinquishable interfering radionuclide peaks, qualify the data as rejected (R).

Remarks:			
N/A			

LEIDOS

Page 17 of 21

Radiochemical Data Review Checklist

XIII. Tentatively Identified Radionuclides (gamma spectroscopy)

N/A

Each sample tentatively identified radionuclide energy must be within 2 keV of the theoretical peak energy. Multiple peak radionuclides must exhibit the appropriate peak energies and proportional status. Tentatively identified radionuclide gamma spectra must match the radionuclide's library spectra. All peaks greater than 3X the background standard deviation must be identified and quantified. The observed energy peak(s) for radionuclides of interest must be confirmed as acceptable to theoretical. Judgments of this data should include: half-life consistencies; sample set consistencies; lab contamination. Radionuclide values must be consistent with related radionuclides (e.g., parent daughter relationships).

Deviations: N/A

Radionuclide	Deficiency	Samples Affected

Actions:

- 1. Qualify all tentatively identified radionuclides as estimated (J).
- 2. If the energy of the tentatively identified radionuclide peak is more than 2 keV from the theoretical energy, use professional judgement to qualify the data.
- 3. If the reviewer judges anything regarding the identification of the tentatively identified radilnuclide as suspect, qualify the data as rejected (R).

Remarks:			
N/A			

LEIDOS

Page 18 of 21

Radiochemical Data Review Checklist

XIV. Evaluate System Performance (alpha spec, gamma spec, etc.)

also Background (4.3.2)

see CENWK and QAPP

Examples of system performance indicators:

Abrupt, discreet shifts in background or detector response.

High background levels.

Energy calibration shifts.

Extraneous peaks.

Loss of resolution.

Peak tailing or splitting.

Deviations:

Actions:

Radionuclide/Method	Deficiency	Samples Affected

Based on the instrument	performance indicators, the dat judgement ot qualify the da	a reviewer must use professional ta.	
Remarks:			_
No issues.			

see CENWK and OAPP

LEIDOS Page 19 of 21

XV. Analyte Quanti Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Radionuclide:	Method:	
omorko.		
emarks:		
emarks:		
Remarks:		
Calculation Check:		
Calculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
alculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check:	Method:	
Calculation Check: Radionuclide:	Method:	
Calculation Check:	Method:	

LEIDOS Page 20 of 21

XV. Analyte Quanti Radiochemical Data Review Checklist

Original data information should fall within the established calibration range for the analytical run. Confirm appropriate instrument and manual peak integration.

Confirm calculation of reported results for at least 10% of the data set.

Calculation Check: Radionuclide:	Method:	
tadioridonae.	Worked.	
	•	
Not Applicable		
Remarks:		
Calculation Check:		
Calculation Check:	Method:	
	Method:	
Radionuclide:	Method:	
	Method:	

LEIDOS

Page 21 of 21

Radiochemical Data Review Checklist

XVI. Overall Assessment of Data

It is appropriate for the data reviewer to make professional judgements and express concerns regarding the validity of the data, overall. This is particularly appropriate when there are several citeria outside the desired specifications. The additive nature of these factors may present data that needs to be further qualified beyond each individual qualification. The reviewer should summarize these concerns.

Actions:

- 1. Qualified data must be accompanied by all individual reason codes related to the qualification assigned.
- 2. If the sample result has been qualified for multiple reasons, the reviewer will use professional judgement to determine if multiple estimations warrants rejection (R).

Remarks:
The data in this data package has no issues that will cause qualification of the
data.
uata.

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, A	New York pril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

APPENDIX C

LABORATORY DATA PACKAGES

(electronic copy only)

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, A	New York pril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

APPENDIX D

ELECTRONIC DATA DELIVERABLES

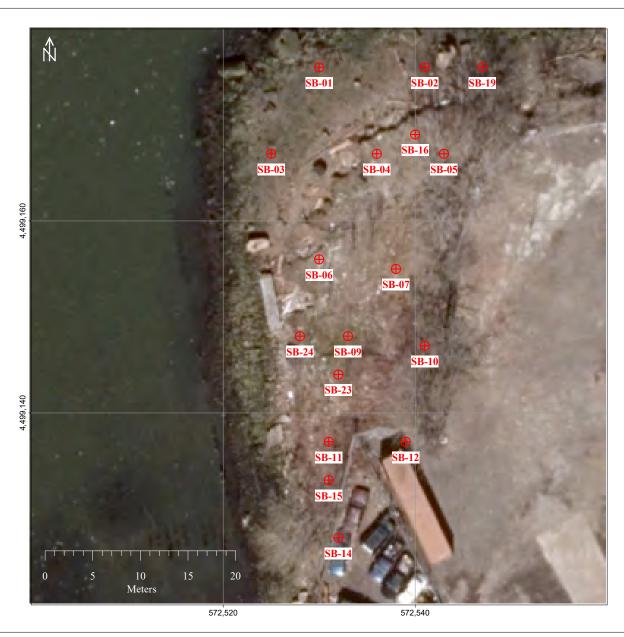
(electronic copy only)

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, A	New York pril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

APPENDIX E

GIS DATA

(electronic – included in Final version only)

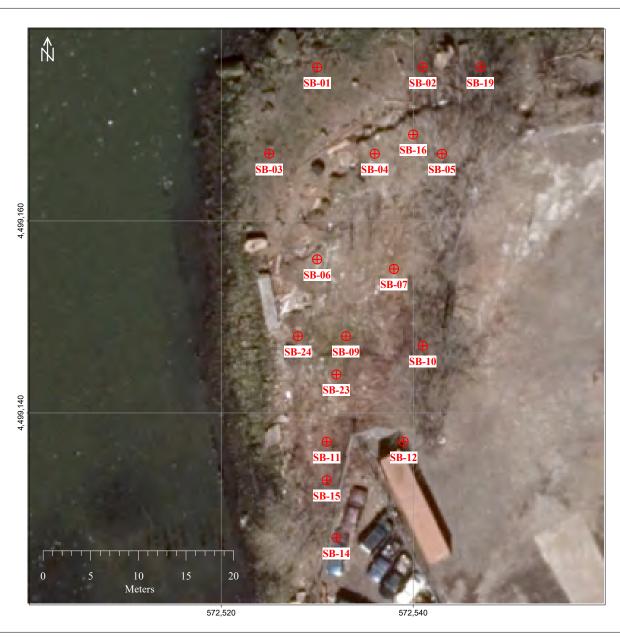

Supplemental Site Inspection Report,	Staten Island Warehouse	FUSRAP Site, Port Richmoi	nd, Staten Island, New York April 2023
THIS	S PAGE INTENTIONA	LLY LEFT BLANK	

APPENDIX F

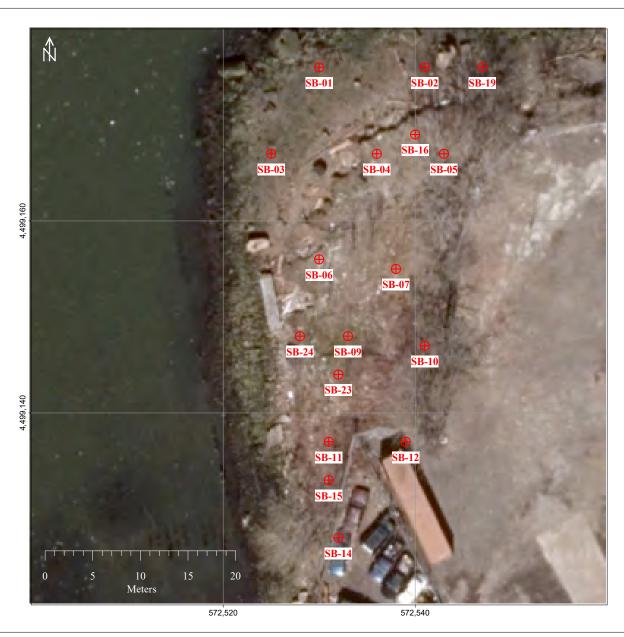
BORING LOGS

Supplemental Site Inspection Report,	Staten Island Warehouse	FUSRAP Site, Port Richmoi	nd, Staten Island, New York April 2023
THIS	S PAGE INTENTIONA	LLY LEFT BLANK	

HTRW DRILLING LO)G		DISTR		E, Kans	as City District	;		HOLE NUMBER: SB-01			
1. COMPANY NAME: GEO Consultants Corp	oration				CO Environmental Services							
3. PROJECT: SIW Supplementar	y Site Inspectio	n			4. LOCA	TION: Por	t Richard, NY					
5. NAME OF DRILLER: Jose Garcia					6. MANU	JFACTURES DESIGNA	TION OF DRILL: (Geoprobe 7822	DT			
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT:	d auger				8. HOLE	LOCATION: North	ing: 572530,	Easting: 44991	76 (UTM Zone 18N)			
							9. SURFACE ELEVATION: 0.8 feet amsl (NAD83)					
					10. DATI	E STARTED: 9/24/2	2021	11. DATE COMPLETE	9/24/2021			
12. OVERBURDEN THICKNESS: 2.6 1	feet				15. DEPT	TH GROUNDWATER E	NCOUNTERD: 2.4	feet bgs				
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPT	TH TO WATER AND EL	APSED TIME AFTER	DRILLING COMPLETE):			
14. TOTAL DEPTH OF HOLE: 2.6 1	feet				17. OTH	ER WATER LEVEL ME.	ASUREMENTS (SPEC	CIFY):				
18. GEOTECHNICAL SAMPLES: n/a	NDISTURBE	ED	19. TOTAL NUMB	BER OF CORE BOXES	: n/a							
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META		OTHER (SP GSPEC-N		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	100% Recovered			
22 DISPOSITION OF HOLE: BACKFILLED MONITORING WELL OTHER				OTHER (SP	(SPECIFY) 23 SIGNATURE OF INSPECTOR:							


	HTRW DRILLING LOG									
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO	Consultants Co	orporation					
ELEV. (A)										
0.2 —	0	fine-gi	coarse- to fine-grained, silty, with rained gravel; with cobbles at surface; to gray; moist to wet; loose	SAND		PID: 0 Gamma: 4203 PID: 0 Gamma: 3966	SS-01 SB-01 (0.5-1.0)			
-0.8	1 - - - - -	- dark	gray to black, with silt		0-2.6 (Rec:100 %)	PID: 0 Gamma: 3758	SB-01 (1.0-2.0			
- - -1.8	2	- medi - wet a	um dense							

HTRW DRILLING LO)G		DISTI		E, Kans	as City District	;		HOLE NUMBER: SB-02	
1. COMPANY NAME: GEO Consultants Corp	oration		2. DR	AARC	CO Environmental Services					
3. PROJECT: SIW Supplementar	y Site Inspection	n	·		4. LOCA	TION: Por	t Richard, NY	-		
5. NAME OF DRILLER: Jose Garcia					6. MANU	JFACTURES DESIGNA	TION OF DRILL:	Geoprobe 7822	DT	
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT:	d auger				8. HOLE	LOCATION: North	ing: 572541,	Easting: 44991	76 (UTM Zone 18N)	
		9. SURFACE ELEVATION: 2.6 feet amsl (NAD83)								
					10. DATI	E STARTED: 9/24/2	2021	11. DATE COMPLETED	9/24/2021	
12. OVERBURDEN THICKNESS: 2.1 1	eet				15. DEPT	'H GROUNDWATER EI	NCOUNTERD:			
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPT	TH TO WATER AND EL	APSED TIME AFTER	DRILLING COMPLETE);	
14. TOTAL DEPTH OF HOLE: 2.1 1	eet				17. OTHI	ER WATER LEVEL ME.	ASUREMENTS (SPE	CIFY):		
18. GEOTECHNICAL SAMPLES: n/a	18. GEOTECHNICAL SAMPLES: n/a DISTRURBED UNI						BER OF CORE BOXES	s: n/a		
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META		OTHER (SE	/	OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	100% Recovered	
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN		OTHER (SI						

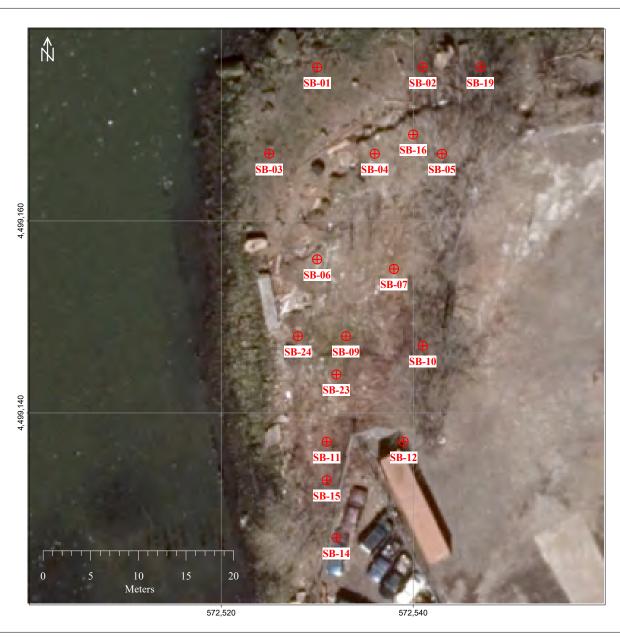

	HTRW DRILLING LOG									
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO (Consultants Co	orporation					
ELEV. (A)	DEPTH (B)	DESCRI	PTION OF MATERIALS (C)	SCREENING & SAMPLE NO. (F)	REMARKS (G)					
2.5 —	0	fine-gr	O, coarse- to fine-grained, silty, with rained gravel; with cobbles; brown to ray; moist; medium dense	SAND	0-2.1	PID: 0 Gamma: 4194 PID: 0 Gamma: 4178	SS-02 SB-02 (0.5-1.0)			
1.5 —	2	gravel	r, low plasticity, silty, with sand, trace; brownish-red; moist; firm to stiff	CLAY	(Rec:100 %)	PID: 0 Gamma: 4245	SB-02 (1.0-2.0)			

HTRW DRILLING LO)G			USACI		as City District	į		HOLE NUMBER: SB-03			
1. COMPANY NAME: GEO Consultants Corp	oration				RCO Environmental Services							
3. PROJECT: SIW Supplementar	y Site Inspection	n			4. LOCA	TION: Por	t Richard, NY					
5. NAME OF DRILLER: Jose Garcia					6. MANU	FACTURES DESIGNA	TION OF DRILL: (Geoprobe 7822	DT			
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT:	d auger				8. HOLE	LOCATION: North	ning: 572525,	Easting: 44991	67 (UTM Zone 18N)			
							9. SURFACE ELEVATION: 1.5 feet amsl (NAD83)					
					10. DATI	E STARTED: 9/24/2	2021	11. DATE COMPLETE	9/24/2021			
12. OVERBURDEN THICKNESS: 1.5 f	eet				15. DEPT	H GROUNDWATER E	NCOUNTERD: 1.5	feet bgs				
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPT	TH TO WATER AND EL	APSED TIME AFTER	DRILLING COMPLETE):			
14. TOTAL DEPTH OF HOLE:	eet				17. OTHI	ER WATER LEVEL ME.	ASUREMENTS (SPEC	IFY):				
18. GEOTECHNICAL SAMPLES: n/a	18. GEOTECHNICAL SAMPLES: n/a DISTRURBED UNDIS						BER OF CORE BOXES	: n/a				
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META		OTHER (SP GSPEC-N		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	100% Recovered			
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN		OTHER (SP	(SPECIFY) 23 SIGNATURE OF INSPECTOR:							


		HTRW DR	ILLING LOG			HOLE NUMBER: SB-03		
	PROJECT: Staten Island Warehouse INSPECTOR: Benjamin Hooks, GEO Consultants Corporation							
ELEV. (A)	DEPTH (B)	DESCF	IPTION OF MATERIALS (C)	SCREENING & SAMPLE NO. (F)	REMARKS (G)			
- - 1 —	0	fine-	D, coarse- to fine-graind, silty, with grained gravel; dark gray to reddish-gray; loose		PID: 0 Gamma: 4530	SS-03		
- -			Y, low plasticity, silty, with sand, trace el; brownish-red; moist; firm to stiff	CLAY	0-1.5 (Rec:100 %)	PID: 0 Gamma: 4290	SB-03 (0.5-1.0)	
_		- sati	urated at 1.5'		PID: 0 Gamma: 4070	SB-03 (1.0-1.5)		

HTRW DRILLING LO)G			USACI	-	as City District	;		HOLE NUMBER: SB-04	
1. COMPANY NAME: GEO Consultants Corp	oration				ARCO Environmental Services					
3. PROJECT: SIW Supplementar	y Site Inspectio	n			4. LOCA	TION: Por	t Richard, NY			
5. NAME OF DRILLER: Jose Garcia					6. MANU	JFACTURES DESIGNA	TION OF DRILL:	Geoprobe 7822	DT	
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT:	plit spoon				8. HOLE	LOCATION: North	ing: 572536,	Easting: 44991	67 (UTM Zone 18N)	
		9. SURFACE ELEVATION: 5.4 feet amsl (NAD83)								
					10. DATI	E STARTED: 9/22/2	2021	11. DATE COMPLETE	0:9/22/2021	
12. OVERBURDEN THICKNESS: 6.0 1	feet				15. DEPT	TH GROUNDWATER E	NCOUNTERD: 5.5	feet bgs		
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPT	TH TO WATER AND EL	APSED TIME AFTER	DRILLING COMPLETE):	
14. TOTAL DEPTH OF HOLE: 6.0 1	feet				17. OTH	ER WATER LEVEL ME.	ASUREMENTS (SPEC	EIFY):		
18. GEOTECHNICAL SAMPLES: n/a	NDISTURBE	ED	19. TOTAL NUMB	BER OF CORE BOXES	: n/a					
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META		OTHER (SP GSPEC-N		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	27% Recovered	
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN		OTHER (SP	(SPECIFY) 23 SIGNATURE OF INSPECTOR:					

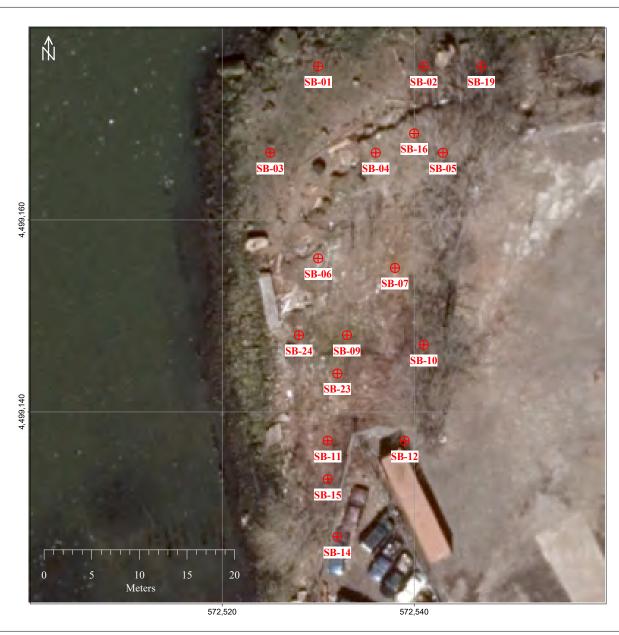
		HTRW DRI	LLING LOG			HOLE NU SB-	
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO	Consultants Co	orporation		
LEV. (A)	DEPTH (B)	DESCRI	ESCRIPTION OF MATERIALS (C) CLASSIF- ICATION (D) PERCE RECOVE (E)				REMARKS (G)
.2 —	TOPSOIL, silt; dark gray to brown; moist; soft; with roots SAND, coarse- to fine-graind, silty, with fine-grained gravel; dark gray to dark brown; dry to moist; loose to medium dense				0-2 (Rec:40%) SPT	PID: 0 Gamma: 4520	SS-04
.2 —	2				Blows: 6-7-7-10 (N = 16)	PID: 0 Gamma: 6841	SB-04 (1.0-2.0)
2 — — — — — — — — — — — — — — — — — — —	3	- rock	in cutting shoe (no recovery)		2-4 (Rec:0%) SPT Blows: 4-2-1-1 (N = 3)		
.2 —	5	CLAY gravel	r, low plasticity, silty, with sand, trace; brownish-red; moist; firm to stiff	CLAY	4-6 (Rec:40%) SPT Blows: 1-1-1-1 (N = 2)	PID: 0 Gamma: 6608	SB-04 (4.0-6.0


HTRW DRILLING LO)G		DIS	TRICT: USAC	E, Kansa	as City District	į		HOLE NUMBER: SB-05	
1. COMPANY NAME: GEO Consultants Corp	oration		2. D	RILL SUBCO		ronmental Ser	rvices			
3. PROJECT: SIW Supplementar	y Site Inspection	n			4. LOCAT	TION: Por	t Richard, NY			
5. NAME OF DRILLER: Jose Garcia					6. MANUFACTURES DESIGNATION OF DRILL: Geoprobe 7822DT					
TO DECEMBER 111 ED OF BRIDERIO	acrocore asing with drive sh	ioe			8. HOLE	LOCATION: North	ning: 572543,	Easting: 44991	67 (UTM Zone 18N)	
					9. SURFACE ELEVATION: 6.9 feet amsl (NAD83)					
					10. DATE	STARTED: 9/22/2	2021	11. DATE COMPLETED	9/22/2021	
12. OVERBURDEN THICKNESS: 10.0	feet				15. DEPT	H GROUNDWATER E	NCOUNTERD: 6 fe	et bgs		
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPT	H TO WATER AND EL	APSED TIME AFTER	DRILLING COMPLETED):	
14. TOTAL DEPTH OF HOLE: 10.0	feet				17. OTHE	R WATER LEVEL ME	ASUREMENTS (SPEC	IFY):		
18. GEOTECHNICAL SAMPLES: n/a	DISTRURBEI)		UNDISTURBI	ED	19. TOTAL NUME	BER OF CORE BOXES:	n/a		
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META	LS	OTHER (SE		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	36% Recovered	
22 DISPOSITION OF HOLE: BACKFILLED MONITORING WELL OTHER					-NOTIZI U-ISO RECOVERT: SPECIFY) 1a scan 23. SIGNATURE OF INSPECTOR:					

		HTRW DR	ILLING LOG			HOLE NUMBER: SB-05		
	PROJECT:	: Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO C	Consultants Co	orporation			
ELEV. (A)	DEPTH (B)	DESCR	IPTION OF MATERIALS (C)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)		
6.5 —	0	TOPS soft; v	SOIL, silt; dark gray to brown; moist; with roots	TOPSOIL		PID: 0 Gamma: 4614	SS-05	
5.5 — 4.5 — 3.5 —	2 3	fine-g moist	D, coarse- to fine-graind, silty, with grained gravel; gray to dark brown; dry to; loose	SAND	0-5 (Rec:44%)	PID: 0 Gamma: 7679	SB-05 (0.5-5.0)	
2.5 —	4	CLA	Y, low plasticity, silty, with sand, trace l; brownish-red; moist; firm to stiff	CLAY				
1.5 —	6	- rock	in cutting shoe (no recovery)			PID: 0 Gamma: 7274	SB-05 (5.0-6.0)	
-0.5 — -0.5 — 1.5 —	7 7 8 8				5-10 (Rec:28%)			

(A) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C		HTRV	/ DRILLING	G LOG			HOLE NU	
LEV. (A) (B) DESCRIPTION OF MATERIALS (C) (C) (E) SAMPLE NO. (G) (G)	PRO	DJECT: Staten Island War	ehouse INSPI	ECTOR: Benjamin Hooks,	GEO Consultants Co	orporation		
2.5			DESCRIPTION (OF MATERIALS C)	ICATION	RECOVERY	SAMPLE NO.	TCLIVIT TICICE
2.5	+		- hard drilling ((rock)				
	+	9						
	2.5							
		10						

HTRW DRILLING LO)G					sas City District	į		HOLE NUMBER: SB-06			
1. COMPANY NAME: GEO Consultants Corp	oration		2. DI	AARC	RCO Environmental Services							
3. PROJECT: SIW Supplementar	y Site Inspection	n	·	4. LOCATION: Port Richard, NY								
5. NAME OF DRILLER: Jose Garcia					6. MANU	JFACTURES DESIGNA	TION OF DRILL:	Geoprobe 78221	DT			
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT:	olit spoon				8. HOLE	LOCATION: North	ning: 572530,	Easting: 44991	56 (UTM Zone 18N)			
							9. SURFACE ELEVATION: 6.4 feet amsl (NAD83)					
					10. DAT	E STARTED: 9/22/2	2021	11. DATE COMPLETED	9/22/2021			
12. OVERBURDEN THICKNESS: 6.0 1	eet				15. DEP	ΓΗ GROUNDWATER E	NCOUNTERD: 4 fe	eet bgs				
13. DEPTH DRILLED INTO ROCK: n/a					16. DEP	TH TO WATER AND EL	APSED TIME AFTER	DRILLING COMPLETED):			
14. TOTAL DEPTH OF HOLE: 6.0 1	eet				17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY):							
18. GEOTECHNICAL SAMPLES:	UNDISTURBI	ED	19. TOTAL NUME	BER OF CORE BOXES	: n/a							
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META	ALS	OTHER (SPECIFY) GSPEC-Norm21		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	47% Recovered			
22 DISPOSITION OF HOLE: BACKFILLED MONITORING WELL OTHER (OTHER (SI	Z-INOIHIZI U-ISO							


		HTRW DRI	LLING LOG			HOLE NU SB-	
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO	Consultants Co	orporation		
ELEV. (A)	DEPTH (B)	DESCRI	PTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)
6.4	0	roots SAND fine-g	OIL, silt; dark brown; moist; soft; with o, coarse- to fine-graind, silty, with rained gravel; reddish-brown to dark	TOPSOIL		PID: 0 Gamma: 4306	SS-06
5.4 —	1	brown	; moist; loose		0-2 (Rec:65%) SPT Blows: 6-8-9-12 (N = 19)	PID: 0 Gamma: 7847	SB-06 (0.5-2.0)
4.4 — — — —	2	CLAY gravel	f, low plasticity, silty, with sand, trace brownish-red; moist; firm to stiff	CLAY	2-4 (Rec:55%) SPT	PID: 0 Gamma: 6872	SB-06 (2.0-3.0
- - - 2.4 —		$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ sand,	YEL, fine-grained, with coarse-grained silt; dark brown to gray, saturated, loose	GRAVEL	Blows: 4-6-8-8 (N = 15)		
2.4 — — — — 1.4 — — —	5				4-6 (Rec:20%) SPT Blows: 2-1-1-2 (N = 3)		

HTRW DRILLING LO)G		DIST	TRICT: USAC	E, Kans	as City District	į		HOLE NUMBER: SB-07	
1. COMPANY NAME: GEO Consultants Corp	oration		2. DF		ARCO Environmental Services					
3. PROJECT: SIW Supplementar	y Site Inspection	n			4. LOCATION: Port Richard, NY					
5. NAME OF DRILLER: Jose Garcia					6. MANU	JFACTURES DESIGNA	TION OF DRILL: (Geoprobe 78221	DT	
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT: 2" S		8. HOLE	LOCATION: North	ing: 572538,	Easting: 44991	55 (UTM Zone 18N)				
		9. SURFACE ELEVATION: 7.6 feet amsl (NAD83)								
					- 10. DATE STARTED: 9/22/2021 11. DATE COMPLETED: 9/22/2021					
12. OVERBURDEN THICKNESS: 6.0 1	feet				15. DEPTH GROUNDWATER ENCOUNTERD: 4.5 feet bgs					
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:					
14. TOTAL DEPTH OF HOLE: 6.0 1	feet				17. OTHI	ER WATER LEVEL ME.	ASUREMENTS (SPEC	IFY):		
18. GEOTECHNICAL SAMPLES: n/a	DISTRURBEI)	Ţ	UNDISTURBI	ED	19. TOTAL NUMB	BER OF CORE BOXES:	n/a		
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META	LS	OTHER (SI		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	43% Recovered	
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN	IG WELL	OTHER (SI	PECIFY)	23. SIGNATURE OF I	NSPECTOR:			

		HTRW DRI	LLING LOG			HOLE NU SB-			
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO	Consultants Co	orporation				
ELEV. (A)	DEPTH (B)	DESCRI	PTION OF MATERIALS (C)						
7.2 —		fine-gi	o, coarse- to fine-graind, silty, with rained gravel; reddish-brown to dark ; dry to moist; loose to medium dense	SAND	0-2 (Rec:55%) SPT	PID: 0 Gamma: 4120	SS-07		
6.2 — — — —	2				Blows: 1-8-8-9 (N = 17)	PID: 0 Gamma: 6256	SB-07 (1.0-2.0)		
5.2 —	3	- brick	fragment		2-4 (Rec:50%) SPT Blows: 17-10-9-17	PID: 0 Gamma: 6914	SB-07 (2.0-3.0)		
4.2 —	4				(N = 18)				
2.2 —	5	- with	coarse gravel; saturated		4-6 (Rec:25%) SPT Blows: 13-45-14-1 0 (N = 37)				
	<u> </u>								

HTRW DRILLING LO)G		DISTRIC		E, Kansa	as City District			HOLE NUMBER: SB-09	
1. COMPANY NAME: GEO Consultants Corp	oration			L SUBCON		ronmental Ser	vices			
3. PROJECT: SIW Supplementar	y Site Inspectio	n			4. LOCATION: Port Richard, NY					
5. NAME OF DRILLER: Jose Garcia					6. MANUI	FACTURES DESIGNA	ΓΙΟΝ OF DRILL: (Geoprobe 78221	DT	
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT: 4' macrocore 3" casing with drive shoe					8. HOLE I	OCATION: North	ing: 572533,	Easting: 44991	48 (UTM Zone 18N)	
		9. SURFACE ELEVATION: 6.7 feet amsl (NAD83)								
					10. DATE STARTED: 9/23/2021 11. DATE COMPLETED: 9/23/2021					
12. OVERBURDEN THICKNESS: 8.0 f	eet				15. DEPTH GROUNDWATER ENCOUNTERD: 6.5 feet bgs					
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:					
14. TOTAL DEPTH OF HOLE: 8.0 f	eet				17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY):					
18. GEOTECHNICAL SAMPLES: n/a	DISTRURBEI)	UNI	DISTURBE	D	19. TOTAL NUMB	ER OF CORE BOXES:	n/a		
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META		OTHER (SPE SSPEC-N		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	35% Recovered	
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN	IG WELL C	OTHER (SPI Gamma	ECIFY)	23. SIGNATURE OF II	NSPECTOR:			

	HTRW DRILLING LOG							
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO	Consultants Co	orporation			
ELEV. (A)	DEPTH (B)	DESCRI	PTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)	
6.4 —	0	soft; w	OIL, silt, with sand; dark brown; moist; rith roots or, coarse- to fine-graind, silty, with rained gravel; reddish-brown to dark	TOPSOIL		PID: 0 Gamma: 7348	SS-09	
5.4 —	1 1	brown	rained gravel; reddish-brown to dark; dry to moist; loose to medium dense			PID: 0 Gamma: 7312	SB-09 (0.5-1.7	
4.4 —	2				0-4 (Rec:43%)			
3.4 —	3							
	4							
- 1.4 — - -	5				4-8 (Rec:28%)	PID: 0 Gamma: 7164	SB-09 (5.0-6.0	
0.4 —		- wet			(Rec:28%)			
0.6 —								

HTRW DRILLING LO	OG .		DIST	DISTRICT: USACE, Kansas City District					HOLE NUMBER: SB-10	
1. COMPANY NAME: GEO Consultants Corp	poration		2. Di	RILL SUBCO		ironmental Ser	rvices			
3. PROJECT: SIW Supplementa:	ry Site Inspectio	n			4. LOCATION: Port Richard, NY					
5. NAME OF DRILLER: Jose Garcia					6. MANU	JFACTURES DESIGNA	TION OF DRILL:	Geoprobe 7822	DT	
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT: 4' macrocore 3" casing with drive shoe					8. HOLE	LOCATION: North	ing: 572541, 1	Easting: 44991	47 (UTM Zone 18N)	
		9. SURFACE ELEVATION: 7.4 feet amsl (NAD83)								
					10. DATE STARTED: 9/23/2021 11. DATE COMPLETED: 9/23/2021					
12. OVERBURDEN THICKNESS: 12.0) feet				15. DEPTH GROUNDWATER ENCOUNTERD: 6 feet bgs					
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:					
14. TOTAL DEPTH OF HOLE:) feet				17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY):					
18. GEOTECHNICAL SAMPLES:	DISTRURBEI (0.0-4.0), (4.0-			UNDISTURBI	ED	19. TOTAL NUMB	BER OF CORE BOXES:	n/a		
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META	ALS	OTHER (SE		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	26% Recovered	
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN	NG WELL	OTHER (SE	PECIFY)	23. SIGNATURE OF I	NSPECTOR:			

		HTRW DR	ILLING LOG			HOLE NU	
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO C	Consultants Co	orporation		
ELEV. (A)	DEPTH (B)	DESCR	IPTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)
_	0	TOPS	SOIL, silt; dark brown; moist; soft; with	TOPSOIL		PID: 0 Gamma: 6780	SS-10
7 — — — — 6 —	1	fine-s moist	D, coarse- to fine-graind, silty, with grained gravel; dark gray to dark brown; ;; medium dense VEL, fine-grained, silty, with sand; sh-brown; moist to wet; soft to very soft	SAND		PID: 0 Gamma: 6320	SB-10 (0.5-2.0)
5 —	2	o o o o o o o o o o o o o o o o o o o	sh-blown, moist to wet, soft to very soft		0-4 (Rec:43%)		
4 — - - -	4						
3	5					PID: 0 Gamma: 6114	SB-10 (4.0-6.5
1 —	6	- with	n coarse gravel		4-8 (Rec:30%)		
0 —	7						
-1 —		0 0 0 0	n coarse gravel, saturated				

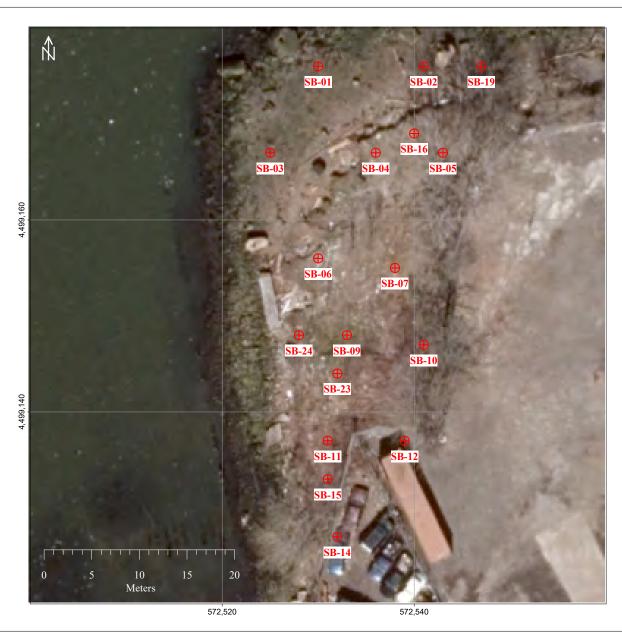
HTRW DRILLING LO)G		DISTRICT: USAC	E, Kans	as City District	;		HOLE NUMBER: SB-11	
1. COMPANY NAME: GEO Consultants Corp	oration		2. DRILL SUBCO		ironmental Sei	vices			
3. PROJECT: SIW Supplementar	y Site Inspection	n	·	4. LOCA	4. LOCATION: Port Richard, NY				
5. NAME OF DRILLER: Jose Garcia				6. MANU	JFACTURES DESIGNA	TION OF DRILL:	Geoprobe 7822	DT	
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT: 4' m		8. HOLE	LOCATION: North	ing: 572531,	Easting: 44991	37 (UTM Zone 18N)			
		9. SURFACE ELEVATION: 10.2 feet amsl (NAD83)							
				10. DATE STARTED: 9/23/2021 11. DATE COMPLETED: 9/23/2021					
12. OVERBURDEN THICKNESS: 15.0	feet			15. DEPT	'H GROUNDWATER E	NCOUNTERD: 9.8	feet bgs		
13. DEPTH DRILLED INTO ROCK: n/a				16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:					
14. TOTAL DEPTH OF HOLE: 12.0	feet			17. OTHI	ER WATER LEVEL ME	ASUREMENTS (SPE	CIFY):		
18. GEOTECHNICAL SAMPLES: n/a	DISTRURBEI)	UNDISTURI	BED	19. TOTAL NUME	BER OF CORE BOXES	s: n/a		
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META	GSPEC-		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	40% Recovered	
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN	G WELL OTHER (S		23. SIGNATURE OF I	NSPECTOR:			

		HTRW DI	RILLING LOG			HOLE NU	
	PROJECT:	Staten Island Warehous	e INSPECTOR: Benjamin Hooks, GEC) Consultants Co	orporation		
ELEV. (A)	DEPTH (B)	DESC	RIPTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)
10 —	0	CO	NCRETE	CONCRETE		PID: 0 Gamma: 4314	SS-11
9 — 9 — 8 — 7 — — — — — — — — — — — — — — — — —	2 3	stor	ND, coarse- to fine-graind, silty, with-grained gravel; dark gray to dark brown; to moist; loose to medium dense	DGA	0-4 (Rec:33%)		
6 — — — — — 5 —	5					PID: 0 Gamma: 4524	SB-11 (4.0-5.0)
4 — 3 — -	6				4-8 (Rec:45%)	PID: 0 Gamma: 4431	SB-11 (5.0-6.0)
2 —	8	CL. grav	AY, low plasticity, silty, with sand, trace vel; brownish-red; moist; firm to stiff	CLAY			


HTRW DRILLING LO)G		DIST	TRICT: USAC	E, Kansa	as City District	t		HOLE NUMBER: SB-12	
1. COMPANY NAME: GEO Consultants Corp	oration		2. DF	AARC		ronmental Ser	rvices			
3. PROJECT: SIW Supplementar	y Site Inspectio	n			4. LOCAT	TION: Por	t Richard, NY			
5. NAME OF DRILLER: Jose Garcia					6. MANUI	FACTURES DESIGNA	TION OF DRILL:	eoprobe 7822I)T	
7. SIZES AND THES OF BRIEFING	acrocore asing with drive sh	ioe			8. HOLE I	LOCATION: North	ning: 572539, 1	Easting: 449913	37 (UTM Zone 18N)	
					9. SURFA	CE ELEVATION: 1	0 feet amsl (N	(AD83)		
						STARTED: 9/23/2	2021	11. DATE COMPLETED: 9/23/2021		
12. OVERBURDEN THICKNESS: 15.0	feet				15. DEPTH GROUNDWATER ENCOUNTERD: 8 feet bgs					
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:					
14. TOTAL DEPTH OF HOLE: 12.0	feet				17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY):					
18. GEOTECHNICAL SAMPLES:	DISTRURBEI (6.0-8.0), (11.0		Ţ	UNDISTURBE	ED	19. TOTAL NUME	BER OF CORE BOXES:	n/a		
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META	LS	OTHER (SP		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	68% Recovered	
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN	IG WELL	OTHER (SF	PECIFY)	23. SIGNATURE OF I	NSPECTOR:			

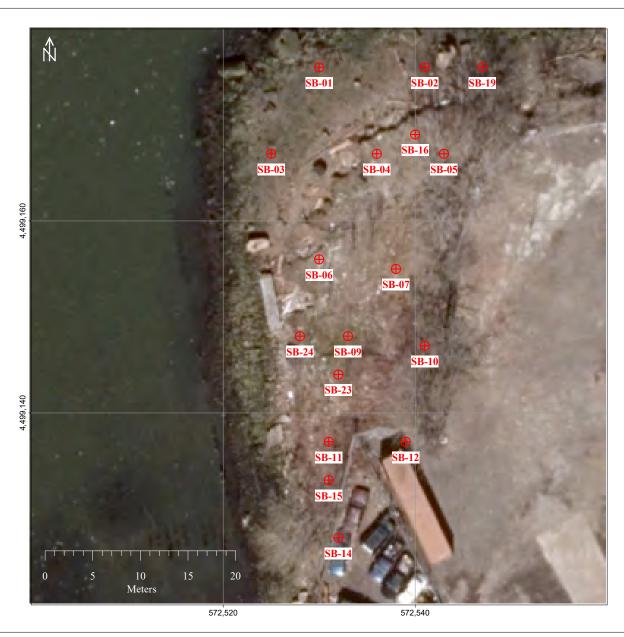
		HTRW DR	RILLING LOG			HOLE NU	
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO	Consultants Co	orporation		
ELEV. (A)	DEPTH (B)	DESCI	RIPTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)
10 _	0	CON	NCRETE	CONCRETE		PID: 0 Gamma: 5925	SS-12
9 —	_	DEN stone	SE GRADED AGGREGATE (quarry e; limestone gravel)	DGA			
8 —	2	fine-	ID, coarse- to fine-graind, with grained gravel, silty and clayey; dark gray ark brown; dry to moist; loose to medium e	SAND	0-4 (Rec:65%)		
7 —	3		ck fragment				
_	4	- wo	od fragment; with sand			PID: 0 Gamma: 4929	SB-12 (3.0-4.0)
5 —	5				4-8		
4 — — — — 3 — —	7	- wit	h gravel		(Rec:80%)	PID: 0 Gamma: 4959	SB-12 (6.0-8.0)
2 —	8	- we	t				

	HTR	W DRI	LLING LOG			HOLE NU SB-	
PROJ	ECT: Staten Island Wa	arehouse	INSPECTOR: Benjamin Hooks, G	GEO Consultants C	Corporation		
	PTH 3)	DESCRI	PTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)
0	10	CLAY	, low plasticity, silty, with sand, trace; brownish-red; moist; firm to stiff	e CLAY	8-12 (Rec:60%)		

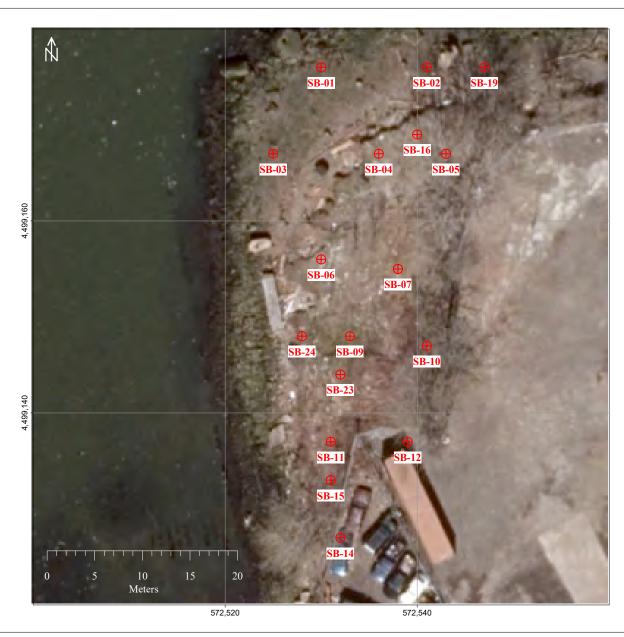

HTRW DRILLING LO)G		DIST	RICT: USAC	E, Kansa	as City District	;		HOLE NUMBER: SB-14		
1. COMPANY NAME: GEO Consultants Corp	oration		2. DR	RILL SUBCON		ronmental Ser	rvices				
3. PROJECT: SIW Supplementar	y Site Inspectio	n			4. LOCAT	TION: Por	t Richard, NY				
5. NAME OF DRILLER: Jose Garcia					6. MANU	FACTURES DESIGNA	TION OF DRILL: (Geoprobe 78221	DT		
7. BIZES AND THES OF BRIEFING	acrocore asing with drive sh	ioe			8. HOLE I	LOCATION: North	ning: 572532,	Easting: 44991	27 (UTM Zone 18N)		
					9. SURFA	CE ELEVATION: 8	.8 feet amsl (1	NAD83)			
						STARTED: 9/23/2	2021	11. DATE COMPLETED: 9/23/2021			
12. OVERBURDEN THICKNESS: 15.0	feet				15. DEPTH GROUNDWATER ENCOUNTERD: 9 feet bgs						
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:						
14. TOTAL DEPTH OF HOLE: 12.0	feet				17. OTHE	R WATER LEVEL ME.	ASUREMENTS (SPEC	IFY):			
18. GEOTECHNICAL SAMPLES:	DISTRURBEI (4.0-6.0), (8.0-		Ţ	JNDISTURBI	ED	19. TOTAL NUMB	BER OF CORE BOXES:	n/a			
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META		OTHER (SE	- /	OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	54% Recovered		
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN		OTHER (SE	PECIFY)	23. SIGNATURE OF I	NSPECTOR:	1.200 (2.11)			

		HTRW DR	ILLING LOG			HOLE NU SB-	
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO	O Consultants Co	orporation		
ELEV. (A)	DEPTH (B)	DESCR	IPTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)
	0	CON	CRETE	CONCRETE		PID: 0 Gamma: 4215	SS-14
8 —	1	stone	SE GRADED AGGREGATE (quarry ; limestone gravel)	DGA			
7 —	2	SAN fine-g brow	D, coarse- to fine-graind, with grained gravel, silt; dark gray to dark n; dry to moist; loose to medium dense	SAND	0-4 (Rec:68%)		
6 — — — — — — 5 —	3					PID: 0 Gamma: 4547	SB-14 (2.5-4.0
4 —	5				4-8		
2 —	7				(Rec:60%)	PID: 0 Gamma: 4482	SB-14 (6.0-8.0
1 —	8	CLA grave	Y, low plasticity, with silt, sand, trace el; reddish-brown; moist; firm to soft	CLAY			

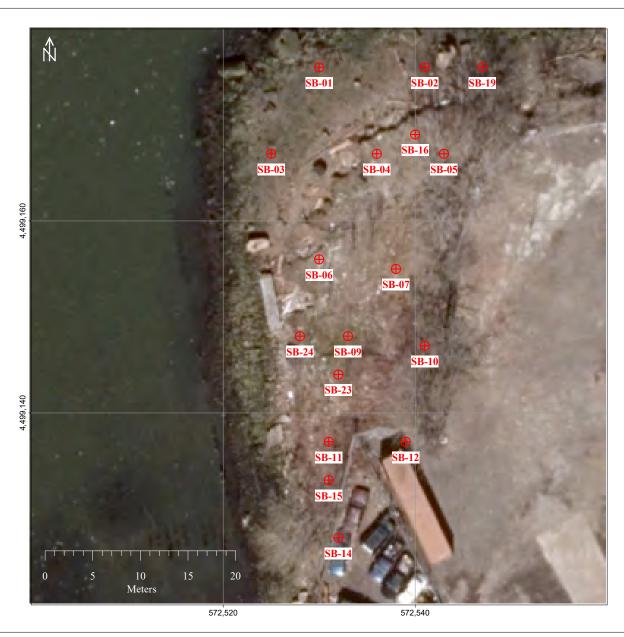
		HTRW DRI	LLING LOG			HOLE NU	
	PROJECT: Stater	ı Island Warehouse	INSPECTOR: Benjamin Hooks,	GEO Consultants Co	orporation		
ELEV. (A)	DEPTH (B)	DESCRI	PTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)
0 —	9	- wet					
-1 — -1 —	10				8-12 (Rec:35%)		
-2 — -2 —	11						
-3 —	12						
	12						


HTRW DRILLING LO)G		DISTRIC		Kansa	s City District			HOLE NUMBER: SB-15		
1. COMPANY NAME: GEO Consultants Corp	oration			SUBCONTR AARCO		onmental Ser	vices				
3. PROJECT: SIW Supplementar	y Site Inspectio	n	·	4	4. LOCATI	ion: Por	t Richard, NY				
5. NAME OF DRILLER: Jose Garcia				6	6. MANUF	ACTURES DESIGNA	ΓΙΟΝ OF DRILL: (Geoprobe 78221	DT		
7. BIZES AND THES OF BRIEFING	acrocore asing with drive sh	ioe		8	8. HOLE L	OCATION: North	ing: 572531,	Easting: 44991	33 (UTM Zone 18N)		
				9	9. SURFAC	CE ELEVATION: 9	.2 feet amsl (1	NAD83)			
							- 10. Date started: 9/23/2021 11. Date completed: 9/23/2021				
12. OVERBURDEN THICKNESS: 15.0	feet			1	15. DEPTH GROUNDWATER ENCOUNTERD: 8.2 feet bgs						
13. DEPTH DRILLED INTO ROCK: n/a				1	16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:):		
14. TOTAL DEPTH OF HOLE: 12.0	feet			1	17. OTHER	R WATER LEVEL MEA	ASUREMENTS (SPEC	IFY):			
18. GEOTECHNICAL SAMPLES: n/a	DISTRURBE)	UND	DISTURBED		19. TOTAL NUMB	ER OF CORE BOXES:	n/a			
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META		THER (SPEC		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	73% Recovered		
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN	IG WELL O	THER (SPEC Gamma sc	CIFY)	23. SIGNATURE OF I	NSPECTOR:				

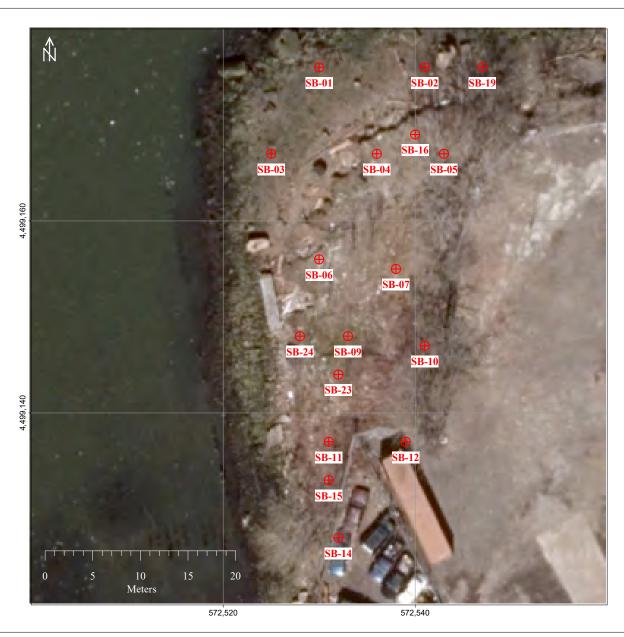
		HTRW DR	ILLING LOG			HOLE NU SB-	
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO	Consultants Co	orporation		
ELEV. (A)	DEPTH (B)	DESCR	IPTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)
9 —	0	CON	CRETE	CONCRETE		PID: 0 Gamma: 4221	SS-15
8 —	1		SE GRADED AGGREGATE (quarry ; limestone gravel)	DGA			
7 —	2	SAN fine-	D, coarse- to fine-graind, with grained gravel, silt; dark gray; dry; loose	SAND	0-4 (Rec:88%)		
_	3	CLA reddi	Y, low plasticity, silty, with sand; sh-brown; moist; firm	CLAY			
6 — — — — — — — — — — — — — — — — — — —	4 5	fine-	D, coarse- to fine-graind, with grained gravel, silt; dark gray to dark n; dry to moist; loose	SAND			
4 — — — — — — — — 3 —	6				4-8 (Rec:100 %)	PID: 0 Gamma: 4436	SB-15 (5.0-6.0
2 —	7	CLA grave	Y, low plasticity, silty, with sand, trace el; reddish-brown; moist; firm to soft	CLAY		PID: 0	
- - - 1 —	8					Gamma: 4619	SB-15 (7.0-8.0


PROJECT: Staten Island Warehouse INSPECTOR: Benjamin Hooks, GEO Consultants Corporation DEPTH (B) DESCRIPTION OF MATERIALS (C) RECOVERY (E) SCREENING & SAMPLE NO. (F) (E) RECOVERY (G) REMARKS (G) (F) RECOVERY (G) REMARKS (G) (F) RECOVERY (G) (F) RECOVERY (G) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F
DEPTH (B) DESCRIPTION OF MATERIALS (C) ICATION (D) RECOVERY (E) SAMPLE NO. (F) REMIARKS (G) RECOVERY (F) SAMPLE NO. (F) REMIARKS (G) REMIARKS (G)
8-12

HTRW DRILLING LO)G					sas City District	į		HOLE NUMBER: SB-16
1. COMPANY NAME: GEO Consultants Corp	oration		2. DI	AARC		t ironmental Ser	rvices		
3. PROJECT: SIW Supplementar	y Site Inspection	n	·		4. LOCA	TION: Por	t Richard, NY		
5. NAME OF DRILLER: Jose Garcia					6. MANU	JFACTURES DESIGNA	TION OF DRILL:	Geoprobe 7822	DT
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT:	acrocore				8. HOLE	LOCATION: North	ning: 572540,	Easting: 44991	69 (UTM Zone 18N)
					9. SURF	ACE ELEVATION: 6	.8 feet amsl (NAD83)	
						e started: 9/23/2	2021	11. DATE COMPLETED	9/23/2021
12. OVERBURDEN THICKNESS: 3.4 f	eet				15. DEPTH GROUNDWATER ENCOUNTERD:				
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:				
14. TOTAL DEPTH OF HOLE: 3.4 f	eet				17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY):				
18. GEOTECHNICAL SAMPLES:	DISTRURBEI (0.0-2.0), (2.0-		1	UNDISTURBI	ED	19. TOTAL NUME	BER OF CORE BOXES	: n/a	
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META	ALS	OTHER (SE		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	76% Recovered
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORII	NG WELL	OTHER (SE	PECIFY)	23. SIGNATURE OF I	NSPECTOR:	- [


		HTRW DRI	LLING LOG			HOLE NU SB-	
	PROJECT:	Staten Island Warehouse	INSPECTOR: Benjamin Hooks, GEO C	Consultants Co	orporation		
ELEV. (A)	DEPTH (B)	DESCRI	PTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)
-	_ 0		OIL, silt, with sand; dark brown; moist; with roots	TOPSOIL		PID: 0 Gamma: 7116	SS-16
6.2 — — — — — — — — — — — — — — — — — — —	1	SANI grave	D, fine-grained, silty to clayey, trace l; reddish-brown; moist; firm to soft	SAND	0-3.4 (Rec:76%)		
4.2 —	2				(Rec:/0%)	PID: 0 Gamma: 7121	SB-16 (2.0-3.0)
_		- Refu 5' in e	asal on brick or concrete (hole was offset ach direction)				

HTRW DRILLING LOG				DISTRICT: USACE, Kansas City District 2. DRILL SUBCONTRACTOR				HOLE NUMBER: SB-19	
				CO Environmental Services					
3. PROJECT: SIW Supplementary Site Inspection				4. LOCATION: Port Richard, NY					
5. NAME OF DRILLER: Jose Garcia				6. MANU	JFACTURES DESIGNA	TION OF DRILL:	Geoprobe 7822	DT	
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT:				8. HOLE LOCATION: Northing: 572547, Easting: 4499176 (UTM Zone 18N)				76 (UTM Zone 18N)	
					9. SURFACE ELEVATION: 2.9 feet amsl (NAD83)				
					10. DATE STARTED: 9/24/2021 11. DATE COMPLETED: 9/24/2021				9/24/2021
12. OVERBURDEN THICKNESS: 2.4 f	eet				15. DEPTH GROUNDWATER ENCOUNTERD:				
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:):
14. TOTAL DEPTH OF HOLE: 2.1 feet				17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY):					
18. GEOTECHNICAL SAMPLES: n/a	DISTRURBEI)	UN	NDISTURBE	ED	19. TOTAL NUMB	BER OF CORE BOXES	: n/a	
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META		OTHER (SP GSPEC-N		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	100% Recovered
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN		OTHER (SP	ECIFY)	23. SIGNATURE OF I	NSPECTOR:		


PROJECT: Staten Island Warehouse INSPECTOR: Benjamin Hooks, GEO Consultants Corporation DEPTH (B) DESCRIPTION OF MATERIALS (C) CLASSIF-ICATION (D) PERCENT RECOVERY (E) SAND, coarse- to fine-grained, with fine-grained gravel; with cobbles; brown to dark gray; moist; medium dense
DESCRIPTION OF MATERIALS (C) ICATION (D) RECOVERY (F) SAMPLE NO. (G) SAND SAND SAND
SAND, coarse- to fine-grained, with fine-grained gravel; with cobbles; brown to dark gray; moist; medium dense
1 0-2.5 (Rec:100 %)

HTRW DRILLING LOG				DISTRICT: USACE, Kansas City District				HOLE NUMBER: SB-23	
1. COMPANY NAME: GEO Consultants Corporation 2. DRILL SUBCON AARCO				CO Environmental Services					
3. PROJECT: SIW Supplementary Site Inspection					4. LOCATION: Port Richard, NY				
5. NAME OF DRILLER: Jose Garcia					6. MANU	FACTURES DESIGNA	TION OF DRILL:	Geoprobe 7822	DT
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT:					8. HOLE LOCATION: Northing: 572532, Easting: 4499144 (UTM Zone 18N)				44 (UTM Zone 18N)
					9. SURFACE ELEVATION: 7.1 feet amsl (NAD83)				
					10. DATE STARTED: 9/24/2021 11. DATE COMPLETED: 9/24/2021				9/24/2021
12. OVERBURDEN THICKNESS: 2.5 1	eet				15. DEPTH GROUNDWATER ENCOUNTERD:				
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:):
14. TOTAL DEPTH OF HOLE: 2.5 feet					17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY):				
18. GEOTECHNICAL SAMPLES: n/a	DISTRURBEI	BED UNDISTURB			19. TOTAL NUMBER OF CORE BOXES: n/a				
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META		OTHER (SPE SSPEC-No	- /	OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	100% Recovered
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN	IG WELL	OTHER (SPE	ECIFY)	23. SIGNATURE OF I	NSPECTOR:	1	

		HTRW DRILLING LOG							
P	PROJECT: Staten Island Warehouse INSPECTOR: Benjamin Hooks, GEO Consultants Corporation								
ELEV. (A)	DEPTH (B)	DESCRI	PTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)		
	- 0	soft; w	OIL, silt, with sand; dark brown; moist; rith roots of coarse- to fine-graind, with rained gravel, silt; reddish-brown to dark	TOPSOIL		PID: 0 Gamma: 4684	SS-23		
6.4	- - - - 1 - -		; dry to moist; loose to medium dense		0-2.5 (Rec:100 %)	PID: 0 Gamma: 4615	SB-23 (0.5-1.5)		
5.4	2								

				USACE, Kansas City District				HOLE NUMBER: SB-24	
1. COMPANY NAME: GEO Consultants Corporation 2. DRILL SUBCON AARCO				NTRACTOR CO Environmental Services					
3. PROJECT: SIW Supplementary Site Inspection				4. LOCATION: Port Richard, NY					
5. NAME OF DRILLER: Jose Garcia				6. MANU	JFACTURES DESIGNA	TION OF DRILL:	Geoprobe 7822	DT	
7. SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT:				8. HOLE LOCATION: Northing: 572528, Easting: 4499148 (UTM Zone 18N)				48 (UTM Zone 18N)	
					9. SURFACE ELEVATION: 0.2 feet amsl (NAD83)				
					10. DATE STARTED: 9/24/2021 11. DATE COMPLETED: 9/24/2021				9/24/2021
12. OVERBURDEN THICKNESS: 2.5 f	eet				15. DEPTH GROUNDWATER ENCOUNTERD:				
13. DEPTH DRILLED INTO ROCK: n/a					16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED:):
14. TOTAL DEPTH OF HOLE: 2.5 feet					17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY):				
18. GEOTECHNICAL SAMPLES: n/a	DISTRURBEI)	UNDISTURBI			19. TOTAL NUMBER OF CORE BOXES: n/a			
20. SAMPLES FOR CHEMICAL ANALYSIS:	VOC	META		OTHER (SP GSPEC-N		OTHER (SPECIFY) U-Iso	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY:	100% Recovered
22. DISPOSITION OF HOLE:	BACKFILLED X	MONITORIN		OTHER (SP	ECIFY)	23. SIGNATURE OF I	NSPECTOR:		

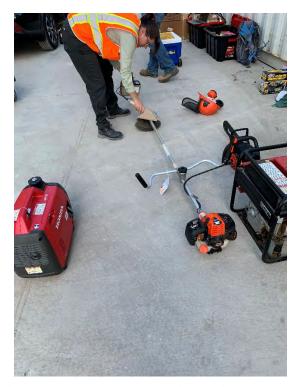
	HTRW DRILLING LOG							
	PROJECT: Staten Island Warehouse INSPECTOR: Benjamin Hooks, GEO Consultants Corporation							
ELEV. (A)	DEPTH (B)	DESCRI	PTION OF MATERIALS (C)	CLASSIF- ICATION (D)	PERCENT RECOVERY (E)	SCREENING & SAMPLE NO. (F)	REMARKS (G)	
_	_ 0		OIL, silt, with sand; dark brown; moist; vith roots	TOPSOIL		PID: 0 Gamma: 4668	SS-24	
-0.4 — — — — — — — — — — — — — — — — — — —	1	fine-g	O, coarse- to fine-graind, with rained gravel, silt; reddish-brown to dark; dry to moist; loose to medium dense	SAND	0-2.5 (Rec:100 %)	PID: 0 Gamma: 5359	SB-24 (0.5-2.0)	

APPENDIX G PHOTOGRAPH LOG

Supplemental Site Inspection Rep	oort, Staten Island Warehous	e FUSRAP Site, Port Richm	ond, Staten Island, New York April 2023
Т	HIS PAGE INTENTION	ALLY LEFT BLANK	

Staten Island Warehouse

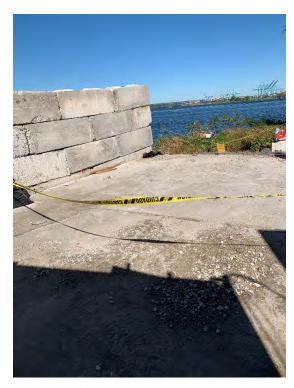
Photographic Documentation September 2021


Staten Island Project Site (facing southeast)

Bayonne Bridge (facing north)

Surface Characterization Area (facing south)


Equipment set-up/scanning (facing north)


Closed off block wall (facing northwest)

Blocks removed for access (facing north)

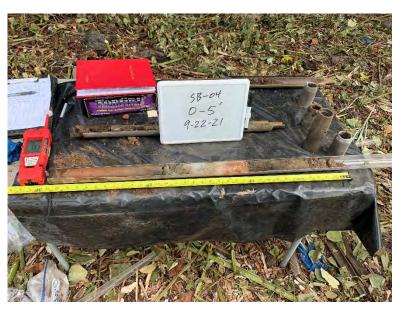
Sectioned off opening in fence (facing north)

Sectioned off opening (facing northwest)

Setting up air monitor (facing west)

Setting up air monitor (facing west)

Brush clearing (facing east)


Marking sample locations (facing south)

Gamma walkover scan (facing north)

Gamma scan, elevated reading (facing west)

SB-04 (macro core)

SB-04 (split spoon)

SB-05 SB-05

SB-06 SB-07

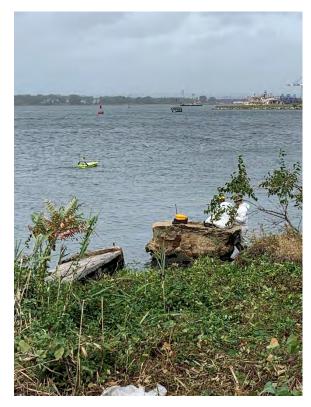
SB-09 SB-10

SB-11 SB-12

SB-14 SB-15

SB-16

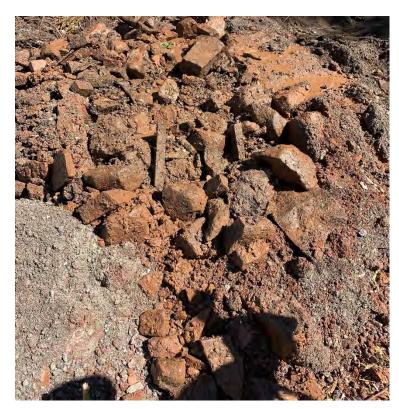
Subsurface sampling, hand auguring


Downhole gamma scan (facing north)

SB-13 marker (facing north)

Broken macro core barrel (SB-04, at 4-feet bgs)

Hydrographic survey, unmanned vessel (facing west)


Test Pit-1

Test Pit-1

Test Pit-2, dewatering

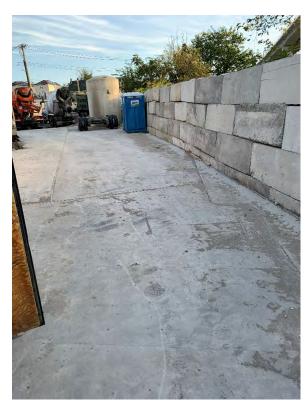
Test Pit-2, spoils

Test Pit-3

Test Pit-3

Test Pit-4

Test Pit-4, spoils


Calibrating water quality meter

PVC pipe removed from soil borings

Scanning out equipment

Restrooms (facing south)

Southwest corner of SIW Site (facing north)

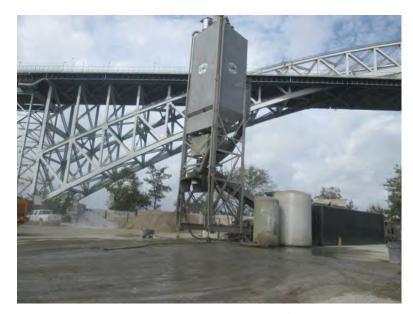
Richmond Terrace Drive (facing east)

Southeast corner of SIW Site (facing northwest)

Mechanic area (facing northwest)

Main office (facing west)

Mechanic area (facing east)


Mechanic area (facing east)

Material storage area (facing west)

Main office (facing south)

Concrete batch loading area (facing west)

Possible entrance area (facing west)

Communication office (facing south)

Loading ramp (facing northeast)

Material storage (facing north)

Material storage (facing west)

Second concrete batch structure (facing southwest)

Communication office (facing northwest)

Fieldwork staging area (facing north)

Southwest corner of SIW Site (facing southwest)

West entrance to SIW Site (facing east)

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, Nev April	v York 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

APPENDIX H

DOWNHOLE GAMMA LOGS

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, Nev April	v York 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

			Project	F	ormer St	aten Isla	nd War	ehouse	- Boreh	ole Gam	ma	
	leidos		Location	1	Staten Isl	and, Por	t Richm	ond, Ne	w York			
Location	SB04				File Nan	ne	09232	2021_SE	804_DN	1		
Date	09/23/2021				Depth D	rilled	6.5 fe	et BGS				
Casing	2 inch PVC	BH Fluid			Logged	Ву		y J. War	ren PG			
Depth		total					ŀ	<				
1ft:20ft	0 c	ps	200 0					os J				2
			0					ps Th				2
			0				C	os				2
							Raw	Spec				0000
0.0			0									3000
1.0				.								
							ш					
2.0												
2.0												
	/											
3.0	 											
4.0												
_												
5.0												
6.0												
0.0												
	/			-	1							
7.0												
_												
8.0												
_												
9.0												
10.0												
10.0												
11.0												
12.0												

	laidaa		Proje	ect F	ormer St	aten Isla	ınd War	ehouse	- Boreh	ole Gam	ıma	
	leidos		Locat	tion	Staten Isla	and, Por	t Richm	ond, Ne	w York			
Location	SB04				File Nam	ne	09232	021_SE	04_DN	2		
Date	09/23/2021				Depth D	rilled	6.5 fe	et BGS				
Casing	2 inch PVC	BH Fluid			Logged	Ву		/ J. War	ren PG			
Depth 1ft:20ft	0 cp:							<				
111.2011	0 ср:	5	200 0					os J				
			0				cţ T	os Th				:
			0				cր RawS	os pec#1				:
0.0			0									3000
0.0												
1.0												
)											
2.0												
	 											
3.0												
4.0												
	 											
5.0												
6.0	 											
	 											
7.0												
8.0												
9.0												
10.0												
11.0												

	latalaa		Pro	oject F	ormer St	aten Isla	and War	ehouse	- Boreh	ole Gam	ma	
	leidos		Loc	cation	Staten Isla	and, Por	t Richm	ond, Ne	w York			
Location	SB05				File Nam	ne	09222	021_SE	05_DN	1		
Date	09/22/2021				Depth D	rilled	3.5 fee	et BGS				
Casing	2 inch PVC	BH Fluid			Logged	Ву		y J. War	ren PG			
Depth	GR to			 				<				
1ft:20ft	0 cps	5	200	0			l	os J				2
			ŀ	0				os 'h				:
			Г	0				os Spec				2
0.0				0								3000
1.0												
2.0												
3.0												
4.0												
5.0												
6.0												
7.0												
7.0												
8.0												
9.0												
5.0												
10.0												
11.0												
11.0												
												1

	laidaa		Project	Former Staten Is	land Warehouse	- Borehole Gar	nma
	leidos		Location	Staten Island, Po	ort Richmond, Ne	w York	
Location	SB05			File Name	09222021_SE	305_DN2	
Date	09/22/2021			Depth Drilled	3.5 feet BGS		
Casing	2 inch PVC	BH Fluid		Logged By	Jeffrey J. War	ren PG	
Depth	GR tota	al			К		
1ft:20ft	0 cps		200 0		cps U		
			0		cps Th		:
			0		cps RawSpec		:
0.0			0				3000
1.0							
	/						
2.0							
3.0							
				,			
4.0							
5.0							
6.0							
7.0							
8.0							
9.0							
10.0							
11.0							
11.0							
<u> </u>							+

	1-1-1-		Pro	ject	Former S	taten Isla	ind War	ehouse	- Boreh	ole Gam	ıma	
	leidos		Loca	ation	Staten Is	land, Por	t Richm	ond, Ne	w York			
Location	SB06				File Nar	ne	09222	2021_SE	306_DN	1		
Date	09/22/2021				Depth D	Drilled	2.5 fe	et BGS				
Casing	2 inch PVC	BH Fluid			Logged	Ву			ren PG			
Depth	GR tota		⊣ ⊦				ŀ	<				
1ft:20ft 0	cps	20)0 F	0				ps J				
				0				os Th				
			'	0				os Spec				
0.0			L	0								30
					*							
1.0												
2.0	1											
3.0												
4.0												
5.0												
5.0												
6.0												
7.0												
8.0												
9.0			+									
10.0												
10.0												
11.0			+									
			+									

	laidaa		Pr	roject	Former St	aten Isla	ınd War	ehouse	- Boreh	ole Gam	ıma	
	leidos		Lo	cation	Staten Isl	and, Por	t Richm	ond, Ne	w York			
Location	SB06				File Nan	пе	09222	021_SE	306_DN	2		
Date	09/22/2021				Depth D	rilled	2.5 fe	et BGS				
Casing	2 inch PVC	BH Fluid			Logged	Ву		y J. War	ren PG			
Depth	GR total#	<u> </u>	_	<u> </u>			ı	<				
1ft:20ft 0	cps	20	00	0				os J				
				0				os Th				
				0				os Spec				
				0								30
0.0					1							
1.0												
			_	, III II I								
0.0												
2.0												
	 /				-	1						
3.0			+									
4.0												
			+									
5.0			+									
6.0												
			+									
7.0			_									
8.0												
			+									
9.0			\perp									
10.0			\top									
			+									
11.0			\perp									
			\top									

	latala a		Pro	oject	Former St	aten Isla	ind War	ehouse	- Boreho	ole Gam	ma	
	leidos	ľ	Loc	cation	Staten Isla	and, Por	t Richm	ond, Ne	w York			
Location	SB07				File Nam	ne	09222	021_SB	07_DN	1		
Date	09/22/2021				Depth D	rilled	2.5 fee	et BGS				
Casing	2 inch PVC	BH Fluid			Logged	Ву		/ J. War	ren PG			
Depth	GR to		_	<u> </u>			ŀ					
1ft:20ft	0 cps		200	0			cr L					
			İ	0			ct T					
				0			ср Raw					
0.0				0								300
1.0	 											
2.0				7								
3.0												
4.0												
5.0												
0.0												
6.0												
7.0												
8.0												
9.0												
10.0												
. 5.0												
11.0												

	latala a	Project	Former Staten Isla	and Warehouse - Borehole Gamma	 a
	leidos	Location	Staten Island, Po	ort Richmond, New York	
Location	SB07	·	File Name	09222021_SB07_DN2	
Date	09/22/2021		Depth Drilled	2.5 feet BGS	
Casing	2 inch PVC BH Fluid		Logged By	Jeffrey J. Warren PG	
Depth	GR total			К	
1ft:20ft	0 cps	200 0		cps U	2
		0		cps Th	2
		0		cps RawSpec	2
0.0		0			3000
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					
6.0					
7.0					
8.0					
-					
9.0					
10.0					
11.0					

	laidea		Pro	oject	ormer St	aten Isla	and War	ehouse	- Boreh	ole Gam	ma	
	leidos		Loc	cation	Staten Isla	and, Por	t Richm	ond, Ne	w York			
Location	SB09				File Nam	ne	09232	021_SE	809_DN	1		
Date	09/23/2021				Depth D	rilled	6.2 fe	et BGS				
Casing	2 inch PVC	BH Fluid			Logged	Ву		/ J. War	ren PG			
Depth	GR to	otal		 			ŀ	<				
1ft:20ft	0 cps	5	200	0				os J				2
				0			CF T	os Th				;
				0				os Spec				:
0.0				0								3000
1.0												
2.0)							
3.0												
4.0												
5.0												
6.0	 											
7.0												
8.0												
9.0												
10.0												
11.0												
11.0												

	latala a	Project	Former Staten Isla	and Warehouse - Borehole Gam	ma
	leidos	Location	Staten Island, Po	ort Richmond, New York	
Location	SB09	·	File Name	09232021_SB09_DN2	
Date	09/23/2021		Depth Drilled	6.2 feet BGS	
Casing	2 inch PVC BH Fluid		Logged By	Jeffrey J. Warren PG	
Depth	GR total			К	
1ft:20ft	0 cps	200 0		cps U	2
		0		cps Th	
		0		cps RawSpec	2
0.0		0			3000
1.0					
2.0		O O			
3.0	//				
4.0					
5.0					
6.0	(
7.0					
8.0					
0.0					
9.0					
10.0					
10.0					
11.0					

	laidaa		Projec	t	Former Staten	Island Wa	arehouse	- Boreh	ole Gam	nma	
	leidos		Locatio	n	Staten Island,	Port Rich	mond, Ne	w York			
Location	SB10				File Name 09232021_SB10_DN1						
Date	09/23/2021				Depth Drilled 6.0 feet BGS						
Casing	2 inch PVC	BH Fluid			Logged By	Jeffr	ey J. Wai	rren PG			
Depth	GR total						K				
1ft:20ft ₀	cps	20	0 0				cps U				
			0	0 cps Th							
			0				cps wSpec				
0.0			0								300
5.5			$ \cdot $								
	(
1.0	 										
	$ \rangle $										
2.0											
2.0											
	/										
3.0	} 				//-						
					<u> </u>						
4.0											
4.0											
	$ \rangle$										
5.0											
				1.1							
6.0											
7.0											
8.0											
9.0											
10.0											
11.0											<u> </u>
											L

	latalaa	Project	Former Staten Isla	and Warehouse - Borehole G	Samma			
	leidos	Location						
Location	SB10		File Name 09232021_SB10_DN2					
Date	09/23/2021		Depth Drilled 6.0 feet BGS					
Casing	2 inch PVC BH Flui	d	Logged By	Jeffrey J. Warren PG				
Depth 1ft:20ft	GR total	+		К				
TIL.ZUIL	0 cps	200 0		cps U				
		0		cps Th				
		0		cps RawSpec	2			
		0			3000			
0.0								
1.0								
2.0		1 1						
3.0								
4.0		The state of the s						
5.0		11111						
6.0								
7.0								
8.0								
9.0								
10.0								
11.0								

	Latelan	Project	Former Staten Isla	and Warehouse - Borehole Gam	nma				
	leidos	Location	Staten Island, Port Richmond, New York						
Location	SB11	·	File Name 09232021_SB11_DN1						
Date	09/23/2021		Depth Drilled						
Casing	2 inch PVC BH F	uid	Logged By	Jeffrey J. Warren PG					
Depth	GR total	+		К	:				
1ft:20ft	0 cps	-	200 [°] 0 cps U						
		0		cps Th	:				
		0		cps RawSpec	:				
		0			3000				
0.0	<mark> </mark>								
1.0									
2.0									
3.0									
3.0									
4.0									
5.0									
6.0									
7.0									
8.0									
0.0)								
9.0									
10.0									
11.0	 								
	 								

leidos			Project Former Staten Island Warehouse - Borehole Gamma									
	Location			ation Staten Island, Port Richmond, New York								
Location	SB11	·			File Name 09232021_SB11_DN2							
Date	09/23/2021				Depth Drilled 12.8 feet BGS							
Casing	2 inch PVC BH F	luid			Logged	l By			ren PG			
Depth 1ft:20ft	GR total		+					(
TIL.ZOIL	0 cps	20	00 0				c _r	J				
			0				ct T	h				
			0				c _t Raw					
0.0			0								30	
1.0												
)											
2.0												
3.0												
4.0												
5.0												
6.0								Ш,				
7.0												
8.0												
9.0												
10.0												
10.0												
11.0			1									

	laidee	Project	Project Former Staten Island Warehouse - Borehole Gamma Location Staten Island, Port Richmond, New York						
	leidos	Location							
Location	SB12	·	File Name 09232021_SB12_DN1						
Date	09/23/2021		Depth Drilled						
Casing	2 inch PVC BH Fluic		Logged By Jeffrey J. Warren PG						
Depth	GR total	+		К					
1ft:20ft	0 cps	200 0		cps U	:				
		0		cps Th	:				
		0		cps RawSpec	:				
0.0		0			3000				
0.0									
1.0			>						
2.0									
3.0									
0.0									
4.0									
5.0									
6.0									
7.0									
8.0									
9.0									
10.0									
11.0									

	latala a	Project	Former Staten Isla	and Warehouse - Borehole Gam	ma				
	leidos	Location	Location Staten Island, Port Richmond, New York						
Location	SB12		File Name 09232021_SB12_DN2						
Date	09/23/2021		Depth Drilled	12.5 feet BGS					
Casing	2 inch PVC BH Fluid		Logged By Jeffrey J. Warren PG						
Depth 1ft:20ft	GR total 0 cps	200 0		K					
11.201	0 cps	200 0	200 0 cps U 0 cps Th						
		0							
		0		cps RawSpec					
		0		Harrepee	30				
0.0									
1.0									
2.0									
2.0									
		N N							
3.0									
		11.11							
4.0									
		i i							
5.0									
6.0									
7.0									
7.0	<u> </u>								
8.0									
0.0									
9.0									
9.0									
10.0	/								
10.0									
11.0									
11.0									

	laidee		Pro	oject F	ormer Sta	aten Isla	nd War	ehouse	- Boreho	ole Gam	ıma	
	leidos		Loc	ation	Staten Isla	and, Por	t Richm	ond, Ne	w York			
Location	SB14				File Nam	ie	09242	021_SE	314_DN	1		
Date	09/24/2021				Depth D	rilled	12.5 f	eet BG	S			
Casing	2 inch PVC	BH Fluid			Logged By Jeffrey J. Warren PG							
Depth	GR to							<				
1ft:20ft	0 cps	2	200					J				2
			ŀ	0				h				:
			_	0			cr Raw	os Spec				2
0.0				0								3000
					1							
1.0				I								
2.0												
3.0												
4.0												
5.0												
5.0												
6.0												
7.0												
							ш					
8.0												
9.0												
10.0	 											
	 											
11.0												

	latala a	Project	Former Staten Isla	and Warehouse - Borehol	le Gamma			
	leidos	Location	Staten Island, Por	rt Richmond, New York				
Location	SB14		File Name	09242021_SB14_DN2				
Date	09/24/2021		Depth Drilled	Depth Drilled 12.5 feet BGS				
Casing	2 inch PVC BH Fluid		Logged By	Jeffrey J. Warren PG				
Depth 1ft:20ft	GR total			К				
TIL.ZOIL	0 cps	200 0		cps U	2			
		0		cps Th	2			
		0		cps RawSpec	2			
0.0		0			3000			
1.0								
2.0								
		The state of the s						
3.0								
_								
4.0	 	 						
5.0								
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
6.0								
		No.						
7.0	 							
_								
8.0					111			
_								
9.0								
	<u> </u>							
40.0								
10.0								
11.0								
	 							

	la:daa	Project	Former Staten Isla	and Warehouse - Borehole Gamm	าล				
	leidos	Location	Staten Island, Po	ort Richmond, New York					
Location	SB15	·	File Name	09242021_SB15_DN1					
Date	09/24/2021		Depth Drilled	7.7 feet BGS					
Casing	2 inch PVC BH Fluid		Logged By	Jeffrey J. Warren PG					
Depth	GR total			К					
1ft:20ft	0 cps	200 0		cps U					
		0		cps Th	:				
		0		cps RawSpec	:				
0.0		0			3000				
1.0			<u> </u>						
2.0									
3.0									
	 								
4.0									
5.0		<u> </u>							
		11/							
6.0									
7.0		100							
		1 110							
8.0									
9.0									
5.0									
10.0									
11.0									

	latala a	Project	Former Staten Isla	and Warehouse - Borehole	Gamma				
	leidos	Location	Staten Island, Po	ort Richmond, New York					
Location	SB15		File Name	09242021_SB15_DN2					
Date	09/24/2021		Depth Drilled	7.7 feet BGS					
Casing	2 inch PVC BH Flu	d	Logged By	Jeffrey J. Warren PG					
Depth 1ft:20ft	GR total	+		К					
III.ZUII	0 cps	200 0		cps U	-				
		0		cps Th	:				
		0		cps RawSpec	2				
0.0		0			3000				
0.0									
1.0									
2.0		100							
3.0									
4.0		<u> </u>							
5.0		111							
6.0									
7.0									
8.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 101							
9.0									
10.0									
11.0									

APPENDIX I RADIOLOGICAL SCAN DATA SHEETS

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, Nev April	v York 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

HP-30 Rev. 0 Attachment 4

		Initial Ins	trument Check In			
Meter Number: 127254 Meter Model: 2221 Cal. Due: 8/6/2022		2221	Detector Number: Detector Model: Cal. Due:	384781 44-10 i3 9/8/2022		
Gamma Gamma Gamma	Source Type: Source #: Source Activity (cpm):	Cs-137 SAIC-0003 N/A	High Voltage (V):	1000]	
Gamma		1	Background count time (min):	1		
Gamma	Source GCPM	BKG CPM	Average Bkg. (cpm):	3,422		
Gamma	72,559	3607	20% of Bkg.	685		
Gamma	73,511	3522	3 Standard Deviations of Bkg.	277		
Gamma	72,906	3378	Background Range (cpm):	2,737	to	4,107
Gamma	72,629	3462	1	•		
Gamma	73,041	3424	Average Source (gcpm):	72,944		
Gamma	73,285	3335	Average Net Source (ncpm):	69,522		
Gamma	72,714	3326	Source Range (gcpm):	58,356	to	87,532
Gamma	72,943	3462	1	,		•
Gamma	72,750	3337	1 7			
Gamma	73,102	3366	Determined Inst. Efficiency:	N/A		
Calculate	cpm rounded to integer nun	nbers.				

Performed By: Muyon Sharme Date: 10-6-21

Reviewed By: Date: 10-6-21

(RPM / Asst. RPM)

Meter/Detector: 44-10 | 3 / 2221 Date (MO/YR): Sept. 2021 INSTRUMENTATION QC CHECK LOG Source Number Cal. Due Post-useb Bkgd QC Source QC Range 127254 8/6/2022 Bkqd QC Source QC Range Meter Bkgd & Range (cpm) y Source Cs-137 (gcpm) Bkgd & 384781 9/8/2022 Range (cpm) (gcpm) Detector Source Source **HV Check** 58356 - 87532 Checks in SAIC-0003 2737 - 4107 58356 - 87532 y Source ID 2737 - 4107 HPT Initials Checks in **Battery** Pre-use Range Range (V) Check HPT Range Post-use Bkgd Post-use Source Pre-use Bkgd Pre-use Source Date Time 990 - 1010 (cpm) (gcpm) (cpm) (gcpm) Sat/Unsat* Sat/Unsat^a Sat/Unsat^a Initials Sat/Un-sata MS 9/23/2021 0730 3070 75868 SAT SAT SAT MS 3452 79863 SAT SAT SAT SAT MS 9/24/2021 0730 3452 71093 Comments:

Reviewed By: (RPM/Designee)

Date: (0-6-2)

a Record unsatisfactory QC check(s) in the comment block and repeat the evaluation as necessary. Tag the instrument out of service and notify the RPM if the instrument will not meet criteria.

^b Post-use check at end of the day following FUSRAP FSS surveys, or other client surveys.

HP-30 Rev. 0 Attachment 4

		initial ins	trument Check In						
	Meter Number:	218563	Detector Number:	365209					
	Meter Model:	<u>2221</u>	Detector Model: 44-2 Y						
	Cal. Due:	9/8/2022	Cal. Due:	9/8/2022					
_									
Gamma	Source Type:	Cs-137	_		_				
Gamma	amma Source #: SAIC-0003		High Voltage (V):[850					
Gamma	Source Activity (cpm):	N/A]						
Gamma	Source count time (min):	1	Background count time (min):	_1_	7				
Gamma	Source GCPM	BKG CPM	Average Bkg. (cpm):	756		-			
Gamma	16,514	747	20% of Bkg.	152					
Gamma	16,590	767	3 Standard Deviations of Bkg.	59					
Gamma	16,665	766	Background Range (cpm):	604	to	908			
Gamma	16,363	744							
Gamma	16,550	770	Average Source (gcpm):	16,504					
Gamma	16,504	747	Average Net Source (ncpm):	15,748					
Gamma	16,414	785	Source Range (gcpm):	13,204	to	19,804			
Gamma	16,460	719	1						
Gamma	16,516	771							
Gamma	16,467	741	Determined Inst. Efficiency:	N/A					
Calculate	d cpm rounded to integer num	bers.							

Performed By: Muy on Sharme Date: 10-6-21

Reviewed By: Date: 10-6-21

Sou	rce					Number Cal. Due			Post-use)	
		Bkgd QC	Source QC Range	Bkgd &	Meter	218563	9/8/2022	Bkgd QC	Source QC Range		
y Source	Cs-137	Range (cpm)	(gcpm)	Source	Detector	365209	9/8/2022	Range (cpm)	(gcpm)	Bkgd &	
y Source ID	SAIC-0003	604 - 908	13204 - 19804	Checks in	Battery	HV Check	Pre-use	604 - 908	13204 - 19804	Source Checks in	HPT Initials
Date	Time	Pre-use Bkgd (cpm)	Pre-use Source (gcpm)	Range	Check	Range (V) 840 - 860	HPT	Post-use Bkgd (cpm)	Post-use Source (gcpm)	Range	
		(opin)	(905111)	Sat/Unsat ^a	Sat/Unsat ^a	Sat/Unsat ^a	Initials	(СРП)	(gepin)	Sat/Un-sat ^a	
9/22/2021	1404	789	15947	SAT	SAT	SAT	MS	656	15787	SAT	MS
9/23/2021	0730	656	15787	SAT	SAT	SAT	MS	_			
9/27/2021	0719	854	16909	SAT	SAT	SAT	MS	776	15594	SAT	MS
omments:											

a Record unsatisfactory QC check(s) in the comment block and repeat the evaluation as necessary. Tag the instrument out of service and notify the RPM if the instrument will not meet criteria.

Reviewed By: (RPM/Designee)

Date: 10-6-2

^b Post-use check at end of the day following FUSRAP FSS surveys, or other client surveys.

HP-30 Rev. 0 Attachment 4

		Initial Ins	trument Check In			
Meter Number: 196062 Meter Model: 2221 Cal. Due: 8/6/2022		Detector Number: Detector Model: Cal. Due:	357755 44-10 P 9/8/2022			
Gamma	Source Type:	Cs-137				
Gamma	Source #:	SAIC-0003	High Voltage (V):	900		
Gamma	Source Activity (cpm):	N/A				
Gamma	Source count time (min):	1	Background count time (min):	11		
Gamma	Source GCPM	BKG CPM	Average Bkg. (cpm):	3,315		
Gamma	77,477	3266	20% of Bkg.	663		
Gamma	77,601	3392	3 Standard Deviations of Bkg.	188		
Gamma	78,128	3302	Background Range (cpm):	2,652	to	3,978
Gamma	75,905	3259				
Gamma	76,181	3275	Average Source (gcpm):	76,395		
Gamma	75,980	3331	Average Net Source (ncpm):	73,080		
Gamma	76,386	3444	Source Range (gcpm):	61,116	to	91,674
Gamma	75,123	3257				,
Gamma	75,647	3341]			
Gamma	75,518	3286	Determined Inst. Efficiency:	N/A		
Calculate	d cpm rounded to integer nun	nbers.				

Performed By: Negar Sharne Date: 10-6-21

Reviewed By: (RPM / Asst. RPM)

Soul	rce	81 100	000			Number	Cal. Due		Post-use)	
	0 40=	Bkgd QC	Source QC Range	Bkgd &	Meter	196062	8/6/2022	Bkgd QC	Source QC Range		
γ Source	Cs-137	Range (cpm)	(gcpm)	Source	Detector	357755	9/8/2022	Range (cpm)	(gcpm)	Bkgd &	
y Source ID	SAIC-0003	2652 - 3978	61116 - 91674	Checks in Range	Battery	HV Check Range (V)	Pre-use	2652 - 3978	61116 - 91674	Source Checks in	HPT Initials
Date	Time	Pre-use Bkgd			Check	890 - 910	HPT	Post-use Bkgd		Range	
		(cpm)	(gcpm)	Sat/Unsat ^a	Sat/Unsat ^a	Sat/Unsat ^a	Initials	(cpm)	(gcpm)	Sat/Un-sat ^a	1
9/21/2021	0748	3502	75731	SAT	SAT	SAT	MS	3089	71195	SAT	MS
9/22/2021	0815	3089	71195	SAT	SAT	SAT	MS				
9/23/2021	0730	3194	76138	SAT	SAT	SAT	MS	3351	79179	SAT	MS
9/24/2021	0730	3351	72181	SAT	SAT	SAT	MS	3591	71324	SAT	MS
9/27/2021	0720	3409	72010	SAT	SAT	SAT	MS	3787	75138	SAT	MS
									_		
					_						
	_										
			_			<u> </u>					
				-		<u> </u>					
			<u> </u>							<u>-</u>	
						-					
									-		

^a Record unsatisfactory QC check(s) in the comment block and repeat the evaluation as necessary. Tag the instrument out of service and notify the RPM if the instrument will not meet criteria.

Reviewed By:

(RPM/Designee)

Date: 10-6-21

^b Post-use check at end of the day following FUSRAP FSS surveys, or other client surveys.

Exposure Rate Meter Setup Record

Date: 9/20/2021

Leidos ID: MicroR A

Location: Staten Island Site

Instrument:

Models

Serial Numbers

Cal. Due Date

Meter: Model 19

Meter: 347262

Meter: 5/30/2022

Detector: NA

Detector: NA

Detector:

Instrument Range	Source		Source Position		d Exposure late¹	Acceptance Criteria ^{1/2}			
	ID	Isotope		Reading	Units	Minimum	to Maximum	Units	
X250	SAIC-0003	Cs-137	Contact on Bottom of Car	80	μR/hr	64	to 96	μR/hr	
		0	·		-		-		
					μR/hr	0	to 0	μR/hr	

Insert information on row with appropriate units.
 ± 20% of observed exposure rate.

Comments/Restrictions: Meter only source checked at X250 scale.	
100	
Calculated By:	
Adella Mirania	10-6-21
Calculated By :	Date :
h	
	10-6-21
Over: V.	10-6-2)
Approved By:	Date

Daily Check	c-In of Dose	e Rate Instru	ments	Meter:	MicroR A			Date	(MO/YR):	Sept.	2021
Soul		Pre-Use Source	Source		ale	Post-Use ^b	Source		Model	Serial Number	Cal. Due
γ Source	Cs-137	QC	Check in	X2	50	Source QC	Check in	Meter	Model 19	347262	5/30/2022
γ Source ID	SAIC-0003	64 - 96	Range	Bat. Check	HPT Initial	64 - 96	Range	Detector	NA	NA_	NA
Date	Time	Reading (µR/hr)	Sat/Unsat ^a		- HPI INITIAI	Reading (µR/hr)	Sat/Unsat ^a	HPT Initial ^b		Comments	
9/20/2021	1140	80	SAT	SAT	MS						
9/21/2021	0800	80	SAT	SAT	MS						
9/22/2021	0820	75	SAT	SAT	MS						
9/23/2021	0733	80	SAT	SAT	MS			-			
9/24/2021	0727	80	SAT	SAT	MS						
9/27/2021	0723	75	SAT	SAT	MS						
								_			
										· 	
								<u> </u>			
					ļ						
					ļ						
					ļ						
ļ					-						
	<u> </u>				-						
					-						
	104.1				-						

	\ \	~ 1	
Reviewed By:		ل حب	1

(RPM/Designee)

Date: 10-6-21

^a Record unsatisfactory QC check(s) in the comment block and repeat the evaluation as necessary. Tag the instrument out of service and notify the RPM if the instrument will not meet criteria.

^b Post-use check at end of the day following FUSRAP FSS surveys, or other client surveys.

Initial Instrument Check In

345532 Meter Number: **Detector Number:** 394879 Meter Model: 2360 **Detector Model:** 43-89 B Cal. Due: 6/3/2022 Cal. Due: 6/3/2022

Alpha	Source Type:	Th-230	Date of Check-in	9/19/2021		
Alpha	Source #:	SAIC-0002			-	
Alpha	4 pi Source Activity (cpm):	22,596	Detector Area (cm²):	125	1	
Alpha	2 pi Source Activity (cpm):	11,498	Surface Efficiency 4pi/2pi:	1	/	0.25
Alpha	Source count time (min):	1	Background count time (min):	10		
Alpha	Source GCPM	BKG CPM	Average Bkg. (cpm):	0.15		
Alpha	3,386	0	3 Standard Deviations of Bkg.	0.54		
Alpha	3,295	0.2	Background Range (CPM):	0	to	2
Alpha	3,385	0				
Alpha	3,388	0	Average Source (gcpm):	3,344		
Alpha	3,372	0.5	Average Net Source (ncpm):	3,343		
Alpha	3,317	0.2	Source Range (gcpm):	2,676	to	4,012
Alpha	3,398	0.1		<u>4 pi</u>		<u>2 pi</u>
Alpha	3,383	0.1	Determined Inst. Efficiency:	0.1479		0.2907
Alpha	3,257	0	MDA (dpm/100cm ²):	23		48
Alpha	3,258	0.4	ncpm that are less than MDA:	4		4

Source Type:	SrY-90				
Source #:[SAIC-0001	_		_	
4 pi Source Activity (cpm):	7,545	Detector Area (cm²):	125		
2 pi Source Activity (cpm):	5,281	Surface Efficiency 4pi/2pi:	1	1	0.25
Source count time (min):	1	Background count time (min):	1		
Source GCPM	BKG CPM	Average Bkg. (cpm):	191		
2,244	183	3 Standard Deviations of Bkg.	39		
2,326	166	Background Range (CPM):	152	to	230
2,233	206				
2,334	184	Average Source (gcpm):	2,271		
2,270	205	Average Net Source (ncpm):	2,080		
2,269	200	Source Range (gcpm):	1,817	to	2,725
2,250	202		<u>4 pi</u>		<u>2 pi</u>
2,214	191	Determined Inst. Efficiency:	0.276		0.394
2,237	192	MDA (dpm/100cm ²):	195		547
2,328	181	ncpm that are less than MDA:	67		67
	4 pi Source Activity (cpm): 2 pi Source Activity (cpm): Source count time (min): Source GCPM 2,244 2,326 2,233 2,334 2,270 2,269 2,250 2,214 2,237	Source #: SAIC-0001 4 pi Source Activity (cpm): 7,545 2 pi Source Activity (cpm): 5,281 Source count time (min): 1 Source GCPM BKG CPM 2,244 183 2,326 166 2,233 206 2,233 206 2,234 184 2,270 205 2,269 200 2,250 202 2,214 191 2,237 192	Source #: SAIC-0001 4 pi Source Activity (cpm): 7,545 Detector Area (cm²): 2 pi Source Activity (cpm): 5,281 Surface Efficiency 4pi/2pi: Source count time (min): 1 Background count time (min): Source GCPM BKG CPM Average Bkg. (cpm): 2,244 183 3 Standard Deviations of Bkg. 2,326 166 Background Range (CPM): 2,233 206 2,334 184 Average Source (gcpm): 2,270 205 Average Net Source (ncpm): 2,269 200 Source Range (gcpm): 2,250 202 2,214 191 Determined Inst. Efficiency: MDA (dpm/100cm²):	Source #: SAIC-0001 4 pi Source Activity (cpm): 7,545 Detector Area (cm²): 125 2 pi Source Activity (cpm): 5,281 Surface Efficiency 4pi/2pi: 1 Source count time (min): 1 Background count time (min): 1 Source GCPM BKG CPM Average Bkg. (cpm): 191 2,244 183 3 Standard Deviations of Bkg. 39 2,326 166 Background Range (CPM): 152 2,233 206 Background Range (CPM): 152 2,234 184 Average Source (gcpm): 2,271 2,270 205 Average Net Source (ncpm): 2,080 2,269 200 Source Range (gcpm): 1,817 2,250 202 4 pi 2,214 191 Determined Inst. Efficiency: 0.276 2,237 192 MDA (dpm/100cm²): 195	Source #: SAIC-0001 4 pi Source Activity (cpm): 7,545 Detector Area (cm²): 125 2 pi Source Activity (cpm): 5,281 Surface Efficiency 4pi/2pi: 1

Calculated cpm rounded to integer numbers for ranges.

Performed By: Myan Shyrice Date: 10-6-21

Reviewed By: Date: 10-6-21

(RPM / Asst. RPM)

INSTRUMENTATION QC CHECK LOG

Meter/Detector: 2360 / 43-89 B

Date (MO/YR) : Sept.

2021

Sour	rces	Pre-Use O Bkgd QC range Source QC range (gcpm)				Number	Cal. Due		Po	ost-Use ^b		В	eta	
α Source	Th-230	Bkgd (QC range	S		Meter	345532	6/3/2022	Bkgd C	C range		\	Inst Eff 4 pi:	0.276
α Source ID	SAIC-0002	(0	pm)	Source QC	range (gcpm)	Detector	394879	6/3/2022	(c	pm)	Source QC	range (gcpm)	Avg Bkgd (d	pm): 191
β Source	SrY-90	Alpha	Beta	Alpha	Beta	Bkgd &	Alı	oha	Alpha	Beta	Alpha	Beta	Bkgd &	
β Source ID	SAIC-0001	0-2	152 - 230	2676 - 4012	1817 - 2725	Source	Inst Eff 4 pi:	0.1479	0-2	152 - 230	2676 - 4012	1817 - 2725	Source	Post-us
p Source ID	SAIC-0001	Blood	QC (cpm)	Course	QC (gcpm)	Checks in	Avg Bkgd (c	pm): 0.15	Disard	QC (cpm)	Source (QC (gcpm)	Checks in	HPT
Date	Pre-Use	Dkyru.	GC (CPIH)	Source	ac (gepin)	Range	Bat. Check	Pre-use		ac (chiii)	Source	ac (gcpm)	Range	L
Date	Time	Alpha	Beta	Alpha	Beta	Sat/Unsat ^a	Sat/Unsat ^a	HPT Initial	Alpha	Beta	Alpha	Beta	Sat/Unsat*	Initial
9/20/2021	0609	0.2	197	3392	2314	SAT	SAT	MS						
9/21/2021	0558	0.4	209	3312	2237	SAT	SAT	MS						<u></u>
9/22/2021	0815	0.6	197	3527	2311	SAT	SAT	MS			lana .			
9/23/2021	0730	0.3	159	3758	2227	SAT	SAT	MS						
9/24/2021	0727	0.3	216	3629	2361	SAT	SAT	MS	0.2	187	3749	2360	SAT	MS
9/27/2021	0728	0.3	188	3842	2386	SAT	SAT	MS	0.8	182	3807	2380	SAT	MS
Comment:														

^a Record unsatisfactory QC check(s) in the comment block and repeat the evaluation as necessary. Tag the instrument out of service and notify the RPM if the instrument will not meet criteria.

Reviewed By : _

· (RPM/Designee)

Date: 10-6-2

^b Post-use check at end of the day following FUSRAP FSS surveys, or other client surveys.

Initial Instrument Check In 346227 Meter Number: Detector Number: NA Meter Model: 3030 Detector Model: N/A Cal. Due: 6/8/2022 Cal. Due: N/A

Alpha	Source Type:	Th - 230	Date of Check-in	9/20/2021		
Alpha	Source #:	SAIC-0002] _		_	
Alpha	Source Activity (cpm):	22,596				
Alpha	Source count time (min):	1	Background count time (min):	10		
Alpha	Source GCPM	BKG CPM	Average Bkg. (cpm):	0.13		
Alpha	7,820	0.2	20% of Bkg. (cpm)	0.03		
Alpha	7,839	0.1	3 Standard Dev. of Bkg. (cpm)	0.29		
Alpha	7,891	0.1	Background Range (cpm):	0.0	to	2.0
Alpha	7,932	0.2				
Alpha	7,774	0.3	Average Source (gcpm):	7,847		
Alpha	7,760	0.1	Average Net Source (ncpm):	7,846		
Alpha	7,776	0.2	Source Range (gcpm):	6,278	to	9,416
Alpha	7,862	0.0				
Alpha	7,873	0.1				
Alpha	7,940	0.0	Determined Inst. Efficiency:	0.347		

			<u> </u>			
Beta	Source Type:	SrY - 90				
Beta	Source #:	SAIC-0001]			
Beta	Source Activity (cpm):[7,544				
Beta	Source count time (min):	1	Background count time (min):	10	7	i
Beta	Source GCPM	BKG CPM	Average Bkg. (cpm):	31		
Beta	2,955	31	20% of Bkg.	, 7		
Beta	2,998	35	3 Standard Deviations of Bkg.	17		
Beta	2,974	23	Background Range (cpm):	14	to	48
Beta	2,955	33				
Beta	2,996	39	Average Source (gcpm):	2,973		
Beta	2,913	22	Average Net Source (ncpm):	2,942		
Beta	3,024	36	Source Range (gcpm):	2,379	to	3,567
Beta	2,921	35				
Beta	3,017	28				
Beta	2,974	31	Determined Inst. Efficiency:	0.390		

Calculated cpm rounded to integer numbers.

Performed By: Muyan Sharman Date: 10-6-21

Reviewed By: Date: 10-6-21

(RPM / Asst. RPM)

INSTRUMENTATION QC CHECK LOG Meter/Detector: 3030 / N/A Date (MO/YR): Sept. 2021 Source Pre-Use Cal. Due Number Bkgd & Th - 230 Bkgd QC range (cpm) Source QC range (gcpm) 346227 a Source Meter 6/8/2022 Source a Source ID SAIC-0002 Alpha Beta Alpha Beta NA N/A Detector Checks in 2379 - 3567 SrY - 90 14 - 48 6278 - 9416 Alpha Inst Eff: 0.347 Avg Bkgd (cpm): 0.13 ß Source 0-2 Range Bkgd QC (cpm) B Source ID SAIC-0001 Source QC (gcpm) Beta Inst Eff: 0.39 Avg Bkgd (cpm): 31 Time Date Alpha Beta **HPT** Initial Comment Alpha Beta Sat/Unsat^a 9/20/2021 2015 0.1 30 7814 2953 Sat MS 9/22/2021 1950 MS 0.1 29 7868 2951 Sat 9/23/2021 1705 MS 0.1 33 7946 3008 Sat 9/27/2021 1909 0.1 33 MS 7797 2920 Sat

Reviewed By:

(RPM/Designee) Date: 10-6-2

Record unsatisfactory QC check(s) in the comment block and repeat the evaluation as necessary. Tag the instrument out of service and notify the RPM if the instrument will not meet criteria.

SURVEY LOCATION: S	Staten Is	sland							HSV	WP:	SI-2	1-001.0) P	age 1	of 1
PURPOSE OF SURVEY:			vev on	. Equipr	nent				- 1		DATE:	9/20/2		_	9:45
	Detector			ımber:	Т	Cal.	Due Da	ate	Back	groun	d: (CPM	(I	Effic	iency: ('	%)
Instrument Type(s):	Area (cm²)	mete	r	detecto	r 🖯	meter	de	tector	Alpha	ι (α)	Beta (β	γ) A	lpha (o	() Bet	α (βγ)
Ludlum 2929 / 43-10-1 NA	N/A	NA		NA		NA		NA	N/	4	NA		NA	1	NA N
Ludlum 2360 / 43-89 B	125	34553	32	39487	9	6/3/22	6.	/3/22	0.2		191		14.8%	27	.6%
Ludlum 2221 / 44-9 NA	15.5	NA		NA	\neg	NA		NA	N/	4	NA		NA	1	NA
Micro - R A	N/A	34726	52	NA		5/30/22		NA	N/	4	NA	u T	ŅA	1	NA .
														BKG	
Instrument MDA: (dpm/100cm²) α MDA βγ MDA α MDA 23 βγ MDA 195 4															
1 Generate	or								0	0	< MDA	200	9	< MDA	4
2 Air Samp	ler						_		0	0	< MDA	200	9	< MDA	4
3 Weed Wha	cker								0	0	< MDA	175	0	< MDA	4
4 Shears									0	0	< MDA	200	9	< MDA	4
5 Chainsa	w					1 1			0	0	< MDA	150	0	< MDA	4
6 Wood Chij	рег								0	0	< MDA	175	_ 0	< MDA	4
7						1								<u> </u>	
8								<u> </u>							
9														ļ	
10									I						
REMARKS: Notify RPM i	f any a	dminist	rative	limits	are ex	ceeded.	*Site	Limits a	re 600d	pm To	otal α+	β comb	ined.		
Scanned with	43-89	- Total o	and '	Total βγ	are ba	sed off	of dire	ct scans							
TECHNICIAN(S) SIGNAT	rure/	DATE:	Mu	a 5	heim	<u>. /</u>	10-6-	-21_					/		
REVIEWER SIGNATURE			CN	كن	<u>. X.</u>	1 1	9-6.	-21							

SURVEY LOCATION:	Staten I	sland							HSV	WP:	SI-2	1-001.0) Pa	ge 1	of 1
PURPOSE OF SURVEY	: Relea	se Surv	ey on	Equipm	ent						DATE	9/20/2	21 TIN	1E: 1	6:30
Instrument Type(s):	Detector	S	erial N	umber:		Cal.	Due Da	ite	Back	groun	d: (CPM	()	Efficie	ency: (°	%)
mstrument Type(s).	Area (cm²)	me	ter	detecto	or	meter	de	tector	Alpha	ι (α)	Beta (β	γ) Al	pha (α)	Bet	a (βγ)
Ludlum 2929 / 43-10-1 N	A N/A	N	Α	NA		NA		NA	N/	A	NA		NA		NA
Ludlum 2360 / 43-89 _1	125	345.	532	39487	9	6/3/22	6/	3/22	0.2		191		4.8%	27	.6%
Ludlum 2221 / 44-9 N	A 15.5	N.	A	NA		NA		NA	NA		NA		NA	1	NA .
Micro - R	N/A	347	262	NA		5/30/22]	NA	N/	4	NA	_ _	NA	1	IA.
Contamination Limits: (dpm/100c	m²)	Remo	vable α.	600*	-Remov	able β·	600*	Total c	χ	600*	Total β	γ _	600*	BKG
Instrument MDA: (dpm/100cm²) α MDA βγ MDA α MDA23 βγ MDA195 4														4_	
Gross CPM Net CPM pmv100cm gross CPM Net CPM pmv100cm gross CPM Net CPM pmv100cm gross CPM Net CPM pmv100cm													uR/hr		
1 Gener	itor								0	0	< MDA	150	0	< MDA	4
2 Air San	npler								0	0	< MDA	150	0	< MDA	4
3 Weed W	nacker								0	0	< MDA	200	9	< MDA	4
4 Shea	rs						/		0	0	< MDA	210	19	< MDA	4
5 Chain	iaw						<i>'</i>		0	0	< MDA	175	0	< MDA	4
6								$oxed{oxed}$							
7															
8															
9				1	I										
10															
REMARKS: Notify RPM	if any a	dminis	strativ	e limits	are ex	ceeded.	*Site I	Limits a	re 600d	pm T	otal α+	β comb	ined.		
Scanned with	ı 43-89 -	- Total	α and	Total β ₁	are ba	ased off	of dire	ct scans	•						
TECHNICIAN(S) SIGNA	ATURE/	DATE	: Wee	an Sl	un		10-6-						/		
REVIEWER SIGNATUR	E/DAT	E:		مسر	1	2/1	0-6-	-21					/		

SURVEY LOCATION:	Staten I	sland							HSV	VP:	SI-2	1-002	.0 Pa	ige I	of 1
PURPOSE OF SURVEY:	Releas	se Surv	ey on	Equipmo	ent						DATE	9/21	/21 TI	м <u>Е: 1</u>	7:00
Instrument Type(s):	Detector	Se	rial N	umber:		Cal. l	Due Da	ite	Back	grour	nd: (CPM	1)	Effici	ency: (%)
mistrument Type(s).	Area (cm²)	met	er	detecto	or	meter	de	tector	Alpha	(α)	Beta (B	(γ) A	Alpha (α) Beta	ι (βγ)
Ludlum 2929 / 43-10-1 NA	N/A	N/	A	NA		NA		NA	NA		NA		NA	N	IA .
Ludlum 2360 / 43-89 B	125	3455	32	39487	9	6/3/22	6/	6/3/22		2	191		14.8%	27	.6%
Ludlum 2221 / 44-9 NA	15.5	■ NA	1	NA		NA		NA	NA		NA		NA	N	JA .
Micro - R A	N/A	3472	262	NA		5/30/22		NA	N/	<u> </u>	NA		NA	N	IA
Contamination Limits: (dpm/100cm²) Removable α Removable β Removable β Total α Total α Total $\beta\gamma$ 60													600*	BKG	
Instrument MDA: (dpm/100cm²) α MDA βγ MDA α MDA βγ MDA 5															
Gross CPM Net CPM pmv100cm Dross CPM Net CPM pmv100cm Bross CPM Net CPM pmv100cm Bross CPM Net CPM pmv100cm														uR/hr	
													utviii		
1 Wood Chip	per								1	1	< MDA	200	9	< MDA	5
2 Air Sampl	er						Į.		0	0	< MDA	200	9	< MDA	5
3 Generato	r								0	0	< MDA	200	9	< MDA	4
4															
5						-									_
6															
7															
8					_										
9															
10															
REMARKS: Notify RPM if	any adr	ninistr	ative l	imits ar	e exce	eded. *	Site Li	nits are	600dpi	nα+	β combi	ned.			
Scanned with 43	3-89 7	otal α	and T	otal βγ a	re base	d off of	direct	scans.							
TECHNICIAN(S) SIGNATI	JRE/ D	ATE:	Me	<u>ar 5</u>	ynı	er 1	10-6	-21		<u></u>	1		/		
REVIEWER SIGNATURE/	DATE:		N	<u></u>	11	/	10-6	,-21	<u> </u>				_/_		

SURVEY LOCATION:	SURVEY LOCATION: Staten Island HSWP: SI-21-004.0 Page 1 of 1 PURPOSE OF SURVEY: Incoming Survey on Drill Rig DATE: 9/22/21 TIME: 9:45														
PURPOSE OF SURVEY:	Incom	ing Surve	ey on	Drill F	Rig						DATE:	9/22/	21 TI	ME:	9:45
Instrument Tyme(a):	Detector	Seria	al Nu	mber:		Cal. l	Due Da	ate	Back	groun	d: (CPM	1)	Effic	iency: (%)
Instrument Type(s):	Area (cm²)	meter		detect	or	meter	de	tector	Alpha	ι (α)	Beta (β	γ) Α	lpha (o) Bet	a (βγ)
Ludlum 2360 / 43-89 B	125	345532	2	39487	9	6/3/22	6.	/3/22	0.2	2	191		14.8%	27	.6%
Ludlum 2360 / 43-89 B	125	345532	2	39487	9	6/3/22	6.	6/3/22		2	191		14.8%	27	.6%
Ludlum 2221 / 44-9 NA	15.5	NA		NA		NA		NA	N/	4	NA		NA	1	NA
Micro - R A	N/A	347262	2	NA		5/30/22		NA	N/	4	NA		NA	1	NA
														BKG	
Instrument MDA: (dpm/100cm²) α MDA 23 βγ MDA 195 α MDA 23 βγ MDA 195 4															
Sample Description / Location															
1 Right Track 0 0 < MDA 143 0 < MDA 0 0 < MDA 200 9 < MDA 4															
2 Augers Con	posite		1	1	< MD	A 186	0	< MDA	0	0	< MDA	150	0	< MDA	4
3 Left Tra	ck	- 1	0	0	< MD	A 219	28	< MDA	0_	0_	< MDA	200	9	< MDA	5
4 Control Pa	inels		0	0	< MD	A 193	2	< MDA	0	0	< MDA	250	59	< MDA	4
5 Drill Ar	ms		2	2	< MD	A 209	18	< MDA	0	0	< MDA	200	9	< MDA	5
6 Drill Bo	dy		0	0	< MD	A 190	0	< MDA	0	0	< MDA	150	0	< MDA	4
7	-														
8															
9			_												
10															
REMARKS: Notify RPM										pmTo	tal $\alpha + $	3 comb	ined.		
Scanned with	43-89	Total α	and T	otal βη	are b	ased off	of dire	ct scans	<u> </u>						
TECHNICIAN(S) SIGNA	TURE/	DATE: №	ly	عبه	Sheri		10-6						/	_	
REVIEWER SIGNATURI	E/ DATI	2_ :E	77		لمت	3/ /	10-6	-21							

SURVEY LOCATION: Staten Island HSWP: SI-21-004.0 Page 1 of 1 PURPOSE OF SURVEY: Incoming Survey on Equipment DATE: 9/22/21 TIME: 8:00															
PURPOSE OF SURVEY:			rueu o	n Equip	ment				ļīīb (****					8:00
TORIOSE OF SURVEY.	Detector			umber:	IIICIR	Cal	Due Da	ıta	Back	arour	id: (CPM		-	iency: (
Instrument Type(s):	Area	30	Т						Alpha		Beta (β		lpha (c		a (βγ)
Ludlum 2929 / 43-10-1 N	(cm²)	met		detecto	31	meter	_	ector	Alpha		NA	(Y) A	•		
Ludlum 2360 / 43-89 B	_ 14/7	N/		NA		NA		NA					NA		VA
	_ 123	3455		39487	9	6/3/22		6/3/22		2	191	+	14.8%		7.6%
	_ 15.5	N/		NA	-	NA	_	NA		A	NA	_	NA		NA .
Micro - R A	N/A	3472	1	NA		5/30/22		NA	N/	<u> </u>	NA		NA		VA
														BKG	
Instrument MDA: (dpm/100cm²) α MDA βγ MDA α MDA 3 βγ MDA 4															
Sample Gross CPM Net CPM pmv100cnGross CPM Net CPM pmv100cnGross CPM Net CPM pmv100cnGross CPM Net CPM pmv100cn														uR/hr	
1 Folding	able								0	0	< MDA	250	59	< MDA	5
2 Handheld Air	Monitor								0	0	< MDA	200	9	< MDA	4
3 Tape Mea	surer								0	0	< MDA	200	9	< MDA	5
4 Downhole Logg	er Detecto	r							0	0	< MDA	225	34	< MDA	4
5 Downhole Logge	r Cart/Equ	ip							0	0	< MDA	200	9	< MDA	5
6 2" PVC	Pipes								0	0	< MDA	175	0	< MDA	4
7															
8			-	-	_										
9															
10												-			
REMARKS: Notify RPM i	f any adı	ministr	ative l	imits a	re ex	ceeded. *	Site Lin	nits are	600dpn	1 Tota	$1\alpha + \beta c$	ombine	ed.		
Scanned with	Scanned with 43-89 Total α and Total βγ are based off of direct scans.														
TECHNICIAN(S) SIGNA	TECHNICIAN(S) SIGNATURE/ DATE: Muga Thurne / 10-6-21														
REVIEWER SIGNATURI			N	5-0	رز	_	10-6	-21					/_		

SURVEY LOCATION:	Staten I	sland							HSV	VP:	SI-2	1-004.0) Pa	ge l	of 1
PURPOSE OF SURVEY	: Relea	se Surv	ey on	Equipme	ent						DATE:	9/22/	21 TIN	1E: 1	7:30
Instrument Type(s):	Detector	Se	erial N	umber:		Cal.	Due Da	te	Back	groun	ıd: (CPM	I)	Efficie	ency: (9	%)
instrument Type(s).	Area (cm²)	me	ter	detecto	or	meter	det	ector	Alpha	(α)	Beta (β	γ) Al	pha (α)	Beta	a (βγ)
Ludlum 2929 / 43-10-1 N	N/A	N.	Α	NA		NA	1	NA_	N/	7 =	NA		NA	l I	JA
Ludlum 2360 / 43-89 B	125	3455	532	39487	9	6/3/22	6/.	3/22	0.2	2	191		14.8%	27	.6%
Ludlum 2221 / 44-9 N	15.5	N.	A	NA		NA	1	NA_	N/	<u> </u>	NA		NA_	N	IA.
Micro - R A	N/A	3472	262	NA		5/30/22	1	NΑ	N/	<u> </u>	NA		NA	<u> </u>	۱A
Contamination Limits: (lpm/100ci	m²)	Remo	vable α.	600*	Remov	able βγ	600*	Total c	Ĺ	600*	Total f	βγ -	600*	BKG
Instrument MDA: (dp	m/100cm²)	αM			_ By MD	Α		α MD		23	βγ MD	A .	195	_5_
Sample Description / Location													uR/hr		
1 Air Sampler													5		
2 Genera	tor								0	0	< MDA	200	9	< MDA	5
3 Handheld Air	Monitor								0	0	< MDA	175	0	< MDA	4
4 PPE and Tras	sh Bag**								0	0	< MDA	250	59	< MDA	5
5 Downhole logg	er detecto	r							0	0	< MDA	200	9	< MDA	5
6 Downhole logge	r Cart/Equ	ip							0	0	< MDA	200	9	< MDA	5
7														1	
8									=						
9]
10															
REMARKS: Notify RPM	if any ac	lminis	trativ	e limits a	are ex	ceeded.	*Site Li	mits are	600dp	m Tot	al $\alpha + \beta$	combin	ed.		
	Scanned with 43-89 Total α and Total βγ are based off of direct scans. **All PPE scanned as workers left Restricted														
Area															
	ECHNICIAN(S) SIGNATURE/ DATE: Nugar Shyme /10-6-21 /														
REVIEWER SIGNATUR	E/ DATE	3: <u> </u>			<u>لان</u>	/ [U -6-0	<u> </u>					/		

SURV	EY LOCATIO	N: 5	Staten I	sland		·	-			<u></u>	HSV	WP:	SI-2	21-00	4.0	Page	e 1	of 1
PURP	OSE OF SUR	√EY	: Limite	ed Qua	ntity								DATE	: 9/2	2/21	TIMI	Ξ: 1	7:30
Inctr	ument Type(s)		Detector	Se	erial N	umber:		Cal.	Due Da	te	Back	grour	nd: (CPN	1)	E	ficien	cy: (9	%)
шы	ument Type(s)	•	Area (cm²)	me	er	detect	or	meter	det	ector	Alpha	ι (α)	Beta (f	βγ)	Alpha	ι (α)	Bet	a (βγ)
Ludlı	ım 2360 / 43-89	В	125	345	532	39487	9	6/3/22	6/	3/22	0.:	2	191		14.8	8%	27	.6%
Ludlu	ım 2360 / 43-89	NA	125	N.	4	NA	_	NA	1	NΑ	N/	4	NA	\perp	N/	Α	1	NA
Ludlu	ım 2221 / 44-9	<u>NA</u>	15.5	N.	4	NA		NA	1	NΑ	N/	4	NA	_	N/	4		NA
Micro	o - R	<u>A</u>	N/A	3472	262	NA		5/30/22	1	VΑ	N/	4	NA		Ŋ.	4		NA
– Con	tamination Limi	ts: (d	 pm/100a	rm²)	 Remo	vable α	240	Remo	vable βγ	2400	Total (χ	600*	Tota	1 βγ	6	00*	BKG
	strument MDA:				α ΜΙ		23	βγ ΜΙ		_195_	α MD.			βγ Ν				4
Sample Description / Location														uR/hr				
No. Removable Re													5					
2																		
3	_																	
4	-																	
5																		
6													1 1		\perp			1
7_	Ā					ļ		<u> </u>										
8																		
9								ļ										
10																		
REMAI	EMARKS: Notify RPM if any administrative limits are exceeded. *Site Limits are 600dpm Total α + β combined.																	
	Shipping survey on sample cooler from drilling activities on 9-22-21																	
TECH	VICIAN(S) SIG	GNA	TURE	/ DATI	My	كتمر	hurn		10-6-									
REVIE	WER SIGNAT	ΓUR	E/DA	ΓE: _	cl	hai	1	/ /	0-6-	み					/			

SURVEY LOCATION:	Staten I	sland								HSV	VP:	SI-2	21-002	.0 P	age 1	of 1
PURPOSE OF SURVEY:	Incom	ing Su	rvey o	n Equip	ment							DATE	9/23	/21 TI	ME:	8:00
Instrument Type(s):	Detector	S	erial N	umber:		Ca	l. D	ue Dat	te	Back	groun	d: (CPM	1)	Effic	iency: ('	%)
mstrument Type(s).	Area (cm²)	me	ter	detecte	or	meter		dete	ector	Alpha	ι (α)	Beta (f	(γ) A	Alpha (c) Bet	a (βγ)
Ludlum 2929 / 43-10-1 NA	N/A	N.	A	NA		NA		N	JA	N/	X	NA		NA	1	NΑ
Ludlum 2360 / 43-89 B	125	345:	532	39487	9	6/3/22	2	6/3	3/22	0.2	2	191	T	14.8%	27	.6%
Ludlum 2221 / 44-9 NA	15.5	N.	A	NA		NA		N	IA	N/	4	NA		NA	1	١A
Micro - R A	N/A	347	262	NA		5/30/2	2	N	IA	N/	A	NA		NA	1	NA .
Contamination Limits: (d	pm/100ci	m²)	Remo	vable α	600*	Remo	ovat	ole By.	600*	Total c	l.	600*	Total	βγ	600*	BKG
Instrument MDA: (dpm/100cm²) α MDA βγ MDA α MDA β														DA	_195	5
Sample No. Description /			α	M Net CPM α okRemovable	α	B		_B	В	α	Net CPM α Total	/I pm/100en α Total	Gross CP B Total	M Net CPM 	lpm/100cm β Total	uR/hr
1 Hydrographi	c Boat									0	0	< MDA			< MDA	4
2 Hydrographic Co	ntrol Pane	els								0	0	< MDA	200	9	< MDA	5
3 Hydrographic	Laptop									0	0	< MDA	170	0	< MDA	4
4 Surveyor La	aptop						\top			0	0	< MDA	225	34	< MDA	5
5 Surveyor (GPS									1	1	< MDA	200	9	< MDA	5
6 Surveyor GP	S Pole						1			0	0	< MDA	200	9	< MDA	5
7 Downhole Logge	r Detecto	or								0	0	< MDA	200	9	< MDA	5
8 Downhole Logger	Cart/Equ	iip								0	0	< MDA	150	0	< MDA	5
9 2" PVC P	ipes	_								_ 2	2	< MDA	275	84	243	5
10	-	-														
REMARKS: Notify RPM i	EMARKS: Notify RPM if any administrative limits are exceeded. *Site Limits are 600dpm Total α + β combined.															
Scanned with	Scanned with 43-89 Total α and Total βγ are based off of direct scans.															
TECHNICIAN(S) SIGNAT	CHNICIAN(S) SIGNATURE/ DATE: Myan Sharmen /10-6-21 /															
REVIEWER SIGNATURE	/ DATE	Ξ: _		مرر	li	./	10	-6-	2)					/		

SURVEY LO	CATION:	Staten I					JORON			HSV	WP:	SI-2	21-004.	0 F	age I	of 1
PURPOSE OF				ey on	Drill Ri	g						DATE	9/23/			15:00
		Detector		erial N			Cal.	Due Da	ate	Back	groun	d: (CPN	f)		ciency: (%)
Instrument	Type(s):	Area (cm²)	me	ter	detect	or	meter	de	tector	Alpha		Beta (B		lpha (d		α (βγ)
Ludlum 2360 /	43-89 B	125	345	532	39487	19	6/3/22	6.	/3/22	0.2	Î	191		14.8%		7.6%
Ludlum 2360 /	43-89 B	125	345	532	39487	19	6/3/22	6,	/3/22	0.2	2	191		14.8%	27	7.6%
Ludlum 2221 /	44-9 NA	15.5	N.	A	NA		NA		NA	N/	4	NA		NA]	NA
Micro - R	A	N/A	3472	262	NA		5/30/22		NA	N/	4	NA		NA]	NA
Contaminati	on Limits: (d	pm/100c	m²)	Remo	vable α	600*	Remov	able β^	600*	Total o	χ	600*	Total	3γ	600*	BKG
Instrumen	Instrument MDA: (dpm/100cm²) α MDA 23 βγ MDA 195 α MDA 23 βγ MDA 195 5 Sample Gross CPM Net CPM pm/100cm Gross CPM Net CPM pm/1															
Sample No. Description / Location Company Compan															uR/hr	
No. Removable Re														5		
2	Augers Con	posite		= 1	_ I _	< MD	A 182	0	< MDA	0	0	< MDA	200	9	< MDA	. 5
3	Left Tra	ck		0	0	< MD	A 179	0	< MDA	0	0	< MDA	250	59	< MDA	6
4	Control Pa	anels		0	0	< MD	A 202	11	< MDA	0	0	< MDA	200	9	< MDA	5
. 5	Drill Ar	ms		0	0	< MD	A 193	2	< MDA	0	0	< MDA	175	0	< MDA	5
6	Drill Bo	dy		1	1	< MDA	A 201	10	< MDA	0	0	< MDA	200	9	< MDA	5
7																
8						-										
9													W			
10					1 1										-	
REMARKS: No											dpm T	'otal α+	β com	bined.		
	Scanned with 43-89 Total α and Total βγ are based off of direct scans.															
TECHNICIAN	(S) SIGNA	TURE/	DATE	Mu	ion	Shy		10-10						/	<u> </u>	
REVIEWER S	IGNATUR	E/DAT	<u>E: _</u>		<u>~</u>	<u>ىن</u>	\·/	10-6	· 구							

SURVEY LOCATION:	Staten I	sland							HSV	VP:	SI-2	1-002.0) Pa	ge 1	of 2
PURPOSE OF SURVEY:	Relea	se Surv	ey on l	Equipm	ent						DATE	9/23/	21 TIN	⁄ΙΕ: 1	6:45
Instrument Type(s):	Detector	Se	erial Nu	umber:		Cal.	Due Dat	e	Back	groun	d: (CPN	1)	Effici	ency: (%)
mstrument Type(s).	Area (cm²)	me	ter	detect	or	meter	dete	ector	Alpha	(α)	Beta (B	γ) A	lpha (α)	Bet	a (βγ)
Ludlum 2929 / 43-10-1 NA	N/A	N.	A	NA	×	NA	N	ΙΑ	N/	4	NA		NA	1	NA .
Ludlum 2360 / 43-89 B	125	345	532	39487	9	6/3/22	6/3	/22	0.2	2	191		14.8%	27	.6%
Ludlum 2221 / 44-9 NA	15.5	N.	A	NA		NA	N	ΙA	N/	4	NA		NA	1	NA
Micro - R A	N/A	3472	262	NA	_ [4	5/30/22	N	Α	N/	<u> </u>	NA		NA	1	JA
Contamination Limits: (d	pm/100c	m²)	Remov	vable α	600*	Remov	able βγ.	600*	Total o	ć.	600*	Total f	βγ .	600*	BKG
Instrument MDA: (dpm/100cm²) α MDA βγ MDA α MDA βγ MDA 5															
Sample Description / Location Canara C														uR/hr	
No. Removable Removable Removable Removable Removable Total Total Total Total Total Total Total														5	
2 Hydrographic Co	ntrol Pan	els							0	0	< MDA	175	0	< MDA	5
3 Hydrographic	Laptop								0	0	< MDA	150	0	< MDA	5
4 Surveyor L	aptop								0	0	< MDA	200	9	< MDA	4
5 Surveyor	GPS								1	1	< MDA	200	9	< MDA	5
6 Surveyor GP	S Pole								0	0	< MDA	225	34	< MDA	5
7 Handheld Air	Monitor								0	0	< MDA	200	9	< MDA	5
8 Air Samp	oler				177				0	0	< MDA	175	0	< MDA	6
9 Generat	or								0	0	< MDA	250	59	< MDA	5
10 Folding Ta	able								0	0	< MDA	200	9	< MDA	5
REMARKS: Notify RPM i	EMARKS: Notify RPM if any administrative limits are exceeded. *Site Limits are 600dpm Total $\alpha + \beta$ combined.														
Scanned with 43-89 Total α and Total $\beta\gamma$ are based off of direct scans.															
TECHNICIAN(S) SIGNA	ECHNICIAN(S) SIGNATURE/DATE: Muan home /10-6-21 /														
REVIEWER SIGNATURI	E/ DAT	E: _	W	مرر	<u> بلن</u>	/ 18	1-6-2	<u> </u>					_/_		

LEIDOS RADIOLOGICAL SURVEY REPORT (Supplement)

	LEIDOS F	CIDIC	<u> </u>		JUN	VEI I		T (D)	прыс	inchie)				
SURV	EY LOCATION Staten Island											Pa	age 2	of 2
Admi	inistrative Contamination Limits: (dpm/100cm²)	Remov	able α	600*	Remov	zable βγ ₋	600*	Total o	χ	600*	Total ß	βγ	600*	BKG
Instrum	nent MDA: (dpm/100cm²)	αMDA	Α.		βγΜΕ			α MDA		23	βγ MD		195	5
Sample No.	Description / Location	α	α	α	В	Net CPM } Removable	ľβ	α	Net CPM CX Total	Ipin/100cm Ct Total	Gross CPM } Total	Net CPM } Total	pπ/100cn β Total	uR/hr
11	Downhole Logger Detector							0	0	< MDA	200	9	< MDA	5
12	Downhole Logger Cart/Equip							0	0	< MDA	200	9	< MDA	5
13	PPE and Trash Bag**							0	0	< MDA	225	34	< MDA	6
14														
15														
16			1											
17														
18														
19														
20														
21												Ē		
22														
23														\Box
24														
25														
REMA	RKS: Notify RPM if any admii	nistrati [,]	ve limi	ts are e	xceede	d. *Site	Limits	are 600	dpm To	otal α+	β com	oined.		
	Scanned with 43-89 Tot												t Restri	cted
1	Area			•										
TECH	—— NICIAN(S) SIGNATURE/ DAT	1 Mu	احما	Shur	me 1	10-6-	21							
		2		5	1 2	0-6-	91			1		/_		

SURVEY LOCATION:	Staten 1	sland							HSV	WP:	SI-2	21-00)4.0	Page	: 1	of 1
PURPOSE OF SURVE	Y Limit	ed_Qua	ntity								DATE	: 9/2	23/21	TIME	i: 1	6:20
Instrument Type(s):	Detector	S	erial N	umber:		Cal.	Due D	ate	Back	cgroui	nd: (CPN	1)	Ef	ficien	су: ('	%)
mstrument Type(s).	Area (cm²)	me	ter	detect	or	meter	de	tector	Alpha	ı (α)	Beta (37)	Alpha	(α)	Beta	a (βγ)
Ludlum 2360 / 43-89 B	125	345	532	39487	19	6/3/22	6	/3/22	0.:	2	191		14.8	%	27	.6%
Ludlum 2360 / 43-89 NA	125	N.	A	NA		NA		NA	N/	4	NA		NA		N	NΑ
Ludlum 2221 / 44-9 NA	15.5	N.	A	NA		NA		NA	N/	4	NA		NA		1	NA
Micro - R A	N/A	347	262	NA		5/30/22		NA	N/	4	NA		NA		N	NA.
Contamination Limits: (dnm/100	em²)	Remo	vable α	240	_Remov	ahle ß⁴	2400	Total o	γ	600*	Tota	al Rv	6	00*	BKG
Instrument MDA: (dp			αMI		23_	βγ ΜΙ		195	α MD			1	иDA			4
Sample Description / Location α α α β β β α α α β β β μR/h																
No. Description / Location (a d d p p p d d d d p p p d d d d p p p d d d d p p p d d d d d p p p d d d d d p p p d																
1 Cooler #2 0 0 < MDA 178 0 < MDA 4														4		
2													_			
3											<u> </u>					
4																
5										_				1		
6					_											
7	- 0												=			
8			1				Ì									
9																
10															\neg	
REMARKS: Notify RPM	I if any	admin	istrati	ve limit	s are	xceede	1. *Site	Limits	are 600)dpm	Total α ·	+ β co	ombine	d.		
Shipping sur	EMARKS: Notify RPM if any administrative limits are exceeded. *Site Limits are 600dpm Total α + β combined. Shipping survey on sample cooler from drilling activities on 9-23-21															
TECHNICIAN(S) SIGN	ATURE	/ DAT	N	uan	She	rme/	10-6	-21						/		
REVIEWER SIGNATU	RE/ DA	ГЕ:	No		hi	. / /	0-6	-21					/			

SURVEY LOCATION:	Staten I	sland							HSV	VP:	SI-2	21-002.	0 Pa	ige 1	of 1
PURPOSE OF SURVEY:	Incom	ing Su	rvey o	n Equipi	nent						DATE	9/24/	21 TII	ME:	3:00
Instrument Type(s):	Detector	Se	erial N	umber:		Cal. l	Due Da	ıte	Back	groun	d: (CPN	1)	Effici	ency: (%)
mstrument Type(s).	Area (cm²)	_ me	ter	detecto	or	meter	de	tector	Alpha	ι (α)	Beta (B	γ) A	lpha (α) Beta	a (βγ)
Ludlum 2929 / 43-10-1 NA	N/A	N.	A	NA		NA		NA	N/	A	NA	- [NA	1	IA.
Ludlum 2360 / 43-89 B	125	345	532	39487	9	6/3/22	6/	3/22	0.2	2	191		14.8%	27	.6%
Ludlum 2221 / 44-9 NA	15.5	N	A	NA		NA]	NA	N/	4	NA		NA	N	JA
Micro - R A	N/A	3472	262	NA		5/30/22		NA	N/	4	NA		NA	I	IA.
Contamination Limits: (d	om/100er	n²)	Remo	vable α.	600*	Remova	able B	600*	Total c	χ	600*	Total (3γ_	600*	BKG
Instrument MDA: (dpn			α ΜΙ			βγMD			α MD		23	βγ ΜΕ		195	5
Sample No. Description / I			α	α	α	nGross CPM β I Removable	Net CPM B	ľβ	Gross CPM α		/ Ipm/100cm α Total	Gross CPN B Total	Net CPM } Total	pm/100cm } Total	uR/hr
Post Hole D	igger								0	0	< MDA		9	< MDA	5
2 Hand Auger an	d T-Bar								2	2	< MDA	225	34	< MDA	5
3 Trowel									0	0	< MDA	175	0	< MDA	5
4 Downhole Logge	r Detecto	r						1	0	0	< MDA	200	9	< MDA	5
5 Downhole Logger	Cart/Equ	ip							0	0	< MDA	200	9	< MDA	5
6															
7		-	_												
8	· · · ·														
9											-				
10															
REMARKS: Notify RPM if	EMARKS: Notify RPM if any administrative limits are exceeded. *Site Limits are 600dpm Total α + β combined.														
Scanned with 4	Scanned with 43-89 Total α and Total βγ are based off of direct scans.														
TECHNICIAN(S) SIGNAT	CHNICIAN(S) SIGNATURE/ DATE: Meyor Shynne /10-6-21														
REVIEWER SIGNATURE	/ DATE	:	7	5	لن	, / /	0-6	-21					/		

	*	•													
SURVEY LOCATION:	Staten I	sland						. <u> </u>	HSV	WP:	SI-2	1-004.) P	age 1	of 1
PURPOSE OF SURVE			rvey or	Excav	ator						DATE	9/24/	21 TI	ME:	8:00
Instrument Type(s):	Detector	Se	erial Nu	ımber:		Cal.	Due Da	te	Back	groun	d: (CPM	()	Effic	iency: (%)
mistrument Type(s).	Area (cm²)	me	ter	detect	or	meter	det	ector	Alpha	ι (α)	Beta (B	γ) A	lpha (c	ι) Bet	a (βγ)
Ludlum 2360 / 43-89 E	125	345	532	39487	19	6/3/22	6/	3/22	0.2	2	191		14.8%	27	.6%
Ludlum 2360 / 43-89 E	125	345	532	39487	19	6/3/22	6/	3/22	0.2	2	191		14.8%	27	.6%
Ludlum 2221 / 44-9 N.	A 15.5	N.	A	NA		NA	1	٧A	N/	4	NA		NA	1	٧A
Micro - R A	N/A	3472	262	NA		5/30/22	1	٧A	N/	4	NA		NA	1	VA.
Contamination Limits: (dpm/100c	:m²)	Remov	/able α	600*	Remov	able βγ	600*	Total o	X.	600*	Total [βγ	600*	BKG
Instrument MDA: (dpm/100cm²) α MDA 23 βγ MDA 195 α MDA 23 βγ MDA 195 4															4
														uR/hr	
No. Removable Re														< MDA	4
2 Back Sta	balizer		1	ı	< MDA	150	0	< MDA	0	0	< MDA	200	9	< MDA	4
3 Left T	rack		1	1	< MDA	154	0	< MDA	0	0	< MDA	150	0	< MDA	4
4 Cock	pit		1	1	< MDA	172	0	< MDA	0	0	< MDA	200	9	< MDA	4
5 Interior I	Bucket		1	1	< MDA	267	76	275	0	0	< MDA	175	0	< MDA	4
6 Exterior	Bucket		0	0	< MDA	156	0	< MDA	0	0	< MDA	200	9	< MDA	4
7										- "					
8				-						_					
9											167				
10														-	
REMARKS: Notify RPM	I if any a	dmini	strativ	e limits	are ex	ceeded	*Site I	imits a	re 600d	pm To	$\alpha + \beta$	comb	ned.		
Scanned wit	Scanned with 43-89 Total α and Total βγ are based off of direct scans.														
TECHNICIAN(S) SIGN.	ECHNICIAN(S) SIGNATURE/ DATE Mayor Shyrmer /10-6-21														
			2	<u></u>	٠٨٠.		10-6-						/		
	EVIEWER SIGNATURE/ DATE:														

SURV	EY LOCATION:	Staten Is	land							HSV	VP:	SI-2	21-002	.0 P	age I	of I
PURP	OSE OF SURVEY:	Release	e on Eq	uipme	nt							DATE	9/24	/21 TI	ME: 1	6:30
Inc	trument Type(s):	Detector	Se	rial N	ımber:		Cal.	Due Da	te	Back	grour	ıd: (CPN	1)	Effic	iency: (%)
1113	trument Type(s).	Area (cm²)	met	er	detecto	or	meter	de	ector	Alpha	ι (α)	Beta (ß	(y) A	Alpha (c	α) Bet	a (βγ)
Ludl	um 2929 / 43-10-1 <u>NA</u>	N/A	N/	\	NA		NA		NA	N/	A	NA		NA	1	NA .
Ludli	um 2360 / 43-89 <u>B</u>	125	3455	32	39487	9	6/3/22	6/	3/22	0.2	2	191		14.8%	27	.6%
Ludl	um 2221 / 44-9 <u>NA</u>	15.5	N/	1	NA		NA]	NA	N/	Α	NA		NA	1	١A
Micro	o - R <u>A</u>	N/A	3472	62	NA		5/30/22		ŊĄ	N/	4	NA		NA	1	JA_
Co	ontamination Limits: (d	pm/100cr	n²)	Remo	vable α.	600*	_Remov	able βγ	600*	Total c	χ	600*	Total	βγ	600*	BKG
	Instrument MDA: (dpr	n/100cm²)		αΜΙ)A		_ By MD	Α		α MD		23	βγ Μ	DA	195	5
Sample No.	Description /	Location	1	α	α	α	nGross CPM B pl Removable	β	β	α	Net CPI	vi ipm/100cm Ct Total	Fross CP β Total	M Net CPN β Total	l pm/100cn β Total	uR/hr
1	Post Hole I	Digger	11				1			0	0	< MDA	200	9	< MDA	5 –
2	Hand Auger a	nd T-Bar								2	2	< MDA	225	34	< MDA	5
3	Trowe	1								0	0	< MDA	175	0	< MDA	5
4	PPE and Tras	h Bag**								0	0	< MDA	200	9	< MDA	5
5	Air Samp	oler								0	0	< MDA	200	9	< MDA	5
6	Generat	or								0	0	< MDA	200	9	< MDA	5
7	Downhole Logge	er Detecto	r							0	0	< MDA	225	34	< MDA	4
8	Downhole Logger	r Cart/Equ	ip							1	1	< MDA	150	0	< MDA	5
9																
10					<u>.</u>								-			
REMA	EMARKS: Notify RPM if any administrative limits are exceeded. *Site Limits are 600dpm Total α + β combined.															
	Scanned with 43-89 Total α and Total βγ are based off of direct scans. **All PPE scanned as workers left Restricted Area															
TECHI	CHNICIAN(S) SIGNATURE/DATE: Negan Stume / 10-6-21															
REVIE	IEWER SIGNATURE/ DATE: / 10-6-3															

			- 444		JIGIL	/IUL	J G I O 2	AL SU	IX (D)	1001	O I C A	· · · · · · · · · · · · · · · · · · ·				
SURV	EY LOCATION:	Staten Is	sland				_			HSV	WP:	SI-2	21-004.	0 P	age 1	of 1
PURP	OSE OF SURVEY	Surve	y for R	elease	on Exca	avator						DATE	9/24/	21 TI	ME:	16:30
Inctr	ument Type(s):	Detector	Se	erial Nu	ımber:		Cal.	Due Da	te	Back	grour	ıd: (CPM	1)	Effic	iency: (%)
шы	ument Type(s).	Area (cm²)	me	ter	detect	or	meter	det	ector	Alpha	ι (α)	Beta (B	βy) A	lpha (c	x) Bet	a (βγ)
Ludlu	ım 2360 / 43-89 <u>B</u>	125	345	532	39487	9	6/3/22	6/3	3/22	0.2	2	191		14.8%	27	7.6%
Ludli	ım 2360 / 43-89 <u>B</u>	125	345	532	39487	9	6/3/22	6/3	3/22	0.2	2	191		14.8%	27	7.6%
Ludlu	ım 2221 / 44-9 <u>NA</u>	15.5	N.	A	NA		NA	N	١A	N.	4	NA		NA	1	NA
✓ Micro	o - R <u>A</u>	N/A	3472	262	NA	4	5/30/22	N	١A	N/	1	NA		NA	1	NA
Com	tamination Limits: (d	lpm/100-	2)	Remo	vable α	600*	Remov	able βγ	600*	Total c	v	600*	Total	3v	600*	BKG
	strument MDA: (dpi			α ΜΕ		23	βγ MD		195	α MD		23	βγ ΜΕ		195	4
Sample				Gross CPI	Net CPM	pnv100cn		Net CPM		Gross CPN	Net CP	VI pnv 100cm	iross CPN	Net CPN	1 pnv 100cn	
No.	Description /	Locatio	n	Ct Removabl	α Removabl	α Removabl	P Removable	β Removable	P Removable	α Total	α Total	α Total	β Total	β Total	β Total	uR/hr
1	Right Tr	ack		0	0	< MDA	189	0	< MDA	0	0	< MDA	215	24	< MDA	4
2	Back Stab	alizer		0	0	< MDA	248	57	207	2	2	< MDA	302	111	322	4
3	Left Tra	ick		1	1	< MDA	176	0	< MDA	1	1	< MDA	156	0	< MDA	4
4	Cockp	it		- 1	1	< MDA	167	0	< MDA	0	0	< MDA	200	9	< MDA	4
5	Interior B	ucket		0	0	< MDA	159	0	< MDA	2	2	< MDA	187	0	< MDA	4
6	Exterior B	ucket		0	0	< MDA	181	0	< MDA	0	0	< MDA	158	0	< MDA	4
7									- 1							
8																
9	· · ·									-						
10									-11							
REMA	RKS: Notify RPM	if any a	admin	istrativ	ve limit	s are ex	cceeded	l. *Site l	Limits a	re 600c	lpm T	otal α+	βcom	oined.		
	Scanned with	1 43-89	Tota	ıl α and	l Total	3γ are b	ased of	f of dire	ct scans	5.						1
TECHI	NICIAN(S) SIGNA	TURE	/ DAT	ML	Ucm	Shan	100 /	10-6-7	21					/	,	
	WER SIGNATUR			()	ک	الت		0-6-	71					/		

SURVEY LOCATION:	Staten 1	sland							HSV	WP:	SI-2	21-004	.0 P	age 1	of 1
PURPOSE OF SURVEY	7: Limit	ed Qua	ntity								DATE	: 9/24	/21 TI	ME: 1	7:00
Instrument Type(s):	Detector	S	erial N	umber:		Cal.	Due Da	te	Back	grour	nd: (CPN	1)	Effic	iency: (%)
mstrument Type(s).	Area (cm²)	me	ter	detect	or	meter	det	ector	Alpha	ı (α)	Beta (£	(γ) A	Alpha (c	ι) Bet	a (βγ)
Ludlum 3030 B	N/A	346	227	_ NA		6/8/22	1	NΑ	0.	ı	31		34.7%	39	0.0%
Ludlum 2360 / 43-89 NA	125	N.	A	NA		NA	1	NA	N/	Ą	NA		NA]	NA
Ludlum 2221 / 44-9 NA	15.5	N.	A	NA		NA	1	١A	N/	4	- NA		NA]	NA
Micro - R A	N/A	347	262	NA	4	5/30/22	1	١A	N/	4	NA		NA	1	٧A
Contamination Limites	J/100	2\	Pamoi	vable α.	240	Domos	able βγ	2400	Total o		600*	Total	R ₂₄	600*	BKG
Contamination Limits: (α ΜΙ		12	βγ ΜΕ		57	α MD			 			5
Sample Description / Location α α α β β β α α α β β α α α β β β α α α α β β β α α α α β β α α α β β α α α β β β α α α α β β β α α α α β β β α α α															
Description / Location α α α β β β α α α β β β uR/hr No. Removable Removab															
No. Removable Re															
2 Cooler	#2		0	0	< MDA	22	0	< MDA							6
3 Cooler	#3		0	0	< MDA	27	0	< MDA							15
4 Cooler	#4		0	0	< MDA	30	0	< MDA							7
5 Cooler	#5		0	0	< MDA	25	0	< MDA							8
6															
7		-					1								-
8															
9	•							1							
10		•													
REMARKS: Notify RPM	MARKS: Notify RPM if any administrative limits are exceeded. *Site Limits are 600dpm Total α + β combined.														
Shipping sur	Shipping survey on sample cooler from test pit and sampling activities on 9-24-21														
TECHNICIAN(S) SIGNA	CHNICIAN(S) SIGNATURE/DATE Weyon Shume /10-6-21 /														
	VIEWER SIGNATURE/ DATE: 10-6-21 /														

SURVEY LOCATION: Staten Island												SI-2	1-002.	0 Pa	ige 1	of 1	
PURPOSE OF SURVEY: Incoming Survey on Equipment DATE: 9/27/21 TIME: 8:00															8:00		
Instrument Type(s):	Detector	Se	erial Number:			Cal. Due Date				Background: (CPM)		(I)	Efficiency: (%)				
mstrument Type(s).	Area (cm²)			er detector		meter		detector		Alpha (α)		Beta (f	iγ) A	Alpha (α)		Beta (βγ)	
Ludlum 2929 / 43-10-1 NA	N/A	VA N		NA		NA		NA		NA		NA		NA		NA	
Ludlum 2360 / 43-89 B	125	345	532	394879		6/3/22		6/3/22		0.2		191		14.8%		27.6%	
Ludlum 2221 / 44-9 NA	15.5	N.	A	NA		NA		NA		NA		NA		NA		NA	
Micro - R A	N/A	347262		NA		5/30/22		NA		NA		NA		NA		NA	
Contamination Limits: (d	····2)	Remo	lemovable α 600		* Der	Removabl		le βγ <u>600*</u>		Total α		Total	tal βγ 6		BKG		
		α MDA		βγ MDA				α MDA		23	βγΜΙ			5			
Sample Description / Leasting				M Net CPM		Och Gross	CPM N	Vet CPM		Jross CPN	Net CP	M pnv100cn	iross CPI	Net CPM	*		
No. Description / Location			α Removal	α olcRemovable	α Remov	ableRemo	-	β emovable,	β Removable	α Total	Ct Total	α Total	β Total	β Total	Total	uR/hr	
1 Post Hole Digger										0	0	< MDA	200	9	< MDA	5	
2 Trowel						1				2	2	< MDA	225	34	< MDA	5	
3 Water Sampling Tubes										0	0	< MDA	200	9	< MDA	5	
4																	
5																	
6																	
7																	
8		·															
9			S														
10		·												1			
REMARKS: Notify RPM i	EMARKS: Notify RPM if any administrative limits are exceeded. *Site Limits are 600dpm Total α + β combined.																
Scanned with	Scanned with 43-89 Total α and Total βγ are based off of direct scans.																
TECHNICIAN(S) SIGNA	ΓURE/	DATE	N	you	Shy	me	/10	-6-2						/			
REVIEWER SIGNATURE	E/ DAT	E:		گــ	مد	1.0	10	-6-	21_					/			

LEIDOS RADIOLOGICAL SURVEY REPORT

Instrument MDA: (dpm/100cm²) α MDA βγ MDA α MDA 23 βγ MDA 195 5 Sample Description / Location α α α β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β β β β α α α α β α α α α β β β α α α α β α α α α β α α α α β α α α α α β α α α α α β α α α α α α α α β α α α α α β α	SURVEY LOCATION:	SURVEY LOCATION: Staten Island HSWP: SI-21-002.0 Page 1 of 1														
Instrument Type(s):	PURPOSE OF SURVEY:	Incom	ning Su	rvey c	n Equipi	nent						DATE	9/27	/21 TI	ME: 1	4:00
Mathematical Limits: (dpm/100cm²) Mathematical Limits: (dpm/	Instrument Type(s):		Se	erial N	lumber:		Cal. I	Due Da	ite	Back	grour	d: (CPN	1)	Effic	ency: (%)
Ludlum 2360 / 43-89 B 125 345532 394879 6/3/22 6/3/22 0.2 191 14.8% 27.6% Ludlum 2221 / 44-9 NA 15.5 NA NA NA NA NA NA NA N	mistrument Type(s).		me	ter	detecto	or	meter	de	tector	Alpha	(α)	Beta (f	γ) Α	Alpha (o) Bet	a (βγ)
Ludlum 2221 / 44-9 NA 15.5 NA NA NA NA NA NA NA NA NA NA NA NA NA	Ludlum 2929 / 43-10-1 NA	N/A	N.	A	NA		NA		NA	N.A	\	NA		NA	1	NA
Micro - R A N/A 347262 NA 5/30/22 NA NA NA NA NA NA NA NA NA NA NA NA NA	Ludlum 2360 / 43-89 B 125 345532 394879 6/3/22 6/3/22 0.2							2	191		14.8%	27	.6%			
Contamination Limits: (dpm/100cm²) Removable α Removable β Total α G00* Total $\beta\gamma$ G00* BK0 Instrument MDA: (dpm/100cm²) α MDA $\beta\gamma$ MDA α	Ludlum 2221 / 44-9 NA	15.5	N.	A	NA		NA		NA	NA	1	NA		NA	1	ĬΑ
	Micro - R A N/A 347262 NA 5/30/22 NA NA NA NA NA										ΝA					
Instrument MDA: (dpm/100cm²) α MDA βγ MDA α MDA 23 βγ MDA 195 5																
Description / Location α α α β β β α α α β β β β α	Instrument MDA: (dpm/100cm²) α MDA βγ MDA α MDA βγ MDA 5															
No. Removable Removable Removable Removable Removable Total Total Total Total Total Total Total																
1 Post Hole Digger 0 0 < MDA 200 9 < MDA 5																
2 Trowel 2 2 < MDA 225 34 < MDA 5																
3 Water Sampling Tubes x3 0 0 < MDA 200 9 < MDA 5	3 Water Sampling	Tubes x3	,				$\overline{\mathbf{A}}$			0	0	< MDA	200	9	< MDA	5
4 2" PVC Pipes x7 2 2 < MDA 275 84 243 4	4 2" PVC Pipe	es x7								2	2	< MDA	275	84	243	4
5 PPE and Trash Bag** 0 0 < MDA 200 9 < MDA 6	5 PPE and Trash	Bag**								0	0	< MDA	200	9	< MDA	6
6	6															
7	7				-											
8	8															
9	9		1													
10	10															
REMARKS: Notify RPM if any administrative limits are exceeded. *Site Limits are 600dpm Total $\alpha + \beta$ combined.	REMARKS: Notify RPM if															
Scanned with 43-89 Total α and Total βγ are based off of direct scans. **All PPE scanned as workers left Restricted Area																
TECHNICIAN(S) SIGNATURE/ DATE: Mugan Shyme /10-6-21																
REVIEWER SIGNATURE/ DATE: () / 10-6-2 /																

LEIDOS RADIOLOGICAL SURVEY REPORT

SURVEY LOCATION: Staten Island HSWP: SI-21-004.0 Page 1 of 1																
PURPOSE OF SURVEY	:Limi	ted Qua	ntity								DATE:	9/27	7/21 1	IME:	14	4:00
Instrument Type(s):	Detecto	Se	rial Nu	mber:		Cal.	Due Dat	e	Back	groun	d: (CPM	()	Eff	icienc	/: (%	(b)
nistrument Type(s).	Area (cm²)	met	meter detector meter detector Alpha (α)							Beta (β	eta (βγ) Alpha ((α)	Beta	(βγ)	
Ludlum 2360 / 43-89 B	125	3455	32	39487	9	6/3/22	6/3	/22	0.2	2	191		14.89	%	27.	6%
Ludlum 2360 / 43-89 NA	125	N.A	1	NA		NA	N	A	N/	1	NA	\perp	NA		N	Α
Ludlum 2221 / 44-9 NA	15.5	N/	<u> </u>	NA		NA	N	A	N/	A	NA		NA		N	A
Micro - R A	N/A	3472	62	NA		5/30/22	N	IA	N/	١ _ ا	NA		NA		N	<u>A</u>
Contamination Limits: (dpm/100cm²) Removable α 240 Removable βγ 2400 Total α 600* Total βγ 600* BKG																
Instrument MDA: (dpm/100cm²) α MDA 23 βγ MDA 195 α MDA βγ MDA 5 Gross CPM Net CPM [pm/100cmGross CPM Net CPM]pm/100cmGross CPM Net CPM [pm/100cmGross CPM Net CPM [pm/100cmGross CPM Net CPM]pm/100cmGross CPM																
Sample Description /	Locat	ion	α	α	α	ß	Net CPM B Removable	ß	α	Net CPN	/I pn/100cn α Total	Gross CP } Total	M Net Cl ß Tota			uR/hr
1 Cooler	#1		3	3	< MDA	196	5	< MDA								6
2 Cooler	#2		1	1	< MDA	185	0	< MDA								7
3 Cooler	#3		0	0	< MDA	179	0	< MDA								5
4 Cooler	#4		1	1	< MDA	199	8	< MDA							\perp	6
5 Cooler	#5		0,	0	< MDA		0	< MDA							_	6
6 Cooler			0	0	< MDA		5	< MDA							_	7
7 Cooler			2	2	< MDA		6	< MDA					<u> </u>	_ _	_	10
8 Cooler			5	5	33	205	14	< MDA					1		_	8
9 Cooler			8	8	53	155	0	< MDA						\rightarrow		8
10 Cooler			1	1	< MDA	200	9	< MDA							\overline{A}	6
REMARKS: Notify RPM if any administrative limits are exceeded. *Site Limits are 600dpm Total α + β combined.																
Shipping survey on sample coolers from sampling activities on 9-27-21																
TECHNICIAN(S) SIGNATURE/ DATE Meyer Shyme / 10-6-21																
REVIEWER SIGNATURE/ DATE / 10-6-2																

APPENDIX J

AIR MONITORING DATA

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, Nev April	v York 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

		apacio	1001 7 111 0 0011	thio itche	, ,		
Date: 9/20/2021		Sample ID:	SI-092021-02			HSWP#:	SI-21-001
Alpha AE value	3.50E-12	μCi/ml (H)		Beta A	E value:	NA	μCi/ml (H)
General Area:	Boundary:	~					
Site: Staten Island		On a total	Radionuclide	s: Gross Alp	ha		
Location: Downwind			5	Sampled By:	M. Sherman	1	
Activity Performed	: Brush Clea	ıring					
Wearer (if applicable)							
Monitor Workers	: NA						
Pump Model: LV-1D		S/N:			Calibration [9/9/2022
Flow Meter: NA		S/N:			Calibration [Due Date	NA
Sample Information			& Time	1			Flow
	Start		21 11:26				Rate (lpm)
*	Stop	9/20/	21 16:50			Start	
]		Stop	
		tal minutes	324	ļ ļ	Average F	low Rate:	40
Min. Non-Occupational Air Sampl							
Sample Volume =	<u> </u> 40	(lpm) x	324	(minutes) =	1.30E+04	Liters (A)	
Remarks:					_		
							-
Sent to lab after a screen for f	inal count		Sent to lab wi	thout a scree	n for final coul		
Instrument Information	Serial N	lumber	Cal. Due	Date	1st Count	2 nd Count	3 rd Count
Instrument Type	meter	detector	meter	detector			
Ludlum 3030	346227	NA	6/8/2022	NA	~		
	1					T	
	1			1			
Screening Count Information	า		ALPHA			BETA	
Variables	Units	1 st Count	2 nd Count	3 rd Count	1st Count	2 nd Count	3 rd Count
Count Date		09/20/21		-	Tot Godin		0 000
Count Time		2100					
Sample Count Time	Minutes	10					
Total Count		12					
Sample Count Rate	СРМ	1.56					
Background Count Rate	СРМ	0.10		1			
Volume of Air (Liters) (A)	Liters	1.30E+04	1.30E+04	1.30E+04	1.30E+04	1.30E+04	1.30E+04
Net count Rate (CPM) (B)	СРМ	1.46					
Counter Efficiency (C)		0.347		 			
Collection Efficiency (D)	0.99	0.99				,	
Efficiency = $(C)^*(D)$ (E)		0.344					
Activity (DPM)= (B) / (E) (F)	DPM	4.25					
Conc.=(F) / (2.22E9*(A)) (G)	μCi/ml	1.48E-13					
DAC/AE Fraction = (G)/(H)		0.0422					
Final Count?		V					
Note: DAC/AE Fractions > 1.	0 requires i	mmediate F	RPM notificat	tion.	•	•	
RPM Notified							
			_				
Calculated By: Wyga	Dhurn	1.4.			Date: 10-	7-21	
(K)	1						
Reviewed By:	<i>لتب</i>				Date: 1の	-7-21	

				-1			
Date: 9/20/2021			SI-092021-01			HSWP#:	SI-21-001
Alpha AE value:		μCi/ml (H)		Beta A	E value:	N/A	μCi/ml (H)
General Area:	Boundary:	~					
Site: Staten Island			Radionuclide				
Location: Upwind			S	ampled By:	M. Sherman		35
Activity Performed:		ring					
Wearer (if applicable):							
Monitor Workers:	NA						
Pump Model: LV-1D		S/N:			Calibration [9/9/2022
Flow Meter: NA		S/N:			Calibration (Due Date	NA
Sample Information			& Time	l			Flow
	Start		21 11:15	l		_	Rate (lpm)
	Stop	9/20/	21 16:40	ļ		Start	
	<u> </u>			l		Stop	
		tal minutes	325	<u> </u>	Average F	low Rate:	40
Min. Non-Occupational Air Sample						1.11	
Sample Volume =	40	(lpm) x	325	(minutes) =	1.30E+04	Liters (A)	
Remarks:							
Sent to lab after a screen for fi	nol count		Sent to lab wit	havit a savaa	n for final cour	n i	7
					,		I + rd =
Instrument Information	Serial N	lumber	Cal. Due [Date	1st Count	2 nd Count	3 rd Count
Instrument Type	meter	detector	meter	detector			
Ludlum 3030	346227	NA	6/8/2022	NA	~		П
Screening Count Information			ALPHA			BETA	
Variables	Units	1 st Count	2 nd Count	3 rd Count	1st Count	2 nd Count	3 rd Count
Count Date		09/20/21					
Count Time		2100					
Sample Count Time	Minutes	10					
Total Count		16				1	
Sample Count Rate	СРМ	2.08				1	
Background Count Rate	СРМ	0.10			1	T	
Volume of Air (Liters) (A)	Liters	1.30E+04	1.30E+04	1.30E+04	1.30E+04	1.30E+04	1.30E+04
Net count Rate (CPM) (B)	СРМ	1.98					
Counter Efficiency (C)		0.347					
Collection Efficiency (D)	0.99	0.99		1			
Efficiency = $(C)^*(D)$ (E)		0.344					
Activity (DPM)= (B) / (E) (F)	DPM	5.76					
Conc.=(F) / (2.22E9*(A)) (G)	μCi/ml	2.00E-13					
DAC/AE Fraction = (G)/(H)		0.0571					
Final Count?		V					
Note: DAC/AE Fractions > 1.) requires i	mmediate l	RPM notificat	ion.			
RPM Notified							
, , ,	$ abla_1 $						
Calculated By: Muga	Man	les_			Date: 10 -	7-21	
Reviewed By:	, ,				Date: 10	-7-21	
Ineviewed by. 🔼 🔨 🥿	~~ ~~				Date. 10		

	11011 0	ooapanoi	idi /ili Odili	ibio i iobo	,,,,		
Date: 9/21/2021		Sample ID:	SI-092121-02			HSWP#:	SI-21-002
Alpha AE value:	3.50E-12	μCi/ml (H)		Beta A	E value:	N/A	μCi/ml (H)
General Area:	Boundary:	₹					
Site: Staten Island			Radionuclide	s: Gross Alp	ha		
Location: Downwind			S	ampled By:	M. Sherman	L	
Activity Performed:	: Gamma W	alkover, Bru	ish Clearing				
Wearer (if applicable):	: NA						
Monitor Workers:	: NA						
Pump Model: LV-1D		S/N:	4577		Calibration [9/9/2022
Flow Meter: NA		S/N:	NA		Calibration [Due Date	NA
Sample Information			& Time				Flow
	Start	9/21/	21 7:58	l			Rate (Ipm)
	Stop	9/21/2	21 15:18	l		Start	40
				l .		Stop	40
	To	tal minutes	440	_	Average F	low Rate:	40
Min. Non-Occupational Air Sample	e Volume= 2.8	3 E3 L					
Sample Volume =	40	(lpm) x	440	(minutes) =	1.76E+04	Liters (A)	
Remarks:							
Sent to lab after a screen for fi	nal count		Sent to lab wit	hout a scree	n for final cout	nt	
Instrument Information	Serial N	lumber	Cal. Due [Date	1st Count	2 nd Count	3 rd Count
Instrument Type	meter	detector	meter	detector			
Ludlum 3030	346227	1	6/8/2022				
			0.0,202				
Screening Count Information	1		ALPHA		l	BETA	
Variables	Units	1 st Count	2 nd Count	ard Count	1st Count	2 nd Count	3 rd Count
Count Date	Offics	09/22/21	2 Count	3 Count	15t Count	2 Count	3 Count
Count Time		2000				1	
Sample Count Time	Minutes	10					
Total Count	Militales	6					
Sample Count Rate	CPM	0.78					
Background Count Rate	CPM	0.78		-	<u> </u>		
Volume of Air (Liters) (A)	Liters	1.76E+04	1.76E+04	1.76E+04	1.76E+04	1.76E+04	1.76E+04
Net count Rate (CPM) (B)	CPM	0.68	1.702+04	1.70LT04	1.702704	1.702404	1.702404
Counter Efficiency (C)	OI W	0.347		-			
Collection Efficiency (D)	0.99	0.99					
Efficiency = $(C)^*(D)$ (E)	0.33	0.344					
Activity (DPM)= (B) / (E) (F)	DPM	1.98					
Conc.=(F) / (2.22E9*(A)) (G)	μCi/ml	5.07E-14					
DAC/AE Fraction = (G)/(H)	рсин	0.0145		-			
Final Count?		V.0143					
Note: DAC/AE Fractions > 1.	O requires i		PDM notificat	,			,
RPM Notified	o requires i	illinediate i	tr w notineat	ion.			
THE INTRODUCTION							
Calculated By: Nugan	\sim 1					_	
, 1-0 00-	Uhuri	Ne			Date: 10-	7-21	

	11011 0	oouputio.	iai Ali Jali	ibio irobo	71.6		
Date: 9/21/2021			SI-092121-01			HSWP#:	SI-21-002
Alpha AE value:		μCi/ml (H)		Beta A	E value:	NA	μCi/ml (H)
General Area:	Boundary:	~					
Site: Staten Island			Radionuclide				
Location: Upwind				ampled By:	M. Sherman	١	
Activity Performed:	Gamma W	alkover, Bru	ish Clearing				
Wearer (if applicable):							
Monitor Workers:	NA						
Pump Model: LV-1D		S/N:	4577		Calibration [Due Date	9/9/2022
Flow Meter: NA		S/N:	NA		Calibration [Due Date	NA
Sample Information			& Time				Flow
	Start	9/21/	21 7:54	Ī			Rate (lpm)
	Stop	9/21/2	21 15:30	ì		Start	40
						Stop	40
	To	tal minutes	456	1	Average F	low Rate:	40
Min. Non-Occupational Air Sample	Volume= 2.	8 E3 L					
Sample Volume =	40	(lpm) x	456	(minutes) =	1.82E+04	Liters (A)	
Remarks:							
Sent to lab after a screen for fi	nal count		Sent to lab wit	hout a scree	n for final cout	nt	
Instrument Information	Serial N	umber	Cal. Due I	Date	1st Count	2 nd Count	3 rd Count
Instrument Type	meter	detector	meter	detector	Tot Godin	1	
Ludlum 3030	346227		6/8/2022		~		
Eddidiii 5000	040227	340227 NA 0/6/2022 NA 1					
				 	-	 	-
Screening Count Information			ALPHA			BETA	
		48t o		lard a	1		ord o
Variables	Units		2 nd Count	3 rd Count	1st Count	2 nd Count	3 rd Count
Count Date		09/22/21					
Count Time	100	2000				-	
Sample Count Time	Minutes	10					
Total Count	0014	2					
Sample Count Rate	СРМ	0.26					
Background Count Rate	СРМ	0.10					
Volume of Air (Liters) (A)	Liters	1.82E+04	1.82E+04	1.82E+04	1.82E+04	1.82E+04	1.82E+04
Net count Rate (CPM) (B)	СРМ	0.16					
Counter Efficiency (C)	0.00	0.347		<u> </u>			
Collection Efficiency (D)	0.99	0.99					_
Efficiency = $(C)^*(D)$ (E)	DDM	0.344				ļ	
Activity (DPM)= (B) / (E) (F)	DPM	0.47				ļ	
Conc.=(F) / (2.22E9*(A)) (G) DAC/AE Fraction = (G)/(H)	μCi/ml	1.15E-14				ļ	
DAU/AE Fraction = (G)/(H)		0.0033					
Final Count?					1 '	1	<u> </u>
Note: DAC/AE Fractions > 1.0	requires ii	mmediate F	RPM notificat	ion.			
RPM Notified							
	71					- 0:	
Calculated By: Wuyan	Thym	4			Date: 10-	7-21	
Calculated By: Vuyan	,	1				7-21	
Reviewed By:		1/2			Date: 10	-1-0	

Start 9/22/21 10:38 Start 40 Stop 9/22/21 16:45 Start 40 Average Flow Rate:					The second second second			
Site: Staten Island Location: Downwind Sampled By: M. Sherman Activity Performed: Gamma Walkover, Drill Rig Wearer (if applicable): NA Monitor Workers: NA	Date: 9/22/2021		Sample ID:	SI-092221-02			HSWP#:	SI-21-004
Site: Staten Island Fadionuclides: Gross Alpha Location: Downwind Sampled By: M. Sherman Activity Performed: Gamma Walkover, Drill Rig Wearer (if applicable): NA Monitor Workers: NA Monitor Workers: NA S/N: NA Galibration Due Date 9/9/2022 Flow Meter. NA S/N: NA Galibration Due Date NA Sample Information Date 8. Time Start 9/22/21 10:38 Stop 40 Average Flow Rate: 40 Ave					Beta A	E value:	NA	μCi/ml (H)
Location: Downwind	General Area:	Boundary:	1					
Activity Performed: Gamma Walkover, Drill Rig	Site: Staten Island							
Wearer (if applicable): NA Monitor Workers: NA					ampled By:	M. Sherman	1	
Monitor Workers: NA	Activity Performed	: Gamma W	alkover, Dri	II Rig				-
Pump Model: LV-1D	Wearer (if applicable)	: NA						
Sample Information	Monitor Workers	: NA						
Sample Information								
Date & Time Start 9/22/21 10:38 Start 40 Stop 9/22/21 16:45 Start 40 Average Flow Rate 40 Average								9/9/2022
Start 9/22/21 10:38 Start 40 Stop 9/22/21 16:45 Stop 9/22/21 16:45 Stop 40 Average Flow Rate: 40	Flow Meter: NA		S/N:	NA		Calibration (Due Date	NA
Stop 9/22/21 16:45 Stan 40 Stop 40	Sample Information	1	Date	& Time				Flow
Stop 9/22/21 16:45 Star 40 Stop 40 Average Flow Rate: 40 Min. Non-Occupational Air Sample Volume = 2.8 E3 L Sample Volume = 40 (lpm) x 367 (minutes) = 1.47E+04 Liters (A) Remarks: Sent to lab after a screen for final count Sent to lab without a screen for final count Instrument Information Serial Number Cal. Due Date 1st Count 2 nd Count 3 nd Count Cal. Due Date C		Start	9/22/2	21 10:38				Rate (lpm)
Total minutes 367		Stop	9/22/2	21 16:45	1		Start	
Min. Non-Occupational Air Sample Volume					1		Stop	40
Min. Non-Occupational Air Sample Volume		To	tal minutes	367	1	Average F	low Rate:	40
Sample Volume 40 (lipm) x 367 (minutes) = 1.47E+04 Liters (A)	Min. Non-Occupational Air Sampl	e Volume= 2.	8 E3 L					,
Sent to lab after a screen for final count Instrument Information Instrument Information Instrument Type Instr				367	(minutes) =	1.47E+04	Liters (A)	
Sent to lab after a screen for final count Instrument Information Serial Number Cal. Due Date 1st Count 2nd Count 3nd Count Instrument Type meter detector Ludlum 3030 346227 NA 6/8/2022 NA Fig. Screening Count Information Variables Units 1st Count 2nd Count 1st Cou			(1		,		(,	•
Serial Number Cal. Due Date 1st Count 2nd Count 3rd Count Instrument Type meter detector m								
Serial Number Cal. Due Date 1st Count 2nd Count 3rd Count Instrument Type meter detector m								
Instrument Type	Sent to lab after a screen for I	nal count		Sent to lab wit	hout a scree	n for final coul	nt	
Instrument Type	Instrument Information	Sprial N	umber	Cal Due I	Date	1st Count	2 nd Count	3 rd Count
Ludium 3030 346227 NA 6/8/2022 NA						15t Count	2 000111	o count
Screening Count Information						[-		
Screening Count Information	Ludium 3030	346227	INA	6/8/2022	INA	1	1	<u>'</u>
Variables						1	100	
Variables	Comparing Count Information			AL DUIA		,	DETA	
Count Date		1			L and			1
Count Time		Units		2 ^{no} Count	3 ^{ru} Count	1st Count	2 ^{na} Count	3 ^{ra} Count
Sample Count Time Minutes 10								
12		11						
Sample Count Rate CPM 1.56		Minutes						
Background Count Rate CPM 0.10								
Volume of Air (Liters) (A) Liters 1.47E+04 1.47								
Net count Rate (CPM) (B)								
Counter Efficiency (C) 0.347 Collection Efficiency (D) 0.99 0.99 Efficiency = (C)*(D) (E) 0.344 Activity (DPM)= (B) / (E) (F) DPM 4.25 Conc.=(F) / (2.22E9*(A)) (G) μCi/ml 1.30E-13 DAC/AE Fraction = (G)/(H) 0.0373 Final Count? Note: DAC/AE Fractions > 1.0 requires immediate RPM notification. RPM Notified Calculated By: Mya Dhuma Date: 10-7-21	Volume of Air (Liters) (A)		1.47E+04	1.47E+04	1.47E+04	1.47E+04	1.47E+04	1.47E+04
Collection Efficiency (D) 0.99 0.99 Efficiency = (C)*(D) (E) 0.344 Activity (DPM)= (B) / (E) (F) DPM 4.25 Conc.=(F) / (2.22E9*(A)) (G) μCi/ml 1.30E-13 DAC/AE Fraction = (G)/(H) 0.0373 Final Count? Note: DAC/AE Fractions > 1.0 requires immediate RPM notification. RPM Notified Calculated By: Mya Date: 10-7-21	Net count Rate (CPM) (B)	СРМ	1.46					
Efficiency = (C)*(D) (E) 0.344 Activity (DPM)= (B) / (E) (F) DPM 4.25 Conc.=(F) / (2.22E9*(A)) (G) μCi/ml 1.30E-13 DAC/AE Fraction = (G)/(H) 0.0373 Final Count? Note: DAC/AE Fractions > 1.0 requires immediate RPM notification. RPM Notified Calculated By: Mya Date: 10-7-21			0.347			<u> </u>		
Activity (DPM)= (B) / (E) (F) DPM 4.25 Conc.=(F) / (2.22E9*(A)) (G) µCi/ml 1.30E-13 DAC/AE Fraction = (G)/(H) 0.0373 Final Count? Note: DAC/AE Fractions > 1.0 requires immediate RPM notification. RPM Notified Calculated By: Mya Date: 10-7-21		0.99						
Conc.=(F) / (2.22E9*(A)) (G) µCi/ml 1.30E-13 DAC/AE Fraction = (G)/(H) 0.0373 Final Count? Note: DAC/AE Fractions > 1.0 requires immediate RPM notification. RPM Notified Calculated By: Mya Date: 10-7-21			0.344		-			
DAC/AE Fraction = (G)/(H) Final Count? Note: DAC/AE Fractions > 1.0 requires immediate RPM notification. RPM Notified Calculated By: Mya Date: 10-7-21		DPM						
Note: DAC/AE Fractions > 1.0 requires immediate RPM notification. RPM Notified Calculated By: Mya Date: 10-7-21		μCi/ml						
Note: DAC/AE Fractions > 1.0 requires immediate RPM notification. RPM Notified Calculated By: Myan Date: 10-7-21	DAC/AE Fraction = (G)/(H)	[
Calculated By: Mya Date: 10-7-21	Final Count?							
Calculated By: Myan Shume Date: 10-7-21		0 requires i	mmediate F	RPM notificat	ion.			
	RPM Notified							
		9.						
	Calculated By: Mua	Olas	rme			Date: 10-	7-21	
Reviewed By: Date: 10-7-7	0, ,		. 1					
	Reviewed By: (V)		1			Date: 10	-1-21	

Date: 9/22/2021			SI-092221-01			HSWP#:	SI-21-004
Alpha AE value		μCi/ml (H)		Beta A	NE value:	NA	μCi/ml (H)
General Area:	Boundary:	4					
Site: Staten Island			Radionuclide				
Location: Upwind				ampled By:	M. Sherman	1	
Activity Performed		alkover, Dri	ll Rig				
Wearer (if applicable)							
Monitor Workers	: NA						
Pump Model: LV-1D		S/N:	4577		Calibration [9/9/2022
Flow Meter: NA		S/N:			Calibration I	Due Date	NA
Sample Information			& Time				Flow
	Start		/21 9:01				Rate (Ipm)
III A	Stop	9/22/	21 17:00]		Start	40
						Stop	40
13.4	To	tal minutes	479		Average F	low Rate:	40
Min. Non-Occupational Air Sample	Volume= 2.	8 E3 L					
Sample Volume =	40	(lpm) x	479	(minutes) =	1.92E+04	Liters (A)	
Remarks:							
Sent to lab after a screen for fi	nal count		Sent to lab wit	hout a scree	n for final coul	nt	
Instrument Information	Serial N	lumber	Cal. Due [Date	1st Count	2 nd Count	3 rd Count
Instrument Type	meter	detector	meter	detector	100 000110		
Ludlum 3030	346227		6/8/2022		V	 	
Eddiarii 0000	040227	INA	0/0/2022	ING.			
	 						-
Screening Count Information	<u> </u>		ALPHA		-	BETA	
	· · · · · · · · · · · · · · · · · · ·	481.0	2 nd Count	lotti o	4		lard a
Variables	Units		2 Count	3° Count	1st Count	2 nd Count	3 rd Count
Count Date		09/22/21					
Count Time	h d'anni	2115					
Sample Count Time	Minutes	10		-		ļ	
Total Count	OPM	9					
Sample Count Rate	СРМ	1.17				ļ	
Background Count Rate	СРМ	0.10	1.005.04	4.005.04	1005.01	1.005.01	1.00= 0.1
Volume of Air (Liters) (A)	Liters	1.92E+04	1.92E+04	1.92E+04	1.92E+04	1.92E+04	1.92E+04
Net count Rate (CPM) (B)	СРМ	1.07					
Counter Efficiency (C)	0.00	0.347		 			
Collection Efficiency (D)	0.99	0.99					
Efficiency = $(C)^*(D)$ (E)	DDM	0.344					
Activity (DPM)= (B) / (E) (F)	DPM	3.11					
Conc.=(F) / (2.22E9*(A)) (G)	μCi/ml	7.32E-14					
DAC/AE Fraction = (G)/(H)		0.0209					
Final Count?						I. I	
Note: DAC/AE Fractions > 1.	o requires i	mmediate i	APINI NOTITICAT	ion.			
RPM Notified							
	_						
0.1.10 (6.4)	≤ 1						
Calculated By: Muyan	Uhy	yher			Date: 16-	7-21	
Reviewed By:		1			Date: 10 -		

				<u> </u>		-				
Date: 9/23/2021		,	SI-092321-02			HSWP#:				
Alpha AE value		μCi/ml (H)		Beta A	E value:	NA	μCi/ml (H)			
General Area:	Boundary:	~								
Site: Staten Island			Radionuclide							
Location: Downwind				ampled By:	M. Sherman	1				
Activity Performed		alkover, Dri	ll Rig							
Wearer (if applicable)										
Monitor Workers	: NA		4							
Pump Model: LV-1D	<u> </u>	S/N:	4576		Calibration [9/9/2022			
Flow Meter: NA		S/N:	NA		Calibration (Due Date	NA -			
Sample Information		Date	& Time				Flow			
	Start	9/23/	/21 8:16	1			Rate (lpm)			
	Stop	9/23/2	21 15:00	1		Start				
				1		Stop	40			
	To	tal minutes	404	1	Average F	low Rate:	40			
Min. Non-Occupational Air Sample	Volume= 2.	8 E3 L			ÿ					
Sample Volume =		(lpm) x	404	(minutes) =	1.62E+04	Liters (A)				
Remarks:		(1,511.)		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Sent to lab after a screen for fi	nal count		Sent to lab wit	hout a scree	ก for final cout	nt				
	Serial N		Cal. Due [1st Count	2 nd Count	3 rd Count			
Instrument Information	4				TSI COUNT	2 Count	3 Count			
Instrument Type	meter	detector	meter	detector		ļ				
Ludlum 3030	346227	NA	6/8/2022	NA	[P]	1	1			
							1			
Screening Count Information	1		ALPHA			BETA				
Variables	Units	1 st Count	2 nd Count	3 rd Count	1st Count	2 nd Count	3 rd Count			
Count Date		09/23/21								
Count Time		2115								
Sample Count Time	Minutes	10				1				
Total Count		5								
Sample Count Rate	СРМ	0.65				•				
Background Count Rate	СРМ	0.10				1	1			
Volume of Air (Liters) (A)	Liters	1.62E+04	1.62E+04	1.62E+04	1.62E+04	1.62E+04	1.62E+04			
Net count Rate (CPM) (B)	СРМ	0.55				1				
Counter Efficiency (C)		0.347								
Collection Efficiency (D)	0.99	0.99								
Efficiency = $(C)^*(D)$ (E)		0.344								
Activity (DPM)= (B) / (E) (F)	DPM	1.60					\vdash			
Conc.=(F) / (2.22E9*(A)) (G)	μCi/ml	4.46E-14								
DAC/AE Fraction = (G)/(H)		0.0128								
Final Count?		<u> </u>			Г		T			
Note: DAC/AE Fractions > 1.	0 requires i	mmediate F	RPM notificat	ion.						
RPM Notified	****									

Calculated By: 4 4	81				Date: IA-	7-71				
Calculated By: Muya.	munic				Date: (0-	1-41				
Reviewed By: 6 N	1	1			Date: (0	-7-21				
I leviewed by.		1			Dale. 10	, 51				

Date: 9/23/2021			SI-092321-01			HSWP#:	SI-21-004
Alpha AE value		μCi/ml (H)		Beta A	AE value:	NA	μCi/ml (H)
General Area:	Boundary:	V				-	
Site: Staten Island			Radionuclide				
Location: Upwind				Sampled By:	M. Sherma	n	
Activity Performed		alkover, Dri	ill Rig				
Wearer (if applicable)							
Monitor Workers	: NA						
Pump Model: LV-1D		S/N:		7	Calibration		9/9/2022
Flow Meter: NA		S/N:			Calibration	Due Date	NA
Sample Information			& Time	1			Flow
	Start		/21 7:56				Rate (Ipm)
	Stop	9/23/	21 15:13	1		Start	
						Stop	
		tal minutes	437	<u>' </u>	Average	Flow Rate:	40
Min. Non-Occupational Air Sampl							
Sample Volume =	40	(lpm) x	437	(minutes) =	1.75E+0	4 Liters (A)	
Remarks:							
Sent to lab after a screen for f	inal count		Sent to lab wit	thout a scree	n for final cou		Ti.
Instrument Information	Serial N	lumber	Cal. Due	Date	1st Count	2 nd Count	3 rd Count
Instrument Type	meter	detector	meter	detector			
Ludlum 3030	346227	NA	6/8/2022	NA	<u> </u>		
				1		Ti de	
Screening Count Information	n		ALPHA	<u>-</u> :		BETA	
Variables	Units	1 st Count	2 nd Count	3rd Count	1st Count	2 nd Count	3 rd Count
Count Date		09/23/21			lot douite		o oddiit
Count Time		2115	-	-		1	
Sample Count Time	Minutes	10				 	
Total Count		6				1	
Sample Count Rate	СРМ	0.78					
Background Count Rate	СРМ	0.10		+			
Volume of Air (Liters) (A)	Liters	1.75E+04	1.75E+04	1.75E+04		1.75F+04	1.75E+04
Net count Rate (CPM) (B)	СРМ	0.68			-	1	
Counter Efficiency (C)		0.347		1	l		
Collection Efficiency (D)	0.99	0.99		1		 	
Efficiency = $(C)^*(D)$ (E)		0.344					
Activity (DPM)= (B) / (E) (F)	DPM	1.98				+	
Conc.=(F) / (2.22E9*(A)) (G)	μCi/ml	5.10E-14					
DAC/AE Fraction = (G)/(H)		0.0146					
Final Count?		~				T.	
Note: DAC/AE Fractions > 1.	0 requires i	mmediate l	RPM notificat	ion.			
RPM Notified							
Calculated By: Muyon	Therm	ı			Date: 10-	7-21	
Calculated By: Muyon Reviewed By:	\				Date: 10		
THE VICTOR DY.	-	/ 7			Date.	, -	

		ooupano.	ital / till Cottle	ibio i iobe	71 5		
Date: 9/24/2021		Sample ID:	SI-092421-02			HSWP#:	SI-21-004
Alpha AE value	3.50E-12	μCi/ml (H)		Beta /	\E value:	NA	μCi/ml (H)
General Area:	Boundary:	V					
Site: Staten Island			Radionuclide	s: Gross Alp	oha		
Location: Downwind			5	Sampled By:	M. Sherman	1	
Activity Performed	: Gamma W	alkover, Dri	ll Rig				
Wearer (if applicable)	NA .					•	
Monitor Workers	: NA			-			
Pump Model: LV-1D		S/N:		3	Calibration I	Due Date	9/9/2022
Flow Meter: NA		S/N:	NA		Calibration !	Due Date	NA
Sample Information		Date	& Time	1			Flow
	Start	9/24/	/21 8:08	1			Rate (lpm)
	Stop	9/24/	21 16:03	1		Start	40
10.0				1	_	Stop	40
	To	tal minutes	475	5	Average F	low Rate:	40
Min. Non-Occupational Air Sample	e Volume= 2.	8 E3 L					
Sample Volume =	40	(lpm) x	475	(minutes) =	1.90E+04	Liters (A)	
Remarks:		-	-	-			
Sent to lab after a screen for fi	nal count		Sent to lab wit	hout a scree	n for final cou	nt	
Instrument Information	Serial N	lumber	Cal. Due I	Date	1st Count	2 nd Count	3 rd Count
Instrument Type	meter	detector	meter	detector			,
Ludlum 3030	346227		6/8/2022		<u> </u>		
		-	0,0,2022				
	+		-	1			
Screening Count Information)		ALPHA			BETA	
Variables	Units	1 st Count	2 nd Count	3 rd Count	1st Count		3 rd Count
Count Date	Units	09/27/21	2 Count	3 Count	ist Count	2 Count	3 Count
Count Time		2115				-	
Sample Count Time	Minutes	10		1			
Total Count	Millutes	2		,		-	
Sample Count Rate	СРМ	0.26					
Background Count Rate	CPM	0.10			<u> </u>	-	
Volume of Air (Liters) (A)	Liters	1.90E+04	1.90E+04	1.90E+04	1.90E+04	1.90E+04	1.90E+04
Net count Rate (CPM) (B)	CPM	0.16	1.900+04	1.900+04	1.9004	1.90⊑+04	1.90€+04
Counter Efficiency (C)	OF W	0.10					
Collection Efficiency (D)	0.99	0.99		 	-		
Efficiency = (C)*(D) (E)	0.95	0.344					
Activity (DPM)= $(B) / (E)$ (F)	DPM	0.47					
Conc.=(F) / (2.22E9*(A)) (G)	μCi/ml	1.10E-14				-	
DAC/AE Fraction = (G)/(H)	делли	0.0032		-		-	
Final Count?		U.0032					
Note: DAC/AE Fractions > 1.	n raquirae i		DM notificat	ion		1	
RPM Notified	o requires ii	innediate i	11 W Hothicat				
					-		May
	_						
Calculated By: Muyon	51	• •			Date: IA	7'0'	
Carolinated by. 1/149 ou	<u> </u>	me_			Date: 10-		
Reviewed By:					Date: 10	-7-21	

Date: 9/24/2021		Sample ID:	SI-092421-01			HSWP#:	SI-21-004
Alpha AE value:	3.50E-12	μCi/ml (H)		Beta A	E value:	NA	μCi/ml (H)
General Area:	Boundary:	~					
Site: Staten Island			Radionuclide	s: Gross Alp	oha		
Location: Upwind			S	ampled By:	M. Shermar	1	
Activity Performed:	Gamma W	alkover, Dri	II Rig				
Wearer (if applicable):							
Monitor Workers	NA						
Pump Model: LV-1D		S/N:			Calibration I		9/9/2022
Flow Meter: NA		S/N:			Calibration I	Due Date	NA
Sample Information			& Time				Flow
	Start		/21 8:18				Rate (lpm)
	Stop	9/24/	21 16.02	ļ		Start	
						Stop	40
		tal minutes	464		Average F	low Rate:	40
Min. Non-Occupational Air Sample							
Sample Volume =	40	(lpm) x	464	(minutes) =	1.86E+04	Liters (A)	
Remarks:							
Sent to lab after a screen for ti			Sent to lab wit	hout a scree	n for final cou		
Instrument Information	Serial N	lumber	Cal. Due [Date	1st Count	2 nd Count	3 rd Count
Instrument Type	meter	detector	meter	detector			
Ludlum 3030	346227	NA	6/8/2022	NA	V		
						3	
Screening Count Information	1		ALPHA			BETA	
Variables	Units	1 st Count	2 nd Count	3 rd Count	1st Count	2 nd Count	3 rd Count
Count Date		09/27/21					
Count Time		2115					
Sample Count Time	Minutes	10					
Total Count		0		_			
Sample Count Rate	СРМ	0.00					
Background Count Rate	СРМ	0.10					
Volume of Air (Liters) (A)	Liters	1.86E+04	1.86E+04	1.86E+04	1.86E+04	1.86E+04	1.86E+04
Net count Rate (CPM) (B)	СРМ	-0.10					
Counter Efficiency (C)		0.347					
Collection Efficiency (D)	0.99	0.99					,
Efficiency = $(C)*(D)$ (E)		0.344					
Activity (DPM)= (B) / (E) (F)	DPM	-0.29					
Conc.=(F) / (2.22E9*(A)) (G)	μCi/ml	-7.06E-15					
DAC/AE Fraction = (G)/(H)		-0.0020					
Final Count?		7					
Note: DAC/AE Fractions > 1.0) requires i	nmediate F	RPM notificati	ion.			
RPM Notified							
	Q						
Calculated By: Muyan	her	m_			Date: 10	1-21	
21					Date: 10-	7.2	1
Reviewed By:	Win.				Date: 10	-1-0	(

20.000		patio		ibio itobe	,,,		
Date: 9/27/2021			SI-092721-02			HSWP#:	SI-21-004
Alpha AE value		μCi/ml (H)		Beta A	E value:	NA	μCi/ml (H)
General Area:	Boundary:	~					
Site: Staten Island			Radionuclide				
Location: Downwind				Sampled By:	M. Shermar	1	
Activity Performed		Surface Soi	l sampling				
Wearer (if applicable)							
Monitor Workers	: NA						
Division Mandala LIVAD		0.01		*			- 12 (2.2.2.2
Pump Model: LV-1D Flow Meter: NA		S/N: S/N:		<u> </u>	Calibration I		9/9/2022
				T	Calibration I	Jue Date	NA
Sample Information	Start		& Time /21 7:54	-			Flow
	Stop		21	-1		Ctout	Rate (Ipm)
	Stop	9/2//	21 11:15	-		Start Stop	
	T.	otal minutes	201	-1	Average F	Flow Rate:	40
Min. Non-Occupational Air Sampl			201		Average	Tow hate.	40
Sample Volume =		(lpm) x	201	(minutes) =	9.04E+02	Liters (A)	1
Remarks:	1 40	(ibiii) x	201	(minutes) =	0.04E+03	Liters (A)	
Hemarks.							
Sent to lab after a screen for t	inal count		Sent to lab wit	thout a scree	n for final cou	nt	T
Instrument Information	Serial N	lumbor	Cal. Due		1st Count	2 nd Count	3 rd Count
					ist Count	12 00unt	15 Count
Instrument Type Ludlum 3030	meter 346227	detector NA	meter 6/8/2022	detector	<u> </u>		
Ludium 3030	340227	INA -	0/8/2022	INA	14		-
	 			 	 	-	-
Screening Count Information			ALPHA			BETA	
		481.0		ord o	4-1-0		lard o
Variables Count Date	Units		2 nd Count	3 Count	1st Count	2 nd Count	3 rd Count
Count Time		09/27/21		ļ		 	
Sample Count Time	Minutes	2130 10		 		 	<u> </u>
Total Count	Ivilliules	30					<u> </u>
Sample Count Rate	СРМ	3.90		-		 	
Background Count Rate	CPM	0.10		-			
Volume of Air (Liters) (A)	Liters	8.04E+03	8.04E+03	8.04E+03	8.04E+03	8 UVE+U3	8.04E+03
Net count Rate (CPM) (B)	CPM	3.80	0.04E#00	0.042+00	0.04E+03	0.042+03	0.04E+03
Counter Efficiency (C)		0.347		 		 	
Collection Efficiency (D)	0.99	0.99		 		 	
Efficiency = $(C)^*(D)$ (E)	0.00	0.344	-	 		+	
Activity (DPM)= (B) / (E) (F)	DPM	11.06					
Conc.=(F) / (2.22E9*(A)) (G)	μCi/ml	6.20E-13		-		 	1
DAC/AE Fraction = (G)/(H)		0.1771				 	
Final Count?		12			-		
Note: DAC/AE Fractions > 1.	0 requires i	mmediate f	RPM notificat	ion.			
RPM Notified					140		
			-				
Calculated By:	Shy	MA A			Date: LO-	7-21	
1 8 -	-	1					
Reviewed By:		ハ ・			Date: 101	-1-71	

The second secon		apanti		.b.a .rab-			
Date: 9/27/2021			SI-092721-01			HSWP#:	SI-21-004
Alpha AE value		μCi/ml (H)		Beta A	E value:	NA	μCi/ml (H)
General Area:	Boundary:	V					
Site: Staten Island			Radionuclide				
Location: Upwind				ampled By:	M. Sherman	1	
Activity Performed		Surface soil	l sampling				
Wearer (if applicable)							
Monitor Workers	: NA						
Pump Model: LV-1D		S/N:		<u> </u>	Calibration [9/9/2022
Flow Meter: NA		S/N:			Calibration (Due Date	NA
Sample Information			& Time				Flow
	Start		/21 7:58				Rate (Ipm)
	Stop	9/27/	21 11:16			Start	
						Stop	
		tal minutes	198		Average F	low Rate:	40
Min. Non-Occupational Air Sample							
Sample Volume =	<u> </u>	(lpm) x	198	(minutes) =	7.92E+03	Liters (A)	<u> </u>
Remarks:							
			(D				
Sent to lab after a screen for fi	nai count	1	Sent to lab wit	nout a scree	n for final coul		1.7
Instrument Information	Serial N	lumber	Cal. Due I	Date	1st Count	2 nd Count	3 rd Count
Instrument Type	meter	detector	meter	detector			
Ludium 3030	346227	NA	6/8/2022	NA	<u> </u>		
				T			
	1						
Screening Count Information	า		ALPHA			BETA	
Variables	Units	1 st Count	2 nd Count	3 rd Count	1st Count	2 nd Count	3 rd Count
Count Date		09/27/21					
Count Time		2115				 	
Sample Count Time	Minutes	10					
Total Count		23		-			
Sample Count Rate	СРМ	2.99					
Background Count Rate	CPM	0.10					
Volume of Air (Liters) (A)	Liters	7.92E+03	7.92E+03	7.92E+03	7.92E+03	7.92E+03	7.92E+03
Net count Rate (CPM) (B)	СРМ	2.89					
Counter Efficiency (C)		0.347		-			
Collection Efficiency (D)	0.99	0.99					
Efficiency = $(C)^*(D)$ (E)		0.344					
Activity (DPM)= (B) / (E) (F)	DPM	8.41					
Conc.=(F) / (2.22E9*(A)) (G)	μCi/ml	4.78E-13					
DAC/AE Fraction = (G)/(H)		0.1367			-		
Final Count?		~					
Note: DAC/AE Fractions > 1.	0 requires i	mmediate F	RPM notificat	ion.			
RPM Notified							
	\bigcirc						
Calculated By: Muyan	Thum	18-			Date: 10-	7-21	
	. /						
Reviewed By:		-			Date: 10	1-21	

APPENDIX K

PREVIOUS SAMPLING INSPECTION RESULTS

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, New Y April 2	York 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

Table 1. Previous sampling results (1992 and 2008).

		D	Co-60	revious sampling res Cs-137	K-40	Pb-212	Pb-214	Ra-226
		Parameter CAS#	10198-40-0	10045-97-3	13966-00-2	15092-94-1	15067-28-4	13982-63-3
		Units	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g
Sample ID	Sample Depth (inches bgs)	Sample Date	Result	Result	Result	Result	Result	Result
Oak Ridge National La	aboratory Samples							
ST1	13-16	7/10/1980	NA	NA	NA	NA	NA	590 ± 1.2
NYSDEC Samples								
NR-2-92-003-072201	0-3	7/14/1992	< 0.1	< 0.2	6.2 ± 1.2	0.29 ± 0.16	0.81 ± 0.27	0.53 ± 0.21
NR-2-92-003-072202	3-6	7/14/1992	< 0.11	< 0.24	9.9 ± 2.6	0.7 ± 0.19	0.87 ± 0.23	0.9 ± 0.36
NR-2-92-003-072203	6-10.5	7/14/1992	< 0.1	< 0.18	9 ± 2.1	1.05 ± 0.15	0.98 ± 0.19	0.87 ± 0.24
NR-2-92-003-072204	10.5-14	7/14/1992	< 0.22	< 0.34	6.8 ± 3.7	1.05 ± 0.31	1.48 ± 0.38	1.06 ± 0.47
NR-2-92-003-072205	14-18-E	7/14/1992	< 0.18	< 0.26	9.9 ± 3.3	2.58 ± 0.27	2.51 ± 0.33	1.95 ± 0.4
NR-2-92-003-072206	0-2	7/14/1992	< 0.49	< 0.56	9.7 ± 6.3	1.7 ± 0.58	114.6 ± 2.2	95.3 ± 2.2
NR-2-92-003-072207	2-4	7/14/1992	< 0.34	< 0.54	7.5 ± 6.2	2.6 ± 0.51	18.7 ± 1	16 ± 1.2
NR-2-92-003-072208	4-6	7/14/1992	< 0.87	< 1.8	< 26	2 ± 1.1	18.7 ± 1.9	16.3 ± 2.5
NR-2-92-003-072209	6-10	7/14/1992	< 0.22	< 0.39	7.9 ± 4.6	1.32 ± 0.29	2.03 ± 0.47	2.07 ± 0.52
NR-2-92-003-072210	10-14	7/14/1992	< 0.12	< 0.22	10.7 ± 2.7	1.17 ± 0.19	1.2 ± 0.21	0.99 ± 0.24
NR-2-92-003-072211	14-16.5	7/14/1992	< 0.14	< 0.25	9.5 ± 3.1	1.61 ± 0.23	1.24 ± 0.38	1.53 ± 0.35
NR-2-92-003-072212	0-3	7/14/1992	< 0.28	< 0.65	5.6 ± 5.2	1.89 ± 0.47	53.6 ± 1.2	44.4 ± 1.2
NR-2-92-003-072213	2-4	7/14/1992	< 1.1	< 0.94	< 14	6.9 ± 1.5	453.1 ± 4.8	383.1 ± 4.8
NR-2-92-003-072214	4-6	7/14/1992	< 0.43	< 0.43	10.2 ± 7.7	1.88 ± 0.59	62.8 ± 1.8	51.7 ± 1.7
NR-2-92-003-072215	6-11	7/14/1992	< 0.11	< 0.12	14.5 ± 2	1.27 ± 0.15	1.38 ± 0.19	1.06 ± 0.21
NR-2-92-003-072216	11-14	7/14/1992	< 0.11	< 0.13	10.1 ± 2.2	1.48 ± 0.17	1.4 ± 0.25	1.01 ± 0.31
NR-2-92-003-072217	14-17	7/14/1992	< 0.16	< 0.18	8.4 ± 3.1	1.21 ± 0.29	1.48 ± 0.29	1.15 ± 0.31
NR-2-92-003-072218	0-2	7/14/1992	< 0.83	< 0.68	17 ± 11	< 1.7	534.4 ± 3.8	455.9 ± 3.9
NR-2-92-003-072219	2-4	7/14/1992	< 37	< 29	< 406	< 70	48350 ± 167	38840 ± 160
NR-2-92-003-072220	4-6	7/14/1992	< 18	< 19	< 349	< 22	2629 ± 76	2212 ± 77
NR-2-92-003-072221	6-8	7/14/1992	< 22	< 22	< 349	< 27	5308 ± 102	4109 ± 101
NR-2-92-003-072222	8-12	7/14/1992	< 0.19	< 0.2	8.2 ± 3.6	1.59 ± 0.27	31.6 ± 0.74	26.69 ± 0.79
NR-2-92-003-072223	12-17.5	7/14/1992	< 0.13	< 0.15	10.4 ± 2.2	2.41 ± 0.2	3.34 ± 0.31	2.89 ± 0.39
NR-2-92-003-072224	0-6	7/14/1992	< 0.62	< 0.53	15.3 ± 9.3	2.98 ± 0.76	280.8 ± 2.9	237.8 ± 3
NR-2-92-003-072225	6-12	7/14/1992	< 0.14	< 0.14	7.9 ± 2.6	1.84 ± 0.19	5.2 ± 0.35	4.36 ± 0.4
NR-2-92-003-072226	12-16.5	7/14/1992	< 0.13	< 0.14	8.4 ± 2.5	2.14 ± 0.19	3.05 ± 0.28	2.41 ± 0.39
NR-2-92-003-072227	0-4	7/14/1992	< 0.26	< 0.22	14.6 ± 4.1	1.6 ± 0.4	291.1 ± 1.5	254.9 ± 1.5
NR-9-92-003-072101	2	7/14/1992	< 0.054	0.2 ± 0.078	22.1 ± 1.3	1.237 ± 0.09	1.06 ± 0.11	1.02 ± 0.12
NR-9-92-003-071401	2	7/14/1992	< 0.043	0.33 ± 0.077	9.8 ± 1.1	1.178 ± 0.088	1.06 ± 0.13	0.93 ± 0.11
USEPA, NYSDEC, and	d NYDOH Samples	Š						
885056	0-6	2/20/2008	NA	NA	NA	NA	NA	15.46 ± 0.5
885057	0-6	2/20/2008	NA	NA	NA	NA	NA	3.84 ± 0.2
885058	0-6	2/20/2008	NA	NA	NA	NA	NA	17.26 ± 0.6
885059	0-6	2/20/2008	NA	NA	NA	NA	NA	90.27 ± 2.8
885060	0-6	2/20/2008	NA	NA	NA	NA	NA	1102 ± 33
885061	0-6	2/20/2008	NA	NA	NA	NA	NA	6.088 ± 0.3
885062	0-6	2/20/2008	NA	NA	NA	NA	NA	1.333 ± 0.1
has halary susuad sout	G 1 1 C	TD 11		374 . 11 11	MICE DEC M. M. I	G D	Zaviacamacatel Concernati	om, NVDOIL Nove

bgs: below ground surface; Co: cobalt; Cs: cesium; ID: identification, K: potassium; NA: not applicable, NYSDEC: New York State Department of Environmental Conservation; NYDOH: New York Department of Health; pCi/g: picocuries per gram; Pb: lead; Ra: radium; USEPA: U.S. Environmental Protection Agency

2021 Note: Text was highlighted as part of 2013 Site Inspection Report (USACE 2017)

Table 1. Previous sampling results (continued).

			-			. Previo		<u>.</u> .					220			T. 005			12
		Parameter		h-22			h-23			ГІ-20		_	-238			U-235		Sn-1	
		CAS#		274-8			40-2			913-5		7440	0-61-			117-96-	1	13966-	
	Sample Depth	Units Sample		pCi/g	5		pCi/	9		pCi/ş	5		pCi/	g		pCi/g		pCi	/g
Sample ID	(inches bgs)	Sample Date]	Resul	lt]]	Resu	lt]]	Resul	lt	Re	esult]	Result		Resu	ılt
Oak Ridge National Lab	boratory Samples																		
ST1	13-16	7/10/1980		NA			NA			NA		660	±	19.8		NA		NA	4
NYSDEC Samples																			
NR-2-92-003-072201	0-3	7/14/1992		<	0.56		<	0.4		<	0.52		<	1.7		NA		NA	4
NR-2-92-003-072202	3-6	7/14/1992	0.74	±	0.49	0.65	±	0.57	0.68	±	0.46		<	1.9		NA		NA	
NR-2-92-003-072203	6-10.5	7/14/1992	1.2	±	0.41	0.73	±	0.5	1.11	±	0.38		<	1.6		NA		NA	4
NR-2-92-003-072204	10.5-14	7/14/1992	1.58	±	0.67	1.23	±	0.99	1.46	±	0.62		<	2.8		NA		NA	
NR-2-92-003-072205	14-18-E	7/14/1992	2.6	±	0.56	2.13	±	0.85	2.41	±	0.52	3	±	2.6		NA		NA	1
NR-2-92-003-072206	0-2	7/14/1992	2	±	1.3	1.8	±	1.7	1.8	±	1.2	121	±	13	9.65	± ().72	NA	1
NR-2-92-003-072207	2-4	7/14/1992	1.9	±	1.3	3.8	±	2.1	1.7	±	1.2	31.6	±	7.8	1.96	± (0.41	NA	1
NR-2-92-003-072208	4-6	7/14/1992		<	4.5		<	4		<	4.2	32	±	16	2.3	±	1	NA	1
NR-2-92-003-072209	6-10	7/14/1992	1.08	±	0.75		<	0.98	1	±	0.7	17.7	±	3.5		NA		NA	1
NR-2-92-003-072210	10-14	7/14/1992	1.72	±	0.48	1.33	±	0.56	1.6	±	0.44	4.4	±	2.4		NA		NA	1
NR-2-92-003-072211	14-16.5	7/14/1992	1.56	±	0.69	1.72	±	0.8	1.45	±	0.64	4.7	±	2.7		NA		NA	4
NR-2-92-003-072212	0-3	7/14/1992		<	1.4	3.1	±	1.2		<	1.3	28.5	±	5.6	3.09	± ().37	NA	1
NR-2-92-003-072213	2-4	7/14/1992	4.7	±	2.7		<	4.1	4.3	±	2.5	191.4	±	2.8	19.3	±	1.6	NA	A
NR-2-92-003-072214	4-6	7/14/1992	1.5	±	1.1		<	39	1.4	±	1	34.5	±	7.9	3.54	± ().59	NA	A
NR-2-92-003-072215	6-11	7/14/1992	1.52	±	0.39	1.32	±	0.51	1.41	±	0.36	15.6	±	2.5		NA		NA	A
NR-2-92-003-072216	11-14	7/14/1992	1.42	±	0.41	1.46	±	0.52	1.31	±	0.38	7.1	±	2.2		NA		NA	A
NR-2-92-003-072217	14-17	7/14/1992	1.63	±	0.51	1.49	±	0.73	1.51	±	0.47	8.6	±	3.1		NA		NA	A
NR-2-92-003-072218	0-2	7/14/1992		<	1.9		<	3.1		<	1.7	412	±	23	25.5	±	1.2	5 ±	1.3
NR-2-92-003-072219	2-4	7/14/1992		<	76		<	131		<	70	49190	±	973	2983	± 5	53	NA	A
NR-2-92-003-072220	4-6	7/14/1992		<	45		<	76		<	42	9984	±	563	616	± 3	32	NA	A
NR-2-92-003-072221	6-8	7/14/1992		<	56		<	86		<	52	27860	±	1021	1342	± 4	45	NA	A
NR-2-92-003-072222	8-12	7/14/1992	1.05	±	0.56	1.67	±	0.78	0.97	±	0.52	83.4	±	5.8	5.05	± ().31	NA	4
NR-2-92-003-072223	12-17.5	7/14/1992	2.43	±	0.43	2.41	±	0.78	2.25	±	0.4	21.2	±	3.2	1.17	± ().15	NA	A
NR-2-92-003-072224	0-6	7/14/1992		<	1.5		<	2.4		<	1.4	345	±	17	22.64	± ().97	NA	A
NR-2-92-003-072225	6-12	7/14/1992	1.76	±	0.47	2.22	±	0.66	1.63	±	0.44	20.9	±	2.8	1.49	± ().17	NA	A
NR-2-92-003-072226	12-16.5	7/14/1992	2.16	±	0.57	2.3	±	0.57	2	±	0.52	7.7	±	2.7		NA		NA	Ā
NR-2-92-003-072227	0-4	7/14/1992	1.88	±	0.72	2.4	±	1	1.74	±	0.67	182	±	11	12.66	± ().53	NA	A
NR-9-92-003-072101	2	7/14/1992	1.16	±	0.19	1.51	±	0.33	1.07	±	0.18		<	1.2		NA		NA	Ā
NR-9-92-003-071401	2	7/14/1992	1.1	±	0.21	1.12	±	0.25	1.02	±	0.2		<	1.1		NA		NA	A
USEPA, NYSDEC, and	NYDOH Samples																		
885056	0-6	2/20/2008		NA		0.77	±	0.1		NA		14.04	±	2.9	1.37	± (0.34	NA	4
885057	0-6	2/20/2008		NA		0.39	±	0.1		NA		2.63	±	1.48	0.33		0.16	NA	A
885058	0-6	2/20/2008		NA		0.65	±	0.1		NA		8.37	±	2.83	0.92	± ().35	NA	A
885059	0-6	2/20/2008		NA		0.83	±	0.2		NA		116.4	±	8.91	9.45).89	NA	Ā
885060	0-6	2/20/2008		NA			<	0.7		NA		1187	±	45.1	89.17		3.92	NA	A
885061	0-6	2/20/2008		NA		1	±	0.1		NA		3.4	±	1.97	0.6	± (0.21	NA	A
885062	0-6	2/20/2008		NA		0.73	±	0.1		NA			<	1.03			0.12	NA	Ā
													_						

bgs: below ground surface; ID: identification, NYSDEC: New York State Department of Environmental Conservation; NYDOH: New York Department of Health; pCi/g: picocuries per gram; Sn: tin; Th: thallium; U: uranium; USEPA: U.S. Environmental Protection Agency

			Table 2. Results		n subsurface	soil sa		and gam	ma spe		for the	State			Site (2	011).						
		Analyte		K-40			Ra-226			Th-232				U-234			U-235				U- 238	
		CAS# Units		13966-00-2 pCi/g		-	13982-63-3 pCi/g			/440-29-1 pCi/g			13	9966-29-5 pCi/g			15117-96 pCi/g	-1		- /-	140-61-1 pCi/g	
	S	Screening Lev	vel	None			1.96			3.07				4.02			3.95				1.96	
	Source	e of Screenin	g Level	None	U	SEPA	2008 Backgr			dential PR				dential PRG			idential			SEPA 2	008 Backgr	ound
Sample ID		Sample Date		Result	-		Result Qu							Result Qual			Result	Qual			Result Qu	
SIW-SB-001P-0.0-5.0	SIW-SB-001P-0.0-5.0	40736	Above 5 feet	6.8	2	1.9	1.76	0.31	0.14	1.71	0.3		0.21	1.73	0.23	0.02	0.079			0.015	1.6	0.22 0.01
SIW-SB-002P-0.0-5.0 SIW-SB-003P-0.0-5.0	SIW-SB-002P-0.0-5.0 SIW-SB-003P-0.0-5.0	40736 40736	Above 5 feet Above 5 feet	7.4 14.9	1.4 2.1	1	0.86 1.07	0.21	0.18	0.91	0.2		0.14	0.66	0.12	0.02	0.033	U		0.013	0.66	0.11 0.01 0.12 0.04
SIW-SB-004P-0.0-5.0	SIW-SB-004P-0.0-5.0	40736	Above 5 feet	10.4	1.6	0.5	1.22	0.21	0.16	0.65	0.2		0.25	0.71	0.12	0.03	0.026			0.014	0.64	0.12 0.04
SIW-SB-DUP-001*	SIW-SB-004P-0.0-5.0	40736	Above 5 feet	7.7	1.7	0.9	1.06	0.25	0.18	0.54	0.2	29	0.4	0.78	0.13	0.01	0.046		0.03	0.022	0.79	0.13 0.01
SIW-SB-005P-0.0-5.0	SIW-SB-005P-0.0-5.0	40737	Above 5 feet	12.5	1.8	0.9	1.8	0.27	0.16	1.58	0.		0.24	2.73	0.32	0.02	0.166		0.064	0.016	2.67	0.32 0.01
SIW-SB-006P-0.0-5.0	SIW-SB-006P-0.0-5.0	40737	Above 5 feet	10.8	1.7	0.5	0.72	0.16	0.13	0.54	0.1		0.27	0.67	0.12	0.02	0.028			0.022	0.65	0.12 0.01
SIW-SB-007P-0.0-5.0 SIW-SB-008P-0.0-5.0	SIW-SB-007P-0.0-5.0 SIW-SB-008P-0.0-5.0	40737 40738	Above 5 feet Above 5 feet	10.3	2.1	0.9	0.96 1.57	0.17	0.11	0.65 1.47	0.3		0.35	0.82 1.24	0.13	0.02	0.063		0.036	0.022	0.87	0.14 0.02 0.15 0.01
SIW-SB-009P-0.0-5.0	SIW-SB-009P-0.0-5.0	40738	Above 5 feet	15.3	3.6	2.8	47.6	3.1	0.2	2.82	0		1.1	40.7	4.3	0.02	4.5		1.6	1.9	40.9	4.3 0.2
SIW-SB-010P-0.0-5.0	SIW-SB-010P-0.0-5.0	40739	Above 5 feet	11.5	2.7	2	1.77	0.42	0.32	1.03	0.4		0.45	1.53	0.2	0.02	0.083			0.014	1.28	0.18 0.01
SIW-SB-DUP-005*	SIW-SB-010P-0.0-5.0	40739	Above 5 feet	11.5	2.6	1.8	1.72	0.35	0.22	1.27	0.3	39 (0.23	1.75	0.22	0.03	0.076		0.04	0.014	1.84	0.23 0.02
SIW-SB-011P-0.0-5.0	SIW-SB-011P-0.0-5.0	40737	Above 5 feet	15.8	2.9	1.2	1.79	0.34	0.19	1.72	0.		0.47	0.9	0.14	0.01	0.019	U	0.021	0.023	1	0.15 0.02
SIW-SB-012P-0.0-5.0	SIW-SB-012P-0.0-5.0	40737	Above 5 feet	15	2.2	1.1	1.22	0.24	0.19	1.44	0.3		0.26	0.75	0.13	0.03	0.064			0.014	0.86	0.14 0.01
SIW-SB-013P-0.0-5.0 SIW-SB-014P-0.0-5.0	SIW-SB-013P-0.0-5.0 SIW-SB-014P-0.0-5.0	40738 40737	Above 5 feet Above 5 feet	4.5 1.57	U 3 0.28	0.11	95.8 0.102	5.9 0.024	0.7	0.068	U 0.0		1.6 0.06	37.3 0.74	0.13	0.05	4.6 0.067		2.3 0.037	2.8 0.014	36.6 0.73	3.3 0.03 0.13 0.03
SIW-SB-015P-0.0-5.0	SIW-SB-015P-0.0-5.0	40737	Above 5 feet	15	3.5	2.7	54.4	3.5	0.6	1.55	0.0		1.1	65.4	6.4	0.02	4.2		1.3	1.9	63	6.2 0.3
SIW-SB-016P-0.0-5.0	SIW-SB-016P-0.0-5.0	40738	Above 5 feet	13.9	2.2	1.2	8.29	0.73	0.26	2.11	0.4		0.31	9.68	0.93	0.02	0.48		0.12	0.04	9.63	0.92 0.03
SIW-SB-017P-0.0-5.0	SIW-SB-017P-0.0-5.0	40738	Above 5 feet	13.7	2.1	1.2	3.84	0.44	0.22	1.29	0.2	28 (0.23	1.83	0.23	0.03	0.078		0.04	0.013	1.9	0.24 0.01
SIW-SB-018P-0.0-5.0	SIW-SB-018P-0.0-5.0	40738	Above 5 feet	16.2	2.6	1.6	26.1	1.8	0.5	2.6	0.0		0.57	34.5	3.1	0.05	2.9		1.4	1.6	34.2	3.1 0.06
SIW-SB-DUP-003*	SIW-SB-018P-0.0-5.0	40738	Above 5 feet	15.5	2.2	1.2	20.5	1.5	0.4	2.91	0.0		0.54	24.6	2.2	0.06	1.32	* *	0.76	1.3	24	2.2 0.07
SIW-SB-019P-0.0-5.0 SIW-SB-020P-0.0-5.0	SIW-SB-019P-0.0-5.0 SIW-SB-020P-0.0-5.0	40737 40738	Above 5 feet Above 5 feet	6.7 14.1	1.6	1.3	0.46 1.41	0.15	0.14	0.13 1.52	U 0.1		0.34	0.447 1.98	0.09	0.028	0.013	U	0.016	0.021	0.473 2.01	0.094 0.032 0.26 0.02
SIW-SB-021P-0.0-5.0	SIW-SB-021P-0.0-5.0	40739	Above 5 feet	14.1	2.2	1.1	1.5	0.24	0.17	1.47	0.2		0.11	1.15	0.20	0.03	0.101		0.039		1.15	0.17 0.01
SIW-SB-022P-0.0-5.0	SIW-SB-022P-0.0-5.0	40738	Above 5 feet	16.4	2.4	0.7	1.15	0.25	0.21	1.63	0.3		0.14	0.78	0.16	0.03	0.034	U		0.041	0.92	0.18 0.02
SIW-SB-023P-0.0-5.0	SIW-SB-023P-0.0-5.0	40739	Above 5 feet	12.1	2.2	1.3	2.48	0.36	0.23	2.67	0.4	41 (0.29	2.54	0.3	0.02	0.134		0.056	0.015	2.62	0.31 0.02
SIW-SB-024P-0.0-5.0	SIW-SB-024P-0.0-5.0	40739	Above 5 feet	11.4	2	1.3	1.63	0.28	0.2	1.9	0.3		0.13	1.61	0.21	0.01	0.069		0.036		1.69	0.21 0.01
SIW-SB-DUP-004*	SIW-SB-024P-0.0-5.0	40739	Above 5 feet	12.2	2	1	1.63	0.28	0.2	1.68	0.3		0.26	1.85	0.24	0.02	0.062			0.024	1.89	0.24 0.02
SIW-SB-025P-0.0-5.0 SIW-SB-026P-0.0-5.0	SIW-SB-025P-0.0-5.0 SIW-SB-026P-0.0-5.0	40739 40739	Above 5 feet Above 5 feet	10.6	2.3	1.5	1.09	0.23	0.18	2.36	0.3		0.14	1.08	0.16	0.01	0.038			0.013	1.03	0.15 0.01 0.23 0.02
31W-3D-0201-0.0-3.0	31W-3D-0201-0.0-3.0	Analyte	Above 3 leet	K-40	2.3	1.2	Ra-226	0.37	0.29	Th-232	0.	.5 (U-234	0.24	0.02	U-235		0.042		U- 238	0.23 0.02
-		CAS#	1	3966-00-2		-	13982-63-3		7	440-29-1				3966-29-5		1	15117-96				440-61-1	
		Units		pCi/g			pCi/g			pCi/g				pCi/g			pCi/g				pCi/g	
		Screening Lev		None	T1	CEDA	1.96	,	ъ.	3.07	<u> </u>		D .	4.02		- n	3.95	DDC	**	CED A 4	1.96	
	Source	e of Screenin	g Level	None 16.4	U	SEPA	2008 Backgr 95.8	ound	Kesi	dential PR	G		Resid	dential PRG 65.4		Kes	idential 4.6	PKG	U	SEPA 2	008 Backgr 63	ound
-		MAX		16.4	2.4		95.8	5.9		2.91	0.0	64		65.4	6.4		4.6		2.3		63	6.2
-																						
SIW-SB-001P-5.0-10.0		40736	Below 5 feet	9.8		0.5	0.74		0.16	1.09		31		1.7		0.02			0.052		1.89	0.27 0.02
SIW-SB-003P-5.0-8.0		40736	Below 5 feet	9.2	2.2	1.6	0.97	0.21	0.11	1.07			0.26					U		0.023		0.094 0.024
SIW-SB-004P-5.0-10.0		40736	Below 5 feet	11.2	1.7	0.9	0.93	0.18	0.14	1.24	0.2		0.24	0.55	0.1	0.01	0.02			0.013	0.64	0.11 0.02
SIW-SB-005P-5.0-8.0 SIW-SB-DUP-002*	SIW-SB-005P-5.0-8.0 SIW-SB-005P-5.0-8.0	40737 40737	Below 5 feet Below 5 feet	15.4 17.4	2.8	1.2	1.58	0.3	0.14	1.78	0		0.55 0.45	1.42	0.27	0.03	0.123		0.078	0.033	1.42	0.27 0.03 0.18 0.01
SIW-SB-006P-5.0-8.0	SIW-SB-006P-5.0-8.0	40737	Below 5 feet	11.1	1.6	0.8	0.7	0.16	0.14	0.74	0.		0.09	0.48		0.022	0.022		0.021		0.431	0.088 0.02
SIW-SB-007P-5.0-8.0	SIW-SB-007P-5.0-8.0	40737	Below 5 feet	11	1.8	1.1	2.8	0.36	0.2	1.17	0.3		0.29	3.93	0.42	0.01	0.152		0.058		3.59	0.39 0.01
SIW-SB-008P-5.0-8.0	SIW-SB-008P-5.0-8.0	40738	Below 5 feet	12.3	2	0.7	2.04	0.31	0.19	2.81	0.4		0.14	2.06	0.25	0.02	0.124		0.052		1.82	0.23 0.02
SIW-SB-009P-5.0-8.0	SIW-SB-009P-5.0-8.0	40738	Below 5 feet	14.6	2.4	1.2	2.13	0.34	0.23	1.26	0.2		0.26	4.08	0.45	0.01	0.7		0.5	0.63	3.99	0.45 0.01
SIW-SB-010P-5.0-8.0 SIW-SB-011P-5.0-8.0	SIW-SB-010P-5.0-8.0	40739	Below 5 feet	11.6	1.9	1.3	0.6	0.17	0.17	1.19	0.2		0.12	0.73	0.13	0.01	0.056		0.036		0.66	0.12 0.02 0.12 0.01
SIW-SB-011P-5.0-8.0	SIW-SB-011P-5.0-8.0 SIW-SB-012P-5.0-8.0	40737 40737	Below 5 feet Below 5 feet	17.8 17.3	2.6	0.6	0.97	0.27	0.22	1.73	0		0.3	0.73	0.15	0.02	0.037			0.014	0.82	0.12 0.01 0.14 0.01
SIW-SB-013P-5.0-8.0	SIW-SB-013P-5.0-8.0	40738	Below 5 feet	15.7	2.3	1.1	3.7	0.44	0.24	2.91			0.42	6.77	0.68	0.03	0.35		0.1	0.04	6.15	0.63 0.03
SIW-SB-014P-5.0-8.0	SIW-SB-014P-5.0-8.0	40737	Below 5 feet	23.3	3	1.2	1.02	0.24	0.2	1.22	0.2		0.43	1.91	0.25	0.04	0.131		0.059		1.88	0.25 0.03
SIW-SB-016P-5.0-8.0	SIW-SB-016P-5.0-8.0	40738	Below 5 feet	11	2.3	1.1	1.27	0.31	0.22	1.27	0.3		0.19	2.2	0.26	0.03	0.131			0.026	2.12	0.26 0.03
SIW-SB-019P-5.0-8.0	SIW-SB-019P-5.0-8.0	40737	Below 5 feet	8	1.4	0.6	0.26	0.12	0.15	0.49	0.			0.246	0.061			U	0.0084		0.273	0.064 0.009
SIW-SB-020P-5.0-8.0	SIW-SB-020P-5.0-8.0	40738	Below 5 feet	13	1.9	0.5	1.08	0.18	0.11	0.97	0.2		0.26	1.06 0.92	0.17	0.03	0.029			0.028	0.06	0.16 0.02 0.14 0.02
SIW-SB-021P-5.0-8.0 SIW-SB-022P-5.0-8.0	SIW-SB-021P-5.0-8.0 SIW-SB-022P-5.0-8.0	40739 40738	Below 5 feet Below 5 feet	9.8 19.6	2.5	1.3	0.71 1.25	0.18	0.16	0.61 1.5			0.41	0.92	0.14	0.02	0.031	U		0.021	0.96	0.14 0.02 0.14 0.03
SIW-SB-023P-5.0-8.0	SIW-SB-023P-5.0-8.0	40739	Below 5 feet	9	1.9	0.9	0.78	0.18	0.11	0.59			0.33	1.28	0.14	0.02	0.048			0.022	1.19	0.17 0.02
	DIW-DD-0231-3.0-0.0	10737	Dolon b loot		1./	0.,	0.70	0.10	0.11	0.57	0.2	(
-	51W-5D-0231-3.0 0.0	MAX	Below & leet	23.3	3	0.7	3.7 3.7	0.44	0.11	2.91 2.91		42 (6.77 6.77	0.68		0.7 0.7		0.5		6.15 6.15	0.63

VALUE 16 exceeds the Screening Level as outlined in the QAPP (USACE 2011b) on Goal, Qual: Data Qualifer; UPL: Upper Prediction Limit; USEPA: U.S. Environmental Protection Agency; U: not detected at the assocated level; *The DUP is a field duplicate of the preceding sample

Table 3. Downhole gamma scan results (cpm) (2011).

Depth (ft bgs)	001	002	003*	004	005**	006	007*	008	009	010**	011*	012	013*	014	015	016	017	018	019*	020	021**	022*	023*	024	025**	026**
1	2000	1400	-	1000	1158	491	-	2700	6100	-	1231	2168	10000	1530	7000	2700	1900	19000	800	1700	-	1600	2500	2800	-	-
2	3000	1700	-	1200	2586	943	-	1700	3300	-	2123	2431	2600	1600	1500	1700	1800	5000	950 (1.5 ft)	1500	-	3000	3300	1900	-	-
3	2000	500	-	1100	1718	1136	-	1400	1300	-	2716	1930	2000	1169	1300	2300	820	2000	-	1900	-	3500	1500	1400	-	-
4	2000	500	-	1200	2100	1744	-	1629	1100	-	2522	1560	2700	750	900	1100	550	1300	-	1500	-	1500	754	900	-	-
5	-	600	-	1300	-	1112	-	2500	2600	-	-	1460	4200	1250	1500	800	-	2000	-	1700	-	-	500	1100 (4.5 ft)	-	-
6	-	-	-	1400	-	1021	-	2000	800	-	-	-	5600	850	-	-	-	4500 (5 ft)	-	-	-	-	-	-	-	-
7	-	-	-	1600	-	904 (6.5 ft)	-	2100	1500	-	-	-	-	900	-	-	-	-	-	-	-	-	-	-	-	-
8	-	-	-	1500	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Hole collapsed; **Encountered groundwater; --: no data; cpm: counts per minute; ft bgs: foot/feet below ground surface

		Table 4	4. Results of	f radia	tion surfa	ace soil sample	s (alj	ha and gan	ıma spectr	oscop	y) for the	Staten Island	Ware	house Site (2	011).			
	Analyte		K-40			Ra-226		Т	h-232			U-234		1	U-235		U- 238	
	CAS#	1	3966-00-2		1	13982-63-3		74	40-29-1		1	13966-29-5		151	117-96-1	7	440-61-1	
	Units		pCi/g			pCi/g]	pCi/g			pCi/g]	pCi/g		pCi/g	
	Screening Level		None			1.96			3.07			4.02			3.95		1.96	
Source of	f Screening Level		None		USEPA	2008 Backgro	und	Resido	ential PRG	Ì	Res	idential PRG		Resid	ential PRG	USEPA 2	2008 Backgr	round
Sample ID	Sample Date	Result (Qual 2σ I	MDC	Result	Qual 2σ M	IDC	Result Qu	al 2σ I	MDC	Result (Qual 2σ M	1DC	Result Qua	l 2 σ MDC	Result Q	ual 2σ	MDC
SIW-SS-001P-0.0-2.0	7/16/2011	12.3	2.1	0.7	5.72	0.61	0.3	1.94	0.42	0.15	1.78	0.22	0.02	0.111	0.045 0.012	1.94	0.23	0.009
SIW-SS-002P-0.0-2.0	7/16/2011	14.5	2.1	1.1	1.74	0.33	0.25	1.77	0.35	0.12	1.23	0.17	0.02	0.062	0.036 0.026	1.37	0.19	0.02
SIW-SS-003P-0.0-2.0	7/15/2011	10.2	1.5	0.7	0.38	0.1	0.1	0.69	0.17	0.15	0.287	0.072	0.018	0.005 U	0.01 0.014	0.283	0.073	0.032
SIW-SS-004P-0.0-2.0	7/15/2011	9.5	2	1	0.72		0.14	0.56	0.2	0.35	0.65	0.11	0.03	0.024 U	0.023 0.027	0.475	0.094	0.024
SIW-SS-005P-0.0-2.0	7/16/2011	6.9	1.5	0.7	2.81		0.22	1.26	0.32	0.13	3.16	0.35	0.02	0.133	0.053 0.014	2.88	0.33	0.02
SIW-SS-006P-0.0-2.0	7/15/2011	6.9	1.2	0.8	0.23		0.12	0.45	0.14	0.13			0.017	0.005 U	0.014 0.029	0.233		0.024
SIW-SS-007P-0.0-2.0	7/15/2011	9.2	1.4	0.7	0.38		0.12	0.49	0.14	0.08	0.361		0.031	0.008 U	0.015 0.028	0.314	0.078	
SIW-SS-008P-0.0-2.0	7/16/2011	5.5	1.1	0.8	2.96		0.21	3.32	0.38	0.22	1.77	0.24	0.04	0.092	0.047 0.016	2.04	0.26	0.01
SIW-SS-009P-0.0-2.0	7/16/2011	17.1	4.4	3.2	36.3	2.6	0.6	2.01	0.8	1.2	33.9	3	0.05	2.9	1.2 1.7	33.4	3	0.06
SIW-SS-010P-0.0-2.0	7/15/2011	9	1.5	0.5	2.88		0.21	1.38	0.34	0.32	2.68	0.3	0.03	0.162	0.058 0.022	2.8	0.31	0.03
SIW-SS-011P-0.0-2.0	7/16/2011	10.4	1.7	1.1	1.27		0.19	0.64	0.22	0.3	1.13	0.16	0.03	0.093	0.043 0.021	0.96	0.15	0.01
SIW-SS-012P-0.0-2.0	7/16/2011	12.5	2.5	1.2	3.29	0.48	0.26	2.13 1.82	0.44		1.91 9.11	0.24	0.03	0.152	0.056 0.022 0.12 0.03	1.88 9.48	0.23	0.02
SIW-SS-013P-0.0-2.0 SIW-SS-014P-0.0-2.0	7/16/2011 7/16/2011	11.3	2.7	1.9	5.28		0.4	1.66	0.32	0.53	1.75	0.87	0.02	0.068	0.039 0.027	1.58	0.9	0.02
	+	15.8		1.2	19.5		0.24	2.36		0.37	10.3	0.22	0.03	0.008		10.1	0.21	0.02
SIW-SS-015P-0.0-2.0 SIW-SS-016P-0.0-2.0	7/16/2011 7/16/2011	13.5	2.9 3.7	2.9	19.5	1.6 2.8	0.4	2.36	0.7	0.79	11.9	1.1	0.02	0.53	0.12 0.03 0.15 0.02	11.5	1.1	0.02
SIW-SS-DUP-002*	7/16/2011	11.4	2.5	2.9	33.2	2.2	0.5	2.82	0.68	0.77	11.9	1.1	0.03	0.56	0.13 0.02	11.8	1.1	0.01
SIW-SS-017P-0.0-2.0	7/16/2011	12.2	1.9	1.1	6.97		0.29	1.49	0.34	0.33	1.78	0.23	0.02	0.054	0.034 0.023	1.82	0.23	0.01
SIW-SS-0171-0.0-2.0	7/16/2011	13.7	3.2	2.5	35.2	2.3	0.25	2.29	0.84	0.78	58.4	5.8	0.02	3	1.3 1.6		5.6	0.01
SIW-SS-DUP-004*	7/16/2011	17.7	3.7	2.6	36.5	2.5	0.6	3.37	0.73	0.8	38	3.4	0.05	2.7	1.3 1.7	31.2	7.2	8.1
SIW-SS-019P-0.0-2.0	7/15/2011	4.3	1.3	1.1	0.47		0.09	0.19 U	0.19	0.33			0.017	0.014	0.016 0.013	0.291	0.071	0.017
SIW-SS-020P-0.0-2.0	7/16/2011	6.9	1.6	1.4	2.46		0.19	1.19	0.3	0.19	1.65	0.21	0.02	0.06	0.035 0.022	1.72	0.22	0.02
SIW-SS-021P-0.0-2.0	7/15/2011	12.1	2	1.2	1.49		0.24	2.01	0.37	0.22	1.73	0.24	0.04	0.082	0.048 0.04	1.7	0.23	0.04
SIW-SS-DUP-001*	7/15/2011	11	1.9	0.7	1.82	0.29	0.17	1.46	0.32	0.13	1.85	0.26	0.03	0.078	0.05 0.045	1.9	0.26	0.04
SIW-SS-022P-0.0-2.0	7/16/2011	10.1	1.5	0.7	0.49	0.12	0.11	0.4	0.15	0.31	0.328	0.075	0.021	0.0034	0.0093 0.021	0.331	0.075	0.021
SIW-SS-023P-0.0-2.0	7/16/2011	11.8	2.3	1.1	3.77	0.5	0.23	2.2	0.48	0.4	2.19	0.27	0.03	0.097	0.046 0.015	2.21	0.27	0.02
SIW-SS-024P-0.0-2.0	7/16/2011	12.6	1.8	0.9	1.75	0.26	0.16	1.18	0.24	0.24	1.87	0.24	0.01	0.088	0.043 0.014	1.79	0.23	0.02
SIW-SS-DUP-003*	7/16/2011	13.1	2.3	1	1.49	0.27	0.15	1.02	0.29	0.26	1.69	0.22	0.03	0.058	0.035 0.014	1.72	0.22	0.01
SIW-SS-025P-0.0-2.0	7/16/2011	7	1.3	1	0.91	0.19	0.19	0.76	0.21	0.22	2.85	0.33	0.02	0.42	0.34 0.41	2.72	0.32	0.01
SIW-SS-026P-0.0-2.0	7/15/2011	10.5	1.9	1.1	1.86	0.33	0.24	2.26	0.37	0.4	1.72	0.22	0.02	0.089	0.043 0.013	1.58	0.21	0.01
SIW-SS-027P-0.0-2.0	7/15/2011	18.4	2.2	0.5	1.03	0.2	0.15	1.79	0.29	0.16	0.84	0.14	0.03	0.046	0.035 0.037	0.85	0.14	0.04
SIW-SS-028P-0.0-2.0	7/15/2011	9.4	1.6	1	1.52	0.24	0.16	1.37	0.24	0.17	1.78	0.22	0.02	0.09	0.043 0.022	1.64	0.21	0.02
SIW-SS-029P-0.0-2.0	7/16/2011	7.5	1.3	0.8	1.37		0.16	0.87	0.22	0.21	2.19	0.27	0.03	0.103	0.048 0.015	2.14	0.26	0.02
SIW-SS-030P-0.0-2.0	7/16/2011	12.9	1.9	0.6	1.64		0.19	1.53	0.35	0.18	1.64	0.22	0.01	0.11	0.051 0.016	1.6	0.22	0.02
SIW-SS-031P-0.0-2.0	7/16/2011	14.7	2.3	1.3	2.19		0.24	1.71	0.33	0.23	0.81	0.14	0.02	0.037	0.028 0.014	0.75	0.13	
SIW-SS-032P-0.0-2.0	7/16/2011	10.6	1.6	0.7	0.57		0.11	0.73	0.17	0.15	0.5	0.1	0.01	0.021	0.021 0.014	0.412	0.091	0.011
SIW-SS-033P-0.0-2.0	7/16/2011	13.6	2.5	1.1	2.2	0.37	0.2	1.97	0.41	0.38	1.94	0.25	0.03	0.104	0.05 0.016	2.25	0.28	0.01
SIW-SS-034P-0.0-2.0	7/16/2011	8.5	1.7	1.1	2.32		0.19	1.82	0.3	0.19	1.9	0.24	0.01	0.075	0.039 0.013		0.22	
SIW-SS-035P-0.0-2.0	7/16/2011	7.2	1.5	1.1	1.93		0.19	0.69	0.22	0.12	2.09	0.26	0.01	0.084	0.045 0.026	2.12	0.27	0.02
SIW-SS-036P-0.0-2.0	7/17/2011	9.9	1.9	1.2	2.21	0.32	0.2	2.41	0.38	0.27	1.71		0.02	0.092	0.047 0.016		0.23	0.01
SIW-SS-037P-0.0-2.0	7/17/2011	12.3	2 2 7	1 2	2.66		0.27	3.12	0.52	0.3			0.03	0.148	0.059 0.025	3.38	0.37	0.01
SIW-SS-038P-0.0-2.0	7/17/2011	14.3	2.7	1.2	1.89 2.59		0.19	1.66	0.38	0.21	0.94		0.03		0.028 0.023 0.04 0.022	1.04	0.16	
SIW-SS-039P-0.0-2.0 SIW-SS-040P-0.0-2.0	7/17/2011	11.3	1.9	0.6	1.65		0.21	1 53	0.28	0.38	1.45 1.91		0.02	0.08	0.04 0.022	1.37 1.98	0.19	0.02
SIW-SS-040P-0.0-2.0 SIW-SS-DUP-005*	7/17/2011 7/17/2011	11.3	1.8	1.1	1.65		0.26	1.53 1.37	0.27	0.21			0.03	0.105	0.049 0.029	1.44	0.25	0.02
SIW-SS-DUP-005** SIW-SS-041P-0.0-2.0	7/17/2011	16.1	2.8	1.1	1.49		0.19	1.37	0.29	0.22			0.03	0.094 0.007 U	0.046 0.024	0.9	0.19	0.04
SIW-SS-042P-0.0-2.0	7/17/2011	6.1	1.1	0.4	0.33		0.13	0.28	0.14	0.19			0.04		0.019 0.014			0.04
SIW-SS-042P-0.0-2.0	7/17/2011	11.7	1.1	1.1	6.18		0.13	1.45	0.14	0.17	7.19		0.023	0.010	0.6 0.78	7.17	0.073	0.012
SIW-SS-044P-0.0-2.0	7/17/2011	5.5	1.2	0.8	1.77		0.23	0.22 U	0.12	0.12			0.02	0.93	0.042 0.024	1.28	0.71	
SIW-SS-0441-0.0-2.0	7/17/2011	6.8	2.2	2.4	15.8	1.3	0.17	2.08	0.12	0.63	8.13		0.03	1.13	0.79 1.1	7.78	0.13	
5111 55 0 151 010 210	Analyte	0.0	K-40		1010	Ra-226	0.0		h-232	0.00	0,120	U-234	0.02		U-235	7470	U- 238	0.02
	CAS#	1	3966-00-2		1	13982-63-3			40-29-1		1	13966-29-5			117-96-1	-	440-61-1	
	Units	-	pCi/g			pCi/g			pCi/g			pCi/g			pCi/g		pCi/g	
	Screening Level		None			1.96		_	3.07			4.02			3.95		1.96	
Source of	None		USEPA	2008 Backgro	und		ential PRG	}	Res	idential PRG		Reside	ential PRG	USEPA 2	2008 Backgr	ound		
						- 6.												
	50	18.4			42			3.37			58.4			3		56.6		
USACE	7/17/2011	18.4	2.2		42	2.8		3.37	0.73		58.4	5.8		3	1.3	56.6	5.6	
VALUE	Value exceeds th	e Screen	ing Level as	outline	ed in the (QAPP (USACE	2011	b)			·				_			

VALUE Value exceeds the Screening Level as outlined in the QAPP (USACE 2011b)

2σ: total uncertainty; CAS: Chemical Abstract Service; ID: identification, MDC: Minimum Detectable Concentration; pCi/g: picocuries per gram; PRG: Preliminary Remediation Goal, Qual: Data Qualifer; UPL: Upper Prediction Limit; USEPA: U.S. Environmental Protection Agency, U: not detected at the assocated level; *The DUP is a field duplicate of the preceding sample

Table 5. Water quality parameters for groundwater samples collected from the Staten Island Warehouse Site.

Samp	ple ID	Temperati	ure (°C)	Specific Cor (mS/c		Dissolved (mg/	• •	pH (S	.U.)	ORP (mV)	Turbidity	(NTU)	Salinity	(PSS)
Unfiltered	Filtered	Unfiltered	Filtered			Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
SIW-GW-010UFP	SIW-GW-010FP	22.84	24.62	346	344	4.39	3.93	6.18	6.24	48.2	47.4	57.6	55.3	21.66	21.67
SIW-GW-016UFP	SIW-GW-016FP	24.15	24.58	346	34.7	3.85	4.36	6.46	6.31	46.4	47.0	68.7	62.7	21.78	21.74
SIW-GW-023UFP	SIW-GW-023FP	22.46	22.42	348	351	4.71	4.04	6.55	6.66	43.9	46.6	75.8	52.3	21.79	21.99
SIW-GW-026UFP	SIW-GW-026FP	24.52	24.18	356	351.7	6.06	5.73	7.31	7.32	49.1	48.6	54.5	50.8	22.41	20.66
SIW-GW-005UFP	SIW-GW-005FP	22.89	21.84	333	339	3.17	3.59	6.31	6.25	50.1	50.3	56.0	50.0	20.84	21.23
SIW-GW-009UFP	SIW-GW-009FP	24.2	24.36	351	32.8	3.36	3.74	6.57	6.56	45.8	45.2	54.7	49.5	22.06	20.45

mg/L: milligrams/liter; ms/cm: milliSiemens per centimeter; mV: millivolts, NTU: Nephlometric Turbidity Unit, PSS: Practical Salinity Scale; S.U.: Standard Unit; °C: degrees Celsius

Table 6. Results of radiation groundwater samples for the Staten Island Warehouse Site.

							ubic of I	Courts	or radiation gr				built	II IDIGI	ia warenouse	Ditt.									
		Analyte			Gross	s Alpha					Gross	Beta					Ra-	226				Ra	1-228		
		CAS#			1258	7-46-1					12587	-47-2					13982	-63-3				1526	52-20-1		
		Units			p(Ci/L					рСi	i/L					pCi	i/L				p	Ci/L		
		Screening Level				15					50	0					5	;					5		
Sam	ple ID		Unfil	Unfiltered Filtered Coul 2 σ MDC Result Qual 2 σ MDC Res				Unfilte	red		Filte	red		Unfilt	tered		Filtered		Un	filtered		Fil	ltered		
Unfiltered	Filtered	CollectedDate	Result Qua	12σ	MDC	Result Qua	1 2 σ	MDC	Result Qual	2 σ Ν	MDC	Result Qual	2 σ	MDC	Result Qual	2 σ	MDC	Result Qual 2 o	MD	Result Qu	al 2σ	MDC	Result Qual	2 σ	MDC
SIW-GW-010UFP	SIW-GW-010FP	7/17/2011	-10 U	120	230	-14 U	99.9	200	221	75	93	137	73	110	1.91	0.35	0.22	2.16 0.	37 0.1	0.5	0.24	0.34	0.51	0.27	0.39
SIW-GW-016UFP	SIW-GW-016FP	7/17/2011	2 U	100	200	-35 U	52	130	181	81	110	158	59	80	0.73	0.23	0.19	0.91 0.	23 0.1	0.31 U	0.33	0.53	0.32 U	0.23	0.36
SIW-GW-023UFP	SIW-GW-023FP	7/17/2011	8 U	69	140	24 U	84	150	109	54	79	140	49	60	0.27	0.14	0.18	0.35 0.	16 0.1	0.25 U	0.27	0.43	0.13 U	0.27	0.46
SIW-GW-026UFP	SIW-GW-026FP	7/17/2011	-14 U	71	150	7 U	84	170	161	60	81	52 U	72	120	0.29	0.14	0.16	-0.03 U 0.	11 0.2	0.02 U	0.25	0.44	0.16 U	0.25	0.42
SIW-GW-005UFP	SIW-GW-005FP	7/17/2011	29 U	93	170	30 U	100	190	89 U	62	94	66 U	46	71	0.74	0.21	0.17	0.52 0.	19 0.	0.07 U	0.26	0.45	0.46	0.27	0.4
SIW-GW-UFDUP*	SIW-GW-FDUP*	7/17/2011	2 U	62	130	64 U	82	130	171	61	80	114	58	84	0.29	0.16	0.22	0.61	0.1	0.47	0.3	0.45	0.38 U	0.29	0.45
SIW-GW-009UFP	SIW-GW-009FP	7/17/2011	-17 U	78	160	32 U	88	160	96	47	67	102	47	65	1.25	0.28	0.22	0.85 0.	25 0.	0.31 U	0.22	0.33	0.52	0.29	0.43

VALUE Value exceeds the Screening Level as outlined in the QAPP (USACE 2011b)

2σ: total uncertainty; CAS: Chemical Abstract Service; ID: identification, mrem/yr: millirems per year, MDC: Minimum Detectable Concentration; pCi/L: picocuries per liter; Qual: Data Qualifer; UPL: Upper Prediction Limit; USEPA: U.S. Environmental Protection Agency J: Estimated value; R: rejected data point; U: not detected at the associated level; UJ: not detected and associated value is estimated See http://water-epa.gov/drink/contaminants/index.cfm#Radionuclides for gross alpha and beta MCLs.

		Analyte			U-	234					U-235	5/236				U-2	238		
		CAS#			1396	6-29-5					15117	'-96-1				7440-	61-1		
		Units			p(Ci/L					pC:	i/L				pC i	i/L		
		Screening Level			18'	7000					64	.8				10	.1		
Sam	ple ID		Unfilt	Unfiltered Filter					Unfilt	tered		Filtered		Unfi	ltered		Filte	ered	
Unfiltered	Filtered	CollectedDate	Result Qual	2 σ	MDC	Result Qua	1 2 σ	MDC	Result Qual	2 σ	MDC	Result Qual 2 of	MDC	Result Qual	l 2σ	MDC	Result Qual	2 σ	MDC
SIW-GW-010UFP	SIW-GW-010FP	7/17/2011	0.98	0.2	0.07	0.78	0.2	0.06	0.055 U	0.1	0.065	0.055 0.	1 0.037	0.73	0.18	0.05	0.62	0.17	0.03
SIW-GW-016UFP	SIW-GW-016FP	7/17/2011	0.51	0.1	0.05	0.59	0.15	0.02	0.045	0	0.03	0.066 0.	1 0.03	0.57	0.15	0.04	0.61	0.16	0.02
SIW-GW-023UFP	SIW-GW-023FP	7/17/2011	0.95	0.2	0.05	0.91	0.21	0.07	0.052	0	0.05	0.013 U	0.034	0.67	0.16	0.05	0.85	0.2	0.05
SIW-GW-026UFP	SIW-GW-026FP	7/17/2011	0.84	0.2	0.04	0.76	0.18	0.07	0.01 U	0	0.028	0.012 U	0.075	0.65	0.16	0.02	0.75	0.18	0.08
SIW-GW-005UFP	SIW-GW-005FP	7/17/2011	1.5	0.3	0.03	0.96	0.2	0.04	0.05	0.1	0.034	0.053	0.029	1.5	0.28	0.05	0.83	0.18	0.02
SIW-GW-UFDUP*	SIW-GW-FDUP*	7/17/2011	1.08	0.2	0.03	1	0.22	0.04	0.045 U	0	0.054	0.037	0.033	1.05	0.22	0.03	0.91	0.2	0.03
SIW-GW-009UFP	SIW-GW-009FP	7/17/2011	2.15	0.3	0.05	1.78	0.29	0.02	0.085	0.1	0.029	0.095 0.	1 0.029	1.93	0.3	0.05	1.61	0.27	0.02

VALUE Value exceeds the Screening Level as outlined in the QAPP (USACE 2011b)

2σ: total uncertainty; CAS: Chemical Abstract Service; ID: identification, mrem/yr: millirems per year, MDC: Minimum Detectable Concentration; pCi/L: picocuries per liter; Qual: Data Qualifer; UPL: Upper Prediction Limit; USEPA: U.S. Environmental Protection Agency U: not detected at the assocated level; *The DUP is a field duplicate of the preceding sample

An activity concentration of >50 pCi/L often is used as an indication of when specific beta-emitting isotopes should be analyzed.

See http://water-epa.gov/drink/contaminants/index.cfm#Radionuclides for gross alpha and beta MCLs.

Table 7. Test pit gamma scan results.

Note: See Figure 5-3 for test pit location.

Total Depth	Analytica l Group	Gamma Scan Results
(ft bgs)		
	Gamma	Background: 32 cpm
6		Pile: 1300 cpm
	Survey	Pit walls: 32 cpm
		Background: 32 cpm
6	Gamma	Surface: 8000-9000 cpm [1]
O	Survey	Pile: 23000 cpm (~2 ft)
		Pit walls: 32 cpm
	Gommo	Background: 32 cpm
6		Pile: 32 cpm
	Survey	Pit walls: 32 cpm
	Gamma	Background: 32 cpm
6		Pile: 13000 cpm
	Survey	Pit walls: <32 cpm
	Depth (ft bgs) 6 6	Pepth Analytica I Group (ft bgs) 6 Gamma Survey 6 Gamma Survey 6 Gamma Survey Gamma

bgs: below ground surface; cpm: counts per minute; ft: feet/foot

^[1] Surface scan results were collected for additional data

^[2] Highest scan counts of 13000 cpm were collected on excavated wood debris

Table 8. Results of metal characterization samples (Methods 6020A and 7471A) for the Staten Island Warehouse Site (2011).

				oi ilictai charac		`				the Statem Isla	ila mai	chouse site (20	,11).				
	Analyte	Arsenic		Barium		Cadmiui	n	Chromiu	m	Lead		Mercur	y	Seleniun	n	Silver	
	CAS#	7440-38-	2	7440-39-	3	7440-43-	9	7440-47-	3	7439-92-	1	7439-97-	6	7782-49-	2	7440-22-	-4
	Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
Location ID	Collected Date	Result Qual	MDL	Result Qual	MDL	Result Qual	MDL	Result Qual	MDL	Result Qual	MDL	Result Qual	MDL	Result Qual	MDL	Result Qual	MDL
SIW-SS-041PC-0.0-2.0	7/17/2011	5 J	0.23	48 =	0.065	0.058 =	0.018	19 =	0.51	202 J	0.11	0.036 J	0.013	1.8 =	0.18	0.043 U	0.016
SIW-SS-042PC-0.0-2.0	7/17/2011	2.9 J	0.21	39.3 =	0.059	0.16 =	0.017	21.6 =	0.46	30.4 J	0.1	0.048 J	0.012	0.95 =	0.16	0.076 U	0.014
SIW-SS-043PC-0.0-2.0	7/17/2011	29 J	0.22	963 =	0.062	4.4 =	0.017	76.4 =	0.49	2960 J	0.55	3.1 J	0.12	2.1 =	0.17	0.72 =	0.015
SIW-SS-044PC-0.0-2.0	7/17/2011	31.7 J	0.22	400 =	0.062	3.3 =	0.017	137 =	0.49	2590 J	0.54	0.28 J	0.012	0.83 =	0.17	0.58 =	0.015
SIW-SS-CDUP-001*	7/17/2011	27.1 J	0.22	601 =	0.062	2.8 =	0.017	119 =	0.49	2140 J	0.54	0.29 J	0.012	0.9 =	0.17	0.53 =	0.015

CAS: Chemical Abstract Service; ID: identification, MDL: Method Detection Limit, mg/kg: milligrams per kilogram

=: Detection confirmed by validator; J: Detection confirmed by validator, but estimated value; U: not detected at the assocated level; *The DUP is a field duplicate of the preceding sample

Table 9. Results of SVOC characterization samples (Method 8270C) for the Staten Island Warehouse Site (2011).

	Analyte	2-Methylnaphth	alene	Acenaphther	ne	Acenaphthyl	ene	Anthracei	ne	Benzo(a)anthr	acene	Benzo(a)pyi	ene
	CAS#	91-57-6		83-32-9		208-96-8		120-12-7	'	56-55-3		50-32-8	_
	Units	μg/kg		μg/kg		μg/kg		μg/kg		μg/kg		μg/kg	
Location ID	Collected Date	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ
SIW-SS-041PC-0.0-2.0	7/17/2011	380 U	380	380 U	380	150 J	380	160 J	380	260 J	380	400 =	380
SIW-SS-042PC-0.0-2.0	7/17/2011	110 J	340	130 J	340	350 =	340	830 =	340	1800 =	340	1200 =	340
SIW-SS-043PC-0.0-2.0	7/17/2011	51 J	360	360 U	360	650 =	360	610 =	360	1000 =	360	1300 =	360
SIW-SS-044PC-0.0-2.0	7/17/2011	170 J	360	360 U	360	1800 =	360	7700 J	1800	3000 =	360	4300 =	360
SIW-SS-CDUP-001*	7/17/2011	130 J	360	360 U	360	1300 =	360	36000 J	3600	1900 =	360	3000 =	360

CAS: Chemical Abstract Service; ID: identification, LOQ: Limit of Quantification, SVOC: semi-volatile organic compound, µg/kg: micrograms per kilogram

=: Detection confirmed by validator; J: Detection confirmed by validator; J: Detection confirmed by validator; but estimated value; U: not detected at the associated value is estimated; *The DUP is a field duplicate of the preceding sample

	Analyte CAS#	Benzo(b)fluorar 205-99-2	nthene	Benzo(g,h,i)pery 191-24-2	lene	Benzo(k)fluorar 207-08-9	nthene	bis(2-Ethylhexyl) ₁ 117-81-7	ohthalate	Butyl benzyl pht 85-68-7	thalate	Carbazole 86-74-8	;
	Units	μg/kg		μg/kg		μg/kg		μg/kg		μg/kg		μg/kg	
Location ID	Collected Date	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ
SIW-SS-041PC-0.0-2.0	7/17/2011	540 J	380	230 J	380	180 J	380	380 U	380	380 U	380	380 U	380
SIW-SS-042PC-0.0-2.0	7/17/2011	1900 J	340	690 J	340	720 =	340	340 U	340	340 U	340	330 J	340
SIW-SS-043PC-0.0-2.0	7/17/2011	2000 J	360	1400 J	360	720 =	360	390 =	360	66 J	360	160 J	360
SIW-SS-044PC-0.0-2.0	7/17/2011	6100 J	360	7200 J	360	2100 =	360	130 J	360	360 U	360	3800 =	360
SIW-SS-CDUP-001*	7/17/2011	4000 J	360	4600 J	360	1400 =	360	94 J	360	360 U	360	13000 J	3600

CAS: Chemical Abstract Service; ID: identification, LOQ: Limit of Quantification, SVOC: semi-volatile organic compound, µg/kg: micrograms per kilogram

=: Detection confirmed by validator; J: Detection confirmed by validator, but estimated value; U: not detected at the associated value is estimated; *The DUP is a field duplicate of the preceding sample

	Analyte	Chrysene		Dibenz(a,h)anthr	acene	Dibenzofur	an	Di-n-octyl phth	alate	Fluoranth	ene	Fluorene	:
	CAS#	218-01-9		53-70-3		132-64-9		117-84-0		206-44-0)	86-73-7	
	Units	μg/kg		μg/kg		μg/kg		μg/kg		μg/kg		μg/kg	
Location ID	Collected Date	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ
SIW-SS-041PC-0.0-2.0	7/17/2011	310 J	380	380 U	380	380 U	380	380 U	380	300 J	380	380 U	380
SIW-SS-042PC-0.0-2.0	7/17/2011	1800 =	340	230 Ј	340	290 J	340	340 U	340	4600 J	340	490 =	340
SIW-SS-043PC-0.0-2.0	7/17/2011	1200 =	360	270 Ј	360	360 U	360	130 J	360	1600 J	360	69 J	360
SIW-SS-044PC-0.0-2.0	7/17/2011	4900 =	360	360 U	360	360 =	360	360 U	360	6200 J	360	480 =	360
SIW-SS-CDUP-001*	7/17/2011	4600 =	360	920 =	360	290 J	360	360 U	360	2800 J	360	540 =	360

CAS: Chemical Abstract Service; ID: identification, LOQ: Limit of Quantification, SVOC: semi-volatile organic compound, µg/kg: micrograms per kilogram

=: Detection confirmed by validator; J: Detection confirmed by validator; J: Detection confirmed by validator, but estimated value; U: not detected at the associated value is estimated; *The DUP is a field duplicate of the preceding sample

	Analyte	Hexachlorocyclop	entadiene	Indeno(1,2,3-cd)	pyrene	Naphthale	ene	Phenanthr	ene	Pyrene	
	CAS#	77-47-4		193-39-5		91-20-3		85-01-8	3	129-00-0	
	Units	μg/kg		μg/kg		μg/kg		μg/kg		μg/kg	
Location ID	Collected Date	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ
SIW-SS-041PC-0.0-2.0	7/17/2011	1800 UJ	1800	250 J	380	380 U	380	97 J	380	200 J	380
SIW-SS-042PC-0.0-2.0	7/17/2011	1700 UJ	1700	790 =	340	99 J	340	3600 =	340	3200 =	340
SIW-SS-043PC-0.0-2.0	7/17/2011	1700 UJ	1700	1100 =	360	56 J	360	580 =	360	1300 =	360
SIW-SS-044PC-0.0-2.0	7/17/2011	1700 U	1700	5300 =	360	230 J	360	4100 =	360	4500 =	360
SIW-SS-CDUP-001*	7/17/2011	1700 UJ	1700	3200 =	360	210 J	360	2600 =	360	2700 =	360

CAS: Chemical Abstract Service; ID: identification, LOQ: Limit of Quantification, SVOC: semi-volatile organic compound, µg/kg: micrograms per kilogram

=: Detection confirmed by validator; J: Detection confirmed by validator, but estimated value; U: not detected at the associated value is estimated; *The DUP is a field duplicate of the preceding sample

Table 10. Results of VOC characterization samples (Method 8260B) for the Staten Island Warehouse Site (2011).

	Analyte CAS#	1,3-Dichlorobo 541-73-1		1,4-Dichloroben 106-46-7	zene	2-Butanone 78-93-3		Acetone 67-64-1		Benze 71-43		Ethylbenze 100-41-4	
	Units	μg/kg	L	μg/kg		μg/kg		μg/kg		μg/k		μg/kg	
Location ID	Collected Date	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	l LOQ	Result Qual	LOQ
SIW-SS-041PC-0.0-2.0	7/17/2011	5.7 UJ	5.7	5.7 UJ	5.7	10 J	23	27 J	23	5.7 UJ	5.7	5.7 UJ	5.7
SIW-SS-042PC-0.0-2.0	7/17/2011	5.2 UJ	5.2	5.2 UJ	5.2	21 UJ	21	21 UJ	21	5.2 UJ	5.2	0.61 J	5.2
SIW-SS-043PC-0.0-2.0	7/17/2011	0.95 J	5.5	0.94 J	5.5	22 UJ	22	14 J	22	5.5 UJ	5.5	5.5 UJ	5.5
SIW-SS-044PC-0.0-2.0	7/17/2011	5.4 UJ	5.4	5.4 UJ	5.4	22 UJ	22	7.3 J	22	0.39 J	5.4	0.48 J	5.4
SIW-SS-CDUP-001*	7/17/2011	5.4 UJ	5.4	5.4 UJ	5.4	22 UJ	22	22 UJ	22	5.4 UJ	5.4	5.4 UJ	5.4

CAS: Chemical Abstract Service; ID: identification, LOQ: Limit of Quantification, VOC: volatile organic compound, µg/kg: micrograms per kilogram

^{*}The DUP is a field duplicate of the preceding sample

	Analyte CAS# Units	75-09-2	oride	Styrene 100-42-5 µg/kg		Tetrachloroetho 127-18-4 µg/kg	ene	Toluene 108-88-3 μg/kg		Xylenes (total 1330-20-7 μg/kg	1)
Location ID	Collected Date	, , ,	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ
SIW-SS-041PC-0.0-2.0	7/17/2011	5.7 UJ	5.7	5.7 UJ	5.7	5.7 UJ	5.7	5.7 UJ	5.7	11 UJ	11
SIW-SS-042PC-0.0-2.0	7/17/2011	1.5 J	5.2	5.2 UJ	5.2	5.2 UJ	5.2	0.86 J	5.2	2.3 J	10
SIW-SS-043PC-0.0-2.0	7/17/2011	1.1 J	5.5	5.5 UJ	5.5	0.58 J	5.5	5.5 UJ	5.5	1.2 J	11
SIW-SS-044PC-0.0-2.0	7/17/2011	0.92 J	5.4	0.58 J	5.4	1.5 J	5.4	1.3 J	5.4	0.99 J	11
SIW-SS-CDUP-001*	7/17/2011	5.4 UJ	5.4	5.4 UJ	5.4	0.94 J	5.4	5.4 UJ	5.4	1.1 J	11

CAS: Chemical Abstract Service; ID: identification, LOQ: Limit of Quantification, VOC: volatile organic compound, µg/kg: micrograms per kilogram

^{=:} Detection confirmed by validator; J: Detection confirmed by validator, but estimated value; U: not detected at the associated level; UJ: not detected and associated value is estimated;

^{=:} Detection confirmed by validator; J: Detection confirmed by validator, but estimated value; U: not detected at the associated level; UJ: not detected and associated value is estimated;

^{*}The DUP is a field duplicate of the preceding sample

Table 11. Results of pesticide characterization samples (Method 8081A) for the Staten Island Warehouse Site (2011).

	Analyte	4,4'-DDD		4,4'-DDI	E	4,4'-DDT	Γ	Aldrin		alpha-BH	C	alpha-Chlor	dane	beta-BH	С	Chlorda	ne (tech	nical)
	CAS#	72-54-8		72-55-9		50-29-3		309-00-2	2	319-84-6	5	5103-71-	9	319-85-	7	5	7-74-9	
	Units	μg/kg		1	μg/kg													
Location ID	Collected Date	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result	Qual	LOQ
SIW-SS-041PC-0.0-2.0	7/17/2011	1.6 UJ	1.6	16	5 UJ	16												
SIW-SS-042PC-0.0-2.0	7/17/2011	0.86 UJ	0.86	0.86 UJ	0.86	0.86 UJ	0.86	0.86 UJ	0.86	0.86 UJ	0.86	0.86 UJ	0.86	0.86 UJ	0.86	8.8	UJ	8.8
SIW-SS-043PC-0.0-2.0	7/17/2011	0.91 UJ	0.91	0.91 UJ	0.91	0.91 UJ	0.91	0.91 UJ	0.91	0.91 UJ	0.91	5 J	1.9	0.91 UJ	0.91	110) J	19
SIW-SS-044PC-0.0-2.0	7/17/2011	0.9 UJ	0.9	0.9 UJ	0.9	6.3 J	1.8	0.9 UJ	0.9	9.2	UJ	9.2						
SIW-SS-CDUP-001*	7/17/2011	0.9 UJ	0.9	0.9 UJ	0.9	4.7 J	1.8	0.9 UJ	0.9	9.2	UJ	9.2						

CAS: Chemical Abstract Service; ID: identification, LOQ: Limit of Quantification, VOC: volatile organic compound, µg/kg: micrograms per kilogram

^{*}The DUP is a field duplicate of the preceding sample

	Analyte			Dieldrin		Endosulfa		Endosulfar		Endosulfan s		Endrin		Endrin alde	•		rin keto	
	CAS#	319-86-8		60-57-1		959-98-8	3	33213-65	-9	1031-07-	8	72-20-8		7421-93-	4	53	494-70-5	5
	Units	μg/kg		μg/kg		μg/kg		μg/kg		μg/kg		μg/kg		μg/kg			μg/kg	
Location ID	Collected Date	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result	Qual	LOQ
SIW-SS-041PC-0.0-2.0	7/17/2011	1.6 UJ	1.6	1.6 UJ	1.6	1.6 UJ	1.6	1.6 UJ	1.6	1.0	6 UJ	1.6						
SIW-SS-042PC-0.0-2.0	7/17/2011	0.86 UJ	0.86	0.86 UJ	0.86	0.86 UJ	0.86	0.86 UJ	0.86	0.86 UJ	0.86	0.86 UJ	0.86	0.86 UJ	0.86	0.80	6 UJ	0.86
SIW-SS-043PC-0.0-2.0	7/17/2011	0.91 UJ	0.91	0.91 UJ	0.91	0.91 UJ	0.91	0.91 UJ	0.91	0.91 UJ	0.91	0.91 UJ	0.91	3.6 J	1.9	0.9	1 UJ	0.91
SIW-SS-044PC-0.0-2.0	7/17/2011	0.9 UJ	0.9	0.9 UJ	0.9	0.74 J	1.8	0.9 UJ	0.9	0.9 UJ	0.9	0.9 UJ	0.9	9.8 J	1.8	0.9	9 UJ	0.9
SIW-SS-CDUP-001*	7/17/2011	0.9 UJ	0.9	2.5 J	1.8	0.9 UJ	0.9	0.9 UJ	0.9	0.9 UJ	0.9	0.9 UJ	0.9	14 J	1.8	0.9	9 UJ	0.9

CAS: Chemical Abstract Service; ID: identification, LOQ: Limit of Quantification, VOC: volatile organic compound, µg/kg: micrograms per kilogram

^{*}The DUP is a field duplicate of the preceding sample

	Analyte CAS#	8	ndane)	gamma-Chlor 5103-74-		Heptachlo 76-44-8		Heptachlor ep 1024-57-		Methoxych 72-43-5		Toxapher 8001-35-	
	Units	μg/kg		μg/kg		μg/kg		μg/kg		μg/kg		μg/kg	
Location ID	Collected Date	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ
SIW-SS-041PC-0.0-2.0	7/17/2011	1.6 UJ	1.6	1.6 UJ	1.6	1.6 UJ	1.6	1.6 UJ	1.6	1.6 UJ	1.6	62 UJ	62
SIW-SS-042PC-0.0-2.0	7/17/2011	0.86 UJ	0.86	0.86 UJ	0.86	1.8 UJ	1.8	0.86 UJ	0.86	0.86 UJ	0.86	35 UJ	35
SIW-SS-043PC-0.0-2.0	7/17/2011	0.91 UJ	0.91	6.2 J	1.9	0.91 UJ	0.91	0.91 UJ	0.91	0.91 UJ	0.91	37 UJ	37
SIW-SS-044PC-0.0-2.0	7/17/2011	0.9 UJ	0.9	0.9 UJ	0.9	4.6 J	1.8	0.9 UJ	0.9	0.9 UJ	0.9	36 UJ	36
SIW-SS-CDUP-001*	7/17/2011	0.9 UJ	0.9	0.9 UJ	0.9	4 J	1.8	0.9 UJ	0.9	0.9 UJ	0.9	36 UJ	36

 $CAS: Chemical\ Abstract\ Service;\ ID:\ identification,\ LOQ:\ Limit\ of\ Quantification,\ VOC:\ volatile\ organic\ compound,\ \mu g/kg:\ micrograms\ per\ kilogram$

^{=:} Detection confirmed by validator; J: Detection confirmed by validator, but estimated value; U: not detected at the associated level; UJ: not detected and associated value is estimated;

^{=:} Detection confirmed by validator; J: Detection confirmed by validator, but estimated value; U: not detected at the associated level; UJ: not detected and associated value is estimated;

^{=:} Detection confirmed by validator; J: Detection confirmed by validator, but estimated value; U: not detected at the associated level; UJ: not detected and associated value is estimated;

^{*}The DUP is a field duplicate of the preceding sample

Table 12. Results of PCB characterization samples (Method 8082) for the Staten Island Warehouse Site (2011).

	Analyte	Aroclor 10)16	Aroclor 12	21	Aroclor 12	232	Aroclor 12	42	Aroclor 12	248	Aroclor 12	254	Aroclor 12	260
	CAS#	12674-11	-2	11104-28-	-2	11141-16	-5	53469-21	.9	12672-29	-6	11097-69	-1	11096-82	-5
	Units	μg/kg													
Location ID	Collected Date	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ
SIW-SS-041PC-0.0-2.0	7/17/2011	15 U	15	15 UJ	15										
SIW-SS-042PC-0.0-2.0	7/17/2011	8.3 U	8.3	8.3 U	8.3	8.3 U	8.3	8.3 U	8.3	8.3 U	8.3	8.3 U	8.3	8.3 UJ	8.3
SIW-SS-043PC-0.0-2.0	7/17/2011	8.7 U	8.7	8.7 U	8.7	8.7 U	8.7	8.7 U	8.7	8.7 U	8.7	8.7 U	8.7	450 J	36
SIW-SS-044PC-0.0-2.0	7/17/2011	11 U	11	69 J	47										
SIW-SS-CDUP-001*	7/17/2011	8.7 U	8.7	8.7 U	8.7	8.7 U	8.7	8.7 U	8.7	8.7 U	8.7	8.7 U	8.7	37 J	36

CAS: Chemical Abstract Service; ID: identification, LOQ: Limit of Quantification, PCB: polychlorinated biphenyl, µg/kg: micrograms per kilogram

^{=:} Detection confirmed by validator; J: Detection confirmed by validator, but estimated value; U: not detected at the associated level; UJ: not detected and associated value is estimated; *The DUP is a field duplicate of the preceding sample

Table 13. Results of herbicide characterization samples (Method 8051A) for the Staten Island Warehouse Site (2011).

	Analyte	2,4,5-T		2,4,5-TP (Si	lvex)	2,4-D		2,4-DB		
	CAS#	93-76-5		93-72-1		94-75-7		94-82-6		
	Units	μg/kg		μg/kg		μg/kg		μg/kg		
Location ID	Collected Date	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	Result Qual	LOQ	
SIW-SS-041PC-0.0-2.0	7/17/2011	7.6 UJ	7.6	7.6 UJ	7.6	76 UJ	76	76 UJ	76	
SIW-SS-042PC-0.0-2.0	7/17/2011	4.1 U	4.1	4.1 UJ	4.1	41 UJ	41	41 UJ	41	
SIW-SS-043PC-0.0-2.0	7/17/2011	6.8 U	6.8	6.8 UJ	6.8	68 UJ	68	68 UJ	68	
SIW-SS-044PC-0.0-2.0	7/17/2011	7.2 U	7.2	7.2 UJ	7.2	72 UJ	72	72 UJ	72	
SIW-SS-CDUP-001*	7/17/2011	5.3 U	5.3	5.3 UJ	5.3	53 UJ	53	53 UJ	53	

CAS: Chemical Abstract Service; ID: identification, LOQ: Limit of Quantification, µg/kg: micrograms per kilogram

J: Detection confirmed by validator, but estimated value; U: not detected at the assocated level; UJ: not detected and associated value is estimated; *The DUP is a field duplicate of the preceding sample

Surface Soil		Table 14. Results of radi	iation soil :	on soil samples (alpha and gamma spectroscopy) taken outside of the Radiologically Contaminated Area for the Staten Island Warehouse S												Site.			
Comple		Analyte	Pot	tassium 40		Radium (226)	Tho	rium 232			Uranium 234		Ura	anium 235		1	Uranium 23	8
Sample Do Samp		CAS#	13	3966-00-2		13982-63-3			40-29-1		13966-29-5			15	5117-96-1		1		
Surface Solf		Units				pCi/g			Ci/g		pCi/g				pCi/g				
SWS-S0P-0-20 7;15:11 18·m	Sample ID	Sample Date	Result Q	Qual 2σ MDC	Result	Qual 2 σ	MDC	Result Qua	al 2σ	MDC	Result	Qual 2 σ	MDC	Result Q	ual 2σ	MDC	Result	Qual 2 σ	MDC
SINK-SS-00P-0-0-02 7/15/11 friam	Surface Soil																		
Signesignessigne	SIW-SS-003P-0.0-2.0	7/15/11 18:nn	10.2	1.5 0.	7 0.38	0.1	0.1	0.69	0.17	0.15	0.287	0.072	0.018	0.11 U	0.2	0.31	0.283	0.0	73 0.032
SWSSOPPO-0.20 7:15:11 Sem	SIW-SS-004P-0.0-2.0	7/15/11 16:nn	9.5	2	1 0.72	0.19	0.14	0.56	0.2	0.35	0.65	0.11	0.03	0.09 U	0.13	0.51	0.475	0.09	94 0.024
SIW-SS-Q1P-02-02 7:16:11 Ram	SIW-SS-006P-0.0-2.0	7/15/11 16:nn	6.9	1.2 0.	8 0.23	0.11	0.12	0.45	0.14	0.13	0.233	0.062	0.017	0.17 U	0.17	0.25	0.233	0.00	63 0.024
SINK-SS-019-0-20	SIW-SS-007P-0.0-2.0	7/15/11 18:nn	9.2	1.4 0.	7 0.38	0.12	0.12	0.49	0.14	0.08	0.361	0.085	0.031	0.11 U	0.14	0.41	0.314	0.0	78 0.029
SWSS-01P-0-0.20 74/541 16mm 12	SIW-SS-011P-0.0-2.0	7/16/11 8:nn	10.4	1.7 1.	1 1.27	0.25	0.19	0.64	0.22	0.3	1.13	0.16	0.03	0.18 U	0.33	0.59	0.96	0.	15 0.01
SW-SS-DUP-001	SIW-SS-019P-0.0-2.0	7/15/11 18:nn	4.3	1.3 1.	1 0.47	7 0.13	0.09	0.19 U	0.19	0.33	0.277	0.069	0.017	-0.02 U	0.47	0.29	0.291	0.0	1 0.017
SWESS-0229-0.02-0	SIW-SS-021P-0.0-2.0	7/15/11 16:nn	12.1	2 1.	2 1.49	0.3	0.24	2.01	0.37	0.22	1.73	0.24	0.04	0.38 U	0.35	0.63	1.7	0.2	23 0.04
SWSS-029F-00-20	SIW-SS-DUP-001	7/15/11 0:nn	11	1.9 0.	7 1.82	2 0.29	0.17	1.46	0.32	0.13	1.85	0.26	0.03	0.14 U	0.28	0.52	1.9	0.2	26 0.04
SINS-SS-027P-00-20 7/15/11 form 94 1.6 1 15.2 0.5 1.03 0.2 0.15 1.79 0.29 0.16 0.84 0.14 0.03 0.24 U 0.31 0.58 0.85 0.14 SINS-SS-028P-00-20 7/16/11 form 94 1.6 1 1.5 0.8 1.37 0.22 0.16 0.87 0.22 0.17 1.78 0.29 0.03 0.19 U 0.28 0.48 1.14 0.26 SINS-SS-02P-00-20 7/16/11 form 95 1.3 0.8 1.37 0.22 0.16 0.87 0.22 0.10 1.07 0.25 0.17 0.78 0.07 0.00 0.09 U 0.28 0.48 1.14 0.26 SINS-SS-02P-00-20 7/16/11 form 95 1.3 0.8 1.37 0.22 0.16 0.87 0.22 0.10 1.07 0.25 0.17 0.07 0.00 0.04 U 0.12 0.3 0.37 0.00 SINS-SINS-SS-02P-00-20 7/16/11 form 95 1.3 0.8 0.14 0.08 0.28 0.18 0.05 0.12 0.03 0.04 U 0.12 0.3 0.04 U 0.12 0.3 0.04 U 0.12 0.3 0.04 U 0.12 0.03 0.04 U 0.04 U 0.13 0.04 U 0.04 U 0.13 0.04 U 0.04 U 0.13 0.04 U 0.04 U 0.04 U 0.13 0.04 U	SIW-SS-022P-0.0-2.0	7/16/11 8:nn	10.1	1.5 0.	7 0.49	0.12	0.11	0.4	0.15	0.31	0.328	0.075	0.021	0.05 U	0.19	0.34	0.331	0.0	75 0.021
SWS-5028P-00-20	SIW-SS-025P-0.0-2.0	7/16/11 16:nn	7	1.3	1 0.91	0.19	0.19	0.76	0.21	0.22	2.85	0.33	0.02	0.42	0.34	0.41	2.72	0.3	32 0.01
\$\frac{\text{SNBS-09P-0.0-2}{\text{DVS-002P-0.0-2}}\$ 7,164 16an	SIW-SS-027P-0.0-2.0	7/15/11 16:nn	18.4	2.2 0.	5 1.03	3 0.2	0.15	1.79	0.29	0.16	0.84	0.14	0.03	0.24 U	0.31	0.58	0.85	0.	14 0.04
SINS-SP-042-00-20	SIW-SS-028P-0.0-2.0	7/15/11 16:nn	9.4	1.6	1 1.52	0.24	0.16	1.37	0.24	0.17	1.78	0.22	0.02	0.09 U	0.22	0.58	1.64	0.2	21 0.02
Subsequence Soil Subsequence Subsequence Subsequence Subsequence Subsequence Subsequence S	SIW-SS-029P-0.0-2.0	7/16/11 16:nn	7.5	1.3 0.	8 1.37	0.22	0.16	0.87	0.22	0.21	2.19	0.27	0.03	0.19 U	0.28	0.48	2.14	0.2	26 0.02
SINV-SB-003-0-0.5 0	SIW-SS-042P-0.0-2.0	7/17/11 10:nn	6.1	1.1 0.	4 0.33	0.12	0.13	0.28	0.14	0.17	0.254	0.07	0.025	0.04 U	0.12	0.3	0.278	0.0	73 0.012
\$\frac{\text{SIW-SB-003P-5.0-8.0}{\text{7}122011}\$	Subsurface Soil																		
SINV-SB-004P-0.0-5.0 7/12/2011 10.4 1.6 0.5 1.22 0.21 0.16 0.65 0.22 0.25 0.71 0.12 0.03 0.16 0.23 0.59 0.64 0.12	SIW-SB-003P-0.0-5.0	7/12/2011	14.9	2.1	1 1.07	7 0.22	0.17	1.3	0.28	0.18	0.65	0.12	0.03	0.43 U	0.36	0.44	0.66	0.	12 0.04
SIW-SB-DUP-001 7/12/2011 11.2 1.7 0.9 1.06 0.25 0.18 0.54 0.29 0.4 0.78 0.13 0.01 0.15 U 0.3 0.51 0.79 0.13 SIW-SB-004P-5.01.0 7/12/2011 11.2 1.7 0.9 0.93 0.18 0.14 1.24 0.24 0.24 0.25 0.1 0.01 0.08 U 1.3 0.5 0.64 0.11 SIW-SB-006P-0.0-50 7/13/2011 11.1 1.6 0.8 0.7 0.16 0.14 0.74 0.2 0.09 0.48 0.004 0.022 0.11 U 0.27 0.47 0.47 0.43 1 0.08 SIW-SB-006P-0.0-50 7/13/2011 11.1 1.6 0.8 0.77 0.16 0.14 0.74 0.2 0.09 0.48 0.004 0.022 0.11 U 0.27 0.47 0.47 0.43 1 0.08 SIW-SB-006P-0.0-50 7/13/2011 11.1 1.8 1.1 2.8 0.36 0.2 1.17 0.33 0.23 0.82 0.33 0.02 0.17 U 0.33 0.52 0.85 0.12 0.17 0.11 0.18 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	SIW-SB-003P-5.0-8.0	7/12/2011	9.2	2.2 1.	6 0.97	7 0.21	0.11	1.07	0.25	0.26	0.64	0.12	0.02	0.11 U	0.28	0.48	0.456	0.09	94 0.024
SIW-SB-006P-0-100	SIW-SB-004P-0.0-5.0	7/12/2011	10.4	1.6 0.	5 1.22	0.21	0.16	0.65	0.22	0.25	0.71	0.12	0.03	0.16 U	0.23	0.59	0.64	0.	12 0.02
\$\frac{\text{SIW.SB.006P.00.5.0}{\text{SIW.SB.006P.05.5.80}}\$\tau\$1/13/2011\$\tau\$1.1 \\ 1.6 \\ 0.8 \\ 0.7 \\ 0.16 \\ 0.17 \\ 0.16 \\ 0.18 \\ 0.17 \\ 0.16 \\ 0.12 \\ 0.00 \\ 0.08 \\ 0.00 \\ 0	SIW-SB-DUP-001	7/12/2011	7.7	1.7 0.	9 1.06	5 0.25	0.18	0.54	0.29	0.4	0.78	0.13	0.01	0.15 U	0.3	0.51	0.79	0.	13 0.01
SIW-SB-006P-0.0-5.0 7/13/2011 10.8 1.7 0.5 0.72 0.16 0.13 0.54 0.19 0.27 0.67 0.12 0.02 0.06 0.29 0.5 0.65 0.12	SIW-SB-004P-5.0-10.0	7/12/2011	11.2	1.7 0.	9 0.93	0.18	0.14	1.24	0.24	0.24	0.55	0.1	0.01	-0.08 U	1.3	0.5	0.64	0.	11 0.02
SIW-SB-00FF-50-8.0	SIW-SB-006P-0.0-5.0		10.8	1.7 0.	5 0.72	0.16	0.13	0.54	0.19	0.27	0.67	0.12	0.02	0.06 U	0.29	0.5	0.65	0.	12 0.01
SIW-SB-01P5-0.8.0		7/13/2011	11.1	1.6 0.	8 0.7	7 0.16	0.14	0.74	0.2	0.09	0.48	0.094	0.022	0.11 U	0.27	0.47	0.431	0.08	38 0.02
SIW-SB-01IP-0.0-5.0		7/13/2011	10.3	1.7 0.	9 0.96	6 0.17	0.11	0.65	0.23	0.35	0.82	0.13	0.02	0.17 U	0.33	0.52	0.87	0.	14 0.02
SIW-SB-01IP-5.0-8.0 7/13/2011 17.8 2.6 1.3 1.29 0.27 0.22 1.73 0.32 0.3 0.75 0.13 0.02 0.27 U 0.47 0.69 0.65 0.12	SIW-SB-007P-5.0-8.0	7/13/2011	11	1.8 1.	1 2.8	0.36	0.2	1.17	0.33	0.29	3.93	0.42	0.01	0.2 U	0.32	0.71	3.59	0.3	39 0.01
SIW-SB-019P-0.0-5.0 7/13/2011 6.7 1.6 1.3 0.46 0.15 0.14 0.13 0.14 0.34 0.447 0.09 0.028 0.12 0.11 0.33 0.473 0.094 0.55 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.061 0.022 0.11 0.24 0.34 0.273 0.064 0.061 0.025 0.17 0.02 0.18 0.17 0.02 0.17 0.02 0.17 0.02 0.18 0.17 0.17 0.02 0.18 0.17 0.02 0.18 0.17 0.02 0.18 0.17 0.02 0.18 0.17 0.02 0.18 0.17 0.02 0.18 0.18 0.17 0.02 0.18 0	SIW-SB-011P-0.0-5.0	7/13/2011	15.8	2.9 1.	2 1.79	0.34	0.19	1.72	0.4	0.47	0.9	0.14	0.01	0.21 U	0.47	0.73	1	0.	15 0.02
SIW-SB-019P-0.0-S.0	SIW-SB-011P-5.0-8.0	7/13/2011	17.8	2.6 1.	3 1.29	0.27	0.22	1.73	0.32	0.3	0.75	0.13	0.02	0.27 U	0.47	0.69	0.65	0.	12 0.01
SIW-SB-02IP-5.0-8.0 7/15/2011 14.9 2.2 1.1 1.5 0.28 0.2 1.47 0.27 0.19 1.15 0.17 0.02 0.26 U 0.36 0.61 1.15 0.17 SIW-SB-02IP-5.0-8.0 7/15/2011 9.8 1.8 1.3 0.71 0.18 0.16 0.61 0.25 0.41 0.92 0.14 0.02 0.21 U 0.2 0.49 0.96 0.14 0.05 0.14 0.05 0.14 0.05 0.14 0.05 0.14 0.05 0.14 0.05 0.15	SIW-SB-019P-0.0-5.0	7/13/2011	6.7	1.6 1.	3 0.46	5 0.15	0.14	0.13 U	0.14	0.34	0.447	0.09	0.028	0.12 U	0.11	0.33	0.473	0.09	0.032
SIW-SB-021P-5.0-8.0 7/15/2011 9.8 1.8 1.3 0.71 0.18 0.16 0.61 0.25 0.41 0.92 0.14 0.02 0.21 0.2 0.49 0.96 0.14	SIW-SB-019P-5.0-8.0	7/13/2011	8	1.4 0.	6 0.26	5 0.12	0.15	0.49	0.16	0.1	0.246	0.061	0.022	0.11 U	0.24	0.34	0.273	0.00	64 0.009
SIW-SB-022P-0.0-5.0	SIW-SB-021P-0.0-5.0	7/15/2011	14.9	2.2 1.	1 1.5	0.28	0.2	1.47	0.27	0.19	1.15	0.17	0.02	0.26 U	0.36	0.61	1.15	0.	17 0.01
SIW-SB-022P-5.0-8.0 7/14/2011 19.6 2.5 1.1 1.25 0.26 0.2 1.5 0.35 0.29 0.67 0.14 0.03 0.28 U 0.38 0.72 0.73 0.14	SIW-SB-021P-5.0-8.0	7/15/2011	9.8	1.8 1.	3 0.71	0.18	0.16	0.61	0.25	0.41	0.92	0.14	0.02	0.21 U	0.2	0.49	0.96	0.	14 0.02
SIW-SB-025P-0.0-5.0 7/15/2011 10.6 2 1.5 1.09 0.23 0.18 1.51 0.32 0.14 1.08 0.16 0.01 0.18 0.63 1.03 0.15	SIW-SB-022P-0.0-5.0	7/14/2011	16.4	2.4 0.	7 1.15	0.25	0.21	1.63	0.34	0.14	0.78	0.16	0.03	0.26 U	0.45	0.72	0.92	0.	18 0.02
Previous Data (USEPA 2008, USEPA 2009) ST 2	SIW-SB-022P-5.0-8.0	7/14/2011	19.6	2.5 1.	1 1.25	0.26	0.2	1.5	0.35	0.29	0.67	0.14	0.03	0.28 U	0.38	0.72	0.73	0.	14 0.03
ST 2 7/10/1980 1.2 N/A 1.1 ST 3 7/10/1980 0.62 N/A 0.62 NR-2-92-003-072201 7/14/1992 0.53 U 1.7 U NR-2-92-003-072202 7/14/1992 0.9 U 1.9 U NR-2-92-003-072203 7/14/1992 0.87 U 1.9 U NR-2-92-003-072204 7/14/1992 0.87 N/A 2.8 U NR-2-92-003-072205 7/14/1992 1.06 N/A 2.8 U NR-2-92-003-072205 7/14/1992 1.95 N/A 3 885062 2/1/2008 1.333 N/A 0.12 U 1.03 U Mean 10.92 1 1 1 0.947 0.42 0.977	SIW-SB-025P-0.0-5.0	7/15/2011	10.6	2 1.	5 1.09	0.23	0.18	1.51	0.32	0.14	1.08	0.16	0.01	0.18 U	0.18	0.63	1.03	0.	15 0.01
ST 3 7/10/1980 0.62 N/A 0.62 NR-2-92-003-072201 7/14/1992 0.53 U 1.7 U NR-2-92-003-072202 7/14/1992 0.9 U 1.9 U NR-2-92-003-072203 7/14/1992 0.87 U 1.6 U NR-2-92-003-072204 7/14/1992 1.06 N/A 2.8 U NR-2-92-003-072205 7/14/1992 1.95 N/A 3 885062 2/1/2008 1.333 N/A 3 885062 2/1/2008 1.333 0.12 U 1.03 U Minimum 4.3 0.23 0.28 0.233 0.42 0.233 Mean 10.92 1 1 0.947 0.42 0.977 Maximum 19.6 2.8 1.79 3.93	Previous Data (USEPA 20	008, USEPA 2009)																	
NR-2-92-003-072201	ST 2	7/10/1980			1.2	2								N/A			1.1		
NR-2-92-003-072201 7/14/1992 0.53 U 1.7 U NR-2-92-003-072202 7/14/1992 0.9 U 1.9 U NR-2-92-003-072203 7/14/1992 0.87 U 1.6 U NR-2-92-003-072204 7/14/1992 1.06 N/A 2.8 U NR-2-92-003-072205 7/14/1992 1.95 N/A 3 885062 2/1/2008 1.333 N/A 3 885062 2/1/2008 1.333 0.12 U 1.03 U Mean 10.92 1 1 0.28 0.233 0.42 0.233 Maximum 19.6 2.8 1.79 3.93 0.42 3.59 Distribution Lognormal Lognormal Lognormal Lognormal N/A Lognormal 95% UPL 18.81 2.	ST 3				0.62	2								N/A			0.62		
NR-2-92-003-072203 7/14/1992 0.87 N/A 1.6 U NR-2-92-003-072204 7/14/1992 1.06 N/A 2.8 U NR-2-92-003-072205 7/14/1992 1.95 N/A 3 885062 2/1/2008 1.333 0.12 U 1.03 U Minimum 4.3 0.23 0.28 0.233 0.42 0.233 Mean 10.92 1 1 0.947 0.42 0.977 Maximum 19.6 2.8 1.79 3.93 0.42 3.59 Distribution Lognormal Lognormal Lognormal Lognormal N/A Lognormal 95% UPL 18.81 2.294 2.993 2.524 N/A 2.462	NR-2-92-003-072201				0.53	3								U			1.7	U	
NR-2-92-003-072204 7/14/1992 1.06 N/A 2.8 U NR-2-92-003-072205 7/14/1992 1.95 N/A 3 885062 2/1/2008 1.333 0.12 U 1.03 U Minimum 4.3 0.23 0.28 0.233 0.42 0.233 Mean 10.92 1 1 0.947 0.42 0.977 Maximum 19.6 2.8 1.79 3.93 0.42 3.59 Distribution Lognormal Lognormal Lognormal Lognormal N/A Lognormal 95% UPL 18.81 2.294 2.993 2.524 N/A 2.462	NR-2-92-003-072202	7/14/1992			0.9)								U			1.9	U	
NR-2-92-003-072204 7/14/1992 1.06 N/A 2.8 U NR-2-92-003-072205 7/14/1992 1.95 N/A 3 885062 2/1/2008 1.333 0.12 U 1.03 U Minimum 4.3 0.23 0.28 0.233 0.42 0.233 Mean 10.92 1 1 0.947 0.42 0.977 Maximum 19.6 2.8 1.79 3.93 0.42 3.59 Distribution Lognormal Lognormal Lognormal Lognormal N/A Lognormal 95% UPL 18.81 2.294 2.993 2.524 N/A 2.462	NR-2-92-003-072203	7/14/1992			0.87	7								U			1.6	U	
NR-2-92-003-072205 7/14/1992 1.95 N/A 3 885062 2/1/2008 1.333 0.12 U 1.03 U Minimum 4.3 0.23 0.28 0.233 0.42 0.233 Mean 10.92 1 1 0.947 0.42 0.977 Maximum 19.6 2.8 1.79 3.93 0.42 3.59 Distribution Lognormal Lognormal Lognormal Lognormal N/A Lognormal 95% UPL 18.81 2.294 2.993 2.524 N/A 2.462	NR-2-92-003-072204	7/14/1992			1.06	5								N/A					
885062 2/1/2008 1.333 0.12 U 1.03 U Minimum 4.3 0.23 0.28 0.233 0.42 0.233 Mean 10.92 1 1 0.947 0.42 0.977 Maximum 19.6 2.8 1.79 3.93 0.42 3.59 Distribution Lognormal Lognormal Lognormal Lognormal N/A Lognormal 95% UPL 18.81 2.294 2.993 2.524 N/A 2.462	NR-2-92-003-072205	7/14/1992			1.95	5											_		
Mean 10.92 1 1 0.947 0.42 0.977 Maximum 19.6 2.8 1.79 3.93 0.42 3.59 Distribution Lognormal Lognormal Lognormal N/A Lognormal 95% UPL 18.81 2.294 2.993 2.524 N/A 2.462	885062	2/1/2008			1.333	3								0.12 U			1.03	U	
Maximum 19.6 2.8 1.79 3.93 0.42 3.59 Distribution Lognormal Lognormal Lognormal Lognormal N/A Lognormal 95% UPL 18.81 2.294 2.993 2.524 N/A 2.462		Minimum				0.23			0.28			0.233			0.42			0.233	
Distribution Lognormal Lognormal Lognormal Lognormal N/A Lognormal 95% UPL 18.81 2.294 2.993 2.524 N/A 2.462									1			0.947							
95% UPL 18.81 2.294 2.993 2.524 N/A 2.462				19.6		2.8			1.79			3.93			0.42			3.59	
95% UPL 18.81 2.294 2.993 2.524 N/A 2.462		Distribution	L	ognormal		Lognormal		Log	gnormal			Lognormal			N/A			Lognormal	
Compart Investigation Pagiliannum 1991 2204 170 2524 ND 2462			18.81											N/A			2.462		
	Current Inv	vestigation Background		18.81		2.294			1.79			2.524			ND			2.462	
Previous Investigation Background NA 1.96 2.25 NA ND (<0.1) 1.96				NA		1.96			2.25			NA		N	ID (<0.1)			1.96	

²σ: total uncertainty; CAS: Chemical Abstract Service; ID: identification, MDC: Minimum Detectable Concentration; pCi/g: picocuries per gram; Qual: Data Qualifer; UPL: Upper Prediction Limit; USEPA: U.S. Environmental

J: Estimated value; R: rejected data point; U: not detected at the assocated level; UJ: not detected and associated value is estimated

1				Table	15. Evalua	tion of Sur	face Soil Sa	mples fror	n the Stater	ı Island Wa	arehouse Sit	te (2011).					
		Ra-226			U-234			U-	235			U- 238					
														U-238/U-234		U-238/Ra-226	
Sample ID	Result	2 σ	MDC	Result	2 σ	MDC	Result	Qual	2 σ	MDC	Result	2 σ	MDC	Ratio	2σ	Ratio	2σ
SIW-SS-001P-0.0-2.0	5.72	0.61	0.3	1.78	0.22	0.02	0.45	U	0.59	1	1.94	0.23	0.009	1.09	0.19	0.34	0.05
SIW-SS-002P-0.0-2.0	1.74	0.33	0.25	1.23	0.17	0.02	0.35	U	0.43	0.69	1.37	0.19	0.02	1.11	0.22	0.79	0.18
SIW-SS-003P-0.0-2.0	0.38	0.1	0.1	0.287	0.072	0.018	0.11	U	0.2	0.31	0.283	0.073	0.032	0.99	0.35	0.74	0.27
SIW-SS-004P-0.0-2.0	0.72	0.19	0.14	0.65	0.11	0.03	0.09	U	0.13	0.51	0.475	0.094	0.024	0.73	0.19	0.66	0.22
SIW-SS-005P-0.0-2.0	2.81	0.38	0.22	3.16	0.35	0.02	0.3	U	0.41	0.68	2.88	0.33	0.02	0.91	0.15	1.02	0.18
SIW-SS-006P-0.0-2.0	0.23	0.11	0.12	0.233	0.062	0.017	0.17	U	0.17	0.25	0.233	0.063	0.024	1.00	0.38	1.01	0.56
SIW-SS-007P-0.0-2.0	0.38	0.12	0.12	0.361	0.085	0.031	0.11	U	0.14	0.41	0.314	0.078	0.029	0.87	0.30	0.83	0.33
SIW-SS-008P-0.0-2.0	2.96	0.37	0.21	1.77	0.24	0.04	0.48	U	0.46	0.6	2.04	0.26	0.01	1.15	0.21	0.69	0.12
SIW-SS-009P-0.0-2.0	36.3	2.6	0.6	33.9	3	0.05	2.9		1.2	1.7	33.4	3	0.06	0.99	0.12	0.92	0.11
SIW-SS-010P-0.0-2.0	2.88	0.36	0.21	2.68	0.3	0.03	0.2	U	0.49	0.75	2.8	0.31	0.03	1.04	0.16	0.97	0.16
SIW-SS-011P-0.0-2.0	1.27	0.25	0.19	1.13	0.16	0.03	0.18	U	0.33	0.59	0.96	0.15	0.01	0.85	0.18	0.76	0.19
SIW-SS-012P-0.0-2.0	3.29	0.48	0.26	1.91	0.24	0.03	0.4	U	0.42	0.69	1.88	0.23	0.02	0.98	0.17	0.57	0.11
SIW-SS-013P-0.0-2.0	19.1	1.4	0.4	9.11	0.87	0.02	1.09	U	0.92	1.7	9.48	0.9	0.02	1.04	0.14	0.50	0.06
SIW-SS-014P-0.0-2.0	5.28	0.52	0.24	1.75	0.22	0.03	-0.008	U	0.044	0.7	1.58	0.21	0.02	0.90	0.17	0.30	0.05
SIW-SS-015P-0.0-2.0	19.5	1.6	0.4	10.3	0.97	0.02	0.77	U	0.96	1.6	10.1	0.96	0.02	0.98	0.13	0.52	0.07
SIW-SS-016P-0.0-2.0	42	2.8	0.5	11.9	1.1	0.03	1.2	U	1.5	2.3	11.5	1.1	0.01	0.97	0.13	0.27	0.03
SIW-SS-DUP-002*	33.2	2.2	0.5	11.8	1.1	0.04	1.1	U	1.1	1.9	11.8	1.1	0.04	1.00	0.13	0.36	0.04
SIW-SS-017P-0.0-2.0	6.97	0.66	0.29	1.78	0.23	0.02	0.44	U	0.56	0.94	1.82	0.23	0.01	1.02	0.18	0.26	0.04
SIW-SS-018P-0.0-2.0	35.2	2.3	0.5	58.4	5.8	0.2	3		1.3	1.6	56.6	5.6	0.2	0.97	0.14	1.61	0.19
SIW-SS-DUP-004*	36.5	2.5	0.6	38	3.4	0.05	2.7		1.3	1.7	31.2	7.2	8.1	0.82	0.20	0.85	0.21
SIW-SS-019P-0.0-2.0	0.47	0.13	0.09	0.277	0.069	0.017	-0.02	U	0.47	0.29	0.291	0.071	0.017	1.05	0.37	0.62	0.23
SIW-SS-020P-0.0-2.0	2.46	0.34	0.19	1.65	0.21	0.02	0.21	U	0.34	0.58	1.72	0.22	0.02	1.04	0.19	0.70	0.13
SIW-SS-021P-0.0-2.0	1.49	0.3	0.24	1.73	0.24	0.04	0.38	U	0.35	0.63	1.7	0.23	0.04	0.98	0.19	1.14	0.28
SIW-SS-DUP-001*	1.82	0.29	0.17	1.85	0.26	0.03	0.14	U	0.28	0.52	1.9	0.26	0.04	1.03	0.20	1.04	0.22
SIW-SS-022P-0.0-2.0	0.49	0.12	0.11	0.328	0.075	0.021	0.05	U	0.19	0.34	0.331	0.075	0.021	1.01	0.32	0.68	0.23
SIW-SS-023P-0.0-2.0	3.77	0.5	0.23	2.19	0.27	0.03	0.34	U	0.4	0.75	2.21	0.27	0.02	1.01	0.18	0.59	0.11
SIW-SS-024P-0.0-2.0	1.75	0.26	0.16	1.87	0.24	0.01	0.09	U	0.22	0.49	1.79	0.23	0.02	0.96	0.17	1.02	0.20
SIW-SS-DUP-003*	1.49	0.27	0.15	1.69	0.22	0.03	0.017	U	0.083	0.55	1.72	0.22	0.01	1.02	0.19	1.15	0.26
SIW-SS-025P-0.0-2.0	0.91	0.19	0.19	2.85	0.33	0.02	0.42	T.T.	0.34	0.41	2.72	0.32	0.01	0.95	0.16	2.99	0.72
SIW-SS-026P-0.0-2.0	1.86	0.33	0.24	1.72	0.22	0.02	0.31	U	0.42	0.82	1.58	0.21	0.01	0.92	0.17	0.85	0.19
SIW-SS-027P-0.0-2.0	1.03	0.2	0.15	0.84	0.14	0.03	0.24	U U	0.31	0.58	0.85	0.14	0.04	1.01	0.24	0.83	0.21
SIW-SS-028P-0.0-2.0	1.52	0.24	0.16	1.78	0.22	0.02	0.09	U	0.22	0.58	1.64	0.21	0.02	0.92	0.16	1.08	0.22
SIW-SS-029P-0.0-2.0	1.37	0.22		2.19	0.27	0.03	0.19	U	0.28	0.48	2.14	0.26	0.02		0.17	1.56	0.31
SIW-SS-030P-0.0-2.0 SIW-SS-031P-0.0-2.0	1.64 2.19	0.28	0.19	1.64 0.81	0.22	0.01	0.07	U	0.41	0.62	1.6 0.75	0.22	0.02	0.98	0.19	0.98	0.21
	0.57	0.33	0.24	0.81	0.14	0.02	0.37	U	0.48	0.38	0.73	0.13		0.93	0.25	0.72	0.08
SIW-SS-032P-0.0-2.0 SIW-SS-033P-0.0-2.0	2.2	0.13	0.11	1.94	0.1	0.01	0.07	U	0.22	0.38	2.25	0.091	0.011	1.16	0.23	1.02	0.23
SIW-SS-033P-0.0-2.0 SIW-SS-034P-0.0-2.0																	
SIW-SS-034P-0.0-2.0 SIW-SS-035P-0.0-2.0	2.32 1.93	0.33	0.19	2.09	0.24	0.01	0.15	U	0.35	0.79	1.72	0.22	0.02	0.91 1.01	0.16	0.74	0.14
SIW-SS-036P-0.0-2.0	2.21	0.32	0.19	1.71	0.26	0.01		U	0.31	0.56	2.12	0.27	0.02	0.98	0.18	0.76	
SIW-SS-037P-0.0-2.0	2.21	0.32	0.2	3.22	0.23	0.02	0.13	U	0.37	0.82	1.67 3.38	0.23	0.01	1.05	0.19	1.27	0.15
	1.89			0.94				U								0.55	
SIW-SS-038P-0.0-2.0 SIW-SS-039P-0.0-2.0		0.35	0.19		0.15	0.03	-0.04	U	4.1 0.42	0.6	1.04	0.16	0.02	1.11 0.94	0.25	+	0.13
SIW-SS-039P-0.0-2.0 SIW-SS-040P-0.0-2.0	2.59 1.65	0.35	0.21	1.45 1.91	0.19	0.02		U	0.42	0.71	1.37	0.19	0.02	1.04	0.18	0.53	0.10
SIW-SS-040P-0.0-2.0 SIW-SS-DUP-005*		0.32	0.26		0.24	0.03	0.31	U	0.39	0.62	1.98		0.02	0.87	0.18	0.97	
SIW-SS-041P-0.0-2.0	1.49	0.26	0.19	1.66 0.77	0.22	0.03	0.24	U	0.33	0.66	0.9	0.2	0.04	1.17	0.17	0.65	0.22
SIW-SS-041P-0.0-2.0 SIW-SS-042P-0.0-2.0								U									0.19
SIW-SS-042P-0.0-2.0 SIW-SS-043P-0.0-2.0	0.33	0.12	0.13	0.254	0.07	0.025	0.04	U	0.12	0.3	0.278	0.073	0.012	1.09	0.42	0.84	0.38
	6.18	0.6	0.25	7.19	0.71	0.02	0.93	T T	0.6	0.78	7.17	0.71	0.01	1.00	0.14	1.16	0.16
SIW-SS-044P-0.0-2.0 SIW-SS-045P-0.0-2.0	1.77	0.27	0.17	1.26 8.13	0.18	0.03	0.3	U	0.23	0.45	1.28	0.18	0.02	1.02 0.96	0.20	0.72	0.15
	1 13 X	1.5	0.3	. X I 1	0.78	0.07	1 1 1 3		11 /9	1.1	7.78	11 / 2	0.07	1 0.96	0.13	11.49	0.06

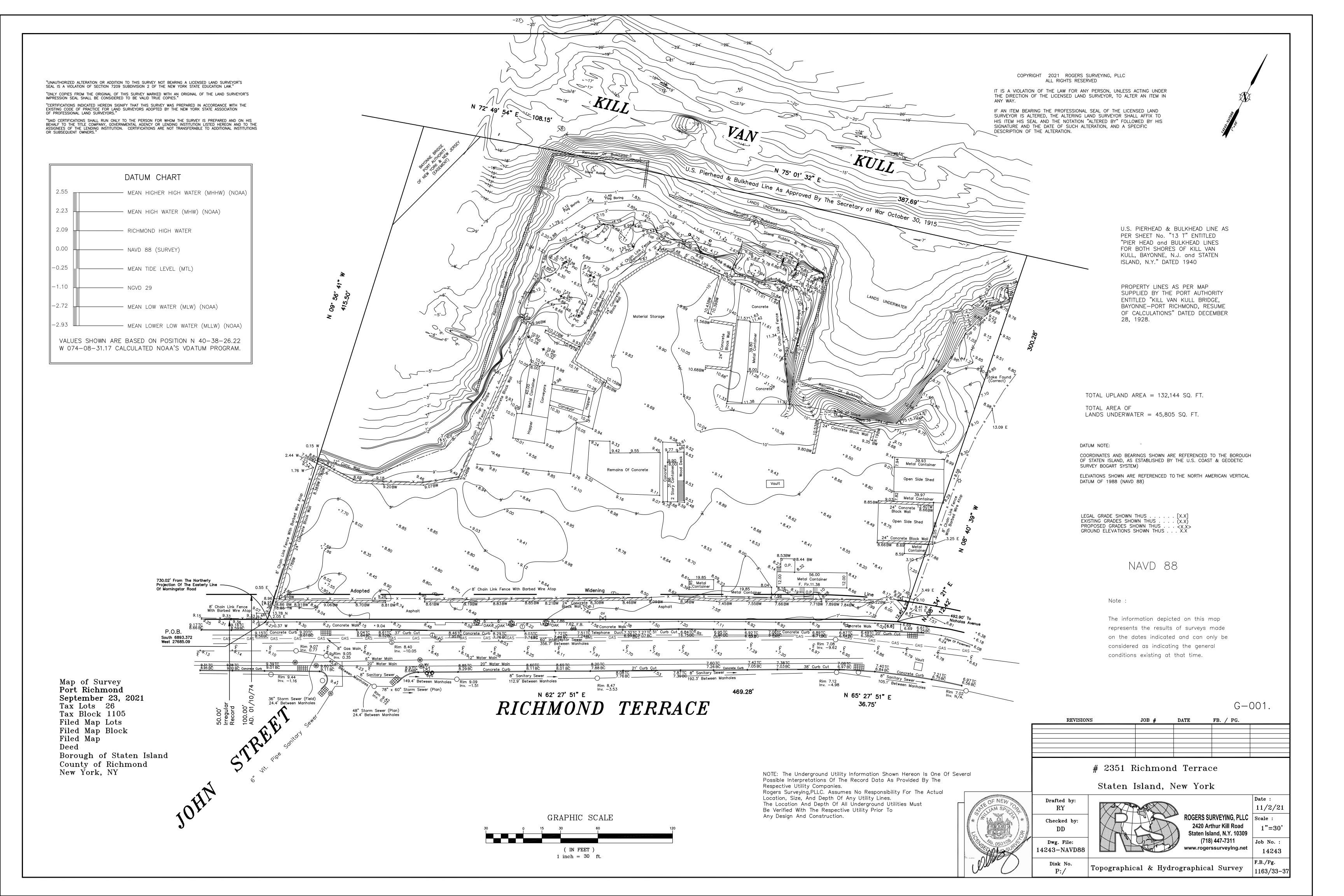
2σ: total propagated uncertainty; MDC: Minimum Detectable Concentration; pCi/g: picocuries per gram; *The DUP is a field duplicate of the preceding sample

		Ra-226			U-234			U-2	235			U- 238					
Sample ID	Result	2 σ	MDC	Result	2 σ	MDC	Result	Qual	2 σ	MDC	Result	2 σ	MDC	U-238/U-234 Ratio	2σ	U-238/Ra-226 Ratio	2σ
SIW-SB-001P-0.0-5.0	1.76	0.31	0.14	1.73	0.23	0.02	0.11	U	0.38	0.67	1.6	0.22	0.01	0.92	0.18	0.91	0.20
SIW-SB-001P-5.0-10.0	0.74	0.19	0.16	1.7	0.26	0.02	0.11	U	0.29	0.5	1.89	0.27	0.02	1.11	0.23	2.55	0.75
SIW-SB-002P-0.0-5.0	0.86	0.21	0.18	0.66	0.12	0.02	0.11	U	0.27	0.46	0.66	0.11	0.01	1.00	0.25	0.77	0.23
SIW-SB-003P-0.0-5.0	1.07	0.22	0.17	0.65	0.12	0.03	0.43	U	0.36	0.44	0.66	0.12	0.04	1.02	0.26	0.62	0.17
SIW-SB-003P-5.0-8.0	0.97	0.21	0.11	0.64	0.12	0.02	0.11	U	0.28	0.48	0.456	0.094	0.024	0.71	0.20	0.47	0.14
SIW-SB-004P-0.0-5.0	1.22	0.21	0.16	0.71	0.12	0.03	0.16	U	0.23	0.59	0.64	0.12	0.02	0.90	0.23	0.52	0.13
SIW-SB-DUP-001*	1.06	0.25	0.18	0.78	0.13	0.01	0.15	U	0.3	0.51	0.79	0.13	0.01	1.01	0.24	0.75	0.21
SIW-SB-004P-5.0-10.0	0.93	0.18	0.14	0.55	0.1	0.01	-0.08	U	1.3	0.5	0.64	0.11	0.02	1.16	0.29	0.69	0.18
SIW-SB-005P-0.0-5.0	1.8	0.27	0.16	2.73	0.32	0.02	0.12	U	0.35	0.66	2.67	0.32	0.01	0.98	0.16	1.48	0.28
SIW-SB-005P-5.0-8.0	1.58	0.3	0.14	1.42	0.27	0.03	0.15	U	0.41	0.69	1.42	0.27	0.03	1.00	0.27	0.90	0.24
SIW-SB-DUP-002*	1.7	0.29	0.21	1.38	0.19	0.02	-0.03	U	1.3	0.8	1.26	0.18	0.01	0.91	0.18	0.74	0.16
SIW-SB-006P-0.0-5.0	0.72	0.16	0.13	0.67	0.12	0.02	0.06	U	0.29	0.5	0.65	0.12	0.01	0.97	0.25	0.90	0.26
SIW-SB-006P-5.0-8.0	0.7	0.16	0.14	0.48	0.094	0.022	0.11	U	0.27	0.47	0.431	0.088	0.02	0.90	0.25	0.62	0.19
SIW-SB-007P-0.0-5.0	0.96	0.17	0.14	0.43	0.034	0.022	0.17	U	0.33	0.52	0.431	0.14	0.02	1.06	0.23	0.91	0.15
SIW-SB-007P-5.0-8.0	2.8	0.17	0.11	3.93	0.42	0.02	0.17	U	0.32	0.71	3.59	0.14	0.02	0.91	0.14	1.28	0.22
SIW-SB-008P-0.0-5.0	1.57	0.30	0.2	1.24	0.42	0.01	0.06	U	0.32	0.68	0.92	0.39	0.01	0.74	0.14	0.59	0.22
SIW-SB-008P-5.0-8.0	2.04	0.23	0.19	2.06	0.25	0.02	0.38	U	0.41	0.68	1.82	0.23	0.02	0.88	0.17	0.89	0.14
SIW-SB-009P-0.0-5.0	47.6	3.1	0.15	40.7	4.3	0.02	4.5		1.6	1.9	40.9	4.3	0.02	1.00	0.15	0.86	0.10
SIW-SB-009P-5.0-8.0	2.13	0.34	0.23	4.08	0.45	0.01	0.7		0.5	0.63	3.99	0.45	0.01	0.98	0.15	1.87	0.11
SIW-SB-010P-0.0-5.0	1.77	0.42	0.23	1.53	0.43	0.01	0.11	U	0.42	0.76	1.28	0.43	0.01	0.84	0.15	0.72	0.20
SIW-SB-DUP-005*	1.72	0.42	0.32	1.75	0.22	0.02	0.11	U	0.32	0.75	1.84	0.18	0.02	1.05	0.19	1.07	0.26
SIW-SB-010P-5.0-8.0	0.6	0.33	0.22	0.73	0.22	0.03	0.10	U	0.32	0.73	0.66	0.23	0.02	0.90	0.19	1.10	0.20
SIW-SB-011P-0.0-5.0	1.79	0.17	0.17	0.73	0.13	0.01	0.03	U	0.13	0.73	1	0.12	0.02	1.11	0.23	0.56	0.37
SIW-SB-011P-5.0-8.0	1.79	0.34	0.19	0.75	0.14	0.01	0.21	U	0.47	0.73	0.65	0.13	0.02	0.87	0.24	0.50	0.14
SIW-SB-0111 - 3.0-8.0	1.22	0.24	0.22	0.75	0.13	0.02	0.27	U	0.33	0.62	0.86	0.12	0.01	1.15	0.22	0.70	0.14
SIW-SB-012P-5.0-8.0	0.97	0.24	0.17	0.73	0.15	0.03	0.24	U	0.081	0.52	0.80	0.14	0.01	0.99	0.27	0.70	0.18
SIW-SB-012F-3.0-8.0	95.8	5.9	0.17	37.3	3.4	0.01	4.6	U	2.3	2.8	36.6	3.3	0.01	0.99	0.23	0.83	0.23
SIW-SB-013P-5.0-8.0	3.7	0.44	0.7	6.77	0.68	0.03	0.35	U	0.67	0.94	6.15	0.63	0.03	0.98	0.13	1.66	0.04
SIW-SB-013F-3.0-8.0	0.102	0.024	0.24	0.74	0.08	0.03	0.021	U	0.023	0.94	0.13	0.03	0.03	0.91	0.13	7.16	2.11
SIW-SB-014P-5.0-8.0	1.02	0.024	0.017	1.91	0.13	0.02	0.021	U	0.023	0.67	1.88	0.13	0.03	0.99	0.23	1.84	0.50
SIW-SB-015P-0.0-5.0	54.4	3.5	0.2	65.4	6.4	0.04	4.2	U	1.3	1.9	63	6.2	0.03	0.98	0.13	1.16	0.30
SIW-SB-016P-0.0-5.0	8.29	0.73	0.26	9.68	0.4	0.02	0.69	U	0.58	1.9	9.63	0.92	0.03	0.99	0.13	1.16	
SIW-SB-016P-0.0-3.0	1.27	0.73	0.20	2.2	0.93	0.02	0.09	U	0.38	0.67	2.12	0.92	0.03	0.99	0.13	1.67	0.15
SIW-SB-017P-0.0-5.0	3.84	0.31	0.22	1.83	0.23	0.03	0.08	U	0.13	0.85	1.9	0.24	0.03	1.04	0.10	0.49	0.46
		1.8	0.22	34.5	3.1	0.05	2.9	U	1.4		34.2	3.1	0.01	0.99	0.19	1.31	
SIW-SB-018P-0.0-5.0 SIW-SB-DUP-003*	26.1									1.6							0.15
	20.5	1.5	0.4	24.6	2.2	0.06	1.32	TT	0.76	1.3	24	2.2	0.07	0.98	0.12	1.17	0.14
SIW-SB-019P-0.0-5.0 SIW-SB-019P-5.0-8.0	0.46	0.15	0.14	0.447	0.09	0.028	0.12	U	0.11	0.33	0.473	0.094	0.032	1.06	0.30	1.03	0.39
	0.26	0.12	0.15	0.246	0.061	0.022	0.11	U	0.24	0.34	0.273	0.064	0.009	1.11	0.38	1.05	0.54
SIW-SB-020P-0.0-5.0	1.41	0.24	0.17	1.98	0.26	0.03	0.03	U	0.35	0.61	2.01	0.26	0.02	1.02	0.19	1.43	0.30
SIW-SB-020P-5.0-8.0	1.08	0.18	0.11	1.06	0.17	0.03	0.28	U	0.3	0.54	1 15	0.16	0.02	0.94	0.21	0.93	0.21
SIW-SB-021P-0.0-5.0	1.5	0.28	0.2	1.15	0.17	0.02	0.26	U	0.36	0.61	1.15	0.17	0.01	1.00	0.21	0.77	0.18
SIW-SB-021P-5.0-8.0	0.71	0.18	0.16	0.92	0.14	0.02	0.21	U	0.2	0.49	0.96	0.14	0.02	1.04	0.22	1.35	0.40
SIW-SB-022P-0.0-5.0	1.15	0.25	0.21	0.78	0.16	0.03	0.26	U	0.45	0.72	0.92	0.18	0.02	1.18	0.33	0.80	0.23
SIW-SB-022P-5.0-8.0	1.25	0.26	0.2	0.67	0.14	0.03	0.28	U	0.38	0.72	0.73	0.14	0.03	1.09	0.31	0.58	0.17
SIW-SB-023P-0.0-5.0	2.48	0.36	0.23	2.54	0.3	0.02	0.25	U	0.46	0.81	2.62	0.31	0.02	1.03	0.17	1.06	0.20
SIW-SB-023P-5.0-8.0	0.78	0.18	0.11	1.28	0.18	0.02	-0.04	U	9.3	0.4	1.19	0.17	0.02	0.93	0.19	1.53	0.41
SIW-SB-024P-0.0-5.0	1.63	0.28	0.2	1.61	0.21	0.01	0.18	U	0.35	0.73	1.69	0.21	0.01	1.05	0.19	1.04	0.22
SIW-SB-DUP-004*	1.63	0.28	0.2	1.85	0.24	0.02	0.29	U	0.45	0.71	1.89	0.24	0.02	1.02	0.19	1.16	0.25
SIW-SB-025P-0.0-5.0	1.09	0.23	0.18	1.08	0.16	0.01	0.18	U	0.18	0.63	1.03	0.15	0.01	0.95	0.20	0.94	0.24
SIW-SB-026P-0.0-5.0	1.87	0.37	0.29	1.9	0.24	0.02	0.1	U	0.29	0.95	1.77	0.23	0.02	0.93	0.17	0.95	0.22
	6.28			5.53							5.42			0.98	0.21	1.13	0.28

2σ: total propagated uncertainty; MDC: Minimum Detectable Concentration; pCi/g: picocuries per gram; *The DUP is a field duplicate of the preceding sample

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, New April 2	<i>York</i> 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

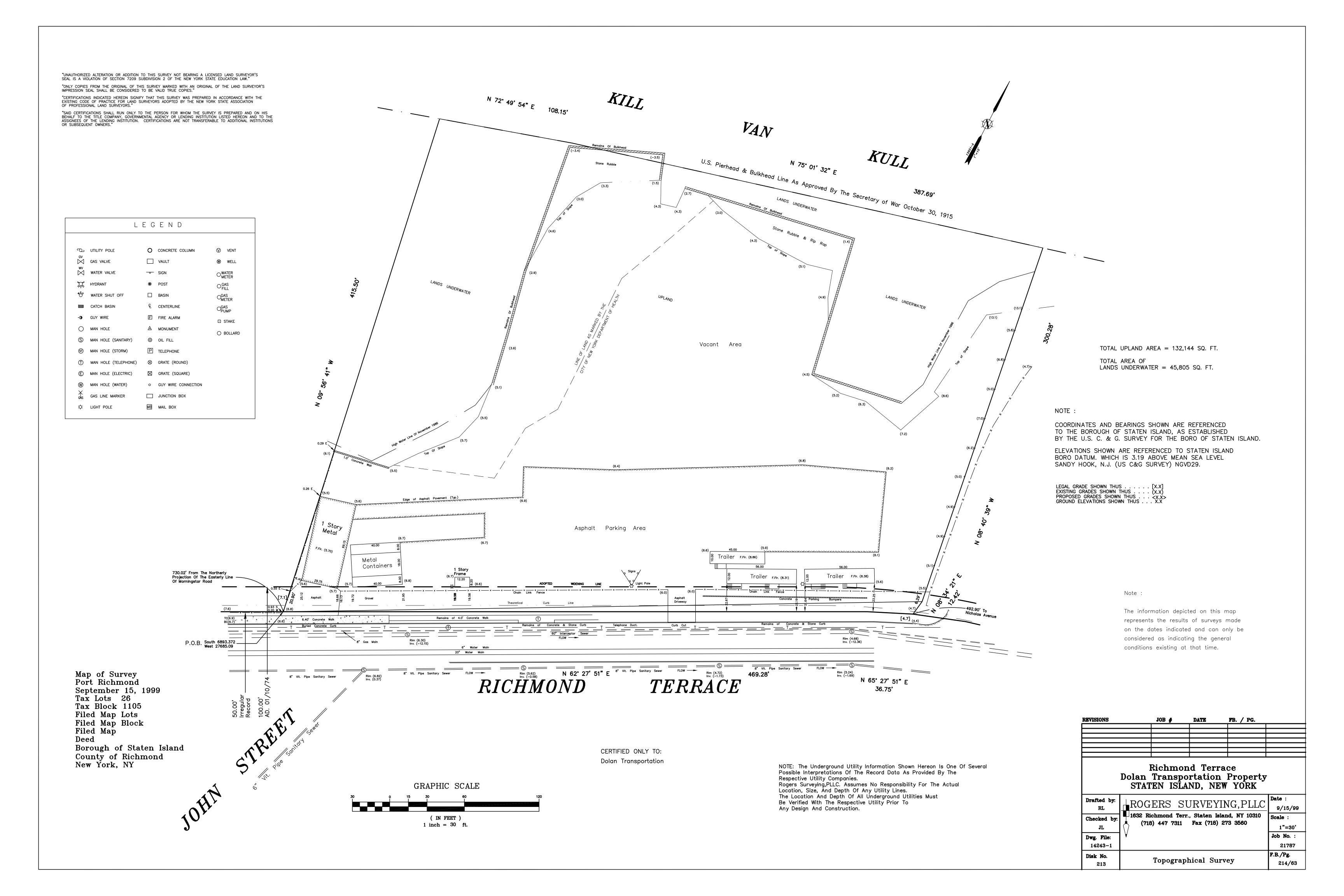
APPENDIX L


SURVEYS OF THE SIW SITE

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, New April	v York 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

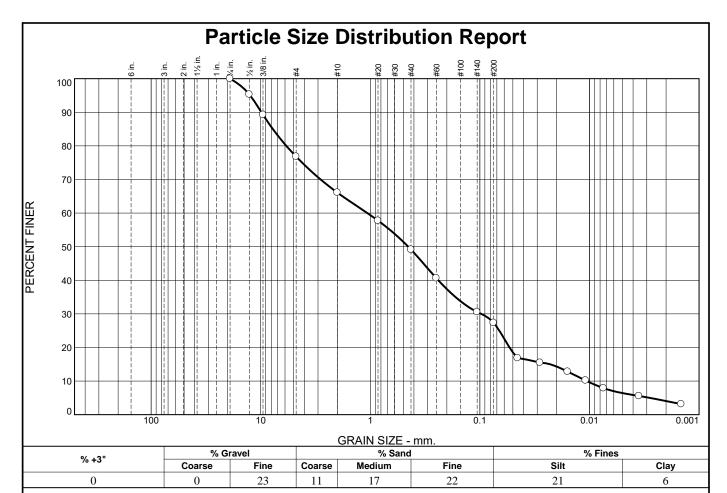
Appendix L1

2021 CIVIL AND HYDROGRAPHIC SURVEY OF THE SIW SITE


Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, A	New York pril 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, New April	v York 2023
THIS PAGE INTENTIONALLY LEFT BLANK	

Appendix L2 1999 CIVIL SURVEY OF THE SIW SITE


Supplemental Site Inspection Repo	rt, Staten Island Warehouse FUSRA	AP Site, Port Richmond, Staten Island, New York April 2023
•	THIS PAGE INTENTIONALLY	Y LEFT BLANK

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, New York April 2023
THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX M GEOTECHNICAL ANALYSIS DATA

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, New York April 2023
THIS PAGE INTENTIONALLY LEFT BLANK

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100		
.5	95		
.375	89		
#4	77		
#10	66		
#20	58		
#40	49		
#60	41		
#140	31		
#200	27		

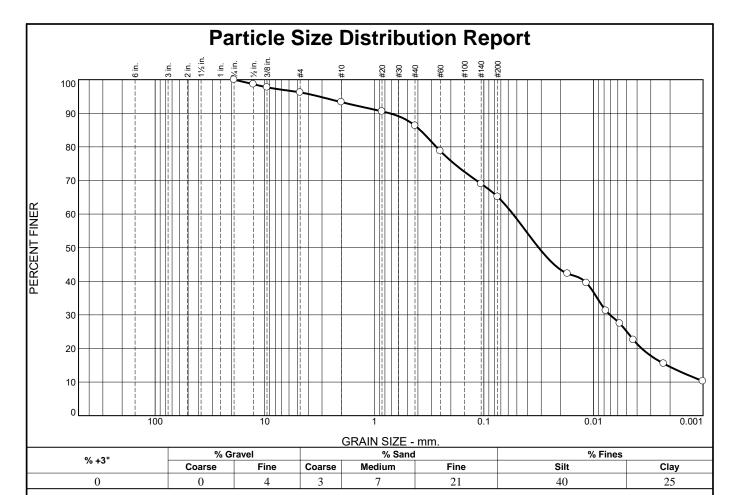
Material Description Silty Sand with Gravel		
PL= NP	Atterberg Limits LL= NV	PI= NP
D ₉₀ = 9.8653 D ₅₀ = 0.4509 D ₁₀ = 0.0106	Coefficients D85= 7.7516 D30= 0.0974 Cu= 100.86	D ₆₀ = 1.0650 D ₁₅ = 0.0229 C _c = 0.84
USCS= SM	Classification AASHTO	O= A-2-4(0)
Remarks Moisture Content: 20.9%		

* (no specification provided)

Source of Sample: SB-06 Depth: 0.0-2.0'

Date: 10/15/2021

Figure


Terracon, Inc.

Client: Geo Consultants

Project: Staten Island Warehouse

Cincinnati, Ohio

Project No: N1211568

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100		
.5	99		
.375	98		
#4	96		
#10	93		
#20	91		
#40	86		
#60	79		
#140	69		
#200	65		
* (no spe	ecification provided)	1

<u>Material Description</u> SANDY LEAN CLAY		
PL= 19	Atterberg Limits LL= 27	PI= 8
D ₉₀ = 0.7277 D ₅₀ = 0.0316 D ₁₀ =	Coefficients D ₈₅ = 0.3820 D ₃₀ = 0.0071 C _u =	D ₆₀ = 0.0543 D ₁₅ = 0.0021 C _c =
USCS= CL	Classification AASHTO=	= A-4(3)
Moisture Content -	<u>Remarks</u> - 18.7%	

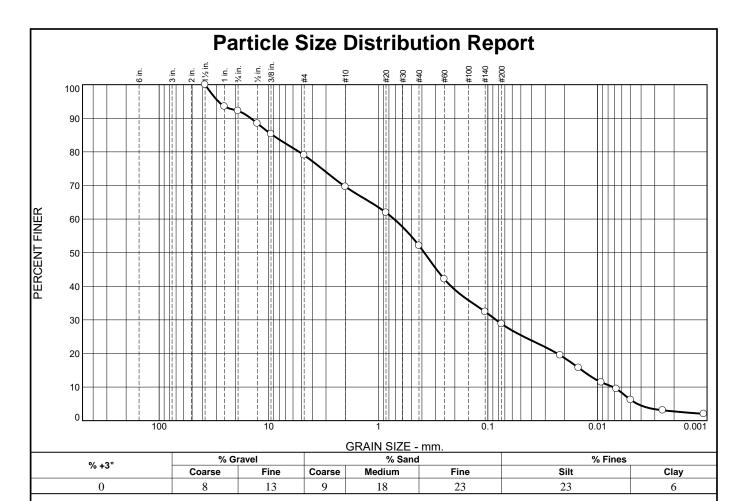
Source of Sample: SB-06 Depth: 2.0-5.0'

Tested By: CS

Date: 10-14-21

Figure

Terracon, Inc.


Client: Geo Consultants

Project: Staten Island Warehouse

Cincinnati, Ohio

Project No: N1211568

Checked By: GS

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100		
1	94		
.75	92		
.5	88		
.375	85		
#4	79		
#10	70		
#20	62		
#40	52		
#60	42		
#140	32		
#200	29		
* (no spo	cification provided)		

Material Description SILTY SAND WITH GRAVEL		
PL= 26	Atterberg Limits LL= 24	PI= 2
D ₉₀ = 14.5874 D ₅₀ = 0.3805 D ₁₀ = 0.0072	Coefficients D ₈₅ = 9.2327 D ₃₀ = 0.0843 C _u = 99.55	D ₆₀ = 0.7179 D ₁₅ = 0.0138 C _c = 1.37
USCS= SM	Classification AASHTO:	= A-2-4(0)
Moisture Content -	<u>Remarks</u> 12.5%	

* (no specification provided)

Source of Sample: SB-10 Depth: 0-4.0'

Date: 10-14-21

Terracon, Inc.

Client: Geo Consultants

Project: Staten Island Warehouse

Cincinnati, Ohio

Project No: N1211568

Figure

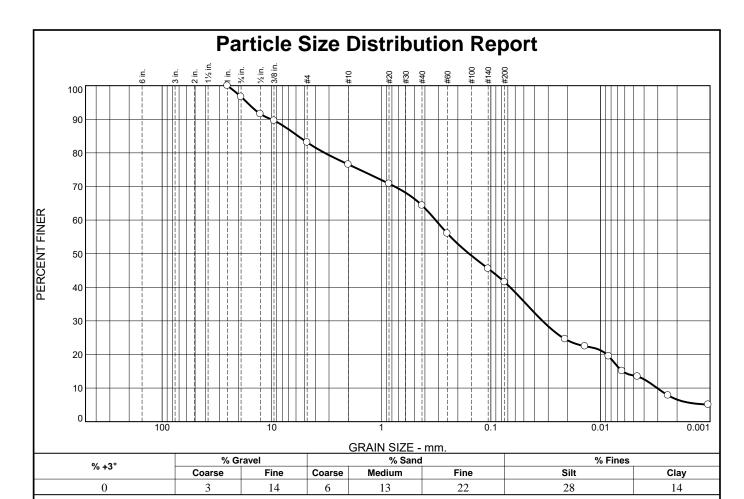
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100		
1	81		
.75	66		
.5	55		
.375	50		
#4	43		
#10	37		
#20	33		
#40	30		
#60	26		
#140	21		
#200	18		
* (no spe	cification provided)	1	

SILTY GRAVEL V	Material Description WITH SAND	
PL= 18	Atterberg Limits LL= 21	PI= 3
D ₉₀ = 30.6609 D ₅₀ = 9.1913 D ₁₀ = 0.0187	Coefficients D ₈₅ = 27.6642 D ₃₀ = 0.4676 C _u = 854.85	D ₆₀ = 15.9999 D ₁₅ = 0.0421 C _c = 0.73
USCS= GM	Classification AASHTO=	A-1-b
Moisture Content:	Remarks 11.0%	

Source of Sample: SB-10 Depth: 4.0-8.0'

Date: 10-14-21

Terracon, Inc.


Client: Geo Consultants

Project: Staten Island Warehouse

Cincinnati, Ohio

Project No: N1211568

Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100		
.75	97		
.5	92		
.375	90		
#4	83		
#10	77		
#20	71		
#40	64		
#60	56		
#140	46		
#200	42		
* (oification provided)		

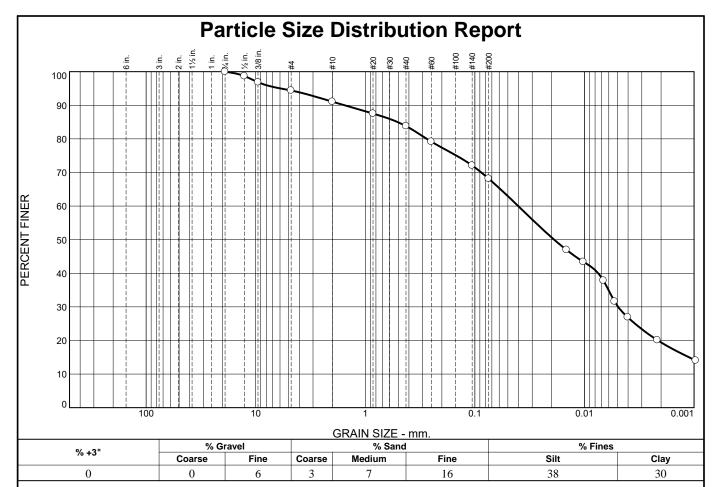
_	Material Description SAND WITH GRAVEL	
PL= 17	Atterberg Limits LL= 21	PI= 4
D ₉₀ = 10.1635 D ₅₀ = 0.1582 D ₁₀ = 0.0030	Coefficients D85= 5.7508 D30= 0.0338 Cu= 105.27	D ₆₀ = 0.3198 D ₁₅ = 0.0063 C _c = 1.18
USCS= SC-SM	Classification AASHTO=	A-4(0)
Moisture Conent - 2	Remarks 1.7%	

* (no specification provided)

Source of Sample: SB-12 Depth: 6.0-8.0'

Date: 10-11-21

Terracon, Inc.


Client: Geo Consultants

Project: Staten Island Warehouse

Cincinnati, Ohio

Project No: N1211568

Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100		
.5	99		
.375	97		
#4	94		
#10	91		
#20	88		
#40	84		
#60	79		
#140	72		
#200	68		
*	I	1	l

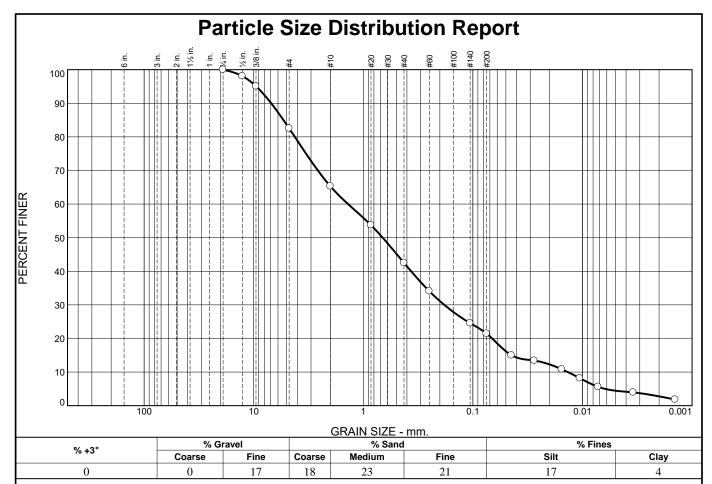
SANDY SILTY CL	Material Description AY	
PL= 17	Atterberg Limits LL= 24	PI= 7
D ₉₀ = 1.5471 D ₅₀ = 0.0189 D ₁₀ =	Coefficients D ₈₅ = 0.5076 D ₃₀ = 0.0049 C _u =	D ₆₀ = 0.0402 D ₁₅ = 0.0011 C _c =
USCS= CL-ML	Classification AASHTO=	A-4(2)
Moisture Content -	<u>Remarks</u> 16.0%	

* (no specification provided)

Source of Sample: SB-12 Depth: 11.0-12.0'

Date: 10-14-21

Terracon, Inc.


Client: Geo Consultants

Project: Staten Island Warehouse

Cincinnati, Ohio

Project No: N1211568

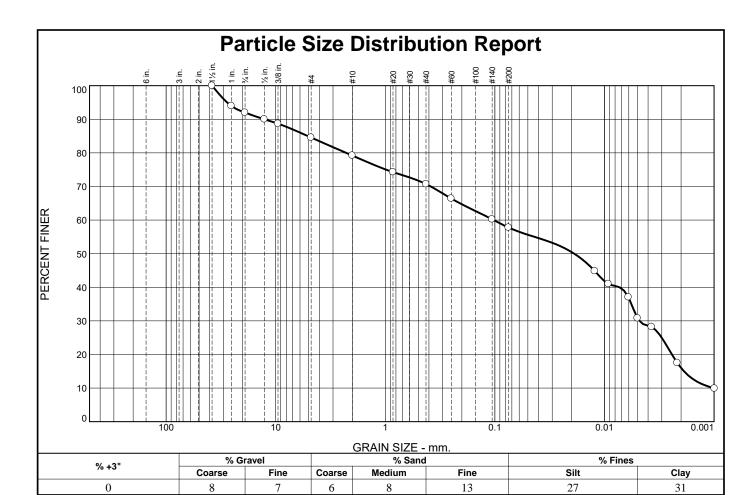
Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100		
.5	98		
.375	95		
#4	83		
#10	65		
#20	54		
#40	42		
#60	34		
#140	25		
#200	21		
* (no spe	ecification provided)	

Silty Sand with Gr	Material Description avel	
PL= NP	Atterberg Limits	PI= NP
D ₉₀ = 6.9255 D ₅₀ = 0.6659 D ₁₀ = 0.0136	Coefficients D85= 5.3537 D30= 0.1825 Cu= 101.14	D ₆₀ = 1.3784 D ₁₅ = 0.0445 C _c = 1.77
USCS= SM	Classification AASHTO:	= A-1-b
Moisture Content:	Remarks 19.6%	

Source of Sample: SB-14 Depth: 4.0-6.0'

Date: 10/15/2021


Terracon, Inc.

Client: Geo Consultants

Project: Staten Island Warehouse

Cincinnati, Ohio Project No: N1211568

Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100		
1	94		
.75	92		
.5	90		
.375	89		
#4	85		
#10	79		
#20	74		
#40	71		
#60	66		
#140	60		
#200	58		
* (no spe	ecification provided)		

Sandy Lean Clay w	Material Description vith Gravel	
PL= 22	Atterberg Limits LL= 34	PI= 12
D ₉₀ = 12.7493 D ₅₀ = 0.0189 D ₁₀ = 0.0010	Coefficients D ₈₅ = 5.0953 D ₃₀ = 0.0048 C _U = 100.84	D ₆₀ = 0.1026 D ₁₅ = 0.0019 C _c = 0.22
USCS= CL	Classification AASHTO:	= A-6(5)
Moisture Content -	Remarks 52.0%	

Source of Sample: SB-14 Depth: 8.0-12.0'

Date: 10/21/2021

Terracon, Inc.


Client: Geo Consultants

Project: Staten Island Warehouse

Cincinnati, Ohio

Project No: N1211568

Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100		
1	95		
.75	95		
.5	91		
.375	87		
#4	77		
#10	66		
#20	55		
#40	46		
#60	39		
#140	31		
#200	28		
* (oification provided)		

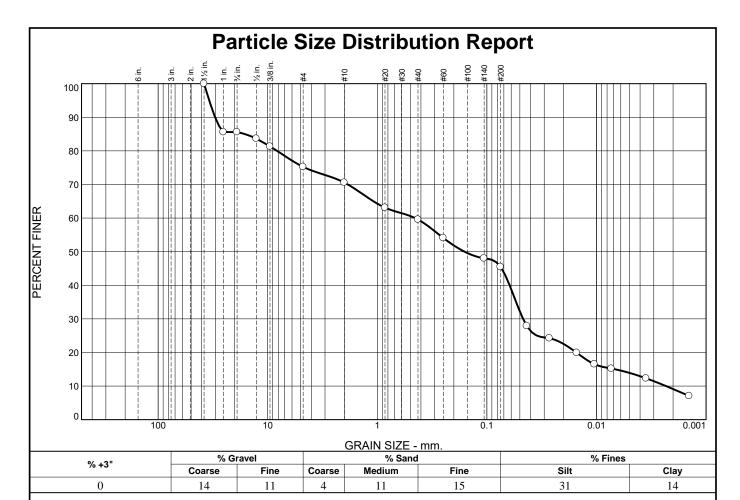
Silty Sand with Gra	Material Description avel	
PL= 36	Atterberg Limits LL= 41	PI= 5
D ₉₀ = 11.7080 D ₅₀ = 0.5715 D ₁₀ = 0.0115	Coefficients D85= 8.5767 D30= 0.0914 Cu= 109.17	D ₆₀ = 1.2588 D ₁₅ = 0.0386 C _c = 0.58
USCS= SM	Classification AASHTO=	A-2-5(0)
Moisture Content: 2	Remarks 22.3%	

(no specification provided)

Source of Sample: SB-16 Depth: 0.0-2.0'

Date: 10/15/2021

Terracon, Inc.


Client: Geo Consultants

Project: Staten Island Warehouse

Cincinnati, Ohio

Project No: N1211568

Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.50	100		
1	86		
.75	86		
.5	84		
.375	81		
#4	75		
#10	71		
#20	63		
#40	60		
#60	54		
#140	48		
#200	45		
* (no spe	ecification provided)		

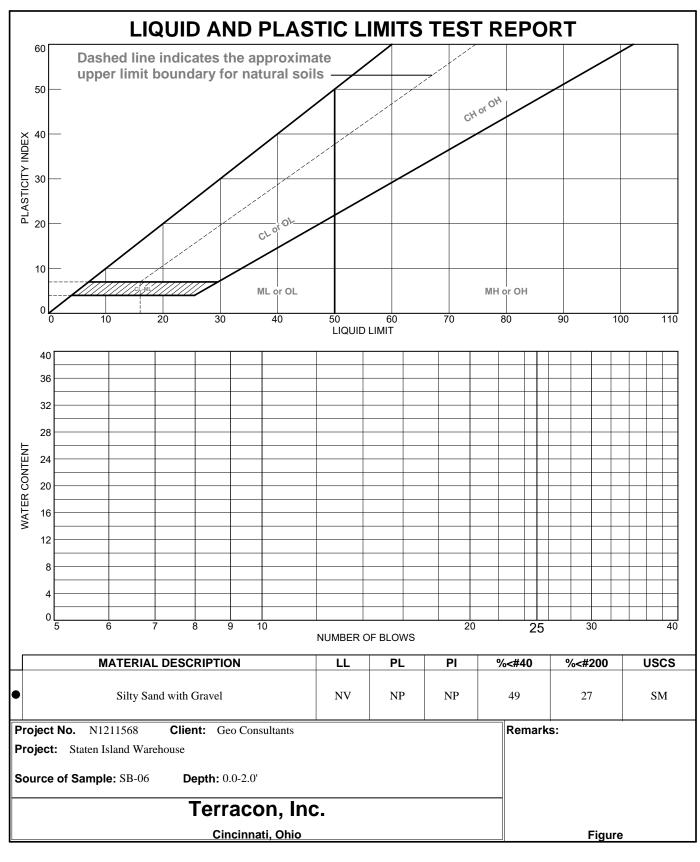
Silty, clayey sand w	Material Description ith gravel	
PL= 22	Atterberg Limits LL= 27	PI= 5
D ₉₀ = 30.1988 D ₅₀ = 0.1603 D ₁₀ = 0.0023	Coefficients D85= 16.2004 D30= 0.0468 Cu= 194.49	D ₆₀ = 0.4513 D ₁₅ = 0.0068 C _c = 2.09
USCS= SC-SM	Classification AASHTO=	A-4(0)
Moisture Content: 1	Remarks 4%	

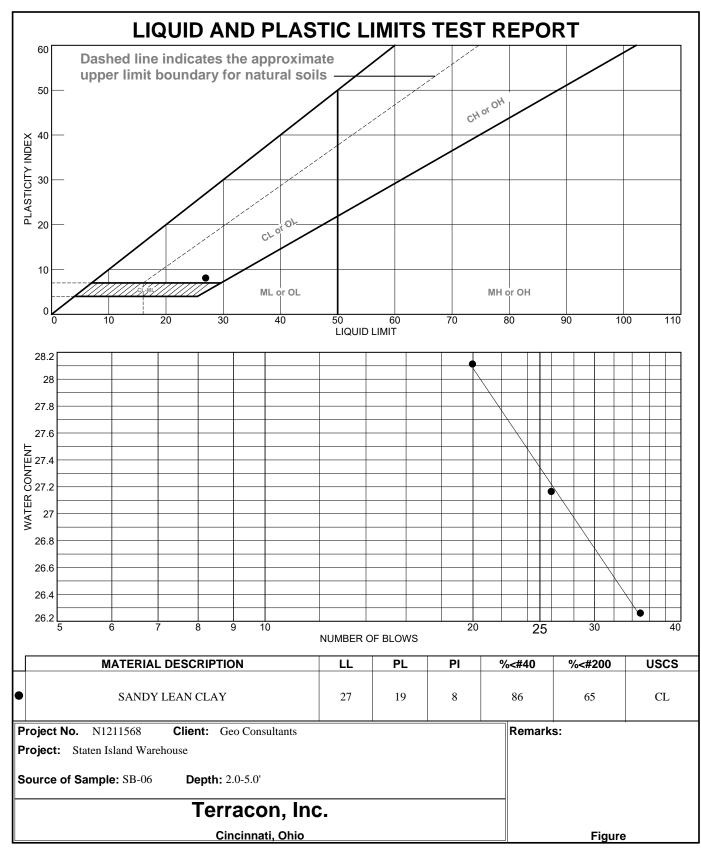
Source of Sample: SB-16

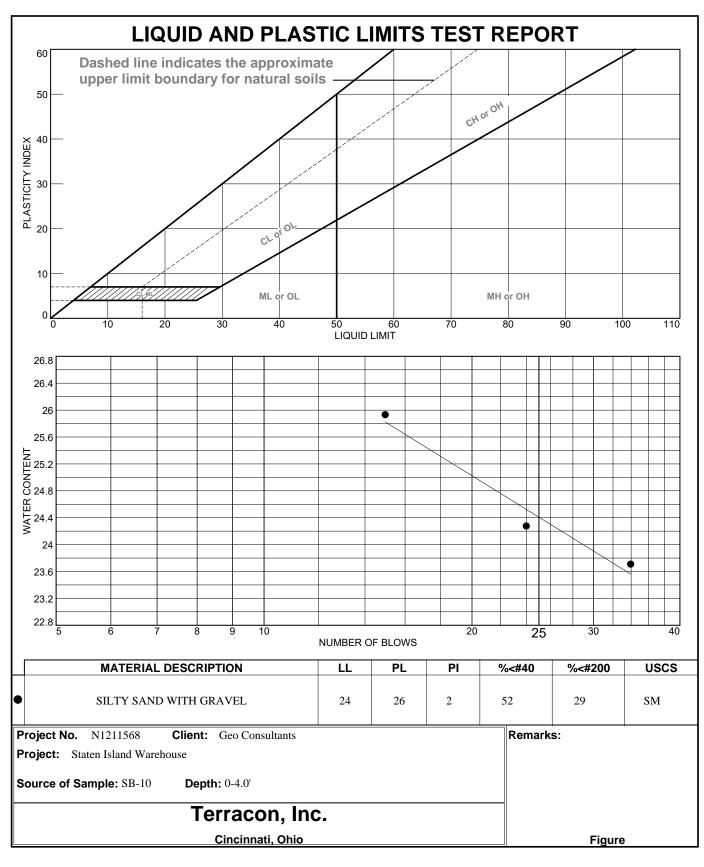
: SB-16 **Depth**: 2.0-4.0'

Date: 10/18/2021

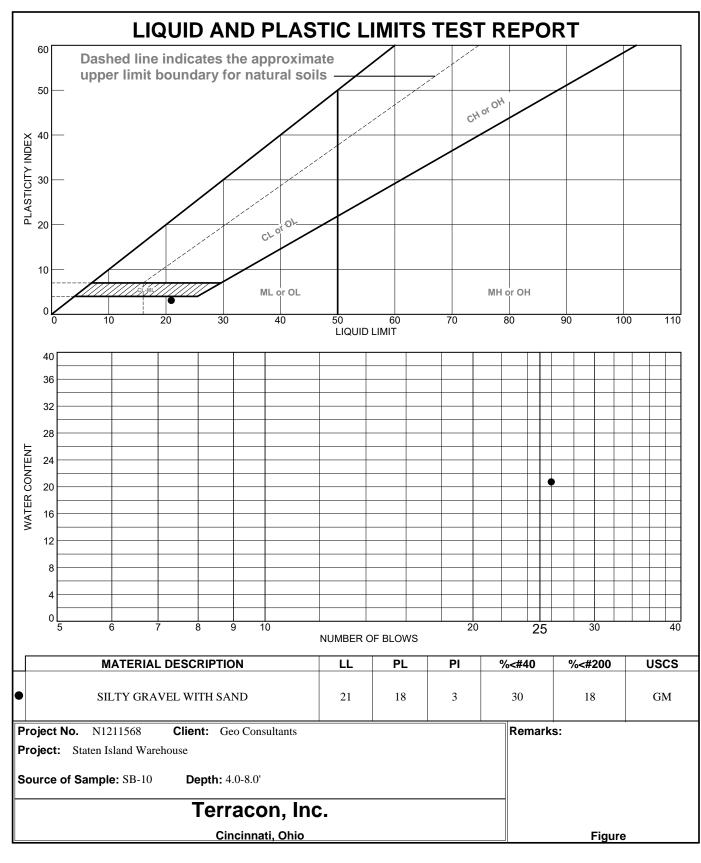
Terracon, Inc.

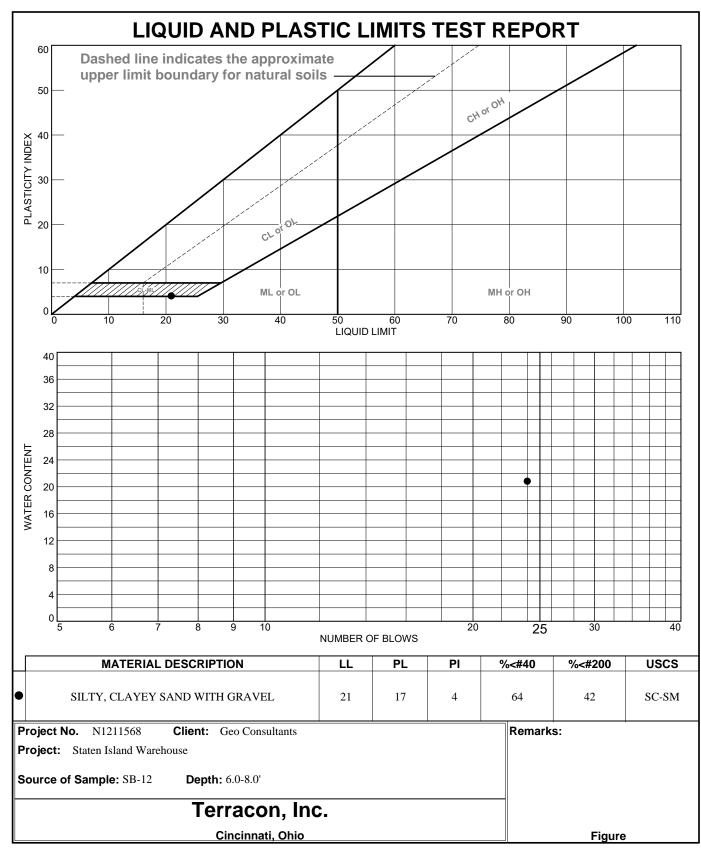

Client: Geo Consultants

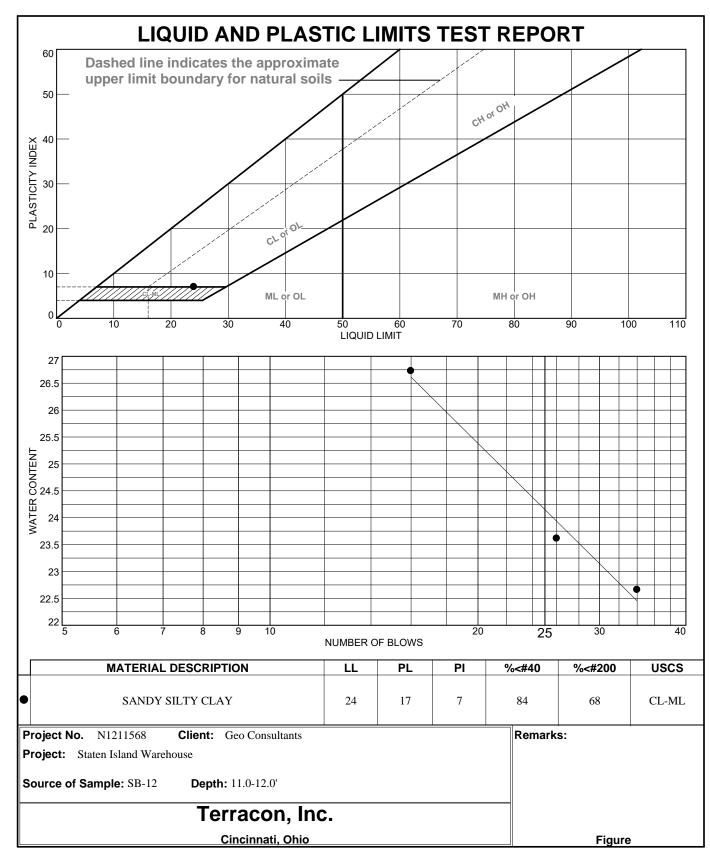

Project: Staten Island Warehouse

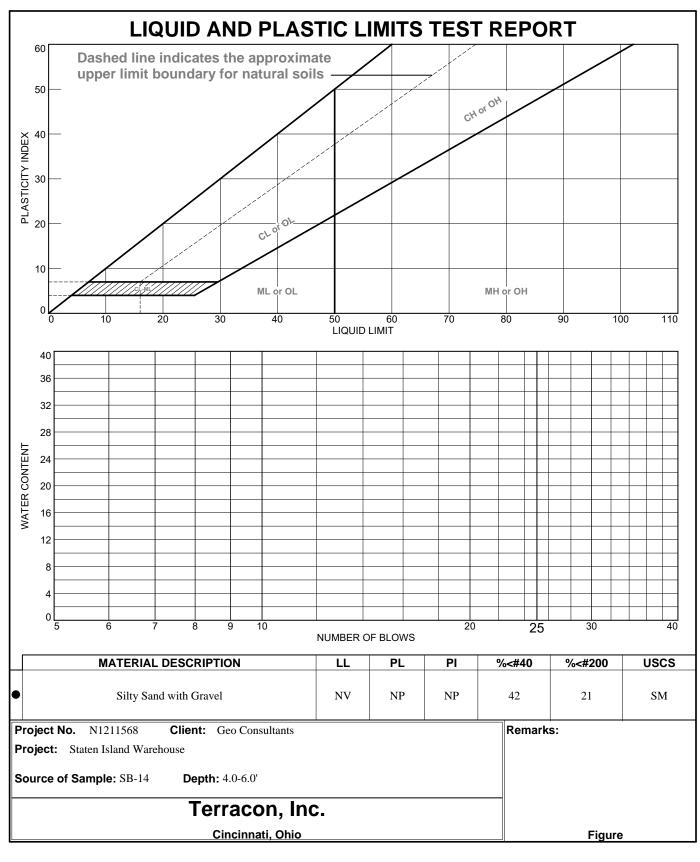

Cincinnati, Ohio

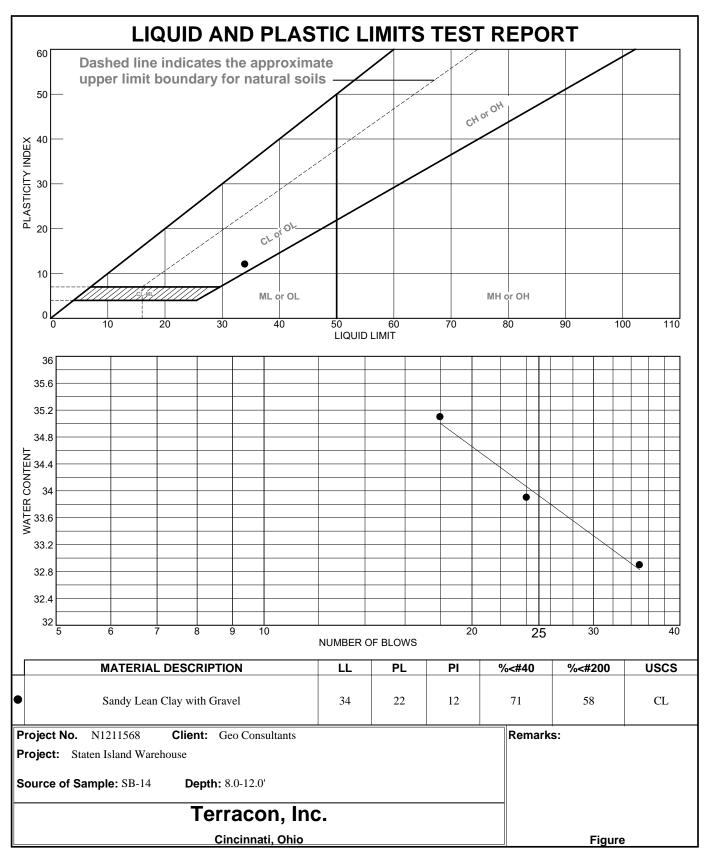
Project No: N1211568

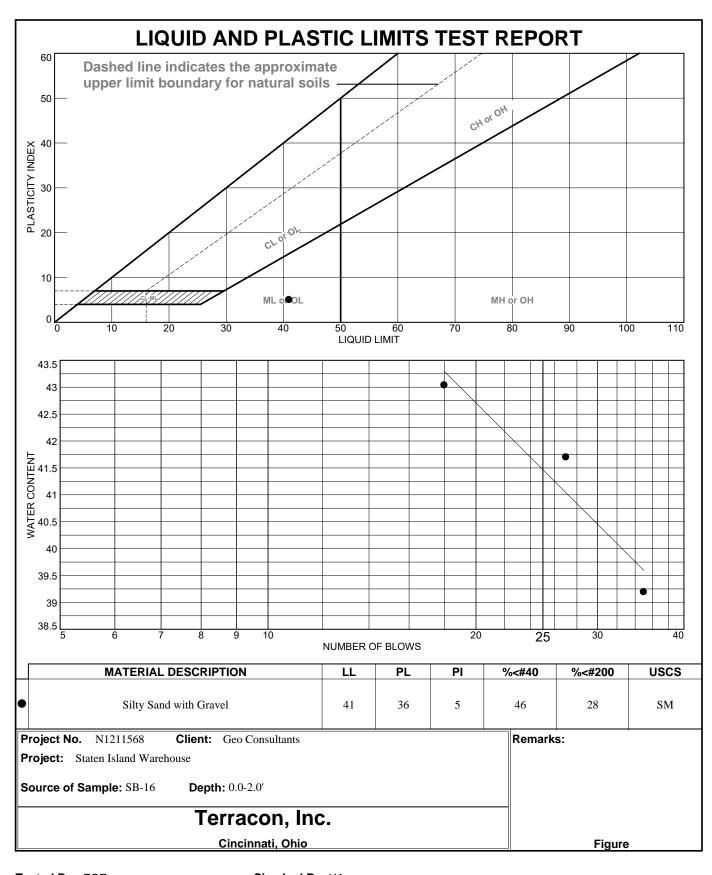

Figure

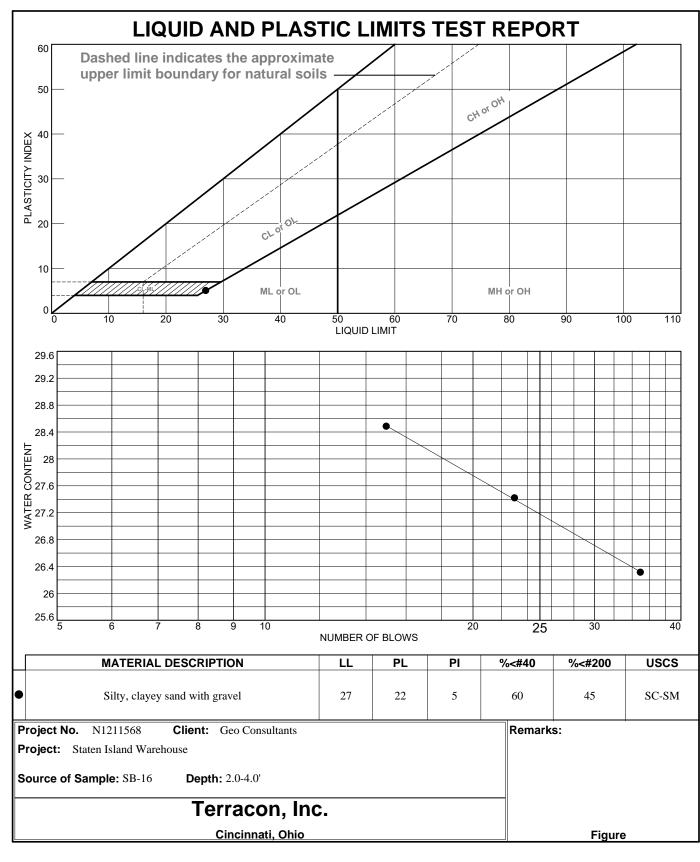




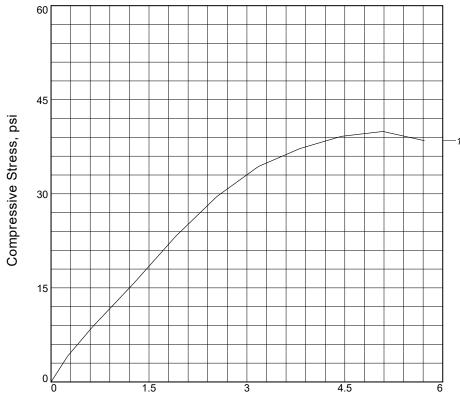



Tested By: <u>CS</u> Checked By: <u>GS</u> Date: 10/14/2021





Tested By: CS Checked By: GS Date: 10/21/2021



 Tested By: FCE
 Checked By: KA
 Date: 10/15/2021

Tested By: FCE Checked By: KA Date: 10/18/2021

UNCONFINED COMPRESSION TEST

Axial Strain, %

Sample No.	1		
Unconfined strength, psi	39.941		
Undrained shear strength, psi	19.971		
Failure strain, %	5.1		
Strain rate, in./min.	0.039		
Water content, %	13.4		
Wet density, pcf	140.1		
Dry density, pcf	123.5		
Saturation, %	99.2		
Void ratio	0.3646		
Specimen diameter, in.	1.635		
Specimen height, in.	3.934		
Height/diameter ratio	2.41		

Description: SILTY, CLAYEY SAND WITH GRAVEL

LL = 21 $FL = 1/$ $FI = 4$ Assumed G3= 2.70 Type. Spin Spoon	LL = 21	PL = 17	PI = 4	Assumed GS= 2.70	Type: Split Spoon
--	----------------	----------------	---------------	------------------	--------------------------

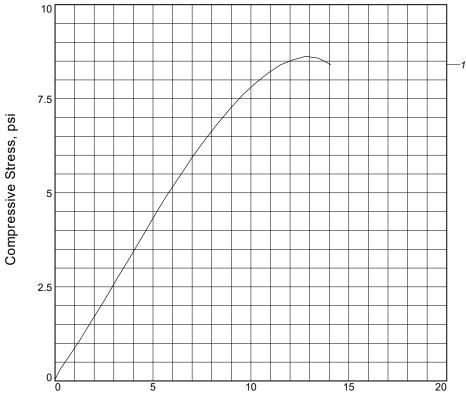
Project No.: N1211568

Date Sampled: 10-11-21

Remarks:

Client: Geo Consultants

Project: Staten Island Warehouse


Source of Sample: SB-12 **Depth:** 6.0-8.0'

UNCONFINED COMPRESSION TEST

Terracon, Inc.

Figure ____

UNCONFINED COMPRESSION TEST

Axial Strain, %

Sample No.	1		
Unconfined strength, psi	8.627		
Undrained shear strength, psi	4.313		
Failure strain, %	12.8		
Strain rate, in./min.	0.039		
Water content, %	20.9		
Wet density, pcf	126.0		
Dry density, pcf	104.2		
Saturation, %	91.2		
Void ratio	0.6173		
Specimen diameter, in.	1.616		
Specimen height, in.	3.907		
Height/diameter ratio	2.42		

Description:

LL =	PL =	PI =		Assumed GS= 2.70	Type: Tube
Project No.: N121	1568		Client: Geo Consultants		

Project No.: N1211568

Date Sampled: 10/8/2021

Remarks: 7594

Client: Geo Consultants

Project: Staten Island Warehouse

Source of Sample: SB-14 Depth: 8.0-12.0'

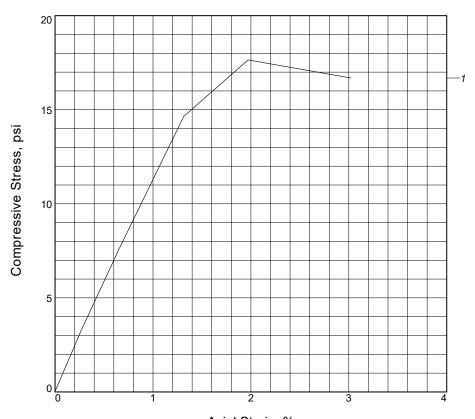

UNCONFINED COMPRESSION TEST

Figure _____

Terracon, Inc.

Гested By: FCE	Checked By: KA

UNCONFINED COMPRESSION TEST

Axial Strain, %

Sample No.	1	
Unconfined strength, psi	17.649	
Undrained shear strength, psi	8.824	
Failure strain, %	2.0	
Strain rate, in./min.	0.038	
Water content, %	18.9	
Wet density, pcf	120.9	
Dry density, pcf	101.7	
Saturation, %	77.5	
Void ratio	0.6579	
Specimen diameter, in.	1.643	
Specimen height, in.	3.805	
Height/diameter ratio	2.32	

Description:

LL =	PL =	PI =		Assumed GS= 2.70		Type: Tube
Project No.: N121	1568		Client: Geo Consultants			
Date Sampled: 10)/8/2021					
Remarks: 7596			Project: Staten Island Warehouse			
			Source of Sample: SB-16 Depth: 2.0-4.0'			
			UNCONFINED COMPRESSION TEST			
Figure			Terracon, Inc.			

Tested By: FCE Checked By: KA

Supplemental Site Inspection Report, Staten Island Warehouse FUSRAP Site, Port Richmond, Staten Island, New York April 2023
THIS PAGE INTENTIONALLY LEFT BLANK