General Design Memorandum

Passaic River
Flood Damage Reduction Project

Appendix G - Structural Design
Weirs, Floodwalls, Closures, and Pump Stations

September 1995
GENERAL DESIGN MEMORANDUM
Passaic River Flood Damage Reduction Project

APPENDIX G - STRUCTURAL

VOLUME I

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GENERAL DESCRIPTION OF PROJECT FEATURES</td>
</tr>
<tr>
<td>2</td>
<td>TUNNEL LINER</td>
</tr>
<tr>
<td>3</td>
<td>TUNNEL SHAFTS</td>
</tr>
<tr>
<td>4</td>
<td>POMPTON (MAIN) TUNNEL INLET</td>
</tr>
<tr>
<td>5</td>
<td>PASSAIC (SPUR) TUNNEL INLET</td>
</tr>
<tr>
<td>6</td>
<td>NEWARK BAY OUTLET</td>
</tr>
<tr>
<td>7</td>
<td>FAIRFIELD ROAD BRIDGE</td>
</tr>
</tbody>
</table>

VOLUME II

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>GREAT PIECE WEIR</td>
</tr>
<tr>
<td>9</td>
<td>PEQUANNOCK WEIR</td>
</tr>
<tr>
<td>10</td>
<td>TIDAL AREA PROTECTION FLOODWALLS</td>
</tr>
<tr>
<td>11</td>
<td>CENTRAL BASIN AND POMPTON FLOODWALLS</td>
</tr>
<tr>
<td>12</td>
<td>PASSAIC 10 FLOODWALL</td>
</tr>
<tr>
<td>13</td>
<td>CLOSURE STRUCTURES</td>
</tr>
<tr>
<td>14</td>
<td>PUMP STATIONS</td>
</tr>
</tbody>
</table>
APPENDIX G

SECTION 8

GREAT PIECE WEIR
TABLE OF CONTENTS

APPENDIX G - STRUCTURAL

Section 8 - Great Piece Weir

8.1 Scope .. G-8-1
8.2 Feature Description G-8-1
8.3 Design .. G-8-2
 8.3.1 Criteria .. G-8-2
 8.3.2 Design Data .. G-8-3
 8.3.2.1 Specified Design Stresses G-8-3
 8.3.2.2 Hydraulic Criteria G-8-3
 8.3.2.3 Factors of Safety G-8-3
 8.3.2.4 Pile Capacity G-8-3
 8.3.2.5 Critical Load Cases G-8-4
 8.3.3 Gates ... G-8-5
 8.3.4 Piers .. G-8-5
 8.3.5 Abutments ... G-8-5
 8.3.6 Pile-supported Continuous Slab G-8-6
 8.3.7 Wingwalls ... G-8-6
 8.3.8 Piles ... G-8-7
 8.3.9 Operating Deck G-8-9
 8.3.10 Electrical/Mechanical G-8-9
8.4 Construction .. G-8-10

List of Tables

Table 1 Weir Foundation Pile Loadings
Table 2 Weir Pile Characteristics

List of Drawings

Plate No. Description
 G-8-1 Weir Site Plan
 G-8-2 Weir Plan, Elevation, and Sections
 G-8-3 Soil Erosion and Sediment Control

Attachment G-8A

G-8A-1 thru G-8A-5 Weir Load Case Summaries
G-8A-6 Weir Wingwall Load Case Summary

sec8ms.wpd/8-30-95 G-8-1
GREAT PIECE WEIR

8.1 Scope

The primary function of this section of the design memorandum is to ascertain a reasonable cost estimate for the construction of the Great Piece Weir. A structural sufficient design effort has been conducted to achieve this goal. Further design studies will be performed during the next level of design. The design effort currently includes:

-Determination of location of the Great Piece Weir.
-Geometric configuration of the Great Piece Weir.
-Preliminary design of the Great Piece Weir.
-Preliminary design drawings and details.
-Determination of method of construction of the Weir.
-Quantity Take-Offs.

8.2 Feature Description

The Great Piece Weir would be located in the Central Basin Area of the Passaic River Basin, characterized as a flat, oval, 262-square-mile depression consisting of low rolling hills, flat meadowlands and freshwater swamps. The weir site would be situated within the Town of Fairfield and the Borough of Lincoln Park at a location approximately 600 feet upstream of the Two Bridges Road crossing over the Passaic River just upstream of the Passaic River, Pompton River confluence. The weir structure would incorporate five 30 foot wide gates providing a total river opening of 150 feet. Five torque tube bascule gates would rest on a gate sill set at EL. 156.0, approximately 6 ft. above the proposed river bottom elevation. The proposed gates would have a total height of 10 feet and would be capable of creating a backwater up to EL. 166.0 to flood the Great Piece Meadow upstream of the weir during non-flood events.

The weir would also be provided with an operating deck which would be supported by two weir abutments and four intermediate piers. The operating deck would provide access for operation and maintenance from both the south and north shores of the river. The south access would be provided from a driveway which would branch from an existing office complex driveway just south of the Two Bridges Road river crossing. The weir would also have a short access driveway to the north from Two Bridges Road which parallels the north shoreline of the Passaic River at that location.

During periods of normal flow, the gates in the Great Piece Meadows Weir would remain open and the flow regime would remain unchanged from current conditions. Under flooding conditions, the gates in the Great Piece Meadows Weir would also remain open until
the peak flow passes. When the peak flood stage recedes to the one-year stage, or, if peak stages do not reach the one-year stage, the weir gates would be closed to approximately replicate stages varying between the existing two year flood event at the weir location and the one year event at a distance about 8 miles upstream. This flood stage would be maintained for a period of time determined necessary to satisfy fish and wildlife needs in the Great Piece Meadows. It is estimated that this would occur once or twice a year. Once the desired duration for wetland inundation is reached, the gates would gradually open and remain open under normal conditions.

The location, geometric configuration, and function of the Great Piece Weir were determined from the hydraulic design presented in Appendix C - Hydrology and Hydraulics and the environmental and wildlife requirements presented in Appendix B - Environmental Resources. A description of cofferdams, excavation, dewatering, and pile capacities in soil is presented in Appendix E - Geotechnical.

The alignment of the Great Piece Weir structure was given thorough consideration to incorporate several essential factors including construction, maintenance and operation of the weir/gate installation. Factors which impact the weir alignment are summarized as follows:

- Elevated gate foundation.
- Access for routine maintenance and emergency repair.
- Minimization of wetland disturbances.
- Minimization of water-surface increases.
- Minimization of total cost (including annual costs).
- Minimization of impacts to cultural resources.
- Avoidance of known HTRW sites.
- Minimization of utility relocations.

Based on the consideration of these factors and investigations of current maps, stream profiles, and hydraulic models, the location of weir was moved downstream from the location originally proposed in the Passaic River Basin, New Jersey and New York Phase I - General Design Memorandum - Flood Protection Feasibility Main Stem Passaic River, Vol. I, December 1987, Figure 60. The revised location would be approximately 600 feet upstream of the Two Bridges Road crossing over the Passaic River. Reference to Plate Nos. G-8-1 thru G-8-3 for the preliminary design drawings and details for the Great Piece Weir.

8.3 Design
8.3.1 Criteria

a. EM 1110-2-1605 "Hydraulic Design of Navigation Dams"
b. EM 1110-2-2105 "Design of Hydraulic Steel Structures"

c. EM 1110-2-2200 "Gravity Dam Design"

d. EM 1110-2-2502 "Retaining and Flood Walls"

e. EM 1110-2-2906 "Design of Pile Foundations"

8.3.2 Design Data

8.3.2.1 Specified Design Stresses

a. Concrete
 \[f'c = 4,000 \text{ psi (pipe piles & walls)} \]
 \[f'c = 3,000 \text{ psi (footings)} \]

b. Reinforcement
 \[f_y = 60,000 \text{ psi} \]

c. Structural Steel
 \[f_y = 36,000 \text{ psi} \]

d. Prestressed Steel Strands
 \[f_y = 270,000 \text{ psi} \]

8.3.2.2 Hydraulic Criteria

Normal Operating Headwater \quad \text{EL. 159.0}
Normal Operating Tailwater \quad \text{EL. 159.0}
Maximum Headwater \quad \text{EL. 166.0}
Top of Weir Crest \quad \text{EL. 156.0}

The bottom chord of the operating deck was placed at EL. 169.0 to allow for the maximum flow to pass with three feet of freeboard.

8.3.2.3 Factors of Safety

The factors of safety (FS) for pile design were taken from EM 1110-2-2906. It was assumed for design that a pile load test would be done to verify the factors of safety and are shown as follows:

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Pile Design (FS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual</td>
<td>2.0</td>
</tr>
<tr>
<td>Unusual</td>
<td>1.5</td>
</tr>
<tr>
<td>Extreme</td>
<td>1.15</td>
</tr>
</tbody>
</table>

8.3.2.4 Pile Capacity

A pile founded structure was selected since the structure is situated in a wide river bed where the vulnerability of any shallow foundation to erosion or piping could become a concern. Also,
borings showed that the underlying soil is of poor quality and has the potential to settle under heavy loading. Reference Appendix E-Geotechnical for a further description of the existing soil conditions. The pile foundations were designed by transferring all loads applied to the structure through a rigid pile cap and converting the applied loads into axial forces acting on each pile. A concrete filled steel pipe pile was selected to support the weir structure and wingwalls. The ultimate capacity of a concrete filled steel pipe pile in soil was determined using the methods presented in EM 1110-2-2906. The above factors of safety were then applied to the ultimate pile capacity to obtain an allowable pile capacity for each load case.

8.3.2.5 Critical Load Cases

For the purpose of this report, only the load cases considered most critical were selected for analysis. These load cases were used to determine and conceptually design the foundation for the Great Piece Weir. The design of the reinforcement steel is not a part of this design memorandum, but was estimated for cost analysis purposes. Refer to Attachment G-8A for a graphical representation of each load case for the Great Piece Weir. The following five load cases were considered.

Load Case 1 - Usual Condition

The weir gates are closed; the high water elevation is at EL. 166.0 against the upstream side of the gates; the normal water elevation is at EL. 159.0 in the spillways.

Load Case 2 - Usual Condition

The weir gates are open; the water is level at EL. 159.0 across the entire slab.

Load Case 3 - Maintenance, Usual Condition

Maintenance situation with bulkhead planks set in place. The water is at EL. 159.0 all around the bulkheads and the slab is dry.

Load Case 4 - Construction, Unusual Condition

Construction stage where the water is at EL. 159.0 all around the cofferdam, and the water is kept at the slab base, EL. 142.0.

Load Case 5 - Earthquake, Extreme Condition

Load Case 2 + Earthquake. Seismic Coefficient = 0.1g
8.3.3 Gates

Several gate alternatives and gate widths were investigated, and a conceptual design and preliminary cost was performed. Five 30 foot long carbon steel torque-tube bascule gates were chosen for the Great Piece Weir due to their proven history, straight forward design and manufacture, and low maintenance cost. Further design of the gates will be performed in the FDM level of effort. For information on the investigation of the different gate types and the operation details of the torque-tube bascule gate, see Appendix C - Hydrology and Hydraulics of this design memorandum.

The torque-tube bascule gate is a submersible gate and is considered opened when it is recessed into the weir structure and flow passes over the gate. During periods of normal flow, the gates would remain open (recessed into weir) and flow would pass over the weir and gate. Ice loading on the gate was not considered since the gate would be in the open position when ice is likely to form. Refer to Plate No. G-8-2 for a section view of the torque-tube bascule gate.

8.3.4 Piers

There would be a total of four gate piers, each having a 10-foot width and containing vaults to house the mechanical and electrical equipment needed to operate the gates. Where possible, adjacent gates would be operated out of a common vault so that equipment such as hydraulic reservoirs and valve panels could be shared by both gate operators. The piers would support a 23'-10" feet wide roadway structure to be used for access and maintenance purposes, and also support auxiliary girders for setting bulkhead planks at the upstream and downstream limits of the gate bay to create dry space over the slab for maintenance. The pier geometry was largely determined by the configuration of the maintenance deck and the placement of the stop log bulkheads. Refer to Plate No. G-8-2 for details of the piers.

8.3.5 Abutments

The reinforced concrete abutments would serve to support the operating deck and to retain the soil from both approach roadways. They would be constructed on the continuous slab with two rows of piles with eight piles on each row placed under the continuous slab below each abutment. All horizontal and vertical loads applied to the abutments were assumed to be transferred into the continuous slab and taken by the piles under the abutments and continuous slab. The stem of the abutment would have a sloping backface, 1H:12V. A select porous fill material would be placed as a backfill behind the stem. Refer to Plate No. G-8-2 for details of the abutments.
8.3.6 Pile-supported Continuous Slab

The Great Piece Weir would be supported by a continuous slab founded on bearing piles. There will be a total of five gate bays on the slab, each having a 30-foot horizontal opening for flow. Its total length between abutments and its width between the upstream and downstream ends would be, 150 and 62 feet respectively. The continuous slab would be of reinforced concrete construction and would have a minimum five foot thickness. It would act as a rigid member and would transfer all applied loads from the piers, abutments, and gates to the piles. The design of the reinforcement in the slab was not a part of this design memorandum but was estimated for the cost analysis.

The slab would consist of an approach apron, a weir structure, a stilling basin, and an end sill. The top of the approach apron was set at EL. 150.0, the top of the weir at EL. 156.0, the top of the stilling basin at EL. 148.0, and the end sill at EL. 151.0. The bottom of the slab was set at EL. 143.0. A sheet pile cutoff wall would be driven around the entire slab to reduce seepage and erosion under the slab.

An alternative to the pile-supported continuous slab was originally conceived as a deeper pile-supported foundation strip, about 10-feet wide, under each pier, but with no pile support under the 30-foot wide strips of gate bay slab spanning between piers. This concept was abandoned in favor of the proposed scheme because it would have required too many stages of construction with pile driving and cofferdamming and deeper excavations with more rigorous dewatering at the piers. Furthermore, it would not have been possible to rely on the natural exposed soil to support a freshly poured and curing concrete slab spanning between the piers or pier and abutment. A temporary pile support or soil treatment would have been required.

8.3.7 Wingwalls

There would be a pair of flared wingwalls per each abutment to provide a transition from the approach channel to the weir structure. The wingwalls would extend out from all four corners of the weir at a 30° angle from the centerline of channel. Expansion joints would separate the continuous slab from the wingwall footings. The wingwalls would essentially be conventional cantilever retaining walls of reinforced concrete construction supported by concrete filled steel pipe piles. The stem of the wingwall would have a sloping backface and porous backfill placed behind it, as similarly indicated for the abutment stems. Reference Plate No. G-8-2 for a typical section of the wingwalls.

The top of the wingwalls would extend from EL. 169.0 and slope down to approximately EL. 163.0. The length of the northeast and southeast wingwalls would be 48 feet, and the lengths of the
northwest and southwest wingwalls would be 46 feet and 40 feet respectively. A wingwall with an average stem height of 16 feet was designed for one critical load case where full hydrostatic and soil pressures were exerted on the back of the wall and a drained condition exists in front of the wall. This was considered as an usual loading condition. The top of the wingwall footings were set at EL. 150 and a 3 foot thick footing was assumed. The footing was assumed to act as a rigid member and transfer all vertical and horizontal loads to the piles.

8.3.8 Piles

The pile support for the continuous slab was analyzed considering the five load cases described above to estimate the maximum and minimum pile loads and the quantity of vertical and battered piles. A 40 foot width section of the continuous slab was analyzed consisting of one pier, two half gate bays, and two half maintenance deck spans. All loads applied were transferred from the rigid slab into axial forces onto each pile. The dynamic forces on the weir were considered negligible and not included in this analysis. Based on 8.43 feet transversal spacing (8 piles per row along the flow) and 6.67 feet longitudinal spacing (6 piles per row for each 40 foot slab unit), the maximum and minimum pile loadings resulting from the analysis are presented in Table 1.

<table>
<thead>
<tr>
<th>Loading Case</th>
<th>Max. Pile Load (tons)</th>
<th>Min. Pile Load (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>13</td>
</tr>
</tbody>
</table>

Notes:
1. All pile loads are vertical and compressive.
2. Maximum loads occur in the 1st (upstream) row and minimum load occurs in the 8th (downstream) row.
3. Case 1 also creates the most critical unbalanced horizontal loading on the structure, e.g. in the order of 212 tons on each 40 foot unit.
4. Batter piles, 1H:4V Max, (in all of the 2nd through 7th rows), as well as the allowable shear resistance at the slab level (at least 1 ton per pile), will resist the critical horizontal loading.

5. The maximum loading for Case 4 is temporary and could be reduced to a loading below 40 tons by allowing more buoyancy and controlling the dewatering after the construction of piers.

<table>
<thead>
<tr>
<th>TABLE 2 GREAT PIECE WEIR PILE CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Allowable working pile capacity - weir Load Cases 1 and 2</td>
</tr>
<tr>
<td>Load Cases 3 and 4</td>
</tr>
<tr>
<td>Load Case 5</td>
</tr>
<tr>
<td>Allowable working pile capacity - wingwall</td>
</tr>
<tr>
<td>b. Estimated pile length - weir wingwalls (Based on soil stratigraphy from Boring GC-2 and laboratory soil strength data from the U.S. Army Corps of Engineers)</td>
</tr>
<tr>
<td>c. Minimum pile penetration required</td>
</tr>
<tr>
<td>d. Number of piles for the portion of slab between abutments</td>
</tr>
<tr>
<td>under both abutments</td>
</tr>
<tr>
<td>e. Number of piles for four wingwalls (Based on 3 piles per row spaced at about 4' on centers) avg. wingwall length = 46'</td>
</tr>
<tr>
<td>f. Pile group reduction (Based on the penetration of all pile tips into the incompressible glacial till layer starting at 23 feet or deeper below the slab bottom)</td>
</tr>
<tr>
<td>g. Total number of pile load tests</td>
</tr>
</tbody>
</table>
The pile support for the wingwalls was analyzed for the one critical load case as described in 8.3.7 to estimate the maximum and minimum pile loads and the quantity of vertical and battered piles. A four foot width section of the wingwall was analyzed. The analysis resulted in a pile configuration of three rows of piles spaced at four feet on centers in both directions. Two front rows of piles would be battered 1H:6V to resist the horizontal loads applied to the wingwall. All piles would be in compression, with a maximum load of 24 tons and a minimum load of 3 tons.

Fourteen (14)-inch OD steel pipe piles were designed to support the slab, abutments, and wingwalls. The minimum wall thickness of the pipe will be $\frac{3}{8}$ inch. The pipe piles would be filled with concrete after driving with an impact hammer to refusal or a specified penetration resistance in the glacial till layer. Ultimate capacities for the weir piles was determined to be 93.5 tons for a pipe pile driven to tip EL. 105. The ultimate capacity for the wingwall piles was determined to be 65 tons for a pipe pile driven to tip EL. 110.

Additional pile characteristics and quantities derived from the pile analysis are presented in Table 2 above.

8.3.9 Operating Deck

A conceptual design of the operating deck was performed and would consist of precast prestressed T-beam superstructure which would serve to support a wheeled crane and other maintenance vehicles and personnel. The T-beam operating deck would be 17'-0" wide and would be designed to support a 45 ton wheeled crane carrying a stoplog. Auxiliary AASHTO Type III precast prestressed girders adjacent to the T-beam operating deck would serve as crane outrigger supports as well as stoplogs.

8.3.10 Electrical/Mechanical

Torque-tube bascule gates would be raised and lowered by a single operator located at one end of each gate. The operators would utilize a hydraulic system including a central hydraulic reservoir, valve panels, positive displacement pumps, and accumulators. System redundancy would be provided by incorporating redundant valves and hydraulic cylinders. Sufficient hydraulic pressure to raise and lower gates in case of electrical power failure can be stored within accumulators. The use of accumulators would also negate the need for redundant positive displacement pumps since they could also be used to lower or raise a gate in case of pump failure. Accumulators store sufficient energy for a limited number of gate cycles before they need to be recharged. Recharging could be achieved by the positive displacement pump.
Operators for the torque-tube gates would be housed within pier vaults. Where possible, adjacent gates would be operated out of a common vault so that equipment such as hydraulic reservoirs and valve panels could be shared by both gate operators. Each pier vault would be provided with a sump pump to remove any potential seepage. Operator equipment would be mounted in the upper part of the pier chamber to minimize the chance of water damage. The environment within pier chambers would be maintained by dehumidifiers and heating elements as needed.

Gate operation would be controlled from the Operations Center at Workshaft 2, or controlled locally by an on-site operator. Upstream level sensing devices would be set to record water surface levels at frequent intervals and would average readings at pre-set longer intervals to determine if gates should be raised or lowered. Proper operation of sensing devices and automated controls would prevent frequent gate oscillations which would cause undue wear on gate operators and seals. All gate seals would also be heat traced to provide for ice free operation during freezing weather.

Since bascule gates generally operate hydraulically, they would require electricity for energizing positive-displacement pump motors. Accumulators which store hydraulic fluid under pressure are typically provided and remain charged during normal operating periods. Upon grid failure, battery powered controls could operate gates off accumulators to the extent of their capacity. An emergency generator could also be provided to raise the gates during a power outage when the capacity of the accumulators has been expended. However, no emergency power would be required to lower the gates which could be achieved by manual overrides.

8.4 Construction

A two-stage construction with cellular cofferdam enclosures was considered to be the most likely method of construction for dewatering the footprint area of the slab and wingwall footings for pile driving and subsequent construction. As shown on Plate No. G-8-3, the cellular cofferdams would protect the three sides of an area where two gate bays, two piers, and two wingwalls can be constructed starting at one side of the channel. For the second stage, an area of three gate bays including the remaining two piers and wingwalls would be protected with two lines of cellular cofferdams. All open gaps between the cell lines would be closed by temporary bulkhead lines constructed over the slab in conjunction with the pier completed during the first stage. In estimating the quantity of constituent elements of the cellular cofferdam, the following dimensions were used:

- Cell diameter 20± feet
- Sheetpile type PSA23
- Sheetpile top elevation 169.3 (10 yr existing condition stage, 10+ feet above normal water surface)
Sheetpile tip elevation EL. 130 feet

Excavations required for the construction of wingwall pile caps and wingwalls would be retained by driven and braced sheet pile walls. These walls would serve to protect the wingwall work area during construction and to prevent seepage into the cofferdammed slab foundation area.

For pile driving, a crane could be supported on the cofferdams along the upstream side to reach the pile locations within 35 feet. For the remainder of the pile driving operation, the access will be either by a crane lowered into the excavation or by means of temporary trestles on wood piles.

Construction is anticipated to proceed in two stages as depicted on the construction schedule presented in Appendix D - Cost Estimating. Each stage of the construction would involve the installation of a temporary cellular cofferdam to isolate the construction site and allow for dewatering within the streambed of the Passaic River. Linear sheetpile trench protection for wingwall construction would tie into cellular cofferdams and into the river bank to prevent seepage into the excavation. The sheet pile cofferdam would be constructed to EL 169.3, equal to the existing condition 10 year flood elevation. Development of the cofferdam to this elevation was judged to be a reasonable balance between flooding risks and the cost of the cofferdam construction. Upon construction of the cofferdam, the site would be dewatered and the foundation and superstructure of the southern gate bays would be constructed and outfitted. Upon successful installation and testing of gate equipment, the first stage construction area would be flooded and the temporary cofferdam would be removed. The total duration of the first stage of construction is anticipated to be 25 weeks as depicted on the construction schedule in Appendix D - Cost Estimating.

The second stage of construction would be similar to the first and would entail the isolation of the second stage construction area and the development of the northern gate bays and gates. Subsequent to the completion of the northern portion of the structure, the second stage cofferdam would be removed and final improvements to the facility site would be made. These improvements would include the construction of a permanent access road on the southern side of the Passaic River and would also include raising Two Bridges Road on the northern side of the river to allow for the development of an access drive to the northern side of the weir structure. The total duration of construction of the Great Piece Weir is anticipated to be approximately one year.
ATTACHMENT C-8A

PASSAIC RIVER DIVISION OF THE US ARMY CORPS NEW YORK DISTRICT.

DESIGN CALCULATIONS AND DRAWINGS ARE LOCATED IN THE OFFICE OF THE
ENGINEERING DIVISION, PASSAIC RIVER DISTRICT. COMPLETE
SHOP DRAWINGS ARE AVAILABLE FROM THE CONTROLLED SHEET
RESERVE. A DRAWING SUBINDEX OF THE

THE FOLLOWING SHEETS REPRESENT A GRAPHICAL SUMMARY OF THE

ATTACHMENT C-8A
GREAT PIECE WEIR

LOAD CASE SUMMARY

Gates Closed

Headwater EL 167.0

Tailwater EL 159.0
Load Case 2

Gates Open

Water EL 159.0 across entire structure.
LOAD CASE 3

Maintenance Situation
Bulkheads in Place
Water EL 159.0
Slab is Dry
LOAD CASE 4

Construction
Dead Load
No Uplift
Horizontal Loads taken by cofferdam
LOAD CASE 5

Earthquake 0.1g

Dead Load
LOAD CASE SUMMARY

RIVER SIDE

SELECTED FILL

\[\phi_{\text{net}} = 125 \text{pcf} = 0.125 \text{kcf} \]

\[\phi_{\text{sub}} = 62.5 \text{pcf} = 0.0615 \text{kcf} \]

\[\phi = 34^\circ \Rightarrow K_a = \tan^2 \left(45^\circ - \frac{\phi}{2} \right) = 0.28 \]

ASSUME CONSTRUCTION CASE

- DRAINED CONDITION
- FULL HYDROSTATIC PRESSURE
- ACTING ON THE BACK OF WALL
- PASSIVE RESIST. OF SOIL NEGLECTED

WING WALLS

G-8A-6
APPENDIX G

SECTION 9

PEQUANNOCK WEIR
TABLE OF CONTENTS

APPENDIX G - STRUCTURAL

Section 9 - Pequannock Weir

9.1 Scope ... G-9-1
9.2 Feature Description G-9-1
9.3 Design .. G-9-2
 9.3.1 Criteria .. G-9-2
 9.3.2 Design Data G-9-3
 9.3.2.1 Specified Design Stresses G-9-3
 9.3.2.2 Hydraulic Criteria G-9-4
 9.3.2.3 Factors of Safety G-9-4
 9.3.2.4 Pile Capacities G-9-4
 9.3.2.5 Critical Load Cases G-9-4
 9.3.3 Gates .. G-9-6
 9.3.3.1 Skin Plate G-9-7
 9.3.3.2 Vertical Ribs G-9-7
 9.3.3.3 Girders and Strut Arms G-9-8
 9.3.3.4 Girder and Strut Bracing G-9-9
 9.3.3.5 Seals and Seal Heaters G-9-10
 9.3.4 Concrete Monolith G-9-10
 9.3.5 Pile Foundation G-9-11
 9.3.6 Wingwalls G-9-13
 9.3.7 Maintenance Bridge G-9-14
 9.3.7.1 Girder Design G-9-15
 9.3.8 Gate Operating Machinery/Power Supply G-9-15
 9.3.9 Stoplogs .. G-9-16
 9.3.10 Access Road G-9-17

9.4 Construction .. G-9-17

List of Tables

Table 1 Girder/Strut Analysis Results
Table 2 Overturning Stability Parameters for Pier and Slab
Table 3 Pile Capacity - Weir Structure
List of Drawings

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-9-1</td>
<td>Weir Site Plan</td>
</tr>
<tr>
<td>G-9-2</td>
<td>Weir Typical Section - Excavation</td>
</tr>
<tr>
<td>G-9-3</td>
<td>Weir Plan and Section</td>
</tr>
<tr>
<td>G-9-4</td>
<td>Plan - Tainter Gate</td>
</tr>
<tr>
<td>G-9-5</td>
<td>Elevation - Tainter Gate</td>
</tr>
<tr>
<td>G-9-6</td>
<td>Tainter Gate Details - 1</td>
</tr>
<tr>
<td>G-9-7</td>
<td>Tainter Gate Details - 2</td>
</tr>
<tr>
<td>G-9-8</td>
<td>Tainter Gate Trunnion</td>
</tr>
<tr>
<td>G-9-9</td>
<td>Tainter Gate Hoist Machinery - General Arrangement</td>
</tr>
<tr>
<td>G-9-10</td>
<td>Stoplog Details</td>
</tr>
<tr>
<td>G-9-11</td>
<td>Wingwall - Levee Transition</td>
</tr>
<tr>
<td>G-9-12</td>
<td>Dike and Wingwalls</td>
</tr>
<tr>
<td>G-9-13</td>
<td>Access Road Details</td>
</tr>
</tbody>
</table>

Attachment G-9A

<table>
<thead>
<tr>
<th>G-9A-1 thru G-9A-4</th>
<th>Weir Load Case Summaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-9A-5 and G-9A-6</td>
<td>Weir Wingwall Load Case Summary</td>
</tr>
</tbody>
</table>
9.1 Scope

The primary function of this section of the design memorandum is to ascertain a reasonable cost estimate for the construction of the Pequannock Weir. A sufficient structural design effort has been conducted to achieve this goal. Further design studies will be performed during the next level of design. The design effort currently includes:

- Determination of location of the Pequannock Weir.
- Geometric configuration of the Pequannock Weir.
- Preliminary design of the Pequannock Weir.
- Preliminary design drawings and details.
- Determination of method of construction of the Weir.
- Quantity Take-Offs.

9.2 Feature Description

The Pequannock Weir would be located in a new channel just southwest of an existing weir. The existing weir is located on the Pequannock River at its confluence with the Ramapo River in Pompton Plains New Jersey. The new channel would be constructed just to the west of the Pequannock River to provide sufficient capacity to pass flood flow efficiently. The function of the new Pequannock Weir would be to maintain a normal headwater elevation at EL 177.0 NGVD, prevent upstream head cutting, minimize erosion potential, preserve existing wetlands and assist in passing any flood flows greater than a 1 year storm event.

Presently, flow of the Pequannock and Ramapo Rivers is currently directed to the existing weir by earthen levees. The existing weir is approximately 270 feet in length and has a crest elevation at EL 177.0 NGVD. To the west of the weir, an earthen levee with a top elevation at EL 182.0 extends approximately 350 ft to tie into high ground, which is a nearby farm field. Large deciduous trees and various shrubs are growing on the existing levee and due to its questionable condition, the existing levee will be removed subsequent to construction. At the proposed site of the new weir, there are no existing buildings and public access to the site is not available.

The proposed Pequannock Weir would be located approximately 100 ft to the south of the existing levee with the east pier of the new weir approximately 100 ft to the west of the west abutment of the existing weir. The structure would consist of a concrete monolith footing founded on a timber pile foundation consisting of 608 piles configured in an array of 8 rows of 76 piles each. The footing would support five piers and four tainter gates. The top
of footing elevation would be at EL. 161.5, the tainter gate sill elevation would be at EL. 164, and the top of pier elevation would be at EL. 191.5. A maintenance access bridge would be located at the top of the weir and would span across each gate opening. The bridge would include three 8' deep steel girders spaced at 8' supporting a 20' wide reinforced concrete deck. A wheeled 45 to 50 ton crane would be stored on the bridge. Wingwalls would be necessary to provide a smooth transition from the trapezoidal channel to the rectangular weir. The wingwalls of the weir would be concrete tee walls ranging from 15.5' to 23.5' in height. The wingwalls would be founded on timber piles spaced at 3 feet on centers along the length and width of the footing.

Levees are necessary to provide closure between the proposed weir and the existing weir to the east and between the new weir and high ground to the west. The east levee is approximately 80 feet long, 8 feet high and has a 15 feet wide top. The west levee is approximately 130 feet long, 2 feet high and has a 6 feet wide top. Both levees have side slopes of 1V on 2H and rip-rap to armor the upstream slope, and topsoil with grass to cover the downstream slope. An access road provides access to the site from the end of Garden Place Road. The road consists of a 9 inch crushed gravel base and is 15 feet wide and approximately 1100 feet long.

Reference to Plate Nos. G-9-1 thru G-9-13 for the preliminary design drawings and details for the Pequannock Weir.

The location and the geometric configuration of the Pequannock Weir was determined from the Hydraulic design presented in Appendix C - Hydrology and Hydraulics. A description of levees, construction sequence, cofferdams, excavation, dewatering, and pile capacities in soil is presented in Appendix E - Geotechnical.

9.3 Design

9.3.1 Criteria

a. CW 09940 "Painting: Hydraulic Structures and Appurtenant Works"

b. ETL 1110-2-256 "Sliding Stability for Concrete Structures"

c. EM 1110-2-1605 "Hydraulic Design of Navigation Dams"

d. EM 1110-2-2105 "Design of Hydraulic Steel Structures"

e. EM 1110-2-2200 "Gravity Dam Design"

f. EM 1110-2-2502 "Retaining and Flood Walls"
g. EM 1110-2-2702 "Design of Spillway Tainter Gates"

h. EM 1110-2-2906 "Design of Pile Foundations"

i. EM 1110-2-3400 "Painting: New Construction and Maintenance"

j. EM 1110-8-1(FR) "Winter Navigation on Inland Waterways"

9.3.2 Design Data

9.3.2.1 Specified Design Stresses

a. Concrete \(f'c = 3,000 \text{ psi} \)
b. Reinforcement Steel \(\text{fy} = 60,000 \text{ psi} \)

c. Tainter Gates (ASTM A572 Grade 50) \(\text{fy} = 50,000 \text{ psi} \)

d. Structural Steel (ASTM A36) \(\text{fy} = 36,000 \text{ psi} \)

9.3.2.2 Hydraulic Criteria

<table>
<thead>
<tr>
<th></th>
<th>EL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operating Headwater</td>
<td>177.0</td>
</tr>
<tr>
<td>Normal Operating Tailwater</td>
<td>170.0</td>
</tr>
<tr>
<td>Headwater (100 Year Flood)</td>
<td>178.0</td>
</tr>
<tr>
<td>Tailwater (100 Year Flood)</td>
<td>177.5</td>
</tr>
<tr>
<td>Headwater and Tailwater (500 Year Flood)</td>
<td>182.5</td>
</tr>
</tbody>
</table>

Allowing a freeboard of 2 ft from normal operating condition, the top of the dam gates were set at EL. 179.0. The piers are configured to support the dam gates, bulkhead gates and access/maintenance bridge.

9.3.2.3 Factors of Safety

The factors of safety (FS) for pile design were taken from EM 1110-2-2906 based on the empirical values to be verified by a pile load test and are shown as follows:

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Pile Design (FS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>2.0</td>
</tr>
<tr>
<td>Unusual</td>
<td>1.5</td>
</tr>
</tbody>
</table>

9.3.2.4 Pile Capacities

Due to the poor quality of the underlying soil, a pile founded structure was chosen for design. Reference Appendix E - Geotechnical for a further description of the existing soil conditions. The pile foundations were designed by transferring all loads applied to the structure through a rigid pile cap and converting the applied loads into axial forces acting on each pile. An ultimate capacity of a timber pile in soil was determined using the methods presented in EM 1110-2-2906. The above factors of safety were then applied to the ultimate pile capacity to obtain an allowable pile capacity for each load case.

9.3.2.5 Critical Load Cases

More than 15 load cases for dams and tainter gates are described in EM 1110-2-2200, EM 1110-2-2702 and Price (1984). For the purposes of this study, many of the specific load cases were not evaluated; however, the load cases considered most critical were selected for analysis. Refer to Attachment G-9A for a graphical representation of each load case for the Peguannock Weir. The following five cases were considered.
Load Case 1, Maximum Head.

Hydrostatic loads are applied for the condition of headwater elevation equal to the top elevation of the tainter gates (EL. 179.0) and the tailwater at the sill elevation (EL. 164.0). This is considered to be an unusual case that may occur when downstream stoplogs are installed. As per EM 1110-2-2105, the allowable stresses are 1.33 times the normal allowable stresses.

Load Case 2, Ice Loading.

Hydrostatic loads for normal headwater (EL. 177.0) and tailwater (EL. 170.0) are applied. An additional ice loading of 5 kips per linear ft is applied upstream as a horizontal load at the normal headwater elevation as per EM 1110-2-2702. This is considered as a normal load case since lateral ice loads may occur over a significant time period.

Load Case 3, Gate Lifting.

This load case simulates gate operation (gate supported on lifting cables) with headwater and tailwater assumed to be at normal elevation (EL. 177.0 and EL. 170.0 respectively). In addition to hydrostatic loads, the lifting cables exert a radial distributed load on the face of the tainter gate and a moment is applied at the trunnion due to trunnion pin friction. This is considered as a normal load case. Load case 3 does not influence the design of the monolith or foundation.

Load Case 4, Earthquake.

Hydrostatic loads for normal headwater (EL. 177.0) and tailwater (EL. 170.0) are applied with earthquake loading. This is an unusual load case and the allowable stresses are taken as 1.33 times the normal allowable stresses.

Load Case 5, Cable Break.

It is assumed that while the tainter gate is supported by the lifting cables that one cable breaks and the gate is subject to twisting. Load case 5 is utilized to design tainter gate bracing members; this case does not influence the design of the monolith or foundation.
9.3.3 Gates

The most common dam spillway gates are vertical lift gates, submersible roller gates, and tainter gates. Other types of gates include bascule gates and various types of sluice gates. Dam gates are designed as undershot gates or overshot gates. Undershoot gates are non-submersible, are opened in a raised position, and flow passes under the gate. Examples of undershot gates are vertical lift gates and tainter gates. Overshot gates are submersible and are opened in the down or recessed position with flow passing over the gate. Overshot gates include submersible tainter gates, bascule gates and roller gates.

An undershot gate was chosen for this weir since it would be less prone to failing due to debris accumulation. Under normal conditions (headwater at EL. 177.0 and tailwater at EL. 170.0), the apron and sill of Pequannock Weir will be submerged and it would be difficult if not impossible to monitor accumulation of debris or silt in the recess of an overshot gate. A diesel generator would be on site to lift the undershot gate if the operating machinery for the gate were to fail.

Tainter gates were selected as the closure gate for the Pequannock Weir due to their efficiency, low weight, and historical service record. Design criteria for tainter gates are included in EM 1110-2-2702 "Design of Spillway Tainter Gates" and EM 1110-2-2105 "Design of Hydraulic Steel Structures". Load conditions, structural configuration, simplifying assumptions, etc. are specified in EM 1110-2-2702. Allowable Stress Design (ASD) criteria for steel structures are included in EM 1110-2-2105 and the Manual of Steel Construction for ASD (AISC 1989). Additional information on design of tainter gates is included in Price (1984).

Four tainter gates would be required. To provide a lightweight economical structure, all structural steel for gate components would be ASTM A572 Grade 50. The following sections describe the design consideration for each of the major gate components. A paint system would serve as protection against corrosion for the tainter gates, stoplogs, and bridge girders. A solution type vinyl paint system is recommended for the tainter gates and stoplogs (submerged atmosphere) and an aluminum paint system is recommended for the bridge girders that are exposed to normal weather conditions. Paint requirements are specified by EM 1110-2-3400 and CW 09940.

Based on the selected monolith and hydraulic requirements, the width of each gate would be 50 ft and the height H would be 15 ft. The radius to the inside of the skin plate would be 1.25H based on several previously designed gates. The trunnion was located just above the tailwater flood elevation (EL. 179.0) to avoid contact with floating ice or debris in the event of a flood. For maximum economy, the end frames (strut and strut bracing) were inclined to
intersect the horizontal girders at approximately 0.2 times the gate width from each end. This ensures nearly equal positive and negative girder moments. The top and bottom girders were located such that the bending moment in the skin plate ribs at the top and bottom girders would be nearly equal. In compliance with EM 1110-2-2702, all members were selected to have a minimum thickness of 3/8" except for webs of bracing members whose minimum thickness can be 5/16". Reference Plate Nos. G-9-3 thru G-9-8 for details of the tainter gates.

9.3.3.1 Skin Plate

The skin plate assembly would consist of the skin plate supported by vertical curved beams or ribs. Horizontal supporting members were avoided. For design purposes, the skin plate assembly was assumed to be a flat plate and no consideration of orthotropic action was taken.

The skin plate was designed as a continuous member spanning between the supporting ribs. It was assumed that unit strips of the plate act as rectangular beams fixed at each end. Under uniform pressure loading, the maximum moment for a unit width of plate was, $$M = \frac{wl^2}{12}$$, where w equals the hydrostatic uniform load per unit width and l is the rib spacing.

The skin plate was designed for the maximum uniform load which occurs at the bottom of the gate. With a maximum hydrostatic pressure of 0.94 k/ft² (pressure head of 15 ft), the controlling case was Load Case 1. For a maximum stress in the skin plate equal to 33.2 ksi (maximum allowable considering 33 percent increase for unusual loads) a 3/8" thick skin plate was necessary. A 3/8" plate was specified for the entire height of gate since 3/8" is the minimum thickness allowed by EM 1110-2-2702. To provide additional strength and a wearing surface for lifting cables, a 1/2" by 3 foot wide wearing plate would be installed below each cable.

9.3.3.2 Vertical Ribs

Vertical ribs are generally structural tee sections that are welded at their web continuously to the skin plate. As per EM 1110-2-2702, the ribs were designed for when the gate is supported on the sill (Load Cases 1, 2, and 4), and when the gate is suspended by cables (Load Case 3). Each rib is designed as a straight beam supported at the girder locations. It was assumed that an effective width $$b_{eff}$$ of skin plate acts as the upstream flange of the rib resulting in an unsymmetrical I section.

For each load case, hydrostatic loads and sill reaction were determined. In order to maximize economy, the girders were located such that the negative rib moments at the top and bottom girders and positive rib moment between girders were nearly equal. Considering each load case (and respective increases in allowable
stress), these rib moments were nearly equal when the top girder was located radially 9.16° from a horizontal line through the trunnion, and when the bottom girder was located radially 46.1° from a horizontal line through the trunnion.

With the girders (supports) located, rib moments and maximum stress were calculated and compared to allowable values for each load case. For the case of gate supported on the sill, a WT 5X9.5 section was adequate and for the case of gate suspended by cables, a WT 5X13 was sufficient. However, both sections have 1/4" webs which is less than the minimum 3/8". The selected rib section for all ribs was chosen to be a WT 5X22.5 (3/8 in. web).

9.3.3.3 Girders and Strut Arms

Tainter gates with height H less than 25 ft generally require only two girders and two corresponding strut arms per side. With $H = 15$ ft, a two girder configuration was selected. For analysis of symmetric load cases (all but Load Case 5), it was assumed that the gate acts as a series of two-dimensional frames, each composed of a girder supported by the corresponding two struts (Price 1984). Each girder is assumed to carry a uniformly distributed load (equal to a tributary portion of the radially applied load) applied along the length of the girder. The girder load for each load case is equivalent to the rib support reactions from the skin plate. To account for possible side-sway of the gate (movement of gate toward pier), the equivalent moment coefficient C_m and the effective length factor K of the strut were taken as 0.85 and 1.0, respectively (Price 1984).

The following steps were taken to size the girders and struts.

1. Analyze two dimensional girder/strut frames for Load Cases 1, 2 and 4 with CFRAME.
2. Size members for the resulting critical member forces using EM 1110-2-2105 and AISC (1989) criteria.
3. Check struts for Load Case 3 by including concentrated lifting cable loads and trunnion friction moment (assume trunnion coefficient of friction = 0.3). Cable loads are included as part of the two-dimensional frame analysis to determine strong axis moments and axial load, and trunnion frictional moment is included as a weak axis moment. The trunnion friction moment is distributed to the upper and lower struts in proportion to the strut weak axis stiffness. Each strut member is then checked using the combined axial compression and bending interaction formulas per AISC (1989).

Following the above procedure, CFRAME (1983) was used to conduct the two dimensional analysis to determine approximate member force for each the top and bottom frame. The critical uniform load for the top frame was 6.7 kips/ft (Load Case 2) and
for the bottom frame 7.2 kips/ft (Load Case 1, 33 percent increase in allowable stress). Based on EM 1110-2-2105 criteria and CFRAME results for load cases 1 and 2, a W24X76 beam section and a W12X53 strut section were selected for both the top and bottom frame. The frame was then analyzed for Load Case 3 and member sizes were found to be adequate. Table 1 summarizes girder strut analysis results for a W24X76 beam section and a W12X53 column section.

<table>
<thead>
<tr>
<th>Load Case</th>
<th>(F_{all})</th>
<th>W24X76 Girder (f_b < F_b) (ksi)</th>
<th>W12X53 Strut H1-1 < 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (w = 7.2) k/ft</td>
<td>1.335/6AISC</td>
<td>24 < 31.9</td>
<td>0.79</td>
</tr>
<tr>
<td>2. (w = 6.7) k/ft</td>
<td>5/6*AISC</td>
<td>22.8 < 24</td>
<td>0.97</td>
</tr>
<tr>
<td>3. (w = 3.5) k/ft</td>
<td>5/6*AISC</td>
<td>O.K.</td>
<td>0.62</td>
</tr>
<tr>
<td>Cable = 7.03 k</td>
<td>(M_t = 103) k-in.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(F_{all} \) is the allowable axial stress, AISC (1989) Chapter E
\(f_b \) is the calculated maximum bending stress
\(F_b \) is the allowable bending stress, AISC (1989) Chapter F
H1-1 is the combined stress formula, AISC (1989) Chapter H

9.3.3.4 Girder and Strut Bracing

Girder and strut bracing are necessary to provide lateral stability for the supported members and to provide overall torsional strength of the gate.

As recommended by Price (1984) girder bracing was included as X-type bracing on the downstream flange of the girders. The bracing was sized to resist a structural twist moment that would occur if the gate were supported by only one of the lifting cables (slack or break of one cable). CFRAME was utilized to analyze the girder strut frame. Girders were simulated as continuous members and each strut was assumed to be a truss member. The support conditions consisted of a vertical restraint at one cable location and a lateral restraint to simulate the supporting pier. The loading was the gate weight distributed linearly along the length of each girder. A WT6X13 section was selected based on the analysis results. However, to maintain a minimum 5/16" web thickness for bracing members as per EM 1110-2-2702, WT6X17.5 members were selected.

As recommended by Price (1984) strut bracing members were designed as pinned columns to resist 2 percent of the maximum axial load of the supported struts. For a maximum length of 9.5 feet and
an axial load of 38 kips (2 percent strut load) a W12X22 section would be adequate. However, to comply with a minimum web thickness of 5/16", a W12X35 section was selected.

9.3.3.5 Seals and Seal Heaters

Seals are required along the outside edges of the skin plate adjacent to the piers and along the bottom of the skin plate along the sill. Seals were selected considering recommendations given in Chapter 5 of EM 1110-2-1605 "Hydraulic Design of Navigation Dams". Side seals are flexible j-bulb type seals and would be attached to the skin plate with a 4" X 3-1/2" X 3/8" angle section. The bottom seal would consist of a 1/2" plate with a 1" flat rubber seal attached to the rib sections ribs across the bottom of the tainter gate.

EM 1110-8-1(FR) "Winter Navigation on Inland Waterways" recommends the use of embedded electrical heaters that could be removed and replaced rather easily. Heaters would be embedded in the piers behind the tainter gate seal plate. The recommended heaters would consist of self regulating electrical heat tape that outputs approximately 40 watts per foot length at freezing. The heat tape would be enclosed in 3/4" stainless steel pipes located 6" to 8" on center in the pier behind the seal plate. For the given tainter gates, a 1/2" by 8" seal plate with 2 stainless steel pipes with heat tape per seal plate were selected. Installation of the recommended heaters (two per gate) are included in the cost estimate.

9.3.4 Concrete Monolith

The design of a soil founded concrete monolith was generally governed by overturning and sliding stability criteria. Criteria for overturning stability are included in EM 1110-2-2200 "Gravity Dam Design". The location of the vertical resultant must be within the middle 1/3 of the base for normal loading conditions and any where within the base for load conditions that include earthquake loading. Sliding stability criteria for concrete structures are included in ETL 1110-2-256 "Sliding Stability for Concrete Structures". Resistance to sliding is the frictional force along an assumed failure plane of soil generally determined by wedge analyses.

Due to the poor quality of the underlying soil and since the structure would be located in a river bed, a pile foundation was chosen for the proposed weir site. Timber piles were selected to support the weir. For pile founded structures, the stability criteria does not necessarily apply since overturning and sliding resistance of piles is not considered. For this study, it was recommended that the base be 100 percent in compression (timber piles not be subject to tensile loads) for all normal load cases. Therefore, overturning stability criteria was used to size the
monolith. For lateral resistance, it was assumed that the shear strength of the piles and the horizontal components from battering the piles would serve to resist lateral loads.

The location of the vertical resultant X_v was determined from the equation, $X_v = M_v / V$, where M_v equals the summation of moments of all forces about the toe of the monolith and V is the summation of vertical forces including uplift. Horizontal forces producing overturning moments include hydrostatic forces, earthquake inertial forces, and tainter gate reactions at the gate trunnions. Vertical forces include hydrostatic uplift forces, structure weight, and tainter gate reactions at the sill and trunnion.

The base is 100 percent in compression when X_v is between 0.33 and 0.5 times the base width B. Several iterations for various slab and pier thicknesses were completed and the most economical configuration ($X_v = 0.33B$) was a slab thickness of 5 feet, a pier thickness of 6 feet, and a base width of 42 feet. Results for each load case (for a unit width of weir) are shown in Table 2.

<table>
<thead>
<tr>
<th>Load Case</th>
<th>M_v, k-ft/ft</th>
<th>V, k-ft</th>
<th>H, k-ft</th>
<th>X_v/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>763.58</td>
<td>39.4</td>
<td>15.3</td>
<td>0.46</td>
</tr>
<tr>
<td>2</td>
<td>637.18</td>
<td>40.3</td>
<td>12.5</td>
<td>0.38</td>
</tr>
<tr>
<td>4</td>
<td>647.39</td>
<td>40.3</td>
<td>16.2</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Overturning stability criteria was satisfied since the base of the monolith is 100 percent in compression for all of the load cases in Table 2.

A low flow conduit would be included in one pier (second pier from the west edge of the weir) to provide low flow control and a means to regulate silt buildup. The conduit would be a 2 ft diameter steel pipe through the pier with a sluice gate mounted at the upstream face of the pier as shown in Plate No. G-9-3. The conduit would pass through the center of the pier with its invert at EL. 162.5 on the upstream end and EL. 162.0 on the downstream end.

9.3.5 Pile Foundation

A pile foundation was selected for the new gated weir and the four adjoining wing walls due to the large forces of the loading conditions on the soil below and the existence of relatively weak soils in the borings. Timber piles were selected due to their sufficient capacity and economy. Chemically treated timber piles which are tapered from 12" to 7" in diameter were selected.
The design of the pile foundation was governed by bearing capacity, skin resistance, and settlement of the pile in soil. Criteria was included in EM 1110-2-2906 "Design of Pile Foundations" and Koerner (1984).

The pile tip bearing capacity and skin resistance were calculated for a 30 ft timber pile fully embedded in the soil. These values were calculated in accordance with the criteria given in EM 1110-2-2906 and with guidance from Koerner (1984). The ultimate bearing capacity Q_{ult}, the actual bearing values Q_{actual}, and actual factors of safety (FS) are shown for each load case in Table 3. The FS is equal to the ultimate bearing capacity divided by the actual bearing value.

<table>
<thead>
<tr>
<th>Load Case</th>
<th>M_o k-ft/ft</th>
<th>V k-ft</th>
<th>H k-ft</th>
<th>Q_{ult}</th>
<th>Q_{actual}</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>763.58</td>
<td>39.42</td>
<td>15.28</td>
<td>54.86 K</td>
<td>17.93 K</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>637.18</td>
<td>40.27</td>
<td>12.46</td>
<td>54.86 K</td>
<td>25.53 K</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>647.39</td>
<td>40.27</td>
<td>16.21</td>
<td>54.86 K</td>
<td>25.00 K</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Wingwalls

<table>
<thead>
<tr>
<th>Load Case</th>
<th>M_o k-ft/ft</th>
<th>V k-ft</th>
<th>H k-ft</th>
<th>Q_{ult}</th>
<th>Q_{actual}</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>203.60</td>
<td>49.90</td>
<td>23.00</td>
<td>54.86 K</td>
<td>22.80</td>
<td>2.4</td>
</tr>
<tr>
<td>B</td>
<td>16.10</td>
<td>53.30</td>
<td>21.50</td>
<td>54.86 K</td>
<td>19.60</td>
<td>2.8</td>
</tr>
</tbody>
</table>

A six foot section of the monolith foundation was analyzed. A pile group configuration along with the number of piles required to resist the design load was arrived at through trial and error. The critical loading conditions involve the weight of the structure, the hydrostatic forces from the maximum flood load, ice load, and earthquake load. The solution with the least amount of piles was selected. The piles were battered at a slope of 2.5V to 1H to count on the horizontal component of the pile/soil strength in resisting the lateral loads applied to the monolith. The structural lateral strength of the piles was checked so the pile would not fail before transferring the loads to the soil by using criteria in EM 1110-2-2906. An allowable shear stress of 95 psi was used to determine an allowable lateral resistance of 10.7 kips/pile.
The new gated weir structure is supported directly on a reinforced concrete base slab, which will act as the pile cap, with the dimensions of 42 ft by 230 ft by 5 ft thick. The tops of the piles will be embedded at least 6 in. into the base. An array of eight rows of 76 piles each, totaling 608 piles, was selected for the pile foundation. Of the eight rows of piles, the first seven rows will be battered at 2.5V to 1H to resist the horizontal loads on the structure.

9.3.6 Wingwalls

A pile foundation was selected for the wingwalls because of the large forces of the loading conditions on the soil below and the existence of relatively weak soils in the borings. Piles were also necessary for the wingwalls to prevent against differential settlement between the wingwalls and the pile founded concrete monolith.

Wingwalls would be located at each corner of the weir to provide a transition from the trapezoidal channel to the rectangular weir opening. The walls would be retaining structures and were designed as T-walls. Each wall would be oriented at an angle approximately 45 degrees from the edge of channel, and would be of height and length sufficient to retain a constant elevation between the weir and the top of the channel bank or top of levee. The channel bottom was set at EL. 161.5 and the channel bank side slope would be 1V on 2H.

On the west side of the weir, the upstream and downstream walls would have a top elevation at EL. 182 and be 60' long. On the east side of the weir, the downstream wingwall would tie into the top of channel at EL. 176 and would be 45' long. The east upstream wing wall would provide closure between the east pier and the east levee, and the top of wall elevation was set at EL. 184. In accordance with EM 1110-2-2502, a transition I-wall must be provided between a T-wall and a levee to compensate for differential settlement. The transition I-wall and sheet piling was extended into the levee as required by EM 1110-2-2502. Reference Plate No. G-9-12 for details of the wingwalls.

For preliminary design, T-wall heights were assumed to be consistent along their length. The top of footing for each wall was located at EL. 160.5 (one ft below channel bottom). Therefore, stem height varies from 15.5 ft (east downstream wall) to 23.5 ft (east upstream wall).

The computer program CTWALL, described by Pace (1994), was used to conduct analyses for overturning stability and obtain the lateral loads applied to the retaining wall piles. Two load cases were deemed critical for the wingwalls and were analyzed. Load Case A signified a drawdown condition and assumed normal backfill and normal groundwater elevation behind the wall with no load on
the channel side. Load Case B signified an earthquake loading and was based on inertial loads due to an earthquake of 0.1g, where g is gravitational acceleration. For Load Case A, the base of the structure was 100 percent in compression and the piles were structurally sufficient to resist the lateral loads. For Load Case B (earthquake), the vertical resultant was within the base and the piles were structurally sufficient to resist the lateral loads.

A rigid pile cap was assumed to transfer all applied loads to the piles in the form of axial loads. These axial loads were checked against the ultimate pile capacities described above to obtain a factor of safety for each load case. See Table 3 for a summary of the pile capacity results.

The four wingwalls would be supported on a 27' wide by 3' thick base slab or pile cap. The tops of the piles would be embedded at least 6 in. into the base slab. An array of nine rows of 20 piles each (60' long wall), and nine rows of 15 piles each (45' long wall), totaling 675 piles, was selected for the pile foundation. Of the nine rows of piles, the last eight rows would be battered at 2.5\(^\circ\) to 1H to resist the horizontal loads on the structure.

9.3.7 Maintenance Bridge

A maintenance bridge that spans the length of the weir would be located at the top of the piers. The bridge would provide crane or other vehicular access to the weir for maintenance purposes. The bridge would also provide storage and support for tainter gate operating machinery, circumventing the necessity of a separate support structure.

At this stage of the design, it was assumed a crane would be located on the bridge permanently to provide access between piers for the purpose of installing stoplogs, clearing debris, handling machinery and supplies during maintenance operations, etc. The bridge would consist of four spans, each simply supported by the piers.

Based on a review of several projects with tainter gates, a space of 8 ft wide and 8 ft high was considered sufficient to house a typical operating machinery configuration. Based on a review of specifications for wheeled cranes, and considering required lifting capacity and reach for placing bulkheads, a 20 ft wide supporting deck would be necessary to support the required 40 to 50 ton crane. To satisfy these requirements, a bridge with a concrete deck of 20 ft clear width supported by three 8 feet deep steel girders spaced at 8 feet was selected. The operating machinery would be housed between the upstream and center girders as shown in Plate No. G-9-9.
9.3.7.1 Girder Design

Considering width to thickness limitations specified in the Standard Specification for Highway Bridges (AASHTO 1989), a girder composed of a top and bottom flange 18" wide by 3/4" thick, and a web 96" deep by 7/8" thick was selected. The computer program Bridge Rating and Analysis of Structural Systems (BRASS) by the Wyoming Transportation Department was used to analyze the selected girder subject to the assumed loading. The bridge loads consist of live loads (tainter gate lifting machinery loads, sidewalk loads, and crane load) and dead loads (structure weight). The assumed live loads were: 1) a lifting machinery load taken as the maximum machinery capacity equal to 5 times the tainter gate lifting load (EM 1110-2-2702), 2) a sidewalk live load of 60 psf, and 3) a 90 kip crane load (crane weight plus the weight of one stoplog). For the described loading and girder cross section, the BRASS analysis showed the girder strength to be adequate for 36 ksi steel.

9.3.8 Gate Operating Machinery/Power Supply

The operating machinery used to lift the tainter gates would consist of a hoist system powered by an electric motor. Each tainter gate would require one motor with two hoists. The selected system (based on review of several projects with similar tainter gates) for each gate would consist of a 5 to 10 HP, 1000 revolution per minute motor that would power two hoists including gear reducers, pinion and gear assemblies, a large cable drum, an electric control station and support members.

The basic configuration of machinery for different size tainter gates was essentially the same and the overall cost of machinery would not vary significantly for different size tainter gates. Therefore, a detailed design of machinery components was not been completed for this project. The cost analysis was based on data provided by the St. Paul Districts (CENCS) for similar size projects with tainter gates.

Operation of the Pequannock Weir would be controlled from the Operations Center at Workshaft 2, or controlled locally by an on-site operator. Power at the site would be electric drawn in from existing lines to the site (Jersey Central Power and Electric Company services the area). Although an electrical design was not conducted, the cost analysis was based on assumed requirements (described below) and data provided by other District offices. For the cost analysis, it was assumed that the site would include the necessary power and hardware for the following: 1) lighting with a 35 watt (W) lamp for each tainter gate bay; 2) hoist motors (5 horsepower, 3 phase motors); 3) side seal heaters (estimated 22 kilowatts); 4) outlets capable for a 60 amp, 480 volt welder; and 5) several convenience outlets with 20 amp and 120 volt capacity.
An auxiliary power supply would be required to maintain operational capability in the event of a power outage. The supply would be sufficient to power tainter gate hoists, lighting, and convenience outlets. This would require a 3 phase voltage with 30 to 40 kilowatt (KW) capacity. For the preliminary design, a diesel engine generator with 3 phase 480 voltage and a 40 KW capacity was selected. The engine would burn approximately 3-1/2 gallons of fuel per hour and a 500 gallon fuel tank would be recommended (provides approximately 6 days of run time).

The generator and a 500 gallon fuel tank would be stored near the operating machinery between girders on the west span of the access bridge as shown on Plate G-9-9. The engine and generator with their various components would be assembled on a platform approximately 3 ft by 7 ft along with a 500 gallon fuel tank which is 4 ft in diameter and 6 ft long. Each of these would be mounted on support beams spanning between the girders. Based on data from a similar project, the cost analysis includes costs for the generator, fuel tank, and fill and supply lines.

9.3.9 Stoplogs

Stoplogs provide a means to dam water temporarily for maintenance purposes. Stoplogs would provide temporary closure between piers to maintain a dry area for maintenance or repair of a tainter gate. The stoplogs for this weir were required to span 50 ft and resist a maximum hydrostatic head of 18 feet. For the cost analysis, it was assumed that stoplogs would be required for only one gate at a time.

For general design purposes, a stoplog design from a similar project was used for cost analysis. The Oahe reservoir on the Missouri River (Omaha District) includes stoplogs designed for a 50 ft span and 24 ft hydrostatic head (comparable to 50 ft span, 18 ft head). The stoplogs for the Oahe project were designed to resist hydrostatic forces only and are intended to be installed under non-flow conditions. They would be built up members that consist of two W21X73 web sections, with an upstream flange of two MC 18 X 51.9 sections, and downstream flange of two C15X40 sections. Steel would be ASTM A36 material. Each stoplog would be 3'-1-1/2" high, so 9 stoplogs are required for closure upstream and downstream of one gate. To have one spare, it is recommended that 10 stoplogs be constructed.

Stoplogs would be stored at the top of the stoplog slots. One stoplog would be stored in each of the four upstream slots and two of the downstream slots. Two stoplogs would be stored in each of the two remaining downstream slots. Reference to Plate No. G-9-10 for details of the stoplogs.
9.3.10 Access Road

Permanent access to the proposed site would be required for maintenance and operation of Pequannock Weir. Construction of an access road would be required since there is currently no public access to the site. Heavy traffic was not a consideration and a 9 in. thick by 15 ft wide crushed aggregate road surface was designed.

To minimize impact on private business, the most convenient access to the site would be from the east end of Garden Place road. From the end of Garden Place Road, the access road would cross the Wanaque aqueduct in a East-Northeast direction and then turn to the North and continue to the proposed site where a small parking lot would be located. The road length would be approximately 1100 ft. To protect the Wanaque aqueduct, a concrete slab crossing would be provided over the aqueduct for a length of 20 ft. Reference Plate No. G-9-1 for the layout of the access road and Plate No. G-9-13 for details of the slab which would cross the Wanaque Aqueduct.

9.4 Construction

It was assumed that the Pequannock Weir would be constructed prior to construction of the new channel. For the construction phase, two cofferdams would be required to protect the open excavation against the 10 year flood event and allow for the construction of the weir to be performed with conventional construction equipment in the dry. A cutoff wall will surround the proposed site to insure minimal seepage into the excavation. The existing weir must not be disturbed during construction of the proposed weir due to its structural and cultural significance. Reference to Appendix E - Geotechnical for additional details of the excavation and the dewatering plan.
ATTACHMENT G-9A

THE FOLLOWING SHEETS REPRESENT A GRAPHICAL SUMMARY OF THE CONTROLLING DESIGN LOAD CASES FOR THE PEQUANNOCK WEIR. COMPLETE DESIGN CALCULATIONS AND QUANTITIES ARE LOCATED IN THE OFFICE OF THE PASSAIC RIVER DIVISION OF THE US ARMY CORPS NEW YORK DISTRICT.
LOAD CASE 1 - UNUSUAL

Headwater EL. 179.0
Tailwater EL. 164.0
LOAD CASE 2 - NORMAL

Headwater: EL. 177.0

Tailwater: EL. 170.0

Ice Force
LOAD CASE SUMMARY

LOAD CASE 3 - USUAL

Headwater EL 177.0
Gate Lifting
LOAD CASE 4 - UNUSUAL

Headwater EL. 177.0

Tailwater EL. 170.0

Earthquake - 0.1 Wg
LOAD CASE A - NORMAL

Drawdown in front of wall.

Normal groundwater behind wall. EL. 179.0

No Uplift
LOAD CASE B - UNUSUAL

Water in front of wall, *EL. 170*

Normal groundwater behind wall, *EL. 170.0*

Earthquake = 0.1 *Wg*
APPENDIX G

SECTION 10

TIDAL AREA PROTECTION FLOODWALLS
TABLE OF CONTENTS

APPENDIX G - STRUCTURAL

Section 10 - Tidal Area Protection Floodwalls

10.1 Scope. ... G-10-1

10.2 Feature Description G-10-1
10.2.1 Kearny Point Levee/Floodwall System G-10-1
10.2.2 Lister/Turnpike/Doremus Floodwall System G-10-3
10.2.3 South First Street Floodwall System G-10-5

10.3 Design ... G-10-7
10.3.1 Criteria G-10-7
10.3.2 Design Data G-10-7
10.3.2.1 Specified Design Stresses G-10-7
10.3.2.2 Geotechnical Criteria G-10-7
10.3.2.3 Factors of Safety G-10-8
10.3.3 I-Wall Sheet Pile Floodwall G-10-8
10.3.4 Box Pile I-Wall Floodwalls G-10-9
10.3.5 Utility Crossings G-10-9
10.3.6 Interior Flood Reduction Facilities G-10-10

10.4 Construction G-10-11

List of Drawings

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-10-1 thru G-10-6</td>
<td>Kearny Point Levee/Floodwall System Site Plan</td>
</tr>
<tr>
<td>G-10-7 thru G-10-9</td>
<td>Kearny Point Levee/Floodwall System Profiles</td>
</tr>
<tr>
<td>G-10-10 thru G-10-14</td>
<td>Lister/Turnpike/Doremus Levee/Floodwall System Site Plan</td>
</tr>
<tr>
<td>G-10-15 and G-10-16</td>
<td>Lister/Turnpike/Doremus Levee/Floodwall System Profiles</td>
</tr>
<tr>
<td>G-10-17</td>
<td>South 1st Street Levee/Floodwall System Site Plan</td>
</tr>
<tr>
<td>G-10-18</td>
<td>South 1st Street Levee/Floodwall System Profile</td>
</tr>
<tr>
<td>G-10-19</td>
<td>Typical Construction Details-Tidal Area Protection Levee/Floodwall Systems</td>
</tr>
<tr>
<td>G-10-20</td>
<td>Typical Interior Flood Damage Reduction Facilities</td>
</tr>
</tbody>
</table>
Attachment G-10A

G-10A-1 thru G-10A-5
I-Wall Floodwall Critical
Section 1 Design Calculations

G-10A-6 thru G-10A-10
I-Wall Floodwall Critical
Section 2 Design Calculations

G-10A-11 thru G-10A-16
Box Pile Floodwall Critical
Section Design Calculations
TIDAL AREA PROTECTION FLOODWALLS

10.1 Scope

The primary function of this section of the design memorandum is to ascertain a reasonable cost estimate for the construction of each type of tidal area protection floodwall. A structural design effort has been conducted to achieve this goal. Further design studies will be performed during the next level of design. The structural design effort currently includes:

- Preliminary layout for each floodwall.
- Preliminary ground surface profiles for each floodwall.
- I-Wall floodwall design.
- Preliminary design of special floodwall structures.
- Preliminary design drawings and details.

10.2 Feature Description

10.2.1 Kearny Point Levee/Floodwall System

The Kearny Point Levee/Floodwall system would include approximately 33,771' of floodwall protecting an industrial area from tidal flooding on the left bank of the Passaic River around Kearny Point and upstream along the right bank of the Hackensack River in Kearny. Also included in this system are floodwalls and closures to protect the PATH light rail transit line from tidal flooding that would occur from both the Hackensack and Passaic Rivers. The average floodwall height would be 7.35 feet. In order to provide a continuous line of protection and allow access to the waterfront, several gated closure structures and the raising of Fish House Road would be required. Present and future access to the river would be maintained by gated closure structures. Runoff behind the system would be collected and discharged by one pumping station or would exit through several interior flood reduction facilities. The pumping station designed for this system was designated as "K1". See Sections 13 and 14 of this appendix for a description and design of the closure structures and pump stations.

I-Wall floodwalls were chosen wherever space limited the use of a levee and to minimize disturbance to possible HTRW sites. Closure structure locations and sizes are indicated on the drawings. Additional segments of floodwall have been added to the original layout to provide protection to the north and south tracks of the PATH line and to provide protection from flooding that would originate from the Hackensack River.
The required level of protection was set at EL. 14.9 feet. PATH Line protection would begin in Harrison and consist of a small floodwall to protect the north PATH track and would extend into Kearny. Protection of the south PATH track would begin approximately 2,200' west of the NJ Turnpike bridge and continue east to the Conrail embankment.

The Kearny Point floodwall segment would begin at the Conrail embankment approximately 500' east of the NJ Turnpike bridge, continue south along the left bank of the Passaic River, proceed around Kearny Point, north along the right bank of the Hackensack River, and tie into a containment berm on PSE&G property. The floodwall would begin again on the north side of the containment berm and continue east to a proposed raised Fish House Road. The floodwall would begin again on the north side of the raised road, cross the Transco Gas pipelines and proceed east. The floodwall would change direction to the north, cross an existing roadway and tracks with gated closure structures and terminate into a Conrail embankment. Reference to Plate Nos. G-10-1 thru G-10-9 for the preliminary layout and profiles of the levee/floodwall system, as well as for the location and sizes of closure structures and the location of pump stations. Reference to Plate No. G-10-19 for details of the Kearny Point levee/floodwall system.

A majority of the floodwalls for the this system would consist of the typical I-Wall sheet pile floodwall as shown in EM 1110-2-2504. However, as part of the Kearny Point levee/floodwall system, there would be five locations with special floodwall structures. A 535 linear foot box pile I-Wall structure would be located between the Pulaski Skyway and the Lincoln Highway on the left bank of the Passaic River to provide protection for industrial properties.

At the Kearny PSE&G electric generating facility, a 270 linear foot reinforced concrete floodwall would be dowelled into and constructed above an existing pile founded foundation of the electric power generation building. The 4'6'' thick pile cap extends out from the building exterior wall 17 feet and ties into a reinforced concrete pile founded closure wall along the right bank of the Hackensack River. The floodwall would be constructed adjacent to the exterior wall of the building, and would be 15 feet high, 2 feet wide at the base of the floodwall, and 1 foot wide at the top of the floodwall. The existing pile cap was analyzed using as-built drawings of the facility and was found to have sufficient capacity to resist hydrostatic pressures produced from a water elevation set at EL. 14.9. Also, to minimize disturbance to the existing PSE&G facility and dock area, sheet piling for the I-Walls adjoining the building would be inserted rather than driven within a pre-excavated cement/bentonite slurry trench.
Finally, two cellular cofferdam structures, approximately 320 linear feet each, would be constructed on the right bank of the Hackensack River to close off two existing abandoned boat basins. Refer to Appendix E - Geotechnical for the design of the cellular cofferdam structures and a further description of the I-Wall inserted into the cement/bentonite slurry trench.

A utility search resulted in the identification of numerous probable utility crossing relocations in order to insure the continuous line of protection. The utilities would either be relocated through the floodwalls or the floodwall would bridge the existing utility if it cannot be cut. Based on the utility search, the following utilities are anticipated to be relocated or bridged:

- Amerada Hess 10" fuel oil pipeline.

- Multiple PSE&G electrical conduits in the area of the Lincoln Highway Passaic River crossing.

- Multiple electrical conduits crossing the Passaic River in the area of PSE&G Newark generating facility.

- A 30" sanitary sewer force main from the tip of Kearny Point to the P.V.S.C. site across Newark Bay.

- Two crossings of 24" gas pipeline owned by Transcontinental Gas Pipeline Corporation adjacent to the Conrail east and west embankments on either side of Kearny Point.

- A fiber optic cable adjacent to the gas pipeline in the same area.

- Three 5' diameter inlet pipes at the PSE&G Kearny generating facility which serve to carry pumped water from the Hackensack River to cool the generator turbines. Since the plant operates roughly 20% of the year, the pipes can be crossed individually to allow for continued operation of the plant.

At the PSE&G site on the Hackensack River, an approximately 50 foot wide closure structure would be needed where the floodwall alignment intersects a 38 foot wide discharge canal at an angle. The closure abutments would be placed adjacent to both sides of the culvert and would allow for continued operation during construction. The gates would close over the outfall culvert and transfer all applied horizontal hydrostatic loads to the abutments.

10.2.2 Lister/Turnpike/Doremus Floodwall System

These systems would lie on the right bank of the Passaic River and consist of floodwalls, levees and associated closure structures. They are proposed to protect industrial structures against tidal flooding within the area bounded by the Passaic
River, Ferry Street and Freeman Street in Newark, the N.J. Turnpike, Routes 1 & 9 in Newark, and the Conrail yards adjacent to Port Newark. The total system would include approximately 17,657 feet of floodwall (including gated closure structures) averaging approximately 8.1 feet in height. Access to existing and future dock facilities would be provided through several gated closure structures. Runoff from interior sections would be collected and removed by two pumping stations or would exit through several interior flood reduction facilities. The two pumping stations designed for this system were designated as "L2" and "L3". See Sections 13 and 14 of this appendix for a description and design of the closure structures and pump stations.

The levee/floodwall would begin approximately at the intersection of Raymond Boulevard and Oxford Street in the City of Newark and continue on the right bank of the Passaic River to the Conrail rail embankment approximately 1,300' north of the NJ Turnpike extension Newark Bay Bridge. Reference to Plate Nos. G-10-10 thru G-10-16 for the preliminary layout and profiles of the levee/floodwall system, as well as for the location and sizes of closure structures and the location of pump stations. Reference to Plate No. G-10-19 for details of the Lister/Turnpike/Doremus levee/floodwall system.

The original layout as proposed in the Phase I - General Design Memorandum, consisted of 3 independent levee systems which were not connected. After a review of the available topographic information and the required elevation of protection of 14.9, it was found that flanking of the levee systems would occur if the systems were not connected. In order to provide a continuous line of protection, the three levee systems were incorporated into one system and will be considered as one for the purpose of this report. The original Doremus Avenue levee/floodwall system terminated at an abandoned rail line that crossed the Passaic River to Kearny Point approximately 8,500 north of its present proposed terminus. The levee/floodwall system was extended to provide protection to additional industrial sites along Doremus Avenue. I-Wall floodwalls were chosen wherever space limited the use of a levee and to minimize disturbance to possible HTRW sites.

Numerous closures would be required along the length of the floodwall to allow for present and future access to the river. All property owners with existing docking facilities were identified from the topographic maps, an environmental records search, and a site video inspection. Closure structure locations and sizes are indicated on the plates at the end of this section.

As part of this floodwall system, there would be three locations with special floodwall structures. A 610 linear foot box pile I-Wall floodwall would serve to protect the Sherwin-Williams Company on Lister Avenue along the right bank of the Passaic River, and two 170 linear foot box pile I-Wall floodwalls would serve to
protect industries on Doremus Avenue along the right bank of the Passaic River.

A utility search resulted in the identification of numerous probable utility crossing relocations needed to insure the continuous line of protection. The utilities would either be relocated through the floodwalls or the floodwall would bridge the existing utility if it cannot be cut. A majority of the relocations would be on private sites along the Passaic River and the remainder would involve public utilities. Based on the utility search, the following utilities are anticipated to be relocated or bridged:

- Public Service Electric & Gas multiple electric conduits from the generation facilities adjacent to the NJ Turnpike crossing over the Passaic River.
- Amerada Hess 10" fuel oil pipeline that also crosses the Passaic River from the Newark PSE&G facility in the same area.
- Wiltel fiber optic cable(s) in a 4" diameter steel pipe south of the Conrail Bridge over the Passaic River.
- Multiple electrical conduits in the area of the Truck Route 1 & 9 bridge south of the PSE&G facility.
- PSE&G electrical conduits located near the remains of a Conrail line about 2,000' north of Kearny Point.
- An existing 30" sanitary sewer force main that crosses Newark Bay from the Kearny Point pump station to the Passaic Valley Sewage Treatment Plant and a 72" vent pipe from PVSTP to Newark Bay.

Due to the heavy industrialization of the area where the floodwall is proposed, many of the sites that utilize the river would require relocation of their pipelines that move bulk material from barges to storage facilities and vice versa.

10.2.3 South First Street Floodwall System

The South First Street levee/floodwall system would be situated on the left bank of the Passaic River in the Town of Harrison. The proposed levee/floodwall system would provide protection from tidal floods from the South Fourth Street bridge up to the New Jersey Transit rail bridge just south of Route 280 bridge. The system would include 5,700' of floodwall averaging approximately 6.2' high. A continuous line of protection would be provided by gated closure structures across Passaic Avenue and adjacent to South Fourth Street. River access and access to property on the east side of South 4th Street would be provided through gated closure structures at several sites adjacent to the
Passaic River and South 4th Street. Runoff from interior sections would be collected and removed by three pumping stations or would exit through several interior flood reduction facilities. The pumping stations designed for this system were designated as "S1", "S2", and "S3". See Sections 13 and 14 of this appendix for a description and design of the closure structures and pump stations.

The proposed floodwall will provide protection up to EL. 14.9 for residential, commercial and industrial structures from tidal floods. I-Wall floodwalls were chosen wherever space limited the use of a levee and to minimize disturbance to possible HTRW sites.

The South First Street floodwall system would begin on the east side of Passaic Avenue just south of the New Jersey Transit rail line bridge structure and crosses Passaic Avenue with a ±40' closure. The floodwall would start on the south embankment of the Harrison Street bridge and continue onto the Tenneco Manufacturing Refining Companies property where two 30' closures would be provided on this site as requested by the owners. The floodwall would proceed adjacent to an existing baseball field approximately 250' to the site of J. Supor Trucking along the Passaic River and on the site of Diamond Shamrock Chemical Co. The floodwall would continue along the Passaic River adjacent to the Hartz Mountain Industries site where a ±30' closure would be provided at their request. The floodwall would then continue and tie into the Amtrak/Conrail rail line embankment.

The floodwall would extend south from the Amtrak/Conrail rail line embankment adjacent to PSE&G's Harrison plant facilities along the Passaic River where two 30' closures would be provided as requested by PSE&G. The rest of PSE&G's frontage would be protected with a floodwall and tie into the South Fourth Street bridge embankment. An additional section of floodwall to prevent flanking would run north from high ground adjacent to Cape May Avenue to the Conrail bridge embankment. This section of floodwall would be approximately 1,425' in length and contains two 30' closure structures, one for Tri-Chem line, and one for an adjacent parking lot. Reference to Plate Nos. G-10-17 thru G-10-18 for the preliminary layout and profiles of the levee/floodwall system, as well as for the location and sizes of closure structures and the location of pump stations. Reference to Plate No. G-10-19 for the details of the South First Street levee/floodwall system.

A utility search resulted in the identification of numerous probable utility crossing relocations needed to insure the continuous line of protection. The utilities would either be relocated through the floodwalls or the floodwall would bridge the existing utility if it cannot be cut. A majority of the relocations would be on individual sites along the Passaic River and the remainder would involve public utilities. Based on the utility search, the following utilities are anticipated to be relocated or bridged:
- Overhead utility relocations are anticipated in order to facilitate construction in the area of the proposed Passaic Street closure and along South Fourth Street.

- Two 30" PSE&G gas mains approximately at midpoint between the South 4th Street and Amtrack/Path Bridges will have to be installed through the proposed wall.

- Multiple PSE&G electrical conduits in the area of the South Fourth Street Bridge depending on the exact location of the conduits and the final floodwall alignment may also require relocation.

- Information acquired from PSE&G-Underground Engineering, indicate that the multiple PSE&G electrical conduits crossing the Passaic River approximately 800' north of Penn Station have been abandoned for a number of years and would not require special treatment if authorization is obtained from PSE&G.

- It is assumed that major impacts to the water main in the South Fourth Street right-of-way can be avoided, therefore, no relocation will be required.

10.3 Design

10.3.1 Criteria

a. EM 1110-2-2504, "Design of Sheet Pile Walls"

b. EM 1110-2-2104, "Strength Design of Reinforced Concrete Structures".

10.3.2 Design Data

10.3.2.1 Specified Design Stresses

a. Concrete \(f'c = 3,000 \text{ psi} \)

b. Reinforcement Steel \(fy = 60,000 \text{ psi} \)

c. Sheet Pile Steel (ASTM A 328) \(fy = 38,500 \text{ psi} \)

10.3.2.2 Geotechnical Criteria

Geotechnical design of the floodwalls considered both the undrained and drained soil strength conditions. Active, passive, and at-rest earth pressure coefficients were determined based on the assigned soil friction angle for the drained or undrained conditions. Based on a subsurface investigation, the soil conditions throughout all three levee/floodwall systems were considered poor. An analysis was performed using the Corps program
CWALSHT to determine the wall stability in soil, and use of undrained soil shear strengths (Q-Case) in the analysis typically resulted in the most critical case for wall stability.

A design penetration depth to wall height ratio of 3:1 was established from the CWALSHT analysis. Output from the CWALSHT analysis also determined the design moments, shears, and deflections used in the structural design of the floodwall. Reference to Attachment G-10A for a portion of the CWALSHT analysis used for the design of the floodwalls.

10.3.2.3 Factors of Safety

For the controlling condition of the undrained case (Q-Case), a factor of safety of 1.5 for active and passive pressures was used to obtain the required penetration depth and the maximum movement of the sheet pile in soil. For the structural design of the piling, a factor of safety of 1.0 for active and passive pressures, as per EM 1110-2-2504, was used to obtain the actual design moments, shear forces, and structural deflections on the sheet pile wall. Allowable stresses given in EM 111C-2-2504 for shear and bending strength were used in conjunction with the actual design moments and shear forces to determine the sheet pile section properties. The section was then checked to satisfy deflection criteria for steel members. The design loading was considered a normal load case with no increase of allowable stresses.

10.3.3 I-Wall Sheet Pile Floodwall

Several linear feet of I-Wall sheet pile floodwalls would be constructed where space constraints nullified the use of a levee and where minimal disturbance of suspected HTRW sites was desired. Reinforced concrete T-Walls and I-Walls were considered but were ruled out due to their significant cost of construction and their large construction footprint area.

Since the average height of the floodwalls in the three levee/floodwall sections were similar, one design was considered sufficient to represent this particular floodwall. The CWALSHT analysis resulted in a floodwall design consisting of a continuous cantilevered PZ-27 steel sheet piling with a cast-in-place reinforced concrete cap. The exposed height of the I-Wall used for design was 8 feet which yielded a penetration depth of 24 feet. The reinforced concrete cap would extend two feet below the existing groundline and serve to transfer all external hydrostatic loads to the steel sheet piling.

A zinc and coal tar epoxy coating corrosion protection system would be applied to the portion of the sheet piling exposed to corrosive environments. The steel reinforcement was not designed for the cap section, but was estimated for cost estimating purposes. Reference to Plate No. G-10-19 for details of the I-Wall
floodwall. Final design of the reinforcement will take place in the next level of design.

10.3.4 Box Pile I-Wall Floodwalls

Box pile I-Wall Floodwalls constructed in the river were deemed necessary at locations where structures and facilities were located in close proximity to the river's edge. Reinforced concrete T-Walls and L-Walls were considered but were ruled out due to their significant cost of construction, the need for temporary sheeting and complicated dewatering schemes, and their large construction footprint area.

The river construction location produced a floodwall with a large exposed height resulting in high design moments, shear forces, and deflections. To accommodate the high stresses, a combination PZ-40/PZ-35 continuous box pile section was selected as the most efficient pile section to withstand the design loads. Top of wall elevation was set at EL. 14.9, and a minimum tip elevation was set at EL. -45.

A cast-in-place reinforced concrete facing would be constructed on both sides of the box pile and extend from the top of the wall to EL. -3.0. A zinc and coal tar epoxy coating corrosion protection system would be applied to the portion of the sheet piling exposed to corrosive environments. The steel reinforcement and studs to connect the facing to the piling were not designed, but were estimated for cost estimating purposes. Reference to Plate No. G-10-19 for details of the box pile I-Wall floodwalls. Final design of the reinforcement and studs will take place in the FDM level of effort.

10.3.5 Utility Crossings

Construction of the proposed floodwalls would involve crossing numerous existing subsurface utility lines located along the alignment of the flood protection system. Most utility crossings would consist of the following installment sequence:

1. Temporary shutdown/closure of the utility service.
2. Disconnection and removal of a segment of the utility at the proposed floodwall location.
3. Installation of the sheet piling.
4. Construction of a sleeve type opening within the sheet piling as per details in EM 1110-2-2504.
5. Installation of a new segment of the utility line through the sheet piling.
6. Reconnection of utility line.

Reference to Plate No. G-10-19 for details of the standard utility crossings for I-wall caps and sheet piling.
In cases where temporary shutdown of service through a utility would be cost prohibitive, the utility will be left in service and the floodwall will bridge over the existing utility line. This would involve the following installation sequence:

1. Excavate, expose, and temporarily support the utility line segment at the proposed floodwall alignment.
2. Install the sheet pile floodwall to within 3 feet or a specified distance from the outer edge of the utility line on both sides of the line.
3. Construct a reinforced concrete cap on the sheet pile I-Wall and a reinforced concrete closure wall over the utility line.
4. Backfill excavation around the utility line and below closure wall with a cement bentonite slurry mix to prevent seepage.

Reference to Plate No. G-10-19 for details of the in-place utility crossing details.

10.3.6 Interior Flood Reduction Facilities

Interior drainage runoff from behind the system would be removed from within the protected area by exiting through several interior flood reduction facilities. These facilities would be constructed at several locations behind and adjacent to the levees and floodwalls. They would consist of paved ditches behind the levees and floodwalls leading to inlet chambers which would channel water through the levee or floodwall and out into Newark Bay. A control manhole chamber would be constructed in the center of the levee or floodwall to allow for access and control of a sluice gate control valve. The sluice gates and exterior side flap gates would serve to protect the interior area during high tidal conditions in Newark Bay, and allow for water to pass through the facility once the tidal elevation in Newark Bay has receded. Reference to the layout drawings for all the levee/floodwall systems for the location of the interior flood reduction facilities. Reference Appendix C - Hydrology and Hydraulics for the delineation of the various ponding areas and specified pipe sizes for each interior flood reduction facility.

A conceptual design of the facilities was performed and further design shall be completed in the next level of design. The facilities would consist of precast and/or cast-in-place reinforced concrete chamber sections which would meld in with the proposed floodwall. Reference Plate No. G-10-20 for conceptual details of the typical Interior Flood Reduction Facilities.
10.4 Construction

Construction of the tidal area protection floodwalls would involve prior in-depth site investigations as well as a records search to obtain the design drawings of adjacent buildings located close to the proposed floodwall alignment. It is anticipated that a substantial portion of the floodwalls can be constructed using land based construction equipment, however, a barge in the river may be needed to support the construction equipment in areas where access is limited and where the floodwall is being constructed close to the edge of the river.

Since there is a considerable amount of development along the water front, it is anticipated that occasional obstructions within the fill may be encountered during the driving of sheet piles. Any remnant building foundations, abandoned pipes, construction rubble, wood, tree stumps, etc. uncovered by the trench excavation would have to be removed. Special measures may be required to penetrate obstructions or dense zones below the immediate surface to facilitate the installation of the sheet piling.
Flat Ground Condition

- Water at ground surface level.
- River levels at 4', 6', 8' at 10' as shown.

East side of Kearny Point, Boring H4-1

Hurricane Floodwall Design: (Note: For soil strata shown in red, undrained case; for

**Flat Ground Surface, **

<table>
<thead>
<tr>
<th>El.</th>
<th>Strength</th>
<th>Drained Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Undrained Strengths:

<table>
<thead>
<tr>
<th>Water Height & Elevation</th>
<th>Penetration Depth & Elevation</th>
<th>(\sigma_{max}) (Pa. lbs.)</th>
<th>Deflection (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4' (El. 1.1)</td>
<td>9.5' (-4.5)</td>
<td>3449</td>
<td>0.096''</td>
</tr>
<tr>
<td>6' (El. 1.1)</td>
<td>15.3' (-10.3)</td>
<td>11639</td>
<td>0.59''</td>
</tr>
<tr>
<td>8' (El. 1.1)</td>
<td>21.2' (-16.2)</td>
<td>27583</td>
<td>2.17''</td>
</tr>
<tr>
<td>10' (El. 1.5)</td>
<td>32.2' (-27.2)</td>
<td>54,836</td>
<td>10.0''</td>
</tr>
</tbody>
</table>

Drained Strengths:

<table>
<thead>
<tr>
<th>Water HT. & Elevation</th>
<th>Penetration Depth & Elevation</th>
<th>(\sigma_{max}) (Pa. lbs.)</th>
<th>Deflection (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4' (El. 1.1)</td>
<td>8.5' (-3.5)</td>
<td>3007</td>
<td>0.074''</td>
</tr>
<tr>
<td>6' (El. 1.1)</td>
<td>12.9' (-7.9)</td>
<td>10147</td>
<td>0.43''</td>
</tr>
<tr>
<td>8' (El. 1.1)</td>
<td>17.5' (-12.5)</td>
<td>21053</td>
<td>1.53''</td>
</tr>
<tr>
<td>10' (El. 1.5)</td>
<td>22.9' (-17.9)</td>
<td>41978</td>
<td>4.34''</td>
</tr>
</tbody>
</table>
FILE 'O_IWALLE
ALREADY EXISTS. DO YOU WANT TO WRITE OVER IT?
ENTER 'YES' OR 'NO'.

PROGRAM CWALESHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS
DATE: 12-JUL-1995
TIME: 9.00.07

I. --HEADING:
'TIDAL AREA PROTECTION I-WALL
'EAST SIDE OF KEARNY POINT

II. --CONTROL
CANTILEVER WALL DESIGN
LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.00
LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.00

III. --WALL DATA
ELEVATION AT TOP OF WALL = 15.00 (FT)

IV. --SURFACE POINT DATA

<table>
<thead>
<tr>
<th>IV.A--RIGHTSIDE</th>
<th>DIST. FROM WALL (FT)</th>
<th>ELEVATION (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.00</td>
<td>7.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV.B--LEFTSIDE</th>
<th>DIST. FROM WALL (FT)</th>
<th>ELEVATION (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.00</td>
<td>7.00</td>
</tr>
</tbody>
</table>

V. --SOIL LAYER DATA

G-10A-2
V.A.--RIGHTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

ANGLE OF ANGLE OF
JAT. MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <--FACTOR-->
WGH. WGH. FRICITION ESION FRICITION ESION ELEV. SLOPE ACT. PASS.
(PCF) (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)
115.00 115.00 28.00 .0 14.00 .0 -8.00 .00 DEF DEF
100.00 100.00 .00 300.0 .00 .0 -18.00 .00 DEF DEF
120.00 120.00 20.00 350.0 .00 300.0 -26.00 .00 DEF DEF
120.00 120.00 .00 650.0 .00 600.0 DEF DEF

V.B.--LEFTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

ANGLE OF ANGLE OF
SAT. MOIST INTERNAL COH- WALL ADH- <--BOTTOM--> <--FACTOR-->
WGH. WGH. FRICITION ESION FRICITION ESION ELEV. SLOPE ACT. PASS.
(PCF) (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)
115.00 115.00 28.00 .0 14.00 .0 -8.00 .00 DEF DEF
100.00 100.00 .00 300.0 .00 .0 -18.00 .00 DEF DEF
120.00 120.00 20.00 350.0 .00 300.0 -26.00 .00 DEF DEF
120.00 120.00 .00 650.0 .00 600.0 DEF DEF

VI.--WATER DATA

UNIT WEIGHT = 62.40 (PCF)
RIGHTSIDE ELEVATION = 15.00 (FT)
LEFTSIDE ELEVATION = 7.00 (FT)
NO SEEPPAGE

VII.--SURFACE LOADS
NONE

VIII.--HORIZONTAL LOADS
NONE

INPUT COMPLETE.
DO YOU WANT TO EDIT INPUT DATA?
ENTER 'YES' OR 'NO'.
N
DO YOU WANT TO PLOT INPUT DATA?
ENTER 'YES' OR 'NO'.
N
INPUT COMPLETE.
DO YOU WANT TO CONTINUE WITH THE SOLUTION?
ENTER 'YES' OR 'NO'.
Y
DO YOU WANT SOIL PRESSURES CALCULATED BY THE SWEEP SEARCH WEDGE METHOD

G-10A-3
OR BY THE FIXED SURFACE WEDGE METHOD?
ENTER 'Sweep' OR 'FIXED'.

S

DO YOU WANT A LISTING OF SOIL PRESSURES
BEFORE CONTINUING WITH THE DESIGN?
ENTER 'YES' OR 'NO'.

N

DO YOU WANT TO PLOT SOIL PRESSURES?
ENTER 'YES' OR 'NO'.

N

DO YOU WANT TO CONTINUE WITH THE SOLUTION?
ENTER 'YES' OR 'NO'.

Y

SOLUTION COMPLETE.
DO YOU WANT RESULTS PRINTED TO YOUR TERMINAL,
TO FILE
O_IWALLE
OR BOTH?
ENTER 'TERMINAL', 'FILE', OR 'BOTH'.

B

PROGRAM CWALSH/T - DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 12-JUL-1995

TIME: 9.00.41

SUMMARY OF RESULTS FOR
CANTILEVER WALL DESIGN

O_IWALLE

I. --HEADING
'TIDAL AREA PROTECTION I-WALL
'EAST SIDE OF KEARNY POINT

II. --SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

\[T_y = \frac{P - \theta}{27} \]

\[V = \frac{M}{2} = \frac{19971 \times 12}{30.2 \times 100} \]

\[A_{328.5} = \frac{7.9 \text{ ksf}}{19.25 (\text{ ksf})} \]

\[V = 7.9 \text{ ksf} < 19.25 (\text{ ksf}) \]

\[6A-10A-5 \]

Deflection due to

\[\text{Deflection due to} \]

\[\text{selected loads controls} \]

\[\text{selection of short pile} \]

\[\text{section,} \]

\[\text{6-10A-5} \]
I-Wall Floodwall Critical Section

West Side of Kearny Point, Boring HLR-5

Hurricane Floodwall Design - I-Ways

Assume Slab Ground condition w/ H = 10'

Undrained Strength

- Fill: \(\phi = 28^\circ \)
 \(\gamma = 115 \)
 \(\theta = 14^\circ \)

- Organic Silts & Clays:
 \(\gamma = 100 \)
 \(\phi = 0^\circ \)
 \(C = 300 \text{ PSF} \)
 \(\theta = 14^\circ \)

- Clays:
 \(\gamma = 120 \)
 \(\phi = 0^\circ \)
 \(C = 750 \text{ PSF} \)
 \(\theta = 17^\circ \)

Drained Strength

- Fill:
 \(\phi = 28^\circ \)
 \(\gamma = 230 \)
 \(\theta = 14^\circ \)

Undrained Case

<table>
<thead>
<tr>
<th>Water Height & Elevation</th>
<th>Penetration Depth & Elevation</th>
<th>(M_{max}) (ft-lbs)</th>
<th>Deflection (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4' (E-1.5)</td>
<td>9.5' (E-1.4.5)</td>
<td>3449</td>
<td>0.074'' - 1.5</td>
</tr>
<tr>
<td>6' (E-1.1)</td>
<td>14.4' (E-1.9.4)</td>
<td>11641</td>
<td>0.56'' - 1.5</td>
</tr>
<tr>
<td>8' (E-1.13)</td>
<td>21.7' (E-1.16.7)</td>
<td>27592</td>
<td>2.24'' - 1.5</td>
</tr>
<tr>
<td>10' (E-1.15)</td>
<td>28.7' (E-1.23.7)</td>
<td>53891</td>
<td>7.0'' 2.64'' 1.5</td>
</tr>
</tbody>
</table>

Data File: (Test 1)

Drained Case

<table>
<thead>
<tr>
<th>Water Height & Elevation</th>
<th>Penetration Depth & Elevation</th>
<th>(M_{max}) (ft-lbs)</th>
<th>Deflection (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4' (E-1.5)</td>
<td>8.5' (E-1.3.5)</td>
<td>3007</td>
<td>0.074'' - 1.3</td>
</tr>
<tr>
<td>6' (E-1.1)</td>
<td>12.7' (E-1.7.7)</td>
<td>10147</td>
<td>0.42'' - 1.3</td>
</tr>
<tr>
<td>8' (E-1.13)</td>
<td>17.5' (E-1.12.5)</td>
<td>24053</td>
<td>1.55'' - 1.3</td>
</tr>
<tr>
<td>10' (E-1.15)</td>
<td>22.0' (E-1.17.0)</td>
<td>46978</td>
<td>4.16'' 1.57'' 1.3</td>
</tr>
</tbody>
</table>

Data File: (Test 2)

G-10A-6
DATE: 12-JUL-1995

BY CLASSICAL METHODS

TIME: 2:55

INPUT DATA

I.--HEADING:
'TIDAL AREA PROTECTION I-WALL
'WEST SIDE OF KEARNY POINT

II.--CONTROL
CANTILEVER WALL DESIGN

LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.00
LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.00

III.--WALL DATA
ELEVATION AT TOP OF WALL = 15.00 (FT)

IV.--SURFACE POINT DATA

IV.A--RIGHTSIDE
DIST. FROM WALL (FT) ELEVATION (FT)
.00 5.00

IV.B--LEFTSIDE
DIST. FROM WALL (FT) ELEVATION (FT)
.00 5.00

V.--SOIL LAYER DATA

V.A.--RIGHTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

<table>
<thead>
<tr>
<th>SAT. WGT. (PCF)</th>
<th>MOIST WGT. (PCF)</th>
<th>INTERNAL (DEG)</th>
<th>COH-ESION (PSF)</th>
<th>ANGLE OF WALL (DEG)</th>
<th>FRICITION (PSF)</th>
<th>ADH-ESION (PSF)</th>
<th>ELEV. (FT)</th>
<th>SLOPE (FT/FT)</th>
<th>ACT. (PSF)</th>
<th>PASS. (PSF)</th>
<th><SAFETY--></th>
<th><FACTOR--></th>
</tr>
</thead>
<tbody>
<tr>
<td>115.00</td>
<td>115.00</td>
<td>28.00</td>
<td>0.0</td>
<td>14.00</td>
<td>0.0</td>
<td>-10.00</td>
<td>0.0</td>
<td>-20.00</td>
<td>DEF</td>
<td>DEF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.00</td>
<td>100.00</td>
<td>0.0</td>
<td>300.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-10.00</td>
<td>0.0</td>
<td>-20.00</td>
<td>DEF</td>
<td>DEF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.00</td>
<td>120.00</td>
<td>0.0</td>
<td>1000.0</td>
<td>0.0</td>
<td>750.0</td>
<td></td>
<td></td>
<td></td>
<td>DEF</td>
<td>DEF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V.B.--LEFTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

<table>
<thead>
<tr>
<th>SAT. WGT. (PCF)</th>
<th>MOIST WGT. (PCF)</th>
<th>INTERNAL (DEG)</th>
<th>COH-ESION (PSF)</th>
<th>ANGLE OF WALL (DEG)</th>
<th>FRICITION (PSF)</th>
<th>ADH-ESION (PSF)</th>
<th>ELEV. (FT)</th>
<th>SLOPE (FT/FT)</th>
<th>ACT. (PSF)</th>
<th>PASS. (PSF)</th>
<th><SAFETY--></th>
<th><FACTOR--></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

G-10A-7
VI. --WATER DATA

UNIT WEIGHT = 62.40 (PCF)
RIGHTSIDE ELEVATION = 15.00 (FT)
LEFTSIDE ELEVATION = .00 (FT)
NO SEEPAGE

VII. --SURFACE LOADS
NONE

VIII. --HORIZONTAL LOADS
NONE
I. -- HEADING

'TIDAL AREA PROTECTION I-WALL
'WEST SIDE OF KEARNY POINT

II. -- SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY COULOMB COEFFICIENTS AND THEORY OF ELASTICITY EQUATIONS FOR SURCHARGE LOADS.

LEFTSIDE SOIL PRESSURES DETERMINED BY COULOMB COEFFICIENTS AND THEORY OF ELASTICITY EQUATIONS FOR SURCHARGE LOADS.

\(\text{Try } P_z = 27 \)

\[\tau = \frac{M}{s} = \frac{19991 \times 12}{30.2 \times 1000} = 0.328 \]

\(\tau = 7.9 \text{ KSI} < 19.25 \text{ (5fy)} \)

\(\text{Deflection due to factored loads control selection of sheet pile section.} \)

DO YOU WANT COMPLETE RESULTS OUTPUT?
ENTER 'YES' OR 'NO'.

Y
Box Piling Section

Scale: 1" = 10'

Existing Pile Supported Bldg.

P240 & P235 Combination Box Piling (A328 Steel)

Silty Sands

Bottom at EL-45.

Clayey Silt, Silt & Silty Sands
I. --HEADING

'HURRICANE FLOODWALL DESIGN, PILE FOUNDED STRUCTURES ALONG PASSAIC RIVER
'ASSUME FLOODWALL CONSTRUCTED AT RIVER EDGE

II. --SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.
LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

FACTOR OF SAFETY	1.47
MAX. BEND. MOMENT (LB-FT)	234164
AT ELEVATION (FT)	-26.94
MAXIMUM DEFLECTION (IN)	6.7599E+00
AT ELEVATION (FT)	15.00
I. -- HEADING:
'TIDAL AREA PROTECTION FLOODWALLS
'BOX PILE FLOODWALL ON PASSAIC RIVER

II. -- CONTROL
CANTILEVER WALL DESIGN

LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.00
LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.00

III. -- WALL DATA
ELEVATION AT TOP OF WALL = 15.00 (FT)

IV. -- SURFACE POINT DATA

IV.A -- RIGHTSIDE
DIST. FROM WALL (FT) ELEVATION (FT)
0.00 -8.00

IV.B -- LEFTSIDE
DIST. FROM WALL (FT) ELEVATION (FT)
0.00 1.00

V. -- SOIL LAYER DATA

V.A -- RIGHTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

<table>
<thead>
<tr>
<th>SAT. WHT. (PCF)</th>
<th>MOIST WHT. (PCF)</th>
<th>INTERNAL FRICTION (DEG)</th>
<th>COHESION (PSF)</th>
<th>ANGLE OF WALL (DEG)</th>
<th>ADHESION (PSF)</th>
<th>ELEV. (FT)</th>
<th>SLOPE</th>
<th>ACT.</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
<td>300.0</td>
<td>0.00</td>
<td>11.0</td>
<td>-24.00</td>
<td>0.00</td>
<td>DEF</td>
<td>DEF</td>
</tr>
<tr>
<td>120.00</td>
<td>120.00</td>
<td>32.00</td>
<td>0.0</td>
<td>17.00</td>
<td>0.0</td>
<td>-37.00</td>
<td>0.00</td>
<td>DEF</td>
<td>DEF</td>
</tr>
<tr>
<td>120.00</td>
<td>120.00</td>
<td>22.00</td>
<td>650.0</td>
<td>14.00</td>
<td>400.0</td>
<td>DEF</td>
<td>DEF</td>
<td>DEF</td>
<td>DEF</td>
</tr>
</tbody>
</table>
V.B.-- LEFTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PressURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PressURES = DEFAULT

<table>
<thead>
<tr>
<th>SAT. MOIST WGT.</th>
<th>INTERNAL WGT.</th>
<th>FRICTION (PCF)</th>
<th>COHESION (PCF)</th>
<th>ADHESION (PSF)</th>
<th>WALL FRICTION (DEG)</th>
<th>COHESION (FT)</th>
<th>ELEVATION (FT)</th>
<th>SLOPE ACT. PASS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
<td>100.00</td>
<td>.00</td>
<td>300.0</td>
<td>.00</td>
<td>11.0</td>
<td>17.0</td>
<td>-24.00</td>
<td>.00</td>
</tr>
<tr>
<td>120.00</td>
<td>120.00</td>
<td>32.00</td>
<td>.00</td>
<td>17.00</td>
<td>.00</td>
<td>-37.00</td>
<td>.00</td>
<td>DEF</td>
</tr>
<tr>
<td>120.00</td>
<td>120.00</td>
<td>22.00</td>
<td>650.0</td>
<td>14.00</td>
<td>400.0</td>
<td></td>
<td></td>
<td>DEF</td>
</tr>
</tbody>
</table>

VI.--WATER DATA

UNIT WEIGHT = 62.40 (PCF)
RIGHTSIDE ELEVATION = 15.00 (FT)
LEFTSIDE ELEVATION = .00 (FT)
NO SEEPAGE

VII.--SURFACE LOADS
NONE

VIII.--HORIZONTAL LOADS
NONE

INPUT COMPLETE.
DO YOU WANT TO EDIT INPUT DATA?
ENTER 'YES' OR 'NO'.
DO YOU WANT INPUT DATA SAVED IN A FILE?
ENTER 'YES' OR 'NO'.

Y

ENTER FILE NAME FOR SAVING INPUT DATA (64 CHARACTERS MAXIMUM).

DO YOU WANT TO PLOT INPUT DATA?
ENTER 'YES' OR 'NO'.

Y

DATE: 12-JUL-1996
50000 INPUT GEOMETRY
TIME: 10:44.34

TIDAL AREA PROTECTION FLOODWALLS
BOX FLOODWALL ON PASSAIC RIVER

6-10A-15
SUMMARY OF RESULTS FOR CANTILEVER WALL DESIGN

I. --HEADING

TIDAL AREA PROTECTION FLOODWALLS
BOX PILE FLOODWALL ON PASSAIC RIVER

II. --SUMMARY

RIGHTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

LEFTSIDE SOIL PRESSURES DETERMINED BY SWEEP SEARCH WEDGE METHOD.

WALL BOTTOM ELEV. (FT) : -38.15
PENETRATION (FT) : 39.15

MAX. BEND. MOMENT (LB-FT) : 65850.
AT ELEVATION (FT) : -24.11

MAX. SCALED DEFL. (LB-IN3) : 2.3075E+11
AT ELEVATION (FT) : 15.00

(Note: Divide scaled deflection by modulus of elasticity in psi times pile moment of inertia in in**4 to obtain deflection in inches.)

\[\sigma = \frac{165,850 \times 12}{127.4 \times 1000} = \]

\[\sigma = 15.62 \text{ ksi} \leq 19.25 \text{ ksi} \]

Use A328 Steel Sheet Pile

DO YOU WANT COMPLETE RESULTS OUTPUT?
ENTER 'YES' OR 'NO'.
APPENDIX G

SECTION 11

CENTRAL BASIN AND POMPTON FLOODWALLS
TABLE OF CONTENTS

APPENDIX G

Section 11 - Central Basin and Pompton Floodwalls

11.1 Scope. G-11-1

11.2 Feature Description G-11-1
 11.2.1 Rockaway #1 Floodwall ... G-11-1
 11.2.2 Rockaway #3 Floodwall ... G-11-1
 11.2.3 Pinch Brook Floodwall ... G-11-3
 11.2.4 Passaic #2A Floodwall ... G-11-3
 11.2.5 Pequannock/Ramapo Floodwall ... G-11-4

11.3 Design G-11-5
 11.3.1 Criteria G-11-5
 11.3.2 Design Data G-11-5
 11.3.2.1 Specified Design Stresses ... G-11-5
 11.3.2.2 Geotechnical Criteria G-11-5
 11.3.2.3 Factors of Safety ... G-11-6
 11.3.3 I-Wall Sheet Pile Floodwall ... G-11-6
 11.3.4 Utility Crossings ... G-11-7

11.4 Construction G-11-8

List of Tables

Table 1 Floodwall Design Data

List of Drawings

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-11-1</td>
<td>Rockaway 1 Levee/Floodwall</td>
</tr>
<tr>
<td></td>
<td>System Site Plan</td>
</tr>
<tr>
<td>G-11-2 and G-11-3</td>
<td>Rockaway 1 Levee/Floodwall</td>
</tr>
<tr>
<td></td>
<td>System Profiles and Details</td>
</tr>
<tr>
<td>G-11-4 and G-11-5</td>
<td>Rockaway 3 Levee/Floodwall</td>
</tr>
<tr>
<td></td>
<td>System Site Plan</td>
</tr>
<tr>
<td>G-11-6 thru G-11-9</td>
<td>Rockaway 3 Levee/Floodwall</td>
</tr>
<tr>
<td></td>
<td>System Profiles and Details</td>
</tr>
<tr>
<td>G-11-10</td>
<td>Pinch Brook Levee/Floodwall</td>
</tr>
<tr>
<td></td>
<td>System Site Plan</td>
</tr>
<tr>
<td>G-11-11</td>
<td>Pinch Brook Levee/Floodwall</td>
</tr>
<tr>
<td></td>
<td>System Profiles and Details</td>
</tr>
<tr>
<td>G-11-12 thru G-11-14</td>
<td>Passaic 2A Levee/Floodwall</td>
</tr>
<tr>
<td></td>
<td>System Site Plan</td>
</tr>
<tr>
<td>G-11-15 thru G-11-20</td>
<td>Passaic 2A Levee/Floodwall</td>
</tr>
<tr>
<td></td>
<td>System Profiles and Details</td>
</tr>
<tr>
<td>Plate No.</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>G-11-21</td>
<td>Pequannock-Ramapo Levee/</td>
</tr>
<tr>
<td></td>
<td>Floodwall System Site Plan</td>
</tr>
<tr>
<td>G-11-22 thru G-11-23</td>
<td>Pequannock-Ramapo Levee/</td>
</tr>
<tr>
<td></td>
<td>Floodwall System Profiles and Details</td>
</tr>
</tbody>
</table>

Attachment G-11A

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-11A-1 thru G-11A-6</td>
<td>Rockaway 3 Floodwall Critical Section Design Calculations</td>
</tr>
<tr>
<td>G-11A-7 thru G-11A-13</td>
<td>Pinch Brook Floodwall Critical Section Design Calculations</td>
</tr>
<tr>
<td>G-11A-14 thru G-11A-19</td>
<td>Passaic 2A Floodwall Critical Section Design Calculations</td>
</tr>
</tbody>
</table>
11.1 Scope

The primary function of this section of the design memorandum is to ascertain a reasonable cost estimate for the construction of Central Basin and Pompton Floodwalls. A sufficient structural design effort has been conducted to achieve this goal. Further design studies will be performed during the next level of design. The structural design effort currently includes:

- Preliminary layout for each floodwall.
- Preliminary ground surface profiles for each floodwall.
- I-Wall floodwall design.
- Preliminary design drawings and details.

11.2 Feature Description

11.2.1 Rockaway #1 Floodwall

The downstream portion of the Rockaway #1 levee/floodwall system would include 521 feet of floodwall on the right bank of the Rockaway River in the Township of Parsippany-Troy Hills. The proposed levee/floodwall system would protect the area bounded by the Rockaway River, New Road, Edwards Road and Vail Road. I-Wall sheet pile floodwalls were chosen wherever space limited the use of a levee. The required level of protection would vary according to location and was established from an overtopping analysis which is described in Appendix C - Hydrology and Hydraulics. The exposed height above groundline of the floodwall would vary from 0 to approximately 5 feet. The floodwall would begin at the Route 46 east embankment and continue approximately 521 feet adjacent to the Rockaway River, an existing service station, and an existing strip mall before changing to levee. Runoff behind the system would be collected and discharged by exiting through several outlet pipes with flap valves.

As a result of a utility search, no utilities identified within the proposed alignment of the downstream Rockaway #1 floodwall would be impacted, however, a vapor recovery system located at an existing service station may be impacted by construction of the floodwall. Reference to Plate Nos. G-11-1 thru G-11-3 for the preliminary layout, profile, and details of the Rockaway #1 floodwall.

11.2.2 Rockaway #3 Floodwall

The proposed location for the Rockaway #3 levee/floodwall system would be situated in the northwestern section of the Township of Parsippany-Troy Hills, in an area of the Township
referred to as Lake Hiawatha. The proposed levee/floodwall generally would extend along the right bank of the Rockaway River which forms the boundary between Montville Township on the northeast side of the River and Parsippany-Troy Hills Township on the southwest side of the River.

This system would replace and augment the existing Lake Hiawatha levee/floodwall system. This levee/floodwall system would consist of approximately 5,232' of floodwall constructed at the ground line and 1,470' of floodwall constructed on an existing levee. The proposed system would protect a residential area bounded by the Rockaway River to the east, River Drive, Mohawk Avenue and Sandalwood Drive to the west, Vail Road to the south and the northern terminus of River Drive to the north.

The proposed floodwall would traverse along a portion of the system where new floodwalls would be constructed; existing floodwalls would be replaced; and along small lengths of levee, the level of protection would be extended by constructing a floodwall on top of the levee.

The required level of protection would vary according to location and was established from an overtopping analysis which is described in Appendix C - Hydrology and Hydraulics. The average height of floodwalls constructed at groundline would be approximately 8.5', while the average height of floodwalls constructed on top of existing levees would be approximately 5.1'. I-Wall floodwalls were chosen wherever space limited the use of a levee or where a floodwall presently exists. Reference to Plate Nos. G-11-4 thru G-11-9 for the preliminary layout, profile, and details of the Rockaway #3 levee/floodwall system.

Currently, the existing levee contains five closure structures. The proposed levee/floodwall system would contain four closures; two closures (12' wide and 20' wide) would maintain access to a club house area, one 12' wide closure at the end of Hiawatha Boulevard would be replaced for channel maintenance purposes, and one 20' wide closure would be constructed adjacent to the Tenneco gas transmission lines which presently has two closures. The design of the closure structures would follow the design presented in Section 13 of this Appendix. Also associated with the existing levee/floodwall system is an existing pump station for interior drainage with a reported capacity of 183 cfs. located near the end of Wilbur Avenue. Along with the existing pump station, several outlet pipes with flap valves would dispense of any runoff from the interior sections.

A search was conducted to determine if any existing utilities would be impacted by the proposed levee project, and owners of potential utility impacts were identified. Tenneco Gas Transmission Company was identified as having a potential utility impact, and has strict criteria for construction within their
easements. No permanent structures or excessive fill can be placed on their easement. In order to avoid these impacts, the existing closure over the easement would be maintained.

11.2.3 Pinch Brook Floodwall

The Pinch Brook Levee/Floodwall System would be an open U-shaped levee/floodwall system approximately 2,812' in length proposed for an area adjacent to the Pinch/Black Brook confluence. The levee/floodwall system would be located on the right bank of Pinch Brook in East Hanover Township, Morris County, New Jersey. This system is bounded by Pinch Brook, Great Meadow Lane and Brentwood Drive, and its function would be to protect the existing commercial and residential properties against backwater flooding from the Whippany River.

This system would consist of approximately 415' of floodwall in an area of an industrial park. The required level of protection would vary according to location and was established from an overtopping analysis which is described in Appendix C - Hydrology and Hydraulics. An I-Wall sheet pile floodwall would be utilized due to space constraints between the existing channel, the existing cul-de-sac, and the existing buildings. The floodwall would have an average height of 9.4'. Reference to Plate Nos. G-11-10 and G-11-11 for the preliminary layout, profile, and details of the Pinch Brook levee/floodwall system.

A search was conducted to determine if any existing utilities will be impacted by the proposed levee project. No relocation of utilities is anticipated at the floodwall portion of the system.

11.2.4 Passaic #2A Floodwall

Passaic #2A Levee/Floodwall System would be comprised of separate segments situated along the Passaic River in the southeastern portion of Fairfield Township and northwestern portion of West Caldwell Township. This levee/floodwall system would protect residential, commercial and industrial development in an area bounded by the right bank of the Passaic River, Interstate Route 80, Bloomfield Avenue and the area adjacent to the left bank of the Deepavaal Brook. I-Wall sheet pile floodwalls were chosen wherever space limited the use of a levee.

The floodwall portion of the system would consist of approximately 3,082' of floodwall. The required level of protection would vary according to location and was established from an overtopping analysis which is described in Appendix C - Hydrology and Hydraulics. The floodwalls would have an average height of approximately 5.5'. Reference to Plate Nos. G-11-12 thru G-11-20 for the preliminary layout, profile, and details of the Passaic #2A levee/floodwall system.
As part of the northern segment of the system, a floodwall would be constructed at the top of bank of a portion of a former oxbow meander of the Passaic River and would end at the Route 46 embankment. As part of the central segment, a floodwall would begin at the Route 46 embankment approximately 1,000' south of the end of the northern levee/floodwall and would run south along the eastern banks of the Passaic River in Pio Costa Commercial Park to the Bloomfield Avenue embankment in Fairfield.

In order to prevent flanking of the Passaic #2A levee, a swing gate closure structure will be required at the Route 80 bridge over Horseneck Road in the Township of Fairfield. A floodwall and associated closure structure approximately 150' long and 5.5' high would be required and would have to tie into the existing bridge abutment structure. The swing gate opening was estimated to be approximately 45' to accommodate the existing roadway and sidewalks. The design of the closure structure would follow the design presented in Section 13 of this Appendix. Several outlet pipes with flap valves would dispense of any interior drainage from the protected area. Flap gates and sluice gate control valves would also be required at eleven cross culverts under Route 80 to complete the line of protection.

A search was conducted to determine if any existing utilities will be impacted by the proposed levee/floodwall project. A potential conflict was observed during a site visit with no confirmation from the utility. Two utility poles with electrical transformers are located in an area where a floodwall is proposed. The possibility exists that these utility poles may have to be relocated, therefore, the cost of relocation was included in the cost estimate.

11.2.5 Pequannock/Ramapo Floodwall

The Pequannock/Ramapo Levee/Floodwall System would be comprised of separate segments situated along the Ramapo River in Pompton Lakes Township. This levee/floodwall system would have a total length of 5110' and protect residential and commercial developments along the right bank of the Ramapo River. I-Wall sheet pile floodwalls were chosen wherever space limited the use of a levee.

The floodwall portion of the system would consist of approximately 2,910' of floodwall. The required level of protection would vary according to location and was established from an overtopping analysis which is described in Appendix C - Hydrology and Hydraulics. The floodwalls would have an average height of approximately 6.0'. Reference to Plate Nos. G-11-21 thru G-11-23 for the preliminary layout, profile, and details of the Pequannock/Ramapo floodwall.
The system begins with a short 100' long floodwall north of the intersection of Hamburg Turnpike and Riverview Road which would tie into an elevated portion of Riverview Road. The floodwall would then proceed 300' beyond Riverview Road where it would tie into a levee. Another floodwall would originate behind the residential properties along River Edge Drive, proceed southward and tie into the Dawes Highway bridge abutments, it would then continue on to tie into a levee approximately 1400' south of the bridge.

In order to prevent flanking of the Pequonnock/Ramapo levee/floodwall, Riverview Road near the intersection of Riverview Road and Hamburg Turnpike would have to be raised approximately 24 inches to complete the line of protection. Several outlet pipes with flap valves would dispense of any interior drainage from the protected area. Flap gates and sluice gate control valves would also be required at several stormwater outlets which discharge into the river to complete the line of protection.

A search was conducted to determine if any existing utilities will be impacted by the proposed levee project. No relocation of utilities is anticipated at the floodwall portion of the system.

11.3 Design

11.3.1 Criteria

a. EM 1110-2-2504, "Design of Sheet Pile Walls"

b. EM 1110-2-2104, "Strength Design of Reinforced Concrete Structures"

c. USS Steel Sheet Piling Manual.

11.3.2 Design Data

11.3.2.1 Specified Design Stresses

a. Concrete \(f'c = 3,000 \text{ psi} \)

b. Reinforcement Steel \(f_y = 60,000 \text{ psi} \)

c. Sheet Pile Steel (ASTM A 328) \(f_y = 38,500 \text{ psi} \)

11.3.2.2 Geotechnical Criteria

Geotechnical design of the floodwalls considered both the short term (undrained) and long term (drained) soil strength conditions. Active, passive, and at-rest earth pressure coefficients were determined based on the assigned soil friction angle for the short and long term conditions. Based on a
subsurface investigation, the soil conditions throughout all five levee/floodwall systems were considered poor. An analysis was performed using the conventional method for cantilever sheet pile analysis suggested by the USS Steel Sheet Pile Manual for Rockaway #1, Rockaway #3, Pinch Brook, and Passaic #2A floodwalls. The Corps program CWALSHFT was used to determine the wall stability in soil for the Pequannock/Ramapo floodwall. Use of the long term soil strengths (S-Case) in the analysis typically resulted in the most critical case for wall stability.

A design penetration depth to wall height ratio of 2.4:1 was established from the two analyses. Output from the analyses also determined the design moments, shears, and deflections used in the structural design of the floodwall.

11.3.2.3 Factors of Safety

For the controlling condition of the long term case (S-Case), a factor of safety of 1.5 applied to the soil strengths was used to obtain the required penetration depth and maximum movement of the sheet pile in soil. For the structural design of the piling, a factor of safety of 1.0, as per EM 1110-2-2504, was used to obtain the actual design moments, shear forces, and structural deflections on the sheet pile wall. Allowable stresses given in EM 1110-2-2504 for shear and bending strength were used in conjunction with the actual design moments and shear forces to determine the sheet pile section properties. The section was then checked to satisfy deflection criteria for steel members. The design loading was considered a normal load case with no increase of allowable stresses.

11.3.3 I-Wall Sheet Pile Floodwall

All of the central basin and pompton floodwalls would be standard I-Walls consisting of a steel sheet pile section with a reinforced concrete cast in place cap as shown in EM 1110-2-2504. The I-Wall sheet pile floodwalls would be constructed where space constraints nullified the use of a levee. Reinforced concrete T-Walls and L-Walls were considered but were ruled out due to their significant cost of construction and their large construction footprint area.

The design of the Rockaway #1, Rockaway #3, Pinch Brook, and Passaic #2A floodwalls was performed using the conventional method to determine the depth of penetration, applied moments, and deflections of the I-Wall/soil system with a factor of safety of 1.5. The design of the Pequannock/Ramapo floodwalls was performed using the Army Corps CWALSHFT computer program and following EM 1110-2-2504 design criteria of using a factor of safety of 1.5 to determine the depth of penetration, and 1.0 for the design of the sheet pile section. Refer to Attachment G-11A for design computations for the critical sections of the Central Basin and
Pompton floodwalls. Refer to the Geotechnical Appendix (Appendix E) of this design memorandum for additional design criteria information.

All sheet piles will be standard PZ and PSA sections of regular carbon grade steel ASTM A328 with an allowable design bending stress of 0.5fy, as per EM 1110-2-2504, equal to 19.25 ksi.

A zinc and coal tar epoxy coating corrosion protection system would be applied to the portion of the sheet piling exposed to corrosive environments. The steel reinforcement was not designed for the cap section, but was estimated for cost estimating purposes. Final design will take place in the next level of design. The reinforced concrete cap would consist of a minimum of 3,000 psi concrete with ASTM A615 Grade 60 steel reinforcement.

Refer to Table 1 for the design exposed heights ("H"), penetration depths ("D"), and section properties of each floodwall.

<table>
<thead>
<tr>
<th>Name</th>
<th>Design "H"</th>
<th>Design "D"</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockaway #1</td>
<td>5.0'</td>
<td>12.0'</td>
<td>PZ-22</td>
</tr>
<tr>
<td>Rockaway #3</td>
<td>8.5'</td>
<td>20.5'</td>
<td>PZ-22</td>
</tr>
<tr>
<td>New</td>
<td>5.0'</td>
<td>12.0'</td>
<td>PSA-23</td>
</tr>
<tr>
<td>On Exist Levee</td>
<td>9.8'</td>
<td>23.5'</td>
<td>PZ-27</td>
</tr>
<tr>
<td>Pinch Brook</td>
<td>8.5'</td>
<td>20.5'</td>
<td>PZ-22</td>
</tr>
<tr>
<td>Passaic #2A</td>
<td>8.0'</td>
<td>19.5'</td>
<td>PZ-22</td>
</tr>
<tr>
<td>Peq./Ramapo</td>
<td>10.0'</td>
<td>24.0'</td>
<td>PZ-27</td>
</tr>
</tbody>
</table>

11.3.4 Utility Crossings

Construction of the proposed floodwalls would involve crossing numerous existing subsurface drainage pipes and a few utility lines located along the alignment of the flood protection system. All lines were assumed to allow for temporary shut down. All subsurface drainage and utility crossings would consist of the following installment sequence:

1. Temporary shutdown/closure of the service line.
2. Disconnection and removal of a segment of the service line at the proposed floodwall location.
3. Installation of the sheet piling.
4. Construction of a sleeve type opening within the sheet piling as per details in EM 1110-2-2504.
5. Installation of a new segment of the service line through the sheet piling.
6. Reconnection of service line.

Reference to EM 1110-2-2504 for details of the standard utility crossings for I-wall caps and sheet piling.

11.4 Construction

Construction of the central basin and pompton floodwalls would involve prior in-depth site investigations as well as a records search to obtain the design drawings of adjacent buildings located close to the proposed floodwall alignment. It is anticipated that a substantial portion of the floodwalls can be constructed using land based construction equipment, however, a platform constructed in the river may be needed to support the construction equipment in areas where access is limited.

Occasional obstructions within the existing ground may be encountered during the driving of sheet piles. Any remnant building foundations, abandoned pipes, construction rubble, wood, tree stumps, etc. uncovered by the trench excavation would have to be removed. Special measures may be required to penetrate obstructions or dense zones below the immediate surface to facilitate the installation of the sheet piling.
ATTACHMENT G-11A

CENTRAL BASIN AND POMPTON FLOODWALLS

DESIGN CALCULATIONS
Reference: USS Steel Sheet Piling Design Manual, July 1975

- Boring Information Used: B-14

- Based on the existing loose core material and the boring information, assume the case of continuous cantilever sheet piling driven in a cohesive material with water instead of soil backfill.

- Assume the case of a 100-year flood (1' of free board).

Resultant Pressure Distribution

\[H = 5 \text{ ft} \]

\[W = 62.9 \text{ lb/ft} \]

\[\sigma_{uv} = 115 \text{ psi} \]

\[\theta = 28.6 \text{ deg} \text{ or } 2500 \text{ psi} \]

\[\gamma = 2 \text{ (soil)} \]

\[H = 16 \text{ ft} \]

\[H > H_{c} \text{ O.K.} \]
ARORA and ASSOCIATES, P.C.
Consulting Engineers

JOB Passaic River Levee Projects
PREPARED BY ESC
DATE: 11/30/94

JOB NO. 1218
CHECKED BY UC
SISSED DATE: 3/2/95

SUBJECT Floodwall Design For Rockaway # 3 (Critical Section St. 70+80 to St. 76+60)

Conventional Assumed Pressure Diagram

Determine Wall Pressures

\[\gamma_c H = 62.4 (5-1) = 250 \text{ psf} \]

\[4C - k_w H = 4(250) - 750 = 750 \text{ psf} \]

\[4C + k_w H = 4(250) + 750 = 1250 \text{ psf} \]

From studies, the following conditions must be satisfied:

\[\Sigma F_y = 0 \text{ in terms of forces} \]

\[\text{Area}(AA'B') + \text{Area}(CEG) - \text{Area}(BA'F) = 0 \]

or \[\frac{1}{2} (k_w H) + (\ell H) z = (4C-k_w H) D = 0 \]

Solving for \(z \):

\[\frac{1}{2} (250) + (18(250)) z = (4C-k_w H) D = 0 \]

\[125 + 1000 z = 750 D = 0 \]

\[1000 z = 750 - 125 \]

\[z = 0.750 - 0.125 \]

2) \(\Sigma M \) about any point is zero:

\[\Sigma M = \frac{2}{3} \gamma_c H (D + \frac{z}{2}) + \phi_c \frac{z}{2} = (4C-k_w H) D^2 z = 0 \]

\[\frac{1}{2} (250)(0 + \frac{z}{2}) + (18(250))(0.750 - 0.125)^2 - 7500 \frac{z}{2} = 0 \]

G-11A-2
\[A_M = (0.066 + 0.0155) = 0.0815 \]

\[A_M = (0.066 + 1.133) + (2000(0.0625D^2 - 0.1925D + 0.0155) / 6) + 375D^2 = 0 \]

\[b = 670 + 166.66 + 57.5D - 12.5D + 5166 - 375D^2 = 0 \]

\[-197.5D^2 + 62.5D + 171.833 = 0 \]

Using the quadratic equation:

\[D = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[D = \frac{-62.5 \pm \sqrt{(62.5)^2 - 4(171.833)(171.833)}}{2(-197.5)} \]

\[D = \frac{-62.5 \pm \sqrt{364.39 - 0.805}}{375} \]

For \(D = 1.14 \) ft, \(2 = 0.75(1.14) - 0.125 = 0.73 \) ft.

Use \(D = 1.5 \) ft (increase = 31.6%).

- Check the depth calculated for the long-term case to see which depth will govern for this floodwall section.
From Statics, the following conditions must be satisfied:

1) \(FE = 0 \) in terms of areas:

\[
\text{Area}(\Delta PA) + \text{Area}(\Delta A_1A_2F) = \text{Area}(\Delta CE) - \text{Area}(\Delta E_1A_1A_2) = 0
\]

or \(\frac{1}{2}(H)(PA + (PA_1 + PA_2))D_2 + (PE + PS)D_2 - \frac{1}{2}(PA_2)D_2 = 0 \)

Solving for \(z \):

\[
z = \frac{(163.150 - 250)(-250)D}{163.150 - 250 + 163.150 + 250}
\]

\[
z = \frac{163.150^2 - 5000D - 1000}{326.3D}
\]

2) \(LM \) about any point is zero:

\[
\sum M = \frac{1}{2}(CH)(PA_1 + PA_2) + \frac{1}{2}(PA_1D_2 + \frac{1}{2}(PE + PS)D_2 - \frac{1}{2}(PA_2)D_2 = 0
\]

\[
= \frac{1}{2}(H)(250)(D_1 + D_2) + (250)D_2 - \frac{1}{2}(163.150 - 250) + (163.150 + 250)D_2
\]

\[
= 500D + 125D_2 + 5.4 - 3.81D_2^2 - 30.98D_3 + 3.79D_2 = 0
\]

Method of Solution:

1. Assume a depth of penetration, \(D \)
2. Calculate \(z \)
3. Substitute \(z \) into \(2.M \) and check if zero. Adjust \(D \) if necessary.

Try D = 8 ft

\[
z = \frac{163.150^2 - 5000(8) - 1000}{326.3(8)}
\]

\[
z = \frac{163.150^2 - 5000D - 1000}{326.3D}
\]

\[
M = 500(8 + 1.33) + 125(6)^2 + 5.4 - 3.81(8)^2 - 30.98(8)^3 + 3.79(8)D_2
\]

\[
= 4.666.6 + 8000 + 738.5 - 15.861.9 + 1940.5
\]

\[
= -1.019.4 \text{ ft lb}, \text{ N.E.}
\]

Try D = 7.5 ft

\[
z = \frac{163.150^2 - 500(7.5) - 1000}{326.3(7.5)}
\]
Maximum Moment and Sheet Pile Size

Maximum Moment

\[P = \frac{2}{6} (L + a) (L - a) \frac{K}{2} + \frac{2}{6} L (L + a) \frac{K}{2} = \frac{2}{6} (L^2 + a^2) K \]

Maximum Moment

\[M_{\text{max}} = 500 (1.53 + 1.53 + 2.41) + 191.25 (2.25 / 3 + 2.41) - 191.25 (2.41 / 3) \]

\[M_{\text{max}} = 3053.3 + 757.6 - 650.5 = 3260 \text{ ft kip} \]

Try regular carbon steel: \(F_p = 19250 \text{ psi} \)

Required Section Modulus: \(\frac{M_{\text{max}}}{F_p} = \frac{3260}{19250} = 0.170 \) in.

Due to the low moment value, Rowe's Theory of Moment Reduction is not required.

Assuming no moment reduction due to flexibility of sheet pile:

Use PSA 23.3 ≥ 2.4 in.³/foot of wall.
Reference: USS - Steel Sheet Piling Design Manual, July 1975

Boring Information Used: B-5

Based on the boring information, assume the case of Continuous Cantilever Sheet Piling driven in clay with water instead of soil backfill.

Assume the case of a 100-year flood (1' of freeboard)

Resultant Pressure Distribution

Landside

Riverside

\[\text{Water: } 62.4 \text{ psf} = X_w \]

\[\text{Stiffness: } \text{Medium Vacuum Clay} \]

\[\phi = 0, C = 500 \text{ psf} \]

\[Y = 120 \text{ psf} \]

\[X = 70 \text{ psf} \]

\[\text{Final Strength of Clay} \]

\[C = 0, \theta = 23^\circ \]

Check Critical Height

\[H_c = 4C/X_w = 4(500) / 62.4 = 32.5 \text{ ft} \]

\[H_c > H \text{ O.K.} \]
Conventional Assumed Pressure Diagram

Determine Wall Pressures

\[\gamma_w H = 62.4 (6.9) = 611.5 \text{ psf} \]
\[4C \cdot \gamma_w H = 4(600) \cdot 611.5 = 1388.5 \text{ psf} \]
\[4C + \gamma_w H \cdot 4(500) + 611.5 \cdot 2.611.5 \text{ psf} \]

From Statics, the following conditions must be satisfied:

1) \(\Delta F_H = 0 \), in terms of areas

\[\text{Area} \left(AA'GB' \right) + \text{Area} \left(CEF \right) - \text{Area} \left(BAFE \right) = 0 \]

or \(\frac{1}{2} (\gamma_w H \cdot 4) + \frac{1}{2} \left((8 \times 500) \cdot z \right) = 4C - \gamma_w H \cdot D = 0 \)

Solving for \(z = \frac{1}{2} (611.5) + \left((8 \times 500) \cdot z \right) \cdot \frac{1}{2} - (1388.5) \cdot D = 0 \)

\(305.75 + 1000 \cdot z - 1388.5 \cdot D = 0 \)

\(1000 \cdot z = 1398.5 \cdot D - 305.75 \)

\(z = \frac{1398.5 \cdot D - 305.75}{1000} \)

2) \(M \) about any point is zero

\[\text{EMF} = \frac{1}{2} \gamma_w H \cdot (D + \frac{4}{3}) + 8C \cdot \frac{7}{8} - (4C - \gamma_w H) \cdot D = 0 \]

\[305.75 \cdot (0 + \frac{9}{3}) + (8 \times 500) \cdot (1.333 \cdot D - 0.30575 \cdot D^2) \frac{7}{8} = 0 \]

G-11A-8
JOB Passaic River Levee Projects
PREPARED BY ESC DATE 10/11/89
JOB NO. 1218 CHECKED BY UK DATE 2/29/95
SUBJECT Floodwall Design For Pinch Brook (C.I. 41 Section 51, 22+75, 1, 21, 25+90)

E.MF. (Continued)

\[\frac{305.75 (0 + 3.26) + (2000 (1.9279 - 0.84910 + 0.0935) / 6)}{694.25} = 0 \]
\[= 305.75 D + 998.5795 + 642.633 D^2 - 283.033 D + 31.166 - 694.25 D^2 = 0 \]
\[= -51,617D^2 + 22,717D + 1029.7455 \]

\[a = -51,617 \quad b = 22,717 \quad c = 1029.7455 \]

Quadratic equation: \[\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[-22.717 = \frac{-22.717 - \sqrt{(22.717)^2 - 4(-51.617)(1029.7455)}}{2(-51.617)} \]
\[= \frac{22.717 + 461.655}{2} = 4.75 \quad \frac{-22.717 - 461.655}{2} = -4.69 \]
\[-103.224 \quad -103.224 \]

For D: 4.69 ft, \[z = 1.385(4.69) = 0.30575 = 6.2 \text{ ft} \]

Use Q: 6.5' (Incerce = 38.6%) \[\text{Check the depth calculated for the long-term case to see which depth will govern for this floodwall section} \]

G-11A-9
Resultant Pressure Distribution (Long Term Case)

- Water level:
- Water Pressure: \(p_w \)
- Active Pressure (Center of Water):
- Active Pressure (Long Term Clay):
 - \(k_a = 0.42 \)
 - \(k_s = 3.75 \times 0.42 = 3.08 \)

Conventional Assumed Pressure Diagram

Determine Wall Pressures

- \(P_A = V_w \cdot H = 62 + 9.8 \cdot 61.5 \, \text{psf} \)
- \(P_{A_2} = P_A + 70 \cdot (0.6)(0.42) = 611.5 + 29.4 \, \text{psf} \)
- \(P_E = 8 \cdot D \cdot (k_p - k_a) - P_A = 186.2 - 611.5 \)
- \(P_T = 8 \cdot D \cdot (k_p - k_a) + V_w \cdot H = 116.2 + 611.5 \)

N.T.S.

G-11A-10
From Statics, the following conditions must be satisfied:

1) \(E_P = 0 \) in terms of areas:

\[
\text{Area (BA1)} + \text{Area(AA2A2E)} + \text{Area (CE)} = \text{Area (EA2A2)} = 0
\]

or \(\frac{1}{2} (H) PA + (PA + PA_E) \frac{S_1}{2} + (PE + P_E) \frac{S_2}{2} = \frac{PE + PA_E}{2} \frac{S_2}{2} = 0 \)

Solving for \(PE \):

\[
E = \frac{(18620 - 611.5) - (611.5)D - (4.8)(611.5)}{(18620 - 611.5) + (18620 - 611.5)}
\]

\[
E = -\frac{18620^2 - 1223(12) - 5492.7}{3522.7}
\]

2) \(E = 0 \) about any point is zero.

\[
\frac{1}{2} (H) PA + (PA)^2 + (PE + P_E) \frac{S_1}{2} = (PE + PA_E) \frac{S_2}{2} + (PA + PA_E) \frac{S_2}{2} = 0
\]

\[
= \frac{1}{2} (4.8)(611.5)(0.349.9) + (611.5) \frac{S_1}{2} + (18620 - 611.5) \frac{S_1}{2} + (18620 - 611.5) \frac{S_1}{2} = 0
\]

\[
= 2.99635(D + 3.266) + 305.75D^2 + 58.72^2 - 35.43D^2 + 49.03
\]

Method of Solution:

1. Assume a depth of penetration \(D \)
2. Calculate \(E \)
3. Substitute \(E \) into \(E_P \) and check \(E = 0 \), adjust \(D \) if necessary

Try \(D = 12 \) ft:

\[
E = \frac{(18620 - 1223)(12) - 5492.7}{522.7(12)} = 1.45 \text{ ft}
\]

\[
E_P = 2.99635(12 + 3.266) + 305.75(12)^2 + 58.7(1.45) - 35.93(12)^2 + 49.03
\]

\[
= 45.742.3 + 44.028 + 123.4 - 67.087 + 0.467.2
\]

\[
= 36273.9 \text{ ft.} \text{ lb. N.C.}
\]

Try \(D = 17 \) ft:

\[
E = \frac{(18620 - 1223)(17) - 5492.7}{522.7(17)} = 4.5 \text{ ft}
\]

\[
E_P = 2.99635(12 + 3.266) + 305.75(17)^2 + 58.7(1.45) - 35.93(12)^2 + 49.03
\]

\[
= 45.742.3 + 44.028 + 123.4 - 67.087 + 0.467.2
\]

\[
= 36273.9 \text{ ft.} \text{ lb. N.C.}
\]

G-11A-11
\[M_f = 2.99b.35(3.13 + 3.26b.3) + 305.75(1.7)^2 + 59.71(4.5)^2 - 35.93(1.7)^2 - 4.9(1.7)^2 \]
\[= 60.724 + 88.361.75 + 118.7 - 176.524.1 + 24.073.7 \]
\[= -2.175.95 \text{ Ft lb} \]

* 60.724 = 73′ (Increase 35.3%) Sec. 3.26

Maximum Moment and Sheet Pile Size

Locate Point of Zero Shear

\[x = \frac{y}{(k_x - k_y)} = \frac{61.5}{700(3.08 - 0.42)} = 0.01 \text{ Ft} \]

\[P = \frac{x}{(k_x - k_y)} = \frac{2.996.35}{700(3.08 - 0.42)} = 0.12 \text{ kN} \]

\[P_{z} = \frac{x}{(k_x - k_y)} = \frac{1002.86}{700(3.08 - 0.42)} = 0.22 \text{ kN} \]

\[M_{max} = \frac{P_x L_x + P_y L_y}{L_z} = \frac{(2.996.35 + 1002.86)}{700(3.08 - 0.42)} \]

\[= 4.295 \text{ kN m} \]

Required Section Modulus: \[\frac{M_{max}}{F_s} = 4.295 \text{ kN m} \]

G-11A-12
Assuming No Moment Reduction Due to Flexibility of Sheet Piling.

Use PZ-27 Section. $S = 50.2 \text{ in}^2/\text{Foot of Wall}$.

Rowe's Theory of Moment Reduction

Use Fig. 28 for Cohesive Soils. $\alpha = H/0 = 3.8/21 = 0.1847 \approx 0.2$

Stability Number, $S = 1.25 \left(\frac{C}{8eH} \right) = 1.25 \left(\frac{500}{70(1.8)} \right) = 0.23$

Flexibility number, $p = \left(\frac{H+D}{E} \right)^2 = \left(\frac{9.8+21}{30 \times 10^6} \right)^2 = 0.21$

<table>
<thead>
<tr>
<th>Pile Sections</th>
<th>PZ-27</th>
<th>PDA-27</th>
<th>PMA-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (Per Foot)</td>
<td>50.2</td>
<td>10.7</td>
<td>5.4</td>
</tr>
<tr>
<td>I (Per Foot)</td>
<td>18.4</td>
<td>39.8</td>
<td>13.7</td>
</tr>
<tr>
<td>p</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>$\mu_{\text{Des}}/\mu_{\text{Max}}$</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>$\mu_{\text{Des}} = \mu_{\text{Max}}$</td>
<td>471.24 in k</td>
<td>471.24 in k</td>
<td>471.24 in k</td>
</tr>
<tr>
<td>Stress M_{Design}/S</td>
<td>15.60 kbf</td>
<td>44.0 kbf</td>
<td>87.27 kbf</td>
</tr>
</tbody>
</table>

Based on Rowe's Theory of Moment Reduction, the following sheet pile section may be used:

* PZ-27 - Regular Carbon Grade Steel $F_s = 15.60 \text{kbf} < 19.25 \text{kfs}$
Reference: USS-Steel Sheet Piling Design Manual, July 1975

Based on the boring information assume the case of Continuous Cantilever Sheet piling driven in clay with water instead of soil backfill.

Assume the case of a 100 year Flood (1' of Freeboard)

Resultant Pressure Distribution

Landside	Riverside
El. 175.6 | Water Y = 62.4 psf
H = 9.5

Active pressure
Y = 115 psf, X = 55 psf
\(q = \frac{1}{2} \) c = 400 psf
\(q = \frac{1}{2} c = 200 = 800 \) psf

Clayey Silt

Assumed

Drainage line

El. 167.1

Passive

Clayey Silt

C = 0.4 = 28°

Check Critical Height

\(H_e = \frac{1}{4} (X - 4 + 400) - \frac{62.4}{2} \)

N.T.S.:

\(H_i > H \) OK

G-11A-14
Conventional Assumed Pressure Diagram

Determine Wall Pressures

\[X_w H = 62.4(8.5 - 1) = 468 \text{ psi} \]

\[4C - X_w H = 4(100) - 468 = 1132 \text{ psi} \]

\[4C + X_w H = 4(100) + 468 = 2068 \text{ psi} \]

From Statics, the following conditions must be satisfied:

1) \(\sum F_x = 0 \) in terms of areas

\[\text{Area}(AA'B') + \text{Area}(YCEF) - \text{Area}(BAFE) = 0 \]

or

\[\frac{1}{2} \left(X_w H \right) + \frac{1}{2} \left(4C \frac{2}{3}
ight) \frac{1}{2} = (4C - X_w H) D = 0 \]

Solving for \(D = \frac{2}{2} \left(\frac{4C - X_w H}{4C - X_w H} \right) \frac{1}{2} = 0 \)

\[234 + 1600 \frac{2}{2} - 1132 D = 0 \]

\[1600 \frac{2}{2} = 1132 D - 234 \quad D = 0.7075D - 0.1463 \]

2) \(\sum M = 0 \) about any point is zero

\[2 \mu z = \frac{1}{2} X_w H (D + \frac{2}{3}) + \frac{1}{2} C \cdot \frac{2}{3} \left(4C - X_w H \right) \frac{2}{3} = 0 \]

\[= 234 (D + \frac{2}{3}) + \left(4(100) \left(0.7075D - 0.1463 \right)^2 \right) \frac{1}{2} = 1132 (D^2) \]
Floodwall Design for Passaic 1/2A (Critical Section Sta. 9 + 50 to Sta. 14 + 00) - L2

Consider:

\[D = 23.4(D + 2.5) + \left(\frac{3200(0.5 + 0.06D - 0.207D + 0.074)}{2} \right) - 566D^2 = 0 \]

\[= 23.4D + 585 + 266.49D^2 - 110.4D + 11.413 - 566D^2 = 0 \]

\[-299.013D^2 + 173.6D + 596.493 \]

\[a = 1, \quad b = 173.6, \quad c = 596.493 \]

Use quadratic equation:

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[x = \frac{-173.6 \pm \sqrt{(173.6)^2 - 4(-299.013)(596.493)}}{2(-299.013)} \]

\[x = 2.3 \text{ or } x = -5.6 \]

For 0 = 1.63ft, \(x = 0.707(1.63) - 0.4163 = 1.01 \text{ ft} \)

Use 0 = 2ft (increase = 22.4%)

Check the depth calculated for the long term case to see which depth will govern for this floodwall section.
Resultant Pressure Distribution (Long Term Case)

Water \(x = 62.4 \text{ psf} \)

Active Pressure (Due to Water)

Passive Pressure

Active Pressure (Long Term)

\(a = 28^\circ \)

\(\theta = 11^\circ 29' \)

\(f = 0.4 \)

\(\alpha = 0.35 \)

\(k_a = 5.45 \text{ (0.7113)} = 3.91 \)

Conventional Assumed Pressure Diagram

Determine Wall Pressures

\(P_A = k_a H = 62.4 (7.5) = 468 \text{ psf} \)

\(P_A = P_A + k_a D = 468 + 55 (6) (0.36) \)

\(= 468 + 19.80 \)

\(P_E = k_a D (k_a - k_a) - P_A \)

\(= 55 (0.36) - 468 \)

\(= 19.525 - 468 \)

\(P_T = k_a D (k_a - k_a) + x \cdot H \)

\(= 195.25 + 468 \text{ psf} \)

N.T.S.
From statics, the following conditions must be satisfied:

1) \(4F_h = 0 \) in terms of areas:

\[
\text{Area (EAA) + Area (AA_A, F) + Area (ECT) - Area (EAA_A) = 0}
\]

or \(\frac{1}{2} (H) P_A + (P_A + P_A) \frac{D}{2} + (CPE + P_S) \frac{D}{2} - (P_E + P_A) \frac{D}{2} = 0 \)

Solving for \(z \):

\[
z = \frac{(195.250 - 468) \frac{D}{2} - 7.5 \times 468}{(195.250 - 468) + (195.250 + 468)}
\]

\[
z = 195.250 \frac{2}{2} - 936 \frac{D}{2} - 3510 \frac{1}{2}
\]

2) \(2F_M \) about any point is zero

\[
EM_h = \frac{1}{2} (H) P_A (D + 2z) + (P_A) \frac{D}{2} + (CPE + P_S) \frac{D}{2} - (CPE + P_A) \frac{D}{2} = 0
\]

\[
= \frac{1}{2} (195.250 - 468) \frac{D}{2} + 7.5 \times 468 + (468) \frac{D}{2} + 195.250 \frac{D}{2} + 195.250 \frac{D}{2} \frac{D}{2}
\]

\[
- (195.250 - 468) + (468 + 195.250 - 468) \frac{D}{2} + (468 + 195.250 + 468) \frac{D}{2}
\]

\[
= 1.75 \times (D + 2.5) + 234 \frac{D}{2} + 65.083 \frac{D}{2} - 29.24 \frac{D}{2} + 3.3 \frac{D}{2} = 0
\]

Method of Solution:

1. Assume a depth of penetration, \(D \)
2. Calculate \(z \)
3. Substitute \(z \) into \(F_M \) and check, \(F \) zero. Adjust \(D \) & re-calculate, if necessary

Try: \(D = 15 \) ft.

\[
z = \frac{195.250 \times (15)^2 - 936 \times (15) - 3510}{(390.5) \times (15)}
\]

\[
= \frac{1755 \times (15 + 2.5) + 234 \times (15)^2 + 65.083 \times (4.5)^2 - 29.24 \times (15)^2 + 3.3 \times (15)^2}{30.712.5 + 52.650 + 1.317.93 - 98.685 + 11.375}
\]

\[
= -2867.1 \text{ ft} \text{ lb} \quad \text{O.K.} \quad \text{The Long Term case governs For this Section}
\]

\[\text{use } D = 20' \text{ (Increase } 33.3\%\) }\]

G-11A-18
Maximum Moment and Sheet Pile Size

Locate Point of Zero Shear

\[
\begin{align*}
\Delta &= \frac{P_A}{x(y_k-x_k)} \\
&\leq (3.11 - 0.36) \\
P_1 = \frac{1}{2} PA, x = \frac{1}{2} (468)(7.5) = 1.755 \text{ ft} \\
P_2 = \frac{1}{2} PA, y = \frac{1}{2} (468)(2.39) = 55.926 \text{ ft} \\
P_1 + P_2 = \frac{1}{2} x(y_k-x_k)x^2 \\
x^2 = 23.7065 \\n\Rightarrow x = 4.87 \text{ ft}
\end{align*}
\]

Maximum Moment

\[
\begin{align*}
P_3 &= \frac{1}{2} x(y_k-x_k)x^2 = P_1 + P_2 \\
&= (3.91 - 0.36)23.7065 = 731.426 \\
M_{max} &= P_1 l_1 + P_2 l_2 + P_3 l_3 \\
&= (2.31 + x + x) / (2.1 / x + x) \\
&= 1765.87 \text{ ft-kips}
\end{align*}
\]

Try regular carbon grade steel; \(F_c = 19,250 \text{ psi} \)

Required Section Modulus: \(M_{fs} = 16,976.67 \times 12 / 10.47 = 19,250 \text{ in}^3 \)

Assuming no moment reduction due to flexibility of sheet piling,

Use P22 Section \(s = 18.1 \text{ in}^2/\text{foot of wall} \)
I. --HEADING:
*PEQUANNOCK-RAMAPO LEVEE/FLOODWALL

II. --CONTROL
CANTILEVER WALL DESIGN

LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.00
LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.00

III. --WALL DATA
ELEVATION AT TOP OF WALL = 190.00 (FT)

IV. --SURFACE POINT DATA

IV.A--RIGHTSIDE
DIST. FROM WALL (FT) ELEVATION (FT)
 .00 182.00

IV.B-- LEFTSIDE
DIST. FROM WALL (FT) ELEVATION (FT)
 .00 182.00

V. --SOIL LAYER DATA

V.A.--RIGHTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR Passive PRESSURES = DEFAULT

<table>
<thead>
<tr>
<th>SAT. MOIST WGHT.</th>
<th>ANGLE OF WALL</th>
<th>ANGLE OF ADH.</th>
<th>--SAFETY--></th>
</tr>
</thead>
<tbody>
<tr>
<td>WGHT. (PCF)</td>
<td>COH- (PSF)</td>
<td>(DEG) (PSF)</td>
<td>--BOTTOM--</td>
</tr>
<tr>
<td>FRICTION (DEG)</td>
<td>ESION (FT/FT)</td>
<td>(DEG) (FT)</td>
<td>--FACTOR--></td>
</tr>
<tr>
<td></td>
<td>ELEV. SLOPE</td>
<td>ACT. PASS.</td>
<td></td>
</tr>
<tr>
<td>130.00</td>
<td>125.00</td>
<td>30.00</td>
<td>14.00</td>
</tr>
<tr>
<td>120.00</td>
<td>115.00</td>
<td>28.00</td>
<td>11.00</td>
</tr>
</tbody>
</table>

V.B.-- LEFTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR Passive PRESSURES = DEFAULT

6-11A-20
<table>
<thead>
<tr>
<th></th>
<th>SAT. WGT.</th>
<th>MOIST WGT.</th>
<th>ANGLE OF WALL</th>
<th>ADH. ESSION</th>
<th>ELEV. SLOPE</th>
<th>ACT. PASS.</th>
<th><---SAFETY---></th>
<th><---FACTOR--></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(PCF)</td>
<td>(PCF)</td>
<td>(DEG)</td>
<td>(PSF)</td>
<td>(FT)</td>
<td>(FT/FT)</td>
<td>DEF</td>
<td>DEF</td>
</tr>
<tr>
<td>0.00</td>
<td>125.00</td>
<td>30.00</td>
<td>.0</td>
<td>14.00</td>
<td>.0</td>
<td>165.00</td>
<td>.0</td>
<td>DEF</td>
</tr>
<tr>
<td><0.00</td>
<td>115.00</td>
<td>28.00</td>
<td>.0</td>
<td>11.00</td>
<td>.0</td>
<td></td>
<td>DEF</td>
<td>DEF</td>
</tr>
</tbody>
</table>

VI. -- WATER DATA

- **UNIT WEIGHT** = 62.43 (PCF)
- **RIGHTSIDE ELEVATION** = 190.00 (FT)
- **LEFTSIDE ELEVATION** = 182.00 (FT)
- NO SEEPAGE

VII.--SURFACE LOADS

NONE

VIII.--HORIZONTAL LOADS

NONE
LEFTSIDE SOIL PRESSURES DETERMINED BY COULOMB COEFFICIENTS AND THEORY OF ELASTICITY EQUATIONS FOR SURCHARGE LOADS.

WALL BOTTOM ELEV. (FT) : 170.46
PENETRATION (FT) : 11.54

MAX. BEND. MOMENT (LB-FT) : 15749.
AT ELEVATION (FT) : 176.25

MAX. SCALED DEFL. (LB-IN3): 2.7848E+09
AT ELEVATION (FT) : 190.00

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

DO YOU WANT COMPLETE RESULTS OUTPUT?
ENTER 'YES' OR 'NO'.

\[
\frac{15.749 \times 12}{18.1} = 10.44 \text{ ksi}
\]

\[
\frac{2.7848 \times 10^9}{29,000,000 (\text{IP.}) (4.5)} = 1.2''
\]

Use PE-22
I.--HEADING:
'PEQUANNOCK-RAMAPO LEVEE/FLOODWALL

II.--CONTROL
CANTILEVER WALL DESIGN

LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.00
LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.00

III.--WALL DATA
ELEVATION AT TOP OF WALL = 192.00 (FT)

IV.--SURFACE POINT DATA

IV.A--RIGHTSIDE
DIST. FROM WALL (FT) ELEVATION (FT)
.00 182.00

IV.B--LEFTSIDE
DIST. FROM WALL (FT) ELEVATION (FT)
.00 182.00

V.--SOIL LAYER DATA

V.A--RIGHTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT

SAT. WGT. (PCF)	MOIST WGT. (PCF)	INTERNAL FRICTION (DEG)	ANGLE OF WALL COHESION (PSF) FRICTION (DEG)	ADHESION (PSF) ELEV. SLOPE ACT. PASS.				
130.00	125.00	30.00	0.0	14.00	165.00	0.0	DEF	DEF
120.00	115.00	28.00	0.0	11.00			DEF	DEF

V.B--LEFTSIDE LAYER DATA
LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT
<table>
<thead>
<tr>
<th>SAT. WGT. (PCF)</th>
<th>MOIST WGT. (PCF)</th>
<th>INTERNAL FRICTION (DEG)</th>
<th>COH- FRICTION (PSF)</th>
<th>ANGLE OF WALL (DEG)</th>
<th>ADH- FRICTION (PSF)</th>
<th>ELEV. (FT)</th>
<th>SLOPE FT/FT</th>
<th>ACT. PASS. FACTOR</th>
<th>SAFETY FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>125.00</td>
<td>30.00</td>
<td>0</td>
<td>14.00</td>
<td>0</td>
<td>165.00</td>
<td>.0</td>
<td>DEF</td>
<td>DEF</td>
</tr>
<tr>
<td>.20.00</td>
<td>115.00</td>
<td>28.00</td>
<td>0</td>
<td>11.00</td>
<td>0</td>
<td>165.00</td>
<td>.0</td>
<td>DEF</td>
<td>DEF</td>
</tr>
</tbody>
</table>

VI. -- WATER DATA

UNIT WEIGHT = 62.43 (PCF)
RIGHTSIDE ELEVATION = 192.00 (FT)
LEFTSIDE ELEVATION = 182.00 (FT)
NO SEEPAGE

VII. -- SURFACE LOADS
NONE

VIII. -- HORIZONTAL LOADS
NONE

G-11A-24
REQUANNACK RAMAPO LEVEE
3-2-95

LEFT SIDE SOIL PRESSURES DETERMINED BY COULOMB COEFFICIENTS
AND THEORY OF ELASTICITY EQUATIONS FOR SURCHARGE LOADS.

WALL BOTTOM ELEV. (FT) : 167.57
 PENETRATION (FT) : 14.43

MAX. BEND. MOMENT (LB-FT) : 30759.
 AT ELEVATION (FT) : 174.81

MAX. SCALED DEF. (LB-IN3): 8.4985E+09
 AT ELEVATION (FT) : 192.00

(NOTE: DIVIDE SCALED DEFLECTION BY MODULUS OF
ELASTICITY IN PSI TIMES PILE MOMENT OF INERTIA
IN IN**4 TO OBTAIN DEFLECTION IN INCHES.)

\[H = 10', \quad FS = 1.0 \]

DO YOU WANT COMPLETE RESULTS OUTPUT?
ENTER 'YES' OR 'NO'.

\[f_b = \frac{30.76 \times 12}{18,11 \text{in}^2} = 20.39 \text{ksi} > 18 \text{ksi} \]

\[\Delta = \frac{8.4985 \times 10^9}{29,000,000 \times 30.2} = 1.62'' \text{ OK} \]

\[\text{USE PZ-27} \]

\[\text{PZ-22 NG} \]
APPENDIX G

SECTION 12

PASSEIC 10 FLOODWALL
TABLE OF CONTENTS

APPENDIX G - STRUCTURAL

Section 12 - Passaic 10 Floodwall

12.1 Scope. G-12-1

12.2 Feature Description G-12-1
 12.2.1 I-Wall Floodwall. G-12-1
 12.2.2 Pump Stations. G-12-1

12.3 Design . G-12-2
 12.3.1 Criteria G-12-2
 12.3.2 Design Data G-12-2
 12.3.2.1 Specified Design Stresses G-12-2
 12.3.2.2 Hydraulic Criteria. G-12-3
 12.3.2.3 Factor of Safety G-12-3
 12.3.3 I-Wall Floodwall. G-12-3

12.4 Construction G-12-4

List of Drawings

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-12-1</td>
<td>Passaic 10 Levee/Floodwall Site Plan</td>
</tr>
<tr>
<td>G-12-2</td>
<td>Plan and Profile - Sta. 0+25.21 to 8+00</td>
</tr>
<tr>
<td>G-12-3</td>
<td>Floodwall Site Plan</td>
</tr>
<tr>
<td>G-12-4</td>
<td>Floodwall Details</td>
</tr>
</tbody>
</table>

Attachment G-12A

<table>
<thead>
<tr>
<th>G-12A-1 thru G-12A-6</th>
<th>Closure Wall and Vertical Abutment Design Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-12A-7 thru G-12A-15</td>
<td>Sheet Pile Design Calculations</td>
</tr>
<tr>
<td>G-12A-16 thru G-12A-18</td>
<td>I-Wall Cap Design Calculations</td>
</tr>
</tbody>
</table>
12.1 Scope

This section of the design memorandum will serve as a basis for final design, plans and specifications for the construction of the Passaic 10 floodwall. The Passaic 10 levee/floodwall system consists of approximately 4,853 feet of earthen levee with approximately 97 feet of floodwall which would serve as the line of protection at an existing exposed 52" diameter sanitary sewer line. A detailed design of the floodwall has been performed and is described in this section of the design memorandum as well as in Appendix J - Passaic 10 Levee System. This section will also describe the conceptual design of two pump stations needed to assist in the removal of interior drainage and drawdown of floodwaters during periods of high frequency floods. The design effort includes:

- Site verification of existing 52" dia. sanitary sewer.
- Design of I-Wall sheet pile floodwall.
- Design of I-Wall floodwall reinforced concrete cap.
- Design of reinforced concrete closure wall around sewer.
- Detailed Design drawings of the Passaic 10 floodwall.

12.2 Feature Description

12.2.1 I-Wall Floodwall

A reinforced concrete closure wall would be required to maintain the integrity of the levee where it would intersect the alignment of a 52" diameter sanitary sewer line. The reinforced concrete closure wall would tie into two reinforced concrete vertical supports which would be attached to a capped sheet pile I-Wall. The sheet pile I-Wall would transition into the levee on both sides of the closure wall. The sheet pile I-Wall was selected to minimize the potential for interference with the pipe concrete supports and footings which are spaced approximately 15 feet on centers. A provision was made for the pipe to be replaced or maintained independent of the wall with minimal disturbance to the closure wall. Refer to Plate Nos. G-12-1 thru G-12-4 for plans, profile, and details of the Passaic 10 floodwall.

12.2.2 Pump Stations

Two pump stations would be incorporated into the levee system as a means to assist in the drainage and drawdown of interior floodwaters during periods of high frequency floods as well as serve as part of the environmental mitigation plan. Each pump station would be designed to maintain an elevation of EL. 168.0
within the interior side of the levee for a certain frequency period. A conceptual design of the pump stations is presented in this section as well as in Appendix J, and a more detailed design of the pump stations will be performed during the plans and specification stage of the project. Each pump station would have one vertical turbine pump with a 15 horsepower motor mounted in a 8 foot diameter by 10 foot deep reinforced concrete overflow sump (manhole). Electrical power to each pump station would be supplied by a new 30 kva pad mounted transformer located near the pump control panel. The pump control panel would be mounted on a steel support frame near the pump station. Power to each pad mounted transformer would be supplied by new underground medium voltage power cables that would connect onto the overhead medium voltage primary lines along Eisenhower Parkway. Reference Appendix J - Passaic 10 Levee System for a further description of the operational aspects of the pumps.

12.3 Design

12.3.1 Criteria

a. EM 1110-2-2502, "Retaining and Floodwalls".

b. EM 1110-2-2504, "Design of Sheet pile Walls".

c. EM 1110-2-2104, "Strength Design of Reinforced Concrete Hydraulic Structures".

d. ACI 318-89, Building Code Requirements for Reinforced Concrete.

g. Drill Hole P-10-1, Soil profile and design parameters.

g. Existing sanitary sewer field data.

h. ETL 1110-2-307, "Flotation Stability Criteria for Concrete Hydraulic Structures".

12.3.2 Design Data

12.3.2.1 Specified Design Stresses

a. Concrete: \(f'c = 3,000 \text{ psi} \)

b. Reinforcement \(fy = 48,000 \text{ psi} \)

c. Sheet Pile Steel (ASTM A328) \(fy = 38,500 \text{ psi} \)
12.3.2.2 Hydraulic Criteria

The top of levee/floodwall was set at EL. 178.1 at the floodwall location. The elevation was based on a hydraulic analysis and risk analysis which is described in Appendix J - Passaic 10 Levee System.

12.3.2.3 Factor of Safety

A factor of safety of 1.5 was applied to the passive and active soil pressures to obtain the penetration depth and deflections of the sheet pile in soil. The factored moments and shear forces on the sheet pile wall given in the Corps program CWALSHT output were compared with the specified limiting yield stress given in LRFD (0.9 fy) to determine the sheet pile section properties. Deflections were then checked to insure serviceability requirements. Load factors specified in EM 1110-2-2104 were used to design the reinforcement for the I-wall caps and the closure wall.

12.3.3 I-Wall Floodwall

The sheet pile wall would consist of standard grade PZ sections driven into the existing ground. Three sections of PZ-35 sheet piling would be driven to EL. 150 below each vertical support, and PZ-27 sheet pile sections would be driven to EL. 158 thereafter. The Corps program CWALSHT was used to design the sheet pile wall. The soil pressures were determined using the fixed surface wedge method.

The reinforced concrete I-wall cap was designed using the load factor method presented in EM 1110-2-2104. The cap would function to transfer all external water loads to the sheet pile I-wall. The applied water pressure was increased by a factor of 1.9 as per EM 1110-2-2502.

The reinforced concrete closure wall would be 10' long and approximately 11.1' high. The wall would be embedded 4 feet into the existing ground to minimize seepage. The wall would serve to transfer the horizontal water forces produced from riverside floodwaters set at EL. 178.1 to the vertical supports at each end of the closure wall. The applied water pressure was increased by a factor of 1.9 as per EM 1110-2-2502.

Since the existing elevated sanitary sewer line is supported by foundations which are spaced 15' on centers, it was assumed that no loads from the sanitary sewer would be applied onto the closure wall. The pipe would be separated from the closure wall by an adhesive strip waterstop to prevent leakage and facilitate independent movement of both elements. A removable reinforced concrete cap set above the pipe would be keyed into the closure wall to prevent horizontal displacement.
The reinforced concrete vertical supports would serve to transfer the water pressures applied to the closure wall to the sheet pile wall. The supports would be 2' X 2' square and approximately 11.1' high. The supports would be tied to the sheet pile wall by reinforcing bars passed through the sheet pile wall. The supports are designed to resist the overturning forces and shear forces produced from horizontal water pressures applied to the supports and to half the closure wall. Refer to Attachment G-12A for the design calculations and computer analysis of the Passaic 10 floodwall.

12.4 Construction

The Passaic 10 floodwall can be constructed using standard construction practices. The construction would involve the excavation of a 4' deep by 4' wide trench along the entire length of the floodwall alignment, driving the required amount of sheet piles, forming and pouring the I-Wall caps, and forming and pouring the closure wall vertical supports and the closure wall. Favorable pile driving conditions exist at the floodwall location and it is anticipated that standard pile driving methods would be sufficient to construct the floodwall. Groundwater may be encountered during the trench excavation requiring dewatering of the trench before pouring the concrete I-Wall caps and closure wall. Following the construction of the floodwall, the levee would be built around the floodwall.
ATTACHMENT G-12A

PASSAIC 10 FLOODWALL

DESIGN CALCULATIONS
TYPICAL PROFILE OF SEWER LINE AT LEVEE CROSSING
COMPUTATION SHEET
U.S. ARMY ENGINEER DISTRICT
WILMINGTON, N C

DATE: 12-13-94
SHEET NO. 2 OF 6

PROJECT: PASSAIC 10 LVER
FEATURE: WALL BETWEEN APARTMENTS - DESIGN

\[W = \rho \cdot y \]

ELEVATION

\[\rho_{max} = \frac{62.4 \text{ kip} \cdot 3 \times (10.6 + 9.6)}{2} = 630 \text{ kip/ft} \]

\[W_B = 1.9 \text{ wt} + 1.5 W_D = 1.9 (650) = 1,200 \text{ kip} \]

\[M_{0} = W_{0} \cdot L^{2} - (1200 \text{ kip}) (10 \text{ ft})^{2} = 15,000 \text{ kip-ft} = 150 \text{ k-ft} \]

\[b = 12'' \quad \rho_{B} = \frac{0.85 (3000) 0.85 \times 87000}{48,800} = 0.0291 \]

\[c = 8'' \quad \rho_{max} = 0.25 \frac{\rho_{B}}{0.25 - 0.0291} = 0.0728 \]

PLAN

\[L_{EM} \text{ SAYS USE THIS FOR 60K STEEL} \]

\[A_{s} = \rho_{bd} (100128)(1/22) = 0.70 \text{ in}^{2} \]

\[T = C \quad (0.19 \text{ in})(48000 \psi) = 0.85 (3000 \psi)(12 \text{ in})(C \text{ in}) \]

\[C = 1.24 \text{ in} \quad \text{check} \quad d = 12'' - 3'' - 0.5'' - 0.5'' = 8'' \]

\[\phi M_{N} = 0.7 (0.79 \text{ in})(48000 \psi) (8'' = 1.24 \text{ in}) = 21.0 \text{ k-ft} \]

\[\frac{12 \text{ in}}{2} \text{ \checkmark} \phi M_{N} > M_U = 21.0 \text{ k-ft} > 15.0 \text{ k-ft} \]

FOR FLEXURAL REINFORCEMENT:

USE #8 BARS @ 12'' OC - HORIZONTALLY ON DRY SIDE
Minimum Steel

<table>
<thead>
<tr>
<th>Location</th>
<th>Steel Area (in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI 318 MIN. STEEL</td>
<td>$A_b = 0.001B_d$</td>
</tr>
<tr>
<td>ACI 7.12.7.1</td>
<td>$A_c = 0.001B_d(12+x)(8+x)$</td>
</tr>
<tr>
<td>ASH = 0.1728 in²/ft</td>
<td>$A_{use} = #4$ bars @ 12" OC</td>
</tr>
</tbody>
</table>

Use #4 bars @ 12" OC.
ABUTMENT DESIGN: TRANSFER WALL LOADS TO ABUTMENT.

PLAN

\[M_L = \frac{62.4 \text{ lbs}}{\text{ft}^3} \times 10.6 \text{ ft} \times \frac{10.47}{2} \times \frac{10.6}{3} = \]

ELEVATION

\[M_L = 24.54 \text{ K-ft}, \quad 3.53 \text{ pl.} = 86.71 \text{ K-ft} \]

\[M_0 = 1.9 M_L = 1.9 \times 86.71 \text{ K-ft} = 164.7 \text{ K-ft} \]

\(\rho_{\text{target}} = \text{still 0.0728} \)

\[b = 24 \text{ in} \]

\[d = 24 - 3.05 - 1.00 = 20 \text{ in} \]

\[A = 0.0728 \times 24 \times 20 = 3.49 \text{ in}^2 \]

\[f_c = 4800 \]

\[T = C \]

\[(4.00 \text{ in}^2 \times 4800 \text{ psi}) = (0.85)(3000 \times 24)(c) \]

\[c = 3.137 \text{ in} \]

\[d = 24 - 3.05 - 1.00 = 20 \]

\[\phi M_N = 0.70 (4 \text{ in}^2)(4800 \text{ psi})(19.134 - 3.137) = 264.5 \text{ K-ft} \]

\[\phi M_N > M_0 \]

\[264.5 > 164.7 \text{ K-ft} \]

USE 4#9 BARS FOR FLEXURE
SHRINKAGE/TEMP STEEL

USE ACI MIN

| ACI 7.12.2.1 | $A_s = 0.0018 \text{ b.w.d.}$ |
| $A_s = 0.0018 \times 241$ in (201) |
| $A_s = 0.864 \text{ in}^2$ |

#4 @ 0.20 in

#5 @ 0.31 in

USE 5 #4 BARS FOR SHRINKAGE IN ABUTMENT

5 #4's @ 3.5 in spa

5 #4 BARS @ 3.5 in SPA
\[V_L = 0.62 \times 1.6 \times 0.6 = 1.36 \, k \text{f} \]
\[V_U = 1.9 \times V_L = 9.5 \times 1.9 = 18.0 \, k \]
\[V_c = 2 \sqrt{30000 \times 24} = 52.6 \, k \]
\[QV_c = 0.85 \times 52.6 = 44.7 \, k \]
\[\text{DOES } V_U < \frac{QV_c}{2} \]
\[18 < \frac{44.7}{2} = 22.3 \, \text{YES} \]

No Shear Steel Required

Use MIN. 2" TIES to hold GAS together.
COMPUTATION SHEET
U.S. ARMY ENGINEER DISTRICT
WILMINGTON, N.C.

DATE 12-14-94 SHEET No. 1 OF 9

COMPUTED BY: MLB CHECKED BY:

PROJECT: PASSAIC 10 LEVEE
FEATURE: WEIGHT TRANSFER FROM WALL TO ABUTMENTS

Assumptions: Pipe will not contribute to wall loads.

The extra weight of cap will be assumed to fill area where pipe is. (Level/Top)

Calculations:

Wall: 1' thick = 1' x 10' x 10.6' x 150psi = 15.9 k

(1) Abutment = 2' x 2' x 10.6' x 150 psi = 6.4 k

\[R_D = \frac{15.9 k + 6.4}{2} = 14.4 k \]

\[R_u = 1.5 \times R_D = 1.5 \times 14.4 = 21.6 k \] (on 2' abutment)
PER FOOT LOADING (ON WALL ONLY)

\[F = \frac{62.4\, \text{lb}}{2.2 \times 10.6 \times 10.6} = 3.5\, \text{k}\, \text{ft} \]

Each abutment receives 5' worth and a 1.9 load factor for live load.

\[F_u = 1.9 (5')(3.5\, \text{k}/\text{ft}) = 33.3\, \text{k} \] (live)

Moment arm is 1/3 of height 0.6

\[167.5\, \text{ft} + 10.6 = 171.03\, \text{ft} \] (location)

CWA SHHT analyzes shank only on a per-foot basis, therefore any loads applied to the 2 foot abutment will be halved.
WALL DL

- **Factored WALL DL** =
- **Factored ABUT. DL** =

\[
R_v = 21.6 \text{ k}
\]

WALL LL

- **WALL LL = F_u = 33.3 k**
- **DIVIDE ALL LOADS BY 2 TO INPUT INTO CWALSHT PROGRAM**

- **WALL DL = F = 10.8 k**
- **ABUT DL = 3**
- **WALL LL = 16.1 k @ 770.23' MLS**

RUN CWALSHT
<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>'PASSAIC 10 LEVEE'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>'SHEETPILE DESIGN PENETRATION FOR WALL-COLUMN'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1020</td>
<td>CONTROL</td>
<td>171.50</td>
<td>171.50</td>
<td>171.50</td>
<td></td>
</tr>
<tr>
<td>1030</td>
<td>WALL</td>
<td>171.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1040</td>
<td>SURFACE RIGHTSIDE 2</td>
<td>500.00</td>
<td>171.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1050</td>
<td>.00</td>
<td>171.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1060</td>
<td>SURFACE LEFTSIDE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1070</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1080</td>
<td>SOIL RIGHTSIDE STRENGTH</td>
<td></td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1090</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1130</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1140</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1160</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1170</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1180</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1190</td>
<td>120.00</td>
<td>115.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>WATER ELEVATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td>VERTICAL LINE RIGHTSIDE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1220</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>HORIZONTAL LINE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1240</td>
<td>171.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>FINISH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROGRAM CWSLH: DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 94/12/16
TIME: 10:36.50

1. -- READING:
 * PASSAIC 10 LEVEE
 * SHEETPILE DESIGN_PENETRATION FOR WALL-COLUMN

2. -- CONTROL
 CANTILEVER WALL DESIGN
 LEVEL 1 FACTOR OF SAFETY FOR ACTIVE PRESSURES = 1.50
 LEVEL 1 FACTOR OF SAFETY FOR PASSIVE PRESSURES = 1.50

3. -- WALL DATA
 ELEVATION AT TOP OF WALL = 178.10 (FT)

4. -- SURFACE POINT DATA
4A. -- RIGHTSIDE
 DIST. FROM WALL (FT) ELEVATION (FT)
 0.00 171.50
 500.00 171.50

4B. -- LEFTSIDE
 DIST. FROM WALL (FT) ELEVATION (FT)
 0.00 171.50
 500.00 171.50

5. -- SOIL LAYER DATA
5A. -- RIGHTSIDE LAYER DATA
 LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
 LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT
 ANGLE OF WALL
 ANGLE OF -- <SAFETY->
 SAT. WGH'T. MOIST WGT. FRICTION COHESION FRICTION ADH.- ELEV. SLOPE ACT. PASS.
 (PCF) (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)
 120.00 115.00 .00 1000.0 .00 .0 167.90 .00 DEF DEF
 126.00 120.00 .00 2000.0 .00 .0 162.50 .00 DEF DEF
 126.00 120.00 .00 2000.0 .00 .0 159.70 .00 DEF DEF
 126.00 120.00 36.00 .0 155.00 .00 DEF DEF
 126.00 120.00 37.00 .0 155.00 .00 DEF DEF

5B. -- LEFTSIDE LAYER DATA
 LEVEL 2 FACTOR OF SAFETY FOR ACTIVE PRESSURES = DEFAULT
 LEVEL 2 FACTOR OF SAFETY FOR PASSIVE PRESSURES = DEFAULT
 ANGLE OF WALL
 ANGLE OF -- <SAFETY->
 SAT. WGH'T. MOIST WGT. FRICTION COHESION FRICTION ADH.- ELEV. SLOPE ACT. PASS.
 (PCF) (PCF) (DEG) (PSF) (DEG) (PSF) (FT) (FT/FT)
 120.00 115.00 .00 1000.0 .00 .0 167.90 .00 DEF DEF
 126.00 120.00 .00 2000.0 .00 .0 162.50 .00 DEF DEF
 126.00 120.00 .00 2000.0 .00 .0 159.70 .00 DEF DEF
 126.00 120.00 36.00 .0 155.00 .00 DEF DEF
 126.00 120.00 37.00 .0 155.00 .00 DEF DEF

6. -- WATER DATA
 UNIT WEIGHT = 62.40 (PCF)
 RIGHTSIDE ELEVATION = 178.10 (FT)
 LEFTSIDE ELEVATION = 167.00 (FT)
 NO SEEPAGE
VII. - SURFACE LOADS
VII.A. - RIGHTSIDE SURFACE LOADS
VII.A.1. - SURFACE LINE LOADS
DIST. FROM LINE LOAD
WALL (FT) (PLF)
0.00 (10800.00) 10.8K

VII.A.2. - SURFACE DISTRIBUTED LOADS
NONE

VII.B. - LEFTSIDE SURFACE LOADS
NONE

VIII. - HORIZONTAL LOADS
VIII.A. - EARTHQUAKE ACCELERATION = .00 (G'S)
VIII.B. - HORIZONTAL LINE LOADS
ELEVATION LINE LOAD
(FT) (PLF)
171.03 (16000.00) 16.6K

VIII.B. - HORIZONTAL DISTRIBUTED LOADS
NONE
PROGRAM CWALSHT-DESIGN/ANALYSIS OF ANCHORED OR CANTILEVER SHEET PILE WALLS
BY CLASSICAL METHODS

DATE: 94/12/16
TIME: 10.37.05

I. --HEADING
"PASSAIC 10 LEVEE"
"SHEETPILE DESIGN_penetration FOR WALL-COLUMN"

II. --SUMMARY
RIGHTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.
LEFTSIDE SOIL PRESSURES DETERMINED BY FIXED SURFACE WEDGE METHOD.

| Wall Bottom Elevation (FT) | 150.48 |
| Penetration (FT) | 21.02 |

At Elevation (FT) : 162.45

Max. Scaled Defl. (LB-IN3) : 3.0392x10
At Elevation (FT) : 178.10

(Note: Divide scaled deflection by modulus of elasticity in psi times pile moment of inertia in in**4 to obtain deflection in inches.)
Penetration @ Abutment = 150.48 ft MSL
Max Bending Moment Conc @ 167.90' MSL = 53.3 k-ft
Steel @ 144.5' MSL = 92.9 k

Concrete Abutment:

\[M_v = \frac{53.3 \text{ k-ft} \times 2 \text{ ft}}{} = 106.6 \text{ k-ft} \]
\[\phi M = 316 \text{ k-ft} \]

Sheet Pile Steel:

\[\sigma = \frac{M}{S} \]

Limiting Stress in LRFD

Assume 0.9 ft

\[0.9 \times 360 \text{ ksi} = 324 \text{ ksi} \text{ AS 328} \]
\[0.9 \times 500 \text{ ksi} = 450 \text{ ksi} \text{ AS 572} \]

Therefore, the required section modulus for A572:

\[S = \frac{M}{\sigma} = \frac{92.9 \text{ k-ft} \times 12 \text{ in}}{} = 248 \text{ in}^3 \]

For AS 328:

\[S = \frac{M}{\sigma} = \frac{92.4 \text{ k-ft} \times 12 \text{ in}}{} = 342 \text{ in}^3 \]

Bethlehem Steel Sheet Pile

© 1982

Use A328 PE35 at Abutment
Use A328 PE27 elsewhere
DEFLECTION

Check Assumption that #27 P27 will not work.

DEFLECTION FROM COMPUTER PRINTOUT:

\[
\Delta = \frac{3.0392 \times 10^{10}}{E I}
\]

\[
\Delta = \frac{3.0392 \times 10^{10} \times 2}{29,000,000 \times (30.2 h^3)(12 h)}
\]

\[
\Delta = \frac{5.18}{h^2} \text{ in.
}
\]

Too High

Can P27 fit inside 2 P27?

Yes

Square Section:

Check \(\Delta\) with #328 P235

\[
\Delta = \frac{3.0392 \times 10^{10} \times 2}{(29,000,000)(48.5)(14.7)}
\]

\[
\Delta = 2.9 \text{ in. Much better.}
\]
COMPUTATION SHEET

U.S. ARMY ENGINEER DISTRICT

WILMINGTON, N C

DATE 12-16-94

COMPUTED BY: MUB

CHECKED BY:

PROJECT: PASSAIC 10 LEVEE

FEATURE: Compute I-WALL weight per foot

<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>AREA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>178.1</td>
<td>(178.1 - 171.5) x 1' = 6.6</td>
</tr>
<tr>
<td></td>
<td>1' x 1.5' = 1.5</td>
</tr>
<tr>
<td></td>
<td>1' x 2' = 2.0</td>
</tr>
</tbody>
</table>

\[\sum 16.1 \text{ ft}^2 \times 1' \times \frac{1800 \text{ lb}}{\text{ft}^3} = 292 \text{ k} \]

\[\frac{\text{wt}}{\text{ft of wall}} = 2.92 \text{ k} \]

INPUT INTO SHEET PILE PROGRAM:

\[W_0 = 1.5 \times 2.92 \text{ k/ft} = 3.63 \text{ k/ft} \]
Determine the Steel Needed at the I-Wall Sections

Section 1:
- $M_L = 62.94 \text{ kft} 	imes 6.64 \text{ ft}^2 = \frac{170}{2} \times \frac{1}{3} = 5.68 \text{ kft}$
- $M_{u_L} = 19 \times 2.99 = 56.8 \text{ kft}$

Section 2:
- $M_L = 62.94 \text{ kft} 	imes 10.67 \text{ ft}^2 = \frac{170}{2} \times \frac{1}{3} = 12.38 \text{ kft}$
- $M_{u_L} = 19 \times 12.38 = 23.53 \text{ kft}$

Check 1st Section First:

- Estimate $d = 8 \text{ in.}$
- Target $\rho = 0.15$, $\rho_{sl} = 0.15 	imes 0.0291$
- $\rho = 0.0044$

- Target $A_c = \rho_{sl} \rho d = 0.0044 \times (12 \times 8^2) = 0.42 \text{ in.}^2$

- $d = 12 - 3.3 - 2.5 - 2.75 = 8.125$

- $T = \frac{C}{(48,000)(0.44)} = 0.85 \left(\frac{C}{\text{in.}}\right)(3000)$

- $C = 0.69 \text{ in.}$

- $\phi M_N = 0.90 \left(\frac{0.44}{48,000}\right) \left(0.125 - 0.125\right) = 12.3 \text{ kft}$

- $\phi M_N = M_{u_L}^2$

- $12.3 \geq 5.68 \text{ kft}$

- Shrinkage steel: $0.0018 A_c = 0.1755 \text{ in.}^2 = 1 \text{ in.}^2$ @ $P = P"$
Using the bars down in the lower 2 sections, will they be o.k.? \(M_v = 23.53 \text{ k-ft} \)

\[
C = \frac{f_y A_s}{0.85 (12in)(18)} = \frac{48000(0.44^{12})}{0.85(12\text{in})(18)} = 0.69 \text{ in}
\]

\[
d = 24\text{in} - 3\text{in} \cos - 0.5 - 0.75 = 20.125 \text{ in}
\]

\[
\phi M_v = 0.9 \times 48000 \times \left(24.125 - 0.69 \right) = 31.53 \text{ k-ft}
\]

\[
\phi M_v > M_v = 22
\]

\[
31.53 > 23.53 \text{ k-ft} \quad \text{OK}
\]
APPENDIX G

SECTION 13

CLOSURE STRUCTURES
TABLE OF CONTENTS

APPENDIX G - STRUCTURAL

Section 13 - Closure Structures

13.1 Scope. .. G-13-1
13.2 Feature Description .. G-13-1
 13.2.1 Alternatives .. G-13-1
 13.2.1.1 Swing Gates .. G-13-1
 13.2.1.2 Miter Gates .. G-13-2
 13.2.1.3 Roller Gates .. G-13-2
 13.2.1.4 Trolley Gates G-13-4
 13.2.2 Recommended Gate Type G-13-4
 13.2.3 Foundations ... G-13-4
13.3 Design .. G-13-5
 13.3.1 Criteria .. G-13-5
 13.3.2 Design Data .. G-13-5
 13.3.2.1 Specified Design Stresses G-13-5
 13.3.2.2 Hydraulic Criteria G-13-5
 13.3.2.3 Factors of Safety G-13-6
 13.3.2.4 Pile Capacities G-13-6
 13.3.3 Gates .. G-13-6
 13.3.4 Foundation ... G-13-8
13.4 Construction .. G-13-9

List of Tables

Table 1 Advantages and Disadvantages of Common Closure Structures
Table 2 Gate Closure Structure Designs
Table 3 Pile Design

List of Drawings

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-13-1</td>
<td>Typical Swing Gate Closure</td>
</tr>
<tr>
<td>G-13-2</td>
<td>Typical Gate Closure Support Structure</td>
</tr>
<tr>
<td>G-13-3</td>
<td>Typical Railroad Closure Support Structure</td>
</tr>
<tr>
<td>G-13-4</td>
<td>Closure Structure Wall - Levee Transition</td>
</tr>
<tr>
<td>Plate No.</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>G-13-5</td>
<td>Typical Swing Gate</td>
</tr>
<tr>
<td>G-13-6</td>
<td>Typical Miter Gate</td>
</tr>
<tr>
<td>G-13-7</td>
<td>Typical Rolling Gate with Two Lines of Wheels</td>
</tr>
<tr>
<td>G-13-8</td>
<td>Typical Rolling Gate with Stabilizing Trolleys</td>
</tr>
<tr>
<td>G-13-9</td>
<td>Typical Rolling Gate - L-Frame</td>
</tr>
<tr>
<td>G-13-10</td>
<td>Typical Trolley Gate</td>
</tr>
</tbody>
</table>

Attachment G-13A

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-13A-1 thru G-13A-7</td>
<td>Details and Load Diagrams of Swing Gates</td>
</tr>
<tr>
<td>G-13A-8 thru G-13A-10</td>
<td>Pile Capacity Calculations</td>
</tr>
<tr>
<td>G-13A-11 thru G-13A-14</td>
<td>Railroad Closure Foundation Analysis</td>
</tr>
<tr>
<td>G-13A-15 thru G-13A-17</td>
<td>Pedestrian/Vehicular Closure Foundation Analysis</td>
</tr>
</tbody>
</table>
13.1 Scope

The primary function of this section of the design memorandum is to ascertain a reasonable cost estimate for the construction of each type of closure structure. A sufficient design effort has been conducted to achieve this goal. Further design studies will be performed during the next level of design. The design effort currently includes:

- Investigation of different types of gated closure structures.
- Gate selection.
- Preliminary design of two types of closure structure foundations.
- Preliminary design drawings of gates and foundations.
- Quantity Take-Offs.

13.2 Feature Description

Closure structures in levees and/or floodwalls usually consist of either stoplogs or gates. Stoplogs were removed from consideration due to their relatively long lead time for installation, requirement for a storage facility, and need for intermediate supports for wide openings. The most common types of gated closure structures are swing, miter, roller, and trolley gates. A summary of the advantages and disadvantages of these gates is provided in Table 1.

13.2.1 Alternatives

13.2.1.1 Swing Gates

Swing gates are steel plate structures composed of two or more horizontal girders, vertical intercostals, vertical end diaphragms, diagonal bracing, and a skin plate as shown on Plate No. G-13-5. Swing gates are supported by top and bottom hinges attached on one side to a supporting structure such as a reinforced concrete wall. The gates are closed with the use of latches that are attached to the supporting structure on the opposite side of the opening.

Single leaf swing gates are practical for opening widths up to about 30 feet. These types of gates are advantageous because they require a short lead time to close and do not require skilled personnel or equipment to operate. Greater opening widths can be spanned by using double leaf gates with either a removable center post or diagonal tie-back linkages, however, double leaf gates with a removable center post have some disadvantages since they require a facility to store the center posts and require more time to close due to the installation of the center posts.
Closure provisions for both types of swing gates should include the use of winches or motor vehicles to close the gates during strong winds, and sufficient right-of-way to accommodate the swing of the gates.

13.2.1.2 Miter Gates

Miter gates consist of two leaves that form a three-hinged arch when the gates are in the closed position as shown on Plate G-13-6. The steel framing of the leaves is similar to the framing of the swing gates except for the addition of the adjustable diagonal tension rods. The rods are required in order to prevent twisting of the gate leaves due to their dead load and must be properly tensioned after the gates are installed so that the gates hang plumb and miter properly.

Miter gates are suitable for opening widths of up to 100 feet without the use of a center support, the closure can be made quickly without the use of skilled personnel. Like swing gates, they require adequate right-of-way for opening and closing and can be difficult to operate during high winds. However, their support structures are more complex to design and more expensive to build.

13.2.1.3 Roller Gates

Roller gates are also composed of a steel plate structure similar to swing gates. The gates are supported by wheels that roll on tracks embedded in the sill across the closure opening. The gates are operated by a cable attached to a truck motorized winch or connected directly to a vehicle which pulls the gate open or closed. Three types of rolling gates are described.

The first type is supported and stabilized against overturning by two longitudinal lines of support wheels as shown on Plate No. G-13-7. This type of gate is adaptable to wide openings, can be closed without the use of skilled personnel, and does not require considerable right-of-way. Jacks would have to be provided to lift the wheel assemblies from the tracks during closure periods unless the wheels were designed to accommodate the lateral deflection of the bottom girder.

The second type of rolling gate is supported by a single longitudinal line of wheels and is stabilized laterally by an extended top girder supported by trolleys attached to the top of the support structure as shown on Plate No. G-13-8. This type of gate is practical for opening widths up to about 30 feet. This closure also allows for quick closure without the use of skilled personnel.

The third type of rolling gate consists of a series of L-shaped frames interconnected by horizontal and diagonal members. The gate is supported by two longitudinal lines of wheels as shown
<table>
<thead>
<tr>
<th>ADVANTAGES</th>
<th>SWING: SINGLE or DOUBLE</th>
<th>MITER</th>
<th>ROLLING: SINGLE WHEEL</th>
<th>ROLLING: DOUBLE WHEEL</th>
<th>TROLLEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>practical width:</td>
<td>30 - 40 ft</td>
<td>80 - 100 ft</td>
<td>30 ft</td>
<td>60 ft</td>
<td>60 ft</td>
</tr>
<tr>
<td>skilled persons/equipment not</td>
<td>**** (single)</td>
<td>***</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>required for operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>short lead time</td>
<td>**** (single)</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>suitable for large openings</td>
<td>**** (double)</td>
<td>****</td>
<td></td>
<td>**** "L" frame</td>
<td></td>
</tr>
<tr>
<td>comparatively low weight</td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no center support required</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>requires small storage space</td>
<td></td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>can be designed for any</td>
<td></td>
<td></td>
<td></td>
<td>**** "L" frame</td>
<td></td>
</tr>
<tr>
<td>opening width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shop fabricated in sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>good seal on irregular surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

DISADVANTAGES					
operating R.O.W.	✓	✓	✓	✓	
complex shop fabrication	✓	✓			
storage facility req'd					
double-leaf					
requires retractable seal	✓	✓	✓	✓	✓
difficult to operate in wind	✓	✓			
complex/expensive support	✓				
structure					
requires level storage area	✓	✓		✓	✓
need wheel jacks	✓	✓			
requires wide-level sill	✓			✓	✓
requires overhead support					✓
member					

KEY: * = minor advantage **** = strong advantage ✓ denotes disadvantage exists
on Plate No. G-13-9. This type of gate can be designed for any opening width and the closure can be accomplished without the use of skilled personnel. Unlike the previous two gates, this gate requires a wide sill to accommodate the installation of tracks and hook anchorages.

13.2.1.4 Trolley Gates

Trolley gates consist of top and bottom horizontal girders, secondary framing, and a skin plate as shown on Plate No. G-13-10. The gates are suspended from trolleys running on an overhead rail and beam attached to the supporting structure. The gates are opened and closed by a winch similar to that used for roller gates. Trolley gates are practical for opening widths up to approximately 60 feet. The closure can be performed quickly without the use of skilled personnel. A good seal against irregular surfaces can be attained with this gate, however, the gate is susceptible to its overhead support members being damaged by vehicles or other sources.

13.2.2 Recommended Gate Type

For this project, a swing gate closure was chosen due to the short lead time required to make closures with swing gates, the sufficient amount of right-of-way available around most closure sites, the ability to perform the closure with unskilled personnel, and the relative reliability of this gate versus the other types of gates considered. In general it would take about 45 minutes to complete the closure of a roller gate compared to 15 minutes for a typical swing gate. Roller gates run on tracks which could become filled with dirt and foreign objects that would need to be removed prior to making the closure. If this was overlooked during the closure, the gate could come off its track which would then require additional time and equipment to complete the closure.

A formal cost analysis for each gate type was not performed, however, swing gates should be less expensive than the other types of gates considered. Swing gates have lower erection costs since they do not require tracks, wheel assemblies, or overhead rails as do roller and trolley gates, and require less complicated shop fabrication than miter gates.

13.2.3 Foundations

Foundations for two types of swing gate closure structures were designed, a typical pedestrian/vehicular closure and a railroad closure. The pedestrian/vehicular closure structure was designed to resist the hydrostatic forces produced from a 10 foot high by 30 foot wide gate. All loads would be transferred to two 3' X 3' vertical cantilevered reinforced concrete members which would transfer the applied loads to two separate footings of the structure. The typical railroad closure structure is based on the
design of a Southern Railroad closure done by the New Orleans District. This design would have one continuous footing to handle the train axle loads. The use of a pile founded structure was chosen due to the large applied forces on the soil below the structure, poor soil conditions, and the high groundwater table.

13.3 Design

13.3.1 Criteria

b. EM 1110-2-2105, 31 March 1993, "Design of Hydraulic Steel Structures".

c. EM 1110-2-2502, 29 Sept. 1989, "Retaining and Flood Walls".

d. EM 1110-2-2504, 31 March 1994, "Design of Sheet Pile Walls".

g. ACI 318, "Building Code Requirements for Reinforced Concrete".

13.3.2 Design Data

13.3.2.1 Specified Design Stresses

a. Concrete

\[f'c = 3,000 \text{ psi} \]

b. Reinforcement Steel

\[f_y = 60,000 \text{ psi} \]

c. Structural Steel (ASTM A36)

\[f_y = 36,000 \text{ psi} \]

13.3.2.2 Hydraulic Criteria

The location and size of all closure structures were identified based on a field investigation and survey. All closure structures are shown on the layout plans for the central basin and tidal area protection levee/floodwall systems in Sections 10 and 11 of this appendix. Sill elevations for each closure structure were based on existing elevations at the prescribed site, and top of gate elevations were placed to align with the top of the adjacent floodwall or levee.
The dynamic forces due to wave action were considered for the tidal area protection floodwalls.

13.3.2.3 Factors of Safety

The structural design of the piles for the closure structures was based on one load condition and was considered a normal load case. The factor of safety for this normal load case was taken to be 2.25.

13.3.2.4 Pile Capacities

Due to the poor quality of the underlying soil, a pile founded structure was chosen for design. Reference Appendix E - Geotechnical for a further description of the existing soil conditions. The pile foundations were designed by transferring all loads applied to the structure through a rigid pile cap and converting the applied loads into axial forces acting on each pile. An ultimate capacity of a timber pile in soil was determined using the methods presented in EM 1110-2-2906. The above factor of safety was then applied to the ultimate pile capacity to obtain an allowable pile capacity for the normal load case.

13.3.3 Gates

Nonbreaking wave forces were determined for the closures located along the lower portions of the Kearny Point levee/floodwall system using stillwater elevations and wave data. The calculated nonbreaking wave forces using this data were less than the calculated hydrostatic forces produced from a maximum flood load with the water level placed at the top of the gate on the unprotected side. Hence, the gate was designed to resist one normal load case with the maximum hydrostatic load applied during a flood event.

The steel swing gates were designed in accordance with the Load and Resistance Factor Design Criteria for Local Flood Protection Project Closure Gates as provided in EM 1110-2-2105. The gate design is shown on Plate No. G-13-1 titled "Typical Swing Gate". A single swing gate is shown. A double swing gate would have two leaves with each leaf attached to hinges at the vertical support member and would meet at the center of the opening. The double leaf gates would have to be stabilized by either a removable center post or by diagonal tie-back linkages.

The structural members including the skin plate, the intercostals and the top and bottom girders were designed for several typical gate sizes. For example, the intercostals were designed for 8 foot and 10 foot high gates. The girders were designed for 8 foot and 10 foot high gates with opening widths (span lengths) of 15, 25, and 30 feet. The closures with 50 and 60 foot opening widths would have two leaves with equivalent span
lengths of 25 and 30 feet respectively. The skin plate was designed assuming a 2 foot span length between intercostals. Refer to Attachment G-13A for a graphical representation of the design loads applied to the gates.

The results of the structural design are shown in Table 2. This table shows the opening width, gate height, and primary structural member sizes for each size gate. The gates with opening widths of 30 feet or less would be single swing gates and gates with opening widths greater than 30 feet would be double swing gates. Double swing gates would have two gate leaves that meet at the center of the opening. The gate dimensions "W" and "H" and the structural members "A", "B", and "C" are keyed to Plate No. G-13-1 titled "Typical Swing Gate".

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>OPENING WIDTH "W" (FT)</th>
<th>GATE HEIGHT "H" (FT)</th>
<th>INTERCOSTAL A</th>
<th>BOTTOM GIRDER B</th>
<th>TOP GIRDER C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6.5</td>
<td>WT 4X6.5</td>
<td>W12X26</td>
<td>W12X16</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>7.0</td>
<td>WT 4X6.5</td>
<td>W12X26</td>
<td>W12X16</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>10.0</td>
<td>WT 5X7.5</td>
<td>W14X30</td>
<td>W14X22</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>7.5</td>
<td>WT 4X6.5</td>
<td>W12X26</td>
<td>W12X16</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>8.5</td>
<td>WT 5X7.5</td>
<td>W14X30</td>
<td>W14X22</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>6.5</td>
<td>WT 4X6.5</td>
<td>W16X40</td>
<td>W16X26</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>7.6</td>
<td>WT 4X6.5</td>
<td>W16X40</td>
<td>W16X26</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>8.0</td>
<td>WT 4X6.5</td>
<td>W16X50</td>
<td>W18X40</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>9.0</td>
<td>WT 5X7.5</td>
<td>W21X62</td>
<td>W21X44</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>6.0</td>
<td>WT 4X6.5</td>
<td>W16X40</td>
<td>W16X26</td>
</tr>
<tr>
<td>11</td>
<td>60</td>
<td>7.5</td>
<td>WT 4X6.5</td>
<td>W18X50</td>
<td>W18X40</td>
</tr>
</tbody>
</table>

The steel gates would receive three coats of a high build surface tolerant epoxy paint system with an SSPC-SP6 (commercial blasting) surface preparation. This system has been shown to last approximately ten to fifteen years in seacoastal and heavy industrial areas. Also, since the gates would receive minimal if any maintenance during the life of the structures, all of the members described above were nominally increased in size to account for section loss due to corrosion.
13.3.4 Foundation

The use of piles was chosen to found the closure structures. Piles were chosen due to the large forces of the loading conditions acting on the soil below the structure and the existence of weak silts and clays in the borings. Also, it was apparent by site visits to the tidal area protection and central basin sites that most waterfront structures are founded on piles, and engineering plans of nearby structures include pile foundations.

Timber piles were selected due to their sufficient capacity and the fact that they are considered economical for this small application. Chemically treated timber piles tapered from 12" to 7" in diameter were selected.

The design of the foundation was governed by bearing capacity and settlement criteria of piles in soil. Criteria for bearing capacity and settlement are included in EM 1110-2-2906 "Design of Pile Foundations". Refer to Attachment G-13A for the pile design computations for the closure structures.

The ultimate pile capacity based on tip bearing and skin resistance was calculated for a 40 ft. timber pile fully embedded in the soil. This value was calculated in accordance with criteria given in EM 1110-2-2906 "Design of Pile Foundations" and guidance from R. Koerner (1984). The theoretical factor of safety for each pile was arrived at by dividing the ultimate pile capacity by the actual pile axial load and comparing it with a factor of safety of 2.25 specified for a normal loading condition.

A pile group configuration along with the number of piles required to resist the design load was arrived at through trial and error. The critical loading condition involved the weight of the gate and the hydrostatic forces from the maximum flood load applied from the gate to each gate support and transferred through the rigid pile cap and converted into axial forces applied to the piles. The solution with the smallest base dimensions and least amount of piles was selected. The resultant components of the pile reactions were computed since some of the piles would be battered to resist the horizontal forces. The maximum load seen by any of the piles in the designed configuration was 18.4 kips (for the pedestrian/vehicular closures). Comparing the Q_{actual} to Q_{ult} yields a factor of safety of 6.5 which is greater than the specified factor of safety of 2.25. Table 3 below summarizes the loading conditions for the railroad closure structure and the pedestrian/vehicular closure structure.
Table 3. Pile Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Size ft</th>
<th>(\phi M_0) k-ft/ft</th>
<th>(\phi V) k-ft</th>
<th>(\phi H) k-ft</th>
<th>(Q_{ult})</th>
<th>(Q_{actual})</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad</td>
<td>12x18x3</td>
<td>303.9</td>
<td>207.8</td>
<td>110.2</td>
<td>119.6 K</td>
<td>13.20 K</td>
<td>9.1</td>
</tr>
<tr>
<td>Ped/Veh</td>
<td>10x15x3</td>
<td>403.2</td>
<td>149.6</td>
<td>97.9</td>
<td>119.6 K</td>
<td>18.40 K</td>
<td>6.5</td>
</tr>
</tbody>
</table>

The pedestrian/vehicular closure structures would be supported directly on two reinforced concrete pile caps with dimensions of 15 feet by 10 feet by 3 feet thick below each gate support. A reinforced concrete sill would extend between the two pile caps. The tops of the piles would be embedded at least 6" into the cap. An array of five rows of three piles each was selected for each pile foundation. All five rows of piles would be battered at 2.5V to 1H to resist the horizontal loads on the structure. Reference to Plate No. G-13-2 for details of the pedestrian/vehicular closure structure.

The closure structure foundation for the railroad closures would be larger than the pedestrian/vehicular closure. The pile cap would be continuous across the gate opening and be 18 feet wide by 3 feet thick by the length of the closure. Piles were placed under the gate supports and under each rail. The piles under the gate supports were placed in an array of six rows of four piles each and were designed to resist half of the gate, structure weight and hydrostatic pressures. Of the six rows of piles, four of them would be battered at 2.5V to 1H to resist the horizontal loads on the structure. The piles under the railroad tracks were designed to resist the Cooper E80 axle loads. Refer to Plate No. G-13-3 for details of the railroad closure.

Closures adjacent to levees will require a transition section between the closure structure walls and the levee. The transition section is 35 feet long and consists of sheet piling and a sloped concrete cap and is based on the detail given in EM 1110-2-2502. Reference Plate No. G-13-4 for the closure - levee transition.

See Appendix E - Geotechnical for a discussion of the results of the settlement and seepage analysis performed for the foundation.

13.4 Construction

The closure structures would be built using fairly simple and standard construction practices. The top of the footings for the closure structures would be located two to three feet below existing grade, therefore, the excavation for the footings would not require any type of temporary bracing. Concrete construction would be performed in the dry and no special dewatering methods
would be required. A sheet pile cutoff would be driven on the river side to prevent any seepage and/or erosion under the footings.

Favorable pile driving conditions exist at most of the closure structure sites and it is anticipated that standard pile driving methods would be sufficient for construction. However, a few locations at the tidal area protection and central basin sites contain a considerable amount of development along the water front, and it is anticipated that occasional obstructions within the fill at these locations may be encountered during the pile driving. Any remnant building foundations, abandoned pipes, construction rubble, wood, tree stumps, etc. uncovered by the foundation excavation would have to be removed. Special measures at these locations may be required to penetrate obstructions or dense zones below the immediate surface to facilitate the installation of the piles.
ATTACHMENT G-13A

THE FOLLOWING SHEETS REPRESENT A SUMMARY OF THE CONTROLLING DESIGN LOAD CASES FOR THE CLOSURE STRUCTURES. COMPLETE DESIGN CALCULATIONS AND QUANTITIES ARE LOCATED IN THE OFFICE OF THE PASSAIC RIVER DIVISION OF THE US ARMY CORPS NEW YORK DISTRICT.
VERTICAL SECTION THRU GATE
LOAD, SHEAR, & MOMENT DIAGRAMS FOR INTERCOSTALS
30' Wide x 8' High Swing Gate

![Diagram of the gate showing dimensions and cross-sectional analysis.]

INTERCOSTAL SECTION

\[A = 0.25 \times 24 + 1.48 = 7.48 \text{ in}^2 \]

\[\bar{y} = 6.0 \times 4.07 + 1.48(0.953)/7.48 = 3.45 \text{ in} \]

Moment of Inertia about Weak Axis

\[I_{WT} = 1.05 \text{ in}^4 \]

\[I_{Plate} = \frac{1}{12} \times 0.25 \times 24^3 = 288.0 \text{ in}^4 \]

\[I_{Total} = 1.05 + 288.00 = 289.05 \text{ in}^4 \]

\[n_y = \sqrt{289.05/7.48} = 6.22 \text{ in} \]

Moment of Inertia about Strong Axis

\[I_{WT} = 2.15 + 1.48(3.45 - 0.953)^2 = 11.38 \text{ in}^4 \]

\[I_{Plate} = \frac{1}{12} \times 24 \times 0.25^3 + 6.0(0.745 - 0.125)^2 = 2.34 \text{ in}^4 \]

\[I_{Total} = 11.38 + 2.34 = 13.72 \text{ in}^4 \]

\[S_{(min)} = \frac{I}{C} = \frac{13.72}{3.45} = 3.98 \text{ in}^3 \]

\[Z_x(min) = 1.10 \times 5 = 4.38 \text{ in}^3 \]

C6
GATE ELEVATION
SHOWING DIAGONAL LOAD DUE TO D.L. TORSION
VERTICAL SECTION THRU GATE
INTERCOSTAL SECTION

\[A = 0.25 \times 24 + 1.77 = 7.77 \text{ in}^2 \]

\[\bar{y} = \frac{(6.0 \times 5.07 + 1.77 \times 1.36)}{7.77} = 4.22 \text{ in} \]

Moment of Inertia about Weak Axis

\[I_{\text{wt}} = 1.09 \text{ in}^4 \]

\[I_{\text{plate}} = \frac{1}{12} \times 0.25 \times 24^3 = 288.0 \text{ in}^4 \]

\[I_{\text{total}} = 1.09 + 288.00 = 289.09 \text{ in}^4 \]

\[r_y = \sqrt{289.09/7.77} = 6.10 \text{ in} \]

Moment of Inertia about Strong Axis

\[I_{\text{wt}} = 4.35 + 1.77(4.22 - 1.36)^2 = 18.83 \text{ in}^4 \]

\[I_{\text{plate}} = \frac{1}{12} \times 24 \times 0.25^3 + 6.0(0.97 - 0.125)^2 = 4.32 \text{ in}^4 \]

\[I_{\text{total}} = 23.15 \text{ in}^4 \]

\[S_{(\text{min})} = \frac{I}{C} = \frac{23.15}{4.22} = 5.49 \text{ in}^3 \]

\[Z_{\text{min}} = \frac{1.10 \times 5}{1.10 \times 5.49} = 6.03 \text{ in}^3 \]

G-13A-6
30' Wide x 10' High Swing Gate

LOAD, SHEAR, & MOMENT DIAGRAMS FOR INTERCOSTALS
Pile Capacity

References: Construction and Geotechnical Methods in Foundation Engineering, Koerner 1984

Ultimate Pile Load \[Q_0 = Q_p + Q_s \]
\[Q_p = A_p \cdot P_o \]
\[Q_s = A_s \cdot S_o \]

For point resistance (soil layer beneath top 30 feet)

\[P_o = c \cdot N_c + g \cdot N_f + \frac{f}{2} \cdot B \cdot N_b^2 \]
\[q = \alpha \cdot y' \cdot z \]

\(c = \) cohesion
\(g = \) overburden pressure
\(N_c, N_f = \) bearing capacity factors
\(\alpha = \) overburden reduction value
\(y' = \) effective (submerged) unit wt. of soil
\(D = z = \) depth of embedment
\(B = \) Area of Pile

\[q = 0.44 \cdot (57.5 \text{ pcf}) \cdot 40' = 1012 \text{ psf} \]

\[P_o = c \cdot N_c + g \cdot N_f \text{ for } c \neq 0 \text{ soils} \]
\[= 400(10.98) + 1012 \cdot (3.94) \]
\[= 4392 + 3987 \]
\[= 8379 \text{ psf} \]

For skin resistance (in top 40' layer -- silly SAND) Assume:

\(c = 0 \)
\(\phi = 28^\circ \)
\(\delta = 125 \text{pcf} \)
\(y' = 62.5 \text{pcf} \)

\[S_o = C_o + \gamma \tan \delta \]
\[\gamma = K \cdot y'z \]

\(S_o = \) unit skin resistance at the midpoint of the stratum in question
\(K = \) earth pressure coefficient (Table 2.11)
\(C_o = \) adhesion, which is a function of \(c \) (Table 2.12)
\(\delta = \) pile to soil friction angle, which is a function of \(\phi \) (Table 2.12)
\(\gamma = \) average depth of stratum in question

\[K = 2.0 \text{ for Loose Sand - Driven Piles} \]
\[\delta = 0.85 \phi \text{ for Timber Piles} \]

\[S_o = 0 + (2500 \text{ psf}) \cdot \tan \delta \]
\[= 2500 \cdot \tan (6.85 \times 28^\circ) \]
\[= 1103 \text{ psf} \]
Determine the ultimate capacity of the selected Timber Pile according to static design methods with a Factor of Safety of 4.0

\[Q_0 = A_p \cdot P_u + A_s \cdot S_o \]

\[Q_0 = \frac{\pi}{4} \cdot (P_u) + \pi \cdot d \cdot L \cdot S_o \]

\[= \frac{\pi}{4} \cdot (83')^2 \cdot (8.374 \text{ psf}) + \pi \cdot (.03') \cdot (40') \cdot (1103 \text{ psf}) \]

\[= 4534 \quad + \quad 115,044 \]

\[Q_0 = 119,578 \text{ lbs.} \]

The allowable pile capacity based on an FS of 2.25 is

\[Q_A = \frac{Q_0}{FS} \]

\[= \frac{119,578}{2.25} \]

\[= 53,146 \text{ lbs.} \]

Check FS after pile arrangement design

Soil Conditions

Layer 1 0'-30' Silty SAND

Layer 2 30'-84' Clayey SILT
References: EM-1110-2-2906

With the calculated allowable bearing capacity of the pile and the summation of forces acting on the soil due to the proposed structure, an approximation of the number of piles needed can be performed. The approximate number of vertical piles needed can be calculated using the summation of the vertical forces. The approximate number of batter piles can be calculated using the summation of the horizontal forces.

Approximate # of Vertical Piles
\[\frac{\Sigma v}{0.7 (Q_a)} = \frac{207,800}{0.7 (53,146)} = 5.6 \text{ piles} \quad \text{VSC 6 piles at least} \]

Approximate # of Batter Piles
\[\frac{\Sigma h}{0.7 (Q_a)} = \frac{97,900}{0.7 (53,146)} = 2.6 \text{ piles} \quad \text{batter at least 3 of the 6 piles} \]
The proposed structure consists of a swing gate closure structure between two columns with a concrete sill to provide a level edge for the bottom of the gate to rest. The columns have a rectangular base with the dimensions of 18' x 12' with a thickness of 3'. A pile arrangement was designed for this 18' x 12' base. The base will act as the pile cap as well, with the tops of the piles embedded in the cap at least 6 inches.

The forces from the structure and the designed loading conditions are as follows:

\[
\begin{align*}
\Sigma V &= 207.8 \text{ Kips} \\
\Sigma H &= 110.2 \text{ Kips} \\
\Sigma M &= 303.9 \text{ Kip Feet}
\end{align*}
\]

To simplify the calculations, a 3' strip of the 12' width of the base was analyzed. The loading was factored for the 3' section and the pile reactions were determined.

\[
\begin{align*}
\Sigma V &= \frac{207.8 \times 3}{12} = 51.95 \text{ Kips} \\
\Sigma H &= \frac{110.2 \times 3}{12} = 27.55 \text{ Kips} \\
\Sigma M &= \Sigma V \cdot e \\
&= 51.95 \times 1.46' \\
&= 74.85 \text{ Kips}
\end{align*}
\]

\(e = \frac{\Sigma M}{\Sigma V} = \frac{303.9}{207.8} = 1.46' \)

There is no eccentricity of the center of gravity of the pile group, because they are laid out symmetrically. Therefore the total eccentricity is equal to the eccentricity of the resultant of the forces only.

Calculations

<table>
<thead>
<tr>
<th>Row</th>
<th>d(ft)</th>
<th>(d^2)(pfe²)</th>
<th>pile ft</th>
<th>(\Sigma V = \frac{157.6}{7.5} = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.5</td>
<td>56.3</td>
<td></td>
<td>157.6</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
<td>20.3</td>
<td>35</td>
<td>8.66 + 7.66 = 16.3 K</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>2.3</td>
<td>105</td>
<td>8.66 + 7.66 = 16.3 K</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>2.3</td>
<td>105</td>
<td>8.66 + 7.66 = 16.3 K</td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
<td>20.3</td>
<td>35</td>
<td>8.66 - 7.66 = 6.5 K</td>
</tr>
<tr>
<td>6</td>
<td>7.5</td>
<td>56.3</td>
<td></td>
<td>8.66 - 7.66 = 5.0 K</td>
</tr>
</tbody>
</table>

\(\Sigma 157.6 \text{ pfe} \)

\(d = \text{distance from each pile to c.g. of group} \)
Row 1 experiences 13.2 kips, which is taken all by one pile because there is a total of one pile per row for the 3’ section analysis.

The maximum load experienced by a pile in this arrangement is 13.2 kips, which is below the allowable capacity of 53.1 kips, so it was previously calculated. Therefore the foundation is acceptable with respect to bearing capacity.

\[R.S. = \frac{Q_{	ext{actual}}}{Q_{	ext{allow}}} = \frac{13.2}{13.0} = 0.97 > 2.25 \text{ OK} \]

Horizontal Loads on Piles

Assume 2 kips/pile resisted by moments in piles combined with passive resistance of soil:

\[2 \times 4 \text{ piles} = 12 \text{ kips} \]

Therefore, better piles for (EH-12):

\[24.5-12 = 12.5 \text{ kips} \]

\[\Sigma = 16.16 \text{kips} \]

\[\frac{11.4}{6} = 1.9 < 2.0 \]

\[\Sigma v = 51.35 \text{kips} \]

\[\text{Better Row 4 as well} \]

\[25.55 \times 16.16 = 1.89 < 2.0 \text{ OK} \]

\[\text{Maximum Pile Reaction} = \sqrt{(11.3)^2 + (4.92)^2} = 13.2 < 25 \text{ kips OK} \]
Passaic River Flood Control | Railroad Closures | Foundation Analysis | Pile Arrangement
18'x12'x3'

Row 1 (battered)
Row 2 (battered)
Row 3 (battered)
Row 4 (battered)
Row 5 (vertical)
Row 6 (vertical)

Column

Sill

18'

3.0'

1.5'

3.0'

12'

1.5'

Footing \(18' \times 12' \times 3' \times 0.15 \times 6 = 97.2 \text{k} \)
Column \(3' \times 3' \times 11' \times 0.15 = 14.9 \text{k} \)
Wall \(6' \times 1' \times 11' \times 0.15 = 9.9 \text{k} \)

\[g = \frac{Q - M \times C}{\frac{b}{i}} = \frac{202.6 + 303.1 (9)}{593.2} \]

\[\frac{1}{2} \text{ wt of gate} = 4.4 \text{k} \]
Water wt \(7.5' \times 12' \times 0.625 \times 10 = 56.25 \text{k} \)
Soil \[\frac{[(18' \times 12') - 15] \times 1' \times 0.125}{25.13} \]

\[\Sigma M_x = 14 (13.62 + 34.6 (4.80) + 6.16 (9) (4.67) - 4.4 (1.5) - 56.25 (5.25) - 99 (1.6) = 303.9 \text{ k-ft} \]
Cross-section of Column and Foundation

Railroad Closures

G-13A-14

Upstream

Piles battered arc 2.5 V to 1 H
Non-Railroad Closure

10' x 15' x 3'

Row 1
(battered)

Row 2
(battered)

Row 3
(battered)

Row 4
(battered)

Row 5
(battered)

Weights

Footing: 10' x 15' x 3' x 0.15 kcf = 67.5 k

Column: 3' x 3' x 11' x 0.15 = 14.9 k

Wall: 5' x 1' x 11' x 0.15 = 8.3 k

1/3 wt. of gate = 4.4 k

water: 6' x 10' x 0.625' x 10 = 37.5 k

soil: ([10 x 15] - 14') x 1' x 1.25 = 1700 k

ΣQ = 149.6

I = 10(15)^2 / 12 = 2013

q = \(\frac{Q}{A} \pm \frac{M A C}{I} \)

= \(\frac{149.6}{150} \pm \frac{403.2 (7.5)}{2013} \)

= 1.0 ± 1.1

γ = 2.1 max pos sta. - 0.1 max neg

negligible

Ma = 14(13.62) + 34.6 (4.80) + 6.16(8)(4.67) - 4.4(1.5) - 37.5(4.5) - 8.3(1.0)

= 403.2 k/ft

6-13A-15
\[\Sigma V = 149.6 \text{ kN} \]
\[\Sigma H = 97.9 \text{ kN} \]
\[\Sigma M = 903.2 \text{ kN-m} \]

For 5' Section

\[\Sigma V = \frac{149.6}{10'} \times 3' = 44.88 \]
\[\Sigma H = \frac{97.9}{10'} \times 3' = 29.37 \]
\[\Sigma M = 44.88 \times 2.7 = 121.2 \]

<table>
<thead>
<tr>
<th>Row</th>
<th>d (ft)</th>
<th>(d^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>36</td>
</tr>
</tbody>
</table>

\[\frac{90}{5} = 18 \text{ kips} \]
\[\frac{121.2}{15} = 8.08 \]
\[\frac{121.2}{30} = 4.04 \]
\[8.08 \times 0.4 \text{(factor)} = 3.23 \]
\[8.08 \times 0.4 \text{(factor)} = 3.23 \]

Assume 2.5 kips resisted by moment in piles combined with passive resistance of soil. 29.37 - 17.96 = 11.41

Max reaction \[\sqrt{(17.06)^2 + (4.04)^2} = 18.4 < 25 \text{ kips} \] OK

\[2.28 \leq 2.5 \]

\[\frac{119.58}{18.400} = 6.5 \rightarrow 2.25 \text{ OK} \]

Note: A small change in the weight of the gate was made, but was such a small change that it had negligible effects on the moment \((M_h) \) that it was disregarded in the calculations. \(M_h = 403.2 \text{ kN-m} \) would have been 402 kN-m; the slight change was disregarded and 403.2 kN-m was used.

\[6-13A-16 \]
Cross Section of Columns and Foundation

Non-Railroad Closures

Piles are battered 2.5V to 1H

6-13A-17
APPENDIX G

SECTION 14

PUMP STATIONS
TABLE OF CONTENTS

APPENDIX G - STRUCTURAL

Section 14 - Pump Stations

14.1 Scope ... G-14-1
14.2 Feature Description G-14-1
14.3 Design .. G-14-2
 14.3.1 Criteria G-14-2
 14.3.2 Design Data G-14-2
 14.3.2.1 Specified Design Stresses G-14-2
 14.3.2.2 Hydraulic Criteria G-14-2
 14.3.2.3 Factors of Safety G-14-2
 14.3.3 Pump Station Housing Design G-14-3
14.4 Construction G-14-4

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump Design - Tidal Area</td>
</tr>
<tr>
<td></td>
<td>Protection Levee Floodwall Systems</td>
</tr>
<tr>
<td>2</td>
<td>Bearing Capacity Parameters</td>
</tr>
<tr>
<td>3</td>
<td>Flotation Stability Parameters</td>
</tr>
</tbody>
</table>

List of Drawings

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-14-1</td>
<td>Typical Small Pump Station</td>
</tr>
<tr>
<td>G-14-2</td>
<td>Typical Medium Pump Station</td>
</tr>
<tr>
<td>G-14-3</td>
<td>Typical Large Pump Station</td>
</tr>
</tbody>
</table>

Attachment G-14A

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-14A-1 thru G-14A-5</td>
<td>Small Pump Station Design Calculations</td>
</tr>
<tr>
<td>G-14A-6 thru G-14A-9</td>
<td>Medium Pump Station Design Calculations</td>
</tr>
<tr>
<td>G-14A-10 thru G-14A-14</td>
<td>Large Pump Station Design Calculations</td>
</tr>
<tr>
<td>G-14A-15 thru G-14A-20</td>
<td>Foundation Analysis for Small, Medium and Large Pump Stations</td>
</tr>
</tbody>
</table>
14.1 Scope

The primary function of this section of the design memorandum is to ascertain a reasonable cost estimate for the construction of each type of pump station. A conceptual structural design effort has been conducted to achieve this goal. Further design studies will be performed during the next level of design. The structural design effort currently includes:

- Preliminary design of three types of pump station chambers.
- Preliminary design drawings of the pump station chambers.
- Quantity Take-Offs.

14.2 Feature Description

Pump stations behind the tidal area protection levees and floodwalls would be needed to remove interior rainfall drainage from the protected areas. The types, sizes, configurations, and locations of each pump station were determined from prescribed hydraulic criteria which are described in Appendix C - Hydrology and Hydraulics, under Improved Conditions.

Conceptual drawings for six pump stations were completed and summarized in Table 1. Conceptual design of the pump housings was performed to a level of detail sufficient to obtain accurate costs.

<table>
<thead>
<tr>
<th>PUMP STATION IDENTIFICATION</th>
<th>MAXIMUM REQUIRED CAPACITY</th>
<th>SELECTED PUMP CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (Medium)</td>
<td>75 cfs</td>
<td>3 - 30 cfs pumps</td>
</tr>
<tr>
<td>S2 (Medium)</td>
<td>75 cfs</td>
<td>3 - 30 cfs pumps</td>
</tr>
<tr>
<td>S3 (Small)</td>
<td>30 cfs</td>
<td>2 - 20 cfs pumps</td>
</tr>
<tr>
<td>K1 (Medium)</td>
<td>75 cfs</td>
<td>3 - 30 cfs pumps</td>
</tr>
<tr>
<td>L2 (Large)</td>
<td>100 cfs</td>
<td>4 - 30 cfs pumps</td>
</tr>
<tr>
<td>L3 (Medium)</td>
<td>50 cfs</td>
<td>2 - 30 cfs pumps</td>
</tr>
</tbody>
</table>
The pump stations would be constructed landward of the levee or floodwall and would pump collected water across the line of protection. The stations would be placed at the most practical location within the drainage cell to collect both overland flow and existing storm water drainage. Runoff would be collected along the line of protection by open trenches and directed to the station through pipes at varied flow rates, depending on the flood event and river stage. The water would collect in the sump until it reaches a minimum volume that triggers the operation of the pump(s). Refer to Section 10 of this Appendix for the location and identification of each pump station. Reference to Plate Nos. G-14-1 thru G-14-3 for details of the pump stations.

14.3 Design

14.3.1 Criteria

- a. EM 1110-2-2104, Strength Design of Reinforced Concrete Structures.

14.3.2 Design Data

14.3.2.1 Specified Design Stresses

- a. Concrete $f'c = 4,000$ psi
- b. Reinforcement Steel $fy = 60,000$ psi

14.3.2.2 Hydraulic Criteria

The location and design size of all pump stations were identified using the layout plans for the tidal area protection levee/floodwall systems. Specific drainage areas were identified and delineated, and a small, medium, or large pump station was placed at the location to serve the drainage area. Optimum orientation of the equipment, stormwater inflow pipes, building, and elevation of the pump station would be site specific for each pump station location and would be determined in the next level of design.

14.3.2.3 Factors of Safety

Criteria for bearing capacity and settlement are included in EM 1110-2-2906, with the guidance of R. Koerner (1984). The factor of safety used for normal loading conditions is 2.0, however, based on the limited subsurface information, the factor of safety was taken to be 4.0.
Flotation stability of the pump stations was analyzed in accordance with ETL 1110-2-307 which compares the weight of the structure to the uplift pressures exerted on the structure. A factor of safety of 1.5 was used for normal operation and 1.1 for extreme maintenance conditions.

14.3.3 Pump Station Housing Design

The pump stations will be of the wet pit sump type, with submersible electric propeller pumps in a vertical arrangement. Pump stations equipped with this type of pump are smaller than the traditional pumping station for a number of reasons. The primary reason is that the sump size is determined only by the hydraulic requirements of the pump and is not used to provide housing for the motors and ancillary equipment. The pump sits in a tube that extends through the roof of the sump, allowing easy retrieval for maintenance or replacement. Stations with submersible pumps lend themselves to use within an urban area where open space is typically limited.

A small secured pre-fabricated metal building would be mounted on top of the roof of the station to house the electrical system. Inside the building, a protected access hatch to the sump through the roof of the station would allow for maintenance access and inspections. An additional submersible electric sump pump would be installed in order to dewater the sump for inspection purposes. It would be attached to the wall of the sump by means of a sliding support so that the pump could be raised above the minimum water level during normal operations. A 3' by 3' pit would be constructed into the floor of the station to drain the water to an elevation below the sump floor.

The structural design of the pump station is based on accepted engineering practices and is preliminary. Approximate wall and floor slab thicknesses were computed, floatation stability of the station were determined, and foundation requirements were provided. A more detailed design which includes reinforcement details will be completed during next level of design. Reference to Attachment G-14A for the structural design computations for the pumping stations.

The pump stations are essentially large concrete box structures that are constructed in the ground. Bearing, settlement, and rotation calculations were performed treating the pump stations as a spread footing.

The thickness of the walls and floor slabs are designed to resist full hydrostatic pressure when the pump station is empty. The hydrostatic load was increased by a live load factor of 1.7 and a by an additional hydraulic factor of 1.3 as per EM 1110-2-2104.
The actual bearing values were arrived at by applying a vertical load (V) equal to the weight of the pump station filled with water minus the weight of the soil excavated for the pump station, and dividing it by the footprint area of the pump station. The factors of safety (F.S.) were determined by dividing the ultimate bearing capacity by the actual bearing load. The ultimate bearing capacity values, actual bearing loads, and their factors of safety are shown for each pump station in Table 2.

<table>
<thead>
<tr>
<th>Station</th>
<th>V (Kips)</th>
<th>H (Kips)</th>
<th>Q(ult) ksf</th>
<th>Q(act) ksf</th>
<th>F.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>225.0</td>
<td>0</td>
<td>15.80</td>
<td>0.98</td>
<td>16</td>
</tr>
<tr>
<td>Medium</td>
<td>492.0</td>
<td>0</td>
<td>16.69</td>
<td>0.96</td>
<td>17</td>
</tr>
<tr>
<td>Large</td>
<td>868.0</td>
<td>0</td>
<td>20.05</td>
<td>1.02</td>
<td>20</td>
</tr>
</tbody>
</table>

Flotation stability of the pump stations was analyzed in accordance with ETL 1110-2-307. The extreme maintenance case, when the pump chamber is dewatered with full external hydrostatic load applied was the controlling condition. The weight of the pump chamber, pumps, and piping was compared to the uplift force due to full hydrostatic load and an actual factor of safety was determined. The results show that all three pump stations have a factor of safety greater than or equal to the allowable factor of safety of 1.1 for this load case and are shown in Table 3.

<table>
<thead>
<tr>
<th>Station</th>
<th>Weight (Kips)</th>
<th>Uplift (Kips)</th>
<th>F.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>254</td>
<td>206</td>
<td>1.23</td>
</tr>
<tr>
<td>Medium</td>
<td>547</td>
<td>481</td>
<td>1.14</td>
</tr>
<tr>
<td>Large</td>
<td>978</td>
<td>892</td>
<td>1.10</td>
</tr>
</tbody>
</table>

14.4 Construction

The methods of construction used to build each pump station would be site specific. Depending on the location, the excavation for the pump chamber could be sloped upward to existing grade or braced with temporary sheathing. Pump station chambers could be constructed in place at the specified location, or precast at a controlled site and transported to the specified location. Final determination of methods of construction will take place in the next level of design.
It is anticipated that occasional obstructions within the fill at a few locations in the tidal area protection sites may be encountered during the foundation excavation for the pump stations. Any remnant building foundations, abandoned pipes, construction rubble, wood, tree stumps, etc. uncovered by the foundation excavation would have to be removed. Special measures at these locations may be required to remove obstructions or dense zones below the immediate surface to facilitate the installation of the pump stations.
1. The pump station is located in drainage cell 23 is a

DISCHARGE PIPE ENDWALL

END VIEW

SIDE VIEW

SECTION A-A

NOTES

1. Typical station layout shown. Operation of equipment, stormwater

2. Typical station location and determined during plans and

below pipe or pipes. Building and location of station will be site specific.
1. The pump stations that are located in drainage cells SI, SZ, KS, and K1 are shown.

2. The pump stations shown in discharge cells SI, SZ, KS, and K1 and

3. Typical station locations shown. Equipment orientation of equipment shown.
ATTACHMENT G-14A

PUMPING STATIONS

DESIGN CALCULATIONS
Given: Small Sump / Pump Cell

PLAN

Determine: Wall & Slab thickness of sump

ELEVATION

References:
- EM 1113-2.2104 - Strength Design for Reinforced Concrete Hydraulic Structures
- Text "Reinforced Concrete Slab" by R. Park and W. L. Ganple

Solution: Soil Data: $\gamma_m = 0.125 \text{ ksf/ft}^3$, $\gamma_s = 0.135 \text{ ksf/ft}^3$

$\gamma_w = 0.0025 \text{ ksf/ft}^3$, $\phi = 35'$

$c = 0$, $\phi_d = \tan^{-1} \frac{2/3 \tan \phi = 25'}{\phi_d}$

$k_0 = \tan \left(45 - \frac{\phi_d}{2} \right) = 0.41$

$h_b = 0.0675 \text{ ft}^3$
1. Determine max \(w_u \) based on case of high water table, empty sump.

\[l_h = 2l_y \]

\[\frac{12}{l_h^2 \left[3(\Delta y/l_h) - 0.5 \right]} \left(\frac{2}{l_h} w_{u,x} + w_{u,y} \right)^{m_3} \]

\(P_r = K_0 \gamma_b h = 0.41 \left(0.130 \frac{1}{L} \right) (16') = 0.85 \frac{K}{ft^2} \)

\(P_r (\text{triangle}) = 0.75 \left(\frac{1}{2} \right) (16') = 6.82 K \)

E.g. moments: 6.82 (\(\frac{1}{2} \)) - \(P_r (7.5') \rightarrow P_r = 4.85K \)

\[W_r = \frac{W_u = 4.85K}{11} = 0.44 \frac{K}{ft^2} \]

Assume 15" wall thickness:

\[M_u = A_s f_y \left(d - 0.59 \right) \left(\frac{A_s}{f'c} \right) \]

\[d = 15 - 3.375 = 11.43 \]

\[M_u = 0.44 \left(60 \right) \left(11.43 - 0.59 \right) \left(\frac{40}{0.9} \right) = 204.2 \frac{K \cdot in}{ft} \]

\[M_u = 204.2 \left(0.9 \right) = 183.8 \frac{K \cdot ft}{in} \]

\[W_u = \frac{12}{10^2 \left[3(11/16) - 0.5 \right]} \left(2 \left(\frac{1}{16} \right) (15.32) + 15.32 \right) 2 \]

\[= \frac{3.411}{1.5 \cdot 0.3} = 2.183 \text{ KSF} \]

\[W = 2.183 = 0.93 \text{ KSF} \]

\[W_{K} = \frac{0.44 \text{ KSF}}{1.7(1.3)} \]

\[W = 2.183 = 0.93 \text{ KSF} \]

\[W_{K} = 0.44 \text{ KSF} \]

15" thickness okay.
Bottom Slab

\[W_u = \frac{L}{L^2} \left(2M_{uy} + M_{uy}^2 + M_{uy}\right) + \frac{L}{L^2} \left(2M_{uy} + M_{uy}^2 + M_{uy}\right) \]

Assume 24" thick floor

\[M_u = 0.20 \left(40 \right) \left(20.75 - 0.59 \left(0.20 \right) \frac{40}{4} \right) = 227.8 \frac{K \cdot \text{in}}{ft} \]

\[M_{uy} = 0.9 \left(227.8 \right) = 205.0 \frac{K \cdot \text{in}}{ft} \times \frac{1 \text{ft}}{12 \text{in}} = 17.08 \frac{K \cdot \text{ft}}{ft} \]

\[\frac{M_{uy}}{M_{uy}} = 2 \]

\[W_u = \frac{L}{L^2} \left(L \times 17.08 \right) = 8.55 \text{ KSF} \]

\[W = \frac{8.55}{1.7(1.3)} = 3.87 \text{ KSF} \]

\[U = 0.0625 \left(14.0 \right) = 0.875 \text{ KSF (up)} \quad \text{(per linear ft)} \]

\[W_c = 0.150 \frac{K \cdot \text{in}}{ft^2} \times 2' = 0.30 \text{ KSF (down)} \quad \text{(per linear foot)} \]

\[\text{net} = 0.58 \text{ KSF} < 3.87 \text{ KSF} \]

```
.24" thick slab okay
```
Determine Buoyancy of Structure, per ETL 1110-2-307

Case: Extreme maintenance, worst case, SFreg'd = 1.1

\[W_1 = 0.15 \times 14^3 (18.5 \times 1.25 \times 11') = 38.2 \text{ K} \]
\[W_2 = 0.15 \times (13' \times 1.25' \times 11') = 38.2 \text{ K} \]
\[W_3 = 0.15 \times (10' \times 1.25' \times 11') = 20.6 \text{ K} \]
\[W_4 = 0.15 \times (10' \times 1.25' \times 11') = 20.6 \text{ K} \]
\[W_5 = (3.15')(10' \times 1.0' \times [11' - 2.5']) = 12.8 \text{ K} \]
\[W_6 = (0.15')(2.0' \times 13.5' \times 12.5') = 49.4 \text{ K} \]
\[W_7 = (0.15')(1.25' \times 18.5' \times 12.5') = 43.4 \text{ K} \]

Subtotal: \[293.2 \text{ K} \]

Est. wt. of pumps, motors & equipment: \[10.6 \text{ K} \]

Total: \[253.8 \text{ K} \]

Total Buoyancy: \[U_8 = 0.0625 \times 18.5 \times 14.25 \times 14.25 = 16.48 \text{ Kip} \text{ per ft} \]

Across total bottom: \[16.48 \text{ K} \times 12.5 = 206.0 \text{ K} \]

\[\frac{253.8}{206.0} = 1.23 > 1.1 \text{ OK} \]
Foundation Design
Case: Groundwater at Level = LWL & Sumpfilled
- Determine normal & eccentric loading for pile design:

Sump/Wt of concrete: 243.2 kips

3 Pumps @ 2870 lb each = 8.61 kips
- Add 2 kips for accessories, pipe, motors, etc
Weight of water: $V_{0.1} = 14 \times 10 \times 11 = 1760 \text{ ft}^3$
- $W = 1760 \text{ ft}^3 \times 62.5 \text{ lbs/ft}^3 = 109.9 \text{ kips}$

Total structure weight, including Pumps = 363.7 kips
Resultant $\mathbf{X} = \frac{E \mathbf{W} \cdot \mathbf{X}}{\mathbf{E} \mathbf{W}}$

\[
\mathbf{X} = \frac{E \mathbf{W} \mathbf{x_0}}{\mathbf{E} \mathbf{W}} = \frac{-W_5 (2.1) + 10.61 (6) - W_3 (8.63) - W_2 (18.3)}{261.7}
\]

\[
= \frac{-12.8 (2.1) + 63.7 - 20.6 (8.63) - 20.6 (18.3)}{363.7} = 0.10
\]

G-14A-5
Given: Medium Sump / Pump Cell

Determine: Wall & Slab Thickness of Sump

References: EM 1110-2-2104 - Strength Design for RC Hyd. Structures
Text "Reinforced Concrete Slabs," Park & Gamble

Solution: Soil Data: $e_s = 0.133 \text{kips/ft}^3$, $\Phi_d = 25^\circ$, $K_o = 0.41$

1. High Water Table / Empty Sump Condition, 2' Surcharge

\[P_i = K_o g_s h = 0.41 (0.133 \text{kips/ft}^3)(17.0) = 0.906 \text{kips/ft}^2 \]
\[P_t = 0.430 (\frac{1}{2})(17.0) = 7.70 \text{kips} \]

 Equip. uniform dist. load - moments 7.7 (\frac{1}{3}) = 7.75

\[P_e = 5.63 \text{kips} \]

\[W_k = \frac{5.63}{11.5} = 0.49 \text{kips/ft}^2 \]

\[l_x = 24', l_y = 11.5', l_x \leq 2(l_y) \]

\[W_u = \frac{12}{l_x^2(3(l_y/l_x)-0.5)} (2 \frac{K_u}{l_x^2} + \frac{M_u}{l_x^2})^2 \]

Assume Wall Thickness: 15" try #6 bars $A = 5.44 \text{ in}^2/\text{ft}$

$L = 3.375 = 11.5'$
\[H_u = A_s f_y (d - 0.59 \frac{A_s f_y}{E_t}) = 0.94 (60) (11.03 - 0.59 (0.44)\left(\frac{62}{4}\right)) \]
\[= 204.2 \frac{K-in}{ft} \]

\[H_{uf} = 204.2 (0.9) = 183.8 \frac{K-in}{ft} \cdot \frac{1 \text{ ft}}{12 \text{ in}} = 15.32 \frac{K-ft}{ft} \]

\[W_u = \frac{12}{24^2 \left[3 \left(\frac{11.5}{24}\right) - 0.5 \right]} \left(2 \left(\frac{11.5}{24}\right)15.22 + 15.32\right)2 \]
\[= 1.33 \text{ KSF} \]

\[W = \frac{1.33 \cdot 0.60}{1.7(1.3)^2} > 0.49 \frac{K-ft^2}{ft} \]

Bottom Slab

Assume 24" thick floor. Try #4 bars @ 12" C-C, \(A = 0.20 \text{ in}^2 \) on top & bottom.

\(d = 24 - 3.25 = 20.75" \)

\[H_u = 0.20 (60) (20.75 - 0.59 (3.25)\left(\frac{62}{4}\right)) = 227.8 \frac{K-in}{ft} \]

\[H_{uf} = 0.9 (227.8) = 205.0 \frac{K-in}{ft} \cdot \frac{1 \text{ ft}}{12 \text{ in}} = 17.08 \frac{K-ft}{ft} \]

\[W_u = \frac{6}{24^2} [u \times 17.08] + \frac{6}{10^2} [u \times 17.08] = 3.47 \text{ KSF} \]

\[W = \frac{3.47}{1.7(1.3)} = 1.57 \text{ KSF} \]

[Diagram of water flow with uplift force]

Uplift \(u = 0.0025 (15) = 0.038 \text{ KSF/ft} \uparrow \)

\(W_c = 0.15 \times 2.0 = 0.30 \text{ KSF/ft} \downarrow \)

\(net. = 0.04 \uparrow \text{up} < 1.57 \text{ KSF} = W \)

" 2' thick base slab okay"
Determine Buoyancy of Structure

Case: Extreme maintenance, worst case, $S = 1.1$

\[
\begin{align*}
W_1 &= (0.15) (1.5' \times 27.0' \times 11.5') = 69.9 \text{ K} \\
W_2 &= (0.15) (1.5' \times 27.0' \times 11.5') = 69.9 \text{ K} \\
W_3 &= (0.15) (1.5' \times 16' \times 11.5') = 41.4 \text{ K} \\
W_4 &= (0.15) (1.5' \times 16' \times 11.5') = 41.4 \text{ K} \\
W_5 &= (0.15) (1.25' \times 24' \times [11.5' \cdot 2.5']) = 40.5 \text{ K} \\
W_6 &= (0.15) (1.5' \times 19.0' \times 27.0') = 115.4 \text{ K} \\
W_7 &= (0.15) (2.0' \times 19.0' \times 27.0') = 153.9 \text{ K} \\
\text{Sub total} & \quad 532.4 \text{ K} \\
\text{Est. wt. of pumps, motors, etc.} & \quad 546.9 \text{ K} \\
\text{TOTAL} & \quad 14.5 \text{ K}
\end{align*}
\]

Total buoyancy: $U_B = 0.2625 (27) (15.0) = 25.31 \text{ K/ft}$

Total across bottom: $25.31 (19.0) = 480.9 \text{ K}$

\[
\frac{546.9 \text{ K}}{480.9 \text{ K}} = 1.14 > 1.1, \text{ okay}
\]
Foundation Design

Case: Groundwater at Lowtide | LWL & Sumpfill

- Determine Normal & Eccentric Loading for Pile Design:

\[
\begin{align*}
\text{Sump: wt of concrete} &= 532.4 \text{ K}
\end{align*}
\]

- 4 Pumps @ 2870 lbs. each = 11,480 lb = 11.4 Kips
- add 3 kips (25%) for accessories, pipe, etc.
- Weight of water: \(\text{Vol} = 24 \times 14 \times 11.5 = 4416 \text{ ft}^3 \)
 \[
 4416 \text{ ft}^3 \times \frac{1 \text{ lb}}{0.014402 \text{ ft}^3} = 275.7 \text{ Kips}
 \]

Total Structure Weight, including pumps = 822.5 K

Resultant

\[
\begin{align*}
\frac{\bar{X}}{\bar{W}} &= \bar{X} \\
\bar{X} &= \frac{EX_0}{EW} = - W_x (2.23') + 14.4 (5') - W_z (8.75') + W_y (8.75') \\
&= -40.5 (2.23') - 72/822.5 = -13.3/822.5 \\
&= -0.02
\end{align*}
\]
Passaic River Flood Control GDM

Given: Large Sump / Pump Cell

PLAN

Soil Data

\[\gamma_s = 0.130 \text{ klf}^3 \]

\[\phi = 25^\circ \]

\[k_0 = 0.41 \]

ELEVATION

Determine: Wall & Slab Thickness of Sump

Text by Park & Gamble, "Reinforced Concrete Slabs"

G-19A-10
Solution:

1. High Water Table | Empty Sump Condition, incl. 2' surcharge for vehicles or sloped backfill.

\[P_i = K_s \cdot \frac{h}{2} = 0.41 \left(0.180 \frac{h}{3} \right) \left(18.5 \frac{f}{t}^2 \right) = 0.99 \frac{K}{f^2} \]

\[P_r = 0.99 \left(0.5 \right) \left(18.5 \right) = 9.12 \frac{K}{f^2} \]

Resultant

\[q \cdot UDL = 9.12 \left(\frac{18.5}{3} \right) = P_r \left(8.5 \right) \rightarrow P_r = 6.62 \frac{K}{f^2} \]

\[W_R = 0.51 \frac{K}{f^2} \]

\[l_x = 30, \quad l_y = 13 \]

\[l_x > 2l_y \quad \text{and} \quad 30 > 2(13) \rightarrow \]

\[W_u = \frac{U}{l_y^2 \left[3(l_x l_y) - 2\right]} \left[2(M_{ux} + M_{uy}) + M_2 \right] \]

where \(M_2 = 2 m'_{ux} + \frac{A_y}{A_y} m'_{uy} \)

\[= \frac{U}{l_y^2 \left[3(l_x l_y) - 2\right]} \left[2 m'_{ux} + 2 m'_{uy} + \frac{A_y}{A_y} m'_{uy} \right] \]

where \(m'_{ux} = m'_{ux} \quad m'_{uy} = m'_{uy} \)

\[= \frac{U}{l_y^2 \left[3(l_x l_y) - 2\right]} \left[4 m'_{ux} + 2 \frac{A_y}{A_y} \left(m'_{uy} \right) \right] \]

Assume 18'' thickness

try #4 bars, \(A = 0.44 \text{in}^2 \)

\(d = 18 - 3.375 = 14.63 \)

\[M_u = A f_y \left(d - 0.59 \frac{A_s f_y}{f_c^2} \right) = 0.44 \left(0.49\right) \left[(14.63 - 0.59 \left(0.49\right)) \left(644\right)\right] \]

\[= 283.4 \frac{K \cdot in}{f^2} \]

\[M_{uf} = 283.4 \left(0.9 \right) = 255.1 \frac{K \cdot in}{f^2} \times \frac{1 ft}{12''} = 21.24 \frac{K \cdot ft}{f^2} \]
Passaic River GDM "Large" Cell Design

\[W_0 = \frac{6}{(1.3)^2 \left(3 \left(3\frac{1}{3}\right) - 2\right) \left[4(21.26) \cdot (2 + 3\frac{1}{3})(21.26)\right]} \]

\[= 1.27 \text{ KSF} \]

\[W = \frac{1.27}{1.7(1.3)} = 0.58 \text{ KSF} < 0.51 \text{ KSF} \]

18" wall just satisfactory → use 21" thick walls

\underline{Bottom Slab}

Assume 27" thick floor

Try #4 bars @ 12" c-c, A = 0.20 \text{ in}^2 \text{ on top of}\

d = 27 - 3.25 = 23.75" \text{ bottom} \n
\[M_u = 0.20 \times (60)(23.75) - 0.59 \times (0.20)(60\frac{1}{4}) = 263.8 \text{ K-in} \]

\[M_{uf} = 0.9 \times (263.8) = 237.4 \text{ K-in ft} \text{ ft} \]

\[W_u = \frac{6}{30^2} \left(6 \times 19.78\right) + \frac{6}{22^2} \left(6 \times 19.78\right) = 2.26 \text{ KSF} \]

\[W = \frac{2.26}{1.7(1.3)} = 1.02 \text{ KSF} \]

\[\text{Uplift} = 0.0625 \times (14.75) = 0.95 \text{ KSF/lf} \]

\[W_c = 0.150 \text{ kbf/ft}^3 \times 2.25 \text{ ft} = 0.34 \text{ ksf/lf} \]

\[W_{net} = 0.71 \text{ ksf/lf} \uparrow \]

\[0.71 \leq 1.02 \text{ ksf} \]

... 27" thick slab satisfactory
Passaic River CDM

Large Cell Design

Determine Buoyancy of Structure

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>W2</td>
<td>W3</td>
<td>W4</td>
<td></td>
</tr>
<tr>
<td>30'</td>
<td>1.5'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\frac{W_1}{W_2} = 0.15 \frac{Kbf}{ft^3} (32.5 \times 1.75 \times 13') = 114.3 \text{ K} \]

\[W_2 = 0.15 (33.5 \times 1.75 \times 13') = 114.3 \text{ K} \]

\[W_3 = 0.15 (22 \times 1.75 \times 13') = 75.1 \text{ K} \]

\[W_4 = 0.15 (22 \times 1.75 \times 13') = 75.1 \text{ K} \]

\[W_5 = 0.15 (30 \times 1.65 \times [13 - 2.5]) = 78.0 \text{ K} \]

\[W_6 = 0.15 (1.5 \times 33.5 ' \times 25.5) = 192.2 \text{ K} \]

\[W_7 = 0.15 (2.25 \times 33.5 ' \times 25.5) = 288.3 \text{ K} \]

Subtotal

\[937.3 \text{ K} \]

Est. wt. of pumps, motors, etc.

\[40.2 \text{ K} \]

TOTAL

\[977.5 \text{ K} \]

Total Buoyancy: \(U_{g} = 0.0025 (33.5) (16.75) = 35.0 \text{ K/ft} \)

across total bottom = 35.0 (25.5) = 892.5 K

\[\frac{977.5 \text{ K}}{892.5 \text{ K}} = 1.1 \geq 1.1 = \text{OKAY} \]
FOUNDATION DESIGN

- Determine normal & eccentric loading for pile foundation design.

- Sump weight of concrete = 9375 kips
- 4 Pumps @ 8050 lbs each = 32.2 kips
- Add 25% = 8 kips for accessories, pipe, etc.
- Weight of water: Vol = 22' x 30' x 13 = 8,580 ft³
 \[8,580 \text{ ft}^3 \times \frac{110 \text{ lbs}}{0.01602 \text{ ft}^3} = 535.6 \text{ kips} \]

Total structure weight = 1513.1 kips

Resultant \(\bar{X} \): \(\bar{X} = \frac{E \bar{W} \cdot A}{E \bar{W}} \)

\[\bar{X} = \frac{\sum m_y}{E \bar{W}} = -w_5(3.32) + 0.2(8) - w_4(11.58) + w_3(11.58) / 1573 \]

\[= -18,0(3.32) + 321.6 / 1513 \text{ kips} \]

\[= +62.6 / 1513 \text{ kips} = +0.04' \]
The proposed pump stations of the hurricane levee protection will be one of three sizes and configurations (small, medium, or large), shown in the structural section of the design calculations.

Reference: Construction and Geotechnical Methods in Foundation Design, Salter, 1984

The forces from the structure and the designed loading conditions are as follows:

\[
\begin{align*}
\Sigma V &= 364.0 \text{ k} \\
\Sigma H &= 0 \text{ k} \\
\Sigma M &= \Sigma V \times e = 364 \text{ k} \times 0.1 = 36.4 \text{ k}\text{feet}
\end{align*}
\]

![Diagram showing forces and calculations](image)

El. 7

Weight of soil excavated for pump station @ \(\gamma = 105 \text{pcf} \)

\(\gamma_b = 92.6 \text{pcf} \)

\(18.5' \times 12.5' \times 1.6' \times 0.043 \text{pcf} = 139 \text{kips} \)

Total vertical load when pump station is full of water = 364.0 k

For bearing capacity and settlement calculations:

\[
\begin{align*}
\Sigma V &- \text{Soil Wt.} = 364.0 - 139 = 225.0 \text{kips} \quad \text{Total Vertical Load} \\
\phi'c &= \frac{225 \text{ k}}{18.5 \times 12.5} = 0.97 \text{kips}
\end{align*}
\]

G-14A-15
Passaic River GDM

Bearing Capacity

Total Vertical Load = 225 K

\[V_t = 18.5' \times 12.5' \times 14' \]

\[e = 0.10 \]

\[B' = 18.5' - (2 \times 0.10') = 18.3' \]

\[k' = 0 \text{ because no horizontal load} \]

\[q_{ult} = [c N_c (1 + 0.62) + k' D N_s] (1 - \frac{e}{B'})^2 + 0.4 N_v (1 - \frac{e}{B'}) \]

\[= \left[(105-62.5)(14')(14.72)(1-0)\right] + \left[(0.4)(120-62.5)(18.3')(14.72)(1-0)\right] \]

\[= 8758 \text{ psf} + 3037 \]

\[= 15,795 \text{ psf} \]

\[q_{ult} = \frac{225,000 \text{ lbs}}{21330 (14.72)} = 983 \text{ psf} \]

\[F.S. = \frac{15,795}{983} = 16 > 4.0 \text{ OK} \]

Settlement

Immediate Settlement

\[e = \frac{q B}{E} \]

\[e = 983 \text{ psf} = 6.8 \text{ psi} \]

\[I = 0.82 \text{ from Table 1.9} \]

\[\mu = 0.30 \text{ from sand Table 1.8 (sand and slib)} \]

\[E = 2000 \text{ psi} \]

\[e = (6.8 \text{ psi})(18.5' \times \frac{12}{12}) \left(\frac{1-(0.3)^2}{2000} \right)(0.82) \]

\[e = 0.57'' \text{ OK} \]

Rotation Estimate

\[\tan \theta = \frac{V_r}{E} \times \frac{1 - \mu}{E} \]

\[V_r = 225 K \]

\[E = 0.1' \]

\[B = 18.5' \]

\[L = 12.5' \]

\[\mu = 0.3 \]

\[E = 2000 \text{ psi} \]

\[\theta = 0.00008 \]

\[\theta = 0.005^\circ \text{ OK} \]

Therefore, the concrete sump will found itself with no footings or piles.

6-14A-16
The forces from the structure and the designed loading conditions are as follows:

\[\Sigma V = 822.5 \text{ kips} \]
\[\Sigma H = 0 \text{ kips} \]
\[\Sigma M = \Sigma V \cdot e = 822.5 \times 0.02' = 16.45 \text{ kips-ft} \]

Weight of soil excavated for pump station @ \(e = 105 \text{ kcf} \):

\[19' \times 27' \times 15' \times 0.043 \text{ kcf} = 331 \text{ kips} \]

Total vertical load when pump station is full of water = 822.5 kips

For bearing capacity and settlement calculations:

\[\Sigma V - \text{Soil Wt.} = 822.5 - 331 = 492 \text{ kips} \]

Total Vertical Load

\[\frac{492 \text{ kips}}{19' \times 27'} = 0.96 \text{ kips/ft}^2 \]
Bearing Capacity

\[b' = 9 - (2 \times 0.02) = 19' \]

\[q_{ult} = \frac{9384 \times 7.307}{14} = 16691 \text{ psf} \]

\[q_{act} = \frac{492,000}{19 \times 22} = 95.9 \text{ psi} = 0.67 \text{ psi} \]

F.S. = \[\frac{16691}{95.9} = 17.4 > 4.0 \ \checkmark \text{OK} \]

Settlement

\[\phi = g \cdot E \cdot I_w \cdot \frac{1 - \nu^2}{E} I_w \text{ for } \frac{\nu}{\phi} = \frac{27}{77} \quad I_w = 1.06 \]

\[\phi = 6.7 \times (19 \times 12) \times \left(1 - \frac{0.3}{2000}\right) (1.06) \]

\[\phi = 0.74'' \ \checkmark \text{OK} \]

Rotation

\[\tan \theta = \frac{492,000 (0.02)}{19 \times 22} \times \frac{1 - 0.3}{208,000} = 4.12 \]

\[\tan \theta = 9.2 \times 10^{-2} \]

\[\phi = \tan^{-1} 0.005 \ \checkmark \text{OK} \]
The forces from the structure and the designed loading conditions are as follows:

\[\Sigma V = 1,474 \text{ kips} \]
\[\Sigma H = 0 \text{ kips} \]
\[\Sigma M = 1474 \times 0.09 = 132.7 \text{ k-ft} \]

Weight of soil excavated for pump station @ \(\gamma = 105 \text{pcf} \)
\[\delta = 42.5 \text{pcf} \]
\[25.5' \times 33.5' \times 16.5' \times 0.043 \text{pcf} = 606 \text{ k} \]

Total Vertical Load when the pump station is full of water = 1,474 k

\[1474 - 606 = 868 \text{ k} = \text{Total Vertical Load} \]

\[\frac{868 \text{ k}}{25.5' \times 33.5'} = 1.02 \text{ k/ft}^2 \]
<table>
<thead>
<tr>
<th>Bearing Capacity</th>
<th>(b' = 25.5" \times (2 \times .09) = 25.3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_{ulc} = 10,322 + 9729)</td>
<td>= 20,051 psi</td>
</tr>
<tr>
<td>(q_{act} = \frac{868,000}{23.5 \times 33.5} = 1,016 \text{ psi} = 7.06 \text{ psi})</td>
<td></td>
</tr>
<tr>
<td>F.S. = (\frac{20,051}{1,016} = 20 \gg 4.0) ✓ OK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Settlement</th>
<th>(I_{v} \approx 1.00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho = (7.06)(25.5 \times \frac{13}{2}) \left(\frac{1-0.3^2}{2000} \right)(1.00))</td>
<td>= 0.98" ✓ OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation Estimate</th>
<th>(I_m = 4.00) for (\frac{1}{b} = \frac{33.5}{23.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tan \theta = \frac{868,000 \ (cm^2)}{23.5 \times 33.5^2} \cdot \frac{1-0.3^2}{2000} = 4.0)</td>
<td></td>
</tr>
<tr>
<td>(\tan \theta = 3.5 \times 10^{-5})</td>
<td>✓ OK</td>
</tr>
<tr>
<td>(\theta = .002^\circ)</td>
<td></td>
</tr>
</tbody>
</table>