Site Inspection Report

Middlesex Municipal Landfill Formerly Utilized Sites Remedial Action Program Middlesex Borough, New Jersey

U. S. Army Corps of Engineers Kansas City District 601 East 12th Street Kansas City, MO 64106 And New York City District 26 Federal Plaza New York, NY 10278

September 2011

TABLE OF CONTENTS

EXECUTIVE SUMMARY	SECTION		PAGE
1.1 Objectives 1-1 1.2 Report Organization 1-2 2.0 SITE DESCRIPTION AND ACTIVITY 2-1 2.1 Location and Physical Description 2-1 2.2 Ownership 2-1 2.3 Potential Contaminant Sources 2-2 2.4 Previous Program Activities 2-3 2.5 Site Regulatory Status 2-5 3.0 ENVIRONMENTAL SETTING 3-1 3.1 Land Use 3-1 3.2 Population Estimates 3-1 3.3 Regional Geology 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.3.3 Bedrock Geology 3-1 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Pathway 3-2 3.4.3 Local Groundwater Pathway 3-2 3.5 Surface Water Hydrology 3-2 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 </th <th>EXECUTI</th> <th>VE SUMMARY</th> <th>XIII</th>	EXECUTI	VE SUMMARY	XIII
1.2 Report Organization 1-2 2.0 SITE DESCRIPTION AND ACTIVITY 2-1 2.1 Location and Physical Description 2-1 2.2 Ownership 2-1 2.3 Potential Contaminant Sources 2-2 2.4 Previous Program Activities 2-3 2.5 Site Regulatory Status 2-5 3.0 ENVIRONMENTAL SETTING 3-1 3.1 Land Use 3-1 3.2 Population Estimates 3-1 3.2 Population Estimates 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3<	1.0	INTRODUCTION	1-1
1.2 Report Organization 1-2 2.0 SITE DESCRIPTION AND ACTIVITY 2-1 2.1 Location and Physical Description 2-1 2.2 Ownership 2-1 2.3 Potential Contaminant Sources 2-2 2.4 Previous Program Activities 2-3 2.5 Site Regulatory Status 2-5 3.0 ENVIRONMENTAL SETTING 3-1 3.1 Land Use 3-1 3.2 Population Estimates 3-1 3.2 Population Estimates 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3<	1.1	Objectives	1-1
2.0 SITE DESCRIPTION AND ACTIVITY 2-1 2.1 Location and Physical Description 2-1 2.2 Ownership 2-1 2.3 Potential Contaminant Sources 2-2 2.4 Previous Program Activities 2-3 2.5 Site Regulatory Status 2-5 3.0 ENVIRONMENTAL SETTING 3-1 3.1 Land Use 3-1 3.2 Population Estimates 3-1 3.3 Regional Geology 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.3.2 Bedrock Geology 3-1 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and I	1.2		
2.2 Ownership 2-1 2.3 Potential Contaminant Sources 2-2 2.4 Previous Program Activities 2-3 2.5 Site Regulatory Status 2-5 3.0 ENVIRONMENTAL SETTING 3-1 3.1 Land Use 3-1 3.2 Population Estimates 3-1 3.3 Regional Geology 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4.1 CLASS [™] Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.5 Determ	2.0		
2.2 Ownership 2-1 2.3 Potential Contaminant Sources 2-2 2.4 Previous Program Activities 2-3 2.5 Site Regulatory Status 2-5 3.0 ENVIRONMENTAL SETTING 3-1 3.1 Land Use 3-1 3.2 Population Estimates 3-1 3.3 Regional Geology 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS [™] Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.5 Determina	2.1	Location and Physical Description	2-1
2.3 Potential Contaminant Sources 2-2 2.4 Previous Program Activities 2-3 2.5 Site Regulatory Status 2-5 3.0 ENVIRONMENTAL SETTING 3-1 3.1 Land Use 3-1 3.2 Population Estimates 3-1 3.3 Regional Geology 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.4.2 Local Groundwater Use 3-2 3.4.2 Local Groundwater Use 3-2 3.4.2 Local Groundwater Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4.1 CLASS ^N Surveys 4-2 4.4.	2.2		
2.4 Previous Program Activities 2-3 2.5 Site Regulatory Status 2-5 3.0 ENVIRONMENTAL SETTING 3-1 3.1 Land Use 3-1 3.2 Population Estimates 3-1 3.3 Regional Geology 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4	2.3	-	
2.5 Site Regulatory Status	2.4		
3.0 ENVIRONMENTAL SETTING 3-1 3.1 Land Use 3-1 3.2 Population Estimates 3-1 3.3 Regional Geology 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4.1 CLASS [™] Surveys 4-2 4.4.2 Gamma Surveys 4-2 4.4.1 CLASS [™] Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 <	2.5		
3.2 Population Estimates. 3-1 3.3 Regional Geology 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9<	3.0		
3.3 Regional Geology 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6	3.1	Land Use	3-1
3.3 Regional Geology 3-1 3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6	3.2		
3.3.1 Surficial Geology 3-1 3.3.2 Bedrock Geology 3-1 3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 <tr< td=""><td>3.3</td><td>-</td><td></td></tr<>	3.3	-	
3.4 Groundwater Pathway 3-2 3.4.1 Hydrogeology 3-2 3.4.2 Local Groundwater Use 3-2 3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6	3.3.1	Surficial Geology	3-1
3.4.1 Hydrogeology			
3.4.2 Local Groundwater Use		•	
3.5 Surface Water Hydrology 3-3 3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6		• • • • •	
3.6 Aquatic/Terrestrial Receptors 3-3 4.0 FIELD INVESTIGATION 4-1 4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6			
4.1 Summary 4-1 4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6	3.6		
4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6	4.0	FIELD INVESTIGATION	4-1
4.2 Radionuclides of Potential Concern and Investigative Screening Values 4-1 4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6	4.1	Summary	4-1
4.3 Initial Site Preparation 4-2 4.4 Surface Gamma Surveys 4-2 4.4.1 CLASS™ Surveys 4-2 4.4.2 Gamma Walkover Survey 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6	4.2	•	
4.4.1 CLASS™ Surveys. 4-2 4.4.2 Gamma Walkover Survey. 4-3 4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits. 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6	4.3		
4.4.1 CLASS™ Surveys. 4-2 4.4.2 Gamma Walkover Survey. 4-3 4.4.3 Manual Gamma Walkover Survey. 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling. 4-5 4.7 Test Pits. 4-5 4.8 Subsurface Soil Sampling. 4-6 4.9 Down-hole Gamma Logging. 4-6 4.10 Groundwater Sampling. 4-6	4.4	Surface Gamma Surveys	4-2
4.4.3 Manual Gamma Walkover Survey 4-3 4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6	4.4.1		
4.5 Determination of Sample Locations 4-4 4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6		·	
4.6 Surface Soil Sampling 4-5 4.7 Test Pits 4-5 4.8 Subsurface Soil Sampling 4-6 4.9 Down-hole Gamma Logging 4-6 4.10 Groundwater Sampling 4-6			
4.7 Test Pits		•	
4.8Subsurface Soil Sampling4-64.9Down-hole Gamma Logging4-64.10Groundwater Sampling4-6			
4.9Down-hole Gamma Logging4-64.10Groundwater Sampling4-6			
4.10 Groundwater Sampling			
• •			
	4.11		

4.12	Work Plan Deviations	4-7
5.0	INVESTIGATION RESULTS	5-1
5.1	Surface Gamma Surveys	5-1
5.1.1	Measurement of Gross Gamma Radiation	
5.1.2	Measurement of Radionuclide-Specific Gamma Radiation	
5.2	Surface Soil Sample Results	
5.2.1	Radiological Screening Criteria	
5.2.2	Surface Soil Sample Results	
5.3	Subsurface Soil Sample Results	5-6
5.3.1	Test Pits	5-6
5.3.2	Soil Borings	5-7
5.4	Groundwater Sample Results	5-9
6.0	SURVEY INSTRUMENT QUALITY CONTROL	6-1
6.1	Survey Instrument QC	6-1
6.1.1	Instrument Calibration	6-1
6.1.2	Instrument QC Checks	
6.2	Sampling and Analysis QC	
6.2.1	Precision and Representativeness	
6.2.2	Accuracy	
6.2.3	Representativeness	
6.2.4	Comparability	
6.2.5 6.3	Completeness	
	_	
6.3.1 6.3.2	Field DataAnalytical Data	
	•	
7.0	CONCEPTUAL SITE MODEL	
7.1	Potential Routes of Migration	
7.1.1	Migration into Air	
7.1.2	Migration to Groundwater	
7.1.3	Migration into Surface Water and Sediment,	
7.2	Medium-Specific Investigation Findings	/-3
7.2.1	Soil 7-3	
7.2.2	Air 7-3	7.4
7.2.3 7.2.4	GroundwaterSurface Water	
7.2.4 7.2.5	SedimentSediment	
7.2. 3	Conceptual Site Model	
	SUMMARY	
8.0		
8.1	Summary of Findings	
8.1.1	Gamma Survey Results	
8.1.2 8.1.3	Surface Soil Non Padiological Results	
8.1.3 8.1.4	Surface Soil Non-Radiological ResultsSubsurface Soil Radiological Results	
8.1. 4 8.1.5	Groundwater Radiological Results	
0.1.2	OTOMINITATO I MANOTOS ICAL INCOMED	

8.2	Conclusions	8-4
8.3	Recommendations	8
9.0	REFERENCES	9-4

LIST OF TABLES

- Table 4-1: Investigation Screening Values
- Table 4-2: Summary of Laboratory Analytical Program
- Table 5-1: Summary Statistics for Surface Gamma Survey
- Table 5-2: Summary of Surface Soil Radiological Results
- Table 5-3: Detected Concentrations of VOCs in Surface Soil
- Table 5-4: Detected Concentrations of SVOCs in Surface Soil
- Table 5-5: Detected Concentrations of Pesticides and PCB in Surface Soil
- Table 5-6: Detected Concentrations of Metals in Surface Soil
- Table 5-7: Summary of Non-Radiological Samples Exceeding NJDEP Soil Cleanup Criteria
- Table 5-8: Summary of TCLP Results in Surface Soil
- Table 5-9: Summary of Test Pit Soil Radiological Results
- Table 5-10: Summary of Subsurface Soil Radiological Results
- Table 5-11: Summary of Groundwater Radiological Results
- Table 7-1: Occupational DAC Values for Site ROPCs
- Table 7-2: Project Effluent Action Levels for Site ROPCs
- Table 7-3: Summary of Conceptual Site Model
- Table 8-1: Summary of Areas of Interest
- Table 8-2: Recommendations for Remedial Investigation

LIST OF FIGURES

- Figure ES-1: Middlesex Municipal Landfill Areas of Interest 2010
- Figure 1-1: Location of Middlesex Municipal Landfill Site
- Figure 2-1: Middlesex Municipal Landfill Site Layout
- Figure 3-1: FEMA Flood Hazard Zone
- Figure 4-1: Limits of Gamma Survey 2010
- Figure 5-1: CLASS[™] Survey Z-Score Results 2010
- Figure 5-2: Gamma Survey Z-Score Results 2010
- Figure 5-3: ROI for Thorium 2010
- Figure 5-4: ROI for Radium 2010
- Figure 5-5: Gamma Survey Results for Wooded Area 2010

- Figure 5-6: Surface Soil Sample Locations 2010
- Figure 5-7: Surface Soil Radiological Results 2010
- Figure 5-8: Surface Soil Uranium Results 2010
- Figure 5-9: Surface Soil Thorium Results 2010
- Figure 5-10: Surface Soil Radium Results 2010
- Figure 5-11: Surface Soil Chemistry Results 2010
- Figure 5-12: Subsurface (Test Pit and Geoprobe) Sample Locations 2010
- Figure 5-13: Methane Gas in Subsurface Soil 2010
- Figure 5-14: Test Pit Radiological Results Exceeding ISVs 2010
- Figure 5-15: Subsurface Soil Radiological Results Exceeding ISVs 2010
- Figure 5-16: Subsurface Soil Uranium Results Exceeding ISVs 2010
- Figure 5-17: Subsurface Soil Radium Results Exceeding ISVs 2010
- Figure 5-18: Cross Section A-A' Along Pershing Avenue
- Figure 7-1: Middlesex Municipal Landfill Conceptual Site Model
- Figure 8-1: Middlesex Municipal Landfill Areas of Interest 2010

LIST OF APPENDICES

APPENDIX A: Gamma Survey Data (on CD)

APPENDIX B: Test Pit Logs

APPENDIX C: Soil Boring Logs

APPENDIX D: Daily Quality Control Reports

APPENDIX E: Laboratory Analysis Results (on CD)

APPENDIX F: Data Quality Assessment

APPENDIX G: Effluent Air Monitoring Data

ACRONYMS, ABBREVIATIONS, AND SYMBOLS

²²⁸ Ac	actinium (mesothorium2)	cm	centimeter(s)
ALS	Analytical Laboratory	cy	cubic yards
	Services	DAC	derived air concentrations
ASTM	American Society for Testing and Materials	DCB	dechachlorobiphenyl
ATSDR	Agency for Toxic Substance	DGL	down-hole gamma logging
111021	and Disease Report	DGPS	Digital GPS
ATV	all-terrain vehicle	DOE	U.S. Department of Energy
AEC	US Atomic Energy Commission	DQCR	Daily Quality Control
AOI	Area of Interest		Report
APP	Accident Prevention Plan	DOT	U.S. Department of
bgs	below ground surface	EDD	Transportation
214 B i	bismuth – 214	EDD	Electronic Data Deliverable
BWA	Bureau of Waste Allocation	ELAP	Environmental Laboratory Accreditation Program
BZ	breathing zone	EPA	U.S. Environmental
CABRERA	Cabrera Services, Inc.		Protection Agency
CD	compact disc	°F	Fahrenheit
CEC CERCLA	cation exchange capacity Comprehensive	FEMA	Federal Emergency Management Agency
CERCEII	Environmental Response,	FR	Federal Register
	Compensation, and Liability Act	FUSRAP	Formerly Utilized Sites Remedial Action Program
CLASSTM	Cabrera Large Area Scanning System	ft	foot (feet)
cm	centimeter	FSM	Field Site Manager
cm/s	centimeter per second	FSP	Field Sampling Plan
COC	Chain of Custody	${f g}$	gram(s)
cpm	count per minute	gpm	gallons per minute
_	count per second	GPS	Global Positioning System
cps CSM	conceptual site model	GWQS	groundwater quality
CQCM	Contractor Quality Control Manager	GWS	standards Gamma Walkover Survey

IAEA	International Atomic Energy Agency	NAD	normalized absolute difference
IDW	investigative derived waste	NaI (Tl)	Sodium Iodide, Thallium
ISV	investigative screening value	NJ	doped
1			New Jersey
keV LCS	kilo-electron volts laboratory control sample	NJAC	New Jersey Administrative Code
LCSD	laboratory control sample duplicate	NJDEP	New Jersey Department of Environmental Protection
LEL	lower explosive limit	NJDFGW	NJ Department of Fish, Game, and Wildlife
LQAP	laboratory quality assurance plan	NIST	National Institute of Standards and Technology
m, m ²	meter(s), square meter(s)	NRC	U.S. Nuclear Regulatory
mgd	million gallons per day	1,220	Commission
MARSSIM	Multi Agency Radiation Survey and Site Inspection	PA	Preliminary Assessment
	Manual	PAH	polycyclic aromatic
MCA	multi-channel analyzer	IAII	hydrocarbon
MCL	maximum contaminant level	²¹⁴ Pb	lead (Pb-214)
MDCR	minimum detectable rate count	PCB pCi,	polychlorinated biphenyl picoCurie(s),
MED	Manhattan Engineering District	pCi/g pCi/l	picoCuries per gram picoCuries per liter
MGD	million gallons per day	PID	photoionization detector
MGM	multi-gas meter	PM	Project Manager
μCi/ml	microcuries per milliter	PPE	personal protective equipment
μg/l	microcuries per gram	PWP	Project Work Plan
MML	Middlesex Municipal Landfill	PVC	polyvinyl chloride
mR/hr	millirem per hour	QA/QC	Quality Assurance / Quality Control
m/s	meter per second	QAPP	
MS	matrix spike		Quality Assurance Project Plan
MSD	matrix spike duplicate	^{226,228} Ra	radium-226, radium-228
MSL	mean sea level	RCRA	Resource Conservation and
MSP	Middlesex Sampling Plant		Recovery Act

RI	Remedial Investigation	TCLP	Toxicity Characteristic
RL	reporting limits		Leaching Procedure
ROI	Regions of Interest	²³⁴ Th	thorium-234
ROPC	Radionuclide of Potential	²⁰⁸ T1	thallium-208
	Concern	TMX	tetrachloro-meta-xylene
RPP	Radiation Protection Plan	234,235,238 U	Uranium-234, Uranium-
RSI	Radiation Solutions, Inc.		235, Uranium-238
RSO	Radiation Safety Officer	U	natural uranium
SEL	severe effects level	uCi/ml	micro Curie per milliliter
SI	Site Inspection	UFP	Uniform Federal Policy
SOP	Standard Operating	ug/l	microgram per liter
	Procedure	USACE	U.S. Army Corps of
SSC	Soil Screening Criteria		Engineers
SVOC	semivolatile organic	USGS	U.S. Geological Survey
	compound	VOC	volatile organic compound
SWQS	surface water quality standards	$\mathbf{Z}_{\mathrm{rep}}$	Replicate Z-score

1 EXECUTIVE SUMMARY

- 2 Cabrera Services, Inc. (CABRERA) has been contracted by the U.S. Army Corps of Engineers
- 3 (USACE) to conduct a Site Inspection (SI) at the Middlesex Municipal Landfill (MML)
- 4 (hereafter referred to as the "Site" or MML) located within the Borough of Middlesex, New
- 5 Jersey. The primary objective of the SI is to provide sufficient information to determine the need
- 6 for additional remedial investigation (RI) activities or other actions in accordance with
- 7 Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), based on
- 8 preliminary site data and field sampling for contamination.
- 9 The MML is a 37-acre site located approximately 16 miles southwest of Newark and consists of
- parcels belonging to the Borough of Middlesex and the Middlesex Presbyterian Church.
- In 1984 and 1986, characterization, remedial action, and a final survey were conducted for a
- 12 five-acre portion at the north end of MML. Between 2001 and 2003 additional investigations
- identified elevated radiation levels along the south boundary of the landfill as well as metals,
- pesticides, volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) in
- soil exceeding the NJDEP direct contact soil screening levels. A 2008 radiological survey of the
- 16 Site identified small areas of low-level surface radiation leading it to be declared eligible for the
- 17 FUSRAP in March 2009.
- 18 The MML Preliminary Assessment (PA) identified that there is evidence of an unpermitted
- 19 release and/or threat of release into soil or air of radioactive materials resulting from work
- 20 performed as part of the Nation's early atomic energy program. The PA also identified that
- 21 while some materials were disposed of at the Site from the Middlesex Sampling Plant (MSP) any
- 22 residual non radiological contaminants would be minor, comingled with radiological
- contamination, or indistinguishable from other landfill wastes. Given the available information
- and a review of the MML Site operational history, sampling results, and the operations history of
- 25 the MSP, it is unlikely that chemical contamination at the site is related to the Nation's early
- 26 atomic energy program. Therefore, chemical sampling as part of the SI was conducted only for
- waste characterization and health and safety purposes.
- 28 In order to investigate the nature and extent of radiological impacts at the Site, the project team
- 29 implemented the following field tasks:

- Surface Gamma Scan Surveys
- Sampling of surface soils based on the reviews of historical records and the results of surface gamma scans
- Excavation and sampling of soils from test pits
- Biased sampling of subsurface soils based on the results of surface gamma scans and down-hole gamma logging
- Groundwater sampling
- 37 Gamma surveys were performed over accessible areas of the Site, including the landfill,
- 38 municipal and church property as well as the wooded area to the north. The surveys identified
- 39 four main areas of elevated radionuclide activity.

Prior to initiating field activities, soil investigation screening values (ISVs) were developed for 1 ²²⁶Ra, Thorium-232 (²³²Th) and Uranium-238 (²³⁸U) Comparison between the sampling results 2 and the ISVs showed that ²²⁶Ra concentrations were greater than the ²²⁶Ra ISV for almost all of 3 the surface and subsurface soil samples, and that ²²⁶Ra is the more prominent isotope at the Site. 4 Uranium-238 concentrations were also greater than the ²³⁸U ISV at several locations common to 5 6 elevated ²²⁶Ra Eleven surface soil samples were analyzed for metals, VOCs, SVOCs, pesticides, 7 herbicides and polychlorinated biphenyls (PCB). These samples were collected for waste characterization and health & safety purposes only. The TCLP results show that there were not 8 9 any constituents exceeding the RCRA criteria and, thus, the soil would not be considered 10 hazardous waste.

- A groundwater sample collected from GP-10 was submitted for the analysis of gross alpha, gross
- beta, ²²⁶Ra, Radium-228 (²²⁸Ra), and Uranium. The results were compared to the New Jersey
- 14 Department of Environmental Protection's standards, which are set at the Maximum
- 15 Contaminant Limits (MCL) established under the federal Safe Drinking Water Act. Gross alpha,
- 16 ²²⁶Ra, ²²⁸Ra, ²³⁰Th, ²³²Th, ²³⁴Th, ²³⁴U and ²³⁵U were not detected above their reporting limits.
- 17 Previous investigations, however, indicate the potential for on-site shallow groundwater
- 18 contamination. Groundwater will therefore be further investigated.
- Based on the results of the gamma surveys and laboratory analysis of the soil samples, there are
- 20 five areas of interest (AOIs) that warrant further investigation and are presented on Figure ES-1:
- The southeast portion of the Site parallel to Pershing Avenue (AOI 1)
- The wooded area between the landfill and Bound Brook (AOI 2)
- The interior and surrounding area of former 1984-1986 DOE excavation (AOI 3)
- The central portion of the landfill between AOIs 1 and 2 (AOI 4)
- The northwest portion of the site occupied by the church and municipal building (AOI 5)
- The results of the SI identify areas of the MML that warrant further CERCLA investigations or
- 27 additional data collection

1.0 INTRODUCTION

- 2 Cabrera Services, Inc. (CABRERA) has been contracted by the U.S. Army Corps of Engineers
- 3 (USACE), under Contract No. W912DQ-08-D-0003, Delivery Order 0003, to conduct a Site
- 4 Inspection (SI) at the Middlesex Municipal Landfill (MML) (hereafter referred to as the "Site" or
- 5 MML) under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The MML is a
- 6 37-acre former landfill located within the Borough of Middlesex, NJ (Figure 1-1). Detailed
- 7 plans for the investigation activities discussed in this report are presented in the Project Work
- 8 Plan (PWP) (USACE, 2010a). The PWP is part of the overall project plan, which includes the
- 9 Field Sampling Plan (FSP) (USACE, 2010b). A stand-alone Quality Assurance Project Plan
- 10 (QAPP) in accordance with the Uniform Federal Policy (UFP) for QAPPs (USACE, 2010c),
- 11 Contractor Quality Control (CQC) Plan (USACE, 2010d), and an Accident Prevention Plan
- 12 (APP)/Radiation Protection Plan (RPP) (USACE, 2010e) have been completed as parts of the
- overall PWP.

14

1

- 15 The MML Preliminary Assessment (PA) identified that there is evidence of an unpermitted
- 16 release and/or threat of release into soil or air of radioactive materials resulting from work
- 17 performed as part of the Nation's early atomic energy program. The PA also identified that
- while some materials were disposed of at the Site from Middlesex Sampling Plant any residual
- 19 non radiological contaminants would be minor, comingled with radiological contamination, or
- 20 indistinguishable from other landfill wastes. Given the available information and a review of the
- 21 MML Site operational history, sampling results, and the operations history of the MSP, it is
- 22 unlikely that chemical contamination at the site is related to the Nation's early atomic energy
- 23 program. Therefore, chemical sampling as part of the SI was conducted only for waste
- 24 characterization and health and safety purposes.

25

26

1.1 Objectives

- 27 The results of previous investigations have identified areas within the boundaries of the Site with
- 28 elevated radiological contamination. The primary objective of the Site Inspection (SI), based on
- 29 preliminary site data and field sampling for contamination, is to provide sufficient information to
- determine the need for a full Remedial Investigation (RI) or other actions in accordance with
- 31 Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The data
- 32 will also be utilized to distinguish areas of elevated radiological activity compared to background
- conditions. The following tasks were performed to meet those objectives.

- Surface Gamma Scan Surveys
- Sampling of surface soils based on the reviews of historical records and the results of surface gamma scans
- Excavation and sampling of soils from test pits
- Biased sampling of subsurface soils based on the results of surface gamma scans and down-hole gamma logging
 - Groundwater Sampling
- 8 1.2 Report Organization
- 9 This Site Inspection Report consists of the following sections:
- Section 1.0, Introduction presents the purpose of the report and report organization
- Section 2.0, Site Description and Activity contains a physical site, description of site contaminants, Site use history and regulatory status
- Section 3.0, Environmental Setting summarizes land use and environmental setting for the Site and surrounding properties
- Section 4.0, Field Investigation describes the sampling strategies and methods used for collecting and analyzing soil samples
- Section 5.0, Site Inspection Results presents the results of site characterization activities
- Section 6.0, Data Quality Assessment specifies field and lab documentations for quality
 assurance and quality control
- Section 7.0, Conceptual Site Model discusses the fate of contaminants as well as their propensity for transport in environmental media
- Section 8.0, Summary summarizes the results of the investigation and provides recommendations for future activities
- Section 9.0, References lists citations

25

1 2.0 SITE DESCRIPTION AND ACTIVITY

- 2 The following subsections provide a physical description of the Site and immediate
- 3 surroundings, including potential source areas. Additional sections discuss Site ownership and
- 4 past and present processes, along with programmatic activities.
- 5 2.1 Location and Physical Description
- 6 The MML is located in the Borough of Middlesex, New Jersey, approximately 16 miles
- 7 southwest of Newark (Figure 1-1). The Borough of Middlesex is located in the northwest corner
- 8 of Middlesex County with the geographic coordinates of approximately 40° 34' 36" N latitude,
- 9 74 ° 29' 43" W longitudes. Middlesex County is located in the center of New Jersey and
- stretches from the Rahway River south to Mercer and Monmouth Counties and from Raritan Bay
- on the Atlantic Ocean west to Somerset County.
- 12 The Site is bounded on the south by Mountain Avenue, on the southeast by Pershing Avenue,
- and on the west by the Municipal Building and Recycling Center. Bound Brook provides the
- 14 northern boundary of the former landfill. Chain-link fencing delineates portions of the south and
- east perimeters. The Site consists of parcels belonging to the Borough of Middlesex and the
- Middlesex Presbyterian Church and occupies approximately 37 acres (Figure 2-1). The first lot,
- belonging to the Middlesex Presbyterian Church, is located at 1190 Mountain Avenue and is
- identified as Block 219, Lot 1. The second lot, which includes the remaining Municipal Landfill
- 19 and the wooded area along Bound Brook, is located on Mountain Avenue and is identified as
- 20 Block 219, Lot 2.
- 21 The Site surface is generally flat; however, depressions measuring up to 50 yards across have
- developed from differential settlement of the buried municipal waste. Along the Site's northern
- boundary, the elevation decreases towards Bound Brook where the flat flood plain is dominated
- 24 by a mature forest. The flood plain contains several depressions that are intermittently flooded
- and range in size from 100 to 300 yards in length. Mature trees and other ground cover remain
- along the south and east perimeter fence, and there is heavy tree and ground vegetation along
- Bound Brook on the northern part of the Site. Individual trees and large bushes are also
- 28 disbursed throughout the central and southern portions of the property. The presence of
- 29 miscellaneous debris scattered across the Site indicates that local residents continue to use the
- 30 Site for disposal of household trash.
- 31 The Site is readily accessible to unauthorized foot traffic and vehicles. Currently the Site is
- 32 undeveloped.
- 33 2.2 Ownership
- 34 The Borough of Middlesex has been in possession of the Site as early as the 1930s. The property
- is listed as Block 219, Lots 1 and 2. In 1963, the approximately five acres of the landfill site sold
- 36 to the Middlesex Presbyterian Church were used to construct a church on the property. The
- 37 church property contains a church, playground, and parking lot.
- 38 <u>Past/Present Processes</u>
- 39 A review of 12 site aerial photographs was conducted during the preparation of a recent
- 40 Preliminary Assessment (PA) (USACE, 2010f) in order to obtain a better historical
- 41 understanding of onsite activities and to assist in determining areas for possible investigation.

- 1 Photographs from 1931, 1940, 1947, 1956, 1957, 1963, 1970, 1972, 1979, 1987, 1995, 2002, and
- 2 2006 were reviewed (NETR 2010). Based on this analysis, the review found that the Site has
- 3 been open ground with apparent ground disturbances beginning around 1931 and continuing
- 4 through the early 1970s, when most onsite activities were completed and where minor scarring
- 5 was apparent. Ground disturbance or activity was not evident after 1979 with the exception of
- 6 the Department of Energy DOE) removal action in 1987. Notable observations from this review
- 7 include the following:

8

9

- 1931 Rectangular area of soil disturbance in the north central portion and disturbance along the southern portion of the Site
- 1940 Small area of fill activity evident in the central portion of Site
- 1947 Notable large fill activities evident
- 1956 Fill activities expanding to the north
- 1963 Fill activities expanding to the south
- 1931, 1970, and 1972 Ground scarring and possible fill activities along the Site's far southeast border and extending along Pershing Avenue
- 1979 Revegetated Site with grasses, shrubs, and trees
- 1987 –DOE removal action evident in the area
 - 1995 Revegetated Site with grasses, shrubs, trees
- 19 The review of the aerial photographs indicated that the MML was operated as a landfill from
- approximately 1940 through approximately 1974. Much of the subsurface contains trash and
- 21 various other waste products as well as significant levels of methane. The landfill was closed
- 22 following the regulations of the time and maintained with a minimum cover of two feet and
- establishment of vegetation. Since its closure, the Site has not been developed.
- 24 2.3 Potential Contaminant Sources
- 25 Based on previous investigations it appears that there are potential source areas of radiological
- 26 contamination across the Site. At least one of these source areas is a result of the use of
- potentially contaminated soil from the Middlesex Sampling Plant (MSP).
- 28 Between 1943 and 1955, the MSP in the Borough of Middlesex, New Jersey assayed uranium
- 29 and thorium ores for the Manhattan Engineer District (MED) and the U.S. Atomic Energy
- 30 Commission (AEC), which were predecessors of the DOE. The Middlesex Sampling Plant site
- 31 is a current FUSRAP project of the USACE. Although the MML and the MSP are two separate
- 32 sites designated under FUSRAP, their interrelationship dictates that the following brief history
- addresses both the MML and the MSP.
- 34 During its operational history, the MSP stored drums and ore containers on open ground.
- 35 Occasionally, handling and transfer operations would result in spillage of small amounts of ore
- onto the ground surface. Consequently, this area became contaminated through the mixing of
- 37 small pieces of ore into the soil. In 1948, the Atomic Energy Commission (AEC) decided that
- 38 this storage area should be paved (Federal Register [FR] 89-10965). The area was graded level
- 39 prior to being paved with asphalt. The excess soil from the grading operation was transported to
- 40 the MML. Although there is not any documentation to indicate when the contamination of the

- 1 landfill occurred, a review of MSP files documenting operations conducted from 1946 to 1966
- 2 indicates the contaminated soil was probably shipped to the landfill between November 1947 and
- 3 October 1948. This soil, contaminated by previous ore spillage, was dispersed over
- 4 approximately three to five acres of the landfill and was used as fill or cover material for sanitary
- 5 landfill operations (DOE, 1989). Based on historical data from the DOE and the location of
- previous actions at the MML, it is presumed that the soil from the MSP was dispersed within the 6
- 7 northern and northwestern portions of the landfill.
- 8 Although the MSP actions are the only well documented source of contamination to the MML
- 9 that are identified in this SI, additional sources are possible and will be evaluated further through
- 10 the CERCLA process. DOE identified 22 sites within the vicinity of MML that had known
- 11 radium use (DOE 2008). Additionally, radium was widely used by the medical profession into
- the 1940's. The site's existence as a publicly available municipal landfill makes it difficult to 12
- 13 identify all of the sources of material that was disposed of there. Typical landfill operations that
- 14 involved material placement and sorting could have resulted in the spread of contaminated
- 15 materials across the site. Also near the MML Site is an Environmental Protection Agency (EPA)
- 16 Superfund Site with known chemical contamination which may impact Bound Brook. The EPA
- 17 has detected PCBs in the surface water and sediments of the Bound Brook, which crosses the
- 18 site's southeast corner.
- 19 2.4 Previous Program Activities
- 20 AEC Removal Action
- 21 In 1961, the AEC removed the portion of the contaminated materials lying nearest the surface —
- 22 approximately 650 cubic yards (cy) — and backfilled the excavation with approximately two
- 23 feet of clean fill. This effort was done to provide two feet of clean barrier between contaminated
- 24 soils, and was not based on clean up values. Contaminated materials still remained below the
- 25 two feet of clean fill (AEC, 1961). The soil removed from the excavation was transported to the
- AEC New Brunswick Laboratory site in New Brunswick, New Jersey (FR, 1989). Additional 26
- 27 landfill wastes were placed over the area addressed in 1961.
- 28 Bechtel FUSRAP Investigation/Remedial Action
- In 1984 and 1986, Bechtel National, Inc. conducted characterization, a remedial action, and a 29
- 30 final survey of the impacted portion of the landfill for DOE under FUSRAP (DOE, 1989). These
- 31 remediation activities addressed about five acres at the north end of an approximately 20-acre
- 32 site where soil was disposed from the MSP. During the 1984 remedial action, approximately
- 33 15,000 cubic yards (cy) of soil were removed from the Site. The volume of soil was greater than
- 34 anticipated and required an additional removal action in 1986. During this second effort an
- 35 additional 16,000 cy were removed. Excavated material was transported to an interim storage
- 36 area at the MSP until final disposition in 1998 and 1999. The Site was then released to the
- 37 Borough of Middlesex for future unrestricted use.
- 38 Middlesex Borough Investigation
- 39 In 2001 and 2002, New Jersey Department of Environmental Protection requested that the
- 40 Borough conduct a radiological survey of the entire landfill. That survey identified elevated
- radiation levels along the southeast boundary. The source of these elevated radiation levels was 41
- 42 not determined, and further characterization of the areas was not performed. The area of

- 1 elevated gamma activity was more than 800 feet south of the area remediated by DOE (1984-
- 2 1986) and did not show up on an airborne radiological survey performed by DOE before the
- 3 DOE remediation occurred.
- 4 Sadat Associates Site Investigation
- 5 During 2002 and 2003, RI activities were conducted at the Site on behalf of the Middlesex
- 6 Borough by Sadat Associates, Inc. (Sadat, 2007). These activities included performance of an
- 7 surface gamma survey, excavation of test pits, installation of test piezometers and soil gas points,
- 8 advancing of soil borings, installation of temporary well points, surface water and sediment
- 9 sampling, and installation and sampling of shallow and bedrock groundwater monitoring wells.
- 10 The results of the 2002 RI activities were submitted to the NJDEP in May 2003; a final revised
- report was submitted in August 2007 (Sadat, 2007).
- 12 The soil quality data obtained in the investigation did not indicate any exceedances of the
- 13 NJDEP Soil Screening Criteria (SSC) for volatile organic compounds (VOCs) or polychlorinated
- biphenyls (PCBs). A series of four composite samples of the landfill cover soil identified
- polycyclic aromatic hydrocarbons (PAHs) exceedances in two samples, a thallium exceedance in
- one sample and arsenic and pesticides in one sample.
- 17 Soil borings advanced around the Middlesex Municipal Building lot and Middlesex Presbyterian
- 18 Church did not indicate any exceedances of NJDEP's SSC and delineated the extent of fill
- materials at the northwestern portion of the Site. The investigation report also stated that the site
- 20 does not appear to be impacted by radiological constituents above NJDEP SSC. Soil borings
- 21 advanced at the southern portion of the landfill did not indicate contamination in excess of the
- 22 NJDEP soil screening criteria; however, two pesticides, aldrin and dieldrin, exceeded the
- 23 residential and nonresidential soil screening criteria in one boring.
- 24 The additional groundwater sampling conducted as part of the 2003 RI activities confirmed
- exceedances of NJDEP's groundwater quality standards (GWQS) for ammonia, total dissolved
- solids, metals, and select VOCs in the shallow groundwater. The 2003 groundwater data also
- 27 indicated significant decreases in concentrations of radiological parameters. While two wells,
- 28 MW-6 and 81-16, exceeded the screening level for gross alpha and/or gross beta, they did not
- 29 exceed limits for ²²⁶Ra and ²²⁸Ra.
- 30 For the deep groundwater sampling data, iron and manganese were confirmed to exceed NJDEP
- 31 GWOS and are believed to be related to natural regional sources. From this data set, a single
- 32 VOC, carbon tetrachloride, was detected at an estimated concentration which slightly exceeded
- 33 the GWQS. Based on the 2002 and 2003 remedial investigations, radiological impacts to the
- deep groundwater at the MML property were not found. The conclusions of the RI indicated that
- 35 shallow and deep groundwater quality, does not appear to be impacted by radiological
- 36 constituents.
- 37 The results of the RI indicated one pesticide, α-chlordane, slightly exceeded the surface water
- 38 quality criteria (SWQC) at the Site as well as at one upstream location. This pesticide was
- 39 believed to be due to regional sources. Further action was not proposed.
- 40 Sediment sampling was conducted and results indicate sediments do not require further
- 41 investigation. Section 7.2.5 provides a detailed explanation of the sediment investigations.

- 1 In March 2008, based on the information provided in the RI submitted by Sadat, NJDEP
- 2 requested that DOE determine if USACE could perform a detailed gamma scan of the entire
- 3 property in order to confirm site conditions and include, as appropriate, the property in FUSRAP
- 4 for additional remediation.
- 5 <u>DeNuke Survey</u>
- 6 In September 2008, the DOE Office of Legacy Management contracted to have a radiological
- 7 survey of the former MML site performed. DeNuke Contracting Services, Inc. performed a
- 8 radiological survey of the former MML. The objective of the survey was to identify elevated
- 9 surface radiation levels. The survey consisted of walkover gamma scans and limited soil
- sampling at locations identified by the scans.
- 11 Areas of concern were identified during the gamma scans in both the northern and southern
- portions of the former MML with Radium-226 (²²⁶Ra), Thorium-232 (²³²Th), and uranium-
- 13 238 (²³⁸U) confirmed in both areas but in varying quantities relative to each other.
- 14 At the time of the survey, site-specific guideline concentrations for radionuclides in soil had not
- been developed for the Site. Therefore, it was not possible to compare radiological conditions
- with current DOE-derived volumetric guidelines. However, this evaluation in 2008 determined
- that, although small areas of residual radioactive contamination were found, the levels of
- 18 contamination under conditions of current property use did not pose a health risk to members of
- 19 the public on or in the vicinity of the MML. The survey demonstrated that there were several
- small areas of low-level surface radiation in other Site locations.
- 21 2.5 Site Regulatory Status
- As a result of the March 2008 survey findings, the DOE declared in March of 2009 that the Site
- 23 was eligible for inclusion into FUSRAP. The DOE then referred the Site to the USACE for
- 24 appropriate action. The Site is currently identified in the U.S. Environmental Protection Agency
- 25 (EPA) Superfund Information System by the CERCLIS ID# NJD980505499 and by the NJDEP
- as Site Number 5655 with Program Interest Number 024189.
- 27 In accordance with the Memorandum of Understanding executed between USACE and DOE in
- 28 March 1999, DOE informed USACE that evaluation of MML may be required and referred the
- 29 Site to USACE for appropriate action. The USACE has begun the CERCLA process by
- 30 completing a Preliminary Assessment and this Site Inspection.

1 3.0 ENVIRONMENTAL SETTING

- 2 3.1 Land Use
- 3 Land use surrounding the Site includes a mix of residential and non-residential property (Figure
- 4 2-1). To the north, east, and south, the land use is predominantly residential with some small
- 5 commercial use directly to the west, including the Middlesex Borough Police Department offices
- 6 and an assisted living facility. Land use to the west includes the Middlesex Presbyterian Church
- 7 (Lot 219-1), the Middlesex Borough Building recycling center (Lot 216-1), and a public library.
- 8 The church occupies the land from Mountain Avenue northward to a point parallel with the
- 9 Middlesex Recycling Center as well as land between Westminster Street and Monroe Street.
- 10 3.2 Population Estimates
- 11 The Borough of Middlesex, occupying an area of approximately four square miles, has seen an
- increase in population from 13,055 in 1990 to 13,654 in 2009 (U.S. Census Bureau 2010). In
- 13 2000, the population per square mile in the eastern portion of the borough (where the Site is
- located) was 3,759. The western portion of the borough had a population per square mile of
- 15 4,068.
- 16 Middlesex County encompasses an area of 323 square miles and has a total population of
- 17 790,738 based on 2009 data (US Census Bureau, 2010). Similar to the borough, the county has
- seen a population growth similar to the borough and had a population of 671,780 according to
- the 1990 census. Based on the 2009 census, the county population per square mile is 2,560.
- 20 3.3 Regional Geology
- 21 3.3.1 Surficial Geology
- 22 Middlesex County straddles two physiographic regions: the Piedmont and the Coastal Plain. The
- 23 two regions are separated by the geologic feature referred to as the Fall Line, which delineates
- 24 the contact between the older Piedmont soils and the younger Coastal Plain soils (DOE, 1989).
- Soil borings performed during previous investigations (Sadat, 2007) reveal that layers of fill,
- 26 including waste materials and cover, extend to depths up to 20 feet bgs within the landfill. The
- 27 cover material generally consists of brown silty sand. Other materials observed in these layers
- 28 include silt, clay and fine-grained sand. The colors of these materials range from black, red, and
- orange-brown to gray.
- 30 Underlying the fill material is Quaternary alluvium consisting primarily of gray, red and brown
- 31 fine- to medium-grained sand. The alluvium contains occasional lenses of clay and silty clay. A
- 32 one to five ft thick layer of red clay or dense red silt occurs at the bedrock interface
- 33 discontinuously across the Site. The Quaternary alluvium consists primarily of sediments
- 34 deposited in tidal flats and along stretches of non-tidal streams where the gradients are low, such
- as along the Bound Brook. These alluvial deposits have relatively low permeability, minimizing
- downward migration, and are generally considered of little to no importance as a source of water
- 37 supply (DOE, 1989).
- 38 3.3.2 Bedrock Geology
- 39 Underlying the surficial deposits at the Site is the Brunswick Shale of the Passaic formation at
- 40 depths of between 10 and 20 ft bgs across the Site. The Brunswick Shale is Triassic in age and

- 1 predominantly consists of reddish-brown shale interbedded with siltstone, sandstone and black,
- 2 gray, or greenish shale. This unit weathers to a reddish clay. The shale is generally impermeable;
- 3 however, it tends to be highly fractured, with many closely spaced joints and bedding planes.
- 4 The intersecting fractures provide the principle means of storage and movement of groundwater
- 5 (Sadat, 2007).
- 6 3.4 Groundwater Pathway
- 7 3.4.1 *Hydrogeology*
- 8 Shallow groundwater at MML ranges in depth from five to 21 feet bgs (Sadat, 2007).
- 9 Groundwater level measurements collected from eight overburden and six bedrock onsite
- monitoring wells indicate a predominantly northeastern direction of groundwater flow in the
- overburden and a northern direction of flow in the bedrock.
- 12 The uppermost water-bearing zone in the overburden material (including the lower part of the
- landfill material) is separated from the underlying Passaic Formation bedrock by a layer of lower
- permeability clay $(6.5 \times 10^{-6} \text{ to } 7.0 \times 10^{-7} \text{ centimeter per second [cm/s])}$ formed from the
- weathering of the shale bedrock. Because the permeability of the clay layer is not extremely low
- and both water-bearing zones have nearly the same groundwater level, it is possible that the
- zones may be partially connected. However, the limited water quality data that are available for
- comparing the upper and lower aquifers at the Site indicate that there may not be much exchange
- 19 between the two zones.
- 20 The Passaic Formation is the major bedrock aquifer throughout a large part of central and
- 21 northeastern New Jersey. It is also classified as a Class II-A water supply source under EPA
- 22 criteria. The shale portion of the Passaic Formation is used for domestic, municipal, and
- 23 industrial water supply in Middlesex County. Groundwater in the Passaic Formation generally
- 24 exists under unconfined to partially confined conditions in the upper 200 ft and confined at
- 25 greater depths. Regionally, well depths range from 30 to 1,500 ft bgs. Common well yield rates
- of the formation are 10 to 500 gallons per minute (gpm). Well yields have been known to exceed
- 27 1,500 gpm. Water is generally hard and may have high concentrations of iron and sulfate (USGS,
- 28 1999).
- 29 Based on data collected from previous investigations, there is the possibility of shallow
- 30 groundwater discharging to the surface and into Bound Brook. Groundwater elevation data from
- 31 the Sadat 2007 report indicates the elevation of the shallow groundwater is close to the
- 32 approximate elevation of Bound Brook in the area of Monitoring Well 81-11.
- 33 3.4.2 Local Groundwater Use
- 34 Off-site ground water in the area of the Site has been investigated as part of the MSP FUSRAP
- 35 site both by USACE and Agency for Toxic Substances and Disease Registry (ATSDR). As part
- of the MSP Groundwater RI, USACE requested well completion permits on file with NJDEP
- 37 Bureau of Water Allocation (BWA). This review determined that there were 316 wells within
- one mile of the MSP site (USACE, 2005). Since the MML and MSP sites are proximate to each
- 39 other, this represents a rough estimate of the wells in a one and one half mile radius from the
- 40 MML site.
- 41 Of the 316 BWA permitted wells, 81 were used for domestic consumption, six for industrial
- 42 purposes, two for irrigation, and 227 for monitoring, remediation, gas venting, or other non-

- 1 consumption purposes. Completion depths of wells used for potable purposes in the vicinity of
- 2 MML range from 70 to 400 feet bgs (USACE, 2005). Based on the permit review there are no
- 3 drinking water wells at the Site. ATSDR sampled 17 private consumption wells as part of their
- 4 Public Health Assessment of the MSP site. Radiological and non-radiological potential
- 5 contaminant levels in private wells were below levels of concern or at background levels
- 6 (ATSDR, 2000).
- 7 Nineteen municipal wells were identified within a four-mile radius of the Site. Of these 19 wells
- 8 one is inactive, two were decommissioned and two require treatment due to contamination. The
- 9 remaining 14 wells are listed as "authorized" indicating that a permit had been issued and are
- assumed to be active. Total depths of the wells range from 252 ft to 430 ft. The nearest public
- well field to the Site, the Elizabethtown Water Company's Sebring's Mills well field, is located
- 12 approximately 0.6 miles northwest and roughly downgradient of the Site. Historically this well
- 13 field withdrew groundwater from the unconfined Passaic Formation aquifer, but it has not
- 14 operated since 1978 (ATSDR, 2000).
- 15 3.5 Surface Water Hydrology
- 16 Surface runoff from the Site generally flows north towards Bound Brook, which in turn flows
- 17 northwest and discharges into Green Brook. Green Brook discharges into the Raritan River about
- 1.9 miles southwest of the Site. The river is classified by the EPA and the NJDEP as a source for
- 19 public drinking water. The nearest potable surface water supply (100 million gallons per day
- 20 [mgd]) is drawn from the Raritan River at the confluence with the Millstone River,
- 21 approximately 2.6 miles upstream of the confluence with Green Brook. (DOE, 1984) A private
- industry withdraws 4.6 million gallons per day (mgd) of water from the Raritan River about 0.5
- 23 miles downstream from the confluence with Green Brook.
- 24 The 100-year flood level at the Site is approximately 44 ft above Mean Sea Level (MSL) and
- 25 intersects a portion of the northern and extreme southeastern portions of the Site (Figure 3-1).
- Therefore, during the 100-year flood, the northern edge of the Site would be flooded about two-
- 27 thirds of the way up the slope (FEMA, 2010). The discharge associated with the 100-year flood
- is estimated to be about 4,050 cubic ft per second at the Site.
- 29 Based on drainage areas and stream-flow measurements on Bound Brook and Cedar Brook at
- 30 South Plainfield, it is estimated that the low flow and mean flow of Bound Brook near the
- 31 Landfill is approximately 8.8 and 110 cubic ft per second respectively during the month of
- 32 August (DOE, 1989).
- 33 Two seeps were observed along the slope of the landfill during a previous investigation (Sadat,
- 34 2007). However, it was not determined if this seepage was landfill leachate or shallow
- 35 groundwater.
- 36 3.6 Aquatic/Terrestrial Receptors
- 37 Middlesex is located within the glaciated area of the Appalachian oak forest section of the
- 38 eastern deciduous forest. This forest section is characterized by oak, hickory, maple, basswood,
- 39 elm, and ash, with alder, willow, ash, elm, and hygrophytic shrubs common in moist, poorly
- 40 drained habitats. However, because the MML is located within an urban setting and was cleared
- 41 for disposal of waste, limited forest habitat remains (DOE, 1984).

- 1 The New Jersey Department of Fish, Game, and Wildlife (NJDFGW) stocks the Raritan River
- 2 (approximately two miles to the southeast) with adult trout for fishing. The NJDFGW has also
- 3 identified other edible fish in the Raritan, including striped bass, American shad, and northern
- 4 pike (NJDFGW, 2010).
- 5 The bald eagle (Haliaeetus leucocephalus), peregrine falcon (Falco peregrinus), piping plover
- 6 (Charadrius melodus),), bog turtle (Clemmys muhlenbergii), Indiana bat (Myotis sodalist) and
- 7 roseate tern (Sterna dougallii) may appear in the vicinity of the Site as occasional transients. The
- 8 piping plover and roseate tern are on the federal endangered or threatened species list. A review
- 9 of the U.S. Fish and Wildlife Service database indicates the peregrine falcon, bog turtle, and the
- plant, swamp pink (*Helonias bullata*), are also on the endangered and threatened species list for
- 11 Middlesex County. However, there are not any known habitats critical for the survival of these
- species in the vicinity of the Site. Additionally there are not any federal lands managed for
- ecological protection within a two-mile radius of the Site (USFW, 2010). *Meteorology*
- 14 Middlesex County has a humid subtropical climate similar to other areas within the state of New
- 15 Jersey. The climate is influenced greatly by its proximity to the Atlantic Ocean. The mean
- temperature for the site ranges from a low mean of 43 degrees Fahrenheit (°F) to a high mean of
- 17 63 °F. The lowest monthly mean temperatures occur in January (21 °F), and the highest monthly
- mean temperatures occur in July (85 °F). The State of New Jersey averages about 120 days of
- precipitation per year; average annual precipitation is 48 inches, which is slightly higher than the
- 20 national average. The highest month of precipitation occurs in August, which experiences an
- 21 average of 4.8 inches of rain measured at Somerville, New Jersey, approximately 7.8 miles west
- of Middlesex. The annual snowfall for Middlesex is 18 inches, which mostly occurs in the
- 23 months of January and February. The prevailing winds are from the northwest during October
- through April and from the southwest during the summer months (DOE 1984).

4.0 FIELD INVESTIGATION

- 2 This section provides greater detail of activities and methods employed during the field
- 3 investigation conducted at the Site. Field work began with the initial site preparation and
- 4 mobilization on December 2, 2009 and finished with the demobilization on March 3, 2010.
- 5 4.1 Summary

1

8

9

10

11

12

13

14

15 16

17

18

- In order to meet the project objective and confirm the presence of radiological and nonradiological impacts at the Site, the project team implemented the following field tasks:
 - Surface Gamma Scan Surveys of approximately 35 acres. Two acres were inaccessible due to structures and standing pools of water mainly within the wooded area. These scans were completed to determine the extent of radiological contamination as well as to aid in determining location of soil samples.
 - Collection of 49 surface soil samples based on the reviews of historical records and the results of surface gamma scans to determine nature and extent of radiological contamination.
 - Excavation and selected sampling of soils from 14 test pits to identify the potential presence of nuggets of uranium ore.
 - Advancement of 50 soil borings and the collection 103 biased subsurface soil samples based on the results of surface gamma scans and down-hole gamma logging (DGL). These samples were used to determine nature and extent of radiological contamination.
- Groundwater sampling to identify potential impacts to groundwater from site contaminants.
- 22 As gamma survey activities progressed, results were provided to the CABRERA-USACE project
- team on an almost daily basis to show project progress as well as to determine suitable biased sample locations. Near the completion of the drive-over gamma surveys, initial surface soil and
- 25 test pit locations were determined based on review and discussion of the data. Follow-on data
- were used in plotting additional sample locations. Sample locations were determined using an
- 27 iterative process as field survey data was collected and interpreted. The sampling approach
- 28 involved placement of a portion of the total planned sample locations based on site history and
- 29 the results from previous investigations. The remainder of the locations would be 'biased'
- according to the results of the surface scan and down-hole gamma count results.
- Field activities were conducted in accordance with the Final Project Work Plan (USACE, 2010b)
- except as noted in Section 4.12. Results of the field activities are presented in Section 5.
- 33 The sections presented below describe each of these activities in greater detail.
- 34 4.2 Radionuclides of Potential Concern and Investigative Screening Values
- 35 Previous environmental investigations confirmed that the Site contained soil with the following
- radionuclides of potential concern (ROPCs): ²²⁶Ra, ²³²Th, and natural uranium consisting of ²³⁴U
- 37 ²³⁵U, and ²³⁸U in natural ratios. The surface and subsurface soil samples were analyzed for the
- 38 appropriate ROPCs; the results were compared against soil investigative screening values (ISVs)
- in order to determine the nature and extent of radiological contamination at the Site. ISVs were
- 40 developed based on background levels for ²²⁶Ra, ²³²Th and ²³⁸U as determined by investigations

- 1 conducted at the MSP (USACE, 2004), previous MML site investigations (Sadat, 2007), and the
- definition of Uncontaminated Surface Soils in NJAC 7:28-12,: "Uncontaminated surface soil"
- 3 means soil whose average natural background radionuclide total concentrations are less than the
- 4 remediation standards for radionuclides, and cannot exceed the background established for the site by
- 5 more than two standard deviations." Table 4-1 presents the background concentrations of the
- 6 ROPCs as well as the derived corresponding ISVs.
- 7 In addition to the collection of samples for radiological analyses, 11 surface soil samples were
- 8 analyzed for non-radiological constituents, including VOCs, semivolatile organic compounds
- 9 (SVOCs), metals, and polychlorinated biphenyls (PCBs). The additional samples were collected
- 10 for health and safety purposes as well as determination of radiological and non-radiological
- 11 contamination co-mingling. Six of the eleven soil samples were analyzed for VOCs, SVOCs,
- metals and PCBs via the Toxicity Characterization Leaching Procedure (TCLP) in order to
- determine if soils that may potentially be excavated in the future should be classified as a
- 14 hazardous waste. The TCLP results show that there were not any constituents exceeding the
- 15 RCRA criteria and, thus, the soil would not be considered hazardous waste. The limited
- 16 chemical soil sampling included in this field investigation does not entirely preclude the
- possibility that RCRA hazardous wastes may exist at the site, however, and those wastes, if
- encountered in the future, would be managed in accordance with the appropriate Federal and
- 19 state regulations.
- 20 4.3 Initial Site Preparation
- 21 Prior to performing any site characterization activities, brush-clearing activities were performed
- across the open area landfill cover as well as limited areas within the wooded section to the
- 23 north. The brush was chipped/shredded and staged at a location within the boundaries of the
- 24 MML. Clearing was performed using hand tools and tractor-equipped brush hogs; this activity
- 25 was performed to allow for improved visual inspection of and access to the landfill surface and
- 26 to facilitate proper gamma survey procedures. Mature trees (i.e. greater than 3 inches in
- diameter) were not removed.
- 28 4.4 Surface Gamma Surveys
- 29 Surface gamma surveys were performed over 100% of the accessible ground surfaces within the
- 30 MML site boundary as presented on Figure 4-1. Surveys were conducted in order to identify
- 31 potential areas of residual surface contamination and to determine locations for biased surface
- 32 and subsurface soil sampling and test pits. Gamma drive-over scans, utilizing CABRERA's Large
- 33 Area Scanning System (CLASSTM) mounted on an all-terrain vehicle (ATV) with a Global
- 34 Positioning System (GPS), were conducted over all areas accessible to wheeled vehicles.
- 35 Traditional gamma walkover surveys (GWS) were performed in areas not accessible to wheeled
- yehicles and in wooded areas where a GPS signal was not available (primarily due to foliage
- interference). In these areas, a range of concentrations were documented, and marking flags were
- 38 installed to delineate areas with elevated gamma readings. Each of those gamma surveys are
- 39 summarized in the following sections. Graphic presentation of the gamma survey results are
- 40 provided in Section 5.0.
- 41 4.4.1 $CLASS^{TM}Surveys$
- 42 The CLASS[™] survey was used to rapidly measure, spatially correlate, and map gamma
- radioactivity concentrations. The CLASS consists of a Radiation Solutions, Incorporated (RSI)

1 integrated controller and data acquisition system, a digital 2 spectrometer/multi-channel analyzer (MCA), a data controller, two RSX-256 4-liter (256 cubic 3 inch) sodium-iodide (thallium activated) (NaI(Tl)) gamma scintillation detectors, an integrated 4 low-resolution GPS, and input for connection to an external high resolution Trimble Pro XH 5 GPS receiver. Radiation and location information was collected by the system at a very high 6 data transfer rate (nominally one data point every second) and stored in an onboard data file for 7 real-time operator feedback as well as data validation post-processing. The drive-over survey 8 was advanced at a speed of one meter/second (m/s) or slower to ensure that adequate data 9 collection and survey coverage requirements were met. Graphic presentation of the gamma survey results are provided in Section 5.0. Raw data from the CLASS[™] and walkover surveys 10 11 are included on CD in Appendix A.

12 4.4.2 Gamma Walkover Survey

13 Traditional GWS was conducted in areas where tree cover, terrain, or obstacles prevented access by the ATV-mounted CLASS[™] system. Surveys were conducted in the wooded area at the north 14 end of the Site, around the Middlesex Municipal Building and the First Presbyterian Church, 15 16 within the Middlesex recycling center, and around the Site perimeter. A Ludlum Model 2221 17 scaler/ratemeter and 3x3 NaI detector were utilized to scan the soil surface for elevated gamma 18 emissions in gross count per minute (cpm). Surveys were performed by walking straight, 19 parallel lines at a rate of approximately 0.5 meters per second while moving the 3x3 NaI detector in a serpentine motion of approximately one meter wide and a consistent distance (two to four 20 21 inches) above the ground surface. GWS data were collected in gross cpm from the 22 ratemeter/scaler and automatically logged into the GPS unit once per second. The data logging 23 protocol allowed for a data density equivalent of two logged measurements per square meter of 24 ground surface. Graphic presentation of the gamma survey results are provided in Section 5.

4.4.3 Manual Gamma Walkover Survey

25

42

26 The manual GWS was performed in areas where tree cover prevented access to the ATVmounted CLASS[™] and where a GPS signal could not be established in order to perform a 27 28 traditional GPS-correlated GWS. The manual GWS was performed following the same 29 technique as the traditional GWS; however, gross cpm and GPS positional data were not 30 recorded. Instead, gross cpm ranges were hand recorded on survey forms/maps to correlate the 31 survey measurements with their approximate horizontal location. Transects were marked in the 32 field to divide the wooded area into approximately one-acre plots. These transects allowed lines 33 of sight to aide in keeping parallel lines during the manual GWS, ensure complete coverage, and 34 provide increased accuracy of data measurement locations. A field investigation screening value 35 of 20,000 cpm was determined for use during the manual survey per the Multi-Agency Radiation 36 Survey and Site Inspection (MARSSIM) specifications which follow:

The minimum detectable number of net source counts in the interval is given by s_i . Therefore, for an ideal observer, the number of source counts required for a specified level of performance can be arrived at by multiplying the square root of the number of background counts by the detectability value associated with the desired performance (as reflected in d') as shown in MARSSIM Equation 6-8 as follows:

$$s_i = d' \sqrt{b_i}$$

- 1 Where the value of d' is selected from MARSSIM Table 6.5 based on the required true positive
- 2 and false positive rates and b; is the number of background counts in the interval. The value of
- 3 d' represents the rate of detections at 95% and a very low false positive rate of 5%, and is set at
- 4 3.28.
- 5 The minimum detectable count rate (MDCR) is calculated from a background of 15000 cpm
- 6 (250 counts per second [cps]) as:
- 7 $MDCR = (d')(b_i)^{0.5}(60sec/1min)$

8

- $MDCR = (3.28)(250)^{0.5}(60) = 3112 \text{ cpm}$ 9
- 10 The MDCR for the surveyor is given as:
- $MDCR_{surveyor} = MDCR / (P)^{0.5}$ 11

12

- 13 Where P is the surveyor efficiency equal to 0.5 to 0.75 as given by NUREG-1507. P = 0.5 was
- 14 chosen as a conservative estimate and

15

 $MDCR_{surveyor} = 3{,}112 / (0.5)^{0.5} = 4{,}402 \text{ cpm}$ 16

- 18 To ensure that elevated scanning measurements were actually higher than background levels of
- 19 15,000 cpm and not reflecting false positives, an investigation level was set at 20,000 cpm. This
- 20 rate exceeds three standard deviations of background averages and is just above the MARSSIM
- 21 defined minimum detectable count rate for a 5% false positive proportion.
- 22 Locations identified during the manual survey as having gross gamma emissions greater than the
- 23 established screening value were pin-flagged in the field. One-minute static measurements were
- 24 taken at these locations using the 3x3 NaI detector, and readings were recorded at each location.
- 25 GPS coordinates were also recorded utilizing cell phone signals, in lieu of a Trimble GPS
- 26 receiver, due to the heavy tree canopy blocking the line of sight satellite signals. Graphic
- 27 presentation of the gamma survey results are provided in Section 5.
- 28 Determination of Sample Locations
- 29 Soil sampling locations were determined using an iterative process during gamma survey data
- 30 collection and interpretation. The sampling approach involved placement of a portion of the
- 31 total planned sample locations based on site history and the results from previous investigations.
- 32 The remainder of the locations would be 'biased' according to the results of the surface scan and
- 33 down-hole gamma count results. As GWS activities progressed, survey results (cpm plots, Z-
- 34 score plots and Regions of Interest [ROI] figures, and down-hole log sheets) were provided to
- 35 the CABRERA-USACE project team on an almost daily basis in order to show project progress as
- well as to evaluate suitable biased sample locations. Near the completion of the CLASS^{1M} 36
- 37 gamma surveys, the initial surface soil and test pit locations were determined based on analysis
- 38 of the data. As more data were received from the field, these observations were used in plotting
- 39 additional sample locations.

- 1 As with the surface soil locations, test pit and soil boring locations were also based on the results
- 2 of the field surveys. Field observations from the test pits (both visual and scans of spoils) were
- 3 used to locate soil borings for the purpose of 'bounding' the limits of elevated radiological
- 4 activity. CABRERA's Field Site Manager was in constant communication with the project
- 5 manager and USACE staff; this manager provided updates and recommendations for the next set
- 6 of sample locations. These updates were discussed in weekly conference calls within the project
- 7 team, focused on the data, and led to the determination of the most likely locations for sampling.
- 8 This iterative process continued until the last samples were collected by the field team.
- 9 4.6 Surface Soil Sampling
- 10 A total of 49 systematic and biased soil samples were taken to characterize surface contaminant
- distribution. Surface samples were collected using a trowel up to a depth of 0.5 ft bgs. All
- samples were homogenized in a clean stainless steel bowl. The exception was samples for VOC
- analysis that were collected in compliance with Standard Operating Procedure (SOP) OP-052
- 14 (USACE, 2010b). GPS coordinates for each surface sample location were recorded. Sample
- analyses were performed using gamma spectroscopy for detecting the ROPCs listed in Table 4-2
- and alpha spectroscopy for detecting isotopic uranium. The gamma spectroscopy samples were
- sealed and stored for a minimum of 21-days to allow full in-growth of the ²²⁶Ra daughter
- progeny (lead-214 [214Pb] and Bismuth-214 [214Bi]). EPA Method 901.1M via gamma
- spectroscopy was then used to count the daughter progeny; thus the result was reported as ²²⁶Ra
- without interference from the collocated ²³⁵U gamma line (within 0.5 kilo-electron volts [keV] of
- 21 ²²⁶Ra's 186 gamma emissions). Eleven of the samples were collected and submitted for metals,
- VOCs, SVOCs, pesticides, herbicides and PCBs, using the analytical procedures outlined in
- 23 Table 4-2. As discussed in Section 2.3 these 11 samples were collected only for waste
- 24 characterization and health and safety purposes. Six of the eleven samples to support waste
- 25 characterization were analyzed for the full Toxicity Characterization Leaching Procedure
- 26 (TCLP). Quality Assurance/Quality Control (QA/QC) samples included 10% field duplicates
- 27 and 5% matrix spike/matrix spike duplicates. One-minute gross gamma, static measurements
- were also recorded with a 3x3 NaI detector at each surface sample location.
- 29 4.7 Test Pits
- 30 Test pits were utilized as a means of screening for the presence of high-activity ore "nuggets"
- 31 that may have been buried as part of a waste stream from the former MSP FUSRAP site. A total
- of 14 test pits were excavated during this SI. Some locations were predetermined and some were
- decision-based. The project team worked together to determine the locations of all 14 test pits;
- 34 location was based on the gamma survey data (surface scans and down-hole counts) in
- 35 conjunction with the site historical data.
- Each test pit was excavated with a Mini-Excavator (John Deere Model 50D) that had a two-foot
- wide bucket attachment. Soil was excavated in 0.5 ft lifts and spread uniformly on polyethylene
- 38 sheeting placed on the ground adjacent to the excavation. Care was taken to separate the top soil
- 39 from subsurface layers that were more likely to be associated with waste burials. A manual
- 40 GWS was conducted on the excavated spoils to screen for elevated radioactivity. Prior to
- 41 excavating the next lift, soil also was inspected visually for sources of radioactivity and soil
- 42 lithology. All observations were recorded in the Field Log Book and Test Pit Logs (provided in
- Appendix B). Test pits were excavated to a depth of eight ft bgs over a length up to eight ft. All
- 44 excavations and soil sampling were performed using real-time air quality monitoring due to the

- 1 known presence of underground methane within the landfill zone. In the exclusion zone,
- 2 continuous organic vapor and methane monitoring was conducted using a photoionization
- detector (PID) and a multi-gas meter (MGM).
- 4 4.8 Subsurface Soil Sampling
- 5 To characterize potential subsurface contaminant distribution, 103 subsurface soil samples were
- 6 collected at predetermined systematic locations and at biased locations determined by surface
- 7 gamma survey results. A track-mounted GeoProbe 7720 in a direct-push, macro-core sampling
- 8 configuration was utilized to collect incremental core soil samples in four-foot sections to a
- 9 maximum depth of 12 ft bgs or refusal. A LudlumTM Model 44-20 3x3 NaI detector was used to
- screen each core for gross gamma radiation and identify areas of elevated count rates. Results
- 11 were documented in the Core Scan Field Form. Also, the soil lithology was logged to Uniform
- 12 Soil Classification System standards, and all significant conditions, including the presence of
- groundwater, were noted. Soil boring logs and gamma scans are presented in Appendix C. Core
- samples were direct frisked; biased samples were taken from the depth interval that exhibited the
- 15 highest direct reading. Soil sample analysis for determining ROPCs relied on gamma
- spectroscopy. Alpha spectroscopy analysis was used to determine the isotopic concentrations of
- all three uranium isotopes present in natural uranium.
- 18 4.9 Down-hole Gamma Logging
- 19 If refusal or groundwater were not encountered, down-hole gamma logging was performed in
- 20 each borehole to 12 ft bgs. Prior to down-hole logging, each borehole was sleeved with capped,
- 21 polyvinyl chloride (PVC) riser pipe in order to prevent collapse and prevent groundwater
- 22 intrusion to the extent practicable. Gross gamma down-hole measurements were performed in
- 23 six-inch increments starting from the bottom of each hole and proceeding toward the ground
- surface. A Bicron Model G-1 ½"x1" environmentally-sealed NaI detector was suspended from a
- 25 nylon cord with depth markings in order to ensure that accurate depth interval measurements
- were recorded. Count rates were recorded using a coupled Ludlum Model 2221 scaler/ratemeter.
- 27 Down-hole gamma logging was conducted at each of the 50 soil borings advanced during this
- 28 investigation.
- 29 4.10 Groundwater Sampling
- 30 A single groundwater sample was collected from soil boring GP-10 during this SI after
- 31 consultation with USACE technical personnel and based on the ROI data for uranium. GP-10
- was positioned within an area with a uranium Z-score of between two and three. Once the soil
- boring had been advanced to its final depth (maximum 12 ft below ground surface), a one-inch
- outside diameter PVC casing that was coupled to a five-foot long, machined screen was installed.
- 35 This action prevented borehole collapse and facilitated sample collection. The borehole was
- 36 purged using low-flow techniques via a peristaltic pump and clean tubing. The field logbook
- provided information collected and recorded on the parameters of temperature, pH, and specific
- 38 conductance. Purging continued until the field parameters had stabilized. The sample was
- 39 analyzed to determine gross alpha, gross beta, ²²⁶Ra,, ²²⁸Ra, and uranium drinking water
- 40 constituents. Alpha spectroscopy analysis was used to determine the isotopic concentrations of
- all three uranium isotopes present in natural uranium.

1 4.11 Investigation Derived Waste

- 2 Minimal investigation derived waste (IDW) was generated during this investigation and mainly
- 3 comprised of spent personal protective equipment (PPE) including tyveks and nitrile gloves.
- 4 Soil or liquid IDW was not generated, since excavated test pit soil as well as discarded soil
- 5 boring cores were placed back into their place of origin as backfill. PPE was double bagged and
- 6 a release survey, allowing for the release of the PPE, was conducted on each bag. The release
- 7 survey for the bagged PPE was conducted in a similar manner as the release survey for
- 8 equipment used onsite by collecting readings from the sides, top and bottom of the bags. The
- 9 bags were transported to the Middlesex County Landfill.
- 10 Two samples with very high count rates including an apparent uranium ore nugget and a soil
- sample from the wooded area were placed in a 7A Type A container and sent to the laboratory
- for analysis (refer to the Daily Quality Control Report for March 2, 2010 in Appendix D).
- 13 4.12 Work Plan Deviations
- Overall, the activities conducted in the field followed the procedures outlined in the FSP and
- QAPP. As noted above, methane gas was detected in some of the test pits and the majority of
- soil borings. Continuous organic vapor and methane monitoring using a PID and MGM was
- 17 conducted at each boring location. Drilling was suspended when either: 1) 10% of the LEL was
- 18 reached on the MGM at 12 inches above the borehole; and/or 2) when readings above
- background were observed for a duration greater than 10 minutes on the PID at 12 inches above
- 20 the borehole. If either or both of these conditions were encountered, drilling activities were
- suspended; all non-explosion proof equipment was shut-down; and non-essential personnel were
- evacuated from the exclusion zone until the organic vapors or combustible gas levels were below
- 23 action levels. Due to the high number of borings exhibiting conditions well above action levels
- 24 for methane, CABRERA personnel in cooperation with technical staff from USACE adapted field
- 25 methods to mitigate these conditions. Field personnel utilized two methods to mitigate the high
- levels of methane within the boreholes: 1) the addition of dry ice pellets mixed with a small
- amount of water; and 2) nitrogen gas purging. CABRERA prepared a Field Change Request that
- 28 was accepted by the USACE outlining the methods for use of the dry ice and nitrogen gas. Both
- of these methods proved to be successful in mitigating methane gas from the boreholes.
- 30 The intent of the groundwater sampling in the workplans was to sample groundwater as it was
- 31 encountered in boreholes. Contract limitations prevented this from occurring and resulted in
- only a single groundwater sample to be taken.

5.0 INVESTIGATION RESULTS

- 2 Discussions of the SI sampling results are presented in the following sections. The sampling
- 3 methodologies and the equipment used to perform each type of survey were described previously
- 4 in Section 4.0.

1

- 5 5.1 Surface Gamma Surveys
- 6 Gamma methodologies were previously discussed in Section 4.4. The following sections
- 7 provide a description and interpretation of those surveys.
- 8 5.1.1 Measurement of Gross Gamma Radiation
- 9 The surface gamma surveys provided position-correlated gross gamma-count rate data
- proportional to the gross gamma-fluence rate at a particular location. The data collected during
- the surveys were of sufficient number and quality for use in deciding suitable locations for
- 12 collecting biased soil samples. Table 5-1 presents the summary statistics of the data collected
- using the CLASSTM and Traditional GWS methods.
- 14 The gamma survey results were evaluated in order to generate geospatial imaging for visual
- 15 trend analysis and calculation of Z-scores. The Z-score method was used to provide the
- statistical evaluation of a data population for purposes of identifying data points that fall outside
- of the population mean and are within a specific confidence interval. In this usage, the Z-score
- method readily identifies small areas of elevated gamma activity (fluence) within a one-sided
- 19 99.5% confidence interval. Z-scores were calculated by comparing each data point against the
- 20 mean and standard deviation of the data set as a whole. The following equation was used to
- 21 calculate the Z-scores:

$$Z = \frac{(L_{cr}) - (M_{ds})}{(STDEV)}$$

- where: Z = Z-score
- $L_{cr} = Location count rate, in gross cpm$
- M_{ds} = Mean of the data set, in gross cpm
- 26 STDEV= Standard Deviation of the data set

28 Data was reviewed to determine whether individual data points exceeded three times the

- standard deviation of the set (or Z-score \geq 3.0-sigma) in order to discover any identifiable spatial
- 30 patterns or trends that might indicate elevated activity and their corresponding locations
- 31 (Appendix A). A Z-score greater than 3.0 does not necessarily indicate contamination greater
- 32 than the ISV. Figure 5-1 presents the Z-score results of surveys using the CLASSTM system.
- 33 Figure 5-2 presents the Z-Score results of surveys using traditional GWS. Some overlap of
- 34 surveys exists because the walk-over survey was conducted along the interior side of the
- perimeter fence while later additional CLASSTM surveys were conducted along the outside of the
- 36 perimeter fence.

- 37 The CLASS[™] and GWS identified three areas exhibiting elevated gamma readings. The first area
- extends a distance of approximately 200 feet along Pershing Avenue (see Figures 5-1 and 5-2),

- along the eastern boundary of the Site. The second area is situated within the portion of the
- 2 landfill north-northwest of the first area and the third area encompasses the perimeter of the
- 3 former DOE excavation.
- 4 5.1.2 Measurement of Radionuclide-Specific Gamma Radiation
- 5 The CLASS[™] is equipped with a multichannel analyzer, which allows for collection and analysis
- 6 of nuclide-specific scan data using defined regions of interest (ROI) that correspond to specific
- 7 gamma ray energies for each ROPC. The uranium progeny, including radium, that emit gamma
- 8 radiation can be identified in many cases by their characteristic spectrum, if the gamma intensity
- 9 is sufficiently high. Uranium-238 itself emits a single very low-energy, low-intensity gamma
- 10 photon when it decays; thus it cannot be measured directly by field gamma spectrometry. Most
- gamma detectors measure the radiation from nuclides that are far down the decay chain; thus
- 12 uranium activity can only be inferred by assuming the sample or sample site is in secular isotopic
- equilibrium. To identify and track specific gamma radiation emissions from the site ROPCs, the
- 14 CLASS^{1M} digital interface was pre-set to ROIs within the energy spectrum. The RSI-700
- 15 controller comes pre-installed with International Atomic Energy Agency (IAEA) standard energy
- windows for thorium (based on 2614 keV photon from its thallium-208 [208T1] daughter). An
- 17 ROI was also established for ²²⁶Ra at the ²²⁶Ra 186 keV photon. However, since the Site was
- 18 contaminated with ²²⁶Ra, the natural correlation of ²¹⁴Bi to ²³⁸U could not be utilized and an
- 19 ROI for uranium was not established. An ROI was also made for the entire energy spectrum.
- 20 Setting ROPC-specific ROIs during field scanning is advantageous as it reduces the detector
- background as well as the scan detection limits. In addition, the CLASS[™] utilizes internal
- 22 energy-gain stabilization to ensure that the ROIs remain centered on the corresponding energy
- peaks.
- 24 Following collection and in order to determine areas of elevated activity, the data were converted
- 25 from instrument response in counts per second (cps) to Z-scores. Z-score calculations were
- computed for each individual scanning dataset. Locations with Z-scores greater than three were
- 27 identified as requiring additional investigation.
- 28 Figures 5-3 and 5-4 display summary statistics and results of Z-scores for the thorium and
- 29 radium ROIs, respectively. Figure 5-3 identified a number of isolated elevated areas for thorium
- 30 adjacent to the wooded areas and around the former DOE excavation. However, the soil
- 31 sampling results at those locations were comparable to the site background concentration for
- 32 thorium. Therefore, those locations may not necessarily be indicative of residual contamination
- 33 for thorium. The results of the Z-scores for the radium ROI (Figure 5-4) confirmed that the
- 34 elevated radium count rates were concentrated along Pershing Avenue and other locations as
- 35 well.
- 36 Figure 5-5 presents the results of the GWS conducted within the wooded area. These results are
- 37 based on total cpm. There are three areas of interest, including one northeast of the former DOE
- 38 excavation; one east of the former excavation (central part of the wooded area); and one near the
- 39 northeast corner of the Site. During the GWS of the wooded area, CABRERA personnel located a
- 40 surface rock approximately 10 inches by six inches and described as sandstone that exhibited
- 41 elevated radioactivity and gamma readings up to 62,910 cpm using a 3x3 detector. This rock
- was encountered near the northeast corner of the wooded area adjacent to the open field.
- Following discussions with USACE technical personnel, CABRERA personnel collected a surface
- soil sample (MML-SW01) from a point directly beneath the rock (Figure 5-6).

5.2 Surface Soil Sample Results

- 2 Forty-nine systematic and biased surface soil samples were collected from a depth of zero to six
- 3 inches bgs, based on the results of the gross gamma radiation and gamma radiation emitted by
- 4 individual ROPC collected during GWS. Seventeen of these 49 surface soil samples were
- 5 collected at a depth of zero to six inches bgs in the wooded areas at biased locations based on the
- 6 manual scan surveys. Figure 5-6 shows the locations of surface soil samples collected from the
- 7 Site.

1

- 8 Samples were submitted to Analytical Laboratory Services, Inc. (ALS) of Fort Collins, CO, for
- 9 radiological analyses. ALS is an Environmental Laboratory Accreditation Program (ELAP)-
- 10 certified laboratory as well as being NJDEP certified. A total of 16 surface soil samples were
- submitted to the laboratory for non-radiological testing. Ten of these samples were submitted for
- 12 health and safety purposes. These 10 samples were analyzed for metals, VOCs, SVOCs,
- pesticides, herbicides and PCBs via the methods presented in Table 4-2. In order to assist in the
- determination of whether surface soil may be considered a hazardous waste, six separate soil
- samples were analyzed according to the full TCLP. The radiological and non-radiological
- sampling results are presented in Appendix E and summarized in Tables 5-1 through 5-10. The
- following sub-sections summarize the data evaluations performed for the radiological and non-
- 18 radiological sampling results.

19 5.2.1 Radiological Screening Criteria

- 20 The ROPCs are being reported via their short-lived decay progeny; it is assumed that the
- 21 daughter products are in secular equilibrium with their parent nuclides for the sources of
- 22 radioactivity in question at MML. Therefore, the sampling results for Actinium-228 (²²⁸Ac)
- 23 were assumed to be equal to the concentrations of ²³²Th. Similarly, ²³⁴Th is a daughter product
- of ²³⁸U, and it is assumed to be in secular equilibrium with ²³⁸U. Thus, the measured
- concentrations for ²²⁸Ac and ²³⁴Th were used to represent the concentration of their parent ²³²Th
- and ²³⁸U, respectively. Both of these constituents along with ²²⁶Ra were determined via gamma
- 27 spectroscopy. Alpha spectroscopy analyses for determining uranium isotopes were also
- performed on these samples. Both gamma spectroscopy and alpha spectroscopy were used to calculate the sampling results for ²³⁸U. Since alpha spectroscopy analysis provides a more
- detailed result, alpha spectroscopy analysis results for ²³⁸U was used throughout the data
- 31 evaluation processes. Evaluation of the data was conducted based on the following:
- Data Evaluation based on ISVs: The soil ISVs were based on the background levels for ²²⁶Ra,
- 33 ²³²Th, and ²³⁸U obtained from the MSP FUSRAP investigation (USACE, 2004), previous MML
- 34 site investigations (Sadat, 2007), and the definition of Uncontaminated Surface Soils presented in
- 35 the New Jersey Administrative Code (NJAC) 7:28-12, regardless of depth.
- 36 The individual sampling results for each ROPC were compared with respect to their
- 37 corresponding ISV, thus defining areas where radiological contamination may be present. When
- 38 the individual sampling result was found to be in excess of a corresponding ISV, that specific
- area was noted for follow-up. Based on the follow-up decision, the area either may require no
- 40 further action or may warrant additional investigation in order to delineate the known
- 41 radiological contamination. Table 5-2 presents the results of each sample for each ROPC and its
- 42 corresponding ISV. The sampling results are bolded where the results are greater than their
- 43 corresponding ISVs.

- 1 5.2.2 Surface Soil Sample Results
- 2 5.2.2.1 Radium-226
- Based on a review of Table 5-2, it is apparent that the sampling results for ²²⁶Ra are greater than
- 4 the ²²⁶Ra ISV in 43 samples, including 14 samples from the wooded area. Overall,
- 5 concentrations ranged from 1.61 pCi/g in sample MML-SSW03 to 79.6 pCi/g in sample MML-
- 6 SSC28.
- 7 Sample results along the southeast perimeter parallel with Pershing Avenue indicate several
- 8 locations with ²²⁶Ra concentrations above the ISV of 1.46 pCi/g (Figure 5-7). Samples MML-
- 9 SSC01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 28, 29 and 30 each exceeded the ISV with
- 10 concentrations ranging from 5 pCi/g at MML-SSC07 to 79.6 pCi/g at MML-SSC28. These
- sample results support the findings of the Z-score ROI for radium as presented in Figure 5-4.
- 12 Twelve surface soil samples were collected from the perimeter of the former DOE excavation,
- 13 based on the ROI for radium, including MML-SSC16, 17, 19, 20, 22, 23, 26, 27, 38, 39, MML-
- 14 SSCM01 and MML-SSCM03 with each sample exceeding the ISV of 1.46 pCi/g (Figure 5-7).
- 15 Concentrations ranged from 1.54 pCi/g at MML-SSC23 to 17.1 pCi/g at MML-SSC27.
- Again, there is a strong correlation between the GWS indicating a Z-score greater than three and
- 17 the laboratory results.
- A total of 17 samples were collected from the wooded area at the Site. Of those samples, 14 had
- 19 concentrations exceeding the ²²⁶Ra ISV as shown on Figure 5-7. Each of the eight samples with
- 20 the MML-SSW prefix exceeded the ISV with concentrations ranging from 1.61 pCi/g at MML-
- 21 SSW03 to 19.9 pCi/g at MML-SSW06. As previously stated in Section 5.1.2, a small surface
- rock was encountered that exhibited a high cpm (62,910). Based on discussions with the project
- 23 team, a single surface soil sample from beneath the rock was collected and submitted for
- 24 analysis. This sample, MML-SSW01, had a ²²⁶Ra concentration of 2.2 pCi/g. Each of the nine
- 25 remaining soil samples from the wooded area, including MML-SSC-14, 15, 31 through 35, 37
- and 40 exceeded the ISV for ²²⁶Ra. Concentrations ranged from 1.55 pCi/g at MML-SSC14 to
- 27 52.5 pCi/g at MML-SSC37. Samples MML-SSC35, MML-SW05 and MML-SSW04 were
- 28 collected in an attempt to bound an area of elevated activity based on the GWS conducted in the
- 29 wooded area.
- 30 5.2.2.2 Thorium-232 (Measured ²²⁸Ac)
- 31 Except for two locations (MML-SSC22 and MML-SSC27), the sampling results for ²³²Th were
- below the ISV concentration at all locations. MML-SSC22 exhibited a ²³²Th concentration of
- 33 3.05 pCi/g, while MML-SSC27 had a concentration of 9 pCi/g. These exceedances are
- 34 collocated with ²²⁶Ra concentrations that were also greater than the radium ISV. Both
- samples were collected from within the limits of the former DOE excavation (Figure 5-7). These
- locations were chosen based on the ROI results from the CLASS[™] survey (Figure 5-3). As
- described in Section 5.1.1, z-scores greater than 3.0 on this figure do not necessarily represent
- areas of contamination elevated above the ISV.
- 39 5.2.2.3 *Uranium-238* (Measured ²³⁸U)
- 40 The reported sampling results for ²³⁸U are greater than the uranium ISV at 24 locations and with
- 41 concentration ranges from 1.15 pCi/g at MML-SSW03 to 20.6 pCi/g at MML-SSC27. These
- exceedances are collocated with ²²⁶Ra concentrations that are also greater than the radium ISV.

1 5.2.2.4 Summary of Radiological Results

- 2 Based on the surface soil analytical results discussed above, plots of individual isotopes in excess
- 3 of their corresponding ISVs were prepared and compared to each other in an attempt to
- 4 distinguish if separate areas of individual isotopes exist. Plots were prepared for uranium,
- 5 thorium and radium (Figures 5-8, 5-9 and 5-10, respectively). A comparison of the figures
- 6 indicates that uranium and radium are collocated along the eastern and southwest perimeter of
- 7 the former DOE excavation and along portions of the Pershing Avenue (Figures 5-8 and 5-10).
- 8 With the exception of sample location MML-SSC-35 in the wooded area, the majority uranium
- 9 concentrations across most of the landfill area are below the ISV of 1.11 pCi/g.
- 10 Two elevated concentrations of thorium were located adjacent to each other near the southwest
- 11 corner of the former DOE excavation (Figure 5-9). The MML-SSC22 and MML-SSC27
- 12 locations also exceeded the ISV for radium.
- 13 Radium had the highest number of detections above its ISV of 1.46 pCi/g. Radium stands out as
- 14 the sole radionuclide along the southern edge of the former DOE excavation area, with the
- 15 exception of sample MML-SSC38, and across most of the landfill itself (Figure 5-10). Radium
- 16 and uranium were collocated in the wooded area at two locations, MML-SC37 and MML-
- 17 SSC35, as noted above. The area along Pershing Avenue also had sample locations where
- 18 radium and uranium concentrations exceeded their ISVs. The exception to this location was the
- 19 uranium concentration in sample MML-SSC11, which did not exceed its ISV.
- 20 5.2.2.5 Non-Radiological Results
- 21 In addition to the radiological testing, 11 samples were analyzed for metals, VOCs, SVOCs,
- 22 pesticides, herbicides and PCBs. These samples were collected for waste characterization and
- 23 health and safety purposes. Tables 5-3, 5-4, 5-5 and 5-6 present the detected surface soil
- 24 sampling results for VOCs, SVOCs, pesticides and PCBs, and metals, respectively. Six of the
- 25 eleven samples to support waste characterization were analyzed for the full Toxicity
- 26 Characterization Leaching Procedure (TCLP). The TCLP results show that there were not any
- 27 constituents exceeding the RCRA criteria and, thus, the soil would not be considered hazardous
- 28 waste.
- 29 As a conservative approach for health and safety purposes, each non radiological constituent was
- 30 compared against NJDEP SSC residental, direct contact land use criteria. Table 5-7 and Figure
- 31 5-11 provide a summary of the exceedances for each non-radiological constituent present at the
- 32 Site. A review of the data reveals that VOCs or pesticides were not detected at concentrations
- 33 exceeding NJDEP SSCs. For SVOCs, the sampling results for benzo(a)anthracene,
- 34 benzo(a)pyrene, benzo(b)fluoranthene, benzo(k) fluoranthene, chrysene, dibenzo(a,h)anthracene,
- 35 and indeno(1,2,3-cd)pyrene exceeded their corresponding NJDEP SSCs at five sampling
- 36 locations (Table 5-4). Among those five sampling locations, surface soil sample MML-SSC08
- 37 exhibited the highest concentrations of those SVOCs. As mentioned in the previous sub-section,
- 38 potential radiological contamination is also present at that location. Sample MML-SSC37
- 39 generally exhibited the fewest exceedances and lower concentrations. The sampling results for
- 40 one PCB (Aroclor 1260) and two metals (arsenic and lead) at sampling location MML-SSC37 41
- exceeded their corresponding soil SSCs. Six soil samples were analyzed for VOCs, SVOCs,
- 42 metals and PCBs via TCLP to determine if soils that may potentially be excavated in the future
- 43 should be classified as a hazardous waste. Sample results were compared to the federal Resource

- 1 Conservation and Recovery Act (RCRA) hazardous waste criteria. The results of these
- 2 comparisons are presented in Table 5-8 and show that none of the criteria were exceeded.
- 3 Analysis of the surface soil samples for non-radiological constituents showed that five locations
- 4 exceeded the NJDEP SSC for several SVOCs and lead; however, there was not any discernable
- 5 pattern. Although these constituents have been detected at concentrations exceeding the NJDEP
- 6 SSC across the Site during previous investigations (Sadat, 2007), evidence does not indicate
- 7 these materials are FUSRAP related.
- 8 5.3 Subsurface Soil Sample Results
- 9 A total of 103 systematic and biased subsurface soil samples were collected during this SI.
- Samples were obtained from a combination of 14 test pits and 50 soil borings. The test pits were
- excavated to evaluate for the presence of high activity or "nuggets" of uranium ore that may have
- been buried as part of a waste stream from the former MSP FUSRAP site. Surface scans of the
- pit spoils were conducted to identify areas of elevated contamination at depth. Based on the
- results of elevated surface scan readings, biased soil samples were collected and analyzed for
- 15 radiological ROPCs as described in Section 4. The evaluation for those sampling results is
- presented in Table 5-9.
- 17 In conjunction with the surveying of the excavated soil from the test pits, each soil boring was
- surveyed both as down-hole and core scans as described in Section 4. The intent of the soil
- borings was to characterize potential subsurface contaminant distribution. Field screening and
- 20 laboratory results were used to 'bound' surface soil or test pit locations where gamma survey
- 21 results indicated elevated activity. The evaluations of the test pits and soil borings are
- summarized below as well as in Tables 5-9 and 5-10, respectively.
- 23 5.3.1 *Test Pits*
- Figure 5-12 presents the locations of the 14 test pits excavated at the Site, while analytical results
- are presented in Table 5-9. Test pits TP-01 through TP-10 were excavated within the main body
- of the landfill and were based on the results of the CLASS[™] survey. Test pits TP-01, 06 and 14
- 27 were excavated within the limits of the former DOE excavation. Based on the results of the
- 28 CLASS[™] survey, test pits TP-02 through TP-05 were excavated along the southern perimeter of
- 29 the former DOE area. Test pits, TP-08 through TP-10 and TP-12 were excavated along the
- 30 perimeter parallel with Pershing Avenue. TP-07 and TP-13 were excavated within the main
- body of the landfill, and TP-11 was excavated within the wooded area. The intent of the test pits
- 32 was to screen for high-activity ore "nuggets." While the test pits did not encounter any
- 33 "nuggets," they did identify subsurface material that did exhibit elevated activity. These areas
- 34 are discussed in more detail below.
- 35 The cover material encountered generally consisted of brown silty sand, although layers also
- 36 included silt, clay and fine-grained sand. The colors of these materials ranged from black, red
- and orange-brown to gray. Depths to waste ranged from two to five ft bgs. Zones of saturated
- 38 waste and soil were encountered at depths ranging between two and seven ft bgs. Petroleum
- 39 odors were noted in TP-04 from 5.5 to 7.5 ft bgs. Photoionization readings of organic vapors
- ranged from 0.4 to 3.8 parts per million. Methane gas was not an issue at the majority of the test
- 41 pits. TP-06 and 07 exhibited methane levels at or exceeding the 10% lower explosive limit
- safety criteria at depths of 6.5 and seven ft bgs, respectively.

Soil excavated from TP-01 through TP-08 exhibited cpm data within the threshold range of

- 2 14,000 to 21,000. A threshold of greater than 20,000 cpm was used as a screening value based
- 3 on the CLASS[™] survey. TP-14 excavated near the northeast corner of the former DOE
- 4 excavation, exhibited gamma readings ranging from 19,000 to 35,000 cpm to a depth of seven ft
- 5 bgs. Following discussions with USACE technical personnel, CABRERA personnel collected four
- 6 soil samples; results are presented in Table 5-9. One sample was collected from the surface
- 7 (zero to one ft bgs); two samples from 4.5 to 5.5 ft bgs; and one sample from 5.5 to 6.0 ft bgs.
- 8 Each sample had ROPC concentrations above their corresponding ISV for ²²⁶Ra, ²³²Th, and ²³⁸U.
- 9 The exception to this was ²²⁸Ac in the samples from zero to 0.5 ft bgs and 5.5 to 6.0 ft bgs which
- were below the ISV. The subsurface soil sample from TP-14 was shipped to the laboratory in a
- 11 Class 7A Type A container in accordance with Department of Transportation (DOT) and U.S.
- 12 Nuclear Regulatory Commission (NRC) regulations.

- During the excavation of TP-09, an instrument dial was encountered within the landfill waste at a
- depth of 6.5 ft bgs. This item had a reading of approximately 70,000 cpm, was documented on
- the test pit log, photographed, and placed back into the excavation. Soil scanning results of the
- soil immediately above and below the dial ranged from 18,000 to 19,000 cpm which is below the
- 18 threshold value of 20,000 cpm. TP-09 is located along the southeast perimeter parallel with
- 19 Pershing Avenue (Figure 5-12). TP-10 was excavated north of TP-09 with gamma scan readings
- of the spoils between 12,000 and 16,000 cpm. TP-12 was later excavated as a biased location
- 21 closer to the southeast perimeter along Pershing Avenue. This location was selected based on
- 22 the results from the soil boring GP-18 (discussed below) and surrounding surface soil samples.
- 23 This test pit hit refusal at a depth of six ft bgs from encounters with large blocks of concrete.
- 24 Soil scans of the excavated material down to a depth of six ft bgs showed readings ranging from
- 25 16,000 to 80,000 cpm. Scans of the concrete blocks showed readings in the 92,000 to 225,000
- 26 cpm range. Following discussions with the project team, a single soil sample, MML-SBT12,
- was obtained from a depth of 4.5 to 5.5 ft bgs. Results of this sample, presented in Table 5-9,
- indicated that ²²⁶Ra, ²³²Th, and ²³⁸U each exceeded its ISVs with concentrations of 209, 26.6 and
- 29 39.2 pCi/g, respectively.
- 30 Test pit TP-11 was excavated in an area of elevated GWS readings within the wooded area
- 31 adjacent to surface soil samples MML-SSW04 and 05; see Figures 5-6 and 5-7. Three surface
- 32 soil samples were collected at this location. With the exception of ²²⁸Ac, each of the ROPCs
- exceeded its ISV in all three samples. Ra-226 was the most prevalent isotope with
- 34 concentrations ranging from 2.8 to 53.7 pCi/g. These results are significantly higher than those
- 35 for the two surrounding surface soil samples.
- 36 TP-13 was excavated within the main body of the landfill in the vicinity of and based on the
- observations from TP-07, GP-10 and GP-11 (Figure 5-12). Surface soil scans showed readings
- of 17,000 to 20,000 cpm, while the deeper soil showed much lower readings. The single surface
- 39 sample (MML-SBT13) had ROPC concentrations below its corresponding ISV as presented in
- 40 Table 5-9.
- 41 5.3.2 Soil Borings
- 42 As previously stated, the soil borings were used to characterize potential subsurface contaminant
- distribution as well as 'bound' areas where gamma survey results indicated elevated activity.

- 1 The frisking of the core samples in conjunction with the down-hole gamma surveys were used to
- 2 determine which soil interval to sample. Ancillary to the above, frisking of the core samples and
- 3 down-hole logging were used as a means of determining if any "nuggets" of uranium ore existed
- in the subsurface. A "nugget" was encountered in soil boring GP-46 and is discussed in greater 4
- 5 detail below. Soil boring logs' results of the down-hole logging are presented in Appendix C.
- 6 As discussed previously in Section 4.12, methane gas was encountered during borehole
- 7 advancement. Methane was encountered in three areas across the Site as presented in Figure 5-
- 8 One area is located at the northeast corner of the former DOE excavation, a large area
- 9 encompassing the central and southeast portions of the Site and the area at the northeast corner of
- 10 the landfill. Two smaller areas were encountered along Pershing Avenue at borings GP-17 and
- 11 GP-37.
- 12 Several borings were advanced within the limits of the former DOE excavation and included GP-
- 13 03, 04, 12, 14, 34 and 47. From these locations a total of 12 soil samples from varying depths
- were submitted for laboratory analysis. The results presented in Table 5-10 indicate that ²²⁶Ra 14
- was above the ISV of 1.46 pCi/g in 10 samples. Concentrations ranged from 1.62 at GP-12 (0.0-15
- 2.0 ft bgs) to 2.55 pCi/g at GP-03 (8.5-9.5 ft bgs). The remaining ROPCs were exceeded 16
- sporadically with the exception of ²²⁸Ac which was above its ISV in only the surface soil sample at GP-46. Based on the CLASSTM survey, additional soil borings were advanced around the 17
- 18
- 19 perimeter of the former DOE excavation. One of these locations, GP-46 was advanced along the
- 20 eastern edge of the former DOE excavation (Figure 5-12). Based on the gamma scans, three 21
- samples were submitted for laboratory analysis. The uppermost sample contained a small rock
- believed to be a "nugget" of uranium ore. Readings, from the 3x3 NaI detector, of ~2.5 millirem 22
- 23 per hour (mR/hr) were observed by holding the meter near contact with the core. Deeper
- 24 samples were collected from 7.5 to 9.5 ft bgs and 10 to 12 ft bgs. All three samples exceeded the
- ²²⁶Ra ISV with concentrations ranging from 1.7 pCi/g (10.0-12.0 ft bgs) to 30,300 pCi/g (0.0-1.0 25
- 26 ft bgs). Based on these results, this particular material is thought to be uranium ore. The surface
- 27 soil sample from MML-GP-46 was shipped to the laboratory in a Class 7A Type A container in
- 28 accordance with Department of Transportation (DOT) and U.S. Nuclear Regulatory Commission
- 29 (NRC) regulations.
- 30 One area that stands out is the southeast portion of the Site parallel to Pershing Avenue.
- 31 Considerable investigation activities took place here based on the gamma survey, test pit, and
- 32 surface soil results. As many as 14 soil borings were advanced with the intent to determine the
- 33 nature of possible radiological contamination. Location selection was based on communication
- 34 among the project team. Through these communications and data received from the field, it was
- 35 possible to collectively determine suitable locations. As a result, several soil borings were
- 36 placed along the edge of the municipal property. Table 5-10 and Figure 5-15 presents the results
- 37 of the analytical testing of the soil from these borings. A total of 29 samples from 14 locations
- 38 were analyzed for the ROPCs. Nearly all samples exceeded at least one ISV.
- 39 Similar to the comparison of isotopes detected in the surface soil, Figures 5-16 and 5-17 were
- 40 prepared for depicting subsurface soil concentrations of uranium and radium, respectively.
- 41 Thorium was not detected above its ISV in the subsurface soil samples analyzed. Uranium
- 42 concentrations in excess of their ISV were detected at the north, northeast and central portions of
- 43 the former DOE excavation. Additionally, a single location in the wooded area (TP-11) and six
- 44 locations along Pershing Avenue also exceeded the ISV for uranium. Radium is the more

- 1 prominent isotope evidenced in the subsurface soil (Figure 5-17). While uranium was detected
- 2 in six samples directly adjacent to Pershing Avenue, radium was detected at 10 locations above
- 3 its ISV. Within this area, radium was detected at concentrations ranging from one to four times
- 4 greater than uranium. The exception to this is boring, GP-42, in the sample from 3.0 to 4.5 ft bgs
- 5 where uranium exceeded the radium concentration by approximately 16 times.
- 6 A subsurface cross section along Pershing Avenue, Figure 5-18, presents those samples along the
- 7 section that exceed the radium and/or uranium ISV. The upper portion of the figures presents a
- 8 representation of the soil encountered along the cross sectional line and with the results
- 9 compared to the ISVs. The lower portion of the figures presents the results of the core scans
- 10 conducted during the advancement of the soil borings. There is strong correlation between the
- 11 core scans and the sample results especially at borings MML-GP-18, 41 and 42.
- 12 5.4 Groundwater Sample Results
- Groundwater was encountered in 23 of the 50 borings in perched zones across the Site. Wet or
- saturated soil was encountered above, within and underlying the municipal waste. Groundwater
- sampling was intended to evaluate the presence of ROPCs. A single groundwater sample was
- 16 collected from the soil boring GP-10 (Figure 5-13) and was analyzed for gross alpha, gross beta,
- 17 ²²⁶Ra, ²²⁸Ra, and uranium via mass spectroscopy. The results were compared to the Maximum
- Contaminant Limits (MCLs). Gross alpha, ²²⁶Ra and ²²⁸Ra were not detected above the method
- detection limits. The sample had a gross beta concentration of 8.7 (picoCuries per liter (pCi/L)
- which is below the MCL screening value of 50 pCi/L. The total uranium concentration of 0.11
- 21 micrograms per liter (µg/L) was below the MCL of 30 micrograms per liter (µg/L). Laboratory
- results are presented in Table 5-11 and Appendix E.

1 6.0 SURVEY INSTRUMENT QUALITY CONTROL

- 2 Survey and sampling activities were performed in accordance with the QA and QC procedures
- 3 presented in the MML project *QAPP* (USACE, 2010c) to ensure consistent and repeatable
- 4 results. The personnel performing the activities were trained in the technical, QC, and health and
- 5 safety aspects of the project, as well as in calibration, maintenance, and operating procedures for
- 6 their assigned tasks. This section documents the results of QA/QC activities performed during
- 7 this investigation effort.
- 8 Based on the information presented in this section, the survey data are deemed authentic,
- 9 appropriately documented, and technically defensible. The survey methods used to collect the
- data are appropriate for the types of media and contaminants being measured; the field and
- 11 laboratory instrumentation meets the required performance and sensitivity requirements; and the
- 12 data generated are representative of the areas and materials of interest. The laboratory
- instrumentation meets the project-specific requirements.

14 6.1 Survey Instrument QC

- 15 The survey instruments specified in the FSP (USACE, 2010b) were used to collect investigation
- data for the MML site. Instrumentation was used in accordance with written procedures and was
- subject to daily QC requirements, as specified in the QAPP. Instruments used to obtain
- radiological and non-radiological data, including differential global positioning system (DGPS)
- 19 equipment, were inspected for physical damage, current calibration, and erroneous readings in
- 20 accordance with applicable procedures and/or protocols. Results of QC checks were recorded in
- 21 field logbooks and summarized on a computerized spreadsheet. Instrumentation that did not
- meet the specified requirements of calibration, inspection, or response check was removed from
- service, and replacement instruments were procured when the items were necessary to complete
- 24 the work.

25 6.1.1 Instrument Calibration

- 26 Instruments used during the investigation survey were inspected prior to use for ensuring
- 27 satisfactory operation and current calibration traceable to the National Institute of Standards and
- 28 Technology (NIST). Calibration records were shipped with the equipment and maintained onsite
- 29 for review and inspection. Copies of the calibration certificates are included in Appendix F-1.

30 6.1.2 Instrument QC Checks

- 31 Prior to use, project instrumentation underwent initial QC checks by comparing instrument
- 32 responses to benchmark values. QC checks of radiation detectors and meters included source
- checks to ensure consistent responses when exposed to known radiation sources. QC checks of
- 34 DGPS units included checks for satellite availability and positional accuracy. In accordance with
- 35 CABRERA SOPs, records of initial and daily performance checks are included in Appendix F-2.
- 36 QC source checks consisted of a one-minute integrated count performed with the designated
- 37 source positioned in a reproducible geometry. This procedure was repeated ten times to establish
- 38 average instrument response for each detector. The initial averages and control limits calculated
- 39 for each instrument provided the respective benchmark values for subsequent QC checks.
- 40 For quantitative instruments (i.e., those used to report activity concentrations), an acceptance
- criterion of \pm 3 σ was used. For qualitative instruments (i.e., dose rate meters and friskers), an

- 1 acceptance criterion of +/- 20% of the source check true value was used. If any daily QC check
- 2 was found to be outside of its acceptance criteria, the QC check was repeated. If the second QC
- 3 check was also outside the acceptance criteria, the instrument was examined to check for
- 4 external contamination or damage, and a third QC check was performed. If the third QC check
- 5 was outside of its acceptance criteria range, the instrument was taken out of service and not used
- 6 until it was evaluated and approved by the Radiation Safety Officer (RSO).
- 7 6.2 Sampling and Analysis QC
- 8 Analytical test methods and sample volume, preservation, holding time, and quality control
- 9 requirements were met, as presented in the *QAPP*. Standard methodology was used for sample
- 10 collection, identification, documentation, handling, packaging, shipping, and chain-of-custody.
- 11 Assessment of the data for quality and usability is presented in Appendix F-3.
- 12 To confirm the quality of sampling and analysis techniques used for this investigation, precision
- and accuracy of data were evaluated and described below.
- 14 6.2.1 Precision and Representativeness
- 15 Precision is defined as the degree to which two or more measurements are in agreement. Field
- precision is measured by comparing field duplicate results, and analytical precision is measured
- 17 by comparing laboratory duplicate results.
- 18 6.2.1.1 Field Precision
- 19 Precision and representativeness for radionuclide results was evaluated by calculating the
- 20 normalized absolute difference (NAD), which accounts for uncertainty in the laboratory results.
- 21 NAD is calculated as follows:

$$NAD = \frac{\left| Sample - Duplicate \right|}{\sqrt{\sigma_{Sample}^2 + \sigma_{Duplicate}^2}}$$

_ .

23

- Where:
- 25 Sample = Original sample result,
- 26 Duplicate = Duplicate sample result,
- σ_{Sample} = Total propagated uncertainty of the sample, and
- $\sigma_{Duplicate}$ = Total propagated uncertainty of the duplicate.

- 30 The calculated NAD results were compared to a performance criteria of less than or equal to
- 31 1.96. Calculated NAD values less than 1.96 were considered acceptable. Values greater than
- 32 1.96 were investigated for possible discrepancies in analytical precision or sources of
- disagreement with the following assumptions of the test:
- The sample measurement and duplicate or replicate measurement are of the same normally distributed population; and
- The standard deviations represent the true standard deviation of the measured population.

- 1 NADs for all field duplicates analyzed during this effort were less than 1.96 thus meeting the
- 2 requirement of the *QAPP*.
- 3 6.2.1.2 Laboratory Precision
- 4 Laboratory precision was evaluated through laboratory duplicates, laboratory control sample
- 5 (LCS)/laboratory control sample duplicate (LCSD), and matrix spike (MS)/matrix spike
- 6 duplicate (MSD) analyses. Laboratory duplicates, LCS/LCSDs, and MS/MSDs were analyzed at
- 7 a rate of one per 20 samples for each analysis performed on each matrix. The results of each set
- 8 of paired samples (i.e., target/duplicate, LCS/LCSD, and MS/MSD) were in agreement within
- 9 the laboratory's internal acceptance criteria, as described in the laboratory quality assurance plan
- 10 (LQAP) as well as the project-specific *QAPP*.
- Based on the evaluation of the laboratory duplicate data, laboratory precision was deemed
- adequate for the data generated for this characterization effort (Appendix F-3).
- 13 6.2.2 *Accuracy*
- Accuracy is defined as the degree to which the reported measurement represents the true value.
- 15 Analytical accuracy is assessed through the evaluation of laboratory blanks, LCSs, tracer
- recoveries, surrogate recoveries, and spike recoveries. Based on the evaluation of these samples,
- 17 the overall analytical accuracy was deemed adequate for the data generated during this
- 18 characterization effort.
- 19 <u>Laboratory Method Blanks</u> Laboratory blanks are analyzed to evaluate the potential
- 20 contamination of samples due to preparation and analytical procedures. Laboratory method
- 21 blanks are digested/extracted/analyzed exactly like the field samples and are designed to
- 22 represent the matrix of interest as closely as possible. Laboratory method blanks were prepared
- and analyzed with each digestion/extraction/analysis batch. In addition, initial and continuing
- 24 calibration blanks were analyzed for the metals analysis at a rate of one per ten samples.
- 25 Laboratory blank results were less than the laboratory MDCs or reporting limits (RLs) in all
- analyses associated with the data generated for this characterization effort.
- 27 Laboratory Control Samples The LCS is a laboratory spike sample that originates from a
- source other than the source of the calibration standards and serves as a zero-blind check on the
- 29 laboratory's accuracy. The LCSs were prepared and analyzed along with each digestion,
- 30 extraction, and analysis batch. For this characterization effort, all LCS results were within the
- 31 QAPP acceptance criteria of 85% to 115 % recovery.
- 32 Tracer Recoveries A tracer is an isotope of the radionuclide of interest that is added to the
- 33 samples prior to analysis in order to assess potential bias from the chemical separation or other
- processes employed in the analysis on a sample-by-sample basis. Uranium-232 was added as a
- 35 tracer to all samples undergoing isotopic uranium analysis for this characterization effort. All
- tracer recoveries were within the QAPP acceptance criteria of 30% to 110%.
- 37 Surrogate Recoveries Surrogates are compounds that are not commonly found in the natural
- 38 environment that have similar chemical structures and similar chemical behavior as the
- 39 compounds of interest. The surrogates dechachlorobiphenyl (DCB) and tetrachloro-meta-xylene
- 40 (TMX) were added to PCB samples prior to extraction to assess extraction efficiency and
- analytical bias on a sample-by-sample basis. All surrogate recoveries were within the QAPP
- 42 acceptance criteria of 74 to 123%.

- 1 Matrix Spike and Matrix Spike Duplicates MS/MSD analyses are performed by the laboratory
- 2 to estimate the extent of bias in the analytical measurements of chemical constituents. The
- analytical laboratory performed MS/MSDs for the metals analyses by adding a known quantity
- 4 of each analyte to representative media, and analyzing the spiked media. Bias in the results was
- 5 quantified by determining the percent recovery of the spike amount. Percent recoveries were
- 6 compared to a performance criterion of 70 to 130. Percent recoveries outside this range were
- 7 investigated for possible discrepancies in measurement bias. For the spiked analytes (organic,
- 8 inorganic and radiological) samples analyzed during this characterization effort, the percent
- 9 recoveries were within the laboratory's and *OAPP* acceptance criteria.

10 6.2.3 Representativeness

- Representativeness expresses the degree to which sample data accurately and precisely represent
- a characteristic of a population, parameter variations at a sampling point, or an environmental
- condition. Representativeness is a qualitative parameter that is most concerned with the proper
- 14 design of the sampling program. The representativeness criteria are best satisfied by making
- certain that sampling locations are properly selected and a sufficient number of samples are
- 16 collected. Representativeness is addressed by describing sampling techniques and rationale used
- 17 to select sampling locations. Representativeness is also evaluated through the review of the field
- precision as described in Section 6.2.1.1. The SI performed at the MML was designed using
- guidance in MARSSIM (NRC, 2000). Additionally, EPA-approved and American Society for
- 20 Testing and Materials (ASTM)-approved and standardized sampling procedures were used where
- 21 practical, and considered as guidance in other cases, to ensure the representativeness of sample
- data. Data collected during this SI followed each of the guidance and standards discussed above
- and are representative of conditions found at the Site.
- 24 6.2.4 *Comparability*
- 25 Comparability is a qualitative parameter expressing the confidence with which one data set can
- be compared with another. The comparability of the data, a relative measure, is influenced by
- sampling and analytical procedures. By providing specific protocols to be used for obtaining and
- analyzing samples, data sets should be comparable regardless of who obtains the sample or
- 29 performs the analysis.
- 30 The analytical laboratory was responsible for enhancing comparability using the following
- 31 controls:

32

- Use of current, standard EPA-approved methodology for sample preservation, holding,
- and analysis
- Consistent reporting units for each parameter in similar matrices
- EPA- or NIST-traceable standards, when available
 - Analysis of EPA QC samples, when available
- Participation in inter-laboratory performance evaluation studies
- 38 By following these controls the data obtained during this SI has met the objectives outlined in the
- 39 *OAPP*.

1 6.2.5 *Completeness*

- 2 Completeness is a measure of the degree to which the amount of sample data collected meets the
- 3 scope and a measure of the relative number of analytical data points that meet the acceptance
- 4 criteria, including accuracy, precision, and any other criteria required by the specific analytical
- 5 method used. Completeness is defined as a comparison of the actual numbers of valid data
- 6 points and expected numbers of points expressed as a percentage.
- 7 The QA objectives for completeness will be based upon a project goal of 90%. If data cannot be
- 8 reported without qualifications, project completion goals may still be met if the qualified data,
- 9 i.e., data of known quality even if not perfect, are suitable for the specified project goals. The
- 10 completeness for this project was 94% which exceeded the goal of 90% as specified in the
- 11 *QAPP*.
- 12 6.3 Data Management and Documentation
- Management of the field and analytical data generated during the characterization effort was
- conducted in accordance with the general requirements of the Project Work Plan (USACE,
- 15 2010b).
- 16 6.3.1 Field Data
- 17 Field and QC data was recorded in logbooks and/or field sheets, scanned, and uploaded to the
- 18 project computer. Data collected each day was summarized on computerized spreadsheets, as
- 19 appropriate. Electronic copies of the field sheets and data spreadsheets were reviewed by the
- 20 CABRERA Field Site Manager (FSM) and transmitted to the CABRERA Project Manager (PM) by
- 21 email on a daily basis. In addition, a backup copy of each electronic file was maintained on
- compact disc (CD) or memory stick to prevent data loss.
- 23 During the field investigation, a DQCR was prepared daily. The DQCRs were entered
- electronically so that they could be transferred through email more efficiently to the USACE.
- 25 Each original paper copy was dated and signed by the FSM. Copies of the DQCRs are included
- in Appendix D.
- 27 DQCRs served to document the daily activities occurring on the project, including the weather
- 28 for each day and any additional environmental conditions or observations pertinent to field
- 29 activities. The level of PPE worn at the Site for that day was recorded. Also recorded were team
- 30 members' presence onsite and their role on the project, as well as visitors to the immediate
- 31 investigation area. Any changes or delays in the project were discussed and recorded, as well as
- 32 any safety issues that arose.
- 33 6.3.2 Analytical Data
- 34 Samples collected during the characterization effort were identified by a unique number code
- 35 that accompanied the sample from collection through analysis and data review. Standardized
- 36 chain-of-custody procedures were followed from sample collection through sample analysis.
- 37 The condition of shipping coolers and enclosed sample containers was documented upon receipt
- 38 at the analytical laboratory. The laboratory transmitted the completed chain-of-custody form and
- 39 cooler receipt checklist to the PM to confirm each sample shipment.
- 40 Analytical data reports containing results of the requested analyses were transmitted to the
- 41 CABRERA PM. Each data package contained an electronic data deliverable (EDD) spreadsheet

- 1 summarizing the analytical results, as well as an electronic file containing the entire case
- 2 3 narrative and supporting data. The electronic files were uploaded to the corporate server and
- backed up on CD. Laboratory data reports are included in Appendix E.

1

13

14

15

18

7.0 CONCEPTUAL SITE MODEL

- 2 The following section addresses the fate of contaminants in the environment as well as their
- 3 modes and propensity for transport in environmental media. Potential source areas across the
- 4 Site are a result of potentially contaminated soil being transported to the MML for use as fill or
- 5 cover material for sanitary landfill operations. These potentially contaminated soils were
- 6 disbursed across the landfill. The soil will be evaluated as potential environmental media. A
- 7 summarization of the Conceptual Site Model is presented in Section 7.3.
- 8 7.1 Potential Routes of Migration
- 9
- 10 There are a number of mechanisms by which contaminants may migrate from contaminated
- areas at the Site to onsite and off-site receptors. The potential migration pathways applicable to
- the Site may include the following:
 - Migration of contaminants from surface soil to air can occur via fugitive dust emissions.
 - Precipitation infiltration can leach residual contaminants from vadose zone soil to groundwater.
- Storm water runoff or groundwater discharge can lead to contamination of surface water bodies.
 - Contaminants can be found in Sediments via surface water transport and flooding.
- The potential for site contaminants to migrate from soil to other media via these mechanisms are evaluated in the following subsections.
- 21 7.1.1 Migration into Air
- 22 Transport of contaminants from surface soil to air can occur via dust generation or volatilization.
- 23 Contaminants adsorbed to surface soils may be released to the atmosphere as particles
- 24 transported by near-surface winds in the form of airborne contaminated dust. Soil particles
- 25 containing contaminants may be eroded from areas containing little vegetative cover and
- transported to areas downwind of these sites. Because most of the soil surfaces at the Site have
- 27 vegetative cover, the potential for the contaminants in surface soil to be released to air via
- 28 fugitive dust emission is significantly minimized.
- 29 7.1.2 Migration to Groundwater
- 30 Surface and subsurface soil contamination at the Site could serve as sources of potential
- 31 groundwater contamination. The most important soil properties that affect the transport of
- 32 contaminants through the soil into the groundwater include infiltration capacity (i.e.,
- permeability), cation exchange capacity (CEC), and organic carbon content. Site soil was not
- 34 specifically analyzed for CEC or organic carbon. Because of the presence of fill materials in the
- soil, surface and subsurface, soils contain relatively high organic carbon content, which would
- also be expected to contribute to slowing constituent migration.
- 37 Infiltration capacity is a measure of the rate at which soil material can absorb precipitation. Soil
- permeability is a measure of the ability of soil to permit gas or liquid to pass through. Both
- 39 properties are based largely upon the texture and structure of the soil material. In general,

- 1 coarse-grained soils like loose sand will transmit water more readily than fine-grained soils such
- 2 as clay. Based on "Pathway Analysis for a Contaminated landfill in Middlesex, New Jersey"
- 3 (ANL 1985), three types of materials identified at the Site are overburden, weathered bedrock,
- 4 and bedrock. The overburden consists of the landfill materials; the weathered bedrock materials
- 5 are predominantly clayey layers; and the bedrock is a very thick layer of shale. The presence of
- 6 clay layers in the intermediate zone would reduce the migration of contaminants into the
- 7 underlying bedrock groundwater.
- 8 Percolation of both rainfall and snowmelt through the unsaturated, contaminated soil and fill can
- 9 dissolve certain constituents, transporting them to the underlying groundwater. The rates of
- 10 migration by this process vary greatly for different constituents, depending upon the rate of
- 11 transfer between the soil and water and the amount of precipitation. Site-specific distribution
- coefficient for the contaminants were not determined as part of this SI. Chemicals that are the 12
- 13 most susceptible to leaching to groundwater are those with high water solubility and a low
- partition coefficient, K_{oc}. Among ROPCs present at the Site, ²²⁶Ra may be more soluble than 14
- uranium or thorium. This is dependent on multiple factors, such as pH. Thorium typically has a 15
- 16 very low solubility.
- 17 Precipitation falling on the Site may run off and accumulate as surface water, return to the
- 18 atmosphere through evaporation or through plant uptake and evapotranspiration, or may also
- 19 infiltrate the soil, where it can remain fixed in the (unsaturated) vadose zone soils or percolate to
- 20 the water table. Water percolating through contaminated soil may result in the dissolution of
- 21 water-soluble compounds that eventually reach the groundwater. Runoff and evapotranspiration
- 22 rates are not known. However, the soils present at the Site are characterized by layers of fill,
- 23 including waste materials and cover, extending to depths of up to 20 ft bgs. The cover soils
- 24 consist primarily of brown silty sand. Other materials observed in these layers included silt, clay
- 25 and fine grained sand. Therefore, runoff for the Site most likely ranges from medium to rapid.
- 26 7.1.3 Migration into Surface Water and Sediment,
- 27 Transport mechanisms that could potentially lead to migration of contaminants in soil to surface
- 28 water and sediment are surface runoff, groundwater discharge, and flooding. The degree and
- 29 direction of surface runoff is determined mainly by the surface topography and the relative
- 30 proximity of nearby receiving surface waters. Surface water runoff from precipitation can erode
- 31 soil from contaminated areas and carry dissolved and suspended contaminants to local surface
- water features. 32
- 33 The MML has a gentle slope near the western edge and increases to a steep slope near Bound
- Brook. For MML, surface runoff generally flows towards Bound Brook, which in turn flows 34
- 35 northwest and discharges into Green Brook. Green Brook discharges into the Raritan River. The
- 36 river is classed by the EPA and the NJDEP as a supply for public drinking water. In addition,
- 37 during the 100-year flood, the area adjacent to Bound Brook would be flooded about two-thirds
- 38 of the way up the slope (ANL, 1985). The general direction of shallow groundwater flow at the 39 landfill is northeast toward Bound Brook. Groundwater elevation data from the Sadat 2007
- 40 report indicates the elevation of the shallow groundwater is close to the approximate elevation of
- 41 Bound Brook.

1 7.2 Medium-Specific Investigation Findings

- 2 The following section of the report summarizes the media–specific impact caused by the residual
- 3 contaminants present at the site.
- 4 7.2.1 *Soil*
- 5 A number of soil investigations have been conducted over the years at MML with this SI being
- 6 the most recent. Section 5 presented the results of soil investigations performed under this SI
- 7 indicating that the soil sampling results for various ROPCs exceeded their corresponding ISVs.
- 8 In addition, the sampling results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene,
- 9 benzo(k) fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene exceeded
- their corresponding NJDEP's SSCs at five surface soil sampling locations.
- 11 7.2.2 *Air*
- 12 Occupational and effluent air monitoring were conducted as a part of the SI to ensure that the
- worker and general public were not exposed to any radiological hazards during SI activities. The
- 14 following subsections summarize the results of each air monitoring process.

15 <u>Occupational Monitoring</u>

- 16 Breathing zone (BZ) air samplers were used during intrusive activities for occupational air
- monitoring. The BZ was worn by the personnel who had the longest exposure time and also
- worked closest to the exposed subsurface soils. Filters from the BZ were counted after a 24-hour
- 19 period using a Ludlum 2929/43-10-1 alpha/beta scintillator (Appendix G). Samples were
- analyzed to ensure compliance with the occupational derived air concentrations (DAC) values, as
- 21 listed in Table 7-1 of the US NRC Appendix B of 10 CFR Part 20. It has been established that
- 22 the Site's most limiting ROPC Occupational DAC value is ²³²Th. None of the air samples that
- were collected and analyzed exceeded the project's occupational limits of 5E-13 micro-curries
- 24 per milliliter (μCi/ml).

Table 7-1: Occupational DAC Values for Site ROPCs

ROPC	Class	10 CFR 20 App B DAC (μCi/ml)
²²⁶ Ra	W	3E-10
²³² Th	W	5E-13 ¹
²³⁴ U	Y	2E-11
²³⁵ U	Y	2E-11
²³⁸ U	Y	2E-11

20 27 28

29

25

¹Most limiting for primary alpha emitting ROPC

W - Radionuclide retention of 10 to 100 days

Y - Radionuclide retention of > 100 days

Effluent Monitoring

30 Effluent monitoring was conducted to ensure that the general public was not exposed to any

- radiological hazards during SI activities. As mentioned in the RPP (USACE, 2010e), air samplers were used during all intrusive activities. Hi-volume air samplers were placed within 20
- 33 ft of the established restricted area, in both upwind and downwind directions. The results of the
- 34 air sample data was compared to the project action levels of 8E-16 μCi/ml. This value was
- 35 determined by using 20 percent (%) of the values published in Table 2 of the NRC Appendix B

effluent concentration action limit, was that of ²³²Th. When analyzed all sample results were lower than the action level limit.

Table 7-2: Project Effluent Action Levels for Site ROPCs

of 10 CFR Part 20, and choosing the most limiting radionuclide. For the MML project the most

ROPC	Class	10 CFR 20 App B Effluent Concentration [μCi/mL]	Project Effluent Action Limit [μCi/mL]
²²⁶ Ra	W	9E-13	1.8E-13
²³² Th	W	4E-15 ¹	8E-16 ²
²³⁴ U	Y	5E-14	1E-14
²³⁵ U	Y	6E-14	1.2E-14
²³⁸ U	Y	6E-14	1.2E-14

¹ Most limiting for primary alpha emitting ROPC

7.2.3 *Groundwater*

A groundwater sample was collected from soil boring GP-10. The results were compared to the NJDEP's MCLs. Gross alpha ²²⁶Ra and ²²⁸Ra were not detected. Gross beta concentration was 8.7 pCi/L compared to the MCL screening value of 50 pCi/L, and The uranium concentration was 0.11 ug/L, which was below the MCL of 30 ug/L.

Four groundwater sampling events were conducted from August 2002 through November 2003 as part of remedial investigation activities conducted by Sadat Associates, Inc (SADAT, 2006). Sixteen groundwater samples were collected in August 2002 and eight additional samples were collected for radiological parameters in October 2002. The analytical results of the water samples collected in August 2002 indicated that three samples exceeded the NJDEP standard of 5 pCi/L for combined ²²⁶Ra and ²²⁸Ra, five samples exceeded the MCL of 15 pCi/L for gross alpha radiation, and four samples exceeded the screening value of 50 pCi/L for gross beta radiation. Only two samples in the October 2002 sampling event exceeded the gross alpha MCL. One sample exceeded the screening value for gross beta radiation. None of the samples exceeded the limit set for radium in groundwater. Differences in results between the August 2002 and October 2002 sampling efforts do not demonstrate a consistent pattern of radiological impacts to groundwater.

Additional groundwater samples were collected in September, October and November, 2003 (Sadat, 2007). The results were observed to be much lower than the samples collected in 2002. The analytical results of the shallow groundwater samples collected in 2003 indicated that no samples exceeded the NJDEP MCL for combined ²²⁶Ra and ²²⁸Ra, and two wells exceeded the MCL for gross alpha radiation. However, the results for ²²⁶Ra, ²²⁸Ra, uranium and thorium were all below the NJDEP criteria. Further investigation of radiological contamination in shallow groundwater was not recommended by Sadat. Based on the 2002 and 2003 remedial investigations, radiological impacts to the deep groundwater at the MML property were not

²The Action Limit reductions of 20% of the 10CFR20 Appendix B values only applies to the Effluent Concentrations

W - Radionuclide retention of 10 to 100 days

Y – Radionuclide retention of > 100 days

found. Furthermore, based on the deep groundwater quality, Sadat determined that it does not appear that the deep groundwater is being impacted by the shallow groundwater.

3

- 4 The low-flow sampling method was used to obtain samples for the analysis of metals, PCBs, and
- 5 pesticides during the September through November 2003 groundwater sampling events. The
- 6 analytical results of the water samples collected in 2003 confirmed exceedances of NJDEP's
- 7 GWQS for ammonia, TDS, metals, and select VOCs in the shallow groundwater. Based on the
- 8 additional deep groundwater sampling data, iron and manganese were confirmed to exceed
- 9 NJDEP GWQS. These are believed to be due to natural regional sources. In addition, one VOC,
- 10 carbon tetrachloride, was detected at an estimated value which slightly exceeds the new GWQS.
- 11 7.2.4 Surface Water
- 12 Surface water samples were not collected during this SI. However, surface water samples were
- 13 collected during 2002 and 2003 sampling events. The analytical results for surface water
- samples collected during 2002 sampling events did not find any exceedance of the NJDEP/EPA
- 15 radiological criteria. Therefore, further investigation of radiological contamination in surface
- water was not performed as part of the 2003 RI.

17

- 18 The results of the 2002 RI indicated one pesticide, α-chlordane, slightly exceeded the NJDEP's
- 19 SWQC. The results of the 2003 event confirmed the presence of α -chlordane at concentrations
- above the applicable SWQC including the upstream samples. This pesticide is believed to be due
- 21 to regional sources. Further action is not proposed for surface water.
- 22 7.2.5 *Sediment*
- 23 Sediment sampling was not completed as part of the USACE SI. Results from previous sediment
- 24 sampling efforts conducted by Sadat Associates are included in this report. Sadat collected
- sediment samples during 2002 and 2003 sampling events. Sediment samples were collected
- 26 from surface sediment areas within the MML and analyzed for radiological parameters.
- 27 Radiological analyses of sediment samples from the Bound Brook indicated no samples exceed
- 28 the NJDEP criterion of 2 pCi/g for ²²⁶Ra nor did any sample exceed the Sum of Fractions rule
- based on the presence of multiple isotopes.

- 31 Sadat developed screening criteria based on the NJDEP Freshwater Sediment Screening
- 32 Guidelines (FSSG). Results were compared to the Lowest Effects Level (LEL) which represents
- 33 the level that can be tolerated by the majority of benthic organisms. The Severe Effects Level
- 34 (SEL) represents the contaminant concentrations in sediment that could potentially eliminate
- most of the benthic organisms. Sadat's 2002 analytical results for sediment indicated that the
- sampling results for one PCB (Aroclor 1254), four metals (chromium, copper, nickel and zinc),
- one PAH (benzo[g,h,i]perylene) were above their corresponding Lowest Effects Limit. The
- 38 2003 analytical results for sediment indicated that the sampling results for one PCB (Aroclor
- 200 analytical results for seament indicated that the sampling results for one feet (rifector)
- 39 1254), one pesticide (endrin), two metals (arsenic and nickel), one PAH (benzo[g,h,i]perylene)
- 40 were above their corresponding LEL. None of the compounds analyzed exceeded any of the
- 41 SEL during both sampling events. A delineation sampling event was performed during 2004.
- 42 The additional sediment sampling performed did not indicate any exceedances of the LEL for
- 43 PCB and endrin. Therefore, further investigation for PCBs and pesticides was not proposed.

- 1 Since, the exceedance for two metals and PAHs were found at upstream locations, further
- 2 investigation for metals and PAH was not proposed.
- 3 7.3 Conceptual Site Model
- 4 A Conceptual Site Model (CSM) is a graphic representation of exposure pathways and intake
- 5 routes identified for potential receptor populations at a contaminated site. A CSM has been
- 6 developed for the MML site and included as Figure 7-1 and summarized in Table 7-3. The CSM
- 7 summarizes the pathways that chemicals may take to reach potential receptors. A complete
- 8 exposure pathway for a receptor includes all of the following elements:
 - 1) Identifying a source of the contaminants
 - 2) Identifying media through which contaminants may come in contact with the receptors, including soils, groundwater, sediment and surface water, and air
 - 3) Identifying the routes of exposure or pathways through which the receptors may be exposed (i.e. external gamma radiation, ingestion, dermal contact, and inhalation)
 - 4) Identifying current and future potential receptors.

Table 7-3: Summary of Conceptual Site Model

		<i>.</i>	
		Contamination	Additional Evaluation
Media	Pathway Complete	Exceeding ISVs	Necessary
Groundwater	No	No	Yes
Surface Water	Yes	NE	Yes
Sediment	Yes	NE	Yes
Soil	Yes	Yes	Yes
Air	Yes	NE	Yes

ISVs – Investigation Screening Values

NE – not evaluated

19 20 21

22

23

24

25

26

27 28

17

18

9

10

11

12

13

14

15 16

The absence of any one of the above elements results in an incomplete exposure pathway. Where there is no exposure, there is no risk. In addition, EPA's risk assessment and risk characterization guidance does not require that all plausible exposure scenarios and exposure pathways be assessed. Pathways that are incomplete or only potentially complete, but deemed to be negligible, do not require evaluation. Potentially complete but negligible pathways are identified in the CSM but will not be evaluated quantitatively because these pathways would be unlikely to measurably impact risk estimates or risk management decisions. Some pathways cannot be quantified even if they are potentially complete and significant because key information is lacking.

- An exposure pathway is the physical course a contaminant takes from the source to the exposed receptor. The sources evaluated in this assessment include soil, groundwater, surface water, and
- 31 sediments. Potential source areas across the Site are a result of potentially contaminated soil
- being transported to the MML for use as fill or cover material for sanitary landfill operations.
- 33 These soils were dispersed over the landfill. The soil was evaluated both as source and potential
- These sons were dispersed over the minerial. The son was evaluated both as source and potential
- 34 environmental media in the CSM. Two routes of exposure soil ingestion and dermal contact
- are associated with soil exposure pathways and, therefore, were considered in the CSM.

The results of limited groundwater sampling conducted during previous investigations and SI did not find any consistent pattern of radiological impacts to both shallow and deep groundwater at the MML property. Furthermore, based on the deep groundwater quality, it does not appear that the deep groundwater is being impacted by the shallow groundwater. Groundwater will be further delineated in future work. Currently there is no human exposure to shallow groundwater

6 immediately beneath the Site, as there are not any domestic or municipal supply wells on the 7 Site.

7 Site 8

9 ATSDR sampled 17 off-site private consumption wells as part of their Public Health Assessment 10 of the MSP site. Radiological and non-radiological potential contaminant levels in private wells 11 were below levels of concern or at background levels (ATSDR, 2000). Although the use of 12 private drinking water wells in the area represents a potential for a completed groundwater 13 pathway, onsite groundwater data does not indicate any radiological contamination as described 14 in Section 7.2.3. Based on the above limited data and a review of the Site operational history, it 15 is unlikely that there has been a release or threat of release into off-site groundwater of 16 radioactive materials

17 As mentioned earlier, surface runoff generally flows north towards Bound Brook, which in turn 18 flows northwest and discharges into Green Brook. Green Brook discharges into the Raritan River 19 which is classed by the EPA and the NJDEP as a supply for public drinking water. Available 20 flood zone maps show that the 100-year flood would inundate the northern and far southeastern 21 portions of the Site. Based on the above data, there is evidence for potential human and 22 ecological exposure of contaminants through flooding and seeping. Both surface water and 23 sediment pathways were evaluated as potential exposure pathways in the CSM. Like soil, both 24 ingestion and dermal contact were considered as the routes of exposure for both surface water 25 and sediment.

- For radiological constituents, external gamma is an important pathway of exposure and, therefore, it was quantified in this evaluation. This pathway is not applicable for chemical constituents.
- Inhalation exposure may result from inhaling chemicals, which have volatilized, as well as radiological contaminated soil particles, and radon. Soil particles can be emitted into the air either by wind erosion or as a result of mechanical disturbance. Therefore, inhalation of air was evaluated in the CSM.
- The CSM also identifies all human receptor populations that are reasonably anticipated to be exposed to the contaminants present at the Site. Even though the Site is an inactive landfill, the surrounding land use includes a mix of residential and non-residential properties. Therefore, receptors that may come in contact with contaminated media while working at the Site include an adult future site worker, an adult construction worker/remediation worker, a present time maintenance worker and a trespasser/visitor. In addition, due to surrounding land uses, a residential receptor is also considered during this CSM.
- The CSM did not identify any ecological receptors that are reasonably anticipated to be exposed to the contaminants present at the Site. Potential terrestrial receptors include the bald eagle (Haliaeetus leucocephalus), peregrine falcon (Falco peregrinus), piping plover (Charadrius melodus), roseate tern (Sterna dougallii), bog turtle (Clemmys muhlenbergii), and Indiana bat (Myotis sodalist) and may appear in the vicinity of the Site as occasional transients. The piping

- 1 plover and roseate tern are on the Federal Endangered or Threatened Species List. A review of
- 2 the U.S. Fish and Wildlife Service database indicates the peregrine falcon, bog turtle, and the
- 3 plant, swamp pink (Helonias bullata), are also on the endangered and threatened species list for
- 4 Middlesex County. However, there are not any known habitats critical for the survival of these
- 5 species in the vicinity of the Site. Thus, impacts to the species discussed above would not be
- 6 anticipated from wastes currently contained at the Site or from any additional remedial actions
- 7 that may be taken at the Site.
- 8 The Department of the Army U.S. Army Biological Technical Assistance Group developed a
- 9 Checklist for Important Ecological Places to determine whether or not further ecological
- 10 evaluation is necessary for an affected property (USABTAG, 2005). This checklist was
- addressed as part of the SI and results indicated that further information is required to adequately
- 12 complete the worksheet. This information will be gathered in future phases of the CERCLA
- process. If the affected property meets the exclusion criteria, further evaluation of ecological
- 14 risk will not be required. If the affected property does not meet the exclusion criteria, then a
- screening level ecological risk assessment will be performed for the Site.
- Overall the potential pathways include the ingestion or dermal contact with contaminated surface
- water, sediment and soil and the inhalation from particulate/gaseous emissions. Available data
- 18 was used to evaluate the potential for completed pathways from direct contact with contaminated
- soil and the inhalation of particulate/gaseous emissions. The pathway for surface water and
- sediment exposure were not evaluated since these media were not investigated during this SI.

1 8.0 SUMMARY

7

36

- 2 The following sections present a summary of the data collected during this SI, conclusions based
- 3 on the data, and finally recommendations for further investigative activities at the Site.
- 4 8.1 Summary of Findings
- In order to meet the project objectives, as well as confirm the presence of radiological and nonradiological impacts at the Site, the following field tasks were implemented:
 - Surface Gamma Scan Surveys of approximately 35 acres
- Collection of 49 surface soil samples based on the reviews of historical records and the results of surface gamma scans
- Excavation and selected sampling of soils from 14 test pits
- Advancement of 50 soil borings and the collection 103 biased subsurface soil samples based on the results of surface gamma scans and DGL
- Groundwater sampling
- Review of previous investigations at the Site
- 15 8.1.1 Gamma Survey Results
- 16 Evaluation of the CLASS[™] gamma survey was used in the development of the ROI data (Figures
- 17 5-3 and 5-4). Figure 5-3 shows what appears to be a number of isolated elevated areas for
- thorium across the Site. The results of the Z-scores for the ²²⁶Ra ROI (Figure 5-4) identifying
- 19 elevated areas along Pershing Avenue confirm that the elevated radium count rates are
- 20 concentrated along this road. This data coupled with the manual surveys led to the identification
- 21 of three areas of elevated activity. These areas included
- The portion of the southeast perimeter along Pershing Avenue
- Various spots in the wooded area
- An area along the northern, eastern, and southern perimeter of the former DOE excavation
- 26 8.1.2 Surface Soil Radiological Results
- A total of 49 surface soil samples were submitted for radiological analysis. Results of these analyses indicate the following:
- Results for ²²⁶Ra are greater than the radium ISV or background in 43 samples. Of the 43 exceedances, 14 were located along Pershing Avenue, 11 were located around the perimeter of the former DOE excavation, 14 samples were located in the wooded area and the remaining four samples were distributed across the landfill area
- Thorium results for two samples located within the southwest boundary of the former DOE excavation exceeded the thorium ISV. These locations are collocated with ²²⁶Ra concentrations that also exceeded the radium ISV
 - A total of 24 surface soil samples exceeded the uranium ISV. The majority of these exceedances occurred along Pershing Avenue, along the southwest boundary of the

- former DOE excavation, and at six locations within the wooded area. With the exception of one sample, MML-SW08, these locations were also collocated with ²²⁶Ra concentrations that exceeded the radium ISV
 - During the GWS of the wooded area, a rock was encountered that exhibited a total count of 62,910 cpm. It was approximately 10 inches by six inches and described as sandstone. A surface soil sample that was collected from directly below the rock exhibited results exceeding the ISV for ²²⁶Ra and ²³⁴Th.

8 8.1.3 Surface Soil Non-Radiological Results

- 9 Eleven surface samples were analyzed for metals, VOCs, SVOCs, pesticides, herbicides, and 10 PCBs for waste characterization and health and safety purposes. Six additional samples were collected and analyzed via TCLP to determine if the soil may be considered hazardous waste. Health and safety sample results were compared against NJDEP SSC for residential, direct contact land use criteria, and the TCLP results were compared to the RCRA hazardous waste criteria. Results of the sample analyses indicated the following:
 - For SVOCs, the sampling results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene exceeded their corresponding NJDEP SSCs at five sampling locations (Figure 5-11).
 - Six additional samples were submitted for analysis via TCLP to determine if onsite soil could be classified as hazardous. Each of the six sample results were below the RCRA criteria.

22 8.1.4 Subsurface Soil Radiological Results

- A total of 103 systematic and biased subsurface soil samples were collected from a combination of 14 test pits and 50 soil borings. The test pits were excavated to evaluate for the presence of high activity or "nuggets" of uranium ore. Surface scan results of the pit spoils were used to identify biased soil sample locations or intervals. Soil borings were used to characterize potential subsurface contaminant distribution, to 'bound' areas of elevated activity, and to determine if any "nuggets" of uranium ore existed in the subsurface. Results of the test pit and soil boring activities indicated the following:
 - The cover material encountered generally consisted of black to orange-brown silty sand, although layers also included silt, clay and fine-grained sand. Depths to waste ranged from two to five ft bgs.
 - TP-14 excavated near the northeast corner of the former DOE excavation, exhibited gamma readings ranging from 19,000 to 35,000 cpm to a depth of seven ft bgs. Four soil samples were collected at various depths up to six ft bgs and had ROPC concentrations above their corresponding ISV for ²²⁶Ra, ²³²Th, and ²³⁸U.
 - During the excavation of TP-09 along the southeast perimeter parallel with Pershing Avenue, an instrument dial was encountered at a depth of 6.5 ft bgs and within the landfill waste. This item had a reading of approximately 70,000 cpm, was documented and placed back into the excavation.

- TP-12 was excavated adjacent to the southeast perimeter along Pershing Avenue. This test pit hit refusal at a depth of six ft bgs from encounters with large blocks of concrete. Results of a single soil sample from TP-12 indicated that ²²⁶Ra, ²³²Th, and ²³⁸U each exceeded their respective ISVs.
 - TP-11 was excavated in an area of elevated GWS readings within the wooded area adjacent to surface soil samples MML-SSW04 and 05 (Figures 5-12). Three surface soil samples collected at this location exceeded the radium and uranium ISVs.
 - Based on the CLASS[™] survey, GP-46 was advanced along the eastern edge of the former excavation with three samples submitted for laboratory analysis. The uppermost sample contained a small rock believed to be a "nugget" of uranium ore. Analysis indicated a ²²⁶Ra concentration of 30,300 pCi/g. The remaining two samples also exceeded the ²²⁶Ra ISVs.
 - Approximately 14 soil borings were advanced along Pershing Avenue at the edge of the municipal property at locations based on the gamma surveys and test pits. Twenty-nine samples from the 14 locations were analyzed with nearly all samples exceeding at least one ROPC ISV.
 - Methane gas was encountered in three areas across the Site including the northeast corner of the former DOE excavation, a large area encompassing the central and southeast portions of the Site, and an area at the northeast corner of the landfill (Figure 5-14).
- 20 Radiological data generated from the test pits and soil borings indicate that there are areas of
- 21 elevated activity across the Site. Consistent with the surface soil results, radium is the dominant
- 22 ROPC followed by uranium. Uranium concentrations in excess of its ISV were detected at the
- 23 north, northeast and central portions of the former DOE excavation. Additionally, two locations
- 24 in the wooded area (TP-11 and GP-45) and nine along Pershing Avenue also exceeded the ISV
- 25 for uranium.

1 2

3 4

5

6

7

8

9 10

11 12

13

14

15

16

17

18

19

- 26 Six soil samples were analyzed for VOCs, SVOCs, metals and PCBs via the TCLP to determine
- 27 if excavated soil could be classified as a hazardous waste. Sample results were compared to the
- 28 RCRA hazardous waste criteria and showed that none of the criteria were exceeded. Surface soil
- 29 samples MML-SSC08 and 24 were analyzed for both the non-radiological constituents as well as
- 30 the TCLP. While both samples exceeded the NJDEP SSC and MSP ROD cleanup objectives,
- 31 neither sample results were classified as hazardous.
- 32 8.1.5 Groundwater Radiological Results
- 33 A groundwater sample was collected from GP-10 (Figure 5-13) in order to evaluate the presence
- of ROPCs and was analyzed for gross alpha, gross beta, ²²⁶Ra, ²²⁸Ra, and uranium via mass
- 35 spectroscopy. The results were compared to the NJDEP MCLs. Gross alpha ²²⁶Ra and ²²⁸Ra
- 36 were not detected above the method detection limit. The sample had a gross beta concentration
- of 8.7 picoCuries per liter (pCi/L) whereas ²³⁴U, ²³⁵U and ²³⁸U were not detected. The total
- uranium concentration of 0.011 micrograms per liter (µg/L) was below the NJDEP MCL of 30
- 39 ($\mu g/L$).

1 8.2 Conclusions

- 2 The objective of this SI was to obtain data of sufficient quality and quantity to facilitate USACE
- 3 decisions regarding future work at the Site. This data included various gamma surveys, surface
- 4 soil sampling and subsurface soil sampling through the excavation of test pits and advancement
- 5 of soil borings. The data collected indicates that additional CERCLA actions such as a Remedial
- 6 Investigation are warranted to further define the horizontal and vertical extent of radiological
- 7 contamination.
- 8 Conclusions drawn from Site data and the CSM suggest that the preferential pathway for
- 9 exposure to radiological contamination would be through direct contact with contaminated soil.
- 10 The data indicates that exposure via fugitive dust is minimal given the current vegetative cover
- over the landfill; however, external gamma exposure should be considered. Exposure via
- 12 groundwater is also minimal due to the alluvial deposits underlying the landfill waste, an
- incomplete pathway for onsite groundwater, and lack of radiological contaminants in the
- 14 bedrock groundwater. Previous investigations, however, indicate the potential for on-site
- shallow groundwater contamination. Groundwater should be further investigated.
- 16 The non-radiological results of the samples collected for waste characterization and health &
- safety purposes show that there were not any constituents exceeding the RCRA criteria and, thus,
- 18 the soil would not be considered hazardous waste.
- While ecological receptors are not reasonably anticipated to be exposed to radiological
- 21 contaminants, further ecological evaluation is necessary. Based on the results of the gamma
- surveys, laboratory analysis of the soil samples, five AOIs have been identified (Figure 8-1 and
- 23 Table 8-1) as warranting further investigation or additional data for radiological release and
- 24 include

- AOI 1 The southeast portion of the Site along Pershing Avenue
- AOI 2 The wooded portion of the Site between the landfill and Bound Brook
- AOI 3 The area within and surrounding the former DOE excavation
- AOI 4 The area within the central portion of the landfill between AOIs 1 and 2
- AOI 5 The northwest portion of the site adjacent to AOI 3 occupied by the church and municipal building
- 31 8.3 Recommendations
- 32 A more detailed analysis such as a CERCLA Remedial Investigation is recommended.

9.0 REFERENCES

AEC 1961, AEC Memorandum from J.C. Clark (Manager New York Office) to S.H. Sapirio (Manager ORO), RE: *Borough Dump Middlesex New Jersey*, 02/13/1961

4

- 5 ATSDR 2000, *Public Health Assessment for Middlesex Sampling Plant*. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, 2000.
- DeNuke 2008, *Radiological Survey Report Former Middlesex Municipal Landfill*, DeNuke Contracting Services, Inc., 2008.
- DOE 1984, DOE Memorandum from Franklin F. Coffman (Director, Office of Terminal Waste Disposal and Remedial Action, Office of Nuclear Energy) to File, RE: Action Description Memorandum (ADM) Review: Proposed 1984 Remedial Actions at Middlesex, New Jersey, dated 09/07/1984.
- DOE 1989, Certification Docket for the Remedial Action Performed at the Middlesex Municipal Landfill in Middlesex, New Jersey in 1984 and 1986, Department of Energy, May 1989.
- DOE 2008, Email on behalf of DOE; from Mike Widdop, SM Stoller Corp, to Jenny Goodman, NJDEP; Subject MML DVP, Dated 24 December 2008 with attachments, Radium source figure title S0496200.pdf dated 12/23/08.
- EPA 2000, Data Quality Objectives Process for Hazardous Waste Site Investigations, EPA QA/G-4HW Final, EPA/600/R-00/007, January 2000.
- EPA 2000a, Guidance for the Data Quality Objectives Process, EPA QA/G-4, EPA/600/R-96/055, Quality Assurance Management Staff, Washington, D.C., August 2000.
- EPA 2000b, *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)*, EPA 402-R-97-016, Rev. 1, August 2000.
- FEMA 2010, Website, fema.gov, Federal Emergency Management Agency, September 2010.
- Federal Register, 1989, Certification of the Radiological Condition of Middlesex Municipal Landfill in Middlesex, NJ. Federal Register Volume 54, No. 87 page 19603. 8 May 1989.
- NETR 2010, Website, Historical Aerials.com, National Environmental Title Research, LLC, May 2010.
- NJDFGW 2010, Website, state,nj.us/dep/fgw, New Jersey Department of Fish, Game and Wildlife, August 2010.
- NRC (U. S. Nuclear Regulatory Agency) 1998, Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions, NUREG-1507, June 1998.
- Sadat 2007, Revised Remedial Investigation Report Addendum/Remedial Action Work Plan,
 Sadat Associates, Inc., 2001.
- USABTAG (U.S. Army Biological Technical Assistance Group) 2005, Document for Ecological
 Risk Assessment: A Guide to Screening Level Ecological Risk Assessment, April 2005.

- 1 USACE 2005, Soils of Operable Unit: Record of Decision Middlesex Sampling Plant, 2 Middlesex, New Jersey, September 2005.
- 3 USACE, 2010a, *Accident Prevention Plan, Middlesex Municipal Landfill FUSRAP Site*, Cabrera Services, Inc., January 2010.
- USACE 2010b, Project Work Plan, Middlesex Municipal Landfill FUSRAP Site, Appendix A –
 Field Sampling Plan, Cabrera Services, Inc., January 2010.
- 7 USACE 2010c, Quality Assurance Project Plan, Middlesex Municipal Landfill FUSRAP Site, Cabrera Services, Inc., January 2010.
- 9 USACE 2010d, Contractor Quality Control Plan, Middlesex Municipal Landfill FUSRAP Site, Cabrera Services, Inc., January 2010.
- USACE 2010e, Radiation Protection Plan, Middlesex Municipal Landfill FUSRAP Site, Cabrera
 Services, Inc., January 2010.
- 13 USACE 2010F, *Preliminary Assessment*, Middlesex Municipal Landfill FUSRAP Site, September 2010.
- US Census Bureau 2010, Website, Census.gov, US Census Bureau Fact Finder, August 2010.
- 16 USFWS 2010, Website, fws.gov, US Fish and Wildlife Service, August 2010.
- USGS 1999, Aquifer and Well Characteristics in New Jersey, United States Geological Survey,
 18 1999.

Tables

TABLE 4-1: INVESTIGATION SCREENING VALUES

Radionuclide of Potential Concern	Ra-226 (pCi/g)	U-238 (pCi/g)	Th-232 (pCi/g)
Average Background Concentration	0.91	0.72	1.24
Standard Deviation	0.28	0.19	0.47
Investigation Screening Values	1.46	1.11	2.18

Ra-226 = Radium-226 U-238 = Uranium-238 Th-232 = Thorium-232 pCi/g = picoCurie per gram

TABLE 4-2: SUMMARY OF LABORATORY ANALYTICAL PROGRAM

Matrix	Analytical Group	Concentration Level	Analytical and Preparation Method/SOP		
Radionuclides	of Potential Concern				
	Alpha Spectroscopy – Iso U		ASTM 3972-90m		
Surface and Subsurface Soil	Gamma Spectroscopy- Ra- 226, Pb -214, Bi-214, K-40, Ac-228, and Th-234	Low/ Medium/ High	EPA 901.1		
	Gross Alpha and Beta		EPA 900		
	Ra-226, Ra-228		USEPA 903.1		
Groundwater	Thorium - Isotopic (228, 230, 232)	Low/ Medium/ High	ASTM D3972-90M		
	Uranium - Isotopic (233/234, 235, 238)		ASTM D3972-90M		
	Volatile Organic Compounds (VOCs)		EPA 8260B		
	Semivolatile Organic Compounds (SVOCs)		EPA 8270D		
Soil	Pesticides (PEST)	Low/ Medium	EPA 8081A		
	Herbicides (Herb)]	EPA 8151A		
	PCBs		EPA 8082		
	Metals		EPA 6010/700		
	Volatile Organic Compounds (VOCs)		EPA 8260B		
	Semi-volatile Organic Compounds (SVOCs)		EPA 8270D		
	Pesticides (PEST)	Low/ Medium	EPA 8081A		
Soil	Herbicides (Herb)	Low Western	EPA 8151A		
TCLP	PCBs]	EPA 8082		
	RCRA 8 Metals]	EPA 6010/7000		
	Flash Points		EPA 9045		
	рН		EPA 9045		
	Reactive Cyanide/Sulfide		SW 846 7.3.1/ 7.3.2		

TABLE 5-1: SUMMARY STATISTICS FOR SURFACE GAMMA SURVEY RESULTS MML SITE INVESTIGATION

Statistics	Unit	Gamma Survey Results								
Statistics	Omt	CLASS System	Tradition	nal GWS						
Dates Survey Conducted		12/08/09 to 01/17/10	12/04/09	to 1/26/10						
Number of Data Points	1	328,627	18,238	3,215						
Average	cpm	3,833	14,760	42,874						
Maximum	cpm	25,061	26,494	243,014						
Minimum	cpm	1,229	6,763	10,545						
Standard Deviation	cpm	835	1,863	47,558						

Footnotes

CLASS = Cabrera Large Area Survey System GWS = Gamma Walk Over Survey

cpm = counts per minute

TABLE 5-2 SUMMARY OF SURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID	mple ID MML-SSC01					MML-	-SSC02			MML	-SSC03	
		Date		1/21	/2010			1/21/	/2010		1/21/2010			
		Depth (Feet)	0-0.5					0-0.5				0-	0.5	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.73	G	0.26	0.15	1.09	G	0.4	0.23	1.11	G	0.37	0.21
Ra-226	1.46	pCi/g	4.4	G,TI	1.4	1	16.9	G,TI	1.7	2.3	9.7	G,TI	1.6	1.6
Th-234	1.11	pCi/g	1.7	U,G	3.6	2.2	8.8	M3,G	4.5	3.1	5.1	G	3.6	2.4
U-234	NA	pCi/g	2.59	M3	0.12	0.57	8.5	M3	0.2	1.5	5.5	M3	0.1	1.1
U-235	NA	pCi/g	0.27	U,G	0.28	0.16	0.63	M3	0.51	0.26	0.38	M3	0.38	0.2
U-238	1.11	pCi/g	2.93	M3	0.13	0.63	9.4	M3	0.1	1.7	5.1		0.09	0.99

		Sample ID		MML-	SSC04			MML-	SSC05			MML-	SSC06		
		Date	1/21/2010					1/21/2010				1/21/2010			
		Depth (Feet)	0-0.5				0-0.5				0-0.5				
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	
Ac-228	2.18	pCi/g	1.08	M3,G	0.58	0.3	1.16	M3,G	0.69	0.36	1.55	M3,G	0.96	0.45	
Ra-226	1.46	pCi/g	37.1	G,TI	3.5	5.1	6	G,TI	2.6	1.9	43.5	G,TI	4	6	
Th-234	1.11	pCi/g	8.6	G	3.5	2.5	0.3	U,G	2	1.2	10.4	G	3.4	2.5	
U-234	NA	pCi/g	6.9		0.1	1.3	1.66		0.08	0.4	15.2	M3	0.1	2.7	
U-235	NA	pCi/g	1.01	M3	0.91	0.58	0.33	U,G	0.6	0.37	1.82	G	1.25	0.76	
U-238	1.11	pCi/g	6.6	M3	0.1	1.3	1.55		0.07	0.38	14.2	•	0.1	2.5	

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-2 SUMMARY OF SURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	-SSC07			MML.	SSC08			MML-	SSC09	
		Date	1/21/2010				1/21/2010				1/21/2010			
		Depth (Feet)	0-0.5				0-0.5				0-0.5			
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.26	G	0.35	0.21	0.97	G	0.43	0.23	0.85	M3,G	0.52	0.22
Ra-226	1.46	pCi/g	5	G,TI	1.6	1.2	30.5	G,TI	2.2	3.9	2.4	G,TI	1.6	1.1
Th-234	1.11	pCi/g	1.4	U,G	3.6	2.2	6.9	M3,G	5.8	3.7	0.7	U,G	3.7	2.2
U-234	NA	pCi/g	1.53		0.07	0.33	5.7		0.1	1.1	0.9		0.1	0.26
U-235	NA	pCi/g	0.18	U,G	0.31	0.19	0.75	G,TI	0.62	0.39	0.04	U,G	0.43	0.25
U-238	1.11	pCi/g	1.36		0.06	0.3	5.5		0.1	1.1	0.77		0.07	0.24

		Sample ID		MML-	SSC10			MML-	SSC11			MML-SSC12			
		Date	1/21/2010					1/21/	2010		1/21/2010				
		Depth (Feet)	0-0.5				0-0.5				0-0.5				
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	
Ac-228	2.18	pCi/g	0.85	M3,G	0.56	0.26	1.04	G	0.34	0.2	1.32	G	0.48	0.3	
Ra-226	1.46	pCi/g	10	G,TI	2.6	2.2	2.74	G,TI	1.36	0.92	0.3	U,G,SI	2.4	1.4	
Th-234	1.11	pCi/g	1.3	U,G	2.5	1.5	3.5	LT,G,TI	2.6	1.7	0.7	U,G	1.9	1.2	
U-234	NA	pCi/g	2.34		0.08	0.51	1.24		0.07	0.32	0.98		0.1	0.28	
U-235	NA	pCi/g	0.5	U,G	0.63	0.39	0.23	U,G	0.28	0.18	0.49	U,G	0.67	0.42	
U-238	1.11	pCi/g	2.71		0.03	0.57	1.02		0.08	0.28	1.06		0.07	0.3	

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-2 SUMMARY OF SURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID	D MML-SSC13					MML.	-SSC14			MML-	SSC15		
		Date		1/21	/2010			1/21	/2010		1/21/2010				
		Depth (Feet)	0-0.5				0-0.5					0-0.5			
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	
Ac-228	2.18	pCi/g	1.23	G	0.49	0.29	1.31	G	0.23	0.21	1.2	G	0.4	0.23	
Ra-226	1.46	pCi/g	2.1	G,TI	1.7	1.1	1.55	G,TI	1.22	0.79	1.7	U,G,SI	1.8	1.1	
Th-234	1.11	pCi/g	0.56	U,G	1.49	0.9	1	U,G	3.3	2	0.52	U,G	1.49	0.9	
U-234	NA	pCi/g	1.14		0.09	0.32	0.74		0.08	0.22	0.95		0.03	0.26	
U-235	NA	pCi/g	0.078	U,G	0.42	0.24	0.11	U,G	0.25	0.15	0.01	U,G	0.33	0.19	
U-238	1.11	pCi/g	0.73		0.1	0.24	0.76		0.08	0.23	0.96	•	0.08	0.27	

		Sample ID		MML	SSC16			MML	-SSC17			MML-	SSC18	
		Date	1/21/2010					1/21	/2010		1/21/2010			
		Depth (Feet)	0-0.5				0-0.5				0-0).5		
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.3	G	0.25	0.19	1.21	G	0.22	0.18	1.1	G	0.37	0.21
Ra-226	1.46	pCi/g	2.13	G,TI	1.13	0.74	2.26	G,TI	1.21	0.8	0.9	U,G,SI	1.6	1
Th-234	1.11	pCi/g	-0.2	U,G	2.2	1.3	1.5	U,G	3.3	2	2.22	LT,G,TI	0.9	0.65
U-234	NA	pCi/g	0.92		0.07	0.26	1.01		0.07	0.27	0.77		0.05	0.18
U-235	NA	pCi/g	0.078	U,G	0.23	0.14	0.054	U,G	0.21	0.11	0.15	U,G	0.28	0.17
U-238	1.11	pCi/g	1.01		0.08	0.27	1.09		0.07	0.29	0.77		0.06	0.19

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-2 SUMMARY OF SURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-SSC19				MML-	SSC20			MML.	-SSC22		
		Date		1/21/2010				1/21/	2010		1/21/2010				
		Depth (Feet)		0-0.5				0-0).5		0-0.5				
Parameter	ISV	Units	Result	Result Qual MDC ± TPU Re				Qual	MDC	± TPU	Result	Qual	MDC	± TPU	
Ac-228	2.18	pCi/g	1.45	G	0.23	0.22	0.97	G	0.35	0.19	3.05	G	0.38	0.42	
Ra-226	1.46	pCi/g	2.39	G,TI	1.31	0.87	2.64	G,TI	1.37	0.92	7.4	G,TI	1.7	1.4	
Th-234	1.11	pCi/g	2.4	LT,G,TI	2	1.3	3.6	LT,G,TI	2.4	1.6	2.33	LT,G	1.3	0.87	
U-234	NA	pCi/g	0.9		0.05	0.2	1.79		0.09	0.43	3.79	M3	0.12	0.77	
U-235	NA	pCi/g	0.068	U,G	0.21	0.12	0.13	U,G	0.26	0.16	0.36	M3	0.32	0.2	
U-238	1.11	pCi/g	1.01	1.01 0.05 0.22					0.09	0.43	4.28	M3	0.11	0.86	

		Sample ID		MML-SSC23				MML.	-SSC24			MML-	SSC25		
		Date		1/21/2010				1/21	/2010		1/21/2010				
		Depth (Feet)		0-0.5				0-	0.5		0-0.5				
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	
Ac-228	2.18	pCi/g	1.14	G	0.22	0.17	0.59	G	0.28	0.13	0.66	G	0.19	0.13	
Ra-226	1.46	pCi/g	1.54	G,TI	0.99	0.64	1.22	G,TI	1.19	0.75	1.18	G,TI	1.16	0.73	
Th-234	1.11	pCi/g	-0.4	U,G	3	1.8	0.6	U,G	2.7	1.6	-0.1	U,G	2.8	1.6	
U-234	NA	pCi/g	0.83	M3	0.14	0.25	0.49	M3	0.12	0.18	0.56		0.08	0.15	
U-235	NA	pCi/g	0.15	U,G	0.2	0.12	0.038	U,G	0.35	0.21	0.03	U,G	0.24	0.14	
U-238	1.11	pCi/g	0.54		0.03	0.19	0.33		0.08	0.14	0.57		0.06	0.15	

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-2 SUMMARY OF SURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SSC26			MML-	·SSC27			MML-	SSC28			
		Date		2/24/2010				2/24/	/2010		3/2/2010					
		Depth (Feet)		0-0.5				0-	-1		0-0.5					
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU		
Ac-228	2.18	pCi/g	0.82	M3,G	0.51	0.28	9	M3,G	0.9	1.2	0.9	M3,G	0.69	0.33		
Ra-226	1.46	pCi/g	15.1	G,TI	2.5	2.6	17.1	G,TI	4.1	3.6	79.6	G,TI	3.2	9.7		
Th-234	1.11	pCi/g	4.5	G	1.9	1.3	6	G	3.3	2.3	15.6	G	2.2	2.4		
U-234	NA	pCi/g	3.66		0.04	0.65	20.3		0	3.3	16.5	M3	0.2	2.8		
U-235	NA	pCi/g	0.32	0.32 U,G 0.7 0.43			1	U,G	0.69	0.42	1.95	M3	0.89	0.52		
U-238	1.11	pCi/g	4.07	4.07 0.02 0.72				20.6 0.1 3.3				M3	0.2	2.7		

		Sample ID		MML.	-SSC29			MML-	·SSC30			MML-	SSC31		
		Date		3/2/2010				3/2/:	2010		3/2/2010				
		Depth (Feet)		0-0.5				0-0	0.5		0-0.5				
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	
Ac-228	2.18	pCi/g	1.01	M3,G	0.67	0.36	0.95	M3,G	0.85	0.44	1.08	G	0.34	0.2	
Ra-226	1.46	pCi/g	63.7	G,TI	3.1	7.9	61.8	G,TI	4.6	8	1.69	G,TI	1.42	0.9	
Th-234	1.11	pCi/g	9.9	G	2.6	2	12.2	M3,G	4.6	3.2	1.5	U,G	3.6	2.2	
U-234	NA	pCi/g	16.8	M3	0.6	3.2	10.6	M3	0.4	2.1	0.66		0.04	0.16	
U-235	NA	pCi/g	2.16	M3	1.08	0.72	1.54	M3	1.19	0.76	0.03	U,G	0.4	0.24	
U-238	1.11	pCi/g	17.5	17.5 M3 0.4 3.3			10.9	M3	0.3	2.1	0.8		0.04	0.18	

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-2 SUMMARY OF SURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SSC32			MML-	·SSC33			MML-	·SSC34			
		Date		3/2/2010				3/2/2	2010		3/2/2010					
		Depth (Feet)		0-0.5				0-0	0.5		0-0.5					
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU		
Ac-228	2.18	pCi/g	1.23	M3,G	0.73	0.4	1.46	M3,G	0.55	0.32	1.58	G	0.3	0.24		
Ra-226	1.46	pCi/g	1.7	U,G,SI	2.2	1.4	2.5	G,TI	2.5	1.6	2.34	G,TI	1.18	0.8		
Th-234	1.11	pCi/g	1	U,G	2.5	1.5	0.8	U,G	1.9	1.2	2.3	U,G	2.6	1.6		
U-234	NA	pCi/g	0.86		0.07	0.2	0.94		0.05	0.21	1		0.07	0.22		
U-235	NA	pCi/g	0.101	U,G	0.66	0.38	0.061	U,G	0.55	0.32	0.2	U,G	0.23	0.14		
U-238	1.11	pCi/g	0.96		0.06	0.22	0.9		0.05	0.2	1.16		0.07	0.25		

		Sample ID		MML-	SSC35			MML-	-SSC37			MML-	-SSC38		
		Date		3/2/2010				3/2/:	2010		3/2/2010				
		Depth (Feet)		0-0.5				0-0	0.5		0-0.5				
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	
Ac-228	2.18	pCi/g	1.02	M3,G,TI	0.64	0.38	0.68	G	0.42	0.21	0.91	G	0.24	0.15	
Ra-226	1.46	pCi/g	45	G,TI	2.8	5.8	52.5	52.5 G,TI 2.5 6.4			10.9	G,TI	1.2	1.5	
Th-234	1.11	pCi/g	16.2	G	2.4	2.6	16.1	M3,G	5.6	4	5.4	G	3.6	2.3	
U-234	NA	pCi/g	11.3		0.1	1.9	10		0.1	1.6	4.75		0.07	0.81	
U-235	NA	pCi/g	1.3	1.3 G 0.78			1.4	G	0.62	0.34	0.34	U,G	0.38	0.23	
U-238	1.11	pCi/g	11.5	11.5 0 1.9					0.1	1.6	4.75		0.04	0.81	

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-2 SUMMARY OF SURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-SSC39				MML-	SSC40			MML-S	SSCM01			
		Date		3/2/2010				3/2/2010				1/21/2010				
		Depth (Feet)		0-0.5				0-0	0.5		0-0.5					
Parameter	ISV	Units	Result	Result Qual MDC ± TPU Re				Qual	MDC	± TPU	Result	Qual	MDC	± TPU		
Ac-228	2.18	pCi/g	0.87	G	0.47	0.25	1.23	M3,G	0.61	0.36	0.91	G	0.35	0.19		
Ra-226	1.46	pCi/g	2.1	G,TI	1.6	1.1	2.5	G,TI	2.5	1.6	1.7	G,TI	1.34	0.86		
Th-234	1.11	pCi/g	1.18	U,G	1.47	0.92	-0.2	U,G	1.9	1.1	0.9	U,G	1.1	0.68		
U-234	NA	pCi/g	1.18		0.06	0.26	1.12		0.05	0.24	0.7		0.09	0.18		
U-235	NA	pCi/g	0.11	U,G	0.34	0.21	0.081	U,G	0.64	0.37	0.12	U,G	0.24	0.14		
U-238	1.11	pCi/g	1.19		0.08	0.26	0.99		0.04	0.22	0.79		0.08	0.19		

		Sample ID		MML-S	SSCM02			MML-S	SSCM03			MML-	SSW01		
		Date		1/21/2010				1/21	/2010		2/2/2010				
		Depth (Feet)		0-0.5				0-	0.5		0-0.5				
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	
Ac-228	2.18	pCi/g	0.61	G	0.33	0.16	1.3	G	0.34	0.22	0.91	G	0.44	0.27	
Ra-226	1.46	pCi/g	1.33	G,TI	1.2	0.76	1.73	G,TI	1.28	0.82	2.2	G,TI	2	1.3	
Th-234	1.11	pCi/g	1.7	U,G	2	1.3	2.5	U,G	2.6	1.6	1.5	U,G	2.2	1.4	
U-234	NA	pCi/g	0.62		0.09	0.21	0.88		0.08	0.26	0.9		0.06	0.21	
U-235	NA	pCi/g	0.2	U,G	0.21	0.13	0.14	U,G	0.27	0.16	0.14	U,G	0.52	0.31	
U-238	1.11	pCi/g	0.65	M3	0.12	0.22	0.93		0.1	0.27	1.03		0.04	0.23	

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-2 SUMMARY OF SURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SSW02			MML-	SSW03	
		Date		2/2/	2010			2/2/:	2010	
		Depth (Feet)		0-	0.5			0-	0.5	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.34	G	0.31	0.21	1.44	G	0.3	0.23
Ra-226	1.46	pCi/g	1.96	G,TI	1.35	0.87	1.61	G,TI	1.23	0.79
Th-234	1.11	pCi/g	1.1	U,G	3.1	1.9	0.1	U,G	3.4	2
U-234	NA	pCi/g	0.93		0.08	0.21	1.07		0.05	0.23
U-235	NA	pCi/g	0.12	U,G	0.25	0.16	0.055	U,G	0.37	0.22
U-238	1.11	pCi/g	1.08		0.08	0.24	1.15		0.03	0.24

		Sample ID		MML-	SSW04			MML-	SSW05	
		Date		2/2/	2010			2/2/	2010	
		Depth (Feet)		0-	0.5			0-	0.5	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.92	G	0.21	0.16	0.72	G	0.39	0.2
Ra-226	1.46	pCi/g	3.8	G,TI	1.4	1	6.2	G,TI	1.9	1.4
Th-234	1.11	pCi/g	2.1	U,G	3.6	2.2	3	LT,G	1.8	1.2
U-234	NA	pCi/g	1.8		0.05	0.35	2.47		0.05	0.46
U-235	NA	pCi/g	0.14	U,G	0.27	0.16	0.18	U,G	0.39	0.24
U-238	1.11	pCi/g	1.82		0.07	0.35	2.52		0.08	0.47

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-2 SUMMARY OF SURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SSW06			MML-	SSW07	
		Date		2/2/	2010			2/2/	2010	
		Depth (Feet)		0-	0.5			0-	0.5	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.59	G	0.4	0.18	0.86	G	0.34	0.18
Ra-226	1.46	pCi/g	19.9	G,TI	1.9	2.7	1.41	G,TI	1.38	0.87
Th-234	1.11	pCi/g	6	M3,G	4.6	2.9	2.6	U,G	2.8	1.8
U-234	NA	pCi/g	5.62		0.05	0.96	0.74		0.05	0.18
U-235	NA	pCi/g	0.61	G,TI	0.53	0.34	0.06	U,G	0.29	0.17
U-238	1.11	pCi/g	5.52		0.06	0.95	0.77		0.05	0.18

		Sample ID		MML-	SSW08	
		Date		2/2/	2010	
		Depth (Feet)		0-	0.5	
Parameter	ISV	Units	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.91	G	0.22	0.26
Ra-226	1.46	pCi/g	2.08	G,TI	1.3	0.85
Th-234	1.11	pCi/g	0.6	U,G	3.3	2
U-234	NA	pCi/g	0.87		0.07	0.2
U-235	NA	pCi/g	0.09	U,G	0.21	0.13
U-238	1.11	pCi/g	0.95		0.02	0.21

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

Notes:

U = Result is less than the sample specific MDC or less than the associated TPU

G = Sample density differs by more than 15% of LCS density: sample results may be biased

TI = Nuclide identification is tentative

M3 = Requested MDC was not met, but the reported activity is greater than the reported MDC.

J = the value is estimated

SI = Nuclide identification and/or quantitation is tentative

				Sample ID	MML	SSC01	MML-	SSC08	MML	-SSC19	MML-	SSC23
				Sample Date	1/21/	2010	1/21/	2010	1/21	/2010	1/21/	2010
				Depth (ft)	0.0	0.5	0.0	0.5	0.0	- 0.5	0.0	0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
1,1,1,2-TETRACHLOROETHANE	ug/kg	170000	310000	1000	6.2	U	6.2	U	6.8	U	5.9	U
1,1,1-TRICHLOROETHANE	ug/kg	210000	100000	50000	6.2	U	6.2	U	6.8	U	5.9	U
1,1,2,2-TETRACHLOROETHANE	ug/kg	34000	70000	1000	6.2	U	6.2	U	6.8	U	5.9	U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
1,1,2-TRICHLOROETHANE	ug/kg	22000	420000	1000	6.2	U	6.2	U	6.8	U	5.9	U
1,1-DICHLOROETHANE	ug/kg	570000	1000000	10000	6.2	U	6.2	U	6.8	U	5.9	U
1,1-DICHLOROETHENE	ug/kg	8000	150000	10000	6.2	U	6.2	U	6.8	U	5.9	U
1,1-DICHLOROPROPENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
1,2,3-TRICHLOROBENZENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
1,2,3-TRICHLOROPROPANE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
1,2,4-TRICHLOROBENZENE	ug/kg	68000	1200000	100000	6.2	U	6.2	U	6.8	U	5.9	U
1,2,4-TRIMETHYLBENZENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
1,2-DIBROMO-3-CHLOROPROPANE	ug/kg	-	-	-	12	U	12	U	14	U	12	U
1,2-DIBROMOETHANE	ug/kg	-		-	6.2	U	6.2	U	6.8	U	5.9	U
1,2-DICHLOROBENZENE	ug/kg	5100000	10000000	50000	6.2	U	6.2	U	6.8	U	5.9	U
1,2-DICHLOROETHANE	ug/kg	6000	24000	1000	6.2	U	6.2	U	6.8	U	5.9	U
1,2-DICHLOROPROPANE	ug/kg	10000	43000	-	6.2	U	6.2	U	6.8	U	5.9	U
1,3,5-TRIMETHYLBENZENE	ug/kg	-		-	6.2	U	6.2	U	6.8	U	5.9	U
1,3-DICHLOROBENZENE	ug/kg	5100000	10000000	100000	6.2	U	6.2	U	6.8	U	5.9	U
1,3-DICHLOROPROPANE	ug/kg	4000	5000	1000	6.2	U	6.2	U	6.8	U	5.9	U
1,4-DICHLOROBENZENE	ug/kg	570000	10000000	100000	6.2	U	6.2	U	6.8	U	5.9	U
1-CHLOROHEXANE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
2,2-DICHLOROPROPANE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
2-BUTANONE	ug/kg	1000000	1000000	50000	25	U	25	U	27	U	24	U
2-CHLOROTOLUENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
2-HEXANONE	ug/kg	-	-	-	25	U	25	U	27	U	24	U
4-CHLOROTOLUENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
4-METHYL-2-PENTANONE	ug/kg	1000000	1000000	50000	25	U	25	U	27	U	24	U
ACETONE	ug/kg	1000000	1000000	100000	25	U	25	U	27	U	24	U
BENZENE	ug/kg	3000	13000	1000	6.2	U	6.2	U	6.8	U	5.9	U
BROMOBENZENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
BROMOCHLOROMETHANE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
BROMODICHLOROMETHANE	ug/kg	11000	46000	1000	6.2	U	6.2	U	6.8	U	5.9	U
BROMOFORM	ug/kg	86000	370000	1000	6.2	U	6.2	U	6.8	U	5.9	U
BROMOMETHANE	ug/kg	79000	1000000	1000	6.2	U	6.2	U	6.8	U	5.9	U

Notes:

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

E = Concentration exceeds upper level of the calibration range

				Sample ID	MML	SSC01	MML-	SSC08	MML-	SSC19	MML-	SSC23
				Sample Date	1/21/	2010	1/21/	2010	1/21/	2010	1/21/	2010
				Depth (ft)	0.0	0.5	0.0	0.5	0.0	- 0.5	0.0	0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
CARBON DISULFIDE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
CARBON TETRACHLORIDE	ug/kg	2000	4000	1000	6.2	U	6.2	U	6.8	U	5.9	U
CHLOROBENZENE	ug/kg	37000	680000	1000	6.2	U	6.2	U	6.8	U	5.9	U
CHLOROETHANE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
CHLOROFORM	ug/kg	19000	28000	1000	6.2	U	6.2	U	6.8	U	5.9	U
CHLOROMETHANE	ug/kg	520000	1000000	10000	6.2	U	6.2	U	6.8	U	5.9	U
CIS-1,2-DICHLOROETHENE	ug/kg	79000	1000000	1000	6.2	U	6.2	U	6.8	U	5.9	U
CIS-1,3-DICHLOROPROPENE	ug/kg	4000	5000	1000	6.2	U	6.2	U	6.8	U	5.9	U
DIBROMOCHLOROMETHANE	ug/kg	110000	1000000	1000	6.2	U	6.2	U	6.8	U	5.9	U
DIBROMOMETHANE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
DICHLORODIFLUOROMETHANE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
ETHYLBENZENE	ug/kg	1000000	1000000	100000	6.2	U	6.2	U	6.8	U	5.9	U
HEXACHLOROBUTADIENE	ug/kg	1000	21000	100000	6.2	U	6.2	U	6.8	U	5.9	U
IODOMETHANE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
ISOPROPYLBENZENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
METHYL TERTIARY BUTYL ETHER	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
METHYLENE CHLORIDE	ug/kg	49000	210000	1000	6.2	U	6.2	U	6.8	U	5.9	U
NAPHTHALENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
N-BUTYLBENZENE	ug/kg	-	-	-	6.2	U	10		6.8	U	5.9	U
N-PROPYLBENZENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
P-ISOPROPYLTOLUENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
SEC-BUTYLBENZENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
STYRENE	ug/kg	23000	97000	100000	6.2	U	8.7		6.8	U	5.9	U
TERT-BUTYLBENZENE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
TETRACHLOROETHENE	ug/kg	4000	6000	1000	6.2	U	6.2	U	6.8	U	5.9	U
TOLUENE	ug/kg	1000000	1000000	500000	6.2	U	6.2	U	6.8	U	5.9	U
TRANS-1,2-DICHLOROETHENE	ug/kg	1000000	1000000	50000	6.2	U	6.2	U	6.8	U	5.9	U
TRANS-1,3-DICHLOROPROPENE	ug/kg	4000	5000	1000	65.3		71.4		73.7		60.2	
TRICHLOROETHENE	ug/kg	23000	54000	1000	6.2	U	6.2	U	6.8	U	5.9	U
TRICHLOROFLUOROMETHANE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
VINYL ACETATE	ug/kg	-	-	-	6.2	U	6.2	U	6.8	U	5.9	U
VINYL CHLORIDE	ug/kg	2000	7000	10000	6.2	U	6.2	U	6.8	U	5.9	U
XYLENE (M+P)	ug/kg	-	-	-	25	U	25	U	27	U	24	U
XYLENE (O)	ug/kg	-		-	6.2	U	6.2	U	6.8	U	5.9	U

Notes:

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

 $J = Estimated \ value \ (result \ less \ than \ limit \ of \ Quantitation \ but \ greater \ than \ MDL)$

E = Concentration exceeds upper level of the calibration range

				Sample ID	MML	SSC24	MML-	SSC30	MML	-SSC32	MML-	SSC37
				Sample Date	1/21/	2010	3/2/2	2010	3/2/	2010	3/2/2	2010
				Depth (ft)	0.0	0.5	0.0	- 0.5	0.0	- 0.5	0.0	0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
1,1,1,2-TETRACHLOROETHANE	ug/kg	170000	310000	1000	6.2	U	6.4	U	6.5	U	6.8	U
1,1,1-TRICHLOROETHANE	ug/kg	210000	100000	50000	6.2	U	6.4	U	6.5	U	6.8	U
1,1,2,2-TETRACHLOROETHANE	ug/kg	34000	70000	1000	6.2	U	6.4	U	6.5	U	6.8	U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
1,1,2-TRICHLOROETHANE	ug/kg	22000	420000	1000	6.2	U	6.4	U	6.5	U	6.8	U
1,1-DICHLOROETHANE	ug/kg	570000	1000000	10000	6.2	U	6.4	U	6.5	U	6.8	U
1,1-DICHLOROETHENE	ug/kg	8000	150000	10000	6.2	U	6.4	U	6.5	U	6.8	U
1,1-DICHLOROPROPENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
1,2,3-TRICHLOROBENZENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
1,2,3-TRICHLOROPROPANE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
1,2,4-TRICHLOROBENZENE	ug/kg	68000	1200000	100000	6.2	U	6.4	U	6.5	U	6.8	U
1,2,4-TRIMETHYLBENZENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
1,2-DIBROMO-3-CHLOROPROPANE	ug/kg	-	-	-	12	U	13	U	13	U	14	U
1,2-DIBROMOETHANE	ug/kg	-		-	6.2	U	6.4	U	6.5	U	6.8	U
1,2-DICHLOROBENZENE	ug/kg	5100000	10000000	50000	6.2	U	6.4	U	6.5	U	6.8	U
1,2-DICHLOROETHANE	ug/kg	6000	24000	1000	6.2	U	6.4	U	6.5	U	6.8	U
1,2-DICHLOROPROPANE	ug/kg	10000	43000	-	6.2	U	6.4	U	6.5	U	6.8	U
1,3,5-TRIMETHYLBENZENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
1,3-DICHLOROBENZENE	ug/kg	5100000	10000000	100000	6.2	U	6.4	U	6.5	U	6.8	U
1,3-DICHLOROPROPANE	ug/kg	4000	5000	1000	6.2	U	6.4	U	6.5	U	6.8	U
1,4-DICHLOROBENZENE	ug/kg	570000	10000000	100000	6.2	U	6.4	U	6.5	U	6.8	U
1-CHLOROHEXANE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
2,2-DICHLOROPROPANE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
2-BUTANONE	ug/kg	1000000	1000000	50000	25	U	26	U	26	U	27	U
2-CHLOROTOLUENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
2-HEXANONE	ug/kg	-	-	-	25	U	26	U	26	U	27	U
4-CHLOROTOLUENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
4-METHYL-2-PENTANONE	ug/kg	1000000	1000000	50000	25	U	26	U	26	U	27	U
ACETONE	ug/kg	1000000	1000000	100000	25	U	26	U	16	J	27	U
BENZENE	ug/kg	3000	13000	1000	6.2	U	6.4	U	6.5	U	6.8	U
BROMOBENZENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
BROMOCHLOROMETHANE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
BROMODICHLOROMETHANE	ug/kg	11000	46000	1000	6.2	U	6.4	U	6.5	U	6.8	U
BROMOFORM	ug/kg	86000	370000	1000	6.2	U	6.4	U	6.5	U	6.8	U
BROMOMETHANE	ug/kg	79000	1000000	1000	6.2	U	6.4	U	6.5	U	6.8	U

Notes:

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

 $E = Concentration \ exceeds \ upper \ level \ of \ the \ calibration \ range$

				Sample ID Sample Date		-SSC24 /2010	MML- 3/2/2			-SSC32 2010	MML- 3/2/2	
		Residential Direct	Non-Residential	Depth (ft) Impact to	0.0	- 0.5	0.0	0.5	0.0	- 0.5	0.0 -	0.5
Analyte	Units	Contact	Direct Contact	Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
CARBON DISULFIDE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
CARBON TETRACHLORIDE	ug/kg	2000	4000	1000	6.2	U	6.4	U	6.5	U	6.8	U
CHLOROBENZENE	ug/kg	37000	680000	1000	6.2	U	6.4	U	6.5	U	6.8	U
CHLOROETHANE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
CHLOROFORM	ug/kg	19000	28000	1000	6.2	U	6.4	U	6.5	U	6.8	U
CHLOROMETHANE	ug/kg	520000	1000000	10000	6.2	U	6.4	U	6.5	U	6.8	U
CIS-1,2-DICHLOROETHENE	ug/kg	79000	1000000	1000	6.2	U	6.4	U	6.5	U	6.8	U
CIS-1,3-DICHLOROPROPENE	ug/kg	4000	5000	1000	6.2	U	6.4	U	6.5	U	6.8	U
DIBROMOCHLOROMETHANE	ug/kg	110000	1000000	1000	6.2	U	6.4	U	6.5	U	6.8	U
DIBROMOMETHANE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
DICHLORODIFLUOROMETHANE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
ETHYLBENZENE	ug/kg	1000000	1000000	100000	6.2	U	6.4	U	6.5	U	6.8	U
HEXACHLOROBUTADIENE	ug/kg	1000	21000	100000	6.2	U	6.4	U	6.5	U	6.8	U
IODOMETHANE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
ISOPROPYLBENZENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
METHYL TERTIARY BUTYL ETHER	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
METHYLENE CHLORIDE	ug/kg	49000	210000	1000	6.2	U	6.4	U	6.5	U	6.8	U
NAPHTHALENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
N-BUTYLBENZENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
N-PROPYLBENZENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
P-ISOPROPYLTOLUENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
SEC-BUTYLBENZENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
STYRENE	ug/kg	23000	97000	100000	6.2	U	6.4	U	6.5	U	6.8	U
TERT-BUTYLBENZENE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
TETRACHLOROETHENE	ug/kg	4000	6000	1000	6.2	U	6.4	U	6.5	U	6.8	U
TOLUENE	ug/kg	1000000	1000000	500000	6.2	U	6.4	U	6.5	U	6.8	U
TRANS-1,2-DICHLOROETHENE	ug/kg	1000000	1000000	50000	6.2	U	6.4	U	6.5	U	6.8	U
TRANS-1,3-DICHLOROPROPENE	ug/kg	4000	5000	1000	66.5		69.2	•	71.8		70.6	
TRICHLOROETHENE	ug/kg	23000	54000	1000	6.2	U	6.4	U	6.5	U	6.8	U
TRICHLOROFLUOROMETHANE	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U
VINYL ACETATE	ug/kg	-	-		6.2	U	6.4	U	6.5	U	6.8	U
VINYL CHLORIDE	ug/kg	2000	7000	10000	6.2	U	6.4	U	6.5	U	6.8	U
XYLENE (M+P)	ug/kg	-	-		25	U	26	U	26	U	27	U
XYLENE (O)	ug/kg	-	-	-	6.2	U	6.4	U	6.5	U	6.8	U

Notes

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

 $J = Estimated \ value \ (result \ less \ than \ limit \ of \ Quantitation \ but \ greater \ than \ MDL)$

E = Concentration exceeds upper level of the calibration range

				Sample ID	MMI	-SSC38	MML	-SSC39	MML-	SSW04
				Sample Date	3/2	/2010	3/2/	2010	2/2/2	2010
				Depth (ft)	0.0	- 0.5	0.0	- 0.5	0.0	-0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag
1,1,1,2-TETRACHLOROETHANE	ug/kg	170000	310000	1000	7.2	U	6.6	U	7.4	U
1,1,1-TRICHLOROETHANE	ug/kg	210000	100000	50000	7.2	U	6.6	U	7.4	U
1,1,2,2-TETRACHLOROETHANE	ug/kg	34000	70000	1000	7.2	U	6.6	U	7.4	U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
1,1,2-TRICHLOROETHANE	ug/kg	22000	420000	1000	7.2	U	6.6	U	7.4	U
1,1-DICHLOROETHANE	ug/kg	570000	1000000	10000	7.2	U	6.6	U	7.4	U
1,1-DICHLOROETHENE	ug/kg	8000	150000	10000	7.2	U	6.6	U	7.4	U
1,1-DICHLOROPROPENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
1,2,3-TRICHLOROBENZENE	ug/kg	-		-	7.2	U	6.6	U	7.4	U
1,2,3-TRICHLOROPROPANE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
1,2,4-TRICHLOROBENZENE	ug/kg	68000	1200000	100000	7.2	U	6.6	U	7.4	U
1,2,4-TRIMETHYLBENZENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
1,2-DIBROMO-3-CHLOROPROPANE	ug/kg	-		-	14	U	13	U	15	U
1,2-DIBROMOETHANE	ug/kg	-		-	7.2	U	6.6	U	7.4	U
1,2-DICHLOROBENZENE	ug/kg	5100000	10000000	50000	7.2	U	6.6	U	7.4	U
1,2-DICHLOROETHANE	ug/kg	6000	24000	1000	7.2	U	6.6	U	7.4	U
1,2-DICHLOROPROPANE	ug/kg	10000	43000	-	7.2	U	6.6	U	7.4	U
1,3,5-TRIMETHYLBENZENE	ug/kg	-		-	7.2	U	6.6	U	7.4	U
1,3-DICHLOROBENZENE	ug/kg	5100000	10000000	100000	7.2	U	6.6	U	7.4	U
1,3-DICHLOROPROPANE	ug/kg	4000	5000	1000	7.2	U	6.6	U	7.4	U
1,4-DICHLOROBENZENE	ug/kg	570000	10000000	100000	7.2	U	6.6	U	7.4	U
1-CHLOROHEXANE	ug/kg	-		-	7.2	U	6.6	U	7.4	U
2,2-DICHLOROPROPANE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
2-BUTANONE	ug/kg	1000000	1000000	50000	29	U	26	U	30	U
2-CHLOROTOLUENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
2-HEXANONE	ug/kg	-		-	29	U	26	U	30	U
4-CHLOROTOLUENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
4-METHYL-2-PENTANONE	ug/kg	1000000	1000000	50000	29	U	26	U	30	U
ACETONE	ug/kg	1000000	1000000	100000	13	J	25	J	9.9	J
BENZENE	ug/kg	3000	13000	1000	7.2	U	6.6	U	7.4	U
BROMOBENZENE	ug/kg	-		-	7.2	U	6.6	U	7.4	U
BROMOCHLOROMETHANE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
BROMODICHLOROMETHANE	ug/kg	11000	46000	1000	7.2	U	6.6	U	7.4	U
BROMOFORM	ug/kg	86000	370000	1000	7.2	U	6.6	U	7.4	U
BROMOMETHANE	ug/kg	79000	1000000	1000	7.2	U	6.6	U	7.4	U

Notes:

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

E = Concentration exceeds upper level of the calibration range

				Sample ID		-SSC38 /2010		-SSC39 2010		SSW04 2010
				Sample Date		- 0.5		- 0.5		-0.5
	1			Depth (ft)	0.0	- 0.5	0.0	- 0.5	0.0	-0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag
CARBON DISULFIDE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
CARBON TETRACHLORIDE	ug/kg	2000	4000	1000	7.2	U	6.6	U	7.4	U
CHLOROBENZENE	ug/kg	37000	680000	1000	7.2	U	6.6	U	7.4	U
CHLOROETHANE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
CHLOROFORM	ug/kg	19000	28000	1000	7.2	U	6.6	U	7.4	U
CHLOROMETHANE	ug/kg	520000	1000000	10000	7.2	U	6.6	U	7.4	U
CIS-1,2-DICHLOROETHENE	ug/kg	79000	1000000	1000	7.2	U	6.6	U	7.4	U
CIS-1,3-DICHLOROPROPENE	ug/kg	4000	5000	1000	7.2	U	6.6	U	7.4	U
DIBROMOCHLOROMETHANE	ug/kg	110000	1000000	1000	7.2	U	6.6	U	7.4	U
DIBROMOMETHANE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
DICHLORODIFLUOROMETHANE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
ETHYLBENZENE	ug/kg	1000000	1000000	100000	7.2	U	6.6	U	7.4	U
HEXACHLOROBUTADIENE	ug/kg	1000	21000	100000	7.2	U	6.6	U	7.4	U
IODOMETHANE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
ISOPROPYLBENZENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
METHYL TERTIARY BUTYL ETHER	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
METHYLENE CHLORIDE	ug/kg	49000	210000	1000	7.2	U	6.6	U	7.4	U
NAPHTHALENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
N-BUTYLBENZENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
N-PROPYLBENZENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
P-ISOPROPYLTOLUENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
SEC-BUTYLBENZENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
STYRENE	ug/kg	23000	97000	100000	7.2	U	6.6	U	7.4	U
TERT-BUTYLBENZENE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
TETRACHLOROETHENE	ug/kg	4000	6000	1000	7.2	U	6.6	U	7.4	U
TOLUENE	ug/kg	1000000	1000000	500000	7.2	U	6.6	U	7.4	U
TRANS-1,2-DICHLOROETHENE	ug/kg	1000000	1000000	50000	7.2	U	6.6	U	7.4	U
TRANS-1,3-DICHLOROPROPENE	ug/kg	4000	5000	1000	77.9		71.6		81.6	
TRICHLOROETHENE	ug/kg	23000	54000	1000	7.2	U	6.6	U	7.4	U
TRICHLOROFLUOROMETHANE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
VINYL ACETATE	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U
VINYL CHLORIDE	ug/kg	2000	7000	10000	7.2	U	6.6	U	7.4	U
XYLENE (M+P)	ug/kg	-	-	-	29	U	26	U	30	U
XYLENE (O)	ug/kg	-	-	-	7.2	U	6.6	U	7.4	U

Notes:

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

E = Concentration exceeds upper level of the calibration range

				Sample ID	MML	SSC01	MML	-SSC08	MMI	-SSC19	MML-	SSC23
				Sample Date		/2010		/2010		/2010	1/21/	
				Depth	0.0	- 0.5	0.0	- 0.5	0.0	- 0.5	0.0	- 0.5
		Residential Direct	Non-Residential	Impact to				1				
Analyte	Units	Contact	Direct Contact	Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
1,2,4-TRICHLOROBENZENE	ug/kg	68000	1200000		410	U	830	U	450	U	390	U
1,2-DICHLOROBENZENE	ug/kg	5100000	10000000	50000	410	U	830	U	450	U	390	U
1,3-DICHLOROBENZENE	ug/kg	5100000	10000000	100000	410	U	830	U	450	U	390	U
1,4-DICHLOROBENZENE	ug/kg	570000	10000000	100000	410	U	830	U	450	U	390	U
1-METHYLNAPHTHALENE	ug/kg	-	-	-	410	U	1800		450	U	390	U
2,3,4,6-TETRACHLOROPHENOL	ug/kg	-	-		410	U	830	U	450	U	390	U
2,4,5-TRICHLOROPHENOL	ug/kg	5600000	10000000	50000	410	U	830	U	450	U	390	U
2,4,6-TRICHLOROPHENOL	ug/kg	62000	270000	10000	410	U	830	U	450	U	390	U
2,4-DICHLOROPHENOL	ug/kg	170000	31000000	10000	410	U	830	U	450	U	390	U
2,4-DIMETHYLPHENOL	ug/kg	1100000	10000000	50000	410	U	830	U	450	U	390	U
2,4-DINITROPHENOL	ug/kg	110000	2100000	10000	820	U	1700	U	910	U	790	U
2,4-DINITROTOLUENE	ug/kg	1000	4000	10000	410	U	830	U	450	U	390	U
2,6-DINITROTOLUENE	ug/kg	1000	4000	10000	410	U	830	U	450	U	390	U
2-CHLORONAPHTHALENE	ug/kg	-	-	-	410	U	830	U	450	U	390	U
2-CHLOROPHENOL	ug/kg	280000	5200000	10000	410	U	830	U	450	U	390	U
2-METHYLNAPHTHALENE	ug/kg	-	-	-	410	U	2100		450	U	390	U
2-METHYLPHENOL	ug/kg	2800000	10000000	-	410	U	830	U	450	U	390	U
2-NITROANILINE	ug/kg	-	-	-	820	U	1700	U	910	U	790	U
2-NITROPHENOL	ug/kg	-	-		410	U	830	U	450	U	390	U
3,3'-DICHLOROBENZIDINE	ug/kg	2000	6000	100000	410	U	830	U	450	U	390	U
3+4-METHYLPHENOL	ug/kg	2800000	10000000	-	410	U	240	J	450	U	390	U
3-NITROANILINE	ug/kg	-	-	-	820	U	1700	U	910	U	790	U
4,6-DINITRO-2-METHYLPHENOL	ug/kg	-	-	-	820	U	1700	U	910	U	790	U
4-BROMOPHENYL PHENYL ETHER	ug/kg	-	-		410	U	830	U	450	U	390	U
4-CHLORO-3-METHYLPHENOL	ug/kg	10000000	10000000	100000	410	U	830	U	450	U	390	U
4-CHLOROANILINE	ug/kg	230000	4200000		410	U	830	U	450	U	390	U
4-CHLOROPHENYL PHENYL ETHER	ug/kg	-	-		410	U	830	U	450	U	390	U
4-NITROANILINE	ug/kg	-	-		820	U	1700	U	910	U	790	U
4-NITROPHENOL	ug/kg	-	-		820	U	1700	U	910	U	790	U
ACENAPHTHENE	ug/kg	3400000	10000000	100000	410	U	2600		450	U	390	U
ACENAPHTHYLENE	ug/kg	3400000	10000000		410	U	410	J	450	U	390	U
ANILINE	ug/kg	-	-	-	410	U	830	U	450	U	390	U
ANTHRACENE	ug/kg	10000000	10000000	100000	410	U	14000	E	450	U	390	U
AZOBENZENE	ug/kg	-	-		410	U	830	U	450	U	390	U
BENZO(A)ANTHRACENE	ug/kg	900	4000	500000	250	J	39000	E	390	J	390	U

Notes

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

- U = Not detected above the noted method detection limit
- $J = Estimated \ value \ (result \ less \ than \ limit \ of \ Quantitation \ but \ greater \ than \ MDL)$
- E = Concentration exceeds upper level of the calibration range

			İ	Sample ID	MML	SSC01	мм	-SSC08	мм	SSC19	MML-	SSC33
				Sample Date		/2010		/2010		2010	1/21/	
				Depth		- 0.5	-,	- 0.5	-,	- 0.5	0.0 -	
		I		•	0.0	- 0.5	0.0	- 0.5	0.0	- 0.5	0.0	0.5
		Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater								
Analyte	Units				Result	Flag	Result	Flag	Result	Flag	Result	Flag
BENZO(A)PYRENE	ug/kg	660	660	100000	290	J	25000	Е	420	J	390	U
BENZO(B)FLUORANTHENE	ug/kg	900	4000	50000	440		26000	E	580		110	J
BENZO(G,H,I)PERYLENE	ug/kg	-		-	130	J	13000	E	210	J	390	U
BENZO(K)FLUORANTHENE	ug/kg	900	4000	500000	170	J	13000	E	220	J	390	U
BENZOIC ACID	ug/kg	-	-	-	2100	U	4200	U	2300	U	2000	U
BENZYL ALCOHOL	ug/kg	10000000	10000000	50000	410	U	830	U	450	U	390	U
BIS(2-CHLOROETHOXY)METHANE	ug/kg	-	-		410	U	830	U	450	U	390	U
BIS(2-CHLOROETHYL)ETHER	ug/kg	660	3000	10000	410	U	830	U	450	U	390	U
BIS(2-CHLOROISOPROPYL)ETHER	ug/kg	-	-	-	410	U	830	U	450	U	390	U
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	49000	210000	100000	410	U	3100		450	U	390	U
BUTYL BENZYL PHTHALATE	ug/kg	1100000	10000000	100000	410	U	830	U	450	U	390	U
CARBAZOLE	ug/kg				410	U	2100		450	U	390	U
CHRYSENE	ug/kg	9000	40000	500000	230	J	30000	E	370	J	390	U
DIBENZO(A,H)ANTHRACENE	ug/kg	660	660	100000	410	U	4000		450	U	390	U
DIBENZOFURAN	ug/kg	-			410	U	3700		450	U	390	U
DIETHYL PHTHALATE	ug/kg	10000000	10000000	50000	410	U	830	U	450	U	390	U
DIMETHYL PHTHALATE	ug/kg	10000000	10000000	50000	410	U	830	U	450	U	390	U
DI-N-BUTYL PHTHALATE	ug/kg	5700000	10000000	100000	410	U	830	U	450	U	390	U
DI-N-OCTYL PHTHALATE	ug/kg	1100000	10000000	100000	410	U	830	U	450	U	390	U
FLUORANTHENE	ug/kg	2300000	10000000	100000	470		28000	Е	740		130	J
FLUORENE	ug/kg	2300000	10000000	100000	410	U	9000		450	U	390	U
HEXACHLOROBENZENE	ug/kg	660	24000	100000	410	U	830	U	450	U	390	U
HEXACHLOROBUTADIENE	ug/kg	1000	21000	100000	410	U	830	U	450	U	390	U
HEXACHLOROCYCLOPENTADIENE	ug/kg	400000	7300000	100000	410	U	830	U	450	U	390	U
HEXACHLOROETHANE	ug/kg	6000	100000	100000	410	U	830	U	450	U	390	U
INDENO(1,2,3-CD)PYRENE	ug/kg	900	4000	500000	120	J	13000	Е	200	J	390	U
ISOPHORONE	ug/kg	1100000	10000000	50000	410	U	830	U	450	U	390	U
NAPHTHALENE	ug/kg	230000	4200000	100000	410	U	1500		450	U	390	U
NITROBENZENE	ug/kg	28000	520000	10000	410	U	830	U	450	U	390	U
N-NITROSODIMETHYLAMINE	ug/kg	-	-	-	410	U	830	U	450	U	390	U
N-NITROSO-DI-N-PROPYLAMINE	ug/kg	660	660	100000	410	U	830	U	450	U	390	U
N-NITROSODIPHENYLAMINE	ug/kg	140000	600000	100000	410	U	830	U	450	U	390	U
PENTACHLOROPHENOL	ug/kg	6000	24000	100000	820	U	1700	U	910	U	790	U
PHENANTHRENE	ug/kg	-	-	-	220	J	33000	E	320	J	390	U
PHENOL	ug/kg	10000000	10000000	50000	410	U	830	U	450	U	390	U
PYRENE	ug/kg	1700000	10000000	100000	470		130000	E	740	-	110	J
PYRIDINE	ug/kg	_	-	_	410	U	830	U	450	U	390	U

Notes

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

 $E = Concentration \ exceeds \ upper \ level \ of \ the \ calibration \ range$

				Sample ID	ммг	-SSC24	ммт	-SSC30	мм	-SSC32	MML	SSC27
				Sample Date		/2010		2010		/2010		2010
				Depth		- 0.5		- 0.5		- 0.5		- 0.5
		I I		•	0.0	- 0.3	0.0	- 0.5	0.0	- 0.5	0.0	. 0.3
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
1,2,4-TRICHLOROBENZENE	ug/kg	68000	1200000		410	U	410	U	430	U	440	U
1,2-DICHLOROBENZENE	ug/kg	5100000	10000000	50000	410	U	410	U	430	U	440	U
1,3-DICHLOROBENZENE	ug/kg	5100000	10000000	100000	410	U	410	U	430	U	440	U
1,4-DICHLOROBENZENE	ug/kg	570000	10000000	100000	410	U	410	U	430	U	440	U
1-METHYLNAPHTHALENE	ug/kg	-	-	-	410	U	410	U	430	U	440	U
2,3,4,6-TETRACHLOROPHENOL	ug/kg	-	-	-	410	U	410	U	430	U	440	U
2,4,5-TRICHLOROPHENOL	ug/kg	5600000	10000000	50000	410	U	410	U	430	U	440	U
2,4,6-TRICHLOROPHENOL	ug/kg	62000	270000	10000	410	U	410	U	430	U	440	U
2,4-DICHLOROPHENOL	ug/kg	170000	31000000	10000	410	U	410	U	430	U	440	U
2,4-DIMETHYLPHENOL	ug/kg	1100000	10000000	50000	410	U	410	U	430	U	440	U
2,4-DINITROPHENOL	ug/kg	110000	2100000	10000	820	U	830	U	860	U	880	U
2,4-DINITROTOLUENE	ug/kg	1000	4000	10000	410	U	410	U	430	U	440	U
2,6-DINITROTOLUENE	ug/kg	1000	4000	10000	410	U	410	U	430	U	440	U
2-CHLORONAPHTHALENE	ug/kg	-	-	-	410	U	410	U	430	U	440	U
2-CHLOROPHENOL	ug/kg	280000	5200000	10000	410	U	410	U	430	U	440	U
2-METHYLNAPHTHALENE	ug/kg	-	-	-	410	U	89	J	430	U	440	U
2-METHYLPHENOL	ug/kg	2800000	10000000	-	410	U	410	U	430	U	440	U
2-NITROANILINE	ug/kg	-			820	U	830	U	860	U	880	U
2-NITROPHENOL	ug/kg	-	-	-	410	U	410	U	430	U	440	U
3,3'-DICHLOROBENZIDINE	ug/kg	2000	6000	100000	410	U	410	U	430	U	440	U
3+4-METHYLPHENOL	ug/kg	2800000	10000000	-	410	U	410	U	430	U	440	U
3-NITROANILINE	ug/kg	-	-	-	820	U	830	U	860	U	880	U
4,6-DINITRO-2-METHYLPHENOL	ug/kg	-	-	-	820	U	830	U	860	U	880	U
4-BROMOPHENYL PHENYL ETHER	ug/kg	-			410	U	410	U	430	U	440	U
4-CHLORO-3-METHYLPHENOL	ug/kg	10000000	10000000	100000	410	U	410	U	430	U	440	U
4-CHLOROANILINE	ug/kg	230000	4200000	-	410	U	410	U	430	U	440	U
4-CHLOROPHENYL PHENYL ETHER	ug/kg	-	-	-	410	U	410	U	430	U	440	U
4-NITROANILINE	ug/kg	-	-	-	820	U	830	U	860	U	880	U
4-NITROPHENOL	ug/kg	-	-	-	820	U	830	U	860	U	880	U
ACENAPHTHENE	ug/kg	3400000	10000000	100000	410	U	410	U	430	U	440	U
ACENAPHTHYLENE	ug/kg	3400000	10000000	-	410	U	410	U	430	U	440	U
ANILINE	ug/kg	-	-	-	410	U	410	U	430	U	440	U
ANTHRACENE	ug/kg	10000000	10000000	100000	410	U	360	J	430	U	370	J
AZOBENZENE	ug/kg	-	-	-	410	U	410	U	430	U	440	U
BENZO(A)ANTHRACENE	ug/kg	900	4000	500000	570		2700		140	J	1800	

Notes

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

- U = Not detected above the noted method detection limit
- $J = Estimated \ value \ (result \ less \ than \ limit \ of \ Quantitation \ but \ greater \ than \ MDL)$
- E = Concentration exceeds upper level of the calibration range

			1				ı		1		r	
				Sample ID		-SSC24		-SSC30		-SSC32	MML-	
				Sample Date	1/21	/2010	3/2	/2010	3/2/	2010	3/2/2	2010
				Depth	0.0	- 0.5	0.0	- 0.5	0.0	- 0.5	0.0	0.5
		Residential Direct	Non-Residential	Impact to								
Analyte	Units	Contact	Direct Contact	Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
BENZO(A)PYRENE	ug/kg	660	660	100000	590		2600		140	J	1600	
BENZO(B)FLUORANTHENE	ug/kg	900	4000	50000	930		2900		180	J	2500	
BENZO(G,H,I)PERYLENE	ug/kg	-		-	230	J	2200		430	U	2000	
BENZO(K)FLUORANTHENE	ug/kg	900	4000	500000	420		1500		130	J	840	
BENZOIC ACID	ug/kg	-	-		2100	U	2100	U	2200	U	2200	U
BENZYL ALCOHOL	ug/kg	10000000	10000000	50000	410	U	410	U	430	U	440	U
BIS(2-CHLOROETHOXY)METHANE	ug/kg	-			410	U	410	U	430	U	440	U
BIS(2-CHLOROETHYL)ETHER	ug/kg	660	3000	10000	410	U	410	U	430	U	440	U
BIS(2-CHLOROISOPROPYL)ETHER	ug/kg	-	-	-	410	U	410	U	430	U	440	U
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	49000	210000	100000	180	J	860		160	J	1500	
BUTYL BENZYL PHTHALATE	ug/kg	1100000	10000000	100000	410	U	410	U	430	U	440	U
CARBAZOLE	ug/kg	-	-	-	410	U	410	U	430	U	440	U
CHRYSENE	ug/kg	9000	40000	500000	590		2800		150	J	1900	
DIBENZO(A,H)ANTHRACENE	ug/kg	660	660	100000	410	U	610		430	U	550	
DIBENZOFURAN	ug/kg	-	-		410	U	410	U	430	U	89	J
DIETHYL PHTHALATE	ug/kg	10000000	10000000	50000	410	U	410	U	430	U	440	U
DIMETHYL PHTHALATE	ug/kg	10000000	10000000	50000	410	U	410	U	430	U	440	U
DI-N-BUTYL PHTHALATE	ug/kg	5700000	10000000	100000	410	U	410	U	430	U	980	
DI-N-OCTYL PHTHALATE	ug/kg	1100000	10000000	100000	410	U	410	U	430	U	440	U
FLUORANTHENE	ug/kg	2300000	10000000	100000	1200		3700		280	J	2000	
FLUORENE	ug/kg	2300000	10000000	100000	410	U	110	J	430	U	180	J
HEXACHLOROBENZENE	ug/kg	660	24000	100000	410	U	410	U	430	U	440	U
HEXACHLOROBUTADIENE	ug/kg	1000	21000	100000	410	U	410	U	430	U	440	U
HEXACHLOROCYCLOPENTADIENE	ug/kg	400000	7300000	100000	410	U	410	U	430	U	440	U
HEXACHLOROETHANE	ug/kg	6000	100000	100000	410	U	410	U	430	U	440	U
INDENO(1,2,3-CD)PYRENE	ug/kg	900	4000	500000	230	J	2100		430	U	1800	
ISOPHORONE	ug/kg	1100000	10000000	50000	410	U	410	U	430	U	440	U
NAPHTHALENE	ug/kg	230000	4200000	100000	410	U	110	J	430	U	440	U
NITROBENZENE	ug/kg	28000	520000	10000	410	U	410	U	430	U	440	U
N-NITROSODIMETHYLAMINE	ug/kg	-	-	-	410	U	410	U	430	U	440	U
N-NITROSO-DI-N-PROPYLAMINE	ug/kg	660	660	100000	410	U	410	U	430	U	440	U
N-NITROSODIPHENYLAMINE	ug/kg	140000	600000	100000	410	U	410	U	430	U	440	U
PENTACHLOROPHENOL	ug/kg	6000	24000	100000	820	U	830	U	860	U	880	U
PHENANTHRENE	ug/kg	-	-	-	430		1700		100	J	2200	
PHENOL	ug/kg	10000000	10000000	50000	410	U	410	U	430	U	440	U
PYRENE	ug/kg	1700000	10000000	100000	1200		10000	Е	270	J	6100	E
PYRIDINE	ug/kg	-	-	-	410	U	410	U	430	U	440	U

Notes

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

E = Concentration exceeds upper level of the calibration range

				Sample ID	MML-	-SSC38	MML-	SSC39	MML-S	SSW04
				Sample Date	3/2/2	2010	3/2/2	2010	2/2/2	010
				Depth	0.0	- 0.5	0.0	- 0.5	0.0-	0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag
1,2,4-TRICHLOROBENZENE	ug/kg	68000	1200000		480	U	440	U	490	U
1,2-DICHLOROBENZENE	ug/kg	5100000	10000000	50000	480	U	440	U	490	U
1,3-DICHLOROBENZENE	ug/kg	5100000	10000000	100000	480	U	440	U	490	U
1,4-DICHLOROBENZENE	ug/kg	570000	10000000	100000	480	U	440	U	490	U
1-METHYLNAPHTHALENE	ug/kg	-	-	-	480	U	440	U	490	U
2,3,4,6-TETRACHLOROPHENOL	ug/kg	-	-	-	480	U	440	U	490	U
2,4,5-TRICHLOROPHENOL	ug/kg	5600000	10000000	50000	480	U	440	U	490	U
2,4,6-TRICHLOROPHENOL	ug/kg	62000	270000	10000	480	U	440	U	490	U
2,4-DICHLOROPHENOL	ug/kg	170000	31000000	10000	480	U	440	U	490	U
2,4-DIMETHYLPHENOL	ug/kg	1100000	10000000	50000	480	U	440	U	490	U
2,4-DINITROPHENOL	ug/kg	110000	2100000	10000	950	U	880	U	970	U
2,4-DINITROTOLUENE	ug/kg	1000	4000	10000	480	U	440	U	490	U
2,6-DINITROTOLUENE	ug/kg	1000	4000	10000	480	U	440	U	490	U
2-CHLORONAPHTHALENE	ug/kg	-	-	-	480	U	440	U	490	U
2-CHLOROPHENOL	ug/kg	280000	5200000	10000	480	U	440	U	490	U
2-METHYLNAPHTHALENE	ug/kg	-	-	-	480	U	440	U	490	U
2-METHYLPHENOL	ug/kg	2800000	10000000	-	480	U	440	U	490	U
2-NITROANILINE	ug/kg	-	-	-	950	U	880	U	970	U
2-NITROPHENOL	ug/kg	-	-	-	480	U	440	U	490	U
3,3'-DICHLOROBENZIDINE	ug/kg	2000	6000	100000	480	U	440	U	490	U
3+4-METHYLPHENOL	ug/kg	2800000	10000000	-	480	U	440	U	490	U
3-NITROANILINE	ug/kg	-	-	-	950	U	880	U	970	U
4,6-DINITRO-2-METHYLPHENOL	ug/kg	-	-	-	950	U	880	U	970	U
4-BROMOPHENYL PHENYL ETHER	ug/kg	-	-	-	480	U	440	U	490	U
4-CHLORO-3-METHYLPHENOL	ug/kg	10000000	10000000	100000	480	U	440	U	490	U
4-CHLOROANILINE	ug/kg	230000	4200000	-	480	U	440	U	490	U
4-CHLOROPHENYL PHENYL ETHER	ug/kg	-	-	-	480	U	440	U	490	U
4-NITROANILINE	ug/kg	-	-	-	950	U	880	U	970	U
4-NITROPHENOL	ug/kg	-	-	-	950	U	880	U	970	U
ACENAPHTHENE	ug/kg	3400000	10000000	100000	480	U	440	U	490	U
ACENAPHTHYLENE	ug/kg	3400000	10000000	-	480	U	440	U	490	U
ANILINE	ug/kg	-	-	-	480	U	440	U	490	U
ANTHRACENE	ug/kg	10000000	10000000	100000	480	U	230	J	490	U
AZOBENZENE	ug/kg	-	-	-	480	U	440	U	490	U
BENZO(A)ANTHRACENE	ug/kg	900	4000	500000	190	J	2000		110	J

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

 $\label{eq:J} J = Estimated \ value \ (result \ less \ than \ limit \ of \ Quantitation \ but \ greater \ than \ MDL)$

E = Concentration exceeds upper level of the calibration range

				Sample ID	MML	-SSC38	MML	-SSC39	MML-	SSW04
				Sample Date	3/2/	2010	3/2/	2010	2/2/2	2010
				Depth	0.0	- 0.5	0.0	- 0.5	0.0-	0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag
BENZO(A)PYRENE	ug/kg	660	660	100000	250	riag I	2100	Flag	140	riag
BENZO(B)FLUORANTHENE	ug/kg	900	4000	50000	360	1	3200		220	J
BENZO(G.H.I)PERYLENE	ug/kg	,00		-	140	J	1500		490	U
BENZO(K)FLUORANTHENE	ug/kg	900	4000	500000	180	J	930		490	U
BENZOIC ACID	ug/kg	-	-	-	2400	U	2200	U	8300	E
BENZYL ALCOHOL	ug/kg	10000000	10000000	50000	160	1	440	U	150	J
BIS(2-CHLOROETHOXY)METHANE	ug/kg	-	-	-	480	U	440	U	490	U
BIS(2-CHLOROETHYL)ETHER	ug/kg	660	3000	10000	480	U	440	U	490	U
BIS(2-CHLOROISOPROPYL)ETHER	ug/kg	-	-	-	480	U	440	U	490	U
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	49000	210000	100000	200	J	270	J	180	J
BUTYL BENZYL PHTHALATE	ug/kg	1100000	10000000	100000	480	U	440	U	490	U
CARBAZOLE	ug/kg	-		-	480	U	120	J	490	U
CHRYSENE	ug/kg	9000	40000	500000	190	J	2100		120	J
DIBENZO(A,H)ANTHRACENE	ug/kg	660	660	100000	480	U	480		490	U
DIBENZOFURAN	ug/kg	-	-	-	480	U	440	U	490	U
DIETHYL PHTHALATE	ug/kg	10000000	10000000	50000	480	U	440	U	490	U
DIMETHYL PHTHALATE	ug/kg	10000000	10000000	50000	480	U	440	U	490	U
DI-N-BUTYL PHTHALATE	ug/kg	5700000	10000000	100000	480	U	440	U	490	U
DI-N-OCTYL PHTHALATE	ug/kg	1100000	10000000	100000	480	U	440	U	490	U
FLUORANTHENE	ug/kg	2300000	10000000	100000	430	J	3500		230	J
FLUORENE	ug/kg	2300000	10000000	100000	480	U	96	J	490	U
HEXACHLOROBENZENE	ug/kg	660	24000	100000	480	U	440	U	490	U
HEXACHLOROBUTADIENE	ug/kg	1000	21000	100000	480	U	440	U	490	U
HEXACHLOROCYCLOPENTADIENE	ug/kg	400000	7300000	100000	480	U	440	U	490	U
HEXACHLOROETHANE	ug/kg	6000	100000	100000	480	U	440	U	490	U
INDENO(1,2,3-CD)PYRENE	ug/kg	900	4000	500000	140	J	1600		490	U
ISOPHORONE	ug/kg	1100000	10000000	50000	480	U	440	U	490	U
NAPHTHALENE	ug/kg	230000	4200000	100000	480	U	440	U	490	U
NITROBENZENE	ug/kg	28000	520000	10000	480	U	440	U	490	U
N-NITROSODIMETHYLAMINE	ug/kg	-	-	-	480	U	440	U	490	U
N-NITROSO-DI-N-PROPYLAMINE	ug/kg	660	660	100000	480	U	440	U	490	U
N-NITROSODIPHENYLAMINE	ug/kg	140000	600000	100000	480	U	440	U	490	U
PENTACHLOROPHENOL	ug/kg	6000	24000	100000	950	U	880	U	970	U
PHENANTHRENE	ug/kg	-	-	-	130	J	1300		490	U
PHENOL	ug/kg	10000000	10000000	50000	480	U	440	U	490	U
PYRENE	ug/kg	1700000	10000000	100000	440	J	6200	E	210	J
PYRIDINE	ug/kg	-		-	480	U	440	U	490	U

Notes:

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

 $\boldsymbol{U} = \boldsymbol{Not}$ detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

 $E = Concentration \ exceeds \ upper \ level \ of \ the \ calibration \ range$

TABLE 5-5 SUMMARY OF DETECTED CONCENTRATIONS OF PESTACIDES AND PCBs IN SURFACE SOIL

				Sample ID Sample Date	1/21	-SSC01 /2010	1/21	-SSC08 /2010	1/21	-SSC19 /2010	1/21	-SSC23 /2010
		Residential Direct	Non-Residential	Depth Impact to	0.0	-0.5	0.0	-0.5	0.0	-0.5	0.0	-0.5
Analyte	Units	Contact	Direct Contact	Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
4,4'-DDD	ug/kg	3000	12000	50,000	2.1	U	2.1	U	2.2	U	2	U
4,4'-DDE	ug/kg	2000	9000	50,000	5.9		2.9		2.2	U	2	U
4,4'-DDT	ug/kg	2000	9000	500,000	8.9		8.7		1.7	J	2	U
ALDRIN	ug/kg	40	170	50,000	2.1	U	2.1	U	2.2	U	2	U
ALPHA-BHC	ug/kg	-	-	-	2.1	U	2.1	U	2.2	U	2	U
ALPHA-CHLORDANE	ug/kg	-	-	-	0.87	J	2.1	U	2.2	U	2	U
AROCLOR-1016	ug/kg	490	2000	50,000	41	U	41	U	44	U	39	U
AROCLOR-1221	ug/kg	490	2000	50,000	82	U	82	U	89	U	79	U
AROCLOR-1232	ug/kg	490	2000	50,000	41	U	41	U	44	U	39	U
AROCLOR-1242	ug/kg	490	2000	50,000	41	U	41	U	44	U	39	U
AROCLOR-1248	ug/kg	490	2000	50,000	41	U	41	U	44	U	39	U
AROCLOR-1254	ug/kg	490	2000	50,000	41	U	41	U	44	U	33	J
AROCLOR-1260	ug/kg	490	2000	50,000	28	J	49		44	U	39	U
BETA-BHC	ug/kg	-	-	-	2.1	U	2.1	U	2.2	U	2	U
DELTA-BHC	ug/kg	-	-	-	2.1	U	2	J	2.2	U	2	U
DIELDRIN	ug/kg	42	180	50,000	2.1	U	2.1	U	2.2	U	0.54	J
ENDOSULFAN I	ug/kg	340000	6,200,000	50,000	2.1	U	2.1	U	2.2	U	2	U
ENDOSULFAN II	ug/kg	-	-	-	2.1	U	2.1	U	2.2	U	2	U
ENDOSULFAN SULFATE	ug/kg	-	-	-	2.1	U	2.1	U	2.2	U	2	U
ENDRIN	ug/kg	17000	310000	50,000	2.1	U	2.1	U	2.2	U	2	U
ENDRIN ALDEHYDE	ug/kg	-	-	-	2.1	U	2.1	U	2.2	U	2	U
ENDRIN KETONE	ug/kg	-	-	-	2.1	U	2.1	U	2.2	U	2	U
GAMMA-BHC (LINDANE)	ug/kg	520	2200	50,000	2.1	U	2.1	U	2.2	U	2	U
GAMMA-CHLORDANE	ug/kg	-	-	-	2.7		2.2		2.2	U	2.2	
HEPTACHLOR	ug/kg	150	650	50,000	2.1	U	2.1	U	2.2	U	2	U
HEPTACHLOR EPOXIDE	ug/kg	-	-	-	2.1	U	2.1	U	2.2	U	2	U
METHOXYCHLOR	ug/kg	280000	5200000	50,000	10	U	10	U	11	U	9.9	U
TOXAPHENE	ug/kg	100	200	50,000	100	U	100	U	110	U	99	U

Notes:

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

TABLE 5-5 SUMMARY OF DETECTED CONCENTRATIONS OF PESTACIDES AND PCBs IN SURFACE SOIL

				Sample ID		-SSC24		-SSC30		-SSC32	1	-SSC37
				Sample Date		/2010 -0.5		2010		2010 0-0.5		2010
	I			Depth	0.0	-0.5 I	0.0	-0.5 I	0.0	1-0.5	0.0	-0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
4,4'-DDD	ug/kg	3000	12000	50,000	410	U	2.6		2.1	U	11	U
4,4'-DDE	ug/kg	2000	9000	50,000	410	U	2.7		2.1	U	2.9	J
4,4'-DDT	ug/kg	2000	9000	500,000	410	U	14		1.7	J	11	U
ALDRIN	ug/kg	40	170	50,000	410	U	2.1	U	2.1	U	11	U
ALPHA-BHC	ug/kg	-	-	-	410	U	2.1	U	2.1	U	11	U
ALPHA-CHLORDANE	ug/kg	-	-	-	1900		2.1	U	2.1	U	7.2	J
AROCLOR-1016	ug/kg	490	2000	50,000	610	U	42	U	43	U	1800	U
AROCLOR-1221	ug/kg	490	2000	50,000	1200	U	84	U	85	U	3600	U
AROCLOR-1232	ug/kg	490	2000	50,000	610	U	42	U	43	U	1800	U
AROCLOR-1242	ug/kg	490	2000	50,000	610	U	42	U	43	U	1800	U
AROCLOR-1248	ug/kg	490	2000	50,000	610	U	42	U	43	U	1800	U
AROCLOR-1254	ug/kg	490	2000	50,000	610	U	42	U	43	U	1800	U
AROCLOR-1260	ug/kg	490	2000	50,000	610	U	23	J	43	U	3100	
BETA-BHC	ug/kg	-	-	-	410	U	2.1	U	2.1	U	11	U
DELTA-BHC	ug/kg	-	-	-	410	U	2.1	U	2.1	U	11	U
DIELDRIN	ug/kg	42	180	50,000	410	U	2.1	U	2.1	U	14	
ENDOSULFAN I	ug/kg	340000	6,200,000	50,000	410	U	2.1	U	2.1	U	11	U
ENDOSULFAN II	ug/kg	-	-	-	410	U	2.1	U	2.1	U	11	U
ENDOSULFAN SULFATE	ug/kg	-	-	-	410	U	2.1	U	2.1	U	11	U
ENDRIN	ug/kg	17000	310000	50,000	410	U	2.1	U	2.1	U	11	U
ENDRIN ALDEHYDE	ug/kg	-	-	-	410	U	2.1	U	2.1	U	11	U
ENDRIN KETONE	ug/kg	-	-	-	410	U	2.1	U	2.1	U	11	U
GAMMA-BHC (LINDANE)	ug/kg	520	2200	50,000	410	U	2.1	U	2.1	U	11	U
GAMMA-CHLORDANE	ug/kg	-	-	-	3900		2.1	U	2.1	U	32	
HEPTACHLOR	ug/kg	150	650	50,000	410	U	2.1	U	2.1	U	11	U
HEPTACHLOR EPOXIDE	ug/kg	-	-	-	410	U	2.1	U	2.1	U	25	
METHOXYCHLOR	ug/kg	280000	5200000	50,000	2000	U	11	U	11	U	56	U
TOXAPHENE	ug/kg	100	200	50,000	20000	U	110	U	110	U	560	U

Notes:

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

 $\boldsymbol{U} = \boldsymbol{Not}$ detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

TABLE 5-5 SUMMARY OF DETECTED CONCENTRATIONS OF PESTACIDES AND PCBs IN SURFACE SOIL

				Sample ID Sample Date		-SSC38 2010		SSC39 2010	MML-:	
				Depth		-0.5		-0.5	0.0-	
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag
4,4'-DDD	ug/kg	3000	12000	50,000	2.4	U	2.6		9.7	U
4,4'-DDE	ug/kg	2000	9000	50,000	7		5.3		12	
4,4'-DDT	ug/kg	2000	9000	500,000	12		23		25	
ALDRIN	ug/kg	40	170	50,000	2.4	U	0.79	J	9.7	U
ALPHA-BHC	ug/kg	-	-	-	2.4	U	2.2	U	9.7	U
ALPHA-CHLORDANE	ug/kg	-	-	-	2.4	U	3.5		9.7	U
AROCLOR-1016	ug/kg	490	2000	50,000	48	U	43	U	49	U
AROCLOR-1221	ug/kg	490	2000	50,000	96	U	87	U	97	U
AROCLOR-1232	ug/kg	490	2000	50,000	48	U	43	U	49	U
AROCLOR-1242	ug/kg	490	2000	50,000	48	U	43	U	49	U
AROCLOR-1248	ug/kg	490	2000	50,000	48	U	43	U	49	U
AROCLOR-1254	ug/kg	490	2000	50,000	48	U	43	U	91	
AROCLOR-1260	ug/kg	490	2000	50,000	32	J	19	J	62	
BETA-BHC	ug/kg	-	-	-	2.4	U	2.2	U	9.7	U
DELTA-BHC	ug/kg	-	-	-	2.4	U	2.2	U	9.7	U
DIELDRIN	ug/kg	42	180	50,000	1.6	J	16		12	
ENDOSULFAN I	ug/kg	340000	6,200,000	50,000	2.4	U	2.2	U	9.7	U
ENDOSULFAN II	ug/kg	-	-	-	2.4	U	2.2	U	9.7	U
ENDOSULFAN SULFATE	ug/kg	-	-	-	2.4	U	2.2	U	9.7	U
ENDRIN	ug/kg	17000	310000	50,000	2.4	U	2.2	U	9.7	U
ENDRIN ALDEHYDE	ug/kg	-	1	1	2.4	U	2.2	U	9.7	U
ENDRIN KETONE	ug/kg	-	1	1	2.4	U	2.2	U	9.7	U
GAMMA-BHC (LINDANE)	ug/kg	520	2200	50,000	2.4	U	2.2	U	9.7	U
GAMMA-CHLORDANE	ug/kg	-	-	-	1.9	J	9.3		4.7	J
HEPTACHLOR	ug/kg	150	650	50,000	2.4	U	2.3		9.7	U
HEPTACHLOR EPOXIDE	ug/kg	-	-	-	2.4	U	2.2	U	9.7	U
METHOXYCHLOR	ug/kg	280000	5200000	50,000	12	U	11	U	49	U
TOXAPHENE	ug/kg	100	200	50,000	120	U	110	U	490	U

Notes:

 $ug/kg = micrograms\ per\ kilogram$

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

TABLE 5-6 SUMMARY OF DETECTED CONCENTRATIONS OF METALS IN SURFACE SOIL

				Sample ID	MML	-SSC01	MML-	-SSC19	MML-	SSC23	MML	-SSC24
				Sample Date	1/21/	/2010	1/21/	/2010	1/21/	/2010	1/21	/2010
				Depth	0.0	- 0.5	0.0	- 0.5	0.0	- 0.5	0.0	- 0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ARSENIC	mg/kg	20	20		2.4		2.6		1.1	В	5.9	
BARIUM	mg/kg	700	4,700	-	55		140		72		60	
CADMIUM	mg/kg	39	100	-	0.24	В	0.15	В	0.14	В	2	
CHROMIUM	mg/kg	120,000	-	-	16		24		17		13	
LEAD	mg/kg	400	600	-	39		31		15		70	
MERCURY	mg/kg	14	270	-	0.063		0.032	В	0.05		0.021	В
SELENIUM	mg/kg	63	3,100	-	0.56	В	1.3	В	0.9	В	0.91	
SILVER	mg/kg	110	4,100	-	1.2	U	1.3	U	1.2	U	1.2	U

Notes:

 $mg/kg = milligrams \ per \ kilogram$

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

 $E = Concentration \ exceeds \ upper \ level \ of \ the \ calibration \ range$

B = Constituent detected in Method Blank

TABLE 5-6 SUMMARY OF DETECTED CONCENTRATIONS OF METALS IN SURFACE SOIL

				Sample ID	MML	-SSC30	MML	-SSC32	MML-	-SSC37	MML	SSC38
				Sample Date	3/2/	2010	3/2/	2010	3/2/2	2010	3/2/	2010
				Depth	0.0	- 0.5	0.0	- 0.5	0.0	- 0.5	0.0	- 0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ARSENIC	mg/kg	20	20		4.9		1.9		21		5.5	
BARIUM	mg/kg	700	4,700	-	82		150		150		54	
CADMIUM	mg/kg	39	100	-	0.29	В	0.23	В	6.6		0.35	В
CHROMIUM	mg/kg	120,000	=	-	16		21		53		13	
LEAD	mg/kg	400	600	-	94		23		2600		69	
MERCURY	mg/kg	14	270	-	0.1		0.032	В	0.14		0.073	
SELENIUM	mg/kg	63	3,100	-	0.64		0.7	В	1.5		0.62	В
SILVER	mg/kg	110	4,100	-	1.3	U	1.3	U	0.58	В	1.4	U

Notes:

 $mg/kg = milligrams \ per \ kilogram$

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

 $E = Concentration \ exceeds \ upper \ level \ of \ the \ calibration \ range$

B = Constituent detected in Method Blank

TABLE 5-6 SUMMARY OF DETECTED CONCENTRATIONS OF METALS IN SURFACE SOIL

				Sample ID	MML-	SSC39	MML-	SSW04
				Sample Date	3/2/2	2010	2/2/2	2010
				Depth	0.0	- 0.5	0.0	-0.5
Analyte	Units	Residential Direct Contact	Non-Residential Direct Contact	Impact to Groundwater	Result Flag		Result	Flag
ARSENIC	mg/kg	20	20		17		5.7	
BARIUM	mg/kg	700	4,700	-	110		44	
CADMIUM	mg/kg	39	100	=	0.37	В	0.17	В
CHROMIUM	mg/kg	120,000	Ü.		26		16	
LEAD	mg/kg	400	600	-	61		63	
MERCURY	mg/kg	14	270	-	0.064		0.18	
SELENIUM	mg/kg	63	3,100	-	0.88	В	1.5	U
SILVER	mg/kg	110	4,100	-	1.3	U	1.5	U

Notes:

 $mg/kg = milligrams \ per \ kilogram$

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

J = Estimated value (result less than limit of Quantitation but greater than MDL)

E = Concentration exceeds upper level of the calibration range

B = Constituent detected in Method Blank

TABLE 5-7: SUMMARY OF NON-RADIOLOGICAL SAMPLES EXCEEDING NJDEP SOIL **CLEANUP CRITERIA**

		Soil		Sam	pling Locat	tions	
Non-Radiological Constituents	Unit	Cleanup Criteria	MML- SSC08	MML- SSC24	MML- SSC30	MML- SSC37	MML- SSC39
		VC	Cs				
		No	ne				
		SV	OCs				
BENZO(A)ANTHRACENE	ug/kg	900	39,000	NE	2,700	1,800	2,000
BENZO(A)PYRENE	ug/kg	660	25,000	NE	2,600	1,600	2,100
BENZO(B)FLUORANTHENE	ug/kg	900	26,000	930	2,900	2,500	3,200
BENZO(K)FLUORANTHENE	ug/kg	900	13,000	NE	1,500	NE	930
CHRYSENE	ug/kg	9,000	30,000	NE	NE	NE	NE
DIBENZO(A,H)ANTHRACENE	ug/kg	660	4,000	NE	NE	NE	NE
INDENO(1,2,3-CD)PYRENE	ug/kg	900	13,000	NE	2,100	1,800	1,600
		Pesticides	and PCBs				
AROCLOR-1260	ug/kg	490	NE	NE	NE	3,100	NE
		Me	tals				
ARSENIC	mg/kg	20	NE	NE	NE	21	NE
LEAD	mg/kg	400	NE	NE	NE	2,600	NE

Footnote:

VOCs = volatile organic compounds

SVOCs = semivolatile organic compounds

μg/kg = micrograms per kilogram mg/kg = milligram per kilogram

NE = Not Exceeded

PCBs = polychlorinated biphenyls

TABLE 5-8 SUMMARY OF TCLP RESULTS IN SURFACE SOIL

	İ	Sample ID	MML	-SSC01	MML	-SSC08	MML	-SSC10	MML-	SSC24	MML-	SSC38	MML-	SST14
		Sample Date		/2010		/2010		/2010		2010	3/2/2		4/20/	
		Depth	0-	0.5	0-	0.5	0-4	0.5).5	0-0		0-0).5
	RCRA TCLP Waste	-												
Metals	Criteria	Units	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ARSENIC	5	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
BARIUM	100	mg/l	0.7	В	0.23	В	0.34	В	0.83	В	0.37	В	0.3	В
CADMIUM	1	mg/l	0.05	U	0.05	U	0.05	U	0.021	В	0.05	U	0.05	U
CHROMIUM	5	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
LEAD	5	mg/l	0.015	В	0.03	U	0.03	U	0.032		0.028	В	0.03	U
MERCURY	0.2	mg/l	0.002	U	0.002	U	0.00013	В	0.002	U	0.002	U	0.00014	В
SELENIUM	1	mg/l	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U
SILVER	5	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Pesticides		<u> </u>												
ALPHA-CHLORDANE	-	mg/l	0.0005	U	0.0005	U	0.0005	U	0.0002	J	0.0005	U	0.0005	U
CHLORDANE	0.03	mg/l	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U
ENDRIN	0.02	mg/l	0.0005	U	0.0005	U	0.0005	U	0.0005	U	0.0005	U	0.0005	U
GAMMA-BHC (LINDANE)	0.4	mg/l	0.0005	U	0.0005	U	0.0005	U	0.0005	U	0.0005	U	0.0005	U
GAMMA-CHLORDANE	0.03	mg/l	0.0005	U	0.0005	U	0.0005	U	0.00021	J	0.0005	U	0.0005	U
HEPTACHLOR	0.008	mg/l	0.0005	U	0.0005	U	0.0005	U	0.0005	U	0.0005	U	0.0005	U
HEPTACHLOR EPOXIDE	0.008	mg/l	0.0005	U	0.0005	U	0.0005	U	0.00031	J	0.0005	U	0.0005	U
METHOXYCHLOR	10	mg/l	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U
TOXAPHENE	0.5	mg/l	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U
SVOC														
1,4-DICHLOROBENZENE	7.5	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
2,4,5-TRICHLOROPHENOL	400	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
2,4,6-TRICHLOROPHENOL	2	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
2,4-D	-	mg/l	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U
2,4-DINITROTOLUENE	0.13	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
2-METHYLPHENOL	-	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
3+4-METHYLPHENOL	-	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
HEXACHLOROBENZENE	0.13	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
HEXACHLOROBUTADIENE	0.5	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
HEXACHLOROETHANE	3	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
NITROBENZENE	2	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
PENTACHLOROPHENOL	100	mg/l	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
PYRIDINE	5	mg/l	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
SILVEX	1	mg/l	0.0005	U	0.0005	U	0.0005	U	0.0005	U	0.0005	U	0.0005	U
VOC														
1,1-DICHLOROETHENE	700	ug/l	10	U	5	U	5	U	10	U	10	U	5	U
1,2-DICHLOROETHANE	500	ug/l	10	U	5	U	5	U	10	U	10	U	5	U
2-BUTANONE	-	ug/l	100	U	50	U	50	U	100	U	100	U	50	U
BENZENE	500	ug/l	10	U	5	U	5	U	10	U	10	U	5	U
CARBON TETRACHLORIDE	500	ug/l	10	U	5	U	5	U	10	U	10	U	5	U
CHLOROBENZENE	100000	ug/l	10	U	5	U	5	U	10	U	10	U	5	U
CHLOROFORM	6000	ug/l	10	U	5	U	5	U	10	U	10	U	5	U
TETRACHLOROETHENE	700	ug/l	10	U	5	U	5	U	10	U	10	U	5	U
TRICHLOROETHENE	500	ug/l	10	U	5	U	5	U	10	U	10	U	5	U
VINYL CHLORIDE	200	ug/l	10	U	5	U	5	U	10	U	10	U	5	U

Notes

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

ft = Feet

Flag = Laboratory data qualifier code

U = Not detected above the noted method detection limit

 $\label{eq:J} J = Estimated \ value \ (result \ less \ than \ limit \ of \ Quantitation \ but \ greater \ than \ MDL)$

E = Concentration exceeds upper level of the calibration range

B = Constituent detected in Method Blank

TABLE 5-9 SUMMARY OF TEST PIT SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBT11			MML-	SBT11			MML-	SBT11	
		Date		2/22/	2010			2/22/	2010			2/22/	2010	
		Depth (Feet)		0-0	0.5			0-0	0.5			0-0	0.5	
Parameter	ISV	Units	Result					Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.84	M3, G	0.6	0.25	0.81	M3, G	0.62	0.3	0.63	M3, G	0.54	0.23
Ra-226	1.46	pCi/g	53.7	., .			21.2	G, TI	2.9	3.4	2.8	G, TI	1.7	1.2
Th-234	1.11	pCi/g	27.9	G	2.5	3.7	12.1	G	2.5	2.3	1.03	U, G	1.51	0.94
U-234	NA	pCi/g	17.8		0.1	3	14		0.1	2.3	1.15		0.07	0.26
U-235	NA	pCi/g	1.97	M3	0.61	0.4	1.14	G	0.8	0.39	0.057	U, G	0.39	0.22
U-238	1.11	pCi/g	18.2	M3	0.1	3.1	14.2		0.1	2.3	1.19		0.05	0.26

		Sample ID		MML-	SBT12			MML	-SBT13			MML	-SBT14	
		Date		2/22/	2010			2/23	/2010			2/23	/2010	
		Depth (Feet)		4.5-5.5 Result Oual MDC ± TPU				0-	1.5			0-	0.5	
Parameter	ISV	Units	Result					Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.21	M3, G	0.68	0.34	0.92		0.32	0.2	0.9	M3, G	0.6	0.28
Ra-226	1.46	pCi/g	1.21 M3, G 0.68 0.34 209 G, TI 6 25				1.04	U, SI	1.16	0.74	30.5	G, TI	3	4.2
Th-234	1.11	pCi/g	26.6	M3, G	11.9	8	1.5	U	3.1	1.9	6.3	G	2.9	2
U-234	NA	pCi/g	35.8	M3	1.8	7.1	0.67		0.06	0.16	6.3		0.1	1.1
U-235	NA	pCi/g	5.3	M3	1.5	1.1	0.039	U	0.31	0.18	0.76	U, G	0.79	0.49
U-238	1.11	pCi/g	39.2	M3	1.1	7.6	0.68		0.04	0.16	6.1		0	1.1

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-9 SUMMARY OF TEST PIT SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-S	BT14			MML-	SBT14			MML-	SBT14	
		Date		2/23/2	010			2/23/	2010			2/24/	/2010	
		Depth (Feet)		0-1				4.5	-5.5			4.5	-5.5	
Parameter	ISV	Units	Result					Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.52	M3, G, TI	1.18	0.59	0.99	M3, G	0.7	0.34	32	TI, J	24	14
Ra-226	1.46	pCi/g	130	G, TI	5	16	114	G, TI	3	14				
Th-234	1.11	pCi/g	27.2	M3, G	4	4.2	73.2	M3, G	6.4	9.9	160	TI, J	134	84
U-234	NA	pCi/g	7.3	M3	0.3	1.5	122	M3	1	20				
U-235	NA	pCi/g	3.17	G	1.12	0.68	6.6	M3	0.75	2	13.8	U, J	16.2	10
U-238	1.11	pCi/g	7.4	M3	0.2	1.5	114	M3	1	19				·

		Sample ID		MML-	SBT14	
		Date		2/23/	2010	
		Depth (Feet)		5.5	5-6	
Parameter	ISV	Units	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.68	M3, G	1.24	0.56
Ra-226	1.46	pCi/g	224	G, TI	7	27
Th-234	1.11	pCi/g	46.3	M3, G	6.1	6.8
U-234	NA	pCi/g	178	M3	0	28
U-235	NA	pCi/g	12.4	M3	2.2	2.6
U-238	1.11	pCi/g	176	M3	0	27

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

Notes:

U = Result is less than the sample specific MDC or less than the associated TPU

G = Sample density differs by more than 15% of LCS density: sample results may be biased

TI = Nuclide identification is tentative

M3 = Requested MDC was not met, but the reported activity is greater than the reported MDC.

J =the value is estimated

SI = Nuclide identification and/or quantitation is tentative

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG01			MML-	SBG01			MML-	SBG02	
		Date		2/24/	/2010			2/24/	/2010			2/3/	2010	
		Depth (Feet)		10	-12			2.	-4			0	5-3	
Parameter	ISV	Units	Result					Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.72	TI	0.49	0.34	0.71	G	0.44	0.25	1.06	G	0.33	0.21
Ra-226	1.46	pCi/g	1	U,SI	1.9	1.2	1.5	U,G,SI	1.7	1.1	1.82	G,TI	1.48	0.95
Th-234	1.11	pCi/g	0.22	U	1.36	0.78	0.17	U,G	1.35	0.79	-0.2	U,G	3.3	1.9
U-234	NA	pCi/g	0.54		0.09	0.14	0.58		0.05	0.15	0.8		0.05	0.18
U-235	NA	pCi/g	0.19	U	0.53	0.32	0.034	U,G	0.52	0.3	0.017	U,G	0.3	0.18
U-238	1.11	pCi/g	0.67		0.07	0.16	0.5		0.02	0.14	0.65		0.03	0.16

		Sample ID		MML-	SBG02			MML-	SBG03			MML-	SBG03	
		Date		2/3/:	2010			2/4/	2010			2/4/	2010	
		Depth (Feet)		10	-12			3-	4.5			8.5	-9.5	
Parameter	ISV	Units	Result					Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.98	G	0.35	0.18	1.45	G	0.37	0.27	1.08	G	0.29	0.18
Ra-226	1.46	pCi/g	2.6	G,TI	1.5	1	2.16	G,TI	1.31	0.88	2.55	G,TI	1.22	0.83
Th-234	1.11	pCi/g	2.2	U,G	3.6	2.2	0.49	U,G	1.51	0.92	0.2	U,G	2.8	1.7
U-234	NA	pCi/g	1.14		0.02	0.25	0.95		0.03	0.21	1.49		0.06	0.3
U-235	NA	pCi/g	0.076	U,G	0.38	0.23	0.082	U,G	0.45	0.27	0.1	U,G	0.31	0.18
U-238	1.11	pCi/g	1.01		0.05	0.22	0.99	•	0.04	0.21	1.77		0.07	0.35

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG04			MML-	-SBG04			MML-	SBG05	
		Date		2/4/2	2010			2/4/	2010			2/4/	2010	
		Depth (Feet)		1.5	3-3			7.5	-9.5			11	-12	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.36	G	0.35	0.24	1.1	G	0.44	0.24	0.69	G	0.28	0.14
Ra-226	1.46	pCi/g	2.33	G,TI	1.39	0.92	2	G,TI	2	1.3	1.09	G,TI	0.95	0.61
Th-234	1.11	pCi/g	3.7	LT,G,TI	3.1	2	0.79	U,G	1.48	0.91	1.1	U,G	2.5	1.5
U-234	NA	pCi/g	1.19		0.05	0.25	1.09		0.06	0.24	0.49		0.07	0.13
U-235	NA	pCi/g	0.044	U,G	0.31	0.18	0.072	U,G	0.39	0.23	0.1	U,G	0.27	0.15
U-238	1.11	pCi/g	1.11		0.02	0.24	0.94		0.05	0.21	0.55		0.07	0.14

		Sample ID		MML-	SBG05			MML-	SBG06			MML-	SBG06	
		Date		2/4/	2010			2/4/	2010			2/4/	2010	
		Depth (Feet)		2-	3.5			0	-1			7	-8	
Parameter	ISV	Units	Result					Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.76	G	0.37	0.17	1.2	G	0.42	0.24	0.65		0.27	0.14
Ra-226	1.46	pCi/g	1.72	G,TI	1.47	0.94	1.88	G,TI	1.36	0.89	0.98	U,SI	1.04	0.65
Th-234	1.11	pCi/g	0.7	U,G	2.6	1.6	0.25	U,G	1.24	0.75	0.6	U	2.7	1.6
U-234	NA	pCi/g	0.56		0.07	0.15	0.79		0.02	0.19	0.52		0.06	0.14
U-235	NA	pCi/g	0.063	U,G	0.39	0.23	0.032	U,G	0.44	0.26	0.025	U	0.31	0.18
U-238	1.11	pCi/g	0.69		0.07	0.17	0.79	•	0.04	0.19	0.6		0.05	0.15

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG07			MML-	-SBG07			MML-	SBG08	
		Date		2/5/	2010			2/5/	2010			2/5/	2010	
		Depth (Feet)		4	-5			7-	8.5			1-	2.5	
Parameter	ISV	Units	Result					Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.32	G	0.35	0.23	0.57		0.3	0.15	1.4	G	0.33	0.23
Ra-226	1.46	pCi/g	2.37	G,TI	1.33	0.89	0.71	U,SI	1	0.62	2.42	G,TI	1.27	0.87
Th-234	1.11	pCi/g	1.5	U,G	3.5	2.1	0.7	U	2.9	1.8	0.5	U,G	3	1.8
U-234	NA	pCi/g	1.5		0.05	0.29	0.5		0.04	0.13	0.96		0.06	0.21
U-235	NA	pCi/g	0.046	U,G	0.4	0.24	0.08	U	0.25	0.15	0.02	U,G	0.39	0.23
U-238	1.11	pCi/g	1.21		0.04	0.24	0.53		0.05	0.14	1.03		0.03	0.22

		Sample ID		MML-	SBG08			MML-	-SBG09			MML-	SBG09	
		Date		2/5/2	2010			2/15	/2010			2/15/	2010	
		Depth (Feet)		2.5	5-3			0	-2			10-	-11	
Parameter	ISV	Units	Result					Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.24	G	0.36	0.23	1.01	G	0.35	0.2	0.68	G	0.28	0.14
Ra-226	1.46	pCi/g	2.21	G,TI	1.26	0.85	1.5	G,TI	1.25	0.8	1.22	U,G,SI	1.25	0.79
Th-234	1.11	pCi/g	1.5	U,G	3.3	2	1.8	U,G	2.9	1.8	1.3	U,G	2.9	1.8
U-234	NA	pCi/g	1.2		0.06	0.24	0.68		0.09	0.17	0.55		0.08	0.15
U-235	NA	pCi/g	0.19	U,G	0.41	0.2	0.037	U,G	0.28	0.17	0.029	U,G	0.3	0.18
U-238	1.11	pCi/g	1.29	•	0.04	0.26	0.8	•	0.04	0.19	0.53	•	0.08	0.15

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG10			MML-	SBG10			MML-	SBG11	
		Date		2/15	/2010			2/15	/2010			2/15/	/2010	
		Depth (Feet)		0	-3			6	-8			1-:	2.5	
Parameter	ISV	Units	Result					Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.13	G	0.28	0.19	0.71	G	0.24	0.13	0.9	G	0.33	0.19
Ra-226	1.46	pCi/g	1.95	G,TI	1.11	0.74	1.76	G,TI	1.12	0.74	1.04	U,G,SI	1.19	0.75
Th-234	1.11	pCi/g	1.5	U,G	2.7	1.7	1.5	U,G	2.9	1.8	2.2	U,G	3.3	2
U-234	NA	pCi/g	0.85		0.08	0.21	0.99		0.07	0.22	0.66		0.05	0.15
U-235	NA	pCi/g	0.084	U,G	0.28	0.17	0.072	U,G	0.18	0.11	0.078	U,G	0.37	0.22
U-238	1.11	pCi/g	0.87		0.06	0.21	0.85		0.04	0.2	0.59		0.04	0.14

		Sample ID		MML-	SBG11			MML-	SBG12			MML-	SBG12	
		Date		2/15/	/2010			2/15	/2010			2/15/	2010	
		Depth (Feet)		7-	8.5			0	-2			3-	-4	
Parameter	ISV	Units	Result					Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.6	G	0.29	0.15	0.58		0.3	0.14	0.8		0.26	0.17
Ra-226	1.46	pCi/g	1.26	G,TI	1.04	0.67	1.62	SI	1.06	0.69	1.42	SI	1.05	0.69
Th-234	1.11	pCi/g	1.3	U,G	2.9	1.8	0.6	U	2.6	1.6	1.4	U	2.1	1.3
U-234	NA	pCi/g	0.47		0.03	0.12	0.94	M3	0.1	0.23	0.78		0.07	0.19
U-235	NA	pCi/g	0.06	U,G	0.21	0.13	0.044	U	0.25	0.15	0.037	U	0.29	0.17
U-238	1.11	pCi/g	0.5	•	0.04	0.13	0.95	•	0.09	0.23	0.9	•	0.06	0.2

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG13			MML-	SBG13			MML-	SBG14	
		Date		2/5/	2010			2/5/	2010			2/4/	2010	
		Depth (Feet)		4	-5			5	-6			0.	5-4	
Parameter	ISV	Units	Result	sult Qual MDC ± TPU			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.77	77 G 0.25			1.72	G	0.26	0.24	1.15	G	0.41	0.23
Ra-226	1.46	pCi/g	2.08	G,TI	1.16	0.77	2.27	G,TI	1.11	0.75	3.2	G,TI	2	1.3
Th-234	1.11	pCi/g	1.4	U,G	3.2	2	1.1	U,G	3.3	2	1.39	U,G	1.48	0.93
U-234	NA	pCi/g	1.19		0.05	0.25	1.06		0.05	0.23	1.17		0.09	0.26
U-235	NA	pCi/g	0.14	U,G	0.25	0.15	0.11	U,G	0.34	0.21	0.13	U,G	0.32	0.19
U-238	1.11	pCi/g	1.01		0.05	0.22	1.2		0.02	0.25	1.24		0.09	0.27

		Sample ID		MML-	SBG14			MML-	SBG15			MML-	SBG15	
		Date		2/4/	2010			2/3/	2010			2/3/:	2010	
		Depth (Feet)		11	-12			0	-2			2	-3	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.71		0.31	0.25	1.07	G	0.37	0.21	0.73	G	0.39	0.18
Ra-226	1.46	pCi/g	2.36	SI	1.33	0.88	13.7	G,TI	1.6	2	1	U,G,SI	1.9	1.2
Th-234	1.11	pCi/g	0.5	U	2.7	1.7	5.1	M3,G	4	2.6	0.55	U,G	1.37	0.83
U-234	NA	pCi/g	1.02	M3	0.14	0.24	6.6		0.1	1.1	0.67		0.08	0.16
U-235	NA	pCi/g	0.064	U	0.34	0.21	0.56	G,TI	0.42	0.27	0.09	U,G	0.3	0.18
U-238	1.11	pCi/g	1.09		0.06	0.24	7	•	0.1	1.2	0.52		0.05	0.14

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG16			MML-	-SBG16			MML-	SBG17	
		Date		2/17	/2010			2/17	/2010			2/3/	2010	
		Depth (Feet)		0-	1.5			1.	5-3			0	-2	
Parameter	ISV	Units	Result	ult Qual MDC ± TPU			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.99	G	0.23	0.16	0.98	G	0.27	0.18	1.24	G	0.27	0.2
Ra-226	1.46	pCi/g	2.03	G,TI	1.12	0.74	2.11	G,TI	1.02	0.7	5.2	G,TI	1.4	1.1
Th-234	1.11	pCi/g	-0.6	U,G	2.2	1.3	2.5	U,G	3	1.9	0.5	U,G	3.4	2
U-234	NA	pCi/g	0.88	M3	0.13	0.21	1.01		0.08	0.23	1.52		0.06	0.31
U-235	NA	pCi/g	0.037	U,G	0.24	0.14	0.14	U,G	0.19	0.12	0.3	U,G	0.31	0.19
U-238	1.11	pCi/g	0.93		0.08	0.21	0.82		0.07	0.2	1.47		0.05	0.3

		Sample ID		MML-	SBG17			MML-	SBG18			MML-	SBG18	
		Date		2/3/2	2010			2/17/	/2010			2/17/	/2010	
		Depth (Feet)		2	-5			0	-1			1.5	5-3	
Parameter	ISV	Units	Result	sult Qual MDC ± TPU I			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.79	G	0.37	0.2	0.97	M3,G	0.73	0.34	0.64	G	0.45	0.26
Ra-226	1.46	pCi/g	1.14	U,G,SI	1.15	0.73	20.1	G,TI	3.3	3.4	1	U,G,SI	1.8	1.1
Th-234	1.11	pCi/g	0.39	U,G	1.13	0.68	6.1	G	2.8	2	-0.03	U,G	1.35	0.78
U-234	NA	pCi/g	0.62		0.07	0.16	5.1	M3	0.3	1	0.6		0.07	0.16
U-235	NA	pCi/g	-0.004	U,G	0.39	0.23	0.33	U,G	0.81	0.49	0.039	U,G	0.5	0.29
U-238	1.11	pCi/g	0.55	•	0.07	0.15	5.1	M3	0.16	0.99	0.62		0.09	0.17

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG18			MML-	SBG19			MML-	SBG19	
		Date		2/17/	/2010			2/16	/2010			2/16/	/2010	
		Depth (Feet)		3	-4			0-	1.5			1.:	5-3	
Parameter	ISV	Units	Result	sult Qual MDC ± TPU R				Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.88	0.88 G 0.5 0.25			1.3	G	0.26	0.2	1.11	G	0.34	0.19
Ra-226	1.46	pCi/g	34.2				1.96	G,TI	1.16	0.76	1.05	U,G,SI	1.28	0.8
Th-234	1.11	pCi/g	11.1	G	1.7	1.8	-0.1	U,G	2.5	1.5	0.5	U,G	3.3	2
U-234	NA	pCi/g	14.5	M3	0.2	2.5	1.01		0.07	0.23	1.08		0.07	0.24
U-235	NA	pCi/g	0.8	G	0.66	0.38	0.097	U,G	0.27	0.16	0.1	U,G	0.29	0.17
U-238	1.11	pCi/g	14.6	M3	0.2	2.5	0.86		0.06	0.2	0.85		0.08	0.2

		Sample ID		MML-	SBG20			MML-	SBG20			MML-	SBG21	
		Date		2/25	/2010			2/25/	/2010			2/25	/2010	
		Depth (Feet)		10	-12			7.5	-8.5			10	-11	
Parameter	ISV	Units	Result	sult Qual MDC ± TPU F			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.91		0.33	0.19	0.66		0.19	0.12	0.52	G	0.36	0.19
Ra-226	1.46	pCi/g	1.79	SI	1.3	0.85	1.51	SI	0.83	0.55	1.5	G,TI	1.42	0.91
Th-234	1.11	pCi/g	1.5	U	3.2	1.9	0.8	U	2.3	1.4	-0.06	U,G	1.22	0.72
U-234	NA	pCi/g	0.74		0.07	0.17	0.6		0.02	0.15	0.57		0.05	0.14
U-235	NA	pCi/g	0.066	U	0.32	0.19	0.09	U	0.27	0.16	0.14	U,G	0.28	0.17
U-238	1.11	pCi/g	0.77	•	0.05	0.17	0.68	•	0.04	0.16	0.49		0.01	0.13

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG21			MML-	SBG22			MML-	SBG22	
		Date		2/25	/2010			2/24	/2010			2/24	/2010	
		Depth (Feet)		1	-3			10	-12			8-	10	
Parameter	ISV	Units	Result	ult Qual MDC ± TP			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.76		0.48	0.27	0.76		0.37	0.21	0.74		0.24	0.15
Ra-226	1.46	pCi/g	1.7	SI	1.7	1.1	0.82	U,SI	1.35	0.83	1.28	SI	1.2	0.76
Th-234	1.11	pCi/g	0.6	U	1.7	1	0.5	U	3	1.8	0.7	U	2.9	1.7
U-234	NA	pCi/g	1.02		0.09	0.23	0.52		0.07	0.14	0.36	M3	0.13	0.13
U-235	NA	pCi/g	0.012	U	0.51	0.28	0.14	U	0.32	0.2	0.017	U	0.36	0.21
U-238	1.11	pCi/g	0.87		0.07	0.2	0.64		0.08	0.16	0.5		0.06	0.14

		Sample ID		MML-	SBG23			MML-	SBG23			MML-	SBG24	
		Date		2/22/	2010			2/22/	2010			2/22	/2010	
		Depth (Feet)		2	-4			4-	-6			0	-2	
Parameter	ISV	Units	Result	sult Qual MDC ± TPU R				Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.13	M3,G	0.51	0.31	0.43	LT,G	0.36	0.17	1.14	M3,G	0.59	0.31
Ra-226	1.46	pCi/g	0.9	U,G,SI	2.6	1.6	0.54	U,G,SI	1.37	0.83	1.8	U,G,SI	2.6	1.6
Th-234	1.11	pCi/g	0.3	U,G	2.1	1.3	1.04	U,G	1.28	0.8	0.4	U,G	2.5	1.5
U-234	NA	pCi/g	0.72		0.04	0.17	0.52		0.04	0.14	0.77		0.05	0.17
U-235	NA	pCi/g	0.052	U,G	0.6	0.35	0.015	U,G	0.47	0.28	0.055	U,G	0.57	0.32
U-238	1.11	pCi/g	0.67		0.04	0.16	0.42	•	0.05	0.12	0.84	•	0.04	0.19

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG24			MML-	SBG25			MML-	SBG25	
		Date		2/22/	/2010			2/18/	2010			2/18/	/2010	
		Depth (Feet)		2	-4			0-	-3			3-	4.5	
Parameter	ISV	Units	Result	sult Qual MDC ± TPU				Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.62	G	0.24	0.13	0.83	G	0.32	0.18	0.9	G	0.25	0.15
Ra-226	1.46	pCi/g	1.21	G,TI	1.18	0.74	1.27	U,G,SI	1.34	0.84	2.18	G,TI	1.11	0.74
Th-234	1.11	pCi/g	0.1	U,G	2.3	1.4	0.9	U,G	3.3	2	0.8	U,G	3.2	1.9
U-234	NA	pCi/g	0.61		0.07	0.16	0.78		0.09	0.18	0.88		0.03	0.2
U-235	NA	pCi/g	0.047	U,G	0.25	0.15	0.026	U,G	0.38	0.23	0.024	U,G	0.36	0.21
U-238	1.11	pCi/g	0.74		0.06	0.18	0.72		0.05	0.17	0.9		0.05	0.2

		Sample ID		MML-	SBG26			MML-	SBG26			MML-	SBG27	
		Date		2/18/	2010			2/18/	2010			2/18/	/2010	
		Depth (Feet)		0	-3			6-	-8			0	-1	
Parameter	ISV	Units	Result	sult Qual MDC ± TPU			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.42	LT,G	0.35	0.16	0.79	G	0.39	0.21	0.86	G	0.32	0.18
Ra-226	1.46	pCi/g	0.87	U,G,SI	1.17	0.73	1.6	U,G,SI	1.7	1.1	1.18	U,G,SI	1.28	0.8
Th-234	1.11	pCi/g	0.9	U,G	2.9	1.8	0.8	U,G	3.5	2.1	1.8	U,G	3.6	2.2
U-234	NA	pCi/g	0.52		0.07	0.14	0.58		0.01	0.14	0.51		0.08	0.14
U-235	NA	pCi/g	0.04	U,G	0.27	0.16	0.27	U,G	0.39	0.21	0.13	U,G	0.24	0.15
U-238	1.11	pCi/g	0.39		0.05	0.12	0.57	•	0.03	0.14	0.78		0.09	0.19

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG27			MML-	SBG28			MML-	SBG28	
		Date		2/18/	2010			2/16	/2010			2/16	/2010	
		Depth (Feet)		1-:	2.5			0.	5-2			1	5-3	
Parameter	ISV	Units	Result	ult Qual MDC ± TPU			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.59	G	0.37	0.18	0.95	G	0.37	0.2	1.35	G	0.26	0.2
Ra-226	1.46	pCi/g	1.13	U,G,SI	1.24	0.78	2.41	G,TI	0.96	0.72	2.27	G,TI	1.21	0.81
Th-234	1.11	pCi/g	0.27	U,G	1.13	0.68	-0.4	U,G	3	1.8	0.4	U,G	2.8	1.7
U-234	NA	pCi/g	0.59		0.09	0.15	0.55		0.04	0.14	1.15		0.06	0.25
U-235	NA	pCi/g	0.087	U,G	0.39	0.23	0.06	U,G	0.33	0.2	0.066	U,G	0.31	0.18
U-238	1.11	pCi/g	0.51		0.07	0.14	0.59		0.04	0.15	0.9		0.02	0.21

		Sample ID		MML-	SBG29			MML-	SBG29			MML-	SBG30	
		Date		2/16/	/2010			2/16/	2010			2/16/	/2010	
		Depth (Feet)		0	-3			3	-5			0-:	2.5	
Parameter	ISV	Units	Result	ult Qual MDC ± TPU				Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.29	G	0.31	0.21	0.66	G	0.39	0.18	1.05	M3,G	0.56	0.29
Ra-226	1.46	pCi/g	2.17	G,TI	1.29	0.86	1.59	G,TI	1.35	0.86	0.8	U,G,SI	2.9	1.7
Th-234	1.11	pCi/g	1	U,G	2.7	1.6	0.55	U,G	1.25	0.76	0.9	U,G	1.9	1.1
U-234	NA	pCi/g	1.03		0.06	0.23	0.78		0.07	0.19	0.61		0.05	0.15
U-235	NA	pCi/g	0.06	U,G	0.3	0.18	0.16	U,G	0.27	0.17	0.26	U,G	0.56	0.34
U-238	1.11	pCi/g	0.83		0.08	0.2	0.67		0.07	0.17	0.73	•	0.05	0.17

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

used to report Th-232 concentrations

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG30			MML-	SBG31			MML-	SBG31	
		Date		2/16/	/2010			2/17/	2010			2/17/	/2010	
		Depth (Feet)		2.5	5-5			0-1	1.5			1.:	5-3	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.65	G	0.47	0.25	1.24	M3,G	0.56	0.31	1.15	M3,G	0.56	0.32
Ra-226	1.46	pCi/g	1.38	U,G,SI	1.51	0.95	2.3	U,G,SI	2.5	1.6	1.6	U,G,SI	1.9	1.2
Th-234	1.11	pCi/g	0.57	U,G	1.48	0.89	1.2	U,G	2.4	1.4	0.14	U,G	1.6	0.94
U-234	NA	pCi/g	0.88		0.07	0.2	0.65		0.08	0.17	0.84		0.07	0.21
U-235	NA	pCi/g	0.108	U,G	0.5	0.3	0.17	U,G	0.56	0.34	0.028	U,G	0.53	0.31
U-238	1.11	pCi/g	0.89		0.03	0.2	0.77		0.08	0.19	0.95		0.06	0.23

		Sample ID		MML-	SBG32			MML-	SBG33			MML-	SBG33	
		Date		2/17/	2010			2/17/	2010			2/17/	/2010	
		Depth (Feet)		1.5	5-3			10	-11			9-	-10	
Parameter	ISV	Units	Result	lt Qual MDC ± 7			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.09	M3,G	0.68	0.37	1.4	M3,G	0.77	0.41	1.31	M3,G	0.64	0.4
Ra-226	1.46	pCi/g	3.2	G,TI	2.7	1.8	3	G,TI	2.4	1.6	1.8	U,G,SI	2.9	1.8
Th-234	1.11	pCi/g	0.3	U,G	1.8	1	0.7	U,G	2	1.2	0.7	U,G	2.6	1.5
U-234	NA	pCi/g	1.01		0.09	0.23	1.11		0.06	0.24	1		0.06	0.23
U-235	NA	pCi/g	0.08	U,G	0.66	0.38	0.041	U,G	0.65	0.37	0.22	U,G	0.69	0.41
U-238	1.11	pCi/g	0.88	•	0.08	0.21	1.12	•	0.04	0.24	0.94		0.05	0.21

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG32			MML-	-SBG34			MML-	SBG34	
		Date		2/17/	/2010			2/22	/2010			2/22	/2010	
		Depth (Feet)		0-	1.5			2.	5-3			3.5	-5.5	
Parameter	ISV	Units	Result	sult Qual MDC ± TP			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.16	M3,G	0.64	0.36	0.98	G	0.37	0.2	0.85	G	0.33	0.19
Ra-226	1.46	pCi/g	1	U,G,SI	3	1.8	1.72	G,TI	1.34	0.87	1.73	G,TI	1.15	0.77
Th-234	1.11	pCi/g	0.7	U,G	2.7	1.6	0.3	U,G	3.7	2.2	0.1	U,G	3	1.7
U-234	NA	pCi/g	0.8		0.06	0.19	0.72		0.07	0.17	0.94		0.03	0.2
U-235	NA	pCi/g	0.033	U,G	0.72	0.4	0.055	U,G	0.32	0.19	0.077	U,G	0.38	0.22
U-238	1.11	pCi/g	0.86		0.05	0.2	0.85		0.06	0.2	1.01		0.01	0.21

		Sample ID		MML-	SBG35			MML-	SBG36			MML-	SBG35	
		Date		2/16/	/2010			2/16/	2010			2/16	/2010	
		Depth (Feet)		3	-5			0-1	1.5			0	-3	
Parameter	ISV	Units	Result	t Qual MDC			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.17	G	0.36	0.21	1.27	M3,G	0.64	0.4	1.09	G	0.32	0.2
Ra-226	1.46	pCi/g	2.21	G,TI	1.35	0.89	1.5	U,G,SI	2	1.2	1.77	G,TI	1.15	0.76
Th-234	1.11	pCi/g	1.29	LT,G	1.25	0.79	0.38	U,G	1.47	0.87	1.7	U,G	3.3	2
U-234	NA	pCi/g	1.07		0.05	0.24	0.85		0.06	0.2	0.87	M3	0.13	0.21
U-235	NA	pCi/g	0.08	U,G	0.24	0.14	0.009	U,G	0.61	0.34	0.18	U,G	0.24	0.15
U-238	1.11	pCi/g	1	•	0.05	0.23	0.91		0.04	0.21	0.95	•	0.08	0.22

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG36			MML-	SBG37			MML-	SBG37	
		Date		2/16/	/2010			2/24	/2010			2/24/	/2010	
		Depth (Feet)		1.5	5-3			2	-3			9-	11	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.1	M3,G	0.57	0.33	0.57	G	0.28	0.14	0.71	G	0.31	0.17
Ra-226	1.46	pCi/g	1.4	U,G,SI	2.7	1.7	1.85	G,TI	1.1	0.74	0.81	U,G,SI	1.24	0.76
Th-234	1.11	pCi/g	0.5	U,G	2.2	1.3	-0.2	U,G	3	1.8	0.9	U,G	3.2	2
U-234	NA	pCi/g	0.76		0.07	0.19	0.49		0.07	0.14	0.44		0.06	0.12
U-235	NA	pCi/g	0.09	U,G	0.62	0.36	0.1	U,G	0.21	0.13	0.11	U,G	0.29	0.17
U-238	1.11	pCi/g	0.7		0.06	0.18	0.67		0.05	0.17	0.59		0.04	0.15

		Sample ID		MML-	SBG38			MML-	SBG38			MML-	SBG39	
		Date		2/23/	2010			2/23/	/2010			3/1/	2010	
		Depth (Feet)		5-	-7			10-	-12			0	-1	
Parameter	ISV	Units	Result	sult Qual MDC ± TPU				Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.56	G	0.26	0.14	1.11	G	0.4	0.22	0.71	G	0.44	0.22
Ra-226	1.46	pCi/g	1.05	U,G,SI	1.21	0.75	1.11	U,G,SI	1.59	0.99	132	G,TI	4	16
Th-234	1.11	pCi/g	1.8	U,G	3.4	2.1	2.4	U,G	3.2	2	21.1	M3,G	6.9	5
U-234	NA	pCi/g	0.68		0.07	0.17	0.78		0.04	0.18	14.7	M3	0.6	2.9
U-235	NA	pCi/g	0.049	U,G	0.37	0.22	0.008	U,G	0.36	0.21	2.24	M3	0.97	0.52
U-238	1.11	pCi/g	0.48	•	0.04	0.13	0.73	•	0.06	0.17	13.9	M3	0.5	2.8

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG39			MML-	SBG40			MML-	SBG40	
		Date		3/1/2	2010			2/23/	2010			2/23/	/2010	
		Depth (Feet)		2	-4			0.5	5-2			6	-8	
Parameter	ISV	Units	Result	ult Qual MDC			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.63	G	0.36	0.18	0.82	G	0.46	0.25	0.52	G	0.34	0.15
Ra-226	1.46	pCi/g	14	G,TI	1.7	2.1	0.9	U,G,SI	1.7	1	2.45	G,TI	1.05	0.76
Th-234	1.11	pCi/g	4.9	G	3.5	2.3	0.51	U,G	1.43	0.86	0.9	U,G	3	1.8
U-234	NA	pCi/g	3.16		0.01	0.55	0.64		0.04	0.16	1.57		0.08	0.31
U-235	NA	pCi/g	0.43	G,TI	0.42	0.26	0.27	U,G	0.33	0.21	0.15	U,G	0.24	0.15
U-238	1.11	pCi/g	3.09		0.03	0.54	0.62		0.05	0.15	1.58		0.06	0.31

		Sample ID		MML-	SBG41			MML-	SBG41			MML-	SBG42	
		Date		3/1/2	2010			3/1/2	2010			2/23	/2010	
		Depth (Feet)		0	-2			2	4.5			3-	4.5	
Parameter	ISV	Units	Result	ult Qual MDC ± TPU			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.08	M3,G	0.52	0.27	0.85	M3,G	0.62	0.29	0.75	M3,G	0.51	0.24
Ra-226	1.46	pCi/g	27.9	G,TI	2.4	3.8	62.1	G,TI	3.4	7.8	34.5	G,TI	2.6	4.5
Th-234	1.11	pCi/g	5.9	G	1.9	1.4	18.7	G	2.9	2.9	10.1	M3,G	6.9	4.5
U-234	NA	pCi/g	8	M3	0.1	1.4	7.9	M3	0.3	1.6	35.4		0.1	5.6
U-235	NA	pCi/g	0.88	M3	0.65	0.42	1.8	M3	1	0.58	2.1	G,TI	0.68	0.44
U-238	1.11	pCi/g	7.8		0.1	1.3	8.4	M3	0.2	1.6	37.1		0	5.9

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG42			MML-	SBG43			MML-	SBG43	
		Date		2/23/	/2010			2/24/	2010			2/24/	/2010	
		Depth (Feet)		6-	7.5			10-	11.5			6	-9	
Parameter	ISV	Units	Result	ult Qual MDC ± TI			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.52	G	0.29	0.15	1.23	G	0.5	0.31	1.08	G	0.49	0.29
Ra-226	1.46	pCi/g	1.89	G,TI	1.46	0.94	1.2	U,G,SI	2.2	1.4	1.2	U,G,SI	2.3	1.4
Th-234	1.11	pCi/g	2	U,G	2.9	1.8	0.6	U,G	1.9	1.1	0.5	U,G	1.8	1
U-234	NA	pCi/g	0.85		0.07	0.2	0.95		0.04	0.21	0.89		0.06	0.2
U-235	NA	pCi/g	0.12	U,G	0.26	0.16	0.055	U,G	0.61	0.34	0.032	U,G	0.55	0.32
U-238	1.11	pCi/g	0.79		0.06	0.19	1.08		0.02	0.23	0.83		0.06	0.19

		Sample ID		MML-	SBG44			MML-	SBG44			MML-	SBG45	
		Date		2/24	/2010			2/24/	2010			2/24	/2010	
		Depth (Feet)		0-	1.5			1.5	5-3			0	-2	
Parameter	ISV	Units	Result	ult Qual MDC ± TP			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.81	G	0.38	0.19	0.83	G	0.44	0.25	0.69	G	0.49	0.24
Ra-226	1.46	pCi/g	2.2	G,TI	1.6	1	1.3	U,G,SI	1.6	1	4.5	G,TI	1.7	1.3
Th-234	1.11	pCi/g	0.6	U,G	3.2	1.9	0.3	U,G	3	1.8	1.6	U,G	1.6	1
U-234	NA	pCi/g	0.85		0.06	0.2	0.71		0.05	0.17	2.24		0.07	0.42
U-235	NA	pCi/g	0.049	U,G	0.36	0.21	0.06	U,G	0.43	0.25	0.024	U,G	0.52	0.3
U-238	1.11	pCi/g	0.75		0.07	0.18	0.67		0.02	0.17	2.01		0.07	0.38

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID		MML-	SBG45			MML-	-SBG45			MML-	SBG46	
		Date		2/24/	2010			2/24	/2010			2/24/	/2010	
		Depth (Feet)		10-	-12			3.5	-4.5			10	-12	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.19		0.48	0.27	0.83	G	0.47	0.23	1.21	M3,G	0.59	0.37
Ra-226	1.46	pCi/g	1.9	SI	1.7	1.1	2.8	G,TI	1.8	1.2	1.7	U,G,SI	2.4	1.5
Th-234	1.11	pCi/g	3.5	LT,TI	3.4	2.2	0.8	U,G	3.5	2.1	0.1	U,G	1.65	0.95
U-234	NA	pCi/g	0.96		0.06	0.21	3.9		0.06	0.68	1.01		0.05	0.21
U-235	NA	pCi/g	0.054	U	0.39	0.22	0.26	U,G	0.48	0.3	0.059	U,G	0.59	0.34
U-238	1.11	pCi/g	1.15		0.04	0.24	1.92		0.04	0.36	0.98		0.05	0.21

		Sample ID		MML-	SBG46			MML-	SBG46			MML-	SBG47	
		Date		2/24/	2010			2/24	/2010			2/24/	2010	
		Depth (Feet)		0-	-1			7.5	-9.5			10	-12	
Parameter	ISV	Units	Result	sult Qual MDC ± TPU			Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	188	G,TI	54	39	1.27	G	0.31	0.22	0.78		0.39	0.21
Ra-226	1.46	pCi/g	30300†	G,J	0	3500	2.8	G,TI	1.6	1.1	1.26	U,SI	1.3	0.83
Th-234	1.11	pCi/g	3780	G	460	530	0.8	U,G	3.6	2.1	0.9	U	3.4	2.1
U-234	NA	pCi/g					1.15		0.07	0.24	0.48		0.08	0.13
U-235	NA	pCi/g	631	G	83	85	0.03	U,G	0.4	0.24	0.065	U	0.41	0.24
U-238	1.11	pCi/g					0.92		0.06	0.21	0.55		0.05	0.14

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

† = Ra-226 result is based on Bi-214

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID	Sample ID MML-SBG47			MML-SBG48				
		Date		2/24	/2010		2/25/2010			
		Depth (Feet)		2	-3			1	-3	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.85		0.32	0.2	1.39	G	0.34	0.23
Ra-226	1.46	pCi/g	1.57	SI	1.32	0.86	1.58	G,TI	1.48	0.94
Th-234	1.11	pCi/g	1.7	U	2.7	1.7	0.6	U,G	2.9	1.7
U-234	NA	pCi/g	0.57		0.01	0.14	0.9		0.05	0.2
U-235	NA	pCi/g	0.009	U	0.4	0.23	0.18	U,G	0.32	0.19
U-238	1.11	pCi/g	0.61		0.03	0.15	1.05		0.07	0.23

		Sample ID		MML-SBG48			MML-SBG49			
		Date		2/25/	2010		2/25/2010			
		Depth (Feet)		8-	.9			3	-4	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.59	G	0.37	0.19	1.27	G	0.41	0.24
Ra-226	1.46	pCi/g	0.97	U,G,SI	1.4	0.87	1.23	U,G,SI	1.33	0.84
Th-234	1.11	pCi/g	0.74	U,G	1.28	0.79	0.4	U,G	3.3	2
U-234	NA	pCi/g	0.53		0.04	0.13	0.93		0.07	0.21
U-235	NA	pCi/g	0.14	U,G	0.25	0.15	0.067	U,G	0.37	0.22
U-238	1.11	pCi/g	0.55	•	0.03	0.14	0.95		0.06	0.21

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

TABLE 5-10 SUMMARY OF SUBSURFACE SOIL RADIOLOGICAL RESULTS

		Sample ID	Sample ID MML-SBG49			MML-SBG50				
		Date		2/25	/2010		3/1/2010			
		Depth (Feet)		2	-3			2	-3	
Parameter	ISV	Units	Result	Qual	MDC	± TPU	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	1.43	G	0.31	0.23	0.88	G	0.3	0.17
Ra-226	1.46	pCi/g	2.05	G,TI	1.3	0.86	2.04	G,TI	1.09	0.74
Th-234	1.11	pCi/g	1.2	U,G	3.4	2	2.8	U,G	3.7	2.3
U-234	NA	pCi/g	0.97		0.06	0.22	0.77		0.06	0.18
U-235	NA	pCi/g	0.2	U,G	0.28	0.18	0.14	U,G	0.2	0.13
U-238	1.11	pCi/g	0.98		0.05	0.22	0.61		0.07	0.15

		Sample ID	MML-SBG50			
		Date		3/1/	2010	
		Depth (Feet)		3	-5	
Parameter	ISV	Units	Result	Qual	MDC	± TPU
Ac-228	2.18	pCi/g	0.51	G	0.27	0.15
Ra-226	1.46	pCi/g	1.88	G,TI	1.28	0.84
Th-234	1.11	pCi/g	1.9	U,G	2.7	1.7
U-234	NA	pCi/g	1.02		0.08	0.23
U-235	NA	pCi/g	0.11	U,G	0.26	0.16
U-238	1.11	pCi/g	1.23		0.07	0.26

Notes:

pCi/g = picoCuries per gram

Qual = Qualifier

MDC = Minimum Detectable concentration

TPU = Total Propogated Uncertainty

ISV = Investigative Screening Value

NA = Not Applicable

Bold/Shaded indicates result is in excess of ISV

Bold/Shaded indicates result is in excess of ISV

Ac-228 is the daughter product of Th-232 and

Notes:

U = Result is less than the sample specific MDC or less than the associated TPU

G = Sample density differs by more than 15% of LCS density: sample results may be biased

TI = Nuclide identification is tentative

M3 = Requested MDC was not met, but the reported activity is greater than the reported MDC.

J =the value is estimated

SI = Nuclide identification and/or quantitation is tentative

TABLE 5-11 SUMMARY OF GROUNDWATER RADIOLOGICAL RESULTS

		Sample ID	MML-GWG10			
		Date		3/2/	2010	
Parameter	MCL	Units	Result	Qual	MDC	± TPU
GROSS ALPHA	15	pCi/l	2.4	U	2.5	1.5
GROSS BETA	50	pCi/l	8.7		3.1	2.3
Ra-226	5	pCi/l	0.04	U	0.37	0.2
Ra-228	5	pCi/l	0.26	U	0.62	0.31
Th-228	15	pCi/l	0.077	U	0.132	0.076
Th-230	15	pCi/l	0.003	U	0.111	0.054
Th-232	15	pCi/l	0.01	U	0.027	0.018
U-234	21	pCi/l	0.071	U	0.095	0.067
U-235	21	pCi/l	0.029	U	0.039	0.052
U-238	21	pCi/l	0.082	LT	0.064	0.066
URANIUM	30	ug/l	0.11		NA	NA

Notes:

pCi/l = picoCuries per liter

ug/l = micrograms per liter

Qual = Qualifier

MDC = Minimum Detectable Concentration

TPU = Total Propogated Uncertainty

MCL = Maximum Contaminant Level

Bold/Shaded indicates result is in excess of MCL

Notes:

U = Result is less than the sample specific MDC or less than the associated TPU

G = Sample density differs by more than 15% of LCS density: sample results may be biased

TI = Nuclide identification is tentative

M3 = Requested MDC was not met, but the reported activity is greater than the reported MDC.

J =the value is estimated

SI = Nuclide identification and/or quantitation is tentative

Table 7-1: Occupational DAC Values for Site ROPC's

ROPC	Class	10 CFR 20 App B DAC (μCi/ml)
²²⁶ Ra	W	3E-10
²³² Th	W	5E-13 ¹
^{234}U	Y	2E-11
²³⁵ U	Y	2E-11
²³⁸ U	Y	2E-11

¹Most limiting for primary alpha emitting ROPC W – Radionuclide retention of 10 to 100 days Y – Radionuclide retention of > 100 days

Table 7-2 Project Effluent Action Levels for Site ROPCs

ROPC	Class	10 CFR 20 App B Effluent Concentration [μCi/mL]	Project Effluent Action Limit [μCi/mL]
²²⁶ Ra	W	9E-13	1.8E-13
²³² Th	W	4E-15 ¹	8E-16 ²
²³⁴ U	Υ	5E-14	1E-14
²³⁵ U	Y	6E-14	1.2E-14
²³⁸ U	Υ	6E-14	1.2E-14

¹ Most limiting for primary alpha emitting ROPC

² The Action Limit reductions of 20% of the 10CFR20 Appendix B values only applies to the Effluent Concentrations

W – Radionuclide retention of 10 to 100 days

Y - Radionuclide retention of > 100 days

Table 7-3: Summary of Conceptual Site Model

Media	Pathway Complete	Contamination Exceeding ISVs	Additional Evaluation Necessary
Groundwater	No	No	Yes
Surface Water	Yes	NE	Yes
Sediment	Yes	NE	Yes
Soil	Yes	Yes	Yes
Air	Yes	NE	Yes

ISVs-Investigation Screening Values NE-Not evaluated

TABLE 8-1: SUMMARY OF AREAS OF INTEREST

					Data S	ummary		
AOI	AOI Description	Rationale/Information	ROPC	Results Exceeding 10x ISV	Potential for Uranium Nuggets	Potential for Methane	Chemical Data Exceeding NJDEP SSC	Potential for Radiological Subsurface Contamination
1	Southeast portion of Site along Pershing Avenue from Mountain Avenue to Bound Brook	Surface and subsurface soil exceeding ISVs. Concrete debris exhibiting elevated activity. Proximity of residences. Elevated methane.	Ra-226, U-238	Yes	Low	High	SVOCs	High
2	Wooded area extending north from the tree line to Bound Creek	Sporadic areas of elevated activity. Surface and subsurface soil exceeding ISVs. Difficulty in conducting surveys. Flood prone area. Potential for leachate seeps and surface runoff to surface water.	Predominantly Ra-226, Isolated U-238	No	Low	Medium	SVOCs, PCB, Arsenic, Lead	Medium
3	Area within and surrounding the former DOE excavation	Previous remedial actions. Potential for Uranium ore nuggets. Surface and subsurface soil exceeding ISVs. Elevated methane.	U-238, Ra-226, Th-232	Yes, at a single location	Medium	Low	SVOCs	Medium
4	Central portion of the landfill between AOIs 1, 2, 3 and Mountain Avenue	Surveys indicated areas of elevated activity. Surface and subsurface soil exceeding ISVs. Elevated methane.	Ra-226, U-238	No	Low	Medium	None Identified	Medium
5	Site adjacent to AOI 3 occupying the	Minimal impact from past operations. Two subsurface locations exceeding ISVs. Low potential for radiological contamination.	Isolated Ra-226	No	Low	Low	SVOCs	Low

Notes:

AOI = Area of Interest

ISV = Investigation Screening Valule

NJDEP = New Jersey Department of Environmental Protection Soil Screening Concentration

SVOCs = Semivolatile Organic Compounds

PCBs = Polychlorinated Biphenyls

TABLE 8-2: RECOMMENDATIONS FOR REMEDIAL INVESTIGATION

	Type of		
AOI	Survey Unit	Survey Type	Additional Comments
			Focused characterization of surface and subsurface soil near SSC02, SSC03, GP15 and
1	Class 1	Characterization	GP33 to better define extent.
			Systematic sampling of soil within the wooded area. Focused characterization of surface
2	Class 1	Characterization	and subsurface soil surrounding TP-11 to better define extent.
			Focused characterization of surface and subsurface soil near GP-03, GP-03, GP-46 and TP-
3	Class 1	Characterization	14 to better define extent. Investigate potential for additional nuggets.
			Focused characterization of surface and subsurface soil near GP-9, GP-10, GP-11, GP-24,
4	Class 1	Characterization	GP-25 and GP-26 to better define extent.
			Conduct Final Status Survey (surface and subsurface) under MARSSIM as a Class 2 or 3
5	Class 2 or 3	Characterization	Survey Unit (following determination of criteria).

Legend

Site Outline

Cross Section (A - A')

Soil Boring

Soil Sample Location

- Below ISV
- Exceeds ISV

Sample Results (pCi/g)

5.2 Ra-226 1.47 U-238

pCi/g = picocuries per gram ISV = Investigative Screening Value

CROSS SECTION (A - A') ALONG PERSHING AVENUE

SITE INVESTIGATION REPORT MIDDLESEX MUNICIPAL LANDFILL MIDDLESEX, NEW JERSEY

10 CABRERA Project No. 08-3800.08

FIGURE 5-18

Cabrera Services 1106 N. Charles St Suite 300 Baltimore, MD 21201

U.S. Army Corps of Engineers

Figure 7-1: Middlesex Municipal Landfill Conceptual Site Model

Potential Receptors

APPENDIX A GAMMA SURVEY DATA (ON CD)

1

APPENDIX B TEST PIT LOGS

Project: Middlesex Municipal Landfill
Project Location: Middlesex Borough, NJ
Project Number: 08-3800.08

TEST PIT LOG
No.: TP-41

Date(s) Excavated 1/27/10	Logged By J. Oliver	Checked By A. Williams
Length of Excavation	Width of Excavation	Depth of Excavation 7.8
Excavation Mini Exervator Equipment	Excavation Contractor EPI	Approx. Surface Elev.
Water Observations		Weather Sunny Colel
Test Pit 492830.6 / 6	35387.7 (feet)	Surface Condition Grassy, wet

	Depth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
	0		Sandy Clay, very fine, brown. Organic Material. Wet, Soft.	14-16k LeL& PIDG
E	.5.1		Very fine Sandy Clay Some Sitt. Dense. Slightly Moist. DK Brown.	14-175. Lela PIDO
E	12		Very fine Sand. Some Silt. Dense. Some mottling. Slightly moist. DK. Brown	15-21K LeLY PIDD
E	1.5 -3		Very-fine Sand. Some Clay. D.K. Brown. Mottled Trace Granel. Moist. Plastic.	15-17K Leco PIDO
E	2 4		Very fine 3 and. Some Clay, Moist, Plastic. DKBro. Mottled. Trace grave 1.	10. 14-17K LEL Ø
E	2.5.5		Very fine Sand, Some Clay Dense Plastic mottling Dk. Brown Wet. Trace Gravel Construction Debris	P. Dd 15-19K
E	3.8		fire Sand, Some Silt Trace (lay for a & Arcale)	15-19K
E	3.5.7		medium Brown Trace fine grants. Small amounts of trash. Medium Sand. Clay lenses. Dt Biown, very mosst. Plast C. Heavily morted some coorse graves 1/2" Angular Construction Delication.	LEC P PID Ø 19-26K 25132CPM
	48		Coarse Sand Significant amounted transitings, municipalment	Lec 4) Pidg
E	4.5.9		De Brown. Trash is becoming more prominent Coarse Sond. Significant trash. Moist loose De Brown.	15-20K Wuremon. Lely Dirtpill PIDO Turemahole.
E	5 10		DE Brown.	LELD PLOD
Ē	55 41		Coarse Sand. Significant trash. We + 100Sc. DK Brain	1214
Ē	ie 12		Fine Sand, Some Sitt. Clay Streaks. Heavily mottled Red (Gray & H. brown, wet. Some fine grave) + Municipal wask Prominant throughout.	PIDØ 16-18K LELØ
E	6.5 13		debris/trash, organic oder present	PiDG 14-16 K Let &
E	1.0		Med Sand, some silty clay, trash, dark	PID &
	7 14		brown, wet, organic odor present TD@ 7.8 ft has	16-17K LeL & PID &

Project: Middlesex Municipal Landfill

Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

TEST PIT LOG

Date(s) 1/29/10	Logged By S. Owe	Checked By A. Williams
Length of S +	Width of Z ff	Depth of Excavation 8 ft bg S
Excavation //Linit	E-protion = 0.1	Approx. Surface Flev.
Water		Weather Cold
Observations Test Pit 492661.3 /63	Surface Condition Grassy	

Jepth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
_	୍ଷ୍ଠ	Sand, fine to very fine, some	14-16K
E]		silt, some om, brown, dry	14-16. K
E 0.5 1			
E		V	Le 18 PID 8
1.0 2		mostly Glass debris, Sand, fine	
E]		to very fine, some silt, some large angular gravel, brown, dry	Lel & PID &
E 1.5 %		angular gravel, brown, dry	14-15-K
E 2.0 /		V	12-15 K
E 2.07	•	Sand, fine to very fine, brown,	1
E 2.5 8		large angular gravel, debris	Le 1 Ø P10 Ø
E		I Reddish brown	Lel & PID &
= 3.0 \$		Sand, fine to very fine, reddish	14-16 K
E		brown, loose, trace silt, moist	Lel & PID &
E 3.5%		1	1 1 1 2 3
F		V	Le18 PID 0 15-17K
E 4.08	-		
E			15-17 K
= 4.5 %		Sand, fine to very fine, reddish	
5.010		brown, loose, morst, trace silt	Lel & PID &
E		Sand, fine to very fine, reddish	1
E 5.5 11	<u> </u>	brown, loose, moist	Le18 PID &
= *		Some peagravel, rounded	
E 6.0 12	, <u> </u>		Le18 PID Q
-	a de la companya de l		
E 6.5 13	1	Sand for to rear fine coddish	Lel & P10 &
F		Sand, fine to very fine, reddish brown, loose, moist, trace med rounded	Lel & P100
F 7,014			Leig PIDG
E 7.5		1	Lel & PID & 141-16 K Page
f Test Pit, REV 0			Lel & PIDO
8.0		<u>V</u>	Lei & FIUG

Project: Middlesex Municipal Landfill

Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

TEST PIT LOG

No.: TP- \$3

Date(s) Excavated 1/28/10	Logged By S. Owe	Checked By A. Williams
Length of SH	Width of Excavation 2 ++	Depth of Excavation & F+
Excavation Mini Excavator	Excavation EPI	Approx. Surface Elev.
Water Observations		Weather Snow, Cold
Test Pit 49 2751.7 /	635173.2 (feet)	Surface Condition Grassy

Depth, Feet		Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	CPM %- TESTS PPM
E °	0 -	ž	Clay, some sand, with coarse	21- ZZK
= 0.3	- 1		gravel, reddish brown, OM	Lei & Pid Ø
E			Clay, some sand, with coarse	23-24K
	.07		Sandy Silt, very fine, olive	20-21 K
= 10	5 1		green, firm	Leid Pio. d
E "	3 8		Sandy Gravel, medium, dark	20-23K
2.	0 4		Silty Sand, dark brown, loose,	21-22K
= ,			sirry sand, wark brown, loose,	Lel 7%. PID 0.5
E 4'	5 \$			21-2314
= 3.	0 8-			Lel 6'l. PID O.Z
E			debris	21-Z3K
F 3.	5 /	***	debris	20-21K
E 4,	0 8		V	Lel 3%. PID 0.3
E ,,			Sand, some silt, fine to med, debris	70-55 K
E 4	5 %		8	19-21K
E 5.	0 16		V.	12131. PID 5.6
F.			Sandy, some Silt, trace gravel,	18-19 K Le 12.1.
E 5.	511		fine to medium, debris	915 1-1 17-19 K
E 6.	6 12		Sand, fine to very fine, some clay, brown, debris/trash	Lel 1'1. PID 2.1
E			Clayey sand, very fine brown	17-18K
E 6.	5 1/8	· · · · · · · · · · · · · · · · · · ·	Sand, medium to fine, well soited,	Lel 0'1: 0.7
Ez	014	Mary at the same of the same o	brown, debris	17-19 K Lei 0.1. P10 3.3
E			Sand, medium to coarse, loose,	13-20K
Log of Test Pit, R			Sandy, medium to coarse, loose,	77-19 K Page 1 of
			brown, debris	Leid
\$ Control March			TD@ 8.0 ft bes	PID i.O

Project: Middlesex Municipal Landfill Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

Log of T

TEST PIT LOG

Date(s) 1/29/10	Logged By S. OWe	Checked By A. Williams
Length of Excavation 8+4	Width of Excavation Z ++	Depth of Excavation 8 ft 595
Excavation Mini Excavator	Excavation Contractor EP /	Approx. Surface Rev.
Water Observations		Weather Cold
Test Pit Location 492682.7	/635206.5 (feet)	Surface Condition Grassy

Depth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg	TESTS
- m	Samp. Sa Nu	Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	
E		Silty Sand, very fine, brown,	17-19 K
F 0.51	The State of the S	some OM, dry	Le18 PID8
E		Silty Sand, very fine, some	1
F 1.02		Silty Sand very fine, some	17-18K
E1.5 8		Coarse, brown, dry	
E "		Sand, fine to medium, loose,	17-18K
E 2.0 A		reddish brown, dry	Le 18 PID8
E		6-1/31	15-17K
= 2.5 \$		large angular gravel, loose, dkJim	COLO PID D
E			
= 3.0 \$		Y	14-16K
E 3.5		1	11.00
F		Gravelly Sand, fine to med, large gravel	Lel & PID Ø
E 4.0 8		brown, loose, angular, dry	Lei & PID &
E ' 1		Sand, fine to med, loose, significant	
E 4.5 8		trash, dry	Lel & PIDB
=		Sand, fine to medium, loose,	
5.010		Trash, gray brown, dry	Lei & PID &
5.51		+ medium rounded gravel and trace	The same of the sa
E		Sand, fine to medium, some	Le1 \$ P10 \$
- 6.0 12		rounded gravel, trash, Petroleum odor,	Lel & PID 1.8
		Petroleum odor	
- 6.518			Lel & PID 3.8
7.014			
			Lei & PID 2.5
7.5		Some clay, petroleum der	Lel & PIDO.4
8.0			15-17 K Page 1 of 2
0.0		V	Le18 PID 0.4

Project: Middlesex Municipal Landfill
Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

TEST PIT LOG

Date(s) I/27/10	Logged By S. OWe	Checked By A. Williams
Length of Excavation 8 f-+	Width of Excavation 2 F.+	Depth of Excavation \(\bar{X} \bar{B} \cdot + bg \bar{S} \)
Excavation Mini Excavator	Excavation Contractor EPI	Approx. Surface Plev.
Water Observations		Weather Sunny Cold
Test Pit Location 492885.0	/635118.4	Surface Condition Grassy

Depth, Feet	Sample Type	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture Well-graded SAND with GRAVEL (SW), medium dense, brown to I little coase GRAVEL, few fines, weak cementation, strati	light gray, wet,
0.5 1		Sandy Clay, very fine, soft moist	-, brown 18-20 K LeL & PID &
		V dark brown	19-20K bel 8 PLD 8
- 1.5 %		Sandy Clay, very fine, soft, brown, moist, trace organic	dork 19-22K Lelp Material PID &
E 2 4		Sandy Silt layer, very fra	L, dense, Lel & PiD &
Z.5 ×		1	18-21K LeL & PID B
= 3 %		Sandy Clay, very fine, soft, do moist, trace OM (Sandy silt layer,	
3.5*		Silty Sand, med to fine, loose	PIDØ
= 4 %		Silty Sand, fine to medium, was graded, gray	PID Ø
E 4.5 %	•	<u>k</u>	17-20 K Lel 1°%. PID Ø
E 5 10		Sandy Silt, very fine, hard	i dense, Lel 1:1/2 PID 66
5.5 11		and trash / debris	Lel 1%. PIO &
E 6 1½	·	Sand, fine to coarse, well s	16-19 K
6.5 18		dark brown, loose, lots of de	bis P10 8
E 7 14	***************************************	Clayey Sand, fine, OM, deb	
7.5 g of Test Pit, REV 0		Sand, fine to med, debris, w	10 8 Page 10
		TD@ 8.0 ft bgs	Pib Ø

Middlesex Municipal Landfill Project: Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

TEST PIT LOG

Date(s) Excavated	1/27/10	Logged By J. Oliver	Checked By A. Williams
Length of Excavation	,	Width of Excavation 2	Depth of Excavation
Excavation Equipment	Mini Excavator	Excavation Contractor EP1	Approx. Surface Elev.
Water Observation	s ·		Weather Sunny, Cold
Test Pit Location	492979.6 / 6.	35233.6 (feet)	Surface Condition Grassy

	Depth. Feet		Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
	Ē	0		S: Ity Clay, med density, dork brown	19-ZIK LeL Ø PID Ø
				Silty Clay, med dens, ty, some organic material	14-17-K 20-24 K Let & PID &
	E '			Silty Clay, trace govel, slightly moist, reddish brown	20-23K 1.4 E PIDE
	- /.	5 B		Silty Clay, trace fine gravel, slightly moist, reddish brown	21-24 K
f	<u> </u>	. <i>A</i>		Sand, fine, trace med gravel, debris/trush	20-24K
	- 2.: - - - 3	g	Markin menomenan ny kata-panjanjahan manana salahan kanana kanana salahan kanana salahan kanana salahan kanana	Silty Clay, mottled, heavily brittle, dark brown, trash Idebris, trace fine gravel and large cobbes	19-22 K LeL 5%
	- 3 - 3 - 3	ø	######################################	Silty Clay, mottled, heavily, brittle, dark brown, trash /debris; trace fine gravel and large Cobbles	19-22 K Lel 5 %
	- 3, - 1,	5 1	·-	Silty Clay mottled, heavily, bittle, dork brown trash Idebris, trace fine gravel and large costles	19-22K Lel 5%
	F ~	8		Silty Clay, mottled, heavily brittle, dark, brown, trash / debris, trace fine gravel and	19-22 K Lei 51.
	F 4/.	5 8		Silty Clay, mottled, brittle, dark, brown, trush Idebris, trace fine gravel and large Cobbles	19-22 K Let 5:11
	5	1,6.	Personal and a management of the second and a second and a second and a second and a second and a second and a	Silty Clay, mottled, brittle, dork brown, trace large cobbles and fine gravel	19-22 K Lel 61.
	S.	5 11		Silty Clay, heavily muttled, brittle, large amount of trash Idebris, dark brown, trace large cobbles, trace gravel	19-22 K 2015/
	6	12		Sandy Clay, dark brown, very soft, fine to med, well sorted	18-22K Lel 3'l.
		5 1,8			18-22K Let 16% (drop to 8%.
	E / E 7, 5	14		Sandy Clay, dark brown, organic matter, trash /debris	19-22K 61 11%. 19-22 K 62 1 11%. 19 10 8
Log of T	est Pit, R	_	TOO	3. of the bas	19-22 K Page 1 of 2 Let 8 1, PID 8

Project: Middlesex Municipal Landfill

Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

TEST PIT LOG

Date(s) 1/29/10	Logged By S. OWE	Checked By A. Williams
Length of 8 ff	Width of Excavation 2 ++	Depth of Excavation 8 ft bgs
Excavation Mini Equipment Ex Cava for	Excavation Contractor EP/	Approx. Surface Elev.
Water Observations		Weather Cold
Test Pit Location 493613.4	1/634837.5 (44)	Surface Condition Gra.S.S.Y

	Depth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
	E		Silty clay, medium density,	16-20K
	F 0.51	Nation of the Parties	Strong brown , dry	17-20K
	E I		Silty Clay, mediumdensity, strong	
	F 1.0 Z		Silty sand, soft, loose, dry,	Leig PIDØ
* •	E_{i}		very fine, some med Gravel and cobbles	
	E 1.5 8		Clay, fat, dense, hard, very	17-21K
	E 2.01		Clay, fat, dense, hard, very plastic, trace medium, and, debris	
	E 2.07	*	Sand, some silt, loose, soft,	16-19 K
	= 2.58		moist, dark brown, significant trash	Lel & PID &
	F ']		wet, organic odor	16-18K
	F 3.0 8			Lel & PID &
	E 3.57		mostly trash /debris	13-17K Le18 PID8
	F 3.5 7	Viscolia de la composição de la composi	mostly trash / debris	14-18K
	E 4.08		Mostly Mask / deolis	Lel & PID&
	E "		Sand, fine, dark brown, trash,	
	E 4.5 A		moist	Lel B PID B
	F 1	1	Sand, fine, loose, dark brown,	13-16K
	-5.010		Sand, fine, loose, dark brown, Some Cobbles, angular, trace grovel, Significant debis	Lel & PID &
	E /			
	-5.5 W			Lel 18 100
	6.012		\bigvee	
			Gravelly Sand, med to fine, loose, soft, gray, rounded gravels, debris	13-17K
	- 6.515		Soft, gray, rounded gravels, debris	Lelø PIDØ
	E		1	
	7.014		wet / F/ @ 7 . /	Lel & PIDO
	7.5			
Log of T	est Pit, REV 0		LEL@ 13.10	Lel 7% PID 0 16-19K Page 1 pf 2
1	8.0		V 261 6 13 10	Lel 13 % PIDE
			TD@ 8 ft 695	

Project: Middlesex Municipal Landfill
Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

TEST PIT LOG

Date(s) Excavated 1/28/10	Logged By S. Owe	Checked By A. Williams
Length of Excavation 8 FF	Width of Excavation 2 f+	Depth of Excavation 8 ++
Excavation Mini Excavator Equipment	Excavation EPI	Approx. Surface Elev.
Water Observations		Weather Snow /cold
Test Pit 493756.2 /	634687.6 (feet)	Surface Condition Grassy

Depth, Feet	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
-	Silty Clay, some sand, brown, organic material	14-15K Le1 B Pi0 0.2
F 0.51	Sandy Clay, fine to coarse, poorly	14-15K
F 1.0 \$	Sandy Gravel, some Clay, fine to	Lel & PID 0.3 15-16 K Lel &
E 1.5 8	Sandy clay, fine to medium, soft,	P10 0:3
= 2.04	wet'	Lel & PID Ø 18-19K
2.5 \$	Sandy Clay, fine to medium, med density, wet, debris, persheder	lel B PIB &
E 30 \$		16-18K 121 & PID &
	Clayey Sand, fine to coarse, some gravel, brown, met debris	16-17K 61 & DID &
	Sand, fine to medium, some clay, brown, significant debris	16-17K
- 4.0 x	Sand, fine to medium, loose, dry Significant debris	PID Ø 17-18K Lel Ø
= 4.5 p	Significant deserts	PID Ø 17-18K
5.0 16		1218 P108 17.18K
= 5.5 pl		PID &
- 6.6 1/2		15-17 K Lel & PID &
- 6.5 18	Sandy Clay, Some gravel, dark brown, very soft, OM, debris	16-17K 618 PID8
7.01		15-16 K Lel & PID &
7.5		15-16K
g of Test Pit, REV 0		15-16 K Page 1 of le 1 Ø
8.0	7008 -	PID &

Project: Middlesex Municipal Landfill TEST PIT LOG
Project Location: Middlesex Borough, NJ

Project Location: Middlesex Borough, NJ
Project Number: 08-3800.08
No.: TP- Ø9

Date(s) Excavated 1/28/10	Logged By J. Oliver	Checked By A. Williams
Length of Excavation 8 ++	Width of Excavation Z + +	Depth of Excavation 8 F+
Excavation Mini Excavator Equipment	Excavation EPI	Approx. Surface NA
Water Observations		Weather Snow, Cold
Test Pit Location 493972.8	1634697.1 (ft)	Surface Condition Grassy

			_
Jepth, Feet	ed Care Point Name, Group Name	MATERIAL DESCRIPTION up Symbol, Consistency, Density, Color, Moisture, Structure. Eg.	TESTS
Depth	e intrie co	ND with GRAVEL (SW), medium dense, brown to light gray, wet, pase GRAVEL, few fines, weak cementation, stratified.	
F	Clay and	d Silt, strong brown, fairly race med sand, significant OM,	22-45K Hotspot = 48,459 cp
E 0.51	Some Cobb	bles	Lel & PID &
E '	Silty Clay	y, strong brown, fairly loose, les. Concrete piece found, elevated	21-26 K concrete = 41,327 cpm
E 1.0 %	6-1-0	control prede towns, elevated	Le1= \$ \$10\$ 23-26K
E '	Coarse, p	ay, Strong brown, dry, fairly loose, roosly soited, med plasticity, some and coarse to fine gravel	
E 1.5 %			23-28K
E]	an	nd trash/debris	
F 2.0 A	Cand	Costs very fine losse well	Lel & PID &
$E_{\alpha} = d$	Sorted,	fine to very fine, loose, well dry, trace gravel	1
= 2.5 \$		orano de mono monta de como como de como de como de como de como de como de como de como de como de como de co	12/8 PIOB 18 17 21-23K
= 3.0 %			Lel & 110 8
F			21-Z3K
E 3.5 X	Som	e silt	18-19 K
E I			
-4.08			Lel & PID &
E	, mois	s+	
= 4,5%	V	1	Lel & PID &
		nedium to very fine, loose,	
F 5.018	Clay, f	own, trace gravel	17-18K
E	dense, +	at, moist, very plastic, soft, race medium gravel, trace very fine sand	
5.51	Sand, V	very fine, cemented, brown,	Lel & PID &
E 6.00 12	dry, des		
F "	Silty Ci	lay, trace sand and gravel,	lel & PID &
E 3518	mottled,	, dry , strong brown	leig PIDS
7.0 14	Ins	strument dial found ~70 Kcpm	(Dial 70 K cpm) Lel = 0 PID = 0
F			18-19 K
F 7.5			1218 PIDE
of Test Pit, REV 0		*	18-19 K Page 1
8.0	14		61 \$ PIDE

Date(s) Excavated //29/10	Logged By S. Owe	Checked By A. Williams
Length of Excavation 8.44	Width of Excavation Z ++	Depth of Excavation 8 ++
Excavation Mini Excava to	Excavation EPI	Approx. Surface NA
Water Observations	4	Weather Cold
Test Pit Location 494051.3	/634756.6 (ft)	Surface Condition Grassy

	Feed	Type	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg.	TESTS
	Depth, Fee	Sample Type Sample	little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
	F		Silty Sand, fine to medium,	14-16 K
	E 0.5%		brown, OM, trace gravel, Angular	13-14K
	F 1		silty Sand, very fine, loose,	13-14K
	E 1.0 Z		brown, dry, debris	13-14K
			Silty Sand, fine, themat, some	13-14K
	E 1,5 %		come, debris, loose	13-14K
	E /		Silty Sand, fine to medium,	
	E 2.0 4		some coarse, OM, debris	Lel & PID &
	E 'I			16
	F Z.5 8		<u>V</u>	Lei \$ PID \$
	E		Silty Sand, fine, trace large	
	3.0 8		gravel, OM, dry, debris	Lel & PID8
	E ~ 1		1 + Significant debris	
	3.5	-	<u> </u>	13-15 K
	E 1		+ significant debris	
	E 4.08			Lel & PID &
	<u> </u>		Sandy Ciay, very fine, some	
	- 4.59		pea gravel, rounded, reddish brown, soft	Lel & PIDS
	 		Organic debris /matter	13-14K
	5.010		1010	Lel & PID &
	E '		Sand, fine to medium, light brown	
	5.51		Organic matter and debris, wet	Le 1 Ø PID Ø
	E , '		Sandy Clay, very fine , reddish,	
	6.612		brown, medium, om Idebris, moist	Lel & PID &
1				
	6.518			13-14K
	E 7.0 14			
	E / 14	-	Organic Material / Debris	12-14K
	7.5		July July July July 1	Lel & PID &
Log of Te	est Pit, REV 0		1	Lel 0 PID 0 12-14K Page 1 of 2
. \	8.0		14	Leig PIDO

Project: Middlesex Municipal Landfill

Project Location: Middlesex, NJ

Project Number: 08-3800.08

TEST PIT LOG

No.: Test Pit II

Date(s) Excavated 2/22/16	Logged By John W. Oliver	Checked By
Length of Excavation	Width of Excavation	Depth of Excavation 8.1
Excavation Equipment MIN1 (XCAVATOR	Excavation Contractor	Approx. Surface Elev.
Water Observations WATER TABLE A	IT 6'	Weather OverCAST, Wet, CoLP
Test Pit Location		Surface Condition WoodeD, WET

	Depth, Feet	0	Sample Type Sample Number	MATERIAL DESCRIPTION (i.e., textures, color, moisture, odor, firmness, fractures, strata, cavities, fossils, contamination, etc.)	TESTS
F		١	•	SENDY SELT, STRONG BROWN, ROUTS, BLOCKEY DRY	
E		1		SAND, AND SILT. BROWN, SOME TRASH, MOIST	
E		2		MOSTLY MUNICIPAL WASTE, SILT AND SAND, BROWN,	13-16K PID B LEL O 13-16K PID B LEL O
E		3		AIMOST ALL MUNICIPAL WASTE. VERY LETTLE	13-15K PID @ LGC @
F		Ĭ		SOIL DRUM LED FOUND AT 2.5' BGS	13-15K PIO O LELG
E		4		SOIL. DROPT CED FOUND AT 2.5 BGS.	11-14K PID & LEL 0
F		-			11-13k POOLEL 0
E		5			10-12K PIO @ LES @
F					11-13K PID @ LEL 0
E		6		- V V V V V V V V V V V _ V	11-12K PIDGLELO
F					11-1214 PIDG LEL A
E		7		() () () () ()	11-13 K PID @ LEL 6
E				SILTY CLAY, DARK BROWN, SATURATED, SOME-LITTLE	11-1312 PIDELEL 0
E		8		TRASH.	13-14K PIDELEL 0
E		-			
E		9			
E			e		
F		10			
E					
F		11		·	
E					
F		12			
E					
-		13			
<u> -</u>					
F		14			
F					
<u> </u>					

Project: Middlesex Municipal Landfill

Project Location: Middlesex, NJ

Project Number: 08-3800.08

TEST PIT LOG

No.: Test Pit 12

Date(s) Excavated 2/22/10	Logged By John W. Oliver	Checked By
Length of Excavation	Width of Excavation	Depth of Excavation
Excavation Equipment Mivi CXCAVATOR	Excavation Contractor	Approx. Surface Elev.
Water Observations None SEEN		Weather OverCAST, COLD
Test Pit Location	****	Surface Condition GRASSY, WEF

	Depth, Feet O	Sample Type Sample Number	MATERIAL DESCRIPTION (i.e., textures, color, moisture, odor, firmness, fractures, strata, cavities, fossils, contamination, etc.)	TESTS
F	U		SAND AND SILT, STRONG BROWN, DRY	15-18 K PUD 0 LEL 0
Ē_			CLAY AND SILT, BROWN, DRY TRACE TRACH	SO-GOK PID B LEL Q
F			SANDY SILT, BROWN, DRY	40-cok PID OLEL O
E	2		•	70-40K PD @ LEL 0
þ	_			30-45 K PO O LEL O
E	3			25-35K PID GLEE O
F				LS-35K BDOLEL O
E	4		LARGE COBRLES PRESENT. SEVERAL PIECES OF BROKEN	30-90x 1/0 olec 0
F	·		UP CONCRETE, READENES ON CONCRETE RANGE	40-SOK PIDGLEL 0
E	5		FROM GAK- ZZSK. PIPE FOUND AT 5-5.5!	SO-60K POD OLEL B
F	Ū		THE COSK. THE POUND AT \$25.5.	60-70x PIDELEL 6
E	6			70-80 K PID & LEL B
E			REFUSAL @ 6 DUE TO LARGE CONCRETE	
E	7		DEBRIS AND DISCOVERY OF UNKNOWN PIPE	
F			, ,	
E	8			
F	•			
E	9			
E				İ
E	10		·	
E				
E	11			
E	``			·
E	12			
E		1		
F	13			
E				
F	14			
E				

Page 1 of 2

Project: Middlesex Municipal Landfill TEST PIT LOG

Project Location: Middlesex, NJ
Project Number: 08-3800.08

No.: Test Pir 13

Date(s) Excavated 2/23/10	Logged By John W. Oliver	Checked By
Length of Excavation &	Width of Excavation 2	Depth of S /
Excavation Equipment MINI EXCAVATOR	Excavation Contractor EPI	Approx. Surface Elev.
Water Observations WATER TABLE A	IF 4.5'	Weather Wet, COLD
Test Pit Location		Surface Condition WET/SATURATED

	Depth, Feet		Sample Type Sample Number	MATERIAL DESCRIPTION (i.e., textures, color, moisture, odor, firmness, fractures, strata, cavities, fossils, contamination, etc.)	TESTS
F		0	•	SAND AND SILT, BROWN, MUIST, TRACE GRAVEL AND CORRIES	17-20K PIDELELE
E		1		SILT AND SAND, PARK BROWN, DRY, TRACE GRAVEL AND	16-18K PID & LEL &
E				COBBLES.	16-18K PINGLEL 6
F		2	•	CLAY WITH SILT, STRONG BROWN, MCIST, CHUNKS OF CONCRETE	16-18K PIDG LEL G
L					
		2		MOSTLY MUNICIPAL WASTE WITH CONGRETE	15-17K PID O LEE 3
F	_	- 3		CHUNKS.	19-16 K PID @ LEL 0
E		4			14-16 K P.D & LEL O
F		•			13-17 K PIDO LEL 0
E		5		WASTE IS SATURATED NO DISCERNABLE SOIL.	14-16K PIDO LEL O
F		J	1		14-16K PIDE LEL 0
F.		6			14-16x PIDO LEL O
E		6			14-16K PIDO LEL O
F		7			14-15K PIDO LELO
E		7			13-15K PIDO LELO
þ		_			13-15K PIDO LELO
E		8			-
F			i		
F		9	!		
F					
F		10			
-					
E		11			
E					
上	•	12			
E					
E		13			
E					
F		14			
E		•		,	
E					

Project: Middlesex Municipal Landfill

Project Location: Middlesex, NJ

Project Number: 08-3800.08

TEST PIT LOG

No.: Test Pit L

Date(s) Excavated 2/23/10	Logged By John W. Oliver	Checked By
Length of Excavation 8 → 10'	Width of Excavation 2 → 4	Depth of Excavation
Excavation Equipment MINI (x CAVATOR	Excavation Contractor EPI	Approx. Surface Elev. //4
Water Observations		Weather WET, COLD
Test Pit Location		Surface Condition SATURATED, GRASSY

	Depth, Feet	0	Sample Type Sample Number	MATERIAL DESCRIPTION (i.e., textures, color, moisture, odor, firmness, fractures, strata, cavities, fossils, contamination, etc.)	TESTS
F		۱		SANDY SILT, BROWN, MUIST, TRACE COBBLES	14-16K PID O LELD
E		1		SILTY CLAY. STRONG BROWN, DRY	16-19K PID OLELO
E				. , , ,	18-21K P.O OLEL 6
E		2			16-19 K PID OLELO
E				CLAY MAD SILT, STRENG BROWN, MOIST	16-18K PID O LELX
		3			17-19K-Pin Olet 6
E			•	SANDY SILT, DARK BROWN, MOIST, SOME Municipal	19-22K PID OLGE O
E		4		WASTE	20-28K PIDOLELO
F		1		MUNICIPAL WASTE, TRACE CONCRETE BLOCKS	20-25K PID OLEL O
F		5	•	, a,	30-35K PID O LEL O
F					30-35K PIDOLELO
F-		6		•	30-35K PID O LEL O
E					30-35K PID O LEL O
F		7-		LIMIT OF EXCAVATION DUE TO TRENCH	
E				INSTABILITY,	
F		8		37,000.07,	
E				TRENCH WIDENED TO LOCATE HOT SPOT.	
E		9		POT.	
F					
E		10			
F					
F		11			
E		12			
F		12			
E		13			
E				·	
F		14			
E					
<u> </u>					

APPENDIX C SOIL BORING LOGS

^	CABR	ERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Roring	Location	n info:	105100001								GP-01
Boiling	Location	i iiiio.						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/24/2010 - 1515		Page 1	of 1
								Date / Time End 2/24/2010 - 1615 Water Depth/Time N/A	\Motor [L Depth/Time	N/A
								Drilling Method:		Conditions:	N/A
								Geoprobe Macrocore	Saturat		
							(m	Company: EPI	Diamet		1.75"
units)	xture	Symb	dept		very	(md	an (c	Driller: Scott	Elevation		1.73
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Description: textures, color, moisture, odor			s, fossils,
s) -	ϋ	Ď	Š	Š	%	0.0	O	contamination, etc.	OLAY B	\A/-+	
0.5		01.141				0.0		SILIT	CLAY, Brown,	wet.	
= 1		CL-ML									
_ 1											
						0.0		SAND	Y SILT, Brown	, Dry	
1.5		SM			100%						
_ 2											
						0.0		Poorly Sorted	SAND, Dark	Brown, Dry	
2.5				MML-SBG01-P-2.0-4.0							
		SP		-P-2.							
3				3G01		0.0					
3.5				NL-SE							
				M				Well Grad	led SAND, Bro	wn, Dry.	
4											
4.5						0.0					
		SW			100%						
- 5		SVV									
Ξ						0.0					
5.5											
<u> </u>											
						0.0		SILTY SA	AND, Light Brow	wn, Dry.	
6.5		SM									
- 7						0.0		Fot CLA	Y, Strong Brow	n Dry	
7.5		СН			100%	0.0		Pat OLA	., onong brow	, Jıy.	
					100%			SANDY S	SILT, Light Brow	wn, Dry.	
8											
		ML				0.0					
<u></u> 8.5											
<u> </u>											
<u> </u>		SM				0.0		SILTY	SAND, Brown,	Dry.	
9.5								Poorly Gra	ded SAND, Bro	own, Dry.	
10											
— '"						0.0					
<u>1</u> 0.5				-12.0	100%						
Ė		SP		-10.0	75						
11				01-P							
<u> </u>				SBG		0.0					
				MML-SBG01-P-10.0-12.0							
12											

^		BRERA						Soil Borin	a Loa				Boring	No:
				EHEDIATIC	200				g = 0 g		1		GP-0	2
Boring	Locat	tion info	:					Project: Middlese	x Municipal Landfill		Project Nu	ımber:	08-3800	0.08
								Date / Time Start	2/3/2010 -1505		Page	1	of	1
								Date / Time End	2/3/2010 - 1650					
								Water Depth/Time	10.0' - 1517	Water I	Depth/Time		N/A	
								Drilling Method:		Surface	e Conditions	S:		
								Geoprobe Macrocoi	re	Dry.				
		0	£				(mc	Company:	EPI	Diamet	er:	1.75"		
units)	xture	Symb	dept	. no.	very	(md	an (c	Driller:	Scott	Elevation	on:			
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% гесоvегу	OVA (ppm)	GM Scan (cpm)	Description: textures, color, moisture, odor, firmness, fractures, strata, cavities, fossils, contamination, etc.						
	- 0,		0,	0,	0,	0.0			oft, Slightly dense, Dark Bro	uwn. Wet.	mostly silt, lit	tle medium	to coarse sa	nd.
0.5		ML												
		GM					SILTY GRAVEL, Soft, Loose, Brown, Dry, Some Medium Angular Gravel, Little			ravel, Little	Silt, Trace C	lay		
1.5		ML		AL-SBG02-P-0.5-3.0		0.0		SILT WITH SAND, Soft, Loose, Brown, Dry, Mostly Silt, Some Sand, Trace Medi					m Angular G	rave
								Poorly graded S.	AND, Soft, Slightly Dense, V	ery Dark B	Brown, Dry, M	lostly Fine S	Sand, Trace S	Silt.
2				G02-										
2.5				L-SB										
		l		ΙŞ	<i>1</i> 0%	1 !		1						
Ξ														
-														
=														
_														

^	Савя	RERA SE	ERVIC	ES				Soil Boring Log			Boring No:
	MADIOLOGICA	AL - ENVIRONMEN	TAL·REMI	EDIATION				Con Dorning Log	ı		GP-03
Boring	Locatio	n info:						Project: Middlesex Municipal Landfill	Projec	t Number:	08-3800.08
								Date / Time Start 2/4/2010 - 1510	Page	1	of 1
								Date / Time End 2/4/2010 - 1600			
								Water Depth/Time N/A	Water Depth/T	ime	N/A
								Drilling Method:	Surface Condit	tions:	
								Geoprobe Macrocore	Dry.		
_		00	₽				pm)	Company: EPI	Diameter:		1.75"
units)	exture	Symt	deb e	9. no.	overy	(mdc	an (c	Driller: Scott	Elevation:		
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Description: textures, color, moisture, odor, firn contamination, etc.	nness, fractures	s, strata, cavit	ies, fossils,
-	0)		S	S	^	0.0		SILTY CLAY, Stiff, Very Dense, Strong	ng Brown Dry S	ome Silt Little (lav
0.5		CL-ML				0.0		Soil is Laminated and has o			Jay.
								SANDY SILT, Hard, Dense, Strong Brown, Di			Medium Gravel
1											
		ML				0.0					
1.5					100%						
=											
2						0.0		SILTY CLAY, Hard, Dense, Dark B	Brown Dry Mostly	v Silt Somo Cla	v
2.5						0.0		Lenses of construction lumber with			-
_		CL-ML							,	3	
- 3											
=				-4.5		0.0		LEAN CLAY, Stiff, Very Dense, Dark Bro	own, Dry, Mostly	Clay, Few Silt.	Blockey.
3.5				P-3.0							
=		CL		G03-							
_ 4				MML-SBG03-P-3.0-4.5		0.0					
4.5				Σ		0.0					
= 1					100%			SILTY CLAY, Stiff, Very Dens, Dari	k Brown, Dry, So	me Silt, Little Cl	ay.
5								Increasing trash o	content down core	e.	
=						0.0					
5.5											
= _											
6						0.0					
6.5						0.0					
-		CL-ML									
7		OL-IVIL									
=						0.0					
7.5					100%						
- 8											
- "				3.5		0.0					
8.5				.8.5-6		5.0					
=				33-P-							
9				MML-SBG03-P-8.5-9.							
=				/IML-		0.0		SILTY CLAY with SAND, Soft, Slightly Do			
9.5				_				Trace Coarse Sand. Increasing tra	ash down core wi	th little logable s	soil.
_ 10											
_ ''		CL-ML				0.0					
<u>1</u> 0.5					90%	5.0					
_					90%						
11											
=						0.0					

<u>1</u> 1.5	SW		Well Sorted SAND, Soft, Loose, Very Dark Brown, Moist, Mostly Coarse Sand, Trace Silt.
L 12			

^	CABR	RERA SE	ERVIC	EDIATION				Soil Boring Log		Boring No:
Boring	Location	n info							Design t November	GP-04
209								Project: Middlesex Municipal Landfill Date / Time Start 2/4/2010 - 1346	Project Number:	08-3800.08
								Date / Time End 2/4/2010 - 1620	Page 1	of 1
								Water Depth/Time N/A	Water Depth/Time	N/A
										IN/A
								Drilling Method: Surface Conditions: Geoprobe Macrocore Dry.		
		70					æ	Geoprobe Macrocore Company: EPI	Diameter:	1.75"
depth (show units)	dure	USCS Symbol	sample depth		/ery	(md	GM Scan (cpm)	Company: EPI Driller: Scott	Elevation:	1.75
pth how t	Soil Texture	SCS	mple	sample. no.	% recovery	OVA (ppm)	M Sc	Description: textures, color, moisture, odor, firmn		s, fossils,
s s	Š	ň	sa	sa	%		<u>อ</u>	contamination, etc.		
						0.0		SILTY CLAY, Hard, Dense, Stron		ay,
0.5								Trace Medium	Angular Gravel.	
1		CL-ML								
=		CL-IVIL				0.0				
1.5										
=				5-3.0						
2				MML-SBG04-P-1.5-3.0		0.0		QII T WITH CAMD Hand Dance Co	Prougo Dry Months Cits Co. 5	ing Cand
2.5				3G04	40	0.0		SILT WITH SAND, Hard, Dense, Strong of Occasional Medium to Fine Angula		
= -				IL-SE	100%				ar oravor miradiono amougnous c	
з				Σ						
						0.0				
3.5										
፤										
_ 4		ML				0.0				
4.5						0.0				
5										
=						0.0				
5.5										
_ 6										
_ "						0.0		SILTY SAND, Hard, Dense, Dark Brown	n. Drv. Mostly Very Fine Sand. S	Some Silt.
6.5						0.0			Fine Angular Gravel.	ome om,
=									-	
7										
=						0.0				
7.5					60%					
= 8				9.5						
- "		SM		MML-SBG04-P-7.5-9.						
8.5)4-P-						
=				3BG(
9				ML-s						
				Σ						
9.5										
= 10										
						0.0		CLAY WITH SILT, Soft, Slightly Dense,	Dark Brown, Moist, Some Clay,	Little Silt,
<u> </u>									of core appears to be mottled.	
=										
11		СН			50%					
= ,, [
<u>1</u> 1.5										
12										

^	CABI	RERA SE	ERVIC	CES				Soil Boring Log		Boring N
oring	Location	on info								GP-05
Jillig	Localic	JII IIIIO.						Project: Middlesex Municipal Landfill	Project Number:	08-3800.0
								Date / Time Start 2/4/2010 - 0750	Page 1	of 1
								Date / Time End 2/4/2010 - 0910		
									Water Depth/Time	N/A
								·	Surface Conditions:	
									Dry	
its)	nre-	loqui	epth	ō.	<u>Ş</u>	Ê	GM Scan (cpm)		Diameter:	1.75"
(show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% гесоvегу	OVA (ppm)	Scan	Driller: Scott Description: textures, color, moisture, odor, firm	Elevation: nness, fractures, strata, cavi	ities, fossils,
(shc	Soil)SI	san	san	%	ò	Θ	contamination, etc.		
						0.0		Frozen Soil		
0.5		CL-ML						SILTY CLAY, Stiff, Dense, Strong	Brown, Dry, Mostly Silt, Little C	Clay
1										
•						0.0		SILTY SAND, Hard, Dense, Gray, Dry, Mostly S	Sand, Some Silt, Trace Medium	Angular Gravel.
1.5								Color changes down	core to Dark Brown.	
2		SM		MML-SBG05-P-2.0-3.0		0.0				
2.5				5-P-2		0.0				
•				BGO	80%					
3				ML-S						
				₹		0.0		Poorly Sorted SAND with GRAVEL,	Slightly Dense, Strong Brown,	Moist,
3.5								Mostly Medium to Fine San	d, Little Fine Angular Gravel.	
4										
• 4		SP				0.0				
4.5										
5			-							
5.5						0.0		Well Sorted Sand, Soft, Slightly Dense, S	Strong Brown, Wet, Mostly Med ne Angular Gravel down core.	lium Sand.
J.Ü								Soul is streaked with trace Fil	ne Angulai Glavel down cofe.	
6										
						0.0				
6.5										
. 7						0.0				
7.5					80%	3.0				
					00%					
. 8										
0 =						0.0				
8.5		SW								
9										
•						0.0				
9.5										
40										
- 10				l		0.0				
0.5				12.0		0.0				
-				3G05-P-10.0-12.0						
_11				5-P	100%					
		1		၂ ဗ္ဗ		0.0				

<u> </u>		L-SE		Ì
		Σ		
– 12				

~	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/4/2010 - 0813		Page 1	of 1
								Date / Time End 2/4/2010 - 1010			
								Water Depth/Time N/A	Water D	Depth/Time	N/A
								Drilling Method:	Surface	Conditions:	
								Geoprobe Macrocore Dry.			
(S	ē	loqu	bth	Ċ	>	=	GM Scan (cpm)	Company: EPI	Diamete	er:	1.75"
ر unit	Soil Texture	USCS Symbol	sample depth	sample. no	% recovery	OVA (ppm)	Scan	Driller: Scott	Elevation		
depth (show units)	Soil	nsc	samp	samp	% rec	O/A	ωS	Description: textures, color, moisture, odor, firmness, fractures, strata, cavities, fossils, contamination, etc.			
ΕΠ				-1.0		0.0		Fr	ozen		
0.5		OL 141		P-0.0				SILTY CLAY, Hard, Dense, Strong Brown,		Coarse Sand.	
E ,l		CL-ML		-905				Blockey wit	h some M	ottling	
				MML-SBG06-P-0.0-1.0		0.0		GRAVELLY SILT with SAND, Stiff, Sligh	tly Dense.	Strong Brown, Dry. Mo	stly Fine to
1.5		ML		MM				Medium Angular Gravel, Little			
E		IVIL									
2									_		
= 2.5						0.0		Poorly Graded SAND with SILT, Hard Very Fine S		-	/ Fine to
					90%			very rine S	anu, Little	Sill.	
= 3											
Εl						0.0					
3.5		SP-SM									
Ε 4											
ΕÏ						0.0					
4.5											
Εl											
_ 5											
- 5.5						0.0		SILTY CLAY, Hard, dense, Strong	g Brown, I	Ory, Mostly Silt, Some (Clay.
— 0.0		CL-ML									
= 6		CL-IVIL									
Εl						0.0					
<u>-</u> 6.5								Well Costed CAND with Cit Till 137	noo 0:	on Brown Dec 14 11 1	lans Fine Com.
- 7								Well Sorted SAND with SILT, Hard, Very De Some Silt. Compac			ery rine Sand,
FÌ				-8.5		0.0		SSS S Sompac		· g · ===:	
7.5		SW-SM		MML-SBG06-P-7.0-8.5	70%						
Εl				306-F							
- 8				SB(0.0					
= 8.5				MM		5.0					
E l								Poorly Sorted SAND, Soft, Loose, Gray, Mois	t, Mostly C	Coarse to Medium Sand	l. Homogenous.
 9											
E 🏸											
9.5 -											
= 10											
E		SP				0.0					
<u>1</u> 0.5											
E ,,											
<u> </u>					100%	0.0					
_ _ <u>1</u> 1.5						0.0					
E											
= _12											

	CABI	RERA SE	ERVIC	ES EDIATION				Soil Boring Log				Boring No:
Boring	g Locatio	n info:						Project: Middlesex Municipal Landfill Project Number:			Project Number:	08-3800.08
									2/5/2010 - 0958		Page 1	of 1
								Date / Time End	2/5/2010 - 1200			
								Water Depth/Time	N/A	Water De	epth/Time	N/A
								Drilling Method:		Surface (Conditions:	
								Geoprobe Macrocore		Dry.		
ŝ	ē	loqu	bth	ċ	>	=	GM Scan (cpm)	Company:	EPI	Diameter	r:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan		Scott	Elevation		
depth (show	Soil	USC	samp	samp	% rec	OVA	ω Θ Θ	Description: textures, of contamination, etc.	color, moisture, odor, firmi	ness, frac	tures, strata, cavities	s, fossils,
		GP				0.0		Poorly (Graded GRAVEL with SAND	D, Stiff, Bro	own, Dry, Mostly Coars	se to
0.5									Meadium Angular Gra	vel, Little N	Medium Sand.	
E 1		ML						SILT with SANE	D, Stiff, Medium Dense, Stro	ong Brown,	Dry, Mostly Silt, Little	Medium Sand
_ _{1.5}		GW				0.0		Well graded GRA	AVEL, Loose, Gray to White,	Dry, Most	ly Coarse to Medium	Angular Gravel.
Εl					100%			SILTY CLAY,	Hard, Dense, Brown, Dry, M	fostly Silt,	Some Clay. Soil appe	ears Blockey.
²		CL-ML			!	0.0		-				
2.5 												
<u> </u>						0.0		Flastic SILT Stil	ff, Dense, Strong Brown, Mo	nist Some	Silt Little Clay Trace	Medium Sand
= 3.5						0.0		Elastic GET, Gill	ii, belise, eaolig blown, we	not, come	Ont, Little Oldy, 11dee	wedam oana.
Ε		МН										
4				.0-5.0				-				
= 4.5				7-P-4		0.0						
=		GP-GM		MML-SBG07-P-4.0-5.0	100%			Poorly Sorte	ed GRAVEL with SILT, Stiff,	Very Dens	se, Brown, Dry, Mostly	/ Medium
5		01 0111		ML-S					to Fine Coarse	Gravel, Litt	tle Silt.	
E				Σ		0.0		SILTY SAND, Soft	t, Slightly Dense, Dark Brow			um to Fine Sand.
5.5 _		SM							Some Mottli	ing through	nout.	
E6												
Ε						0.0						
6.5									Municipal Waste including	plastic and	d glass fragments.	
E 7												
Ē 'l				8.5		0.0		Well Sorted SAND.	, Soft, Loose, Light Brown, D	Ory, Mostly	Fine to Very Fine Sar	nd, Traces of Silt.
7.5				MML-SBG07-P-7.0-8.5	80%						,	
E				307-F								
- 8				-SBC		0.0		1				
= 8.5		0111		MML		0.0						
		SW										
= 9								1				
E						0.0						
9.5 -					15%							
= 10												
E		T			[REF	USAL		
<u>1</u> 0.5												
E												
<u></u> 11								-				
= <u>- 1</u> 1.5												
╞╴╽												
- 12]				

4	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring Log	Boring No:		
Boring	Location	n info:						Project: Middlesex Municipal Landfill Project Number:			08-3800.08
								Date / Time Start 2/5/2010 - 0753		Page 1	of 1
								Date / Time End 2/5/2010 - 0940			
								Water Depth/Time 2.5' - 0810	Water I	Depth/Time	N/A
								Drilling Method:	Surface	e Conditions:	
							_	Geoprobe Macrocore	Dry.		
its)	<u>e</u>	mbol	epth	ō.	2	<u></u>	GM Scan (cpm)	Company: EPI	Diamet	er:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no	% recovery	OVA (ppm)	Scan	Driller: Scott Description: textures, color, moisture, odor, f	Elevation		s fossils
depth (show	Soil	OSO	sam	sam	%		ΘM	contamination, etc.		otaroo, otrata, oavitto	5, 1000110,
Εl					100%	0.0		SILTY CLAY, Stiff, Dense, Str	ong Brown,	Dry, Some Silt, Some of	lay,
0.5		CL-ML						Trace Medium to Fine Ang	ılar Gravel.	Some Mottling Present	
E 1											
Εl				-2.5		0.0		SILTY SAND, Soft, Slightly Dense, Brown	, Moist, son	ne Coarse to Medium S	and, Little Clay,
1.5				1.5				Trace Fin	e Angular G	ravel.	
E ,		SM		MML-SBG08-P-1.5-2.							
²				-SB(0.0					
2.5				MM		0.0					
Εl				.5-3.0				GRAVELLY SILT, Stiff, Slightly Dens	e, Brown, W	et, Mostly Medium Ang	ular Gravel,
3		ML		P-2.5				Some Silt,	Trace Fine	Sand.	
3.5		IVIL		MML-SBG08-P-2.	80%	0.0					
				L-SB							
= 4				M				SILTY CLAY, Hard, Dense, Brown, Moist	to Dry, Mos	tly Silt, Little Clay, Trace	e Coarse Sand.
Εl		CL MI				0.0					
4.5		CL-ML									
E 5											
F						0.0		SILTY SAND, Soft, Slightly Dense, Bro	wn, Dry, Mo	ostly Medium to Fine Sa	nd, Little Silt.
5.5		SM						Municipal waste	is disburse	d throughout.	
E 6											
┢╚				 -	0%			RECOVERY PREVEN	TED BY MI	JNICIPAL WASTE	
6.5											
Εl											
- 7											
7.5											
E 8											
E [
=8.5 =											
E 9_		L		<u> </u>	<u> </u>						
Ē [_				80%	0.0		SILTY SAND, Soft, Slightly Dense, Brow	n, Moist, So	ome Medium to Fine Sa	nd, Some Silt,
9.5									. Core is M		
= 10								Poorly Graded SAND with GRAVEL,	Stiff, Brown Angular Gra		ne Medium
E						0.0		SILTY CLAY, Hard, Dense, Brown, Di			Fine Sand.
<u> </u>											
Εl											
 11						0.0					
<u> </u>						0.0					
E											
- _12											

	CABR	RERA SE	ERVIC	ES				Soil Boring Log	Boring No:		
Boring	Location	n info:						Project: Middlesex Municipal Landfill Project Number:			08-3800.08
								Date / Time Start 2/15/2010 - 1125		Page 1	of 1
								Date / Time End 2/15/2010 - 1325			
								Water Depth/Time 6.0' - 1140	Water D	epth/Time	N/A
								Drilling Method:	Surface	Conditions:	
								Geoprobe Macrocore Wet, Snowy			
ŝ	φ	loqu	pth	ċ	>	_	GM Scan (cpm)	Company: EPI	Diamete	er:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no	% recovery	OVA (ppm)	can (Driller: Scott	Elevation		
depth (show	Soil 1	USC	samp	samp	% rec	O/A	GM S	Description: textures, color, moisture, odor, fire contamination, etc.	nness, fra	ctures, strata, cavities	s, fossils,
						0.0		Fro	zen Soil		
0.5				0-5.0				SILTY CLAY, Hard, Dense, Moist, Brown,	Some Clay	Some Silt, Trace fine	Angular Gravel.
Εl		CL-ML		P-0.(
= 1				-609		0.0		Poorly Graded GRAVEL with SILT, Lo	ooo Vonel	ight Cray Dry Monthy	Coores to
		GP-GM		MML-SBG09-P-0.0-2.0	40000	0.0		Poorly Graded GRAVEL with SIL1, Lo	-		ooaise (U
E				MM	100%			GRAVELLY SILT, Stiff, Loose, Strong B			lium to Fine
_ 2		ML						Angu	lar Gravel.		
Εl						0.0					
<u> </u>								Musicia al Wash	- !!!!		
= = 3		CL-ML						Municipal Wast SILTY CLAY, Stiff, Very Dense			Silt.
= 1						0.0			ipal Waste	y, meeny enay, eeme	J
3.5											
Εl											
- 4						0.0					
- 4.5						0.0					
<u> </u>					70%						
– 5											
E						0.0		SILTY SAND, Stiff, Hard, Moist, Mostly F	ine Sand, I	ittle Silt, Trace Fine Ar	ngular Gravel.
5.5		SM									
E 6											
						0.0		SILTY SAND, Stiff, Hard, Strong B	rown, Wet,	Mostly Fine Sand, Littl	e Silt.
6.5								Municipal was			
E											
7											
7.5											
E-,		SM			30%						
= 8											
Ē											
8.5											
= 9											
						0.0		Well Graded SAND, Soft, Loose, E	Brown, Mois	t, Mostly Fine Sand. Fe	ew Silt.
9.5								2.222 2. 112, 331, 23030, E	,	,	
E				o.							
10				MML-SBG09-P-10.0-11.0							
Ë 40 =				٥-10.							
<u>1</u> 0.5		SW		309-	30%						
E11				-SB(
Ε				MML							
<u> </u>											
E ا											
- 12		l									

	CABR	RERA SE	ERVIC	ES				Soil Boring Log				
Borino	Location	n info	W. Free (1977)						<u></u>	GP-10		
Domig	Location	1 11110.						Project: Middlesex Municipal Landfill	Project Number:	08-3800.08		
								Date / Time Start 2/15/2010 - 1440	Page 1	of 1		
								Date / Time End 2/15/2010 - 1539 Water Depth/Time 6.0' - 1500	Water Depth/Time	N/A		
								Drilling Method:	Surface Conditions:	IVA		
								Geoprobe Macrocore	Wet, Snowy			
		0	ح				(mc	Company: EPI	Diameter:	1.75"		
units)	xture	Symb	dept		very	(md	an (c	Driller: Scott	Elevation:	1.73		
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Description: textures, color, moisture, odor, firmr		es, fossils,		
s) ap	й	Š	S	- es	%		ō	contamination, etc.		=		
0.5						0.0		SILT with SAND, Hard, Very Dense, Brown, I	Moist, Some Silt, Some Fine to	o Very Fine Sand.		
^{0.3}		ML										
<u> </u>				-3.0								
Εl				0.0-		0.0		SILTY SAND, Very Stiff, Dense, Strong Brow	n, Dry, Mostly Medium to Fine	Sand, Some Silt.		
1.5		SM		MML-SBG10-P-0.0-3.0	100%							
ا				-SB(
				MML		0.0		Municip	al Waste			
_ 2.5												
E												
<u> </u> з												
E ,[0.0		Silty Clay, Stiff, Dense, Gleyed, Dry, Some Clay,	, Little Silt. Municipal waste is	interbedded with soil.		
3.5 												
E 4												
F												
4.5		CL-ML			20%							
Εl												
 5												
_ _{5.5}												
= 6												
Εl				0		0.0		Poorly Graded SAND with GRAVEL, Loos		Coarse Sand,		
<u> </u>		SP		P-6.0-8.0				Some Coarse F	Rounded Gravel.			
E 7												
E í				MML-SBG10		0.0		SANDY SILT, Hard, Dense, Strong Brov	wn, Dry, Mostly Silt, Some Ver	y Fine Sand.		
7.5				AL-SI	70%				-			
Εl				×	- / 0							
<u> </u>		ML				0.0						
= 8.5						0.0						
_ 9												
ΕĪ						0.0		SILTY SAND, Soft, Loose, Light Brown, Satur	rated, Some Coarse to Mediur	n Sand, Some Silt.		
9.5												
اً ۽												
=10 =												
= <u>1</u> 0.5		CNA			200/							
F		SM			30%							
11												
Εl												
<u> </u>												
= 12												

	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring Log	Boring No:		
Boring	Locatio	n info:						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/15/2010 - 1546		Page 1	of 1
								Date / Time End 2/15/2010 - 1640			
								Water Depth/Time N/A	Water [Depth/Time	N/A
								Drilling Method:	Surface	Conditions:	
								Geoprobe Macrocore Wet, Snow.			
ts)	ē	logu	əpth	ö	>	2	GM Scan (cpm)	Company: EPI	Diamet	er:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan	Driller: Scott Description: textures, color, moisture, odor, fire	Elevation		e fossile
depth (show	Soil	OSO	sam	sam	» ге	٥٧	Σ	contamination, etc.	illiess, ila	ctures, strata, cavilles	5, 1055115,
0.5		CL-ML				0.0		SILTY CLAY, Hard, Dense, I	Brown, Mois	st, Some Clay, Little Sil	t.
<u> </u>		ML						SILTY SAND, Stiff, Slightly Dense, Brown, I	Noist, Som	e Very Fine Sand, Little	Silt, Trace Clay.
				-2.5		0.0		Elastic SILT, Stiff, Medium Dense, S	Strong Brov	vn, Dry, Mostly Silt, Littl	e Clay.
1.5		МН		P-1.0	100%			Lenses of Coarse Angul	ar Gravel F	Present throughout.	
				G11-I							
<u> </u>				MML-SBG11-P-1.0-2.5		0.0		Munic	pal Waste		
2.5				Σ							
E											
= ³						0.0					
= 3.5						0.0					
ΕŪ								Well Graded SAND, Stiff, Dense, Brow	n, Moist, M	lostly Very Fine Sand,	Γrace Silt.
<u> </u>								Some Munici	oal Waste	present.	
= 4.5						0.0					
		sw			80%						
– 5		SVV									
Εl						0.0					
 5.5											
E 6											
E l						0.0		SILTY SAND, Hard, Very Dense, Light Brow	n, Moist, S	some Fine to Very Fine	Sand, Some Silt.
6.5											
F 』											
 7				8.5		0.0					
7.5				MML-SBG11-P-7.0-8.5	100%	3.0					
E				11-P	100/0						
8		SM		-SBG		0.0					
8.5				MML		0.0					
				_							
=_ 9											
Εl						0.0					
9.5					30%						
= 10											
E I		T						REFUSAL due t	impenetra	able object.	
<u>1</u> 0.5											
E											
11											
<u> </u>											
Ė ∣											
12											

	CABR	ERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/15/2010 - 0940		Page 1	of 1
								Date / Time End 2/15/2010 - 1054		J	
								Water Depth/Time N/A	Water D	epth/Time	N/A
								Drilling Method:	Surface	Conditions:	
								Geoprobe Macrocore	Wet, Sn	ow	
ŝ	Ф	loqu	pt	ċ	>	_	GM Scan (cpm)	Company: EPI	Diamete	r:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no	% recovery	OVA (ppm)	can (Driller: Scott	Elevation		
depth (show	Soil T	USC	samp	samp	% rec	OVA	GM S	Description: textures, color, moisture, odor, firm contamination, etc.	ness, frac	tures, strata, cavities	s, fossils,
0.5		ML		MML-SBG12-P-0.0-2.0		0.0		SANDY SILT, Soft, Loose, Dark Brown, M	oist, Most	ly Silt, Some Medium t	o Fine Sand.
1.5				MML-SBG	60%	0.0		SILTY SAND, Soft, Slightly Dense, Ligh	t Brown, [Ory, Mostly Fine Sand,	Some Silt.
2.5		SM		3.0-4.0		0.0					
3.5				MML-SBG12-P-3.0-4.0							
4.5				V	100%	0.0					
5.5						0.0		Poorly Graded SAND, Soft, Slightly Dense, Trace Silt, occasional Fine Ar			Medium Sand,
6.5		SP				0.0					
7.5					100%	0.0					
8.5						0.0		SILT with SAND, Stiff, Medium Dense, Str	ong Browi	n, Dry, Some Silt, Som	e Fine Sand.
9 9.5		ML				0.0		Poorly Graded SAND, Soft, Slightly Dens	e, Brown,	Dry, Mostly Coarse to	Fine Sand,
10 10 10.5		SP			100%	0.0		Trace Fine A			,
11 11.5 12						0.0					

~	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring Log			Boring No:
Boring	Locatio	n info:						Project: Middlesex Municipal Landfill	l	Project Number:	08-3800.08
								Date / Time Start 2/5/2010		Page 1	of 1
								Date / Time End 2/5/2010			
								Water Depth/Time N/A	Wate	r Depth/Time	N/A
								Drilling Method:	Surfa	ice Conditions:	
								Geoprobe Macrocore	Dry.		
	ø)	loq	oth				cpm)	Company: EPI	Diam	eter:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no	% recovery	OVA (ppm)	GM Scan (cpm)	Driller: Scott	Eleva	ation:	
depth (show	Soil T	JSCS	sampl	sampl	% rec	OVA (S MS	Description: textures, color, moisture, contamination, etc.	odor, firmness,	fractures, strata, cavities	s, fossils,
Ē		_	<u> </u>			0.0		, , , , , , , , , , , , , , , , , , , ,	Frozen		
0.5								SILTY SAND, Stiff, Dense,	Strong Brown, I	Dry, Some Fine Sand, Son	ne Silt,
Εl								Tra	ace Fine Angular	Gravel.	
<u> </u>		SM									
						0.0					
					100%			SILTY CLAY WITH SAND,	, Hard, Dense, B	rown, Dry, Some Clay, Lit	tle Silt,
_ 2									Coarse to Medi		
E		CL-ML				0.0					
2.5											
3											
= "						0.0		Fat Clay, Stiff, Very Der	nse, Strong Brov	vn, Dry, Mostly Clay, Few	Silt,
3.5								• • • •	e Fine Gravel. L		
				0-2-0							
4				MML-SBG13-P-4.0-5.0							
E ,,		CH		G13-		0.0					
 4.5				L-SB	100%						
<u> </u>											
ΕIJ				0-9-0		0.0					
5.5				MML-SBG13-P-5.0-6.0							
E ,				G13-				SILTY CLAY, Stiff, Very D			e Silt,
- 6				as		0.0		Ira	ace Fine Angular	Gravei.	
E - 6.5		CL-ML		MM		0.0					
FI		CL-IVIL									
7											
Ē ,,						0.0					
 7.5					100%			SILTY SAND, Stiff, Dense, Strong B	Frown, Dry Most	v Very Fine Sand, Some	Silt, Trace Clav
Ē 8									ks fo wood prese		,aso olay.
						0.0					
8.5		SM									
 9						0.0					
9.5						0.0					
F I								SILTY CLAY, Very Stiff, Dense, Stro	ng Brown, Dry, S	Some Silt, some Clay, Trad	ce Medium Sand.
10								Lenses of	Medium Angula	r Gravel present.	
F.J						0.0					
<u>1</u> 0.5					100%						
E 11		CL-ML									
E						0.0					
<u> </u>											
E											
- 12											

~	CABR	RERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill	Pi	roject Number:	08-3800.08
								Date / Time Start 2/4/2010 - 0950		age 1	of 1
								Date / Time End 2/4/2010 - 1320			
								Water Depth/Time N/A	Water Dep	oth/Time	N/A
								Drilling Method:	Surface Co	onditions:	
								Geoprobe Macrocore	Dry		
(S	ē	loqu	bth	ċ	>	=	GM Scan (cpm)	Company: EPI	Diameter:		1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no	% recovery	OVA (ppm)	scan	Driller: Scott	Elevation:		
depth (show	Soil	nsc	sam	sam	el %	9\ \	ω Θ	Description: textures, color, moisture, odor, firm contamination, etc.	ness, fractu	res, strata, cavities	, fossiis,
ΕT						0.0		Wood fragments	s mixed with	glass	
0.5		011						FAT CLAY, Hard, Very Dense,	Strong Brow	n, Dry, Mostly Clay.	
E 』		CH						Soil is lensed with area	as of decreas	sing density.	
= 1						0.0		Poorly Graded GRAVEL with CLAY, Hard	d. Dense. Str	rong Brown, Dry, Sor	ne Gravel.
1.5		GP-GC		4.0				·	y, Few Silt.		,
Εl		GF-GC		-0.5							
2				MML-SBG14-P-0.5-4.0					_		
= 2.5				-SBC		0.0		Poorly Graded SAND, Loose, Soft, Dark I			dominant.
		SP		MM	75%			Includes paper and gla	ass mixed wii	in some son.	
= 3											
Εl						0.0					
3.5								Poorly Graded SAND with GRAVEL, S			
E 4								Some Coarse to Medium Sand, L	little Fine Ang	gular Gravel, Trace S	Silt.
ΕÌ		SP				0.0					
4.5											
Εl											
5								Musician I Wanta Amanana	h - O O -		
= 5.5						0.0		Municipal Waste. Appears to	be Coal Sla	g, and other debris.	
E 6											
E						0.0		Well-Graded SAND, Stiff, Dense, Da		-	and,
<u> </u>								Trace Fine A	ingular Grave	el.	
F 7		SW									
F						0.0					
7.5					65%						
E 。l								SILT with SAND, Stiff, Very Dense, Brow	•	-	and, Trace
<u> </u>						0.0		Fine Angular G	navei down o	ore.	
8.5											
Εl											
9											
9.5						0.0					
9.5											
10		ML									
Εİ						0.0					
<u>1</u> 0.5				12.0							
E 11				11.0-							
F_''				4-P-1	100%	0.0					
<u> </u>				MML-SBG14-P-11.0-12.0							
⊨ l				ML-S							
- 12				Σ							

~	CABR	RERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/3/2010 - 1005		Page 1	of 1
								Date / Time End 2/3/2010 - 1640			
								Water Depth/Time N/A	Water D	epth/Time	N/A
								Drilling Method:	Surface	Conditions:	
								Geoprobe Macrocore	Dry.		
(S)	ē	loqu	bth	ö	>	Ē	(cpm)	Company: EPI	Diamete	er:	
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Driller: Scott Description: textures, color, moisture, odor, firm	Elevatio		fossils
dept (sho	Soil	nsc	sam	sam	» ге	ò	Ω	contamination, etc.	ness, nac	ciures, sirata, cavilles	, 1055115,
0.5		МН		MML-SBG15-P-0.0-2.0		0.0		Elastic SILT, Stiff, Dense, Brown, Moist, \$	Some Silt,	Some Clay, Trace Very	r Fine Sand.
1.5		SW		WML-8				Well Graded SAND, Soft, Loose, I Angular Gravel I			Fine
2 2.5		Svv		MML-SBG15-P-2.0-3.0		0.0					
Εl				15-P-	60%			Silty Clay, Stiff, Medium Dense, Brown, Moist	Some Cla	ay, Little Silt, Trace Fine	e Angular Gravel.
3		CL-ML		-SBG							
3.5				MML.		0.0					
= 0.0								GRAVELY SILT, Soft, Loose, Dark Brown	, Dry, Mos	stly Silt, Some Fine Ang	gular Gravel.
4.5		ML									
5.5						0.0		Construction debris take up most of the reco	very. Incl	udes plywood, lumber,	aggregate, etc.
<u> </u>											
- 6.5						0.0					
= "											
<u> </u>								Lean CLAY, Hard, Dense, Strong Brown, I	Moist, Mos	tly Clay, Trace Fine An	gular Gravel.
7.5								Structure appe	ears to be	blockey.	
E-7.3					40%						
E 8											
E 🔝		CL									
8.5 =) L									
E_ 9											
9.5 -											
10		L	<u> </u>		ļ	<u> </u>					
ĖΪ								REFUSAL Due to	Elevated	Methane	
<u>1</u> 0.5											
E_11											
<u> </u>											
= ₁₂											
12											

~	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/17/2010 - 1415		Page 1	of 1
								Date / Time End 2/17/2010 - 1458			
								Water Depth/Time 6' - 1435	Water D	epth/Time	N/A
								Drilling Method:	Surface	Conditions:	
								Geoprobe Macrocore	Saturate	ed	
ts)	<u>ə</u>	mbol	apth	ó	2	_	GM Scan (cpm)	Company: EPI	Diamete	r:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no	% recovery	OVA (ppm)	Scan	Driller: Scott Description: textures, color, moisture, odor, firr	Elevation		e fossile
depth (show	Soil	nsc	sam		% 16	ð O	Θ	contamination, etc.	micoo, mac	narco, otrata, cavillos	5, 1000110,
0.5		ML		MML-SBG16-P-1.5-3.0 MML-SBG16-P-0.0-1.5		0.0		SANDY SILT, Stiff, Medium Dense, Brown, D	ry, Mostly S	Silt, Little Medium to Fi	ne Sand. Mottled.
Εl				IML-8		0.0		Poorly Graded GRAVEL Loose, Gray, I			lar Gravel,
1.5		GP		-3.0 N	100%			Few Co	oarse Sand.		
<u> </u>		0.		3-P-1.5		0.0					
2.5				-SBG16		0.0					
Ξ 3				MML				SILTY SAND, Stiff, Dense, Brown, Dry, Mostly Lenses of Municipal Waste i			ım Angular Gravel.
E Ĭ		SM				0.0		Lenses of Municipal Waster	riciduling we	ood plastic etc iii core.	
3.5											
E								Poorly Graded SAND with SILT, Stiff, Mo			ome Fine to
= 4						0.0		Very Fine S	Sand, Some	Silt.	
= 4.5					50%	0.0					
Εl		SP-SM			3070						
 5											
- 5.5											
=											
E 6											
ا ۾ ا						0.0		Municipal W	aste, Satur	ated.	
 6.5											
E7											
E						0.0		Well Sorted SAND, Soft, Loose, Strong Br	own, Sturat	ted, Mostly Medium Sa	and, Trace Silt.
 7.5					50%						
= 8		sw									
E		344									
8 .5											
E 9											
ΕĬ						0.0		Municipal Waste, Organic Ma	atter, Wood	, Construction Debris.	
9.5											
Ē "											
=10 =						0.0					
<u> </u>					30%						
E											
 11											
_ _ <u>1</u> 1.5											
Εl											
12											

~	CABR	RERA SE	ERVIC	ES DIATION				Soil Boring Log		Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill	Project Number:	08-3800.08
								Date / Time Start 2/3/2010 - 1100	Page 1	of 1
								Date / Time End 2/3/2010 - 1455		
								Water Depth/Time N/A	Water Depth/Time	N/A
								Drilling Method:	Surface Conditions:	
								Geoprobe Macrocore	Relatively Dry	
<u>@</u>	Φ	log	th.	,	_	_	cpm)	Company: EPI	Diameter:	1.75"
depth (show units)	extur	USCS Symbol	sample depth	le. nc	% recovery	mdd)	can (Driller: Scott	Elevation:	
depth (show	Soil Texture	USC	samp	sample. no	% rec	OVA (ppm)	GM Scan (cpm)	Description: textures, color, moisture, odor, firm contamination, etc.	ness, fractures, strata, cavitie	s, fossils,
0.5		CL-ML		MML-SBG17-P-0.0-2.0		0.0		Silty Clay, Soft, Medium Dense, Brown, V	Vetm, Some Clay Little Silt, Trac	e Fine Sand.
1.5		ML		MML-SBG		0.0		SANDY SILT, Soft, Medium Dense, Strong Bro	own, Dry, Mostly Silt, Some Coa	rse to Fine Sand.
2.5		ML			70%	0.0		Gravely Silt, Soft, loose, Strong Brown, Dry, So	ome Silt, Some Coarse Angular (Gravel, Trace Clay
3.5		SP		MML-SBG17-P-3.0-5.0		0.0		Poorly graded SAND, Stiff, Medium De Trace Clay.	nse, Dark Brown, Dry, Mostly Fi Some Mottling.	ne Sand,
4.5		CL-ML		MML-SB		0.0		SILTY CLAY, Stiff, Dense, Dark I Trace Coarse	Brown, Dry, Some Clay, Some S Sand. Mottled.	Silt,
5.5		SM				0.0		SILTY SAND, Soft, Loose, Very Dark Br Trace Fine Angular Gravel.	rown, Dry, Some Coarse Sand, Municipal Waste is present.	Some Silt,
6.5						0.0		Fat CLAY, Soft, Medium Dense, Stro Trace Fine Angular Gravel. Soil str		
7.5					40%	0.0				
8.5		МН				0.0				
9.5						0.0				
<u>1</u> 0.5		SM			50%	0.0		Silty Sand, Soft, Slightly Dense, Brown, Mo Mottled, Munici	oist to Wet, Mostly Sand, Little S ipal waste present.	ilt, Trace Clay.
<u>1</u> 1.5						0.0				

	CABR	RERA SE	RVIC	ES EDIATION				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Lan	dfill	Project Number:	08-3800.08
								Date / Time Start 2/17/2010 - 15	525	Page 1	of 1
								Date / Time End 2/17/2010 - 10	630		
								Water Depth/Time N/A	Wa	ter Depth/Time	N/A
								Drilling Method:	Sur	face Conditions:	
								Geoprobe Macrocore	Sno	ow, Wet.	
its)	ē	mbol	epth	o.	2	Ē	GM Scan (cpm)	Company: EPI	Dia	meter:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan	Driller: Scott Description: textures, color, moisture		vation:	e foesile
deb (shc	Soil	nsc	sam	sam	%	/\O	Θ	contamination, etc.	0, 0001, 1111111000	, madares, strata, savitos	5, 1000110,
Εl				0-1.0		0.0			SANDY SILT, Br	own, Dry	
0.5				-C-0.							
E 1		ML		3G18							
				MML-SBG18-C-0.0-1.0		0.0					
1.5				M							
E								Poorly Grad	led SAND with SIL	T, Strong Brown, Dry.	
<u> </u>						0.0					
2.5		SP-SM				0.0					
FΙ											
<u> </u>				MML-SBG18-C-3.0-4.0							
E ,[-C-3.		0.0		Elas	stic SILT with SAN	ID, Brown, Dry	
3.5 				3G18							
E 4		MH		IL-SE							
Εl				M		0.0					
4.5											
<u> </u>								F	at CLAY, Reddish	Brown Dry	
		СН				0.0			at OLAT, Reddisir	Blown, Bly.	
5.5		СП									
ĖΙ		0147									
<u> </u>		SW				0.0		Well	Graded SAND, Lig		
- 6.5						0.0			REFUSA	L	
<u> </u>											
_ 7											
7.5						0.0					
E8											
8 8 8.5						0.0					
8.5											
E											
 9						0.0					
9.5						3.3					
Εl											
10											
10.5						0.0					
<u> </u>											
<u> </u>											
Εl						0.0					
<u> </u>											
= 12											

4	CABR	RERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/16/2010 - 0930		Page 1	of 1
								Date / Time End 2/16/2010 - 1035			
								Water Depth/Time N/A	Water [Depth/Time	N/A
								Drilling Method:	Surface	e Conditions:	
								Geoprobe Macrocore	Wet, Sr	nowey	
its)	9	mbol	epth	ō.	2	<u>=</u>	GM Scan (cpm)	Company: EPI	Diamet	er:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan	Driller: Scott Description: textures, color, moisture, odor, fi	Elevation		e foesile
oys)	Soil	OSC	sam		% re	ò	Ω	contamination, etc.		ctures, strata, caville.	3, 1033113,
0.5		CL-ML		MML-SBG19-P-1.5-3.0 MML-SBG19-P-0.0-1.5		0.0		SILTY CLAY, Reddish	Brown, Stiff	f, Very Dense, Dry	
1.5		ML		2-1.5-3.0 MML-8	100%	0.0		SANDY SILT, Stiff, Sligi	ntly Dense, S	Strong Brown, Moist.	
2.5		SP-SM		MML-SBG19-F		0.0		Poorly Graded SAND wit	n SILT, Sof	t, Loose, Brown, Dry	
3.5		SP				0.0		Poorly Graded SAND, Soft, Loos	e, Saturated	. Mixed with Municipal	Waste
E						0.0					
- 4.5					40%			SILTY SAND, Stiff, Me	dium Dense	Dark Brown Dry	
5.5		SM				0.0			u.u 201100	, zancziemi, zi j.	
6						0.0		Mun	cipal Waste		
6.5						0.0		William	cipai waste		
						0.0					
7.5					10%						
8 - - 8.5						0.0					
9						0.0					
9.5						0.0					
10 10 10.5					10%	0.0					
11 11 11.5						0.0					
12											

^	CABR	RERA SE	ERVIC	ES				Soil Boring	Log			Boring No:
Boring	Location	n info									Droigot Number	GP-20
209									Municipal Landfill 2/25/2010 - 0745		Project Number: Page 1	08-3800.08 of 1
									2/25/2010 - 0745 2/25/2010 - 0830		raye i	OI I
								Water Depth/Time	N/A	Water De	epth/Time	N/A
								Drilling Method:	14/7		Conditions:	1071
								Geoprobe Macrocore			s Saturated.	
		0	£				pm)		EPI	Diameter		1.75"
units	xture	Symt	deb	9. no.	wery	(mdc	an (c		Scott	Elevation		
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Description: textures, of	color, moisture, odor, firmi			s, fossils,
- S	Ø		Š	ĭš	%	0.0	G	contamination, etc.	Poorly Graded S	AND Prov	un Dn	
0.5						0.0			Fooliy Gladed S	AND, BIO	wii, Diy.	
_ 1												
Εl						0.0						
1.5		SP			100%							
= 2												
FĪ						0.0		1				
2.5												
Εl												
3 						0.0			CII TV CANI	D. Broum I	Dr. (
3.5						0.0			SILTY SAND	J, Brown, I	ory.	
4												
E						0.0						
4.5		SM			60%							
- 5												
= 1						0.0		=				
_ _5.5												
Εl												
<u> </u>												
E 🦼						0.0			SANDY SILT, I	Light Brown	n, Dry.	
<u></u> 6.5												
E_ 7		ML]				
E						0.0						
7.5				MML-SBG20-P-7.5-8.5	100%							
E ,l				-P-7.					Well Graded SAND), Strong B	rown, Dry.	
- 8				,G20		0.0		-				
= 8.5		SW		L-SB		0.0						
E				MM								
= 9												
E .l						0.0			SILTY SAND), Brown, I	Ory.	
9.5 -												
= 10		SM										
				_		0.0		1				
<u> </u>)-12.(80%							
Εl				-10.0	,				SILTY CLAY, R	edish Brow	vn, Dry.	
11				20-P.				-				
E 11 5		CL-ML		SBG.		0.0						
<u> </u>				MML-SBG20-P-10.0-12.0								
12				2								

^	CABR	ERA SE	ERVIC	CES EDIATION				Soil Boring Lo	oq			Boring No:
Boring	Location	info:									D : (N :	GP-21
Doming	_0000001							Project: Middlesex Munic			Project Number:	08-3800.08
									2010 - 0715 2010 - 0800		Page 1	of 1
								Water Depth/Time	N/A	Water D	epth/Time	N/A
								Drilling Method:	1971		Conditions:	14/71
								Geoprobe Macrocore		Wet	Conditions	
_		log	£				(md	Company: EPI		Diamete	r:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Driller: Scott		Elevation		
lepth show	Soil Te	SSS	ampl	ampl	% reco	VA (S Me	Description: textures, color, contamination, etc.				s, fossils,
	- 0,		, , , , , , , , , , , , , , , , , , ,	0,		0.0		oomanination, oto:	SANDY SILT	Γ, Brown, V	Vet.	
0.5												
Εl		ML										
<u> </u>												
				3.0		0.0						
E I				1.0-	100%				SANDY Lean C	LAY, Brow	n, Wet	
= 2		CL		MML-SBG21-P-1.0-3.0								
F				SBG		0.0						
2.5				MML-					Fot CLAV	Prous D		
= = 3		CH		_					Fat CLAY,	DIOWII, D	ıy	
3.5												
F l												
= ⁴												
4.5					0%							
FΙ					0%							
<u> </u>												
5.5												
6												
ΕĪ		СН				0.0			Fat CLAY, Very	Light Brow	wn, Dry	
6.5												
E 7									Municip	al Waste		
FΊ						0.0						
7.5					100%							
ĖΙ									SANDY SILT, L	ight Brown	n, Wet	
8		ML				0.0						
8.5						0.0						
									Poorly Graded S	SAND, Brov	wn, Dry.	
= 9												
		SP										
9.5 												
= 10				11.0								
				10.0-					SILTY SAND, D	ark Brown	, Moist.	
<u>1</u> 0.5		SM		7-P-	60%							
Ē				3862								
E-11				MML-SBG21-P-10.0-11.0					Municipa	al Waste.		
_ <u>_ 1</u> 1.5				≥ ≥					wandp			
Εl												
12												

~	CABR	RERA SE	ERVIC	ES DIATION				Soil Boring Log	9			Boring No:
Boring	Location	n info:						Project: Middlesex Municip	oal Landfill		Project Number:	08-3800.08
									010 - 1605		Page 1	of 1
								Date / Time End 2/24/20)10 - 1703			
								Water Depth/Time	2.0' - 1615	Water D	epth/Time	N/A
								Drilling Method:		Surface	Conditions:	
								Geoprobe Macrocore		Wet, Sn	iow.	
ŝ	ē	loqu	pth	Ġ.	>	=	GM Scan (cpm)	Company: EPI		Diamete	er:	1.75"
د »	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan	Driller: Scott		Elevation		
depth (show units)	Soil	nsc	sam	sam	% re	OVA	ω Θ	Description: textures, color, n contamination, etc.	noisture, odor, firm	iness, fra	ctures, strata, cavitie	S, TOSSIIS,
E						0.0			SILTY SAND, D	Dark Brown	n, Moist.	
0.5												
E ₁												
E I		SM				0.0						
1.5					100%							
E												
<u> </u>						0.0			SANDY SILT, L	ight Prov	vn Wet	
		B.AI				0.0			OMNUT SILI, L	-igiit ⊠IUV	vii, VVGL.	
		ML										
<u> </u>												
E						0.0			Well Graded SAN	ID, Light B	rown, Dry.	
3.5 												
E 4		SP										
E		- SF				0.0						
4.5					100%							
E												
<u> </u>						0.0			SILT with SAND). Light Bro	own. Drv.	
5.5		SP-SM								, 5	, ,	
E												
<u> </u>						0.0			D 10 / 101	15.11.14		
E 6.5						0.0			Poorly Sorted SAN	ND, Light E	Brown, Dry.	
ΕI												
7												
7.5						0.0						
- 7.5		SP			100%							
= 8												
						0.0						
8.5)-10.0								
E				P-8.(
9				MML-SBG22-P-8.0-10.0		0.0			SILTY SAND, S	Strona Bro	wn. Drv.	
9.5				L-SB		0.0			5.2.1 0/110, 0		, 2.,.	
Εİ				M								
10												
<u> </u>				12.0		0.0						
= 10.3		SM		0.0-1	100%							
<u> </u>				2-P-1								
F				BG2		0.0						
<u>1</u> 1.5				MML-SBG22-P-10.0-12.0								
= 12				Σ								

~	CABR	RERA SE	ERVIC	ES				Soil Boring Lo	g			Boring No:
Boring	Location	n info:						Project: Middlesex Munici	ipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/22/2	2010 - 0905		Page 1	of 1
								Date / Time End 2/22/2	2010 - 1015			
								Water Depth/Time	4.0' - 0915	Water D	epth/Time	N/A
								Drilling Method:		Surface	Conditions:	
								Geoprobe Macrocore		Wet. Sn	ow	
ŝ	ē	loqu	bt	Ġ.	>	=	GM Scan (cpm)	Company: EPI		Diamete	er:	1.75"
د » uni	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan	Driller: Scott		Elevatio		
depth (show units)	Soil .	nsc	sam	sam	ĕ.	OVA	ω Θ	Description: textures, color, contamination, etc.	moisture, odor, firm	ness, frac	ctures, strata, cavitie	s, fossils,
ΕT						0.0		5	SANDY SILT, Stiff, De	ense, Stro	ng Brown, Dry	
0.5												
⊨												
ΕÜ		ML				0.0						
1.5					100%							
Εl					,							
2						0.0		011	TV CL AV C4:# \/-: '	Donas P	iddich Brown De-	
2.5				4.0		0.0		SIL	TY CLAY, Stiff, Very I	Dense, Re	adish Brown, Dry	
		CL-ML		-2.0-								
<u> </u>				MML-SBG23-P-2.0-4.0								
E l				SBG		0.0		SAN	NDY SILT, Soft, Slight	tly Dense,	Light Brown, Wet	
3.5		ML		MML-								
E 4												
Εl		SM				0.0			SILTY SAND, Stiff	, Dense, E	Brown, Wet	
4.5				MML-SBG23-P-4.0-6.0	100%							
E 5				3-P-4				Poorly	Graded SAND with S	ILT, Stiff,	Medium Dense, Wet.	
<u> </u>		SP-SM		BG23		0.0						
5.5				IS-TV								
ĖΙ				×				N.	Municipal Waste includ	ding const	ruction lumber.	
<u> </u>						0.0			PANDY OUT ONE OU	iahthi Dan	oo Brown Dry	
6.5						0.0			SANDY SILT, Stiff, Sli	igntiy Den	se, Brown, Dry	
E												
7												
E						0.0						
7.5		SM			60%							
8												
8.5												
E 9												
						0.0						
9.5								Poorly Gr	aded SAND with SIL	Γ, Stiff, De	ense, Strong Brown, D	ry
E		SP-SM										
10						0.0						
<u> </u>					40007	0.0			Municin	al Waste		
E					100%				Wallop			
11												
E l						0.0						
<u> </u>								1	Well Graded SAND, L	0000 504	t Grav Moiet	
12		SW							Sidded SAND, L	.5056, 501	., Jray, Moist.	

~	CABE	RERA SE	ERVIC	CES EDIATION				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Lan	dfill	Project Number:	GP-24 08-3800.08
								Date / Time Start 2/22/2010 - 07		Page 1	of 1
								Date / Time End 2/22/2010 - 09		. 3.	
								Water Depth/Time N/A		Depth/Time	N/A
								Drilling Method:		e Conditions:	
								Geoprobe Macrocore	Wet, S	inow.	
<u> </u>	Φ	lod	£.	_	_	_	GM Scan (cpm)	Company: EPI	Diame	ter:	1.75"
v units	extur	Sym	le de	e. no	overy	(mdd)	can (Driller: Scott	Elevati		
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	S W S	Description: textures, color, moisture contamination, etc.	e, odor, firmness, fra	actures, strata, cavitie	s, fossils,
						0.0			SILTY CLAY, Brown,	, Moist	
0.5		CL-ML		0-2-0							
Ξ]				P-0.(
1				G24		0.0			SANDY SILT, Dark Gr	ray Dry	
1.5		ML		MML-SBG24-P-0.0-2.0		0.0				ω _γ , <i>Σ</i> ιγ	
				ΜŽ				Poorly Grad	ded SAND with SILT,	Strong Brown, Dry	
_ 2		SP-SM			-						
2.5				0:1		0.0					
		CW		MML-SBG24-P-2.0-4.0	80%			Well	Graded GRAVEL, Lig	ht Gray, Dry	
= 3		GW		24-P-							
=				SBG;		0.0		Well	Graded SAND, Dark	Brown, Dry	
3.5				¶ML.							
= 4				-							
<u> </u>		SW									
4.5											
Ξ											
5						0.0		Mu	ınicipal Waste domina	atos coro	
5.5						0.0		IVIU	illicipai vvaste domina	ales core.	
=											
6											
<u></u> 6.5											
7											
_											
7.5					10%						
= 8											
- "											
8.5											
9											
9.5											
10											
Ε, Ι		СН				0.0		FAT CLAY w	vith SAND, Mixed in w	vith Municipal Waste	
<u>1</u> 0.5									Mostly Municipal W	acta	
= 11					200/				wosuy wunicipal W	asie.	
					30%						
<u>1</u> 1.5											
- 12			İ	<u> </u>	<u> </u>	İ	<u> </u>				

~	CABR	RERA SI	ERVIC	CES EDIATION				Soil Boring Log			Boring No:	
Boring	Location	n info:						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08	
								Date / Time Start 2/18/2010 - 1024		Page 1	of 1	
								Date / Time End 2/18/2010 - 1150				
								Water Depth/Time N/A	Water D	Depth/Time	N/A	
								Drilling Method:	Surface	Conditions:		
								Geoprobe Macrocore	Wet.			
its)	E .	mbol	epth	ō.	≥	<u> </u>	GM Scan (cpm)	Company: EPI	Diamete	er:	1.75"	
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan	Driller: Scott Description: textures, color, moisture, odor, fir	Elevation		s fossils	
deb (shc	Soil	OSO	sam	sam	% 16	%	ΘM	contamination, etc.	micoo, na	otaros, strata, oavito	0, 1000110,	
0.5		ML		3.0		0.0		SANDY SILT	Dark Brow	n, Moist		
1.5		SM		5-P-0.0-		0.0		SILTY SAN	D, Brown, I	Moist.		
				MML-SBG25-P-0.0-3.0	100%			Elastic SILT,	Strong Bro	wn, Dry		
2.5		MH		MM		0.0						
3		CL						Lean CLAY,	Redish Bro	wn, Dry		
3.5		0.5		3.0-4.5		0.0		Poorly Graded SA	ND, Dark B	drown, Moist.		
		SP		3G25-P-								
4.5				MML-SBG25-P-3.0-4.5	MML-SBG:	40%	0.0		Munic	ipal Waste.		
5					40%							
5.5												
6.5		GP				0.0		Poorly Graded G	RAVEL, Lig	ht Gray, Dry		
7								Munic	ipal Waste.			
7.5												
— ′.3					20%							
 8												
8.5												
Εl												
<u> </u>						0.0						
9.5						0.0		Munic	ipal Waste.			
<u> </u>												
= _{10.5}												
= 10.3					20%							
=_11												
E ,, ,												
<u>1</u> 1.5												
_ _12												

	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring L	_og			Boring No:
Boring	Location	n info:						Project: Middlesex Mu	unicipal Landfill		Project Number:	08-3800.08
									18/2010 - 1342		Page 1	of 1
								Date / Time End 2/1	18/2010 - 1525			
								Water Depth/Time	7.5' - 1350	Water D	epth/Time	N/A
								Drilling Method:		Surface	Conditions:	
								Geoprobe Macrocore		Wet.		
ŝ	ē	loqu	bth	Ċ	>	=	GM Scan (cpm)	Company: EP	ગ	Diamete	er:	1.75"
ر w	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	scan			Elevatio		
depth (show units)	Soil	nsc	samp	samp	% rec	OVA	ω Θ Θ	Description: textures, col- contamination, etc.	lor, moisture, odor, firmr	ness, frac	ctures, strata, cavities	s, tossils,
0.5		ML				0.0			SANDY SILT, D	Dark Brow	n, Dry.	
E ₁				3.0					SILTY CLAY	Y. Brown.	Drv	
				-0.0		0.0				, =,	,	
1.5		CL-ML		26-P	100%							
E .				SBG								
<u> </u>				MML-SBG26-P-0.0-3.0		0.0			Poorly Graded SAND) Light h	rown Moiet	
- 2.5		SP		_		0.0			Fooliy Gladed SANL	, Light b	iowii, ivioist.	
E I		58										
= 3												
E 🦼						0.0			SILTY SAND, Str	rong Brow	vn, Moist.	
3.5												
E 4		SM										
E						0.0						
4.5					100%							
= =									Poorly Graded GRAVE	L with SIL	T, Gray, Moist.	
_ 5		GP-GM				0.0		1				
_ _5.5												
Εl		СН							Fat CLAY, Stro	ong Browi	n, Dry.	
6												
E 6.5				0.5		0.0			Municipa	al Waste.		
ΕI				.P-6.0-8.0								
7				ιċ								
E				SBG;		0.0						
- 7.5				MML-SBG26	60%				Don't On 1 1000	ID 1:-1:-	Prouse M/-+	
E 8				_					Poorly Graded SAN	וט, Lignt E	DIOWN, VVET.	
E 1		SP						1				
8.5]										
F .												
= 9						0.0			Municipa	al Waste.		
9.5						0.0			iviuriicipa	ai vvdSle.		
		SP-SM							Poorly Graded SAND wi	th SILT, [Dark Brown, Wet	
10		31										
E						0.0			Municipa	al Waste.		
<u>1</u> 0.5					60%							
E11												
E												
<u>1</u> 1.5												
E ا												
- 12					1			l .				

~	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring	Log			Boring No:
Boring	Location	n info									Duningst Niversham	GP-27
209	2000								Municipal Landfill		Project Number:	08-3800.08
									2/18/2010 - 0810		Page 1	of 1
									2/18/2010 - 0950.	W-1 D	and Time	NI/A
								Water Depth/Time	N/A		epth/Time	N/A
								Drilling Method:		Wet.	Conditions:	
			_				Ê	Geoprobe Macrocore	EPI	Diameter		4.75"
depth (show units)	xture	USCS Symbol	sample depth	9.	/ery	pm)	GM Scan (cpm)		Scott	Elevation		1.75"
pth how u	Soil Texture	SCS	mple	sample. no.	% recovery	OVA (ppm)	M Sc	Description: textures, of	color, moisture, odor, firmi			s, fossils,
- g &	й	š	S		%		ō	contamination, etc.				
0.5		CL-ML		0.0-1.		0.0			SILTY CLAY, D	ark Brown,	Moist.	
0.5				28-P-								
1				MML-SBG28-P-0.0-1.0					SANDY SILT	, Brown, M	oist.	
=					4	0.0						
1.5		ML		.0-2.5	100%							
_ 2				28-P-1								
_ '				MML-SBG28-P-1.0-2.5		0.0		1				
2.5				MM					Poorly Graded SAND with	n SILT, Stro	ong Brown, Moist.	
=		SP-SM										
<u> </u>												
3.5						0.0			Fat CLAY, Str	rong Brown	, Dry	
4												
4.5		СН			10%							
_												
5												
5.5												
6												
0.5									No Re	ecovery		
6.5 -												
7]				
_												
7.5					0%							
- 8 - 8								1				
8.5												
_												
9												
=									No Re	ecovery		
9.5												
10												
_												
<u>1</u> 0.5					0%							
Ξ												
11								1				
_ _ <u>1</u> 1.5												
=												
12			l									

~	CABE	RERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Boring	Locatio	n info									GP-28
Bonng	Localio	11 11110.						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/16/2010 - 1020		Page 1	of 1
								Date / Time End 2/16/2010 - 1155	10/-4: 5	anth/Tin	NI/A
								Water Depth/Time 5.0' - 1040		epth/Time	N/A
								Drilling Method:		Conditions:	
							Ê	Geoprobe Macrocore	Wet.	-	4.75"
depth (show units)	ture	USCS Symbol	sample depth	90	ery	(mc	GM Scan (cpm)	Company: EPI	Diameter		1.75"
pth Jow u	Soil Texture	SCS	mple	sample. no.	% recovery	OVA (ppm)	N Sca	Driller: Scott Description: textures, color, moisture, odor, firm	Elevation nness, frac		s, fossils,
ep (s)	တိ) I	sa		%		<u>ั</u> ช	contamination, etc.			
E 0.5		SW		.0-1.		0.0		Well Graded S	SAND, Browr	n, Moist	
0.5				8-P-0				SILTY CLAY,	Strong Brown	n. Moist	
E_ 1		CL-ML		BG28						.,	
ΕĪ		OL-IVIL		MML-SBG28-P-0.0-1.5		0.0					
1.5				3.0 MN	100%						
Eا		МН		.5-3				Fat CLAY	, Brown, Mo	ist	
²		"""		MML-SBG28-P-1.5-		0.0					
2.5				BG2		0.0		SANDY SILT,	Light Brown	, Moist	
FΙ		ML		AL-S							
<u> </u>				ž							
E l						0.0		Poorly Graded S.	AND, Dark B	rown, Dry	
3.5											
E 4											
ΕÏ		SP				0.0					
4.5					100%						
Εl											
5											
5.5						0.0		Well Graded SAND,	Strong Brov	vn, Saturated	
_ 3.3											
_ 6											
Εl						0.0					
6.5											
E ,											
F '						0.0					
7.5					60%	0.0					
					00%						
8											
E _ [
- 8.5		SW									
<u> </u>											
						0.0					
9.5											
ĘΙ											
10											
<u>1</u> 0.5											
-10.5					20%						
11											
E											
<u> </u>											
E 43											
- 12		1		1	1			<u> </u>			

~	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/16/2010		Page 1	of 1
								Date / Time End 2/16/2010			
								Water Depth/Time N/A	Water D	epth/Time	N/A
								Drilling Method:	Surface	Conditions:	
								Geoprobe Macrocore	Wet		
(s)	<u>e</u>	loq m	apth	o.	2	ē	mdo)	Company: EPI	Diamete	r:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Driller: Scott Description: textures, color, moisture, odor, firm	Elevation		e fossile
deb (sho	Soil	nsc	sam	sam	%	%	ΘM	contamination, etc.	11000, 1100	narco, otrata, cavillos	5, 1000110,
0.5		ML		+3.0		0.0		SANDY SILT, Hard, Medium Dense, Brow	n, Dry, So	me Silt, Little Medium	to Fine Sand.
				P-0.0		0.0		Poorly Graded SAND with SILT, Soft, Slightly		-	stly Fine to Very
1.5		SP-SM		MML-SBG29-P-0.0-3.0	75%			Fine San	d, Few Sil	t.	
E 1				MM		0.0		Poorly Graded SAND, Soft, Loose, D	ark Brow	n, Moist, Mostly Med	dium to
2.5								Fine Sand	l, Trace Si	lt.	
E 3											
E 1						0.0					
3.5				0-2-0							
Εl				MML-SBG29-P-3.0-5.0							
- ⁴		SP		3G29							
4.5				IL-SE	20%						
Εl				Σ	2076						
5											
5.5											
= 5.5											
<u> </u>											
Εl						0.0		Municipal Waste including news papers ar	nd wood fr	agments. Very little so	oil to log from.
<u> </u>											
_ ₇											
E						0.0					
7.5					30%						
E ,											
ΕĬ											
8.5											
E 』											
<u> </u>			<u> </u>	 				Hard F	Refusal		
9.5								naru i	. 5501		
ΕÌ											
10											
= <u>1</u> 0.5											
E											
11											
E											
<u>1</u> 1.5											
12											

^	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring Log		Boring No:
Boring	Location	n info:	20000000	10-223-051				Project: Middlesex Municipal Landfill	Project Number:	GP-30 08-3800.08
								Date / Time Start 2/16/2010 - 1541	Page 1	of 1
								Date / Time End 2/16/2010 - 1708		
								Water Depth/Time N/A	Water Depth/Time	N/A
								Drilling Method:	Surface Conditions:	
								Geoprobe Macrocore	Wet	
(9	Φ	log	æ		_		GM Scan (cpm)	Company: EPI	Diameter:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	an (Driller: Scott	Elevation:	
epth show	≅	SCS	ampl	ampl	. rec	<u>\$</u>	Σ	Description: textures, color, moisture, odor, firmi		s, fossils,
P	Ø		Ø	o .	8		0	contamination, etc.	D M Cl Little Cil	
0.5		CL-ML				0.0		SILTY CLAY, Hard, Dense, B	rown, Dry, Mostly Clay, Little Sili	t .
0.5				5.5				Elastic SILT, Stiff, Medium Dense, Strong Bro	own Dry Some Silt Little Clay	Trace Fine Sand
_ 1				MML-SBG30-P-0.0-2.5				Elastic GET, Guil, Mediani Bense, Guong Bre	wii, bry, come ont, Ende oldy,	Trace Time Gand
		MH		9-P		0.0				
1.5				BG3	100%					
=				1L-S	100%			SANDY SILT, Soft, Slightly Dense, B	Brown, Dry, Mostly Fine Sand, Li	ttle Silt.
2				₹				Interbedded with Municipal Wa	aste including paper and coal sla	g.
=						0.0				
2.5										
=										
3				0.		0.0				
= 25				.5-5		0.0				
3.5				-P-2						
= 4				3630						
				MML-SBG30-P-2.5-5.0		0.0				
- 4.5				Σ	50%					
=					50%					
5										
Ε Ι		ML								
5.5										
Ξ										
6										
= 0.5						0.0				
6.5										
- 1										
7.5					200/					
=					20%					
= 8										
Ε										
8.5										
E l										
9										
ا ج						0.0		Poorly Graded GRAVEL with SAND, Lo		Medium
9.5 -		GP						Angular Gravel, little C	Coarse to Medium Sand.	
= 10										
E ï						0.0		SILTY SAND, Soft, Medium Dense, Dark Bro	wn, Dry, Mostly Medium to Fine	Sand, Little Silt.
<u> </u>					75%			, ,	. ,,,	.,
=					15%					
11		SM								
						0.0				
<u> </u>										
Εl										
- 12										

~	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landf	fill	Project Number:	08-3800.08
								Date / Time Start 2/17/2010 - 111		Page 1	of 1
								Date / Time End 2/17/2010 - 122	26		
								Water Depth/Time N/A	Wat	er Depth/Time	N/A
								Drilling Method:	Surf	ace Conditions:	
								Geoprobe Macrocore	Wet	•	
(S)	ē	loqu	pth	· ·	>	ē	GM Scan (cpm)	Company: EPI	Diar	meter:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan	Driller: Scott Description: textures, color, moisture,		vation:	, fancila
dept (sho	Soil	OSO	sam		% re	٥	ω Θ	contamination, etc.	odor, mininess,	, iractures, strata, cavilles	5, 1055115,
E l				MML-SBG31-P-1.5-3.0 MML-SBG31-P-0.0-1.5		0.0		SANDY SILT, Hard, Dense	e, Dark Brown, D	ry, Mostly Silt, Little Mediun	n Sand.
0.5		ML		-P-0.(Glass Fragr	ments in core wit	h Municipal Waste.	
E ₁				G31.							
ΕÜ				IL-SB		0.0		SILTY CLAY, Hard, Very	/ Dense, Strong I	Brown, Dry, Some Clay, Fe	w Silt.
1.5				Σ	100%						
Εl				5-3.0							
— 2		CL-ML		-P-1.		0.0					
2.5				3G31		0.0					
FI				IL-SI							
= 3				ž							
ا ۽ ۽						0.0		Municipal Waste including pla	astic debris and o	organic material, almost no	soil in core.
3.5											
E 4											
Εl						0.0					
4.5					30%						
E [
<u> </u>											
5.5											
 6											
E 6.5								Municipa	al Waste is preve	enting recovery.	
<u> </u>											
Ę											
7.5					0%						
E8											
8.5											
Ē											
<u> </u>						0.0		Mostly Munic	cipal Waste includ	ding wood fragments.	
9.5						0.0		WOSEY WULLIO		and magniomo.	
E l											
10											
E 10.5											
E 10.5					20%						
11											
Εl											
<u> </u>											
E 12											
FΙ					20%						

0	CABR	RERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/17/2010 - 0945		Page 1	of 1
								Date / Time End 2/17/2010 - 1040			
								Water Depth/Time 9.0' - 1010	Water D	epth/Time	N/A
								Drilling Method:	Surface	Conditions:	
								Geoprobe Macrocore	Wet.		
ŝ	<u>o</u>	loqu	bth	Ċ	>	_	GM Scan (cpm)	Company: EPI	Diamete	er:	1.75"
د » unit	Soil Texture	USCS Symbol	sample depth	sample. no	% recovery	OVA (ppm)	Scan	Driller: Scott	Elevatio		
depth (show units)	Soil	nsc	sam		e %	9\ \	ω Θ	Description: textures, color, moisture, odor, firm contamination, etc.	ness, frac	ctures, strata, cavities	s, tossils,
0.5		CL-ML		MML-SBG32-P-1.5-3.0 MML-SBG32-P-0.0-1.5		0.0		SILTY CLAY, Stiff, Dense, Bro	own, Dry, I	Mostly Clay, Some Silt	
□ 1				G32-				SANDY SILT, Stiff, Medium Dense, Strong Bro	wn Dry M	loetly Silt Some Fine S	Sand Trace Clay
ΕÜ				L-SB		0.0		Lenses of Medium Dense, Strong Bro			Sanu, Trace Clay.
1.5		ML		MM	100%				Ü		
Εl				5-3.0	.0070						
2				-P-1.		0.0					
2.5				3G32		0.0		SILTY SAND, Stiff, Slightly Dense, Stror	na Brown	Drv. Some Fine Sand	Some Silt.
				IL-SE					Lean Clay	-	Como Cin,
<u> </u>				M							
Εl						0.0					
3.5											
E 4											
F		SM				0.0					
4.5					30%						
F [
 5											
_ 5.5											
ΕI											
6											
E 6.								No Re	ecovery		
<u> </u>											
_ 7											
<u> </u>											
7.5					0%						
E 8											
8.5											
E											
 9						0.0		Woll Croded CAND Cott Offstate D.	Iony Dead	Proum Mot Manathina	odium to Fina
= - 9.5						0.0		Well Graded SAND, Soft, Slightly Dense, \ Sand, becoming me			edium to FINE
F		SW							20		
<u> </u>											
E						0.0					
<u>1</u> 0.5					100%			Poorly Graded SAND, Soft, Slightly De	nse Stron	a Brown Wet Moetly	Coarse to
= =11								Medium Sand, 1			
E		SP				0.0					
<u> </u>											
E											
- 12											

	CABR	ERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill		Project Number:	GP-33 08-3800.08
								Date / Time Start 2/17/2010 - 0815		Page 1	of 1
								Date / Time End 2/17/2010 - 0912			
								Water Depth/Time 3.0' - 0825	Water	Depth/Time	10.5' - 0840
								Drilling Method:	Surface	e Conditions:	
								Geoprobe Macrocore	Snow,	Wet.	
(S	φ	loqu	pth	ċ	>	_	GM Scan (cpm)	Company: EPI	Diamet	er:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no	% recovery	OVA (ppm)	can (Driller: Scott	Elevati		
depth (show	Soil	nsc	samp	samp	% rec	0 V	GM S	Description: textures, color, moisture, odd contamination, etc.	r, firmness, fra	actures, strata, cavities	s, fossils,
						0.0		SILTY SAND, Soft, Loose,	Strong Brown,	Dry, Mostly Medium to F	ine
0.5								Sand trending coarser down co	e, Little Silt. O	ccasional wood fragmer	nt in core.
E J											
- 1						0.0					
1.5		SM			50%	0.0					
Εl		SIVI			30%						
<u> </u>											
2.5											
^{2.5}											
<u> </u>											
Εl								No Recovery due to Municipa	Waste. Note of	ore was completely sat	urated.
3.5											
E 4											
4.5					0%						
Εl					0,0						
5											
5.5											
E 6											
Εl								No Recovery. Macrocore w	as completely s	aturated with only soil v	vater.
- 6.5											
Ē 7											
FI											
7.5					0%						
E .											
E 8											
8.5				0.0							
ΕĪ				3.0-10							
9				MML-SBGP33-P-9.0-10.0							
E _		SW		GP3		0.0		Well Graded SAND, Soft, Sli			rse to
9.5		011		IL-SB				Medi	um Sand, Trace	e Sut.	
<u> </u>		СН						FAT CLAY, Stiff, dense, Strong	Brown, Dry, Mo	ostly Clay, Trace Silt. La	aminated.
Εl		ОП		MML-SBGP33-P-10.0-11.0		0.0		-			
<u>1</u> 0.5				10.0-	100%			SILTY SAND, Soft, Slightly			se to
E 44				:3-P-				Medium S	and, Little Silt, 1	race Clay.	
<u> </u>		SM		3GP3		0.0					
<u> </u>				1L-SE							
Εl				¥							
12											

~	CABE	RERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Boring	Location	n info:	162,55-900	C-ESSTEN.							GP-34
Doming	Location							Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/22/2010 - 0950 Date / Time End 2/22/2010 - 1110		Page 1	of 1
								Water Depth/Time 3.0' - 1000	Water D	epth/Time	9.0' - 1020
								Drilling Method:		Conditions:	3.0 - 1020
								Geoprobe Macrocore		ed, Snow.	
	_	loc l	£				(md	Company: EPI	Diamete		1.75"
units	exture	Sym	e deb	e. no.	overy	(mdd	an (c	Driller: Scott	Elevatio		
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Description: textures, color, moisture, odor, fil contamination, etc.	rmness, frac	ctures, strata, cavities	s, fossils,
ET	- 0)		0)	0,		0.0			ILT, Brown, \	Wet	
0.5											
=											
<u> </u>		МН									
1.5					10001	0.0					
					100%						
2		01.15		5-3.5							
2.5		CL-ML		MML-SBG34-P-2.5-3.5		0.0		SILTY CLAY	, Strong Bro Reddish Brov		
2.5		СН		3G34				Fat CLAY, F	Redaish Brov	vn, Dry	
= 3				AL-SE							
=		CL-ML		¥		0.0		SILTY CLAY	, Strong Brow	wn, Wet.	
3.5								Dearth Conded CDA	\/EL	IND Come Day	
= 4				5.5				Poorly Graded GRA	IVEL WITH SP	and, Gray, Dry	
=		GP		-3.5-		0.0					
4.5				334-P	100%						
				MML-SBG34-P-3.5-5.5							
<u> </u>				MM		0.0		SANDY SIL	T, Light Brov	vn, Dry	
5.5		ML									
								Municipal Waste	, wood chips	and debris.	
 6						0.0					
6.5						0.0					
=											
7											
= ,						0.0					
7.5					30%						
8											
- 8.5											
_ 9											
ĒĬ		GP				0.0		Poorly Sorted	GRAVEL, G	ray, Wet.	
9.5											
E		CL-ML						SILTY CLAY	, Dark Brow	n, Wet.	
10 								Municipal Waste, coal	slag, ash. co	onstruction debris.	
<u>1</u> 0.5					25%			manopai radio, oddi	,, 00		
					2070						
11											
<u> </u>											
= 1.3											
12											

^	CABR	RERA SE	ERVIC	EDIATION				Soil Boring Log		Boring No:
Boring	Location	n info	N 25 107 107 (1)	L. HERE VOL.					D	GP-35
Doming	Location							Project: Middlesex Municipal Landfill	Project Number:	08-3800.08
								Date / Time Start 2/16/2010 - 0739 Date / Time End 2/16/2010 - 0825	Page 1	of 1
									Water Depth/Time	N/A
									Surface Conditions:	IN/A
								, and the second	Wet.	
		lo lo	£				(mc		Diameter:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	. no.	very	(mdo	GM Scan (cpm)		Elevation:	1.70
epth show	oil Te	SCS	ample	sample. no.	% recovery	OVA (ppm)	W Sc	Description: textures, color, moisture, odor, firmn		s, fossils,
<u> </u>	v		iš	is .	<u> </u>	0.0	<u> </u>	contamination, etc. SILTY SAND, Soft, Slightly Dense, Brown, M	Moist Some Fine Sand Little Si	lt Trace Clay
0.5		SM				0.0		SILT I SAIND, SUIT, Slightly Delise, Blown, in	violst, Some Fine Sand, Little Si	it, Trace Clay.
FI								Fat CLAY, Hard, Dense, Strong Brown, Dr.	y, Mostly Clay, Few Silt. Blocke	ey Structure.
_ 1		СН		0-3.0						
E . l				-P-0.		0.0				
1.5				MML-SBG35-P-0.0-3.0	100%			Poorly Graded SAND with SILT, Stif	f. Dense, Brown Dry Moetly Fi	ne to
E 2				IL-SE				Very Fine Sand, Lit		
E				M		0.0				
2.5										
E										
= ³		SP-SM				0.0				
3.5				-5.0						
Εl				-3.0						
<u> </u>				MML-SBG35-P-3.0-5.0						
4.5				-SBC		0.0				
^{4.3}				MM	100%			Poorly Sorted SAND, Loose, Slightly Den	se. Dark Brown, Moist, Mostly F	ine Sand.
5								Trace Fine Angular Gravel. Signi		
E		SP				0.0				
5.5										
E 6										
E "I						0.0		Moist Municipal Waste including wood coal, coar	se gravel, construction debris.	No Loggable Soil.
_ 6.5								,		
Εl										
<u> </u>										
7.5						0.0				
E-(.5)					50%					
E 8										
ΕĪ										
8.5										
E ,										
 9						0.0				
9.5						0.0				
Εl										
10										
Ē ,, ,						0.0				
<u>1</u> 0.5					50%					
= =11										
Εl										
<u> </u>										
F										
- 12										

^	CABE	RERA SE	ERVIC	ES				Soil Boring Log		Boring No:
Boring	Location	n info	1000000							GP-36
Donnig	Location	ii iiiio.						Project: Middlesex Municipal Landfill	Project Number:	08-3800.08
								Date / Time Start 2/16/2010 - 0810	Page 1	of 1
								Date / Time End 2/16/2010 - 0915	Material Depth /Time	NI/A
								Water Depth/Time N/A	Water Depth/Time	N/A
								Drilling Method:	Surface Conditions:	
							Ê	Geoprobe Macrocore	Wet	4.75"
depth (show units)	ture	USCS Symbol	sample depth	9.	ery	Ē	GM Scan (cpm)	Company: EPI	Diameter:	1.75"
pth now u	Soil Texture	SCS	mple	sample. no.	% recovery	OVA (ppm)	/ Sca	Driller: Scott Description: textures, color, moisture, odor, firr	Elevation: nness, fractures, strata, cavitie	es, fossils,
de (st	S	S)	sa		%		5	contamination, etc.		
اء ۽		CH		MML-SBG36-P-0.0-1.5		0.0		Fat Clay, Str	ong Brown, Moist.	
0.5 				9-P-0				SILTY CLA	Y, Brown, Moist	
E_ 1		CL-ML		3636				SIETT OF	iri, biowii, wolot	
F				IL-SE		0.0				
1.5		SP		Ĭ O	100%			Poorly Graded SA	AND, Dark Brown, Dry.	
Εl				5-3.0				Munici	pal Waste.	
²				MML-SBG36-P-1.5-3.0		0.0				
- 2.5				3636		0.0				
<u> </u>		ML		L-SE				SILT with SAND, \	/ery Dark Brown, Moist.	
= 3		IVIL		Σ						
Εl						0.0		Munici	ipal Waste.	
3.5										
E .l										
= 4										
4.5					200/					
					20%					
_ 5										
Εl										
5.5										
E 6										
Eil-					}			REFUSAL C	Oue to Methane.	
6.5										
E_ 7										
7.5										
- 7.5					0%					
= 8										
FI										
8.5										
Εİ										
9										
ا ۾ ا										
9.5 -										
= 10										
<u>1</u> 0.5										
<u> </u>					0%					
⊨ I										
11										
E 11 5										
<u>1</u> 1.5										
_ _12										

^	CABR	RERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Boring	Location	n info:	10.20	C-RONN,				Project: Middlesex Municipal Landfill		Project Number:	GP-37 08-3800.08
								Date / Time Start 2/23/2010 - 1415		Page 1	of 1
								Date / Time End 2/24/2010 - 0840			
								Water Depth/Time 3.5' - 1438	Water I	Depth/Time	N/A
								Drilling Method:		e Conditions:	
								Geoprobe Macrocore		etely Saturated, Mudd	v
		0	£				(mc	Company: EPI	Diamet		1.75"
units)	xture	Symk	dept	. 10	very	(md	an (c	Driller: Scott	Elevation		1.70
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Description: textures, color, moisture, odor,			s, fossils,
<u> </u>	σ	Ď	Š	Š	<u> </u>	0.0	O	contamination, etc.			
0.5						0.0		SILTY CL	AY, Dark Brov	wn, Dry.	
		CL-ML									
1		CL-IVIL									
=						0.0					
1.5					80%						
=		SM		0.				SANDY	SILT, Brown	, Dry.	
<u> </u>		07		MML-SBG37-P-2.0-3.0		0.0		Poorly Grade	d GRAVEI	Grav. Drv.	
2.5		GP		37-P-							
				SBG				SILTY CLAY	, Very Dark B	rown, Dry.	
3		CL-ML		ML-8							
				Σ		0.0					
3.5								Fat CLAY V	ery Dark Bro	own Wet	
4										,	
=		СН				0.0					
4.5					30%						
= _											
<u> </u>								Mu	nicipal Waste		
5.5								Wid	iicipai waste	•	
_											
6											
						0.0		Poorly Graded	SAND, Light	Brown, Wet.	
6.5											
= 1											
7.5		SP			20%						
-											
8											
8.5											
9											
∃				O,		0.0		Well Graded	SAND, Light E	Brown, Wet.	
9.5				0-11.							
10				P-9							
= 'ĭ				MML-SBG37-P-9.0-11.0		0.0					
<u>1</u> 0.5		SW		IL-SE	100%						
=		- **		M							
11											
<u> </u>						0.0					
12											

^	CABR	ERA SI	ERVIC	ES				Soil Boring L	_oa			Boring No:
Doring	Location	info	TORK PROPERTY	and the same								GP-38
Boring	Location	i inio:							unicipal Landfill		Project Number:	08-3800.08
									23/2010 - 1225		Page 1	of 1
									23/2010 - 1330			
								Water Depth/Time	4.5' - 1230		epth/Time	N/A
								Drilling Method:			Conditions:	
							Ê	Geoprobe Macrocore			Saturated.	4.75"
nits)	ture	ymbo	depth	9.	ery	(mc	do) uı	Company: EP		Diameter		1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Driller: Sco Description: textures, colo		Elevation ness, fraction		s, fossils,
- S - S	У	ñ	es	es	%		อิ	contamination, etc.				
0.5						0.0			SANDY SILT	Γ, Brown, V	Vet.	
		ML										
1												
=						0.0			SILT with SAND	, Light Brow	wn, Dry.	
1.5		ML			80%							
_ 2												
=			1			0.0			SANDY SILT, Re	ddish Bro	wn, Dry.	
2.5		ML										
=												
<u> </u>	}		1			0.0			011 T 01	~ Dr ~	len /	
3.5						0.0			SILT, Strong	g Brown, D	ry.	
		ML										
4												
=									Municipa	al Waste.		
4.5					40%				OANDY OU			
<u> </u>		ML							SANDY SILT	i , Brown, v	vet.	
= 1									Municipa	al Waste.		
5.5				0.7-0								
				P-5.(
<u> </u>				MML-SBG38-P-5.0-7.0		0.0		-				
6.5				L-SB		0.0						
=				M								
7												
=						0.0						
7.5					100%				Well Graded SA	ND Brown	n Wet	
8		SW							Well Glaueu SA	10, DIUWI	.,	
<u> </u>		SVV				0.0						
8.5			-									
									Elastic SILT,	, Gleyed, V	/et.	
9						0.0		1				
9.5		МН				5.0						
_												
10												
=				2.0		0.0						
<u>1</u> 0.5				0.0-1.	100%				SANDY SILT	ı, Brown, V	vet.	
11		ML		-P-1(
_				3G38		0.0						
<u>1</u> 1.5				MML-SBG38-P-10.0-12.0								
= 40		СН		¥					Fat CLAY, Red	dish Brown	, Dry.	
12				l	l							

~	CABR	RERA SE	ERVIC	ES DIATION				Soil Boring Log			Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 3/1/2010 - 1205		Page 1	of 1
								Date / Time End 3/1/2010 - 1235			
								Water Depth/Time N/A	Water [Depth/Time	N/A
								Drilling Method:	Surface	Conditions:	
								Hand Auger			
(s)	<u>e</u>	mbol	htde	o.	2	c	GM Scan (cpm)	Company: EPI	Diamet	er:	
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan	Driller: Scott Description: textures, color, moisture, odor, fir	Elevation		s fossils
deb (shc	Soil	OSO	sam	sam	%	% O	Θ	contamination, etc.	1111000, 110	otares, strata, savitice	, 1000110,
0.5		ML		MML-SBG39-P-0.0-1.0		0.0		SANDY SILT,	Dark Brow	n, Moist.	
1.5		SP-SM		S-NMI-S		0.0		Poorly Graded SAND w	ith SILT, St	rong Brown, Moist.	
2.5		CL-ML		MML-SBG39-P-2.0-4.0		0.0		SILTY CLA	Y, Brown,	Moist	
3.5		CL-IVIE		MML-SBG3		0.0					
4.5		sw				0.0		Well Graded SAf	ND, Dark Br	own, Moist.	
5.5		SM				0.0		SILTY SAND	, Light Brov	wn, Dry.	
6											
6.5 7 7.5								REFUSAL Due	to Concret	e Kuddie.	
8.5											
9.5											
7.5 8 8.5 9.5 10 10.5											

	CABR	RERA SE	ERVIC	ES DIATION				Soil Boring Log		Boring No:
Boring	Location	n info:						Project: Middlesex Municipal Landfill	Project Number:	08-3800.08
								Date / Time Start 2/23/2010 - 1255	Page 1	of 1
								Date / Time End 2/23/2010 - 1430		
								Water Depth/Time 6.0' - 1315	Water Depth/Time	N/A
								Drilling Method:	Surface Conditions:	
								Geoprobe Macrocore	Snow, Saturated.	
<u> </u>	Φ	log	Ę.		_	_	cpm)	Company: EPI	Diameter:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)		Elevation:	
lepth show	io.	JSCS	amp	amp	% rec	NA (S M S	Description: textures, color, moisture, odor, firmn contamination, etc.	ess, fractures, strata, cavities	s, fossils,
		<u> </u>	, , , , , , , , , , , , , , , , , , ,	0,		0.0		SANDY SILT, Str	rong Brown, Wet.	
0.5										
Εl				5-2.0						
<u> </u>		ML		MML-SBG40-P-0.5-2.0						
Ε				340-		0.0				
1.5				-SB(50%					
E 2				MML						
								Municipa	I Waste	
2.5										
<u> </u>										
= 3.5						0.0				
E4										
FΙ										
4.5					30%					
E										
 5										
5.5										
– 6										
E						0.0		SILTY CLAY, Very	Light Brown, Wet.	
6.5				-8.0						
E		CL-ML		0-6.0-8.0						
				BG4		0.0				
– 7.5				MML-SBG4	1000/	5.0				
E I				Σ	100%			Fat CLAY,	Gray, Wet.	
= 8										
Εl		СН				0.0				
- 8.5										
= 9										
E 1						0.0		SANDY SILT, L	ight Brown, Dry	
9.5										
ΕÌ		ML								
10										
Ē						0.0				
<u>1</u> 0.5					100%			Poorly Graded GR	AVEL Grav Dry	
= 11		GP						Poorly Graded GR	arver, Glay, Dly.	
F						0.0		Lean CLAY, Red	ldish Brown, Dry.	
<u> </u>		CL								
E		01								
- 12		CL-ML	l					SILTY CLAY,	, Brown, Wet.	

	CABR	ERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Borino	Location	n info									GP-41
טוווטם	Location	i ii ii O.						Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 3/1/2010 - 1030		Page 1	of 1
								Date / Time End 3/1/2010 - 1200			
								Water Depth/Time N.A		Depth/Time e Conditions:	N.A
								Drilling Method:			
							Ê	Hand Auger Company: EPI		ed, Snow.	2"
depth (show units)	xture	USCS Symbol	sample depth	9.	/ery	pm)	GM Scan (cpm)	Company: EPI Driller: Scott	Diamet		
epth how u	Soil Texture	SCS	mple	sample. no.	% recovery	OVA (ppm)	M Sc	Description: textures, color, moisture, odor,			s, fossils,
s) (s	й	Ď	Š	SS .	%	0.0	G	contamination, etc.	T. Davida Davida	- Maint	
0.5				2.0		0.0		SANDY SI	T, Dark Brow	n, Moist.	
		ML		-0.0-							
<u> </u>		IVIL		41-P							
Εl				SBG.		0.0					
1.5	ŀ			MML-SBG41-P-0.0-2.0							
_ 2				2				SILTY SAN	D, Strong Bro	wn, Moist.	
						0.0					
2.5		SM									
E		0		0-4.5							
3				MML-SBG41-P-2.0-4.5							
3.5				G41-		0.0					
=3.3				L-SB				Poorly Graded	SAND, Dark E	Brown, Moist.	
E 4				M				,	,	,	
Εl		SP				0.0					
4.5											
_ _ 5											
								REFUSAL D	ue to Concre	ete Block	
_ _5.5											
E											
6											
E 65											
6.5 											
7											
ΕĪ											
7.5											
E ,											
= "											
<u> </u>											
 9											
E											
9.5											
E10											
F											
<u> </u>											
Εl											
 11											
E 11.5											
7.5 - 7.5 - 8 - 8.5 - 9 - 9.5 - 10 - 10.5 - 11 - 11.5											
12											

	CABR	ERA SE	ERVIC	ES				Soil Boring Log			Boring No:
Poring	Location	info:		allow a poore						1	GP-42
Боппу	Location	1 11110.						Project: Middlesex Municipal La		Project Number:	08-3800.08
								Date / Time Start 2/23/2010 - 1		Page 1	of 1
								Date / Time End 2/23/2010 - 1		Danille /Time	0.01 4540
										Depth/Time	8.0' - 1542
								Drilling Method:		ce Conditions:	
		-					æ	Geoprobe Macrocore Company: EPI	Wet, S		1.75"
units)	xture	Symb	dept	9.	very	(md	an (c	Company: EPI Driller: Scott	Eleva		1.75
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Description: textures, color, moistu			s, fossils,
<u> </u>	Ø		ιχ	Š	%	0.0	O	contamination, etc.	SANDY SILT, Dark Br	own Dry	
0.5						0.0		`	SANDT SILT, Dark BI	JWII, DIY.	
Ε											
<u> </u>											
E											
1.5		ML			30%						
_ 2											
Εl											
<u></u> 2.5											
= 3											
- "		МН		4.5		0.0		E	Elastic SILT, Strong Br	own, Dry.	
3.5		IVII I		-3.0							
Εl		GP		MML-SBG42-P-3.0-4.5				Po	orly Graded GRAVEL	Gray, Dry.	
= ⁴				-SB(0.0		Po	orly Graded SAND, Br	own Moist	
– 4.5				MM	60%	0.0		FU	ony Graded SAND, Bi	own, woist.	
<u> </u>					60%						
5		SP									
اءِ ا											
5.5 _											
6											
Ē				G42-P-6.0-8.5		0.0		Well	l Graded SAND, Light	Brown, Wet.	
- 6.5				-P-6.							
E 7		SW		3642							
E il				MML-SB		0.0					
7.5				Σ	100%						
E ,l		CL-ML						S	SILTY CLAY, Dark Bro	wn, Moist.	
 ⁸						0.0		Poorl	ly Graded SAND, Ligh	t Brown, Wet	
= 8.5						0.0		Foon	., Jiddod OAND, LIGH	. D. Jimi, Wot.	
E											
 9											
= 9.5		SP				0.0					
9.5											
10											
Εl						0.0					
<u>1</u> 0.5					100%				FI#- 0" T C: -	D	
E 11								E	Elastic SILT, Strong B	rown, Dry	
E		МН				0.0					
<u> </u>											
Εl		SP-ML						;	SAND with SILT, Brov	vn, Moist.	
- 12											

^	CABR	RERA SI	ERVIC	ES				Soil Boring Log		Boring No:
Boring	Location	n info:	West Sollon							GP-43
Bonnig	Location	111110.						Project: Middlesex Municipal Landfill	Project Number:	08-3800.08
								Date / Time Start 2/24/2010 - 0851	Page 1	of 1
								Date / Time End 2/24/2010 - 0925	Wester Denth /Time	NI/A
								Water Depth/Time 7.0' - 0905	Water Depth/Time	N/A
								Drilling Method:	Surface Conditions:	
							Ê	Geoprobe Macrocore	Saturated, snow.	4.75"
nits)	ture	ymbc	depth	9.	ery	Ē	do) u	Company: EPI	Diameter:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Driller: Scott Description: textures, color, moisture, odor, firm	Elevation: ness, fractures, strata, cavitie	s, fossils,
de	S	S)	sa	sa	%		5	contamination, etc.		
اء ۽						0.0		SANDY SILT,	Strong Brown, Dry	
0.5 		ML								
<u> </u>										
E		SP				0.0		Poorly Graded S	AND, Brown, Moist.	
1.5					100%					
F]		МН						Elastic SILT, S	strong Brown, Dry.	
- 2						0.0		Municip	al Waste.	
= 2.5						0.0		iviunicip	ai **a3l5.	
= 3										
Εl										
3.5										
Ē 4										
E 1										
4.5					0%					
					070					
5										
E										
5.5 _										
E 6										
						0.0				
6.5										
Εl				0.						
				.0-9.		0.0		OIL TV CAND	Light Brown Wet	
- 7.5		<u></u>		3-P-6	400	0.0		SILIY SAND,	Light Brown, Wet.	
E		SM		BG4	100%					
8				MML-SBG43-P-6.0-9						
Εl				ĮΣ		0.0		SANDY SILT, S	Strong Brown, Wet.	
8.5										
E 9										
		ML				0.0				
9.5						0				
E										
10				rċ.						
E .				0-11.		0.0		SILTY CLAY, R	edish Brown, Moist.	
<u>1</u> 0.5		CL-ML		P10.	100%					
= 11				G43-i						
E "				MML-SBG43-P10.0-11.5		0.0		Fat CLAY, Stro	ong Brown, Moist.	
<u> </u>		СН		MM						
ĖΙ]								
12										

^	CABE	RERA SE	ERVIC	CES EDIATION				Soil Boring Log			Boring No:
Boring	Location	n info		and the second second					1 1511		GP-44
Dorning	Location	11 11110.						Project: Middlesex Municipal		Project Number:	08-3800.08
								Date / Time Start 2/24/2010		Page 1	of 1
								Date / Time End 2/24/2010		Water Don'th/Time -	N/A
								•		Water Depth/Time Surface Conditions:	N/A
								Drilling Method: Geoprobe Macrocore		Saturated, snow.	
		0	ے				Ē	Company: EPI		Diameter:	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth		very	(md	GM Scan (cpm)	Driller: Scott		Elevation:	1.73
epth how	oi Te	SCS	ample	sample. no.	% recovery	OVA (ppm)	M Sc	Description: textures, color, mois			es, fossils,
- G	σ	Ď.) 		<u> </u>	0.0	G	contamination, etc.	CII TV CI AV	Prove Wet	
0.5		0		0.0-1		0.0			SILTY CLAY,	Brown, wet.	
=		CL-ML		14-P-							
_ 1				3BG2							
Ē.l				MML-SBG44-P-0.0-1.5		0.0			SANDY SILT,	, Brown, Dry.	
1.5		ML		3.0 №	100%						
_ 2		L.		.1.5-3			L				
				MML-SBG44-P-1.5-3.0		0.0			SANDY Lean CLA	AY, Brown, Wet.	
2.5		CL		SBG							
Ė				√IMI-							
<u> </u>				~		0.0			SILTY CLAY, Str	ong Brown. Wet.	
3.5										g,	
4											
- 4.5											
		CL-ML			15%						
– 5											
Ξ											
5.5											
<u> </u>											
- 1									Sleeve ful	ll of water	
6.5											
Ε											
- 7											
7.5					00/						
FI					0%						
8											
<u>8.5</u>											
9											
<u> </u>									Sleeve full	of water.	
9.5											
10											
<u>1</u> 0.5					0%						
ĖΙ					-/-						
11											
<u> </u>											
<u> </u>											
12			İ								

	CABR	RERA SE	RVIC	ES				Soil Boring Lo	og			Boring No:
Boring	Location	n info:						Project: Middlesex Munic	cipal Landfill		Project Number:	08-3800.08
									2010 - 1055		Page 1	of 1
								Date / Time End 2/24/	2010 -1140			
								Water Depth/Time	2.0 - 1100	Water D	epth/Time	6.5 - 1110
								Drilling Method:		Surface	Conditions:	
								Geoprobe Macrocore		Saturate	ed, snow.	
(SI	ē	nbol	pth	o.	>	<u> </u>	GM Scan (cpm)	Company: EPI		Diamete	er:	1.75"
w uni	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan	Driller: Scott		Elevatio		a fancila
depth (show units)	Soil	nsc	sam	sam	% re	OVA	Σ	Description: textures, color, contamination, etc.	moisture, odor, mimi	ness, na	ciures, strata, caville	5, 1055115,
0.5		ML		.0-2.0		0.0			SANDY SILT, I	Light Brov	vn, Wet	
E_ 1				5-P-(
				BG4		0.0			Municip	al Waste		
1.5				MML-SBG45-P-0.0-2.0	100%							
<u> </u>						0.0			SILTY CLAY, Li	iaht Brow	n. Wet.	
_ 2.5										· 9··· - · · · ·	,	
E												
<u> </u>						0.0						
3.5		CL-ML		4.5		0.0						
				-3.5-								
4				45-P								
E				SBG		0.0						
4.5 - - 5		СН		MML-SBG45-P-3.5-4.5	60%			Fat C	CLAY, Strong Brown, D	Ory. Note	Hyrdocarbon Smell.	
5.5									SANDY SILT, I	Light Brov	vn, Dry.	
= 0.10		ML										
<u> </u>		2										
E "[0.0						
6.5 -								Po	orly Graded SAND witl	h SII T Si	trong Brown Wet	
<u> </u>								Po	ony Graded SAIND WILL	טובו, טו	Prown, WEL	
E		SP-SM				0.0						
7.5					100%							
E 8												
						0.0			SANDY SILT, Re	edish Bro	wn, Wet.	
8.5												
Εl												
= 9		ML				0.0						
= 9.5						0.0						
<u> </u>												
E				2.0		0.0			Lean CLAY, Re	edish Brov	vn, Dry.	
<u>1</u> 0.5				0.0-1	100%							
= ₁₁		CL		P-1(L					
E		OL.		3645		0.0						
<u>1</u> 1.5				MML-SBG45-P-10.0-12.0								
= 12				M								
12								l .				

^	CABR	ERA SE	ERVIC	ES				Soil Boring Log				Boring No:
Boring	Location	n info:	100000000000000000000000000000000000000									GP-46
Bonng	Location	i iiiio.						Project: Middlesex Municipa			Project Number:	08-3800.08
									10 - 1330		Page 1	of 1
									10 - 1412	W-4 D-	- th /Time	NI/A
								Water Depth/Time	6.0' - 1340		epth/Time	N/A
								Drilling Method:			Conditions:	
							Ê	Geoprobe Macrocore		Wet.		4.75"
depth (show units)	ture	USCS Symbol	sample depth	9.	ery	(mc	GM Scan (cpm)	Company: EPI		Diameter		1.75"
pth Jow u	Soil Texture	SCS	mple	sample. no.	% recovery	OVA (ppm)	M Sca	Driller: Scott Description: textures, color, me	oisture, odor, firm	Elevation ness, fract		s, fossils,
ep (s)	ο̈́δ	ñ	sa	sa	%		้อ	contamination, etc.				
0.5						0.0			Surface S	Soil Sample		
= 0.3												
1												
Εl						0.0			SANDY SILT, Br	rown, Moist	to Wet.	
1.5					100%							
E		ML										
- 2						0.0						
2.5						3.0						
Εl		CL-ML							SILTY CLAY, St	rong Brown	, Moist.	
E 3												
E 🦼						0.0		Pod	orly Graded SAND	with SILT, I	Brown, Moist.	
3.5		SP										
E4												
FΙ						0.0			Lean CLAY, Ro	edish Browi	n, Dry	
4.5					30%							
E _l												
 5		CL										
5.5												
FI												
<u> </u>												
E						0.0			SANDY SILT	T, Brown, W	/et.	
<u> </u>												
F 7		ML										
Εl						0.0						
7.5					100%							
F .				75				Po	orly Sorted SAND,	Light Brow	n, Saturated.	
 8		SP		7.5-9.		0.0						
8.5				MML-SBG46-P-7.5-9.		0.0						
E				BG4					SILTY CLAY	, Brown, Mo	oist.	
= 9				ML-S								
F l				⅀		0.0						
9.5		CL-ML										
= 10												
E ii						0.0						
<u> </u>				-12.0	100%							
Εl				10.0					Fat CLAY, Red	lish Brown,	Moist.	
11		СН		346-F		0.0						
= = <u>1</u> 1.5				MML-SBG46-P10.0-12.0		0.0						
		SM		MML					SILTY SAND), Brown, M	oist.	
= _12		JIVI										

^	Савя	RERA SE	RVIC	ES				Soil Boring Lo	 Da			Boring No:
Doring	I nosti:	a inf-	AL-RESE	LIATION						Ī		GP-47
Boring	Location	n inio:						Project: Middlesex Muni			Project Number:	08-3800.08
									/2010 - 1425		Page 1	of 1
									/2010 - 1520	W-1 D	and /Time	N1/A
								Water Depth/Time	N/A		epth/Time Conditions:	N/A
								Drilling Method: Geoprobe Macrocore		Wet.	Conditions:	
							æ	Company: EPI		Diameter	-	1.75"
depth (show units)	xture	Symb	dept		very	pm)	an (c	Driller: Scot	t	Elevation		1.75
apth how i	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Description: textures, color				s, fossils,
g e	σ	<u> </u>	Š) 	<u> </u>	0.0	O	contamination, etc.	CANDV CILT	· Drown M	inint	
0.5						0.0			SANDY SILT	, DIOWII, IVI	OISt.	
:		ML										
_ 1												
						0.0			Well Graded SA	ND, Brown	, Moist.	
1.5		91			100%							
2		SW		-3.0								
				-2.0-		0.0						
2.5				347-F								
3				MML-SBG47-P-2.0-3.0				Po	oorly Graded SAND with	h SILT, Stro	ong Brown, Moist	
_ 3		SP-SM		MM		0.0						
3.5												
									SILTY SAND	, Brown, M	oist.	
_ 4		SM				0.0						
4.5						0.0						
		ML			100%				SANDY SILT	, Brown, M	loist	
5												
						0.0			Well Graded SAND), Light Bro	wn, Moist.	
_5.5												
6												
		SW				0.0						
6.5												
7												
- '						0.0						
7.5					100%							
									Municipal Waste include	ding concre	ete and rubble.	
_ 8						0.0						
8.5						0.0						
9												
						0.0						
9.5									Well Graded GRA	AVEL Grav	v Moiet	
10		GW							vveli Graded GR/	.vel, Gia	y, 181013t.	
_				0		0.0			Well Graded SAND), Light Bro	wn, Moist.	
<u>1</u> 0.5				0-12.	100%							
				2-10								
11		SW		347-F		0.0						
<u>1</u> 1.5				MML-SBG47-P-10.0-12.0		5.5						
:				MM								
12												

^	CABR	RERA SE	ERVIC	ES EDIATION				Soil Boring Log			Boring No:
Boring	Location	n info	A. T. LOS								GP-48
Donng	Location	ii iiiio.						Project: Middlesex Municipal Landfill		roject Number:	08-3800.08
								Date / Time Start 2/25/2010 - 0850	Р	age 1	of 1
								Date / Time End 2/25/2010 - 0925	W-t D	di (Tinon	NI/A
								Water Depth/Time 6.0' - 0910	Water Dep		N/A
								Drilling Method:	Surface C		
							Ê	Geoprobe Macrocore	Saturated,	snow.	4.75"
nits)	ture	ymbo	depth	9.	'ery	(mc	do) uı	Company: EPI	Diameter:		1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	GM Scan (cpm)	Driller: Scott Description: textures, color, moisture, odor, fire	Elevation: mness, fractu	res, strata, cavities	s, fossils,
l (s)	S	n n	sa	sa	%		้อ	contamination, etc.			
E 0.5						0.0		SILTY CL	AY, Brown, Dr	y.	
0.5 											
1		CL-ML									
Εl		CL-IVIL				0.0					
1.5				0-3.0	100%						
Ē ,				- - 1							
²				MML-SBG48-P-1.0-3.0		0.0		Fat CLAY, Re	eddish Brown	. Drv.	
2.5				IL-SE		3.0		i at obti, ite		, .,.	
Εl				M							
= 3											
3.5											
E 4		011									
FI		CH									
4.5					0%						
Εl											
_ 5											
5.5											
<u> </u>											
Εl						0.0		SANDY SILT, Li	ight Brown, Sa	turated.	
6.5		ML									
E ,		IVIL									
F (0.0					
7.5				_	100%			Well Graded SAND w	vith SILT, Brow	n, Saturated.	
ΕĪ				0-6-0	,						
E_ 8		SW-SM		MML-SBG48-P-8.0-9.0							
E 8.5		OVV-SIVI		G48-		0.0					
E 0.5				L-SB							
E 9			<u></u>	Σ Σ	ļ	<u></u>					
E[.							RE	FUSAL		·
9.5											
E J											
<u> </u>											
= 10.5											
E											
11											
Εl											
<u> </u>											
= 12											
12			L								

^	CABE	RERA SE	ERVIC	CES EDIATION				Soil Boring Log			Boring No:
Boring	Location	n info								la	GP-49
Boning	Location							Project: Middlesex Municipal Landfill		Project Number:	08-3800.08
								Date / Time Start 2/25/2010 - 0940 Date / Time End 2/25/2010 - 1020		Page 1	of 1
								Water Depth/Time 6.0' - 0958	R Water F	Depth/Time	9.5' - 1005
								Drilling Method:		Conditions:	9.5 - 1005
								Geoprobe Macrocore	Wet.	Conditions.	
		0	£				(mc	Company: EPI	Diamete	>r.	1.75"
depth (show units)	Soil Texture	USCS Symbol	sample depth	.0	very	(md	GM Scan (cpm)	Driller: Scott	Elevation		1.70
apth how	oi Te	SCS	ample	sample. no.	% recovery	OVA (ppm)	M Sc	Description: textures, color, moisture, ode			s, fossils,
(s	σ		Š	Š	%	0.0	O	contamination, etc.			
0.5						0.0		Elastics	SILT, Light Brown	i, MOISt.	
_ 1											
FΙ		МН				0.0					
1.5				0.	100%						
Ē 2				MML-SBG49-P-2.0-3.0							
E 1				-d-61		0.0					
2.5				3BG4							
Εl				ML-8				SILTY	CLAY, Brown, I	Moist.	
3		CL-ML									
3.5				MML-SBG49-P-3.0-4.0		0.0					
				9-P-				Poorly Graded SA	ND with SILT, St	rong Brown, Moist.	
4				BG4							
E				ML-S		0.0					
4.5				Σ	60%						
– 5		SP									
= "						0.0					
_{5.5}											
Εl											
 6											
6.5						0.0		Well Grad	ed SAND, Light (Gray, Wet.	
7		sw									
Εl						0.0					
7.5					100%						
E 8											
			1			0.0		1	Municipal Waste.		
8.5											
E								Poorly Grade	ed SAND, Light E	Brown, Moist.	
 9		SP									
= 9.5						0.0					
9.5								Well Gra	aded SAND Brov	vn, Wet.	
<u> </u>											
ΕÌ						0.0					
<u>1</u> 0.5					30%						
E ,,		SW									
<u> </u>						0.0					
□ <u>□ 1</u> 1.5						0.0					
Εl											
=_ ₁₂											

~	CABR	ERA SE	ERVIC	ES DIATION				Soil Boring	Log			Boring No:
Boring	Location	n info:						Project: Middlesex	Municipal Landfill		Project Number:	08-3800.08
									3/1/2010 - 0750		Page 1	of 1
								Date / Time End	3/1/2010 - 0845			
								Water Depth/Time	7.5' - 0810	Water D	epth/Time	N/A
								Drilling Method:		Surface	Conditions:	
								Geoprobe Macrocore		Saturate	ed, Snow.	
ŝ	Θ	loqu	pth	Ġ.	>	=	GM Scan (cpm)	Company:	EPI	Diamete	er:	1.75"
د »	Soil Texture	USCS Symbol	sample depth	sample. no.	% recovery	OVA (ppm)	Scan			Elevatio		
depth (show units)	Soil	nsc	samp	samp	% rec	OVA	ωS	Description: textures, contamination, etc.	color, moisture, odor, firmr	ness, frac	ctures, strata, cavities	s, tossils,
		ML				0.0			SANDY SILT,	, Brown, M	Moist.	
0.5									D 1 0 1 10	AND D		
E ₁									Poorly Graded S	AND, Bro	wn, Dry.	
		SP				0.0		1				
1.5		3F			100%							
E				.0-3.0								
- 2				MML-SBG50-P-2.0-3.0		0.0			SILTY CLAY, St	rong Bro	wn Dry	
2.5		01.141		3650		0.0			SILTT CLAT, SI	iong bio	wii, Diy.	
F		CL-ML		IS-TV								
= 3				Ž								
E , [0.		0.0			Poorly Graded SAND with	SILT, Sti	rong Brown, Moist.	
3.5				3.0-5								
E 4		SP-SM		H-0								
E				BGE		0.0						
4.5				MML-SBG50-P-3.0-5.0	60%							
- 5				2					Elastic SILT, Re	edish Brov	vn, Dry.	
E 1		МН										
5.5		IVIII										
E l												
= 6						0.0			Municipa	al Waste.		
6.5						0.0			Wallepe	ai vvasie.		
E												
E 7								-				
E ,,						0.0						
7.5		Chr			100%				SILTY SAND, D	ark Brow	n, Wet.	
E 8		SM										
E l						0.0			Well Graded SAND, Br	own, Mois	st to Saturated.	
8.5												
E												
= 1						0.0		-				
9.5												
Εl												
10		SW						1				
<u> </u>					450/							
F					15%							
11								-				
El												
<u> 1</u> 1.5												
_ ₁₂												

APPENDIX D DAILY QUALITY CONTROL REPORTS

CABRERA SERVICES, INC. DAILY QUALITY CONTROL REPORT

1. SITE LOCATION: Middlesex, New Jersey DATE: 12/2/09

PROJECT NAME: Middlesex Municipal Landfill FUSRAP Site REPORT No.: 120209-01

TASK(S) #: 2.1

FIELD OPERATIONS LEAD: Greg Bright CQCSM: Greg Bright

2. TODAY'S WEATHER: Temp Range: 34 – 44 degrees

Precipitation Last 24 Hours: N/A Type: N/A Amount: N/A

Weather Delays: \square No \square Yes Hours: $\underline{N/A}$

3. SUMMARY OF WORK PERFORMED TODAY:

- Cabrera personnel mobilized to job site.
- Phillips & Sons onsite to perform brush clearing.
- Performed quality control on radiological instrumentation.
- Met with Pastor of church to get permission to perform gamma walkover survey of outdoor church property. He approved us to perform survey at any time.
- Cabrera and subcontractors demobilized from site.
- Cabrera Project Manager and USACE Project Manager met with representatives from the Middlesex Borough to provide project briefing.

4. MATERIALS & EQUIPMENT BROUGHT ON SITE:

- Brush clearing equipment (mowers, tractors, ATV, wood chipper)
- Radiological instrumentation

INSPECTIONS & TESTING

_	TATO	DI	TA	DIA
•	INS	РИ	 	
-7-	1 7 7		 	1117.

TYPE		DESCRIPTION	ACTION
N/A			
RE ANY DEI XPLAIN:	FICIENCIES	NOTED IN FOLLOW UP INSPECTIO	ONS? NO YES – IF YES
. DEFICIEN	CIES CORR	ECTED THIS DATE:	
DEFICIENCY NO.	QC REPORT REFERENCI		ACTION
N/A			
	•		
. TESTS PE	DEODMED.		
· IESISTE	REORIVIED.		
SPECIFICATION SECTION REFERENCE	N TYPE	TEST AND RE	ESULTS
N/A		+	
1 1/1 1			
		+	
		+	
	SULTS ATT	ACHED? \square NO \square YES – IF NO, EXP	LAIN:
ARE TEST RE			

MANPOWER & EQUIPMENT REPORT

8. PRIME CONTRACTOR ON SITE TODAY: CABRERA SERVICES, INC.

EMPLOYEE NAME	TITLE	TASKS PERFORMED	HOURS WORKED: TODAY
Chris Boes	Project Manager	Mobilization	8.0
Greg Bright	Field Site Manager	Mobilization/instrument QC	9.5
Shawn Googins	Certified Health Physicist	Mobilization/instrument QC	4.0
Althea Williams	HP Tech	Mobilization/instrument QC	9.5
		Total Hours	31.0

9. SUBCONTRACTORS ON SITE TODAY:

SUBCONTRACTOR NAME	JOB DUTY	NO. MEN	TASKS PERFORMED TODAY	HOURS WORKED: TODAY
Phillips & Sons	Brush Clearing	8	Brush Clearing	9.5
			Total Hours	76.0

10. EQUIPMENT / MATERIALS ON SITE:

VENDOR	EQUIPMENT	ACTIVE/ IDLE
N/A		

WASTE & SAMPLING REPORT

CONTAINER		SOLID, LIQUID OR MIXED		OUNT or TONS)	CONTAINER TYPE	DES	SCRIPTION OF WASTE		DISPOSITION OR LOCATION OF CONTAINER
'A									
TTACH SEP	ARATE	TOTAL PAGES	AS N	EEDEI	D. SEPARA	TE PA	GES INCL	UDED?	
ATTACH SEP		PAGES				TE PA	GES INCL	UDED?	□NO □YE
	COLLEC	PAGES CTION &			5:	TE PA		UDED?	□NO □YE
	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT		ALYSIS	S: TE ANAL		DATE RESULTS DUE		□NO □YES
2. SAMPLE (MEDIA TYPE (SOIL	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		

ATTACH SEPARATE PAGES AS NEEDED. SEPARATE PAGES INCLUDED? NO YES

13. CHANGES IN SITE CONDITIONS/DELAYS/CONFLICTS (EXPLAIN): N/A
14. DID A DELAY OR WORK STOPPAGE OCCUR TODAY? No Yes – If Yes, Explain: N/A
15. HAS ANYTHING DEVELOPED IN THE WORK, WHICH MAY LEAD TO A CHANGE? ⊠No □Yes − If Yes, Explain:
16. VERBAL INSTRUCTIONS RECEIVED: Pastor from Church directed Cabrera to perform gamma walkover survey of Church property at any time.
17. REMARKS:
18. CONTRACTOR VERIFICATION STATEMENT:
This report is complete and correct and all materials and equipment used and work performed during this reporting period are in compliance with the contract plans and specifications except as noted above.
Greg Bright 12/2/09
Contractor Quality Control System Manager Date or Authorized Representative
19. USACE QUALITY ASSURANCE REPORT:
Quality Assurance Representative's Remarks and/or Exceptions to the Report
USACE Quality Assurance Representative Date

HEALTH & SAFETY REPORT

SITE NAME	SITE ADI	DRESS	CITY		STATE	ZIP CODE
Aiddlesex Municipal Landfill	Mountair	ı Ave.	Middlesex		NJ	08846
21. H&S SUMMARY	7.					
WERE THERE ANY AC DESCRIPTION	CCIDENTS ON SITE	TODAY ?			YES	⊠ NO
WERE THERE ANY NE DESCRIPTION		TE TODAY ?			YES	⊠ NO
WERE THERE ANY HE DESCRIPTION		INCIDENTS ON	SITE TODAY?:		YES	⊠ NO
WERE THERE ANY HE DESCRIPTION		ISSUES / OBSE	RVATIONS?: \(\subseteq \text{ YE}	ES	⊠ N	0
PECOMMENDATION()	S) FOR HEALTH OR	O SAFETV ISSIII	ES / OBSERVATIONS:	N/A		
22. SUMMARY OF V	WORK PERFORN	MED:				
2: BUNINIMIKI OI	OME I LIM OM					
TUDE OF WODE, I	Dwigh Classing					
TYPE OF WORK: I	Brush Clearing					
CHEMICALS USEI						
	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI PPE LEVEL: Level	D: Gasoline, Diesel		D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRII	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	D INCID			
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	INCID		DESCRI I	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time * ATTACHMENTS: CABRERA Incider	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	INCID			

CABRERA SERVICES, INC. DAILY QUALITY CONTROL REPORT

1. SITE LOCATION: Middlesex, New Jersey DATE: 12/3/09

PROJECT NAME: Middlesex Municipal Landfill FUSRAP Site REPORT No.: 120309-02

CONTRACT #: W912DQ-08-D-0003/0003 CABRERA PROJECT #: 08-3800.08

TASK(S) #: 2.1

FIELD OPERATIONS LEAD: Greg Bright CQCSM: Greg Bright

2. TODAY'S WEATHER: Temp Range: 34 – 44 degrees

Precipitation Last 24 Hours: N/A Type: N/A Amount: N/A

Weather Delays: \square No \square Yes Hours: $\underline{N/A}$

3. SUMMARY OF WORK PERFORMED TODAY:

- Cabrera personnel mobilized to job site
- Phillips & Sons onsite to perform brush clearing
- Performed quality control on radiological instrumentation
- Qualified personnel on use of the CLASS surveying equipment
- Performed gamma walkover surveys of areas not able to be driven with the CLASS attached to an ATV.
- Cabrera and subcontractors demobilized from site.

4. MATERIALS & EQUIPMENT BROUGHT ON SITE:

- Brush clearing equipment (mowers, tractors, ATV, wood chipper)
- Radiological instrumentation

INSPECTIONS & TESTING

_	TATO	DI	TA	DIA
•	INS	РИ	 	
-7-	1 7 7		 	1117.

TYPE	,	DESCRIPTION	ACTION
Surveys		Gamma Walkover Surveys	In Areas Inaccessible to Gator
RE ANY DEI XPLAIN:	FICIENCIES N	OTED IN FOLLOW UP INSPE	CTIONS? □NO □YES – IF YI
. DEFICIEN	CIES CORRE	CTED THIS DATE:	
DEFICIENCY NO.	QC REPORT REFERENCE	DESCRIPTION	ACTION
N/A			
. TESTS PE			
SPECIFICATIO SECTION/ REFERENCE	N TYPE	TEST A	AND RESULTS
N/A			
DF TFCT DE	CIII TC ATTA	CHED? □NO □YES – IF NO,	FYPI AIN:
KE IESI KE	BULIS ATTA	cheb: _no_1es=ir no,	EAI LAIN.

MANPOWER & EQUIPMENT REPORT

8. PRIME CONTRACTOR ON SITE TODAY: CABRERA SERVICES, INC.

EMPLOYEE NAME	TITLE	TASKS PERFORMED	HOURS WORKED: TODAY
Greg Bright	Field Site Manager	Mobilization/Instrument QC	8.5
Shawn Googins	Certified Health Physicist	Mobilization/ Instrument QC	8.5
Althea Williams	HP Tech	Mobilization/ Instrument QC	8.5
		Total Hours	25.5

9. SUBCONTRACTORS ON SITE TODAY:

SUBCONTRACTOR NAME	JOB DUTY	NO. MEN	TASKS PERFORMED TODAY	HOURS WORKED: TODAY
Phillips & Sons	Brush Clearing	7	Brush Clearing	8.5
			Total Hours	59.5

10. EQUIPMENT / MATERIALS ON SITE:

VENDOR	EQUIPMENT	ACTIVE/ IDLE
N/A		

WASTE & SAMPLING REPORT

CONTAINER		SOLID, LIQUID OR MIXED		OUNT or TONS)	CONTAINER TYPE	DES	SCRIPTION OF WASTE		DISPOSITION OR LOCATION OF CONTAINER
'A									
TTACH SEP	ARATE	TOTAL PAGES	AS N	EEDEI	D. SEPARA	TE PA	GES INCL	UDED?	
ATTACH SEP		PAGES				TE PA	GES INCL	UDED?	□NO □YE
	COLLEC	PAGES CTION &			5:	TE PA		UDED?	□NO □YE
	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT		ALYSIS	S: TE ANAL		DATE RESULTS DUE		□NO □YES
2. SAMPLE (MEDIA TYPE (SOIL	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		

ATTACH SEPARATE PAGES AS NEEDED. SEPARATE PAGES INCLUDED? NO YES

13. CHANGES IN SITE CONDITIONS/DELAYS/CONFLICTS (EXPLAIN): N/A	
14. DID A DELAY OR WORK STOPPAGE OCCUR TODAY? No Yes – If Yes, Explain: N/A	
15. HAS ANYTHING DEVELOPED IN THE WORK, WHICH MAY LEAD TO A CHANGE? No ☐ Yes − If Yes, Explain:	
16. VERBAL INSTRUCTIONS RECEIVED: N/A	
17. REMARKS: N/A	
18. CONTRACTOR VERIFICATION STATEMENT:	
This report is complete and correct and all materials and equipment used and work perform during this reporting period are in compliance with the contract plans and specifications exceas noted above.	
Greg Bright 12/2/09	
Contractor Quality Control System Manager Date or Authorized Representative	
19. USACE QUALITY ASSURANCE REPORT:	
Quality Assurance Representative's Remarks and/or Exceptions to the Report	
USACE Quality Assurance Representative Date	

HEALTH & SAFETY REPORT

SITE NAME	SITE ADI	DRESS	CITY		STATE	ZIP CODE
Aiddlesex Municipal Landfill	Mountair	ı Ave.	Middlesex		NJ	08846
21. H&S SUMMARY	7.					
WERE THERE ANY AC DESCRIPTION	CCIDENTS ON SITE	TODAY ?			YES	⊠ NO
WERE THERE ANY NE DESCRIPTION		TE TODAY ?			YES	⊠ NO
WERE THERE ANY HE DESCRIPTION		INCIDENTS ON	SITE TODAY?:		YES	⊠ NO
WERE THERE ANY HE DESCRIPTION		ISSUES / OBSE	RVATIONS?: \(\subseteq \text{ YE}	ES	⊠ N	0
PECOMMENDATION()	S) FOR HEALTH OR	O SAFETV ISSIII	ES / OBSERVATIONS:	N/A		
22. SUMMARY OF V	WORK PERFORN	MED:				
2: BUNINIMIKI OI	OME I LIM OM					
TUDE OF WODE, I	Dwigh Classing					
TYPE OF WORK: I	Brush Clearing					
CHEMICALS USEI						
	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI PPE LEVEL: Level	D: Gasoline, Diesel		D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRII	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	D INCID			
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	INCID		DESCRI I	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time * ATTACHMENTS: CABRERA Incider	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	INCID			

CABRERA SERVICES, INC. DAILY QUALITY CONTROL REPORT

1. SITE LOCATION: Middlesex, New Jersey DATE: 12/4/09

PROJECT NAME: Middlesex Municipal Landfill FUSRAP Site REPORT No.: 120409-03

TASK(S) #: 2.1

FIELD OPERATIONS LEAD: Greg Bright CQCSM: Greg Bright

2. TODAY'S WEATHER: Temp Range: 38 – 48 degrees

Precipitation Last 24 Hours: N/A Type: N/A Amount: N/A

Weather Delays: \square No \square Yes Hours: $\underline{N/A}$

3. SUMMARY OF WORK PERFORMED TODAY:

- Cabrera personnel mobilized to job site
- Phillips & Sons onsite to perform brush clearing
- Performed quality control on radiological instrumentation
- Finished instrument QC on the CLASS surveying equipment
- Prepared for starting CLASS surveys next week by collecting key GPS locations
- Phillips & Sons complete brush clearing
- Cabrera and subcontractors demobilized from site

4. MATERIALS & EQUIPMENT BROUGHT ON SITE:

- Brush clearing equipment (mowers, tractors, ATV, wood chipper)
- Radiological instrumentation

INSPECTIONS & TESTING

5	IN	SP	Tr (\sim	TT/	1	JC	
J.	IIN	ЭĽ	r.			JI.	1.7	

TYPE		DESCRIPTION	ACTION
N/A			
RE ANY DEF XPLAIN:	TCIENCIES	NOTED IN FOLLOW UP INSPECTION	NS? NO YES – IF YES
. DEFICIEN	CIES CORR	ECTED THIS DATE:	
DEFICIENCY NO.	QC REPORT REFERENCE	DESCRIPTION	ACTION
N/A			
. TESTS PE	RFORMED:		
SDECIEICA TION	XT		
SPECIFICATION SECTION/ REFERENCE	ТҮРЕ	TEST AND RE	SULTS
N/A			
N/A			
N/A	SULTS ATT	ACHED? NO YES – IF NO, EXPL	AIN:
N/A	SULTS ATT	ACHED? NO YES – IF NO, EXPL	AIN:
N/A	SULTS ATT	ACHED? NO YES – IF NO, EXPL	AIN:
N/A	SULTS ATT	ACHED? NO YES – IF NO, EXPL	AIN:

MANPOWER & EQUIPMENT REPORT

8. PRIME CONTRACTOR ON SITE TODAY: CABRERA SERVICES, INC.

EMPLOYEE NAME	TITLE	TASKS PERFORMED	HOURS WORKED: TODAY
Greg Bright	Field Site Manager	Mobilization/Instrument QC	8.5
Shawn Googins	Certified Health Physicist	Mobilization/ Instrument QC	3.0
Althea Williams	HP Tech	Mobilization/ Instrument QC	8.5
		Total Hours	20.0

9. SUBCONTRACTORS ON SITE TODAY:

SUBCONTRACTOR NAME	JOB DUTY	NO. MEN	TASKS PERFORMED TODAY	HOURS WORKED: TODAY
Phillips & Sons	Brush Clearing	7	Brush Clearing	8.5
			Total Hours	59.5

10. EQUIPMENT / MATERIALS ON SITE:

VENDOR	EQUIPMENT	ACTIVE/ IDLE
N/A		

WASTE & SAMPLING REPORT

CONTAINER		SOLID, LIQUID OR MIXED		OUNT or TONS)	CONTAINER TYPE	DES	SCRIPTION OF WASTE		DISPOSITION OR LOCATION OF CONTAINER
'A									
TTACH SEP	ARATE	TOTAL PAGES	AS N	EEDEI	D. SEPARA	TE PA	GES INCL	UDED?	
ATTACH SEP		PAGES				TE PA	GES INCL	UDED?	□NO □YE
	COLLEC	PAGES CTION &			5:	TE PA		UDED?	□NO □YE
	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT		ALYSIS	S: TE ANAL		DATE RESULTS DUE		□NO □YES
2. SAMPLE (MEDIA TYPE (SOIL	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		

ATTACH SEPARATE PAGES AS NEEDED. SEPARATE PAGES INCLUDED? NO YES

13. CHANGES IN SITE CONDITIONS/DELAYS/CONFLICTS (EXPLAIN): N/A	
14. DID A DELAY OR WORK STOPPAGE OCCUR TODAY? No Yes – If Yes, Explain: N/A	
15. HAS ANYTHING DEVELOPED IN THE WORK, WHICH MAY LEAD TO A CHANGE? No ☐ Yes − If Yes, Explain:	
16. VERBAL INSTRUCTIONS RECEIVED: N/A	
17. REMARKS: N/A	
18. CONTRACTOR VERIFICATION STATEMENT:	
This report is complete and correct and all materials and equipment used and work perform during this reporting period are in compliance with the contract plans and specifications exceas noted above.	
Greg Bright 12/2/09	
Contractor Quality Control System Manager Date or Authorized Representative	
19. USACE QUALITY ASSURANCE REPORT:	
Quality Assurance Representative's Remarks and/or Exceptions to the Report	
USACE Quality Assurance Representative Date	

HEALTH & SAFETY REPORT

SITE NAME	SITE ADI	DRESS	CITY		STATE	ZIP CODE
Aiddlesex Municipal Landfill	Mountair	ı Ave.	Middlesex		NJ	08846
21. H&S SUMMARY	7.					
WERE THERE ANY AC DESCRIPTION	CCIDENTS ON SITE	TODAY ?			YES	⊠ NO
WERE THERE ANY NE DESCRIPTION		TE TODAY ?			YES	⊠ NO
WERE THERE ANY HE DESCRIPTION		INCIDENTS ON	SITE TODAY?:		YES	⊠ NO
WERE THERE ANY HE DESCRIPTION		ISSUES / OBSE	RVATIONS?: \(\subseteq \text{ YE}	ES	⊠ N	0
PECOMMENDATION()	S) FOR HEALTH OR	O SAFETV ISSIII	ES / OBSERVATIONS:	N/A		
22. SUMMARY OF V	WORK PERFORN	MED:				
2: BUNINIMIKI OI	OME I LIM OM					
TUDE OF WODE, I	Dwigh Classing					
TYPE OF WORK: I	Brush Clearing					
CHEMICALS USEI						
	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI PPE LEVEL: Level	D: Gasoline, Diesel		D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRII	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	D INCID			
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	INCID		DESCRI I	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time * ATTACHMENTS: CABRERA Incider	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	INCID			

CABRERA SERVICES, INC. DAILY QUALITY CONTROL REPORT

1. SITE LOCATION: Middlesex, New Jersey DATE: 12/4/09

PROJECT NAME: Middlesex Municipal Landfill FUSRAP Site REPORT No.: 120409-03

TASK(S) #: 2.1

FIELD OPERATIONS LEAD: Greg Bright CQCSM: Greg Bright

2. TODAY'S WEATHER: Temp Range: 38 – 48 degrees

Precipitation Last 24 Hours: N/A Type: N/A Amount: N/A

Weather Delays: \square No \square Yes Hours: $\underline{N/A}$

3. SUMMARY OF WORK PERFORMED TODAY:

- Cabrera personnel mobilized to job site
- Phillips & Sons onsite to perform brush clearing
- Performed quality control on radiological instrumentation
- Finished instrument QC on the CLASS surveying equipment
- Prepared for starting CLASS surveys next week by collecting key GPS locations
- Phillips & Sons complete brush clearing
- Cabrera and subcontractors demobilized from site

4. MATERIALS & EQUIPMENT BROUGHT ON SITE:

- Brush clearing equipment (mowers, tractors, ATV, wood chipper)
- Radiological instrumentation

INSPECTIONS & TESTING

5	IN	SP	Tr (\sim	TT/	1	JC	
J.	IIN	ЭĽ	r.			JI.	1.7	

TYPE		DESCRIPTION	ACTION
N/A			
RE ANY DEF XPLAIN:	TCIENCIES	NOTED IN FOLLOW UP INSPECTION	NS? NO YES – IF YES
. DEFICIEN	CIES CORR	ECTED THIS DATE:	
DEFICIENCY NO.	QC REPORT REFERENCE	DESCRIPTION	ACTION
N/A			
. TESTS PE	RFORMED:		
SDECIEICA TION	XT		
SPECIFICATION SECTION/ REFERENCE	ТҮРЕ	TEST AND RE	SULTS
N/A			
N/A			
N/A	SULTS ATT	ACHED? NO YES – IF NO, EXPL	AIN:
N/A	SULTS ATT	ACHED? NO YES – IF NO, EXPL	AIN:
N/A	SULTS ATT	ACHED? NO YES – IF NO, EXPL	AIN:
N/A	SULTS ATT	ACHED? NO YES – IF NO, EXPL	AIN:

MANPOWER & EQUIPMENT REPORT

8. PRIME CONTRACTOR ON SITE TODAY: CABRERA SERVICES, INC.

EMPLOYEE NAME	TITLE	TASKS PERFORMED	HOURS WORKED: TODAY
Greg Bright	Field Site Manager	Mobilization/Instrument QC	8.5
Shawn Googins	Certified Health Physicist	Mobilization/ Instrument QC	3.0
Althea Williams	HP Tech	Mobilization/ Instrument QC	8.5
		Total Hours	20.0

9. SUBCONTRACTORS ON SITE TODAY:

SUBCONTRACTOR NAME	JOB DUTY	NO. MEN	TASKS PERFORMED TODAY	HOURS WORKED: TODAY
Phillips & Sons	Brush Clearing	7	Brush Clearing	8.5
			Total Hours	59.5

10. EQUIPMENT / MATERIALS ON SITE:

VENDOR	EQUIPMENT	ACTIVE/ IDLE
N/A		

WASTE & SAMPLING REPORT

CONTAINER		SOLID, LIQUID OR MIXED		OUNT or TONS)	CONTAINER TYPE	DES	SCRIPTION OF WASTE		DISPOSITION OR LOCATION OF CONTAINER
'A									
TTACH SEP	ARATE	TOTAL PAGES	AS N	EEDEI	D. SEPARA	TE PA	GES INCL	UDED?	
ATTACH SEP		PAGES				TE PA	GES INCL	UDED?	□NO □YE
	COLLEC	PAGES CTION &			5:	TE PA		UDED?	□NO □YE
	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT		ALYSIS	S: TE ANAL		DATE RESULTS DUE		□NO □YES
2. SAMPLE (MEDIA TYPE (SOIL	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		
2. SAMPLE (SAMPLE ID	MEDL TYPE (SOIL WATE)	PAGES CTION & A SAM INIT	ANA	ON-SIT	S: TE ANAL		DATE RESULTS		

ATTACH SEPARATE PAGES AS NEEDED. SEPARATE PAGES INCLUDED? NO YES

13. CHANGES IN SITE CONDITIONS/DELAYS/CONFLICTS (EXPLAIN): N/A	
14. DID A DELAY OR WORK STOPPAGE OCCUR TODAY? No Yes – If Yes, Explain: N/A	
15. HAS ANYTHING DEVELOPED IN THE WORK, WHICH MAY LEAD TO A CHANGE? No ☐ Yes − If Yes, Explain:	
16. VERBAL INSTRUCTIONS RECEIVED: N/A	
17. REMARKS: N/A	
18. CONTRACTOR VERIFICATION STATEMENT:	
This report is complete and correct and all materials and equipment used and work perform during this reporting period are in compliance with the contract plans and specifications exceas noted above.	
Greg Bright 12/2/09	
Contractor Quality Control System Manager Date or Authorized Representative	
19. USACE QUALITY ASSURANCE REPORT:	
Quality Assurance Representative's Remarks and/or Exceptions to the Report	
USACE Quality Assurance Representative Date	

HEALTH & SAFETY REPORT

SITE NAME	SITE ADI	DRESS	CITY		STATE	ZIP CODE
Aiddlesex Municipal Landfill	Mountair	ı Ave.	Middlesex		NJ	08846
21. H&S SUMMARY	7.					
WERE THERE ANY AC DESCRIPTION	CCIDENTS ON SITE	TODAY ?			YES	⊠ NO
WERE THERE ANY NE DESCRIPTION		TE TODAY ?			YES	⊠ NO
WERE THERE ANY HE DESCRIPTION		INCIDENTS ON	SITE TODAY?:		YES	⊠ NO
WERE THERE ANY HE DESCRIPTION		ISSUES / OBSE	RVATIONS?: \(\subseteq \text{ YE}	ES	⊠ N	0
PECOMMENDATION()	S) FOR HEALTH OR	O CAFETV ICCIII	ES / OBSERVATIONS:	N/A		
22. SUMMARY OF V	WORK PERFORN	MED:				
2: BUNINIMIKI OI	OME I LIM OM					
TYPE OF WORK, I	Dwigh Classing					
TYPE OF WORK: I	Brush Clearing					
CHEMICALS USEI						
	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI	D: Gasoline, Diesel					
CHEMICALS USEI PPE LEVEL: Level	D: Gasoline, Diesel		D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRII	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA	D: Gasoline, Diesel D ORT: NAME OF	Fuel REPORTE	INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE	D INCID	ENT	DESCRI	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	D INCID			
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	INCID		DESCRI I	PTION*
CHEMICALS USEI PPE LEVEL: Level 23. INCIDENT REPO TYPE First Aid OSHA Recordable Vehicle Accident Lost Time * ATTACHMENTS: CABRERA Incider	D: Gasoline, Diesel D ORT: NAME OF PERSON	Fuel REPORTE TO	INCID			

			Page 1 of 1
DAILY QUALITY CON	TROL REPORT	Date:	December 7, 2009
Zillzi gollzilli coll		Day:	Monday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	120709-04
Contract No.:	W912DQ-08-D-0003	Wind:	light
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	20-31° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Greg Bright, Althea Williams, Dennis Crisv	vell	
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	RTVOffice TrailerStorage ContainerRadiological instrumentation		
Work Performed:	 Cabrera personnel mobilized to job site Performed quality control on radiologica Office trailer, Storage container, and R surveys) onsite Performed gamma survey of wood chi background levels Cabrera demobilized from site 	ough-Terrain vehi	
Quality Control Activities:	None		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was co All work was performed in Level D.	nducted prior to	the start of work activities.
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:	None		
Tomorrow's Expectations:	Begin gamma survey.		
By: Greg Bright	TITLE: Field Site Manager (Cabrera Servic (m) 781-264-4445	es)	

			rage rorr
DAILY QUALITY CON	TROL REPORT	Date:	December 8, 2009
	TROL REFORT	Day:	Tuesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	120809-05
Contract No.:	W912DQ-08-D-0003	Wind:	light
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	24-39° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Greg Bright, Althea Williams, Dennis Criswell		
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	John from Hertz (delivering adapter to traile Solutions (preparing quote for providing electrons)		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation 		
Work Performed:	 Cabrera personnel mobilized to job site Performed quality control on radiological instrumentation Started drive-over gamma survey Cabrera demobilized from site 		
Quality Control Activities:	None		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:	None		
Tomorrow's Expectations:	Continue drive-over gamma survey		
By: Greg Bright	TITLE: Field Site Manager (Cabrera Services) (m) 781-264-4445		

			1 age 1 01 1
DAILY QUALITY CON	TROL REPORT	Date:	Date: December 9, 2009
	INOL NEI ONI	Day:	Tuesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	120909-06
Contract No.:	W912DQ-08-D-0003	Wind:	0-20 mph
Delivery Order No.:	0003	Humidity:	high
Cabrera Project No.:	08-3800.08	Weather:	Constant rain in AM, 34-44° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Greg Bright, Althea Williams, Dennis Criswo	ell	
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation 		
Work Performed:	 Cabrera personnel mobilized to job site Performed quality control on radiological instrumentation Sealed up detector and GPS connections from the rain Continued drive-over gamma survey Cabrera demobilized from site 		
Quality Control Activities:	None		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:	It rained all day, but by sealing up connections and electronics on the CLASS system with plastic, we were able to continue the drive-over survey.		
Tomorrow's Expectations:	Continue drive-over gamma survey		
By: Greg Bright	TITLE: Field Site Manager (Cabrera Services) (m) 781-264-4445		

			Page 1 01 1
DAILY QUALITY CON	TROL REPORT	Date:	December 10, 2009
Diller gorieri i con	TROL KEI OKI	Day:	Thursday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121009-07
Contract No.:	W912DQ-08-D-0003	Wind:	10-20 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	32-42° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Greg Bright, Althea Williams, Dennis Criswell		
Subcontractors On Site:	None		
USACE Personnel On Site:	Jough Donakowski – USACE KC		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation 		
Work Performed:	 Performed quality control on radiological instrumentation Continued drive-over gamma survey Performed walkover surveys in inaccessible areas to the RTV 		
Quality Control Activities:	None		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:	None		
Tomorrow's Expectations:	Continue drive-over gamma survey		
By: Greg Bright	TITLE: Field Site Manager (Cabrera Services) (m) 781-264-4445		

			1 age 1 01 1
DAILY QUALITY CON	TROL REPORT	Date:	December 11, 2009
		Day:	Friday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121109-08
Contract No.:	W912DQ-08-D-0003	Wind:	10-20 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	20-36° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Greg Bright, Althea Williams, Dennis Crisw	ell	
Subcontractors On Site:	Barry Phillips (onsite to collect lost keys)		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation 		
Work Performed:	 Performed quality control on radiological instrumentation Continued drive-over gamma survey Performed walkover surveys in inaccessible areas to the RTV 		
Quality Control Activities:	None		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:	None		
Tomorrow's Expectations:	Continue drive-over gamma survey		
By: Greg Bright	TITLE: Field Site Manager (Cabrera Services) (m) 781-264-4445		

			1 age 1 01 1
DAILY QUALITY CON	TROL REPORT	Date:	December 14, 2009
	TROE RETORT	Day:	Monday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121409-09
Contract No.:	W912DQ-08-D-0003	Wind:	0-10 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	40-48° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Greg Bright, Althea Williams, Dennis Crisw	vell	
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation 		
Work Performed:	 Performed quality control on radiological instrumentation Continued drive-over gamma survey Performed walkover surveys on church/Municipal Building property, where wet conditions could cause the RTV to damage the lawn 		
Quality Control Activities:	None		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:	None		
Tomorrow's Expectations:	Continue drive-over gamma survey		
By: Greg Bright	TITLE: Field Site Manager (Cabrera Services) (m) 781-264-4445		

		1	rage rorr
DAILY QUALITY CON	TROL REPORT	Date:	December 16, 2009
ZiiiZi goiiZii i oon	TROL RETORT	Day:	Wednesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-11
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	25-35° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Althea Williams, Dennis Criswell, Kevin Kosko		
Subcontractors On Site:	None		-
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation 		
Work Performed:	 Performed quality control on radiological instrumentation Continued drive-over gamma survey Investigated possibilities on how best to perform gamma walk-over surveys in wooded areas. 		
Quality Control Activities:	None		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:			
Tomorrow's Expectations:	Continue drive-over gamma survey		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

			Page 1 of 1	
DAILY QUALITY CON	TROL REPORT	Date:	December 17, 2009	
		Day:	Thursday	
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-12	
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph	
Delivery Order No.:	0003	Humidity:	low	
Cabrera Project No.:	08-3800.08	Weather:	22-30° F	
USACE Project Manager:	Helen Edge, NAN			
Cabrera Personnel On Site:	Althea Williams, Dennis Criswell, Kevin Ko	osko		
Subcontractors On Site:	None	None		
USACE Personnel On Site:	None			
Visitors On Site:	None			
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation Generator 			
Work Performed:	 Performed quality control on radiological instrumentation Continued drive-over gamma survey Investigated possibilities on how best to perform gamma walk-over surveys in wooded areas. 			
Quality Control Activities:	None			
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – cold stress.			
Problems Encountered/ Corrective Action Taken:	None			
Special Notes:				
Tomorrow's Expectations:	Continue drive-over gamma survey			
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655			

		•	Page 1 of 1
DAILY QUALITY CON	TROL REPORT	Date:	December 18, 2009
	THOE REPORT	Day:	Friday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-113
Contract No.:	W912DQ-08-D-0003	Wind:	0-10 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	24-34° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko		
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation Generator 		
Work Performed:	 Performed quality control on radiological instrumentation Continued drive-over gamma survey 		
Quality Control Activities:	None		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – slips/trips/falls.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:			
Tomorrow's Expectations:	Continue drive-over gamma survey as weather permits, potential heavy snow over the weekend.		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

			Page 1 of 1
DAILY QUALITY CON	TROL REPORT	Date:	January 4, 2010
DAILI QUALITI CON	TROL REFORT	Day:	Monday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-114
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	15-24° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Althea Williams, Dennis Criswell, Kevin Ko	osko	
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation Generator 		
Work Performed:	 Performed quality control on radiological instrumentation Routine surveys Walk Over surveys 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – Be aware of your walking surface. GPS on the CLASS System malfunctioned. Initially the team and SME thought it was		
Problems Encountered/ Corrective Action Taken:	a battery problem but after 2 hours of charging the unit remained inoperable. Replacement parts would not arrive on site until at least 1030 hrs 1/05/10 so the decision was made to send Dennis Criswell to the East Hartford office to retrieve replacement parts.		
Special Notes:	None		
Tomorrow's Expectations:	Correct CLASS System GPS issue and continue drive-over surveys.		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

		1	Page 1 of 1
DAILY QUALITY CON	TROL REPORT	Date:	January 5, 2010
ZIIIII QUALIII CON	ANOLINIA OMI	Day:	Tuesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-115
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	18-30° F
USACE Project Manager:	Helen Edge, NAN	•	-
Cabrera Personnel On Site:	Althea Williams, Dennis Criswell, Kevin Ke	osko	
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation Generator Performed quality control on radiological instrumentation		
Work Performed:	 Performed maintenance on equipment Routine surveys Drive over surveys Over surveys 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – Be aware of your surroundings.		
Problems Encountered/ Corrective Action Taken:	GPS on the CLASS System malfunctioned; the team contacted Cabrera SME Joe Weismann and corrected the problem. Drive over surveys resumed at 0900 with no additional issues.		
Special Notes:	None		
Tomorrow's Expectations:	Continue drive-over surveys.		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

		ī	Page 1 of 1
DAILY QUALITY CON	TROL REPORT	Date:	January 6, 2010
Zindi gondini con	INOLINI ONI	Day:	Wednesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-116
Contract No.:	W912DQ-08-D-0003	Wind:	0-10 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	24-32° F
USACE Project Manager:	Helen Edge, NAN	1	
Cabrera Personnel On Site:	Althea Williams, Dennis Criswell, Kevin Ko	osko	
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation Generator 		
Work Performed:	 Performed quality control on radiological instrumentation Routine surveys Drive over surveys 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – Avoid Pinch Points.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:	None		
Tomorrow's Expectations:	Continue drive-over surveys.		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

		Date:	January 11, 2010
DAILY QUALITY CON	TROL REPORT	Day:	Monday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-118
Contract No.:	W912DQ-08-D-0003	Wind:	0-5 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	24-32° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Althea Williams, Dennis Criswell, Kevin Ko	osko, Ann Jacob	os
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation Generator 		
Work Performed:	 Performed quality control on radiological instrumentation Routine surveys Drive over surveys Walk over surveys 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – Driving safety while operating CLASS in public areas.		
Problems Encountered/ Corrective Action Taken:	The CLASS system malfunctioned; we contacted J Weisman and the manufacture for troubleshooting assistance. The unit was brought online ~1200hrs.		
Special Notes:	None		
Tomorrow's Expectations:	Continue drive-over/walk-over surveys.		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

			rage rorr
DAILY QUALITY CON	TROL REPORT	Date:	January 12, 2010
Zinzi genziri een		Day:	Tuesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-119
Contract No.:	W912DQ-08-D-0003	Wind:	0-10 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	24-35° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Ann Jacobs		
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation Generator 		
Work Performed:	 Performed quality control on radiological instrumentation Drive over surveys of field and church Walk over surveys 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – Review of NJDEP requirements for intrusive work at MML.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:	None		
Tomorrow's Expectations:	Complete drive-over/walk-over surveys in the church yard and begin survey of municipal property.		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

			Page I of I
DAILY QUALITY CON	TROL REPORT	Date:	January 13, 2010
Differ general con-	TROERETORI	Day:	Wednesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-120
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	25-42° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Ann Jacobs,	Althea William	ıs
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	Rob from the Borough Maintenance crew sto that will facilitate GWS of Municipal Buildi	* *	rdinate moving vehicles
Equipment On Site:	 RTV Office Trailer Storage Container Radiological instrumentation Generator 		
Work Performed:	 Performed quality control on radiological instrumentation Drive over surveys of field, municipal building lot and church lot Walk over surveys 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – Interacting with public		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:	Met with Ms. Kathy Anello Middlesex Borough Clerk to discuss the possibility of moving emergency vehicles, trailers and trash dumpsters on the Municipal building property in order to access areas for survey. Ms Anello stated that she would arrange to have everything that will start moved beginning tomorrow morning.		
Tomorrow's Expectations:	Complete drive-over/walk-over surveys in the Municipal Building yard and Recycle Plant.		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

	T	Page 1 of 1
TROL REPORT	Date:	January 18, 2010
	Day:	Monday
Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-122
W912DQ-08-D-0003	Wind:	0-10 mph
0003	Humidity:	low
08-3800.08	Weather:	27-47° F
Helen Edge, NAN		
Dennis Criswell, Chris Boes, Ann Jacobs, A	lthea Williams	
None		
None		
None		
 RTV Office Trailer Storage Container Radiological instrumentation Generator 		
 Performed quality control on radiological instrumentation Drive over surveys of field, and southern perimeter between Mountain Rd and fence Walk over surveys in woods. Lay out survey grids in woods. Completed drive-over survey. 		
Instrumentation daily QC		
A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – Dangerous footing in woods.		
None		
Demobilize RTV, continue walk-over surveys in woods and continue to establish grids in the woods.		
TITLE: Project Manager (Cabrera Services) 410-371-2267 (cell)		
	Site Investigation W912DQ-08-D-0003 08-3800.08 Helen Edge, NAN Dennis Criswell, Chris Boes, Ann Jacobs, A None None None - RTV - Office Trailer - Storage Container - Radiological instrumentation - Generator - Performed quality control on radiological in the woods Lay out surveys in woods Completed drive-over survey. Instrumentation daily QC A tailgate health and safety meeting was condall work was performed in Level D. Health woods. None Demobilize RTV, continue walk-over survey in the woods. TITLE: Project Manager (Cabrera Services)	Middlesex Municipal Landfill FUSRAP Site Investigation W912DQ-08-D-0003 Wind: 0003 Humidity: 08-3800.08 Weather: Helen Edge, NAN Dennis Criswell, Chris Boes, Ann Jacobs, Althea Williams None None None - RTV - Office Trailer - Storage Container - Radiological instrumentation - Generator - Performed quality control on radiological instrumentation - Drive over surveys of field, and southern perimeter between - Walk over surveys in woods Lay out survey grids in woods Completed drive-over survey. Instrumentation daily QC A tailgate health and safety meeting was conducted prior to All work was performed in Level D. Health and Safety topic woods. None Demobilize RTV, continue walk-over surveys in woods and in the woods. TITLE: Project Manager (Cabrera Services)

			rage 1 01 1
DAILY QUALITY CON	TROL REPORT	Date:	January 19, 2010
		Day:	Monday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-123
Contract No.:	W912DQ-08-D-0003	Wind:	0-10 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	32-44° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Chris Boes, Ann Jacobs, A	lthea Williams,	Kevin Kosko
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	- RTV - Office Trailer - Storage Container - Radiological instrumentation - Generator		
Work Performed:	 Performed quality control on radiological instrumentation Walk over surveys in woods. Lay out survey grids in woods. Prepared RTV for demobilization and performed release survey. 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – Dangerous footing in woods.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:			
Tomorrow's Expectations:	Release of RTV and demobilize. Conduct walk-over surveys in woods and continue to establish grids in the woods. Initiate surface soil sampling.		
By: Chris Boes	TITLE: Project Manager (Cabrera Services) 410-371-2267 (cell)		

			Page I of I
DAILY QUALITY CON	TROI REPORT	Date:	January 20, 2010
DAILI QUALITI CON	TROL REI ORI	Day:	Wednesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-124
Contract No.:	W912DQ-08-D-0003	Wind:	0-10 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	32-44° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Ann Jacobs,	Stephan Owe, A	Althea Williams
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	Mr. John – portable restroom service		
Equipment On Site:	 Office Trailer Storage Container Radiological instrumentation Generator 		
Work Performed:	 Performed quality control on radiological instrumentation Walk over survey of the woods in the northwest area of the property. Prepare for surface soil sampling by locating and flagging all sample locations and organizing sampling containers. 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – continue working safely, being mindful of the surrounding; watch out for ice and other fall hazards;		
Problems Encountered/ Corrective Action Taken:	Experienced problems uploading waypoints to GPS receiver. Problem was rectified by using a printout of the waypoints and manually locating the points with the GPS unit.		
Special Notes:	Kevin Kosko, the field site lead, departed the site early due to a family emergency. He will return on-site on Monday, and is still accessible by phone.		
Tomorrow's Expectations:	Continue walkover survey of wooded area and begin surface soil sampling.		
By: Althea Williams	TITLE: Site Radiation Lead (Cabrera Services) (w) (410)-332-8177		

			rage 1 01 1
DAILY OUALITY CON	QUALITY CONTROL REPORT	Date:	January 21, 2010
Zinzi goniziri con		Day:	Thursday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-125
Contract No.:	W912DQ-08-D-0003	Wind:	0-10 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	32-44° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Ann Jacobs, Stephan Owe,	Althea William	ns
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 Office Trailer Storage Container Radiological instrumentation Generator 		
Work Performed:	 Performed quality control on radiological instrumentation Completed gamma walkover survey of MML woods. Collect and shipped 27 (25 sample locations, 2 duplicates) surface soil samples. Five of the samples were analyzed for TAL and chemicals (VOCs, SVOCS, PCBs, etc) and 2 were analyzed for TCLP. 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was con All work was performed in Level D. Health		
Problems Encountered/ Corrective Action Taken:	Readings were collected with a PID and methane meter at all surface sample locations. These reading did not return any values. Chris Boes (project manager) and Joe Weismann (project health physicist) were contacted and they selected the locations that required chemical analysis and TCLP analysis based on previous investigations and data.		
Special Notes:	Due to the completion of the gamma walkover surveys and the surface soil samples and the availability of the geoprobe and excavation contractors the crew will be working from Tuesday to Friday of next week.		
Tomorrow's Expectations:	Begin preparations for test pitting and excavation.		
By: Althea Williams	TITLE: Site Radiation Lead (Cabrera Services) (w) (410)-332-8177		

			rage 1 01 1
DAILY QUALITY CON	TROL REPORT	Date:	January 26, 2010
		Day:	Tuesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-126
Contract No.:	W912DQ-08-D-0003	Wind:	0-5 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	30-45° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Ann Jacobs,	Althea William	s, John Oliver
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	Hertz and Bobcat equipment delivery		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Generator Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Walk over surveys to fill in gaps Lay out survey grids in woods. 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:	A tailgate health and safety meeting was conducted prior to the start of work activities. All work was performed in Level D. Health and Safety topic – Safe operations around heavy equipment.		
Problems Encountered/ Corrective Action Taken:	None		
Special Notes:	Due to heavy rains over the weekend areas a substantial portion of the wooded area is under water.		
Tomorrow's Expectations:	Start Geo-probe and test pits		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

			rage 1 01 1
DAILY QUALITY CON	TROL REPORT	Date:	January 27, 2010
~		Day:	Wednesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-127
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	30-42° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Ann Jacobs,	Althea William	s, John Oliver
Subcontractors On Site:	EPI Drillers		
USACE Personnel On Site:	None		
Visitors On Site:	Pine Environmental equipment delivery		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Generators (3) Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Completed test pits 1,5 and 6 Began geo-probing at location C-6 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:			
Problems Encountered/ Corrective Action Taken:	IH instrumentation that had been ordered was not delivered thereby delaying geo-probe		
Special Notes:	Due to heavy rains over the weekend areas a substantial portion of the wooded area is under water.		
Tomorrow's Expectations:	Continue test pits, geo-probing and brush clearing.		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

Page 1 of 2

			Page 1 of 2
DAILY QUALITY CON	TRAL REPART	Date:	January 28, 2010
DAILI QUALITI CON	I NOL NEI ONI	Day:	Thursday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-128
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	30-42° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Ann Jacobs,	Althea William	s, John Oliver
Subcontractors On Site:	EPI Drillers (Scott Crawford, Warren Atkins	son)	
USACE Personnel On Site:	None		
Visitors On Site:	Bobcat of Central New Jersey – mechanic fo	or skidsteer.	
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Generators (3) Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Completed test pits 3, 8 and 9. Completed geo-probes C6 and C8. Continued brush clearing. Staked surface soil locations in wooded area and remaining test pits. 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:			
Problems Encountered/ Corrective Action Taken:	Excavation of TP-3 temporarily suspended due to elevated methane levels. Area was evacuated until levels diminished; no additional delays resulted. Experiencing difficulties with inserting PVC casing for downhole gamma logging in geo-probes due to borehole diameter and borehole collapse. Scheduled delivery of larger drill rig to be brought on site and geo-probe operations suspended. The rotary cutter on skidsteer did not work, Bobcat of Central NJ on site for repairs.		
Special Notes:	During excavation of TP-9 encountered a radium dial clock and piece of concrete. The piece of concrete had a count rate of approximately 40,000 cpm. Due to heavy rains over the weekend areas a substantial portion of the wooded area is under water. Groundwater was encountered in the geo-probe location C8 at a depth of 8 to 12 ft bgs.		
Tomorrow's Expectations:	Continue test pits, complete brush clearing. Surface soil samples will be collected from wooded area.		

Due Vanin Vaska	TITLE: Field Site Manager (Cabrera Services)
By: Kevin Kosko	(m) 330-397-1756, (937) 470-2655

			rage 1 01 1
DAILY QUALITY CON		Date:	January 29, 2010
Zinzi gondin con		Day:	Friday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-129
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	30-42° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Ann Jacobs,	Althea William	s, John Oliver
Subcontractors On Site:	EPI Driller Scott Crawford		
USACE Personnel On Site:	None		
Visitors On Site:	Bobcat to pick up skidsteer		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Generators (3) Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Completed test pits 2,4,7 and 10 Continued GWS to fill in gaps Released skidsteer back to Bobcat 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:			
Problems Encountered/ Corrective Action Taken:			
Special Notes:	None		
Tomorrow's Expectations:	Surface soil sampling; complete GWS in previously inaccessible areas of the woods.		
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655		

Page 1 of 2

			rage 1 01 2
DAILY QUALITY CON	TROL REPORT	Date:	February 2, 2010
Zinzi gondin con		Day:	Tuesday
Project:	Project: Middlesex Municipal Landfill FUSRAP Site Investigation		121509-130
Contract No.:	W912DQ-08-D-0003	Wind:	0-5 mph
Delivery Order No.:	0003	Humidity:	low
Cabrera Project No.:	08-3800.08	Weather:	30-42° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Ann Jacobs, Owe	Althea William	s, John Oliver, Stephan
Subcontractors On Site:	None		
USACE Personnel On Site:	None		
Visitors On Site:	Pine Environmental to drop off a PID meter		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Generators (3) 		
Work Performed:	 Performed quality control on radiological instrumentation Completed (8) soil samples in wooded area and prepared for shipment Completed GWS survey 		
Quality Control Activities:	Instrumentation daily QC		
Health And Safety Levels And Activities:			
Problems Encountered/ Corrective Action Taken:	6		
Special Notes:	Scanned copies of the test pit logs are attached for review. They detail radiological, PID and LEL readings every 6" lift as well as a description of the soil's physical properties. Direct readings of the ground surface before and after surface soil sampling (in the woods) is included in a chart below.		

Page 2 of 2

Tomorrow's Expectations:	Ship soil samples, begin geo-probe operations with new (larger) rig, and perform release survey on excavator.
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

Sample Location	Reading before sample (cpm)	Reading after sample (cpm)	Comments
MML-SSW01-P-0.0-0.5	19K	21K	Sample taken under rock that read 62,910 cpm.
MML-SSW02-P-0.0-0.5	29K	31K	
MML-SSW03-P-0.0-0.5	27K	27K	
MML-SSW04-P-0.0-0.5	140K	163K	
MML-SSW05-P-0.0-0.5	131K	168K	
MML-SSW06-P-0.0-0.5	56K	72K	
MML-SSW07-P-0.0-0.5	18K	20K	Sample taken in directed location that did not exhibit elevated radiological readings.
MML-SSW07-P-0.0-0.5	29K	34K	

Project: Middlesex Municipal Landfill
Project Location: Middlesex Borough, NJ
Project Number: 08-3800.08

TEST PIT LOG
No.: TP-41

Date(s) Excavated 1/27/10	Logged By J. Oliver	Checked By A. Williams
Length of Excavation	Width of Excavation	Depth of Excavation 7.8
Excavation Mini Executator Equipment	Excavation Contractor EPI	Approx. Surface NA
Water Observations		Weather Sunny Cold
Test Pit 492830.6 / 6	35387.7 (feet)	Surface Condition Grassy, wet

	Depth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
	0		Sandy Clay, very fine, brown. Organic Material. Wet, Soft.	14-16k LeL& PIDG
E	.5.1		Very fine Sandy Clay Some Sitt. Dense. Slightly moist. DK Brown.	14-175. Lela PIDO
E	12		Very fine Sand. Some Silt. Dense. Some mottling. Slightly moist. DK. Brown	15-21K LeLY PIDD
E	1.5 -3		Very-fine Sand. Some Clay. D.K. Brown. Mottled Trace Granel. Moist. Plastic.	15-17K Leco PIDO
E	2 4		Very fine 3 and. Some Clay, Moist, Plastic. DKBro. Mottled. Trace grave 1.	10. 14-17K LEL Ø
E	2.5.5		Very fine Sand, Some Clay Dense Plastic mottling Dk. Brown Wet. Trace Gravel Construction Debris	P. Dd 15-19K
E	3.8		fire Sand, Some Silt Trace (lay for a & Arcale)	15-19K
E	3.5.7		medium Brown Trace fine grants. Small amounts of trash. Medium Sand. Clay lenses. Dt Biown, very mosst. Plast C. Heavily morted some coorse graves 1/2" Angular Construction Delication.	LEC P PID Ø 19-26K 25132CPM
	48		Coarse Sand Significant amounted transitings, municipalment	Lec 4) P100
E	4.5.9		De Brown. Trash is becoming more prominent Coarse Sond. Significant trash. Moist loose De Brown.	15-20K Wuremon. Lely Dirtpill PIDO Turemahole.
E	5 10		DE Brown.	LELD PLOD
Ē	55 41		Coarse Sand. Significant trash. We + 100Sc. DK Brain	1214
E	ie 12		Fine Sand, Some Sitt. Clay Streaks. Heavily mottled Red (Gray & H. brown, wet. Some fine grave) + Municipal wask Prominant throughout.	PIDØ 16-18K LELØ
E	6.5 13		debris/trash, organic oder present	PiDG 14-16 K Let &
E	1.0		Med Sand, some silty clay, trash, dark	PID &
	7 14		brown, wet, organic odor present TD@ 7.8 ft has	16-17K LeL & PID &

Project: Middlesex Municipal Landfill

Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

TEST PIT LOG

Logged By S. Owe	Checked By A. Williams
Width of 2 ft	Depth of Excavation 8 ft bg 5
E-position = 0.1	Approx. Surface Plev.
	Weather Cold
Observations Test Pit 492661.3 /635251.7 (feet) Location	
	Width of Excavation 2 ft Excavation Contractor EPI

Jepth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
_		Sand, fine to very fine, some	14-16K
E]		silt, some om, brown, dry	14-16. K
= 0.51			
E		V	Le 18 PID 8
1.0 2		mostly Glass debris, Sand, fine	
E]		to very fine, some silt, some large angular gravel, brown, dry	Lel & PID &
E 1.5 %		angular gravel, brown, dry	14-15-K
E 2.0 /		V	12-15 K
E 2.07	•	Sand, fine to very fine, brown,	1
E 2.5 8		large angular gravel, debris	Le 1 Ø P10 Ø
E		I Reddish brown	Lel & PID &
= 3.0 \$		Sand, fine to very fine, reddish	14-16 K
E		brown, loose, trace silt, moist	Lel & PID &
E 3.5		1	1 1 1 2 3
F		V	Le18 PID 0 15-17K
E 4.08	-		
E			15-17 K
= 4.5 %		Sand, fine to very fine, reddish	
5.010		brown, loose, morst, trace silt	Lel & PID &
E		Sand, fine to very fine, reddish	1
E 5.5 11	<u> </u>	brown, loose, moist	Le18 PID &
= *		Some peagravel, rounded	
E 6.0 12	, <u> </u>		Le18 PID Q
-	and the second		
E 6.5 13	1	Sand for to rear fine coddish	Lel & P10 &
F		Sand, fine to very fine, reddish brown, loose, moist, trace med rounded	Lel & P100
F 7,014			Leig PIDG
E 7.5		1	Lel & PID & 141-16 K Page
f Test Pit, REV 0			Lel & PIDO
8.0		<u>V</u>	Lei & FIUG

Project: Middlesex Municipal Landfill

Project Location: Middlesex Borough, NJ

Project Number: 08-3

08-3800.08

TEST PIT LOG

No.: TP- Ø3

Date(s) Excavated 1/28/10	Logged By S. Owe	Checked By A. Williams
Length of SH	Width of Excavation 2 + +	Depth of Excavation & F+
Excavation Mini Excavator	Excavation Contractor EPI	Approx. Surface Elev. NA
Water Observations	a 9	Weather Snow, Cold
Test Pit 49 Z 75-1.7 /	635173.2 (feet)	Surface Condition Grassy

te e	ype	MATERIAL DESCRIPTION	CPM
Depth, Feet	Sample Type Sample Number	Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg.	°/- TESTS
eptt	Sar Nur	Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet,	PPM
0	Sa	little coase GRAVEL, few fines, weak cementation, stratified.	* * **********************************
E "		Clay, some sand, with coarse	21- ZZK
		gravel, reddish brown, OM	Lei &
_ 0.5 1		7	
F '		Clay, some sand, with coarse	23-24K
Ε , ,		gravel, reddish brown	Lel &
- 1.07			PIOB
E		Sandy Silt, very fine, olive	20-21K
- 1.5 p	1	green, firm	P10.8
F " P		Sandy Gravel, medium, dark	20-23K
2.0 4	***************************************	promu	F10 8
F /		Silty Sand, dark brown, loose,	21-ZZK
E			Le17%.
2.5 \$			P10 0:5
E			21-23K
= 3.0 g			Lel 6'l.
F 3.0 P		4 3	21-Z3K
		debris	
- 3.5 X	-		Lel 5 %. PID 0 · l
F '		debris	20-21K
E /		VI acois	Lel 3%.
E 4.0 8	-		PID 0.3
E		Sand, some silt, fine to med,	20-22K
E 4,5 &		destis	PID 0-6
F		· ·	19-216
F .		9.	413%
F 5.0 16		V	P10 8.6
E		Sandy, some silt, trace gravel,	18-19 K
		L.	Le 12.1.
- 5.5 W	And the second s	fine to medium, debris	915 1-1
E '		Sand, fine to very fine, some	17-19K
E 6.612		clay, brown, debris/trash	Lel 1'1.
F * . * 1/2		Clarky Cand wash	PID 2.1
F = I	8 (5 (4)	Clayey sand, very fine, brown,	17-18K
E 6.5 18		10 20	Lel 0'1: 0.7
F '1		Sand, medium to fine, well sorted,	17-19K
F 5		brown, debris	10 3.3°
7.014			
		Sand, medium to coarse, louse,	18-20K
- 7.5		brown, debris	Lel &
of Test Pit, REV 0		Sandy medium to coarse, loose,	17-19 K Page 1
		brown, debris	Leid
l-			PID 1.0
		TD @ 8.0 ft bos	

Project Number: 08-3800.08

Log of T

TEST PIT LOG

Date(s) 1/29/10	Logged By S, Owe	Checked By A. Williams
Length of Excavation S-F-4	Width of Excavation Z ++	Depth of Excavation 8 ft bg S
Excavation Mini Excavator	Excavation Contractor EP/	Approx. Surface NA
Water Observations		Weather Cold
Test Pit Location 492682-7	/635206.5 (feet)	Surface Condition Grassy

processor and the same of the			
Depth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	12313
E		Silty Sand, very fine, brown,	17-19 K
F 0.5 1	-	some OM, dry	Le18 PID8
E		Silty Sand, very fine, some	
- 1.0 z		Silty Sand very fine, some	17-18K
E		Silty Sand very fine, some	
E1.5 8		Coarse, brown, dry	12/8 PIDØ
F		Sand, fine to medivin, loose,	1 1 101
F 2.0 A	, , , , , , , , , , , , , , , , , , , ,	reddish brown, dry	Le 18 PID8
ĖΙ		Gravelly Sand, fine to medium,	15-11K
F 2.5 5		large angular gravel, loose, dkJim	15-17 V
E			
3.00			14-16K
E 3.5	im.	V	12/0 PIDO
E 3.7		Gravelly Sand, fine to med, large gravel	Lel & PID &
E 4.0 8		brewn, loose, angular, dry	Leid PINA
F 7,0 %		Sand, fine to med, loose, significant	Lel & PID &
E 4.5 %		trash, dry	Lei & PIDA
= "		Sand, fine to medium, loose,	Leip PIDO 16-18K
5.010		Trash, gray brown, dry	Lel & PID &
= '		+ medium rounded gravel and trace	16-18 K
- 5.5 18			Lel & PID &
		Sand, fine to medium, some	. , , , , ,
- 6.0 12	-	rounded gravel, trash, Petroleum sodor,	Lel & PID 1.8
= , _]		Petroleum oder	
6.513			Lei & PID 3.8
= 7 m.			
7.014		Sand, fine to med, brown, trash	Lel & PID 2,5
7.5		Some clay, petroleum der	Lel & PIDO.4
est Pit, REV 0			15-17 K Page 1 of
8.0		<u></u>	Le18 PID 0.4
			1.001

Project Number: 08-3800.08

TEST PIT LOG

Date(s) I/27/10	Logged By S. Owe	Checked By A. Williams
Length of Excavation 8 f+	Width of Excavation 2 ++	Depth of Excavation 8. # ++ bgs
111101 6	Excavation Contractor EP (Approx. Surface Elev.
Water Observations		Weather Sunny Cold
Test Pit 492885.0	1635118.4	Surface Condition Grassy

Depth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet,	TESTS
E 0		Sandy Clay, very fine, soft, brown moist	LeLo
0.5 %		dark brown	PID Ø 19-ZOK Lel Ø PID Ø
- 1.5 %		Sandy Clay, very fine, soft, dork brown, moist, trace organic material	19-22K Lel B PID B
E 2 #		= sandy Silt layer, very fine, dense, offive color @ 1.7'	19-22 K LeL & PID & 18-21 K
E 2.5 /8		Sandy Class years fine soft dark have	Lel & PID B
E 3 8		Sandy Clay, very fine, soft, dark brown moist, trace OM (Sandy silt layer, yerr, fine Silty Sand, med to fine, loose, moist	Lel & Pio of 15-19 K
= 3.5 ×		Silty Sand, fine to medium, well gooded, gray	17-19 K Let 1%.
- 4 8 - 4.5 8		1	PID B 17-ZOK Lel 1-1. PID B
E 7,5 %		Sandy Silt, very fine, hard, dense, dry	
5.5 1/		and trash / debris	17-19 K Lel 1% PIO &
E 6 1¢	e'	Sand, fine to coarse, well sorted,	17-19 K Let 9 % PIO \$ 16-19 K
E 6.5 18		dark brown, loose, lots of debins	Lel 3:1. PIO 8
F 7.5	* *************************************	Clayey sand, fine, OM, debris, wet	15-16K 15-16K
og of Test Pit, REV 0		Sand, fine to med, debris, wet	15-17 K Page 1 c
		TD@ 8.0 ft bgs	

Middlesex Municipal Landfill Project: Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

TEST PIT LOG

Date(s) Excavated	1/27/10	Logged By J. Oliver	Checked By A. Williams
Length of Excavation	V '	Width of Excavation 2	Depth of Excavation
Excavation Equipment	Mini Excavator	Excavation Contractor EPI	Approx. Surface Elev.
Water Observations			Weather Sunny, Cold
Test Pit Location	492979.6 / 6.	35233.6 (feet)	Surface Condition Grassy

Depth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
		5: Ity Clay, med density, dark brown	19-21K LeL Ø PID Ø
= .5 x		Silty Clay, med density, some organic material	14-17-K 20-24K
/ 2		Silty Clay, trace govel, slightly moist, reddish brown	20-23K 1.4LE
- 1.5 \$		Silty Clay, trace fine gravel, slightly	21-24 K
= 2 4		moist, reddish brown Sand, fine, trace med gravel, debris/trash	20-24K
2.5 \$		Silty Clay, mottled, heavily brittle, dark	19-22K
<u> </u>		brown, trash Idebris, trace fine gravel and large cobbus 5:1ty Clay, mottled, heavily, brittle, dark	LeL 5%. PID Ø
3,57		brown, trash Idebris; trace fine gravel and large Cobbles Silty Clay mottled, heavily, brittle, dork brown	Lel 5%. PID 8
= 4/ 8		trash Idebris, trace fine gravel and large cobbles 5.1ty Clay, muttled, heavily buttle, bark,	Lel 5%. PIO 8 19-22 K
4.5 8	,	brown, trash / debris, trace fine gravel and	Let 51. PID Of
5 16		Silty Clay, mottled, brittle, dork, brown, trash Idebris, trace fine gravel and large Cobbles	19-22 K Lel 5:11. PID 8
5.5 14]	Silty Clay, mottled, brittle, dork brown, trace large cobbles and fine gravel	19-22 K Lel 67. PID 8
6 12		Silty Clay, heavily mottled, brittle, large amount of trash Idebris, dark brown, trace large cobbles, trace gravel	19-22 K Le15% PID B
6.518		Sandy Clay, dark brown, very soft, fine to med, well sorted	18-22K Lel 31. PID B
E ,			18-22K Let 10% (drop to 8%. FID & after 15min)
- 7.5		Sandy Clay, dark brown, organic matter, trash /debris	19-22K 621 11%. PID &
g of Test Pit, REV 0	TUEZ	8. 0 ft bgs	19-22 K Page 1 Let 8'1, Pub of

Project: Middlesex Municipal Landfill

Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

TEST PIT LOG

Date(s) 1/29/10 Excavated 1/29/10	Logged By S. OWE	Checked By A. Williams
Length of 8 ft	Width of Excavation 2 ++	Depth of Excavation 8 ft bgs
Excavation Mini Equipment Ex cava for	Excavation Contractor EP/	Approx. Surface Elev.
Water Observations		Weather Cold
Toot Dit		Surface Condition Gra.5.5.y

	Depth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
	F		Silty clay, medium density,	16-20K
	E 0.51		Strong brown , dry	Lel \$ 9108
	E '/		Silty Clay, mediumdensity, strong	
	E 1.0 %		Silty sand, soft, loose, dry,	Leig PID Ø
* ~	F		Silty sand, soft, loose, dry,	
	= 1.5 8		very fine, some med Gravel and cobbles	17-21K
	E		Clay, fat, dense, hard, very plastic, trace medium, and, debris	
	F 2.01		Sand, some silt, loose, soft,	Lel & PID &
	$F_{n}=J$		moist, dark brown, significant trash	
	E 2,5 \$			Lel & PID &
	E 3.0 8		wet, organic odor	Lel & PID &
	E 3.00		mostly trash /debris	13-17K
	E 35 X		, , , , , , , , , , , , , , , , , , , ,	Lel & PID &
	E		, mostly trash / debris	14-18K
	E 4.08		V	Lel & PID&
	E l	1	Sand, fine, dark brown, trash,	
	F4.5 A		Sand, fine, loose, dark brown,	Lel B AID B
	E J		Sand, fine, loose, dark brown, Some Cobbles, angular, trace grovel, Significent debis	13-16 K
	5.010		Significant debis	Lele PID &
	E /			
	- 5.5 W			Lel 18 10 8
	6.0 12		N/2	
	E 6.0 K		Gravelly Sand, med to fine, loose,	13-17K
-	E 6.5 15		Gravelly Sand, med to fine, loose, soft, gray, rounded gravels, debris	
				13-18K
	7.014			Lel & PIDA
	7.5			
Log of T	est Pit, REV 0		5.6.0.22	Lel7% PID 0 16-19K Page 1 of 2
	8.0		LELEISIO	Lel 13 % PIDO
,			TD@ 8 ft 695	1 11/0

Project Number: 08-3800.08

TEST PIT LOG

Date(s) Excavated 1/28/10	Logged By S. Owe	Checked By A. Williams
Length of Excavation 8 FF	Width of Excavation 2 f+	Depth of Excavation 8 +++
Excavation Mini Excavator Equipment	Excavation EPI	Approx. Surface Elev.
Water Observations		Weather Snow /celd
Test Pit 493756.2 /	634687.6 (feet)	Surface Condition Grassy

Depth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
0.51		Silty Clay, some sand, brown, organic material	14-15K Le1 B P10 0.2
E '.		Sandy Clay, fine to coarse, poorly sorted, brown, debris	14-15K Lel & PID 0.3
F 1.0 2		Sandy Gravel, some Clay, fine to Coarse, brown	15-16 K de 1 Ø P10 0:3
- 1.5 %		Sandy clay, fine to medium, soft, wet	17-18K Lel Ø
= 2.0 A		Sandy Clay, fine to medium, med density, wet, debris, persheder	18-19K 61 B
= 2.5 p	MBM seafneshall activities and even group a georgeophic principle in the construction of the construction	THE GENSITY , WET, 42011, SITE WATER	113 \$\phi \(\begin{array}{cccccccccccccccccccccccccccccccccccc
3.0 8	all Messel Menemoning in all resources are supported in the second and all resources are also as a second s	Clayey Sand, fine to coarse, some gravel, brown, wet debris	16-17K 621 Ø
- 3.5 A		Sand, fine to medium, some clay, brown, significant debris	16-17 K Lel B
E 4.0 %		Sand, fine to medium, loose, dry significant debris	PID Ø 17-18K Lel Ø
E 4.5 p			PID & 17-18K Lel Ø
5.0 10			P10 & 17-18 K Lel &
- 5.5 ₁ / ₁			15-17 K Lel &
E 6.6 1/2		Sandy Clay, Some gravel, dark	PID & 16-17K 618
E 6.5 18		brown, very soft, OM, debris	15-16 K
7.0 1/1			15-16K
Log of Test Pit, REV 0			15-16 K Page 1 of 2
8.0		TDR8	PIDE

Project Number: 08-3800.08

No.: TP- Ø 9

Date(s) Excavated 1/28/10	Logged By J. Oliver	Checked By A. Williams
Length of 8 ++	Width of Excavation Z + +	Depth of Excavation 8 FF
Excavation Mini Excavator Equipment	Excavation Contractor EPI	Approx. Surface NA
Water Observations	-	Weather Snow, Cold
Test Pit Location 493972.8	/634697.1 (A)	Surface Condition Grassy

TEST PIT LOG

Depth, Feet	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	TESTS
- °	Clay and Silt, strong brown, fairly loose, frace med sand, significant OM, some Cobbles	22-45K Hotspot = 48,459 cpm
-0.51	City Clay, Strong brown, firely lable.	21-26 K
E 1.0 %	Some Cobbles. Concrete piece found, elevated	concrete = 41,327 cpm Lel = \$ \$10 \$ 23-26 K
E '	Sandy Clay, Strong brown, dry, fairly loose, coarse, poorly sorted, med plasticity, some cobbles and coarse to fine gravel	and the second second
E 1.5 %	and trash/debris	23-28K
E 2.0 A	<u>V</u>	Lel & PID & 21-23 K
E	Sand, fine to very fine, loose, well sorted, dry, trace gravel	14
= 2.5 \$		Lel & PIO & 18 17 X 21-23K
E 3.0 8	<u>+</u>	Lel & 110 8
E 3.5 X	Some 5:1+	
E 3.3 /		Le18 PID &
-4.08		17-19K
E 4,5 %	woist.	
E	sand, medium to very fine, loose,	20-25 K
E 5.018	Clay, fat, moist, very plastic suff	17-18K
551	Clay, fat, moist, very plastic, soft, dense, trace medium gravel, trace very fine sand	Lel & PID &
E 1	Sand, very fine, cemented, brown, dry, debris	17-18K
E 6.10 12	Silty Clay, trace sand and gravel,	18-19 K
7518	motified, dry, strong brown	leig PIDB
E 7.0 14	Instrument dial found ~70 Kcpm	(Dial 70 K cpm) Let = 9 PID = 0
E 1		18-19 K
- 7.5 f Test Pit, REV 0		18-19 K Page 1
8.0		61 × PIDX

Project: Middlesex Municipal Landfill

Project Location: Middlesex Borough, NJ

Project Number: 08-3800.08

TEST PIT LOG

No.: // / //

Date(s) Excavated	1/29/10	Logged By S. Owe	Checked By A. Williams
Length of Excavation	8 f t	Width of Excavation Z ++	Depth of Excavation 8 ++
Excavation Equipment	Mini Excavator	Excavation EP 1	Approx. Surface NA
Water Observations		4	Weather Cold
Test Pit Location	494051.3/	634756.6 (ft)	Surface Condition Grassy

	Depth, Feet	Sample Type Sample Number	MATERIAL DESCRIPTION Group Name, Group Symbol, Consistency, Density, Color, Moisture, Structure. Eg. Well-graded SAND with GRAVEL (SW), medium dense, brown to light gray, wet, little coase GRAVEL, few fines, weak cementation, stratified.	12010
	0.51		Silty Sand, fine to medium, brown, OM, trace gravel, Angular	14-16 K Lel Ø PID Ø 13-14 K
E	- 1		silty Sand, very fine, loose, brown, dry, debris	
	1.0 2		Silty Sand, fine, thend, some	13-14K
E	1,5 %		Silty Sand, fine to medium,	13-14K
E	2.04	and the first of the same and the special particular and the same and	some coarse, OM, debris	Lel & PID &
E	Z.5 5		1	Lei \$ PID \$
			Silty Sand, fine, trace large gravel, OM, dry, debiis	
	3.0 8		of + Significant debris	14-15K
E	3.5		· ·	13-15 K
E	4.08		+ significant debris	Lel & PID &
E	4.59		Sandy Clay, Very fine, some pea gravel, rounded, reddish brown, soft	
E			Organic debris/matter	13-14 K
E	- 5.0 10		Sand, fine to medium, light brown	13-15 K
E	- 5.51/		Sandy Clay, very fine, reddish,	Lel Ø PID Ø
E	- 6.612		brown, medium, om Idebris, moist	Lel & PID &
E	- 6.518			
E	7.014			Lel & PID &
E	7.014		Organic Material / Debris	12-14K
g of Tes	t Pit, REV 0			Lel Q PiD & 12-14K Page 1
	8.0		<u>Y</u>	Leip PIDO

			rage 1 01 3
DAILY OHALITY CON	TROL REPORT	Date:	February 3, 2010
DAILI QUALITI CON		Day:	Wednesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-131
Contract No.:	W912DQ-08-D-0003	Wind:	0-5 mph
Delivery Order No.:	0003	Humidity:	High
Cabrera Project No.:	08-3800.08	Weather:	26-36° F
USACE Project Manager:	ect Manager: Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Ann Jacobs, Althea Williams, John Oliver, Stephan Owe		
Subcontractors On Site:	Scott Crawford EPI (geo-probe operator)		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Geo-probe rig Generators (3) 		
Work Performed:	 Performed quality control on radiological instrumentation Performed geo-probe investigation at locations GP-2, GP-15 and GP-17 Completed incoming survey of geo-probe rig 		
Quality Control Activities:	Instrumentation daily QC, field inspection to insure that procedures were being followed.		
Health And Safety Levels And Activities:			

GP- 15 geo-probe operation began at 1005 hrs

- At 1010 hrs (10' bgs) the explosive monitor alarmed and flashed "over" (which indicates that the instrument is maxed out or sensor is over range). Work was stopped and the workers exited the immediate work area.
- At 1030 the area (flush with top of casing) was monitored and still read "over"
- At 1045 the area was monitored again and still read "over" the team abandoned the geo-probe (left metal casing in the ground) and proceeded to GP-17 location
- At 1135 the area was monitored again and still read "over"
- At 1322 the area was checked again and read 17% LEL.
- At 1450 we returned to the GP-15 location and monitored the hole (flush with casing) and found 0% LEL. Due to the fact it had taken gas levels in this location so long to dissipate to acceptable levels I was hesitant to try to go any deeper (we achieved 10'bgs) or to attempt to drive the oversize casing in order to do downhole monitoring. We did however retrieve samples from 0-10' bgs, the samples were frisked directly, the highest two areas were retained as laboratory samples.
- The steel casing was removed and the hole covered with plastic and a rock while a decision is made as to the path forward for this location.

GP-17 geo-probe operation began at 1102

- At 1105 (5'bgs) the explosive monitor alarmed "high" (which indicates concentrations greater than the alarm limit but not saturated) and read 58% LEL. Work was stopped and the immediate work area evacuated.
- At 1120 the area was checked again and still alarmed "high" 31% LEL
- At 1130 the area was checked again and read 18% LEL so the work team broke for lunch.
- At 1310 the area was checked again and read 0% LEL so work proceeded and the probe was advanced another 5' (achieved10' bgs)
- At 1320 the explosive monitor alarmed and read "over" and the immediate work area was again evacuated.
- At 1335 the area was checked and read "over"

At 1350 the area was monitored again and found to be less than 10% LEL, the geo-probe was inserted to 12" and the core was removed with no further alarms. Then the larger metal casing (with tip) was installed into the probe hole and inserted to 12' without incident or alarm.

 Down-hole monitoring completed and the crew proceeded to GP-2 location (western portion of the site) to see if similar gas concentrations are encountered

GP-2 geo-probe operations commenced at 1510 hrs

- The geo-probe was advanced 5' with no alarms
- At 1517 the core from 5'-10' bgs was removed the explosive gas monitor read "high" @ 66% LEL and the crew stepped away from the immediate work area.
- At 1527 the area was monitored again and the LEL reading was "over"; the crew continued to wait away from the immediate work area.
- At 1537 the area was monitored again and found to be "over"
- At 1547 the LEL read 2% and we restarted operations
- At 1610 (12' bgs) the LEL monitored again alarmed @ 85% the crew stepped away from the immediate work area.
- At 1625 the area was re-monitored and alarmed "high" at 15%
- At 1630 the meter read 3% and work resumed. The crew retrieved the remaining core sample and drove the plastic casing in the ground. Down-hole monitoring was completed without incident or additional alarms.

The team encountered limited core recovery issues thereby calling into question the validity of down-hole readings correlating directly to a given spot on the core sample itself. The team represented the information as accurately as possible and also scanned the cores directly in order to determine the highest area of activity prior to placing the core into sample containers.

Several discussions with Dave Hays ensued in order to inform him that we hit methane concentrations exceeding our action level as well as steps taken by the crew in response to the alarms.

Problems Encountered/ Corrective Action Taken:

Page 3 of 3

	<u> </u>
Special Notes:	A conference call will be requested for Thursday 02/04/10 to discuss an operational path forward given methane issues.
Tomorrow's Expectations:	Continue geo-probe activities.
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

			Page 1 of 2
DAILY OHALITY CON	TROL REPORT	Date:	February 15, 2010
DAILI QUALITI CON		Day:	Monday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-134
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	Low
Cabrera Project No.:	08-3800.08	Weather:	26-40° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Althea Williams, John Oliver		
Subcontractors On Site:	Scott Crawford EPI (geo-probe operator)		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Geo-probe rig Generators (3) Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Snow Removal Performed geo-probe investigation at locations GP-07, GP-09, GP-10, GP-11 and GP-12. Please see details below. Performed Equipment pre-operational checks 		
Quality Control Activities:	Instrumentation daily QC, field inspection to insure that procedures were being followed.		
Health And Safety Levels And Activities:			

Approximately 10" of snow was removed from the trailer area and paths were made using a skid steer to gain access to geo-probe locations.

GP-07

- Down-hole gamma survey completed no methane issues to report.

GP-12

Geo-probe activities commenced at 0940hrs. Methane was encountered (7' bgs) with maximum concentrations @10% LEL. Work in this location was completed at 1055 with no other issues or alarms encountered.

GP-1

 This location is adjacent to the daycare (~ 8' from building) and due to snow covering the ground it was unclear if NJ One Call had marked potential buried utilities. The team moved to another location until this information could be ascertained.

GP-09

Problems Encountered/ Corrective Action Taken:

Geo-probe activities commenced at 1125hrs. Methane gas was encountered several times at various depths. The explosive meter read "over" on several occasions and the field team backed out of the immediate area and allowed gas to dissipate to concentrations below 10% LEL before continuing work.

GP-10

- Geo-probe activities commenced at 1440hrs. Methane encountered at several locations, maximum reading "over" at 12" bgs. Crew backed out of area and waited for concentrations to dissipate. Work at GP-10 complete at 1534hrs.

GP-11

- Geo-probe activities commenced at 1546hrs with the highest methane concentration 16%. Work completed at 1640hrs.

Throughout the day when the LEL exceeded 10% workers added dry ice pellets and a small amount of water to the bore hole. This practice was relatively successful in dissipating methane gas more expeditiously than natural venting.

Maximum methane concentration 12" downwind of bore casing was 3% LEL.

Dave Hays was informed of the conditions and progress.

Special Notes:

As a result of the conference call with USACE and Cabrera personnel it was decided to monitor for LEL at that casing plane (as has been done in the past) as well as a down wind reading at 12" from the hole. Additionally, the probe pushes were shortened (to 2' and then 3') in order to determine if recovery would improve. After implementing this plan it was determined that recovery using 3ft pushes is nearly 100% depending on soil type.

Tomorrow's Expectations:

Continue geo-probe activities.

By: Kevin Kosko

TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

Page 1 of 2

			Page 1 of 2
DAILY OUALITY CON	TROL REPORT	Date:	February 16, 2010
Differ general con		Day:	Tuesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-135
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	Low
Cabrera Project No.:	08-3800.08	Weather:	26-43° F Light Snow
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Althea Williams, John Oliver		
Subcontractors On Site:	Scott Crawford EPI (geo-probe operator)		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Geo-probe rig Generators (3) Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Snow Removal Performed geo-probe investigation at locations GP-19, GP-28, GP-29, GP-30, GP-35 and GP-36. Please see details below. Performed Equipment pre-operational checks 		
Quality Control Activities:	Instrumentation daily QC, field inspection to insure that procedures were being followed.		
Health And Safety Levels And Activities:	A detailed morning briefing that covered work scope, monitoring requirements, action levels, job control methods, AHA review, RWP review and job instructions was completed. Read directly from applicable sections of the QAPP, PWP and AHAs.		

	Page 2 of 2
Problems Encountered/ Corrective Action Taken:	GP-35 Work commenced at 0740hrs, maximum methane concentration was 35% LEL. GP-36 Geo-probe activities commenced at 0840hrs. Methane was encountered (10' bgs) with maximum concentrations exceeding the upper range of the explosive meter. Unlike other probe locations methane concentrations were "over" up to 3' away from the casing. Dave Hays was notified and the hole properly abandoned. GP-19 Geo-probe activities commenced at 0922hrs. Methane gas was encountered at various depths. The explosive meter read "over" on several occasions and the field team backed out of the immediate area and allowed gas to dissipate to concentrations below 10% LEL before continuing work. GP-28 Geo-probe activities commenced at 1115hrs. Methane gas was encountered with the maximum observed concentration @ 27% LEL. GP-29 Geo-probe activities commenced at 1428hrs maximum observed methane concentration was 6% LEL. The geo-probe hit refusal at 10'bgs. GP-30 Geo-probe activities commenced at 1541hrs. Methane gas was encountered at various depths. The explosive meter read "over" on several occasions and the field team backed out of the immediate area and allowed gas to dissipate to concentrations below 10% LEL before continuing work. Throughout the day when the LEL exceeded 10% workers added dry ice pellets and a small amount of water to the bore hole. This practice was relatively successful in dissipating methane gas more expeditiously than natural venting. Dave Hays was informed of the conditions and progress.
Special Notes:	As a result of the conference call with USACE and Cabrera personnel it was decided to monitor for LEL at that casing plane (as has been done in the past) as well as a down wind reading at 12" from the hole. Additionally, the probe pushes were shortened (to 2' and then 3') in order to determine if recovery would improve. After implementing this plan it was determined that recovery using 3ft pushes is nearly 100% depending on soil type.
Tomorrow's Expectations:	Continue geo-probe activities.
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

			Page 1 of 2
DAILY OUALITY CON	TROL REPORT	Date:	February 17, 2010
DAILI QUALITI CON		Day:	Wednesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-136
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	High
Cabrera Project No.:	08-3800.08	Weather:	24-45° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Althea Williams, John Oliver		
Subcontractors On Site:	Scott Crawford EPI (geo-probe operator)		
USACE Personnel On Site:	Jough Donakowski		
Visitors On Site:	Pine Environmental dropped off calibration gas		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Geo-probe rig Generators (3) Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Snow Removal Performed geo-probe investigation at locations GP-19, GP-28, GP-29, GP-30, GP-35 and GP-36. Please see details below. Performed Equipment pre-operational checks 		
Quality Control Activities:	Instrumentation daily QC, field inspection to insure that procedures were being followed.		
Health And Safety Levels And Activities:			

GP-33

- Work commenced at 0815hrs, maximum methane concentration was 32% LEL. Note: there is a monitoring well 15' east of the geo-probe location.

GP-32

 Geo-probe activities commenced at 0945hrs. Maximum methane concentration was 26% LEL.

GP-31

 Geo-probe activities commenced at 1125hrs. Methane gas was encountered at various depths. The explosive meter read "over" and the field team backed out of the immediate area and allowed gas to dissipate to concentrations below 10% LEL before continuing work. Poor sample recovery.

<u>GP-21</u>

Problems Encountered/ Corrective Action Taken:

 Geo-probe activities commenced at 1415hrs. No methane problems were encountered. Geo-probe hit refusal at 10'.

GP-18

 Geo-probe activities commenced at 1525hrs No methane problems were encountered. Poor sample recovery in this area so a second attempt was made approximately 5' feet southwest and the probe hit refusal at 7'. The down-hole monitoring revealed elevated gamma readings of ~20,000 cpm. Suggest this area for test pit.

Throughout the day when the LEL exceeded 10% workers added dry ice pellets and a small amount of water to the bore hole. This practice was relatively successful in dissipating methane gas more expeditiously than natural venting. The dry ice when mixed with water creates an ice slug that oftentimes decreases the recovery of core sample material. The Field Site Manager contacted the Cabrera PM, USACE Rep (Dave Hays) and Cabrera Corporate Safety Manager to discuss using nitrogen to inert the bore holes. All agreed with the concept and email notification of the revised engineered control was sent to the USACE PM.

Dave Hays was informed of the conditions and progress.

Special Notes:

GP-1 is located approximately 8' from the daycare.

Tomorrow's Expectations:

Continue geo-probe activities.

By: Kevin Kosko

TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

			Page 1 of 2
DAILY QUALITY CON	TROL REPORT	Date:	February 18, 2010
		Day:	Thursday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-137
Contract No.:	W912DQ-08-D-0003	Wind:	0-15 mph
Delivery Order No.:	0003	Humidity:	High
Cabrera Project No.:	08-3800.08	Weather:	24-44° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Althea Willi	ams, John Olive	er
Subcontractors On Site:	Scott Crawford EPI (geo-probe operator)		
USACE Personnel On Site:	None		
Visitors On Site:	Bobcat mechanic to repair skidsteer (bad battery)		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Geo-probe rig Generators (3) Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Snow Removal Performed geo-probe investigation at locations GP-25, GP-26, and GP-27, Performed Equipment pre-operational checks 		
Quality Control Activities:	Instrumentation daily QC, field inspection to insure that procedures were being followed.		
Health And Safety Levels And Activities:	A detailed morning briefing that covered work scope, monitoring requirements, action levels, job control methods, AHA review, RWP review and job instructions was completed. Read directly from applicable sections of the QAPP, PWP and AHAs.		

	Page 2 of 2
Problems Encountered/ Corrective Action Taken:	GP- 27 - Work commenced at 0810hrs, No methane concentrations .10% LEL encountered. Two attempts were made at this location due to poor recovery. GP-25 - Geo-probe activities commenced at 1024hrs. Maximum methane concentration was 91% LEL. Used compressed nitrogen to inert probe hole with good success. GP-26 - Geo-probe activities commenced at 1342hrs. Methane gas was encountered at various depths. The explosive meter read "over" and the field team backed out of the immediate area and allowed gas to dissipate to concentrations below 10% LEL before continuing work. Ran out of nitrogen gas, thereby this hole took an appreciable amount of time to complete. Throughout the day when the LEL exceeded 10% workers used nitrogen to inert the bore holes. This approach worked very well but the team ran out of nitrogen during work on GP-26. Dave Hays was informed of the conditions and progress.
Special Notes:	Per conference call the team will ensure NJ "one Call" has labeled underground utilities @ GP-1 location adjacent to the daycare. Work at the daycare will take place during off hours.
Tomorrow's Expectations:	Continue geo-probe activities.
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

		1	rage roro
DAILY QUALITY CON	TROL REPORT	Date:	February 22, 2010
		Day:	Monday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-138
Contract No.:	W912DQ-08-D-0003	Wind:	0-10 mph
Delivery Order No.:	0003	Humidity:	High
Cabrera Project No.:	08-3800.08	Weather:	26-44° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Althea Will	iams, John Olive	er, Mike Barsa
Subcontractors On Site:	Scott Crawford EPI (geo-probe operator)		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Geo-probe rig Generators (3) Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Performed geo-probe investigation at locations GP-23, GP-24, GP-34 and attempted to complete GP-15 (second attempt) Completed test pits in grid 4 (woods) and adjacent to GP-18 Completed GWS of area between the eastern boundary fence and Pershing Ave (see attached map). Completed down-hole monitoring log spreadsheet of all geo-probe locations completed to date. 		
Quality Control Activities:	Instrumentation daily QC, field inspection to insure that procedures were being followed.		
Health And Safety Levels And Activities:	A detailed morning briefing that covered work scope, monitoring requirements, action levels, job control methods, AHA review, RWP review and job instructions was completed.		

GP-24

Work commenced at 0730hrs, methane gas was encountered at various depths. The explosive meter read "over" and the field team backed out of the immediate area and utilized nitrogen gas to dissipate concentrations to below 10% LEL before continuing work.

GP-23

Work commenced at 0915 hrs, methane gas was encountered at various depths. The explosive meter read "over" and the field team backed out of the immediate area and utilized nitrogen gas to dissipate concentrations to below 10% LEL before continuing work. Elevated gamma readings (5080cpm) were found to exist at 1.5' bgs.

GP-34

Geo-probe activities commenced at 0945hrs. Methane gas was encountered at various depths. The explosive meter read "over" and the field team backed out of the immediate area and allowed gas to dissipate to concentrations below 10% LEL before continuing work. Elevated gamma readings (21,252cpm max) were found to exist 3' to 6' bgs.

Problems Encountered/ Corrective Action Taken:

GP-15

Geo-probe activities commenced at 1135hrs. The initial attempt to complete geoprobe activities at this location was made earlier in the project prior to developing engineered controls. Methane gas was encountered at 3'bgs. The explosive meter read "over" and the field team backed out of the immediate area and applied engineering controls (nitrogen gas and dry ice) with no success.

Test pits were completed in zone 4 (wooded area) and adjacent to GP-18 near the eastern boundary fence adjacent to Pershing Ave. Excavation in zone 4 unearthed 2 small hot spots reading 110K cpm and 588K cpm @ 0-6" bgs, both locations were sampled.

The test pit adjacent to GP-18 unearthed several large pieces of concrete exhibiting direct readings of up to 200K cpm (see attached pictures). Also in this area the team encountered an approximate 8" cast iron pipe that appears to be a water line, this pipe was not marked by NJ One Call even though they were notified and have marked other lines in the area.

Geo-probe locations GP-1, 20, 21 and 22 could not be worked today as NJ One Call has not marked utilities on church property. One Call marking of the church property is expected to be complete Wednesday morning.

Dave Hays was informed of the conditions and progress.

Per conference call the team will ensure NJ "one Call" has labeled underground utilities on the church property prior to work. Work at the daycare will take place during off hours.

Special Notes:

The Cabrera FSM contacted Ms. Kathy Anello the Middlesex Borough Clerk to ensure the Right of Entry included the narrow strip of property (~ 4' wide) located between the eastern site boundary and Pershing Ave. It was verified that the ROE did indeed cover the property in question and a gamma walk over survey was performed in this area. Direct readings of up to 241K were found to exist, see attached walk-over data.

A spreadsheet detailing down-hole gamma readings (taken to date) is attached.

Page 3 of 6

Tomorrow's Expectations:	Continue geo-probe and test pit activities.
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

Page 4 of 6

Page 1 of 4

			Page 1 of 4
DAILY QUALITY CON	TROI REPORT	Date:	February 23, 2010
DAILI QUALITI CON	TROL REI ORI	Day:	Tuesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-139
Contract No.:	W912DQ-08-D-0003	Wind:	0-10 mph
Delivery Order No.:	0003	Humidity:	Rain with periods of heavy rain.
Cabrera Project No.:	08-3800.08	Weather:	33-44° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Althea Willi	ams, John Olive	er, Mike Barsa
Subcontractors On Site:	Scott Crawford EPI (geo-probe operator)		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Geo-probe rig Generators (3) Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Performed geo-probe investigation at locations GP-37, GP-38, GP-39, GP-40 and GP-42. Completed test pit between surface soil locations C-12 and C-13 Completed Test pit adjacent to GP-34 Updated down-hole monitoring log spreadsheet of all geo-probe locations completed to date. Completed release survey on skidsteer 		
Quality Control Activities:	Instrumentation daily QC, field inspection to insure that procedures were being followed.		
Health And Safety Levels And Activities:	A detailed morning briefing that covered work scope, monitoring requirements, action levels, job control methods, AHA review, RWP review and job instructions was completed. Methane levels at GP-37 consistently exceeded the upper range of the explosive monitor even though engineering controls were applied. A temporary cover was placed over the hole and an additional attempt to complete sampling will be made tomorrow. Work was halted in the area adjacent to Pershing Ave when it was unclear if NJ One Call had performed utility marking in the area (between the project east boundary fence and Pershing Ave). NJ One call was notified, the area will be available to work Monday.		

	Page 2 of 4
Problems Encountered/ Corrective Action Taken:	GP-37 Work commenced at 1615 hrs, methane gas was encountered at various depths. The explosive meter read "over" and the field team backed out of the immediate area and utilized nitrogen gas and dry ice in an attempt to dissipate the gas. Engineered controls were unsuccessful and a temporary cover placed on the hole. Additional attempts will be made tomorrow. GP-38 No problems or issues to report. GP-39 Geo-probe hit refusal at 3'. Additional attempts will be made after it is clear that NJ One Call has performed a utility survey. GP-40 No problems or issues to report. GP-42 No problems or issues to report. A test pit was completed between surface soil samples 12 and 13 (TP-13) maximum gamma reading 28Kcpm @ surface. During excavation of the test pit adjacent to GP-34 (TP-14) the team unearthed a pool ball size rock (that appears to be pitch blend ore) at a depth of 5'. The rock (see attached picture) read ~1,000,000 cpm (8 mR/hr) and was placed in a sample container. Geo-probe locations GP-1, 20, 21 and 22 could not be worked today as NJ One Call has not marked utilities on church property. One Call marking of the church property is expected to be complete Wednesday morning.
Special Notes:	Per conference call the team will ensure NJ "One Call" has labeled underground utilities on the church property prior to work. Work at the daycare will take place during off hours. A conference call was held between USACE representatives and Cabrera personnel. Meeting minutes will be submitted under a separate cover.
Tomorrow's Expectations:	Continue geo-probe activities and complete release survey of excavator.
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

Page 4 of 4

Page 1 of 3

			Page 1 of 3
DAILY OUALITY CON	TROL REPORT	Date:	February 24, 2010
DAILI QUALITI CON		Day:	Wednesday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-140
Contract No.:	W912DQ-08-D-0003	Wind:	0-5 mph
Delivery Order No.:	0003	Humidity:	Humid, light periodic rain
Cabrera Project No.:	08-3800.08	Weather:	33-44° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Althea Will	iams, John Olive	er, Mike Barsa
Subcontractors On Site:	Scott Crawford EPI (geo-probe operator)		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Geo-probe rig Generators (3) Skidsteer 		
Work Performed:	 Performed quality control on radiological instrumentation Performed geo-probe investigation at locations GP-22, GP-37 (started 2/23/10), GP-43, GP-44, GP-45, GP-46 GP-47 and GP-1. Updated down-hole monitoring log spreadsheet of all geo-probe locations completed to date. 		
Quality Control Activities:	Instrumentation daily QC, field inspection to insure that procedures were being followed.		
Health And Safety Levels And Activities:	A detailed morning briefing that covered work scope, monitoring requirements, action levels, job control methods, AHA review, RWP review and job instructions was completed.		
	Waiting NJ One Call to perform utility marking in the area (between the project east boundary fence and Pershing Ave). The area will be available to work Monday.		

GP-37

Work continued at this location (started 2/23/10) @0735hrs, methane gas was encountered at various depths. The explosive meter read "over" and the field team backed out of the immediate area and utilized nitrogen gas and dry ice to dissipate the gas. Engineered controls were successful, sampling and down-hole monitoring was completed without incident.

GP-43

Hit refusal at 10.5' bgs.

GP-44

Methane gas was encountered @ various depths, max reading 88%LEL.

GP-45

No problems or issues to report.

GP-46

Problems Encountered/ Corrective Action Taken: While geo-probing at this location the team encountered a quarter sized rock at ~12" bgs that read 2.5mr/hr (see photo). Dave Hays was notified and a discussion ensued as to what to do with the 2 radioactive rocks that were recently found. The Cabrera FSM contacted ALS laboratory and spoke with Lance Steere the PM. Lance indicated that they could indeed receive and analyze the samples. Preparations are being made to properly ship the samples to ALS.

GP-47

No problems or issues to report.

GP-1

No problems or issues to report.

GP-22

No problems or issues to report.

It was noted that down hole gamma readings at GP-42 were significantly elevated from 1'bgs to 12'bgs with a maximum reading of 44,526cpm.

During excavation of the test pit adjacent to GP-34 (TP-14) the team unearthed a pool ball size rock (that appears to be pitch blend ore) at a depth of 5'. The rock (see attached picture) read ~1,000,000 cpm (8 mR/hr) and was placed in a sample container.

Dave Hays was informed of the conditions and progress.

Special Notes:

Geo-probing in the church yard is complete.

Page 3 of 3

Tomorrow's Expectations:	Continue geo-probe activities and complete release survey of excavator.
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

			Page 1 of 2
DAILY QUALITY CON	TROL REPORT	Date:	February 25, 2010
Zindi gondin con		Day:	Thursday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-141
Contract No.:	W912DQ-08-D-0003	Wind:	0-20 mph
Delivery Order No.:	0003	Humidity:	Humid, heavy snow
Cabrera Project No.:	08-3800.08	Weather:	28-33° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Althea Willi	ams, John Olive	er, Mike Barsa
Subcontractors On Site:	Scott Crawford EPI (geo-probe operator)		
USACE Personnel On Site:	None		
Visitors On Site:	None		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Geo-probe rig Generators (3) Skidsteer 		
Work Performed:	Performed geo-probe investigation at locations GP-20, GP-21, GP-48, and GP-49.		
Quality Control Activities:	Instrumentation daily QC, field inspection to insure that procedures were being followed.		
Health And Safety Levels And Activities:	A detailed morning briefing that covered work scope, monitoring requirements, action levels, job control methods, AHA review, RWP review and job instructions was completed. Waiting NJ One Call to perform utility marking in the area (between the project east boundary fence and Pershing Ave) the area will be available to work Monday.		
Problems Encountered/ Corrective Action Taken:	Methane was not an issue in any of the boreholes completed today all readings <10% LEL. A severe winter storm warning was posted for the area. The crew was released early. Dave Hays was informed of the conditions and progress.		

Page 2 of 2

Special Notes:	Geo-probing in the church yard is complete.
Tomorrow's Expectations:	Complete geo-probe activities and release surveys of excavator, skidsteer and geo-probe.
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

Page 1 of 2

Page 1 of 2		Page 1 of 2	
DAILY QUALITY CON	TROL REPORT	Date:	March 1, 2010
DAILI QUALITI CON		Day:	Monday
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-142
Contract No.:	W912DQ-08-D-0003	Wind:	0-10 mph
Delivery Order No.:	0003	Humidity:	Low
Cabrera Project No.:	08-3800.08	Weather:	33-45° F
USACE Project Manager:	Helen Edge, NAN		
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Althea Willi	ams, John Olive	er
Subcontractors On Site:	Scott Crawford EPI (geo-probe operator)		
USACE Personnel On Site:	None		
Visitors On Site:	Bobcat of NJ to pick-up skidsteer		
Equipment On Site:	 Trackhoe Office Trailer Storage Container Radiological instrumentation Geo-probe rig Generators (3) Skidsteer 		
Work Performed:	Performed geo-probe investigation at locations GP-39, GP-41, GP-48, and GP-50. Prepared soil samples for shipment, performed release surveys on skidsteer, geo-probe rig, excavator and generator. Took water sample at location GP-10 using low-flow sampling methods. Packaged hot rock samples in a new 7A drum and prepared for shipment, the drum reads 1.7mr/hr on contact, 0.2mr/hr at 12"and 40uR/hr at 1 meter (all maximum readings).		
Quality Control Activities:	Instrumentation daily QC, field inspection to insure that procedures were being followed. Reviewed CoCs prior to shipping soil samples.		
Health And Safety Levels And Activities:	Methane was not an issue in any of the boreholes completed today all readings <10% LEL. Elevated gamma readings were encountered at GP-39 (50,250cpm @ 6" bgs) and GP-41 (42,324cpm @ 4.5" bgs), and GP-50 (7518cpm @ 4.5" bgs).		

Problems Encountered/ Corrective Action Taken:	There was still a question as to weather NJ one call had performed a utility survey adjacent to Pershing Ave as no markings were apparent. An emergency notification which is supposed to trigger a response within 2 hours was partially successful (the electrical guy came but the water representative did not). The team employed an old fashioned divining rod technique and it indicated that there was a pipe of some sort in the area. As a safety precaution, the team hand augured to 5' bgs at GP-39 and 4.5' bgs at GP-41 before hitting concrete refusal. Dave Hays was informed of the conditions and progress.	
Special Notes:	The skidsteer and geo-probe rig were removed from site.	
Tomorrow's Expectations:	Ship samples including "hot rocks", continue release surveys, and return instrumentation.	
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655	

Page 1 of 6

			Page 1 01 0					
DAILY QUALITY CON	TROL REPORT	Date:	March 2, 2010					
		Day:	Tuesday					
Project:	Middlesex Municipal Landfill FUSRAP Site Investigation	Report No.:	121509-143					
Contract No.:	W912DQ-08-D-0003	Wind:	0-5 mph					
Delivery Order No.:	0003	Humidity:	Low					
Cabrera Project No.:	08-3800.08	Weather:	33-45° F					
USACE Project Manager:	Helen Edge, NAN							
Cabrera Personnel On Site:	Dennis Criswell, Kevin Kosko, Althea Willia	ams, John Olive	er					
Subcontractors On Site:	None							
USACE Personnel On Site:	None							
Visitors On Site:	Hertz to pick-up Equipment							
Equipment On Site:	 Trackhoe (left today) Office Trailer Storage Container Radiological instrumentation (most sl Generator (2 were returned today) 	nipped out today	y)					
Work Performed:	Completed the remaining (14) surface soil samples in locations discussed with Dave Hays. Re-packaged hot rock samples into a new 7A drum and prepared for shipment the drum now reads 2.0 mr/hr on contact and 80uR/hr at 1 meter (all maximum readings). Surveyed tools, equipment and soil sample coolers for release from site Hertz Equipment picked-up 2 generators and the excavator. Shipped 5 coolers full o soil samples; the hot rock samples were not part of today's shipment.							
Quality Control Activities:	Instrumentation daily QC, field inspection to followed. Reviewed CoCs prior to shipping s		cedures were being					
Health And Safety Levels And Activities:								
Problems Encountered/ Corrective Action Taken:	Several discussions took place between the Cand the Cabrera Corporate RSO regarding shall initially the lab indicated that they would accordiced concerns that the dose rate on the same dose rate meter's capability. The lab requested into smaller pieces which could potentially seemable option. The Cabrera FSM proposed lab prior to shipping the higher activity same Dave Hays was informed of the conditions a	rept the shipment of hot repet the shipment of hot repet the shipment of the field team pread contaminal to send one of the sand the lab	ocks to the lab for analysis. In then the laboratory RSO the upper range to their in "break" the large rock ation and was not a our field instruments to the					

Page 2 of 6

	8
Special Notes:	The excavator and 2 generators were removed from site.
Tomorrow's Expectations:	Ship samples including "hot rocks", continue release surveys, and return instrumentation.
By: Kevin Kosko	TITLE: Field Site Manager (Cabrera Services) (m) 330-397-1756, (937) 470-2655

Page 3 of 6

Page 4 of 6

PRANSPORT I SA. DOT 7A YPE A YPE A YPE A J. Last Dots Siswell 3-2-1 Siswell 3-2-1 Siswell 3-2-1 Siswell 3-2-1	TYPE 7A DRUM CONTAINS RAD III RANSPORT INDEX = O.1 NOT LOAD IN TASSENGER AIRCRAFT SA. DOT 7A YPE A J. 2915 J. 291	TANSPORT INDEX = O. 1 RANSPORT INDEX = O. 1 NOT LOAD IN TASSENGER AIRCRAFT WAX CO SA. DOT 7A PE A J. 2915 J. 2915 J. 2915 J. 2915 J. 2915 J. 2915 J. 2915 J. 2915 J. 2915 J. MAX. CONTAINER DOSE RATES NOTED IN WICRORE WAX. CONTAINER J. MAX. CONTA	TAINER LABELLED: RAD II RANSPORT INDEX = O.1 RANSPORT INDEX = O	TANJER LABELLED: RAD II RANSPORT INDEX = O.1 NOT LOAD IN TASSENCER AIRCRAFT WAS CONTACT = 1600 S.A. DOT 7A RING BOLT ONT SIDE OF CONTAINER DOSE RATES NOTED IN WICROREW/hr Newed By. Date: Instrument Serial are are are are are are are are are are	198		à	1	*	Comments	25 W V 50 V V		-1		44	43		44	40	14 39		35	100	-	32	a 40	29	3 NA LA 28	1 1	1 2 80 26 MA NA	Direct Count (CPM/Direct Frisk)
	TASSENGER AIRCRAFT RIME BOLT RI	ELLED: RELLED: TASSENGER AIRCRAFT WAX CONTAINER CONTAINER Instrument Serial # QEII. BEII. DBICROPH 18522 MA 2929 129566 0.313 0.23	ELLED: TASSENGER AIRCRAFT WAX CONTACT = 160. TRATES NOTED IN WICROREW / WAX SITE WAX BOTTOM BOTTO	ELLED: TASSENGER AIRCRAFT WAX CONTACT = 1600 RING BOLT RING BOLT RING BOLT RING BOLT RING BOLT MAX CONTACT = 1600 © 3' = 70 MAX CONTACT = 2000 MAX NOTE MAX NOTE OF RING BILLED: MAX CONTACT = 2000 © 83' = 70 MAX NOTE OF RING DEH. OBEN. OBEN. OF RING 2929 129566 0.313 0.236 0.1 40.2 NA 1-5	3/2			and hall	11/0		Dos					30,5pg.	O BEISTMO	1	WARAD A				EZ. 2915	TYPE A		DO NOT LOAD !	TRANS PORT	130	ウイー	ONTAINER LA	3dh
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	BOTTO WAX CO.J. BEIL. PEIL.	MAX CONTACT = 160. WAX CONTACT = 160. BOTTOM	MAX CONTACT = 1600 WAY CONTACT = 1600 WAY CONTACT SIDES WAY CONTACT WAY CONTACT BOTTOM BOTTOM BOTTOM BOTTOM WAY CONTACT CONTACT BOTTOM WAY CONTACT OF RIM NA ABKG. BBKG. YBKG. Cal. NA 10- NA 10- NA 10- NA 10- NA 10- NA NA NA NA NA NA NA NA NA N	(10)	ite:					RATES					CONTAINER)		BELLED:	

APPENDIX E LABORATORY ANALYSIS RESULTS (ON CD)

APPENDIX F DATA QUALITY ASSESSMENT

•	Breccrop.	Tared WIDIIA	standard			
					0.# <u>3863</u> 0.# 02-055	
Description of Standard:					· · · · · · · · · · · · · · · · · · ·	
Model No. DNS-11	Serial No	o. <u>3973</u> -	-02	Isotope	Th-230	
Electroplated on polished						
Total diameter of 4.77	•					
The radioactive material is covering over the active sur	permanently	y fixed to t	he disc b	y heat treat	ment without	any
Measurement Method:	٠.	^.				
The 2pi alpha emission rate chamber. Absolute counting active surface was verified The calibration is traceable S/N_2393/91 Measurement Result: The observed alpha particles the calibration date was:	of alpha pa by counting to NIST by	articles emi g above, bel y reference	tted in to the total to the total to the terminal to the terminal	he hemispher t the operat T calibrated	e above the ive voltage. alpha sourc	ce
8,860		265	· .	•		
The total disintegration rat the surface of the disc, was	.e (dpm) ass	suming 1.5%	backscatt	er of alpha	particles fr	:om
17,500	<u> </u>	523	· (0.0078	6 μCi)	
The uncertainty of the measu error at the 99% confidence this measurement.	rement is	3 %, wh	ich is the	, e sum of rand	dom counting	7
Calibrated by: ART REUST		Reviewed	by:	a Course		
Calibration Technician:	Ut Le		//	entative (III)	Wellerste	Wie
Calibration Date: 4	-29-2002			to: //-	_	

Analytical Services 7021 Pan American Freeway NE Albuquerque, New Mexico 87109-4238 (505) 345-3461 Fax (505) 761-5416 Toll Free (866) RAD-LABS (723-5227) www.eberlineservices.com

	FIECTIODIACE	a beca acana		
				S.O.# 3863 P.O.# 02-055
Description of Standard:		• ,	,	7.0.# <u>02</u> 003
Model No. DNS-12	Serial No	3975-02	Isotope	Tc-99
Model No. DNS-12 Electroplated on polished	ss ·	disc,	0.79	mm thick.
Total diameter of 4.77	cm a	nd an active	diameter of_	4.45 cm.
The radioactive material is covering over the active sur	permanently fireface.	xed to the c	lisc by heat t	reatment without any
Measurement Method:	. 1			
The 2pi beta emission rate was absolute counting of beta paverified by counting above, traceable to NIST by referen	rticles emitted below, and at	in the hemis	sphere above t ive voltage.	he active surface was The calibration is
Measurement Result:				
The observed beta count racalibration date was:	ite from the si	urface of t	he disc per	minute (cpm) on the
11,000	±	441	_	
The total disintegration rat the surface of the disc, was	3 :	•	•	•
17,700	<u> </u>	706	(00796 μCi)
The uncertainty of the measu at the 99% confidence level measurement.	., and the estin	mated upper	limit of syst	ematic error in this
Calibrated by: ART REUS	<u>r </u>	Reviewed by:	They fire	<u> </u>
Calibration Technician:	Kus	€ Q.A. R	epresentati	MANUALISA ()
Calibration Date: 4-25-	2002	Review	ed Date:	4-29-02

Analytical Services
7021 Pan American Freeway NE
Albuquerque, New Mexico 87109-4238
(505) 345-3461 Fax (505) 761-5416
Toll Free (866) RAD-LABS (723-5227)
www.eberlineservices.com

Reference Inst. HI-Q Model HFC-50C

(AIR SAMPLER)

RSA Laboratories, Inc.

19 Pendleton Drive, P.O. Box 61 Hebron, Connecticut 06248 (860) 228-0721 Fax (860) 228-4402

Customer and Contact: Cabrera Services, Inc., Attn: Charles Mikaitis (860) 569-0095

Customer Address: 473 Silver Lane, East Hartford, CT 06118

Inst. Mfr. HI-Q

Inst. Model CF-973T

Inst. s/n 16826

Inst. s/n 4911

Cal. Date 01 July 2009

Due Date 01 July 2010

Cal. Interval 1 year

Barometric Press: Actual 29.50

Temperature: Actual 76°F

Corrected to: 29.50 in. Hg Corrected to: 76°F

Measurement	Air Sampler Flow Rate (CFM)	Ref. Inst. Flow Rate (CFM)	Percent Deviation
1	14.56	14.81	1.71%
2	24.26	24.68	1.71%
. 3	33.97	34.06	0.28%
4	43.67	42.95	-1.68%
5			
6			
7			
8			
9			
10			
11			
12			
13			

**Average percent deviation across the range = 0.50%

This is to certify that RSA Laboratories, Inc. of Hebron, Connecticut, has on this date certified this air sampler to be within the accuracy specified above. The Reference Flow Device bears Letters of Certification traceable to the National Institute of Science and Technology. RSA Laboratories, Inc. ID# 12716.

Calibrated by: Kurt D. Newton ______ Date: 01 July 2009

(AIR SAMPLER)

Facility: RSA Laboratories, Inc.

Customer: Cabrera Services, Inc.

Calibrator Model HI-Q Model HFC-50C Air Sampler Model HI-Q CF-973T

Calibrator Serial No. 4911 Air Sampler Serial No. 16826

			AIR SAMPLE	R				CALIBRATOR	
Measurement	Inlet Temp. (°F)	Inlet Press (In-Hg)	Gauge Press (In-Hg)	Indicated Flow (CFM)	Temp/Press Correction Factor	Corrected Flow (CFM)	Indicated Flow (CFM)	Temp/Press Correction Factor	Corrected Flow (CFM)
11	76	29.50	n/a	15.0	0.970	14.56	15.0	0.987	14.81
2	76	29.50	n/a	25.0	0.970	24.26	25.0	0.987	24.68
3,	76	29.50	n/a	35.0	0.970	33.97	34.5	0.987	34.06
4	76	29.50	n/a	45.0	0.970	43.67	43.5	0.987	42.95
5									
6									
7									
8									
9									
10									
11									
12									
13									

Air Sampler Temp/Press Corr Factor = $\sqrt{\frac{530^{\circ}\text{R}}{\text{Inlet temp (°F)} + 460^{\circ}\text{R}}} \times \frac{\text{(Inlet Press - Gauge Press)}}{29.92 \text{ in. Hg}}$	% Deviation = $\frac{\text{Corrected Flow - Sampler Flow}}{\text{Corrected Flow}} \times 100$
Calibrator Temp/Press Corr Factor = $\sqrt{\frac{530^{\circ}R}{\text{Inlet temp (°F)} + 460^{\circ}R}} \times \frac{\text{Inlet Press}}{29.92 \text{ in. Hg}}$	Corrected Flow = (Indicated Flow) x (Temp/Press Corr Factor)
Calibrated by: Kurt D. Newton	Date: 01 July 2009

(AIR SAMPLER)

RSA Laboratories, Inc.

19 Pendleton Drive, P.O. Box 61 Hebron, Connecticut 06248 (860) 228-0721 Fax (860) 228-4402

Customer and Contact: Cabrera Services, Inc., Attn: Charles Mikaitis (860) 569-0095 Customer Address: 473 Silver Lane, East Hartford, CT 06118

Inst. Mfr. HI-Q

Inst. Model CF-973T

Inst. s/n 16829

Reference Inst. HI-Q Model HFC-50C

Inst. s/n 4911

Due Date 26 May 2010

Cal. Interval 1 year

Barometric Press: Actual 29.95

Corrected to: 29.95 in. Hg

Corrected to: 76°F

Temperature: Actual 76°F

Cal. Date 26 May 2009

Measurement	Air Sampler Flow Rate (CFM)	Ref. Inst. Flow Rate (CFM)	Percent Deviation
1	14.67	14.92	1.68
2	24.45	24.87	1.68
3	34.23	33.83	-1.21
4	44.02	42.78	-2.89
5.			
б			
7			
8			
9			
10			
11			
12			
13			

**Average percent deviation across the range = -0.18

This is to certify that RSA Laboratories. Inc. of Hebron, Connecticut, has on this date certified this air sampler to be within the accuracy specified above. The Reference Flow Device bears Letters of Certification traceable to the National Institute of Science and Technology. RSA Laboratories, Inc. ID# 12657.

Calibrated by: Kurt D. Newton

Date: 26 May 2009

(AIR SAMPLER)

Facility: RSA Laboratories, Inc.

Customer: Cabrera Sérvices, Inc.

Calibrator Model HI-Q Model HFC-50C Air Sampler Model HI-Q CF-973T

Calibrator Serial No. 4911 Air Sampler Serial No. 16829

			AIR SAMPLE	R				CALIBRATOR	
Heasurement	Inlet Temp. (°F)	Inlet Press (In-Hg)	Gauge Press (In-Hg)	Indicated Flow (CFH)	Temp/Press Correction Factor	Corrected Flow (CFM)	Indicated Flow (СГИ)	Temp/Press Correction Factor	Corrected Flow (CFM)
1	76	29.95	n/a	15.0	0.978	14.67	15.0	0.995	14.92
2	76	29.95	n/a	25.0	0.978	24.45	25.0	0.995	24.87
3	76	29.95	n/a	35.0	0.978	34.23	34.0	0.995	33.83
4	76	29.95	n/a	45.0	0.978	44.02	43.0	0.995	42.78
5									
6									
7									
8									
9									
10									
111									
12									
13			-						

,		
Air Sampler Temp/Press Corr Factor = 3		(Inlet Press - Gauge Press)
<u>, </u>	Inlet temp (°F) + 460°R	29.92 in. Hg

% Deviation = $\frac{\text{Corrected Flow - Sampler Flow}}{\text{Corrected Flow}} \times 100$

Calibrator Temp/Press Corr Factor = $\sqrt{\frac{530^{\circ}\text{R}}{\text{Inlet temp (°F)} + 460^{\circ}\text{R}}} \times \frac{\text{Inlet Press}}{29.92 \text{ in. Hg}}$

Corrected Flow = (Indicated Flow) x (Temp/Press Corr Factor)

Calibrated by: Kurt D. Newton

Date: 26 May 2009

(AIR SAMPLER)

RSA Laboratories, Inc.

19 Pendleton Drive, P.O. Box 61 Hebron, Connecticut 06248 (860) 228-0721 Fax (860) 228-4402

Customer and Contact: Cabrera Services, Inc., Attn: Charles Mikaitis (860) 569-0095

Customer Address: 473 Silver Lane, East Hartford, CT 06118

Inst. Mfr. HI-Q

Inst. Model CF-973T

Inst. s/n 16830

Reference Inst. HI-Q Model HFC-50C

Inst. s/n 4911

Cal. Date 15 May 2009

Due Date 15 May 2010

Cal. Interval 1 year

Barometric Press: Actual 29.95

Corrected to: 29.95 in. Hg

Temperature: Actual 70°F

Corrected to: 70°F

Filters Used:

■Particulate □Charcoal/silver zeolite □Other:

Measurement	Air Sampler Flow Rate (CFM)	Ref. Inst. Flow Rate (CFM)	Percent Deviation
1	14.75	15.01	1.68
2	24.59	25.01	1.68
3	34.43	34.52	0.26
4	44.26	44.52	, 0.58
5			
6			
7			
8			
9			
10			
11	•		
12			
13			

**Average percent deviation across the range = 1.05

This is to certify that RSA Laboratories, Inc. of Hebron, Connecticut, has on this date certified this air sampler to be within the accuracy specified above. The Reference Flow Device bears Letters of Certification traceable to the National Institute of Science and Technology. RSA Laboratories, Inc. ID# 12639.

Calibrated by: Kurt D. Newton

Date: 15 May 2009

(AIR SAMPLER)

Facility: RSA Laboratories, Inc.

Customer: Cabrera Services, Inc.

Calibrator Model HI-Q Model HFC-50C Air Sampler Model HI-Q CF-973T

Calibrator Serial No. 4911 Air Sampler Serial No. 16830

AIR SAMPLER								CALIBRATOR		
Measurement	Inlet Temp. (°F)	Inlet Press (In∙Hg)	Gauge Press (In-Hg)	Indicated Flow (CFM)	Temp/Press Correction Factor	Corrected Flow (CFM)	Indicated Flow (CFM)	Temp/Press Correction Factor	Corrected Flow (CFM)	
1	70	29.95	n/a	15.0	0.984	14.75	15.0	1.000	15.01	
2	70	29.95	n/a	25.0	0.984	24.59	25.0	1.000	25.01	
3	70	29.95	n/a	35.0	0.984	34.43	34.5	1.000	34.52	
4	70	29.95	n/a	45.0	0.984	44.26	44.5	1,000	44.52	
5										
6										
7										
8										
9										
10										
11										
12										
13										

Air Sampler Temp/Press Corr Factor =	$\sqrt{\frac{530^{\circ}R}{\text{Inlet temp (°F) + 460°R}}} \times$	(Inlet Press - Gauge Press) 29.92 in. Hg	% Deviation = Corrected Flow - Sampler Flow Corrected Flow	x 100
Calibrator Temp/Press Corr Factor = $$	530°R Inlet temp (°F) + 460°R x 2	Inlet Press 9.92 in. Hg	Corrected Flow = (Indicated Flow) x (Temp/Press Corr	Factor)

Calibrated by: Kurt D. Newton ______ Date: 15 May 2009

CERTIFICATE OF CALIBRATION

(AIR SAMPLER)

RSA Laboratories, Inc. 19 Pendleton Drive, P.O. Box 61

> Hebron, Connecticut 06248 (860) 228-0721 Fax (860) 228-4402

Customer and Contact: Cabrera Services, Inc., Attn: Charles Mikaitis (860) 569-0095

Customer Address: 473 Silver Lane, East Hartford, CT 06118

Inst. Mfr. HI-Q

Inst. Model CF-973T

Inst. s/n 16831

Reference Inst. HI-Q Model HFC-50C

Inst. s/n 4911

Cal. Date 01 July 2009

Due Date 01 July 2010

Cal. Interval 1 year

Barometric Press: Actual 29.50

Corrected to: 29.50 in. Hg

Corrected to: 76°F

Temperature: Actual 76°F

Filters Used:

■Particulate □Charcoal/silver zeolite □Other:

Measurement	Air Sampler Flow Rate (CFM)	Ref. Inst. Flow Rate (CFM)	Percent Deviation
1	14.56	14.81	1.71%
2	24.26	24.68	1.71%
3	33.97	34.06	0.28%
4	43.67	42.95	-1.68%
5			
6			
7			
8	·	·	
9			
10	N d		
11			
12			
13			

**Average percent deviation across the range = 0.50%

This is to certify that RSA Laboratories, Inc. of Hebron, Connecticut, has on this date certified this air sampler to be within the accuracy specified above. The Reference Flow Device bears Letters of Certification traceable to the National Institute of Science and Technology. RSA Laboratories, Inc. ID# 12717.

Calibrated by: Kurt D. Newton	7	Date: 01 July 2009
Caroraton by: xxaxt Di 11011ton		Date. Of Guty 2002

CERTIFICATE OF CALIBRATION

(AIR SAMPLER)

Facility: RSA Laboratories, Inc.

Customer: Cabrera Services, Inc.

Calibrator Model HI-Q Model HFC-50C Air Sampler Model HI-Q CF-973T

Calibrator Serial No. 4911 Air Sampler Serial No. 16831

	AIR SAMPLER							CALIBRATOR	
Measurement	Inlet Temp. (°F)	Inlet Press (In-Hg)	Gauge Press (In-Hg)	Indicated Flow (CFM)	Temp/Press Correction Factor	Corrected Flow (CFM)	Indicated Flow (CFM)	Temp/Press Correction Factor	Corrected Flow (CFM)
1	76	29.50	n/a	15.0	0.970	14.56	15.0	0.987	14.81
2	76	29.50	n/a	25.0	0.970	24.26	25.0	0.987	24.68
3	76	29.50	n/a	35.0	0.970	33.97	34.5	0.987	34.06
4	76	29.50	n/a	45.0	0.970	43.67	43.5	0.987	42.95
5									
6									
7									
8									
9									
10									
11									
12									
13									

Air Sampler Temp/Press Corr Factor = $\sqrt{\frac{530^{\circ} \text{R}}{\text{Inlet temp (°F)} + 460^{\circ} \text{R}}} \times \frac{\text{(Inlet Press - Gauge Press)}}{29.92 \text{ in. Hg}}$	% Deviation = $\frac{\text{Corrected Flow - Sampler Flow}}{\text{Corrected Flow}} \times 100$
Calibrator Temp/Press Corr Factor = $\sqrt{\frac{.530^{\circ}\text{R}}{\text{Inlet temp (°F)} + 460^{\circ}\text{R}}} \times \frac{\text{Inlet Press}}{29.92 \text{ in. Hg}}$	Corrected Flow = (Indicated Flow) x (Temp/Press Corr Factor
Calibrated by: Kurt D. Newton	Date: 01 July 2009

CERTIFICATE OF CALIBRATION

(AIR SAMPLER)

RSA

RSA Laboratories, Inc.

19 Pendleton Drive, P.O. Box 61 Hebron, Connecticut 06248 (860) 228-0721 Fax (860) 228-4402

Customer and Contact: Cabrera Services, Inc., Attn: Charles Mikaitis (860) 569-0095

Customer Address: 473 Silver Lane, East Hartford, CT 06118

Inst. Mfr. HI-Q

Inst. Model CF-973T

Inst. s/n 16832

Reference Inst. HI-Q Model HFC-50C

Inst. s/n 4911

Cal. Date 30 July 2009

Due Date 30 July 2010

Cal. Interval 1 year

Barometric Press: Actual 29.52

Corrected to: 29.52 in. Hg

Corrected to: 77°F

Temperature: Actual 77°F
Filters Used:

Particulate

Charcoal/silver zeolite

Other:

Measurement	Air Sampler Flow Rate (CFM)	Ref. Inst. Flow Rate (CFM)	Percent Deviation
1	14.55	14.30	1.71%
2	- 24.25	24.57	1.71%
3	33.95	33.55	-1.18%
. 4	43.65	42.93	-1.68%
5			
6			
7			
8			
9			
10			
11			
12			
13	`		

**Average percent deviation across the range = 0.14%

This is to certify that RSA Laboratories, Inc. of Hebron, Connecticut, has on this date certified this air sampler to be within the accuracy specified above. The Reference Flow Device bears Letters of Certification traceable to the National Institute of Science and Technology. RSA Laboratories, Inc. ID# 12834.

Calibrated by: Kurt D. Newton ______ Date: 30 July 2009

CERTIFICATE OF CALIBRATION

(AIR SAMPLER)

Facility: RSA Laboratories, Inc.

Customer: Cabrera Services, Inc.

Calibrator Model HI-Q Model HFC-50C Air Sampler Model HI-Q CF-973T Calibrator Serial No. 4911 Air Sampler Serial No. 16832

	AIR SAMPLER							CALIBRATOR	
Measurement	Inlet Temp. (°F)	Inlet Press (In-Hg)	Gauge Press (In-Hg)	Indicated Flow (CFM)	Temp/Press Correction Factor	Corrected Flow (CFM)	Indicated Flow (CFM)	Temp/Press Correction Factor	Corrected Flow (CFM)
1	77	29.52	n/a	15.0	0.970	14.55	15.0	0.987	14.80
2	77	29.52	n/a	25.0	0.970	24.25	25.0	0.987	24.67
3.	77	29,52	n/a	35.0	0.970	33.95	34.0	0.987	33.55
4	77	29.52	n/a	45.0	0.970	43.65	43.5	0.987	42,93
5									
6									
7									
8									
9									
10									
11									
12									
13									

Air Sampler Temp/Press Corr Factor =	The temp (°F) + 460°R x (Inlet Press - Gauge Press) 29.92 in. Hg	% Deviation = $\frac{\text{Corrected Flow - Sampler Flow}}{\text{Corrected Flow}} \times 100$
Calibrator Temp/Press Corr Factor = $$	530°R Inlet temp (°F) + 460°R x Inlet Press 29.92 in. Hg	Corrected Flow = (Indicated Flow) x (Temp/Press Corr Factor)

Calibrated by: Kurt D. Newton ______ Date: 30 July 2009

Certificate Of Calibration

This Certificate will be accompanied by Calibration Charts or Readings where Applicable

	Custome			Instrument					
Customer Name: C	abrera Services Inc			Manufacturer: Ludi	um Measureme	nts			
	Silver Lane It Hartford, CT 06118	•		Model: 2360 Serial Number: 193635					
		,		Detector Manufacturer: Ludium Measurements					
Contact Name: Chu	ıck Mikaitis	Work Order		Det. Model: 43-10-1	4	Serial Numb	per: PR202583	,	
Customer PO/ CC. Number: 09-1	402	Calibration Method:	Electronic						
Instrument Received	d: 🗹 Within Toleran	ce Out of	Tolerance	Repairs required	Other (See Comments	5)		
☑ Geotropism	☑ Meter Zero	☑ Mech.	Ck.	✓ HV Readout	☑ Battery	Check	☑ Reset		
☑ Audio	☑ Window Status	∑ FS Res	sponse	☑ Linearily	☐ Backgro	ound Subtract	☐ Alarm Set		
Temperature: 72.9	F Humidit	y: 55 %	Pressure: 713.7	' mm Hg	Altitude: 145				
			Instrumer	it Calibration			TARKET.		
Multiplier\Range	Calibration	Instrument F	Response	Referen	ce instruments a				
	Point	Before Calibration	After Calibration	Pulser: 500-2	220100				
X 1	100 cpm	98 cpm	98 cpm	Sr90	C7-661	Th230		C7-644	
X 1	400 cpm	400 cpm	400 cpm	Tc99	C7-641	C14		C7-804	
X 10	1 kcpm	0.98 kcpm	0.98 kcpm		Con	iments			
X 10	4 kcpm	4 kcpm	4 kcpm	Inst. Voltage:	645 V	Isotope	Efficiency	Distance	
X 100	10 kcpm	9.8 kcpm	9.8 kcpm	Window Status		Sr90	44.2%	0 inch	
X 100	40 kcpm	40 kcpm	40 kcpm	Beta threshold:	4 mV	Th230	38.4%	0 inch	
X 1K	100 kcpm	97 kcpm	97 kcpm	Beta window:	49 mV	Tc99	25.1%	0 inch	
X 1K	400 kcpm	400 kcpm	400 kcpm	Alpha threshold:	154 mV	C14	8.8%	0 inch	
Digital Scaler	40 cpm	40 cpm	40 cpm						
Digital Scaler	400 cpm	400 cpm	400 cpm			Ref. Voltage 1	: 645 V		
Digital Scaler	4 kcpm	4001 kcpm	4001 kcpm			Inst. Voltage 1	: 645 V		
Digital Scaler	40 kcpm	40.012 kcpm	40.012 kcpm						
Digital Scaler	400 kcpm	400.119 kcpm	400.119 kcpm	Alpha crosstalk in the	e Beta channel	is <10%			
				Beta crosstalk in the	Alpha channel	is <1%			
77.5-7-0-1-1									
			Statement c	f Certification			tik (johjus 1911) Gusta Baylus (
AJW Technical Sevices,	Inc certifies that the abo	ve instrument has bee	n calibrated by standa	ards traceable to the Natio	nal Institute of Sta	ndards and Tech	nology, or to the c	alibration	
alibration techniques. T	he calibration system co	onforms to the requirem	ents of ISO/IEC 1702	ccepted values of natural 25 and ANSI N323. The In	µnysicai constants istrument listed ab	or nave been de ove was inspecte	rived by the ratio t d prior to shipmen	ype ot it and it	

MJW Technical Sevices, Inc certifies that the above instrumen facilities of other International Standards organization member calibration techniques. The calibration system conforms to the	Statement of Certification It has been calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibration s, or have been derived from accepted values of natural physical constants or have been derived by the ratio type of e requirements of ISO/IEC 17025 and ANSI N323. The Instrument listed above was inspected prior to shipment and it (MJW technical Services is not responsible for damage incurred during shipment or use of this instrument).
Instrument Calibrated By: KTRalyca	Reviewed By: Date 7-1-05
Calibration Date: 06/30/2009	Calibration Due: 06/30/2010

Mak	е	Me	odel	S	S/N	Pr	obe	S/N		DO	С
Ludlum		236	0 1	19869	15	43-10	o ~(PR20	2583	6/30/0	9 9
Bkgd Co	ount	Source	e Count	Sourc	e #1 ID	Source	e #2 ID	Source	e #3 ID	CD	D
10		2	_	Th-23	0 (1160)	Tc-99	(1161)	NI	7	6/30/	10
Date	12/9/0	9									
Intial QC's	1	2	3	4	5	6	7	8	9	10	Tech
Bkgd	1/493	0/524	2/510	2/485	2/465	1/535	2/520	1/543	4/455	5/516	GB
Source #1	11547	14679	11830	11658	11683	11782	11897	11573	11734	11552	03
Source #2	10845	10767	10788	10646	(0838	10386	10653	10743	10714	108/6	GB
Source #3	NA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	eku

	***		Daily QC's			
Date	Bkgd	Source #1 (Th-130)(a)/β/γ	Source #2 (Tc-99) a /(β)/γ	Source #3 () $\alpha / \beta / \gamma$	Battery OK	Tech
12/9/09	1/493	11648	/ ⁰ 830	NIA	Yes / No	GB
12/10/09	2/511	11651	- 10828	NIA	Yes / No	(B)
12/11/09	1/512	11573	10984	NIA	(Yes / No	GB
12/14/09	41544	11668	11005	NIA	∕Yes / No	GB
12/15/09	1/537	11576	10784	NIA	Yés / No	OF
01/04/10	2/524	11.672	10885	NIA	Yes)/ No	AW
01/11/10	1/507	11757	10890	NIA	(Yes)/ No	4w
01/18/10	4/484	11,626	10842	NIA	Yes)/ No	[Aw
ulastr	£ .	cturned to inst	rumentation a	, ,	Yes / No	
					Yes / No	
					Yes / No	
			NFE		Yes / No	
			JW 1191	σ	Yes / No	
			= } }/	1.3	Yes / No	
					Yes / No	
Project# 08-380	8000 08-3800.08				Yes / No	

Page 1 of 6) 11 all

Calibration Date: 01/05/2010

Certificate Of Calibration

e e e e e e e e e e e e e e e e e e e	Custome	1000 000 000 000 000 000 000 000 000 00		ig til berke stater ble er er er I delse klaster ble besk state	Instru	iment		Počet Joseph	
Customer Name: Ca	abrera Services Inc			Manufacturer: Ludlüm Measurements					
	Silver Lane			Model: 2929 Serial Number: 129566					
East	Hartford, CT 06118	3		Detector Manufactu	rer: Ludlum M	easurements	:		
Contact Name: Chuc	k Mikaitis			Det. Model: 43-10-1		Serial Numb	per: PR132720)	
Customer PO/ CC, Number: 10-01	27	Work Order Number: 2	009-1612	Calibration Method:	Electronic				
Instrument Received	: Within Toleran	ce Out of	Tolerance	☑ Repairs required	Other (See Comments)		
Geotropism	✓ Meter Zero	☑ Mech.	Ck.	☑ HV Readout	☐ Battery		Reset		
☑ Audio	☑ Window Status	FS Re	sponse	Linearity	☐ Backg	ound Subtract	☐ Alarm Set		
Temperature: 70.7 F	Humidit	y: 25 %	Pressure: 28.4	4 in Hg	Altitude: 14	50 ft	· · · · · ·		
ar Aleman kan di manara Kan	er Filip Agent Guest Miller	consultation deliver	Instrumer	nt Calibration		400.5 <u>2.54</u> 54			
Multiplier\Range	Calibration	Instrument I	Response	Reference	e instruments	and / or Source	THE PARTY OF THE P	Mariana Mariana da Landa de 1919 (1917) (1917)	
	Point	Before Calibration	After Calibration	Pulser: 500-2	220110				
Alpha	40 cpm	40 cpm	40 cpm	Sr90	C7-661	Tc99		C7-641	
Alpha	400 cpm	401 cpm	401 cpm	Pu239	C7-639	C14	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C7-804	
Alpha	4000 cpm	4003 cpm	4003 cpm	erredenigen bet	Con	nments	A BAR YUSUR	ilinija ja j	
Alpha	40000 cpm	40025 cpm	40025 cpm		660 V	Isotope	Efficiency	Distance	
Alpha	400000 cpm	400159 cpm	400159 cpm	Window Status		Sr90	46.1%	0 incl	
Beta-Gamma	40 cpm	40 c <u>ệ</u> m	40 cpm		4 mV	Tc99	19.9%	0 inct	
Beta-Gamma	400 cpm	400 cpm	400 cpm	-1	48 mV	Pu239	37.6%	0 incl	
Beta-Gamma Beta-Gamma	4000 cpm	3999 cpm	3999 cpm	Alpha threshold:	182 mV	C14	4.3%	0 inch	
Beta-Gamma	40000 cpm	40036 cpm	40036 cpm	-{					
Deta-Gailinia	400000 cpm	400197 cpm	400197 cpm	Operating voltage:	660 V	Ref. Voltage 1:	500 V		
				_		Inst. Voltage 1			
				1		Ref. Voltage 2			
						Inst. Voltage 2	1525 V		
		·	<u> </u>	660V = 2.74 on High	Voltage diat				
				Alpha crosstalk in the	-	is <10% with in	sert in place		
			***	Beta crosstalk in the			•		
				-			,		
				1 '					
]					
				•					
	······································								
			Statement c	f Certification	E-Visiosies	s Sastantia	o in content to	rigi sunt distribui	
IJW Technical Sevices, In	c certifies that the abo	ve instrument has bee	n calibrated by stands	arde traceable to the Nation	al Institute of Sta	indards and Techr	iology, or to the c	alibration	
alibration techniques. The	iai Standaros organiza e calibration system co	tion members, or have nforms to the requirem	been derived from a ents of ISO/IEC 1702	ccepted values of natural p 25 and ANSI N323. The Ins t responsible for damage in	hysical constants truntent listed ab	i or have been der ove was inspected	ived by the ratio t	and of	
	nononeu operating sp	econoacona, (MD9V (EC	minear Services is 10	r responsible for damage IN	correa auring sh	pment of use of th	is instrument).		
nstrument	Left 1			A Raline			/		
Calibrated By:			Reviewed Bur A	CIK allows		Date 1/5	-116		

Calibration Due: 01/05/2011

Mak	e		del	S	/N	Pro	obe	S	N	DO	C
Ludlum			2929		129566)-/	PR132720		1/5/	טו
Bkgd Count		Source	Count	Source #1 ID		Source #2 ID		Source #3 ID		CD	D
10		2	,	Th-23	0(1160)	TC-99	(1161)	111	A	1151	71
Date	1/18/10 -	1/19/10									
Intial QC's	1	2	3	4	5	6	7	8	9	10	Tech
Bkgd	1/401	9/378	9397	2/402	2/396	0/371	0/396	2/428	9/379	2/391	dw
Source #1	11128	10919	10857	10806	11164	11054	10833	10856	11042	11060	de
Source #2		8332	8480	8297	8463	8254	8511	8330	8533	8625	Øω
Source #3	NIA	NIA	NIÀ	NIA	NIA	NIA	NA	NA	NIA	NA	AU

			Daily QC's			
Date	Bkgd	Source #1 (Th-230 a) β/γ	Source #2 (Tc-99) a (β/γ)	Source #3 () α / β / γ	Battery OK	Tech
1/19/10	0/373	11094	8521		Yes / No N/A	AW
1/20/10	9/403	10788	8481		Yes / No N/A	dw
1/26/10	0/384	11259	8410		Yes / No NIA	DC
120/10	1/371	10804	8365		Yes / No N/A	AW
1/28/10	0/3/5	11136	8401		Yes / No 1//A	AD
1/29/10	1/381	<i>ĵ.</i> 1111	8460		Yes / No M/A	NO
2-3-10	2/39-1 2/391	11174	8466	N\	Yes / No 🚜	DX
2-4-10	0/420	11027	8578	\A	Yes / No N/A	AND
2/5/10	3/417	11109	8511		Yes / No <i>/\(\f</i> / / /	Aw
2/15/10	0/383	11008	8631		Yes / No ////	AQ
2/16/10	9/396	10997	8417		Yes / No ////	du
2/17/10	1/410	10996	8555		Yes / No 🏹/A	AU)
2/18/10	2/412	11130	8589		Yes / No ////	AW
2/23/10	-1793 0/405	11139	8433		Yes / No N/H	$\rightarrow \hat{a}$
2/24/10	0/380	10955	8503		Yes / No Nift	ØW)
Project# 08-380.	78 NO 3800.08				Yes / No	

	Daily QC's									
construction in the last of the test of	: Bkgd	Source #1 ~(~~~) α / β / γ	Source #2 _(: : : : : :) α / β //γ :	Source #3 (********) α // β //γ/**	Battery OK, Tech					
3/1/10	2/413	10811	8540	NIA	Yes / No N/A AW					
3/2/10	0/402.	11189	8495	NIA	Yes / No U/A AW					
3/3/10	2/407	11163	8609	NIA	Yes / No WA OW					
	***************************************				Yes / No					
Projec	- demobile	200 00 3/3	3/10 NFE		Yes / No					
, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7			Yes / No					
					Yes / No					
					Yes / No					
					Yes / No					
					Yes / No					
					Yes / No					
					Yes / No					
		1			Yes / No					
		<u> </u>			Yes / No					
		14/			Yes / No					
					Yes / No					
					Yes / No					
					Yes / No					
					Yes / No					
					Yes / No					
					Yes / No					
1		······································	•		Yes / No					
· · · · · · · · · · · · · · · · · · ·			-		Yes / No					
					Yes / No					
					Yes / No					
					Yes / No					
					Yes / No					

Designer and Manufacturer of Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

TUSTOMER	R CABRERA SERVI	CES			0	RDER NO	20138563/340918
)	Ludium Measurem	ents Inc. Mod	el	2224-1	Serial N	10. <u>22720</u>	14
Mig	Ludium Measurem	ents, Inc. Moc	el	43-93	Serial N	10. PA2449	545
Cal Date	13-Aug-1	no Cal Due I	onte 13	-Aug-10	Cal. Interval	1 Year Mete	rface 202-848
	applies to applic					57 % A	it <u>703.8</u> mm Hg
Cneck mark New In	ustrument Instrume	ent Received 🔲 Wi	thin Toler. +-10%	10-20% 🔲 Out a	f Tol. Requiring	g Repair 🔲 Ot	her-See comments
F/S Res	anical ck. sp. ck	Meter Zeroed Reset ck.	□ ☑ ck. ☑	Background Subi Window Operation	tract on IH 22 VDC	☐ Input Se ☑ Geotrop	
Audio Calibra	ted in accordance w	vith LMLSOP 14.8 rev	12/05/89.	Calibrated in acc	ordance with LMI	SOP 14.9 rev 02	1/07/97. mV
Instrument V	'olt Set <u>875</u>	V Input Sens. <u>Com</u>	ment mV Det. Oper	·. 875 V	at <u>Comperts</u> m	V Dial Ratio_	=
⊠ H∨	Readout (2 points)	Ref./Inst50	0 / 50	/ V F	ef./Inst1	000/_	/33 4 V
COMMEN Alpha In Firmware	NTS: put Sensitivity : 390094 Ove	: 130 mV B	eta Input Sensi mulate light le	tivity: 3.5 eak. HV set	mV Beta with detector	Window: 30 disconnect	mV ced.
4 pi Eff Backgrou	. for Th230≈19, nd: 3cpm Readi	800dpm is:20% ng: 3,949cpm	4 pi Eff. fo Background:	or Tc99≈22,60 157cpm Rea	Odpm is:18.73 ding: 4,391cp	38 om	
4 pi Eff Backgrou	. for SrY90≈54, nd: 157cpm Rea	726dpm is:24.94 ding: 13,808cpm	% 4 pi Eff. fo Background:	or Ni63≈289,6 157cpm Read	06dpm is:0.05 ing: 327 cpm	5%	
	n: GM detectors positioned perp						
Gamina Gailuralloi	it. Okt delectors positioned perp	REFE	RENCE	INSTRUME	NT REC'D	INSTRUME	
	RANGE/MULTIPLI		POINT		ID READING"	METER RE	
,	x1000		m				
	x1000	200k_cp	m				
	x100	80k cp	m			•	
•	x100		m				
•	×10		m	1		Yw	
	x10		m	1		200	
			m	`		Ŷω	
	x]		m				
	x]	2000)					
wa f	Incertainty within ± 10%	C F within + 20%					ibrated Electronically
	REFERENCE	INSTRUMENT	INSTRUMENT	REFERE	NCE INS	STRUMENT	INSTRUMENT
C	CAL. POINT	RECEIVED	METER READING*	CAL. PO		CEIVED	METER READING*
Digital Readout _	800kcpm	NA	799012cpm	Log Scale			
	80kcpm		79913				
	<u>8kcpm</u>		7991				
-	800cpm		799				
	80cpm ements, Inc. certifies that the			reachle to the Nationa	Institute of Standards (and Technology, or to	o the calibration facilities of
Ludium Measure other Internation The calibrations	ements, Inc. certifies that the nat Standards Organization s system conforms to the requ	above instrument flos been members, or have been der irements of ANSI/NCSL Z540	ived from accepted values -1-1994 and ANSI N323-1978	of natural physical con	stants or have been der Sta	rived by the ratio typ ite of Texas Calibi	e of calibration techniques. ration License No. LO-1963
Deference	Instruments and/	or Sources: S-39	4/1122	781 🔲 059 l	280	·	eutron Äm-241 Be \$/N T-304
	ma S/N 1162 G						eutron Am-241 be 3/N 1-304
	a S/N Th 730 E12		Beta S/N <u>Tiff NI</u>		Other		93870637
√ m 50	0 S/N6389	23	Oscilloscope S/N				•
-Calibrated	d By: Jerany	Thongson		4		J '	
Reviewed	By: Rham	4 Han			Date 13 Av	405	
This certificate	e shall not be reproduced e 10/15/2008	xcept in full, without the wri	ilen approval of Ludium Me	asurements, Inc.		ssed Dielectric (Hi	-Pot) and Continuity Test

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494
501 OAK STREET FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

Detector _	43-93	3 S∈	erial No	1 244 <u>5</u> 4	15			Order #.	20138563,	340918
Customer						lqiA	na Input Se	ensitivity	/33	mV
Counter -	2224-1	Serio	i No. 227	244			eta Input S	ensitivity	٤.5	mV
Count Time								Window		
Other						Distance So	ource to E	Detector <u>ಎ</u>	ar Face	
Onioi										
High	Back	ground	Isotope _ Size _	74730 119,3wdfr	Isotope Size	Tc 99 27,600dph	Isotope . Size :	<u>Sr 490</u> = 54,726dpm	lsotope z Size	N; 63 ZDP9,606dp
Voltage	Alpha	Beta	Alpha	Beta	Alpha	8eta		Beta		i
850		11.5	3384	५०५	7	3625	1 -	10675		<u>:</u>
<u> </u>	_3	157	3949	511	Ŷ	439		13808		
900	6	199	4042	734	3	4924	2	15348		737
										<u> </u>
	L,			i i i			ļ · · · · ·			
		i i i		-						
					.,,					
						<u>.</u>				
							T			
-										
	-									
		:								
-	<u>, , , , , , , , , , , , , , , , , , , </u>							•		
		-	-							
· [7] Gas Pro	portional d	etector coun	t rate decrec	sed ≤ 10%	after 15 h	our static test :	using 39" co	able.		
☐ Gas pro	portional d	etector coun	t rate decre	ased ≤ 10%	after 5 ho	ur static test u	sing 39" cal	ole and alpha/l	beta coun	ter.
Signature ,	Jeran	7	hompsun		· · · · · ·			Date 13.	<u> </u>	1

DAILY ______LD LOG Instrument QC

Mak	œ		odel	S	/N	Pr	obe	S	/N	DO	C
Ludiun	~	222	2224-1		227244		43-93		PR 244545		09
Bkgd Count		Source	e Count	Source	Source #1 ID		Source #2 ID		#3 ID	CDI	D
1		1		Th-230	(1160)	TU-9	9.(1161)	1//:	H	8/13/	10
Date	12/9/0	9									
Intial QC's	1	2	3	4	5	6	7	8	9	10	Tech
Bkgd	0/199	2/225	4/238	1/234	0/219	1/221	0/233	1/219	3/202	0/203	03
Source #1	3627	3612	3399	3597	3608	372Y	3475	3552	3631	3582	33
Source #2	3730	3470	3668	3300	3612	3475	3345	3582	3311	3780	G
Source #3	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	ted

				Daily QC's			
Da	ite	Bkgd	Source #1 (Th-230)(g / β / γ	Source #2 (Τυ-٩٩) α /Β)Ιγ	Source #3 () $\alpha / \beta / \gamma$	Battery OK	Tech
12/9(09	0/232	3601	3471	NIA	Yes ∌No	GB
12/11	0/09	1/199	3659	3696	NIA	€EV/ No	G3
12/	14/29	0/193	3661	3752	NIA	Yes/No	Ġ₹3
4 ' /	5/09	0/203	3712	3460	NIA	(es)/ No	GB
+/ 1 /\$00	1/19/10	2/193	3532	3558	NIA	(Yes)/ No	tw
1-26-		0/185.	3566 M3566	3638	NA	Ŷes)/No	かく
1-27-	-10	1/195	3651	3532	NA	Yes) No	かん
1/88/1	10	0/184	3642	3539	NA	(Yes) No	NW
1/29/1	D.	1/190	3631	3506	NIA	Yes/ No	tw
2-3-	10	+ / 178W 1/200	3545	36 69	NA	YES/ No	D) c
2/4/1	0	2/184 m2/194	3527	3533	NA	(Yes) No	A
2-8-		1/204	3582	3602	NA	Yes No	\$)<
2/15/1	10	2/207	3571	3112	NIA	(Yes)/ No	ØW)
2/1711	0	4/190	3557	3497	AUA	(Yes) No	AW
723	10_	1/193	3597	3769	7/11/1	(Yes)/ No	Au
Project#	08-38 6	30 78 08-3800.08			, , ,	Yes / No	

tkóg on locanteg Pkógrán locanteg

			Daily QC's			
Date	Bkgd	Source #1 () α / β / γ	Source #2 () α (β/γ	Source #3 (////) α / β / γ	Battery OK	Tech
3/1/10	0/198	3573	3601	NIA	Yes / No	AG
3/2/10	0/193	3541	3595	NIA	(Yes)/ No	AN)
3/3/10	0/197	රි 520	3413	NA	Yes)/ No	(111)
					Yes / No	
					Yes / No	
			•		Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
	•	11-	(-)	- ^	Yes / No	
		Ulahime	nt was return	d m 3/3/10 (1)	() Yes / No	
				7 7 7 7	Yes / No	
					Yes / No	
					Yes / No	
				,	Yes / No	
					Yes / No	
					Yes / No	
		·			Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	

Project#08-380.08

Customer Name: Cabrera Services Inc.

Certificate Of Calibration

This Certificate will be accompanied by Calibration Charts or Readings where Applicable

Instrument

Manufacturer: Ludlum Measurements

	JIIVEI LAILE			Wodel, 2241-3 Senai Number, 142299				
East	Hartford, CT 06118			Detector Man	ufacturer: Ludlum Meas	surements		
Contact Name: Chuc	k Mikaitis			Det. Model: 4	4-9	Serial Numb	per: PR171184	
Customer PO/ CC. Number: 09-126	68	Work Order Number: 20	009-1047	Calibration M	ethod: Electronic		•	
Instrument Received:	: 🗹 Within Toleran	ce Out of	Tolerance [Repairs requi	red 🔲 Other (Se	e Comments	5)	
☑ Geotropism	☑ Meter Żero	☑ Mech.	Ck. [☐ HV Readout	☑ Battery C	heck .	☑ Reset	
☑ Audio	☐ Window Status	FS Res	sponse [Linearity	☐ Backgrou	nd Subtract	☐ Alarm Set	
Temperature: 70.7 F	Humidit	y: 27%	Pressure: 713.7	mm Hg	Altitude: 1450	ft		
			istrument 6	alibratión				
Multiplier\Range	Calibration	Instrument F	Response	Re	eference instruments an	d / or Source	s	
	Point	Before Calibration	After Calibration	Pulser: 500-2	220100	,		
Ratemeter Mode	200 cpm	· 199 cpm	199 cpm	C-14	C7-804	SrY-90	С	7-661
Ratemeter Mode	800 cpm	799 cpm	799 cpm	Th-230	C7-644	Tc-99		7-641
Ratemeter Mode	2 Kcpm	1.99 Kcpm	1.99 Kcpm		Comin	nents 📆		
Ratemeter Mode	8 Kcpm	8 Kcpm	8 Kcpm	Voltage: 900	Input Sensitivity: 35			
Ratemeter Mode	20 Kcpm	19.9 Kcpm	19.9 Kcpm		,			ļ
Ratemeter Mode	80 Kcpm	80 Kcpm	80 Kcpm		•			
Ratemeter Mode	200 Kcpm	199 Kcpm	199 Kcpm	4pi efficiencie:	s for detector model 44-	9 #PR17118	4 @ 0.25"	
Ratemeter Mode	800 Kcpm	800 Kcpm	800 Kcpm	Th230 9.1	%			
Scaler Mode	200 cpm	200 cpm	200 cpm	Tc99 9.7	%			
Scaler Mode	800 cpm	801 cpm	801 cpm	SrY90 21.5	%			l,
Scaler Mode	2 Kcpm	1.997 Kcpm	1.997 Kcpm	C14 3.0)%			[
Scaler Mode	8 Kcpm	8.003 Kcpm	8.003 Kcpm]				
Scaler Mode	20 Kcpm	19.973 Kcpm	19.973 Kcpm	Limited Use:		•		ļ
Scaler Mode	80 Kcpm	80.025 Kcpm	80.025 Kcpm	Detector selec	ctions 2, 3, and 4 are no	t calibrated	•	1
Scaler Mode	200 Kcpm	199,726 Kcpm	199.726 Kcpm					ł
Scaler Mode	800 Kcpm	800.137 Kcpm	800.137 Kcpm]			•	
						•		
							•	
				_	·			
				_			•	
				_		•		
				_				
					VI. 100 100 100 100 100 100 100 100 100 10			economicos de la company
	September 1		Stattemented					e de la composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della comp
facilities of other Internation techniques. The	onal Standards organia he calibration system o	tation members, or hav conforms to the requirer	e been derived from a ments of ISO/IEC 170	accepted values of 25 and ANSI N323	he National Institute of Stan natural physical constants of 3. The Instrument listed about lamage incurred during ship	or nave been d ve was inspect	erived by the ratio type ed prior to shipment a	e OT
Instrument Calibrated By:	Robea		Reviewed By:	May.	125	Date 2	7-20-09	
Calibration Date: 02	2/19/2009		Calibr	ation Dufe: 02/1	19/2010			
				•				

d,

Make			del	S	/N	Pr	obe	S	S/N	DO	С
Ludium		2241	-3	1422	99	44-9		PR171184		2/19/	09
Bkgd Coun	t	Source	Count	Count Source #1 ID So		Source #2 ID		Source #3 ID			
		7		to-9	7 1161	NA		NIF	7	2/19/10	
Date 12	12/0	9								1 1	
Intial QC's	1	2	3	4	5	6	7	8	9	10	Tech
Bkgd 4	f So	36	39	27	27	33	36	48	31	30	CuB
Source #1 32		3229	3220	32:05	3143	3302	3246	3285	3137	3232	00
	M	NA	NIA	NIA	NA	NA	NIA	NA	NIA	MA	ALO
Source #3 N	IA	NIA	NIA	NIA	NA	NIA	AL/A-	NIA	NA	NA	the

			Daily QC's			
Date	Bkgd	Source #1 (72-99) α /β βγ	Source #2 () α / β / γ	Source #3 () a / β / γ	Battery OK	Tech
(2/2/09	31	3312	NIA	NIA	Ye s / No	An
12/3/09	35	3129	NIA	NIA	% / No	AW
12/4/09	31	3100	NA	NIA	Yes / No	AW
12/7/09	<i>3</i> 7	3165	ÑΪA	NIA	∕∕és / No	AW
17/8/07	31	3308	N'iA	NIA	Yes / No	AW
12/9/09	32	3311	NIA	NIA	≪es / No	CB
12/10/09	36	3262	NIA	NIA	Yes/No	G _r B
12/11/09	89	3365	NIA	NIA	(Yes) No	B
12/4/09	42	3481	NIA	NIA	Yes / No	CB
12/15/09	38	3376	NA	NIA	Yes / No	C53
01/04/099	5 37	3486	NIA	NIA	Yes / No	Aw
01/21/10	<u>عاد</u>	3420	NIA	NIA	(es)/ No	Aa
02/2/0	33	3433	MA	NIA	(Yes)/ No	AJ.
2-3-10	34	3283	N4	nt	(Yes)/ No	ひりく
2/4/10	<i>3</i> 0	3442	NIA	NIA	(Yes)/ No	And
さ~ \$ Project#08-380	30	3390	NA	NA	Yes/ No	Ø(

			Daily QC's			
Date	Bkgd	Source #1 (72-99) α / β/γ	Source #2	Source #3 (β/γ) a / β/γ	Battery OK	Tech
2/15/10	ය රි	3481	NIA	NIA	Yes / No	Aw
2/16/10	34	3243	NIA	NIA	Yegy/ No	Aw
2117/10	36	3384	NIA	MIA	(Yes) No	AU
2/18/10	32	3224	NIA	NA	Yes / No	Au
				′	Yes / No	
			·		Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
·					Yes / No	
		·			Yes / No	
		·		·	Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
:					Yes / No	
					Yes / No	
					Yes / No	
		- "			Yes / No	
Marine Marine					Yes / No	
```			. , ,	,	Yes / No	
					Yes / No	
					Yes / No	

Project#08-380.08

Project Name: Middlesex Municipal Landfill



#### **Certificate Of Calibration**

This Contificate will be accompanied by Calibration Charls or Readings where Applicable

		This Certificate will	be accompanied by C	Calibration Charts or Read	oings where Applic	aule		Company of the latest of	
	Custome	r			Instru	ment			
Customer Name: Cal	orera Services Inc	6 c (A. 1930 )		Manufacturer: Ludlu	ım Measuremer	its			
Address: 473 S	ilver Lane			Model: 2221		Serial Numbe	r: 161580		
East i	Hartford, CT 06118			Detector Manufactu	Detector Manufacturer: Ludium Measurements				
Contact Name: Chuck	Mikaitis			Det. Model: 44-20		Serial Numbe	r: PR254904		
Customer PO/		Work Order	20.4492	Calibration Method:	Electronic				
CC. Number: 10-007		Number: 20		Repairs required	C Other (9	See Comments)			
Instrument Received:		ce ☑ Out of ☑ ☑ Mech. ○		Nepalis required  HV Readout	☑ Battery		✓ Reset		
				Linearity					
☑ Audio					Altitude: 145		Alarm Set		
Temperature: 71.3 F	Humidit	y: 41 %	Pressure: 726.4					For elements	
AND SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF THE SECOND REPORTS OF				t Calibration					
Multiplier\Range Calibration Point Referen		Instrument R			ce instruments a			220140	
	Point	Before Calibration	After Calibration		34451	Pulser: 500	-2	220110 C7-660	
X 1	100 cpm	90 cpm	100 cpm	Cs137	C7-806	Am241		C7-000	
X1	400 cpm	395 cpm	400 срт	vije sejer derengigt (j.k.)		ments 🕕			
X 10	1 kcpm	0.95 kcpm	1 kcpm	Inst. Voltage:	850 V	Isotope	Efficiency	Distance	
X 10	4 kcpm	3.95 kcpm	4 kcpm	Input Sensitivity:	10 mV	Cs137	28.7%	0 inch	
X 100	10 kcpm	9.5 kcpm	10 kcpm	1		Am241	16.7%	0 inch	
X 100	40 kcpm	39.5 kcpm	40 kcpm	Detector					
X 1K	100 kcpm	95 kcpm	100 kcpm	Operating voltage:	850 V	Ref. Voltage 1			
X 1K	400 kcpm	395 kcpm	400 kcpm			Inst. Voltage 1			
Digital Ratemeter	40 cpm	40 cpm	40 cpm			Ref. Voltage 2			
Digital Ratemeter	400 cpm	400 cpm	400 cpm			Inst. Voltage 2	: 1500 V		
Digital Ratemeter	4 kcpm	3.995 kcpm	3.995 kcpm						
Digital Ratemeter	40 ксрт	39.96 kcpm	39.96 kcpm						
Digital Ratemeter	400 kcpm	399.56 kcpm	399.56 kcpm	<u>_i</u>					
Digital Scaler	40 cpm	40 cpm	40 cpm	High Voltage: 850V	, detector conne	cted with 4 foot	cord		
Digital Scaler	400 cpm	400 cpm	400 cpm	Threshold: 100 :	= 10mV				
Digital Scaler	4 kcpm	3.996 kcpm	3.996 kcpm	Window: OUT					
Digital Scaler	40 kcpm	39.963 kcpm	39.963 kcpm						
Digital Scaler	400 kcpm	399,631 kcpm	399.631 kcpm	Model 44-20 energy				9 <b>y</b>	
Log Scale	50 cpm	50 cpm	50 cpm		r	esolution is <13	% for wind		
Log Scale	500 cpm		500 срп						
Log Scale	5 kcpm	4.95 kcpm	5 kcpm						
Log Scale	50 kcpm	47.5 kcpm	50 kcpm	<u>.  </u>					
Log Scale	500 kcpm	420 kcpm	450 kcpm						
								Milestromer miles	
PART CAPTER STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE		re i e e esperazione	Statement	of Certificatio	n				

the Notional Institute of Standards and Technology of to the Calibration
MJW Technical Sevices, Inc certifies that the above instrument has been calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibrated MJW Technical Sevices, Inc certifies that the above instrument has been calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibrated by standards traceable to the National Institute of Standards and Technology.
who we reclaim the constants or have been derived from accepted values of natural physical constants or have been derived by the ratio type of
MJW Technical Sevices, Inc certifies that the above instrument has been derived from accepted values of natural physical constants or have been derived by the ratio type of facilities of other International Standards organization members, or have been derived from accepted values of natural physical constants or have been derived by the ratio type of facilities of other International Standards organization members, or have been derived from accepted values of natural physical constants or have been derived by the ratio type of
with the state of the configuration of the configuration of the state of the configuration of the state of the configuration of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta
calibration techniques. The calibration system conforms to the requirements of 160/120 Processing the responsible for damage incurred during shipment or use of this instrument), met all the manufacturer's published operating specifications. (MJW technical Services is not responsible for damage incurred during shipment or use of this instrument).
was all the magnificatives a published operating specifications. (M.IW technical Services is not responsible for damage incurred during shipment of use of all a magnifications.)
titlet all the maintactural a published obergaing about construct from the maintained obergaing about construct from the maintained obergaing about construct from the maintained obergaing appearance from the maintained obergaing appearance from the maintained obergaing appearance from the maintained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergained obergai

. /		
Instrument		Date 10/21/2009
Calibrated By:	Reviewed By:	Date /0/21/2009
Calibration Date: 10/20/2009	Calibration Due: 10/20/2010	
	<u> </u>	



#### 图图图图 Bench Test Data for Detector

Gustomer	Cabrera Servic	<u> </u>	734 PO#	10:007/2	
Detector	<u>M44-20</u>		Serial #	PR254904	
Counter	M2200*		Serial #	34451	
Count time	<u>6 seconds</u>	In	put sensitivity	<u>10</u>	mV
		Source do dei	ector distance	comact 1	
Isotope 1	<u>Am241</u>	-	Activity	111301	4pi
: Isotope 2	Cs137.		Activity	997/32	461
lsotope 3			Activity		
Lisotope 4			Activity		
		rgy resolution = :			
	<u>acce</u> otable detec	lorenery/resolu	noi %El>alinoib	ojusisco wobniw	<u>in</u>

High Voltage	Background	Isotope 1	Isotope 2	Isotope 3	Isotope 4
	(*) (*) (*) (*) (*) (*) (*)	38.76			
450		230	<del></del>		
48° ; 500	301	375			
550	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	814	Sections and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont		
600		A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH			
650		1 7 () 12 m 1 () white (in all 22 m) 1 m 1 m	<u> </u>	<b>MAN</b>	EUROPE AND SERVICES AVE
700 750	1430		7 * 7 * 7 * 7 * 7 * 7 * 7 * 7 * 7 * 7 *	Part 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
750	1430 1439	*** *** * ** * *** **** * * * * * * * *			
850	1517		THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE		
900	1578	3371	4508		
950		3483	4509		
1000	<u></u>				
1050		5838	MATERIAL SERVICE SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERVICES AND ASSESSMENT OF SERV		
41100					
1150					STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP TO STEP T
1200					
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon					
		100			
		45.5	1900 1200 1	t in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Mark to the second
			[	L	j

Signature

Date 10-21-0-8





units are cpm or ur/hr

<u>Make</u>	Mod	lel -	S	/N	Pr	obe	S	/N	DO	С
Ludium	2:22	16158	グタレリー	20'	16158	6 V	125	254904	10/20	5/09
Bkgd Count	Source (	Count	Source	#1 ID	Source	e #2 ID	Source	e #3 ID	CD	
(	/		CS-137	7	NIA	<u>)</u>	NIA	7	10/20	10
Date (2/7/e	9									
Intial QC's 1	2	3	4	5	6	7	8	9	10	Tech
Bkgd 13425	13126	12912	12936	13233	13714	13221	13073	12933	13892	AW
	391947Y 3	32600	346294	329855	346005	37 <i>6</i> 3 <i>75</i>	369236	370567	369154	AW
Source #2 N/H	NA	NIA	NIA	NIA	NA	NA	NIA	NIA	NIA	Aro
Source #3 N/A	KIA	MA	MIA	MIA	MA	NIA	NIA	NUA	ALIA	tw

			Daily QC's			
Date	Bkgd	Source #1 (Cs ⁻¹³ 7) a / β (γ)	Source #2 ( ) α / β / γ	Source #3 ( ) $\alpha / \beta / \gamma$	Battery OK	Tech
12/7/09	12940	341276		7	Yes / No	AW
12/8/09	13030	370098		/	Yes / No	AW
12/10/09	13360	843057			Yes / No	AW
12/11/89	13050	368321	/		Yes / No	GB
12/19/09	12879	342764			Yes / No	(33
12/15/09	12954	363335			Yes./ No	<b>(2)</b>
11440	11709	365835	1/		Yes / No	tw
1-11-10	13144.	358493	N/n	N/A	(es) / No	DIC
1/13/10	12840	364322	. / //	' / 1\	(Yes)/No	Aω
1/14/10	12820	351994			Yes / No	00 00
1/18/10	14123	378010 391428			Yes / No	20
1/11/10	138ZZ	344924			∕(Tes / No	B
1/20/10	14368	347492	\( \lambda_{\epsilon} \)		Yes / No	AW
Pulio	14379	354517			Yes / No	DJC
Instrum	ent was return	red to instrum	entation on	2/2/10 AW	Yes / No	
	18 <b>6</b> 2-3800.118	NFE			Yes / No	

Project Name: Middlesex Municipal Landfill

Page 1 of∕6*[* 



Calibration Date: 10/30/2009

#### **Certificate Of Calibration**

This Certificate will be accompanied by Calibration Charts or Readings where Applicable

✓ Audio	ane d, CT 06118 itis	Work Order Number: 20 ce ☐ Out of ☑ Mech. ☑ FS Re y: 50%	Tolerance [ Ck. [ sponse [ Pressure: 726,4 Instrumen	Manufacturer: Ludlur Model: 2221 Detector Manufacturer Det. Model: 44-20 Calibration Method: Repairs required HV Readout Linearity	er: Ludium Me Electronic Other (:	Serial Numbe easurements Serial Numbe See Comments) Check		
East Hartford  Contact Name: Chuck Mikai  Customer PO/ CC, Number: 10-0094  Instrument Received: ☑ Wil  ☑ Geotropism ☑ Me  ☑ Audio ☐ Wil  Temperature: 71.1 F  Multiplier\Range Cal P  X 1  X 1  X 10	d, CT 06118 thin Tolerander Zero Indow Status Humidit Voint	Work Order Number: 20 ce ☐ Out of ☑ Mech. ☑ FS Re y: 50%	Tolerance [ Ck. [ sponse [ Pressure: 726,4 Instrumen	Detector Manufacture  Det. Model: 44-20  Calibration Method:  Repairs required  HV Readout  Linearity	Electronic  Other (all Battery)	Serial Numbe See Comments) Check	r; RN182712	
Contact Name: Chuck Mikai Customer PO/ CC. Number: 10-0094  Instrument Received:	thin Tolerander Zero Indow Status Humidit Ilibration	Work Order Number: 20 ce ☐ Out of ☑ Mech. ☑ FS Re y: 50%	Tolerance [ Ck. [ sponse [ Pressure: 726,4 Instrumen	Det. Model: 44-20 Calibration Method: Repairs required HV Readout Linearity	Electronic  Other (all Battery)	Serial Numbe See Comments) Check		
Customer PO/ CC. Number: 10-0094  Instrument Received:  Wii   Geotropism	thin Tolerandeter Zero Indow Status Humidit Ilibration Point	Number: 20 ce Out of Mech. FS Re y: 50%	Tolerance [ Ck. [ sponse [ Pressure: 726,4 Instrumen	Calibration Method:  Repairs required  HV Readout Linearity	☐ Other (: ☑ Battery	See Comments) Check [		
CC. Number: 10-0094  Instrument Received:  Will Geotropism   Me   Audio   Will Temperature: 71.1 F  Multiplier\Range   Cal P  X 1  X 1  X 10	eter Zero ndow Status Humidit Humidit Hibration Point	Number: 20 ce Out of Mech. FS Re y: 50%	Tolerance [ Ck. [ sponse [ Pressure: 726,4 Instrumen	│ □ Repairs required ☑ HV Readout □ Linearity	☐ Other (: ☑ Battery	See Comments) Check [		
Instrument Received: ☑ Wii ☑ Geotropism ☑ Me ☑ Audio ☐ Wii Temperature: 71.1 F  Multiplier\Range Cal P  X 1  X 1  X 10	eter Zero ndow Status Humidit Humidit Hibration Point	ce ☐ Out of ☑ Mech. ☑ FS Re y: 50%	Tolerance [ Ck. [ sponse [ Pressure: 726,4 Instrumen	│ □ Repairs required ☑ HV Readout □ Linearity	☐ Other (: ☑ Battery	Check [	∕⁄i Reset	
☐ Geotropism ☐ Me ☐ Audio ☐ Wil  Temperature: 71.1 F  Multiplier\Range Cal P  X 1  X 1  X 10	eter Zero ndow Status Humidit Humidit Hibration Point	☑ Mech. ☑ FS Re y: 50%  Instrument F	Ck. [ sponse [ Pressure: 726.4 Instrumen	☑ HV Readout ☐ Linearity	✓ Battery	Check [	7i Reset	
Audio Win Temperature: 71.1 F  Multiplier\Range Cal P	Humidit Humidit Ilbration Point	☑ FS Re y: 50 % Instrument F	sponse [ Pressure: 726.4 <b>Instrume</b> n	Linearity			☑ Reset	
Temperature: 71.1 F  Multiplier\Range Cal P  X 1  X 1  X 10	Humidit libration Point	y: 50 % Instrument F	Pressure: 726.4		☐ Backgr			
Multiplier\Range Cal P	libration Point	Instrument F	Instrumen	mm Ha		ound Subtract [	Alarm Set	<u>-</u> .
X 1 X 10	Point		3		Altitude: 145			
X 1 X 10	Point			t Calibration				
X 1 X 1 X 10		B ( A () .	Response	Reference		and / or Sources		
X 1 X 10	100 cpm	Before Calibration	After Calibration	Scaler: 2200	34451	Pulser: 500-2	)	220110
X 10		95 cpm	100 cpm	Cs137	C7-806			
	400 cpm	400 cpm	400 cpm		Con	ménts 💮	og man.	
X 10	1 kcpm	0.95 kcpm	1 kcpm	Inst. Voltage;	900 V	Isotope	Efficiency	Distance
	4 kcpm	4 kcpm	4 kcpm	Input Sensitivity;	10 mV	Cs137	26.8%	0 inch
X 100	10 kcpm	9.5 kcpm	10 kcpm					
X 100	40 kcpm	40 kcpm	40 kcpm	Detector		Ref. Voltage 1:	500 V	
X 1K	100 kcpm	100 kcpm	100 kcpm	Operating voltage:	900 V	Inst. Voltage 1:	496 V	
X 1K	400 kcpm	400 kcpm	400 kcpm			Ref. Voltage 2:	1500 V	
Digital Ratemeter	40 cpm	40 cpm	40 cpm			Inst. Voltage 2:	1497 V	
Digital Ratemeter	400 cpm	400 cpm	400 cpm					
Digital Ratemeter	4 kcpm	4.009 kcpm	4.009 kcpm	Model 2221 currently s	et for gross c	ounts		
Digital Ratemeter	40 kcpm	40,006 kcpm	40.006 kcpm	High Voltage: 900V de			cord	
Digital Ratemeter	400 kcpm	400.089 kcpm	400.089 kcpm	Threshold: 100 = 10				
Digital Scaler	40 cpm	40 cpm	40 cpm	Window: OUT				
Digital Scaler	400 cpm	399 cpm	399 cpm					
Digital Scaler	4 kcpm	3.994 kcpm	3.994 kcpm	Model 44-20 energy re	solution = 10.	6%, acceptable d	etector enera	V
Digital Scaler	40 kcpm	39.939 kcpm	39.939 kcpm	•		solution is <13%		,
Digital Scaler	400 kcpm	399.405 kcpm	399.405 kcpm					
Log Scale	50 cpm	50.cpm	5 cpm					
Log Scale	500 cpm	475 cpm	500 cpm					
Log Scale	5 kcpm	5 kcpm	5 kcpm					
Log Scale	50 kcpm	50 kcpm	50 kcpm					
Log Scale	500 kcpm	500 kcpm	500 kcpm					

Calibration Due: 10/30/2010



#### Tochnical Services Bench Test Data for Detector

: Customer	Cabrera Servic	<u>es</u>	PO#	10-0094	
Detector	1		Serial #	RN182712	
in Processing	M2200		Serial #	34451	
Count time	<u>6 sec</u>	ln	put sensitivity	<u>10</u>	mV
		Source to det	ector distance	comtact.	
lsotope 1			Activity	<u>111301</u>	4pi
3. //lsotope/2	C6137()		Activity	99732	4press
Isotope 3			Activity		
4. Isompe 4			Activity		
Total Section Section Section Control Control	<u>Model 44-20 ene</u>		AT 7 Married Park & Married Co. Co. Co.	·	
	acceptable detec	vor energy resolu	uloh is≪13% for	window.operatio	<u>0</u> 427 2 3 5 2

High Voltage	Background	Isotope 1	Isotope 2	Isotope 3	Isotope 4
21,245,3400		- N. F. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
450		389			
500			20 10 10 10 10 10 10 10 10 10 10 10 10 10		
550					
600	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			
650		t gagementengari tendar hig i Principal i 1921 i			
700					
750	the second control of the second		4		
800	NAME AND ADDRESS OF TAXABLE PARTY.	0 5 15 6 383414	Contraction of the second second second second		
850	·	3517	<u> </u>		
900			4514	The Ottom visit for the party of the second	
950	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		948 Ben \$74543		
1050		ira- ea b - = 1*			
1100					
1150					
12000	1860	3778			
					NAME OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY
	AND 16 1/2 2/2012				
t i te samue e el		/			*

Signature 🌊

Date 10-20-09



# DAILY LD LOG Instrument QC

Make	Mc	odel	S	/N	Pr	obe	S	/N	D0	C
Ludlum	222	٠	1960	087	44-20	၁	RN 18	2712	10/30/	109
Bkgd Count	Source	e Count	Source	e #1 ID	Source	e #2 ID		e #3 ID	CD	
	1		Cs-	137	1/16	7	NIV	7	10/30/	/10
Date 12/7	09									<u> </u>
Intial QC's 1	2	3	4	5	6	7	8	9	10	Tech
Bkgd 14720	14514	14432	14267	14554	14399	14194	14493	14196	14277	AW
Source #1 357582	383122	353310	382812	375345	376418	366517	366727	384069	374190	AW
Source #2 N/A	NIA	NA	NIA	NIA	N/A	NIA	NIA	1/14	NIA	SKO
Source #3 N/A	NIA	NIA	NIA	NIA	1/2 -	NIA	NIA	NIA		ħω

				Daily QC's			
	Date	Bkgd	Source #1 (CS-B7) a / β l(v)	Source #2 ( ) $\alpha / \beta / \gamma$	Source #3 ( ) $\alpha$ / $\beta$ / $\gamma$	Battery OK	Tech
	12/7/09	14401	381714			Yes/No	+w
lay	12/8/09	1426 (	377456			Yes / No	AW
/ ₃₄₁	1219109	14262	358751			Yes/No	90
	12/14/09	13682	347105	/		<b>∳</b> €डे / No	CBB
	0/13/1D	13495	382250			Yes / No	AW
	21/14/10	15034	359588			Yeg / No	HO
	1/18/10	14844	\$41128 378010	, /		ੴ/ No	So
	1/19/10	14792	28/676	N /n	N/	(Yes / No	12
	1/201,0	15646	361023	14/17	/H	Yes// No	Aw
	1/21/10	14744	313221			(Yes)/ No	5)C
	1-26-10	14999	389060		/	Yes / No	AS
	1/27/10	15265	371728			(Yes) No	A2
	1/28/10	14875	359877			(Pes)/ No	R
	1/29/10	14372	342213			€Yeg / No	XI
	2/2/10	14888	363688			(Yes) No	Xe
l	PR/21#58-380	₀₈ 1438 (e	360760	/	/	Kes/ No	<b>A</b>

(A) 12/10/04 12/10/04



			Daily QC's			
Date	Bkgd	Source #1 ( ) a / β / γ	Source #2 ( ) a / β / γ		Battery OK	Tech
2/4/10	15560	( )a/β/γ 389708	NIA	NIA	(Yes) No	15
2-5-10	14985	374551	NA	NA	Yes No	کڏو
2/15/10	14444	364287	NIFI	NIA	Yes / No	Ace
2/16/10	14753	386304	NIA	NIA	Yes / No	Ace
2/24/10	14348	370,398	MA	NIA	(Yes ) No	ALD
2/25/10	14348	370,830	NIA	NIA	Yesy No	The
~,~ ~, ~			1//-		Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	1
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
·		:			Yes / No	
					Yes / No	
					Yes / No	+
					Yes / No	
· ·					Yes / No	-
					Yes / No	
			,			
		-			Yes / No	
					Yes / No	
	L.				Yes / No	1 1

Project#08-380.08





Customer: Chuck Mikaitis

Cabrera Services, Inc.

473 Silver Lane

East Hartford, CT 06118-

Instrument

Ludlum Model 2221

Serial Number

218559

Probe Model

Serial Number

Ludlum 44-20

215468

9.98 Kcpm 9.97 Kcpm 9.97 Kcpm 9.97 Kcpm 9.97 Kcpm 9.97 Kcpm 9.97 Kcpm			Precision Check		
	Test 1	Test 2	Test 3	Mean	Results
Odusiació) y	9.98 Kcpm	9.97 Kcpm	9.97 Kcpm	9.97 Kcpm	Satisfactory

		Accuracy Check	
Range	Target Value	As Found	As Left
X1000	400 Kcpm	398.77 Kcpm #	398.77 Kcpm #
X1000	100 Kcpm	99.708 Kcpm #	99.708 Kcpm #
X100	40 Kcpm	39.876 Kcpm #	39.876 Kcpm #
X100	10 Kcpm	9.978 Kcpm #	9.978 Kepm #
X10	4 Kcpm	3.989 Kcpm #	3.989 Kcpm#
X10	1 Kepm	.997 Kcpm #	.997 Kcpm #
X1	400 cpm	399 cpm #	399 cpm #
X1	100 cpm	99 cpm #	99 cpm #

Readings with * indicate ranges where As-Found readings are >20% of Target value. Readings with ** indicate As-left readings are >10% of Target value Readings with # indicate ranges were calibrated using a pulser

Probe Model & SN	Isotope	Efficiency	NIST Source ID	Geometry
44-20 215468	Co-57	0.1002 C/D	Co-57 (SN: 129584)	@1cm
44-20 215468	Cs-137	0.1409 C/D	Cs-137(Gamma) (SN: 14290)	@1cm

MTE Instrument Type	Model	CalDueDate
Pulser	Ludium 500-4SN: 66151	01/21/2010

Outer Physical Check: Pass	Mechanical Zero: Pass
Geotropism Check: Pass	Tap Test: Pass

Electronics Checks	As Found	As Left
High Voltage	1071 Volts	1125 Volts
Low Level Discriminator #1	101	101
Window	4026	4026

Comments: Digital and analog displays show proper congruence.

Calibrated by:

Date: 06/18/2009

Expires: 06/18/2010

Atmospheric Conditions - Temperature: 77° F Humidity: 40% Barometric Pressure:30.05 in/hg

This calibration was performed by RSCS Inc. 91 Portsmouth ave, Stratham NH 03885 using a NIST Traceable radiation source, in conformance to the following standards: ANSI N323A (1997). RSCS New Hampshire Redioactive Material License Number: 381R. RSCS calibration services are performed in accordance with the RSCS Radiation Protection Program Manual and Standard Operating Procedure. This calibration certificate shall not be reproduced except in full without the express written consent of RSCS, inc.







Mak			del	S	/N	Pro	obe	S	/N	DO	C
LUDLUN	1	0218	7221	218	559	44-	20	2154	6.8	6/18	109
Bkgd C	ount	Source	Count	Source	e #1 ID	Source	#2 ID	Source	e #3 ID	CD	D
1 min	1	ļ	min	८६ (७:	7	NA		Ma		6/18/1	0
Date	1-11-1	Ó									
<b>Intial QC's</b>	1	2	3	4	5	6	7	8	9	10	Tech
Bkgd	12773	12575	(2729	12738	12768	12850	12580	12622	12825	12807	كالا
Source #1	347707	348086	348009	347632	346627	348218	348580	348467	348157	347931	DIC
Source #2	.NA	NIA	NIA	NIA	NIA	N/A	NIA	NIA	NIA	11/14	AW
Source #3	NIA	NIA	NIA	NIA	NIA	NiA	NIA	NIA	NIA	NIA	AW

			Daily QC's		"	
Date	Bkgd	Source #1 ( cs ¹³⁷ ) α / β /(γ)	Source #2 ( ) a / β / γ	Source #3 ( ) $\alpha / \beta / \gamma$	Battery OK	Tech
T-1140	12661	347774	\		(Yes)/ No	D5C
1/13/10	11998	363868			(Yes)/ No	CID
1/14/10	12816	352981			Yes / No	Aco
1/18/10	13746	353039			প্ <b>ৰ</b> ঃ / No	50
1/19/10	13491	369466			Øes / No	A
1/23/10	14080	344849			(Yes)/ No	Aw
1/21/10	13959	348 286			(Yes) No	A
1/26/110	13755	355802	NA	NA	Yes )No	47
1/27/10	13645	342403			Jes / No	47
1/28/10	13858	341663			(es) / No	M2
1/29/10	13422	341663 362840			(Yes)/No	A2
2/2110	13710	356991			Yes / No	Aw
2/3/10	13521	340921			Yes / No	0
2/4/10	13667	365881			Yes / No	AZ
2-16-10	12459	351053			(Yes) No	ρX
2/17/10 Project#08-380.	12662	350365	\	\	Yes// No	Aw



			Daily QC's			
Date	Bkgd	Source #1 ( ) a / β / γ	Source #2 ( ) α / β / γ	Source #3 ( ) $\alpha / \beta / \gamma$	Battery OK	Tech
2/18/10	13219	361470	NA	NA	Yes / No	ACO.
2/22/10	13229	348140	NIA	NIA	Yes / No	74)
2/23/10	13430	358571	NIA	NIA	Yes / No	10
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
			·		Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
		·			Yes / No	
			<u> </u>		Yes / No	
					Yes / No	1
					Yes / No	
					Yes / No	1
					Yes / No	
					Yes / No	+
					Yes / No	+
	*				Yes / No	
	·				Yes / No	
					•	
					Yes / No	4
DESTABLE #00. 200					Yes / No	

Project#08-380.08

## **ERG**

## Certificate of Calibration

Calibration and Voltage Plateau

Environmental Restoration Group, inc. 8809 Washington St NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224 www.ERGoffice.com

Meter: Manufact	urer: Ludlum	Model Number:	2221 Serial	Number:	71235
etector: Manufact	turer: Ludlum	Model Number:	44-20 Serial	Number: PF	2201774
✓ Mechanical Check ✓ F/S Response Che Source Distance:  ☐ C  Source Geometry: ✓  Threshold: 10 mV  Instrument found with	ck Meter Zeroed Contact 6 inches Side Below Window:	Other: Cab	Check (+/- 2.5%): <b>✓</b> 50 ole Length: ☐ 39-inch	00 V ☑ 1000 V ☑ 72-inch ☐ Other Plative Humidity ☐ inches Hg	1500 V ner:
Range/Multiplier	Reference Setting	"As Found Reading"	Meter Reading	Integrated 1-Min. Count	Log Scale Count
x 1000	400	400	400	399441	400
x 1000	100	100	100		100
x 1000 x 100	40	400	400	39947	400
x 100	10	100	100		100
x 100	4	400	400	3995	400
x 10	1	100	100		100
x 10 x 1	400	400	400	399	400
x 1	100	100	100	<del></del> -	100
High Voltage	Source Cou	nts Backgro	and and	Voltage Pl	ateau
700 800 900 950 1000 1050 1150 1200  Comments: HV Pl	153995 178957 185782 187745 188694 189054 189882 189354 190518	2567	73	50000	so rec race
Ludlum pulser seri	nents and/or Sources: al number: 97743 Th-230 @ 13,000 dpm (1	/13/10) sn: 4099-03	Fluke multimeter ser  Gamma Source  Other Source:	s-137 @ 5.37 uCi (1	0128 /13/10) sn: 4097-03 ue: /-/-//
Reviewed By:	Mhh	Revie	w Date: /-/9	-10	







Mak	е	Mo	del	S	/N	Pro	obe	S	/N	DO	C
Iudlow	١	2221		71235	5	44-20	>	PR2017	14	1-19-10	>
Bkgd Co	ount	Source	Count	Source	#1 ID	Source	#2 ID		#3 ID	CDI	D
		]		15-1	137	NII	7	NIA		1-19-1	
Date	1/20/10										
Intial QC's	1	2	3	4	5	6	7	8	9	10	Tech
Bkgd	15216	15396	15392-	15174	15200	15315	15533	15/49	15251	15/35	B
Source #1	335962	3355-200	336228	536971	334186	31579	7315466	315035	314393	314500	A
Source #2	NIA	NIA	MA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	Aw
Source #3	ŇĤ	NIA	NIA	MA	NIA	NIA	NIA	NIA	NIA	NIA	AW

			Daily QC's			
Date	Bkgd	Source #1 (CS-/31) a / βVγ	Source #2 ( ) α / β / γ	Source #3 ( ) α / β / γ	Battery OK	Tech
1/21/10	14768	33(0352	346829A	NIA	Yes / No	KJ
ilzidio	14409	346829	NIA	NIA	Yes / No	Ag
1/27/10	14384	359576	NA	NA	Yes / No	A4_
1/78/10	14322	35251 Le	NIA	NIA	YES/ No	4
1/1/1/10	139104	304969	NIA	NA	Yes/ No	A
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
					Yes / No	
				3	Yes / No	
					Yes / No	
					Yes / No	
Project#08-380	h8				Yes / No	

## **ERG**

### **Certificate of Calibration**

Calibration and Voltage Plateau

Environmental Restoration Group, Inc. 8809 Washington St NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224 www.ERGoffice.com

Meter: Manuf	acturer: Ludlum	Model Number:	2221 Serial	Number:	190171
) Detector: Manuf	acturer: Ludlum	Model Number:	44-20 Serial	Number: I	PR213432
✓ Mechanical Che ✓ F/S Response C Source Distance:  Source Geometry:  Threshold: 10 mV Instrument found w	heck  Meter Zeroed Contact 6 inches Side Below Window:	Other: Cabl	Check (+/- 2.5%): <b>✓</b> 50 ce Length: 39-inch	00 V ☑ 1000 V ☑ 72-inch ☐ Celative Humidity ☐ inches Hg	✓ 1500 V Other:
Range/Multiplier	Reference Setting	"As Found Reading"	Meter Reading	Integrated 1-Min. Count	Log Scale Count
x 1000	400	400	400	399874	400
x 1000	100	100	100		100
x 100	40	400	400	39992	400
x 100	10	100	100		100
x 10	4	400	400	4000	400
x 10	1	100	100		100
x 1	400	400	400	400	400
x l	100	100	100		100
High Voltage	Source Cour	nts Backgrou	nd	Voltage P	lateau
700 800 900 950 1000 1050 1100 1150 1200	173470 189340 193517 195189 195995 194777 195181 196333 207079	27135	20 19 11 11	10000 00000 80000 70000 60000 50000	or in or
Comments: HV I	Plateau Scaler Count Time	= 1-min. Recommended HV	' = 1050		
	ments and/or Sources:				0100
		201932	Fluke multimeter seria		
	Th-230 @ 13,000 dpm (1	/13/10) sn: 4098-03	✓ Gamma Source Cs  Other Source:	-131 W 3.31 UCI (1	1/13/10/311. 407/-03
☐ Beta Source:  Calibrated By:	Tc-99@ 17,700 dpm (1/	Calibrati	on Date: 1-19-10		Due: <u>1–19–11</u>
Reviewed By: >	Mahr	Review	Date: 1-19-10	)	



Mak	е	Мо	del	S	/N	Pro	obe	S	/N	DO	c
ludlum		222	J	19017		442	20	42213	432	1/19/1	O
Bkgd Co	ount	Source	Count	Source	#1 ID	Source	#2 ID	Source	#3 ID	CDI	)
	1	1		CS-13	37	1//	4	11/1	<del>}</del>	1/19/11	
Date	1/20/1	5									
Intial QC's	1.	2	3	4	- 5	6	7	8	9	10	Tech
	15390	15593	15610	15744	15461	15563	15757	15435	15590	13924	BY
Source #1	38445Le	381BBD_	3871077	387259	387289	386811 <b>8</b> 8	3864466	387731	386714	358206	<b>W</b>
Source #2	NIA	NA	NIA	NIA	NIA	NIA	NA	NIA	NIA	NIA	Aw
Source #3	NA	MA	NIA	NIA	NIA	ALIA	NIA	NIA	NIA	NIA	tw

			Daily QC's			
Date	Bkgd	Source #1 (Cs-13-7) a / β (A)	Source #2 ( ) a / β / γ	Source #3 ( ) α / β / γ	Battery OK	Tech
1/21/10	15694	358904	NA	NIA	Yes / No	B
3/H/10 Sti	16328	386322	NIA	NIA	(Yes) / No	AUS
3-2-10	13980	376303	N/A	Na	(Yes)/ No	DIC
3/3/10	15339	363089	NIH	NIA	Yes/ No	tw
			9 3 · · · · · · · · · · · · · · · · · ·		Yes / No	
					Yes / No	
					Yes / No	
				<i>-</i> . (	Yes / No	
					Yes / No	<b>†</b>
					Yes / No	7
					Yes / No	- "
				, Y <del>, y</del> ,	Yeş / No	
					Yes / No	
				·	Yes / No	
				,	Yes / No 👵	
Project#08-380	no			·	Yes / No	13



#### Certificate Of Calibration

This Certificate will be accompanied by Calibration Charts or Readings where Applicable

	Custome	ar i i i i i i i i i i i i i i i i i i i			lnstru	ment		
Customer Name: Cal	orera Services Inc	<u>- Marin - Proj. Proj. Proj. Provid Julia Live</u>	<u> 66 11 :                               </u>	Manufacturer: Luc		we are but a manifestation of the		
Address: 473 S	ilver Lane			Model: 2221 Serial Number: 196062				
East I	Hartford, CT 06118	3		337417447661. 130002				
		Detector Manufac	turer: Bicron					
Contact Name: Chuck Customer PO/	Mikaitis	Work Order		Det. Model: G1		Serial Numl	ber: C443E	
CC. Number: 10-000	16	Calibration Method	d: Electronic					
Instrument Received:	☑ Within Toleran	ce 🔲 Out of	Tolerance	Repairs required	Other (S	See Comments	5)	
			☐ HV Readout	☑ Battery	Check			
☑ Audio	☐ Window Status	FS Re	sponse	☑ Linearity	☐ Backgro	ound Subtract	☐ Alarm Set	
Temperature: 72.4 F	Humidit	y: 48%	Pressure: 726.4	mm Hg	Altitude: 145	O ft		
			Instrumen	t Calibration	alifa Syst			
Calling Instrument Response			to a to be been to the limber Autority of	nce instruments a	nd / or Source	<u></u>		
Multiplier\Range	Point	Before Calibration	After Calibration	WWW.	220100	The 7 of Godice		
X 1	100 cpm	99 cpm	99 cpm	1129	C7-632	Co57		1181-15-5
X 1	400 cpm	402 cpm	402 cpm	Cs137	1159-6-1			1101-10-5
X 10	1 kcpm	0.99 kcpm	0.99 kcpm		AND THE PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O	ments	ay ve tristige v	UBANTANA S
X 10	4 kcpm	4.02 kcpm	4.02 kcpm	Inst. Voltage:	880 V	Isotope	Efficiency	Distance
X 100	10 kcpm	10 kcpm	10 kcpm	Input Sensitivity:	10 mV	1129	8.3%	0 inch
X 100	40 kcpm	40.2 kcpm	40.2 kcpm		70 111 1	Co57	15.5%	0 inch
X 1K	100 kcpm	100 kcpm	100 kcpm	Detector		Cs137	5.4%	0 inch
X 1K	400 kcpm	402 kcpm	402 kcpm	Operating voltage:	880 V			2 214,1
Digital Ratemeter	40 cpm	40 cpm	40 cpm					
Digital Ratemeter	400 cpm	399 cpm	399 cpm					
Digital Ratemeter	4 kcpm	3.996 kcpm	3.996 kcpm	Model 2221 current	ly set for gross co	ounts		
Digital Ratemeter	40 kcpm	39.947 kcpm	39.947 kcpm	High Voltage: 880V			ot cord	
Digital Ratemeter	400 kcpm	399.412 kcpm	399.412 kcpm	1.	(10mV)			
Digital Scaler	40 cpm	40 cpm	40 cpm	Window: OUT				
Digital Scaler	400 cpm	400 cpm	400 cpm					
Digital Scaler	4 kcpm	3.995 kcpm	3.995 kcpm					
Digital Scaler	40 kcpm	39.943 kcpm	39.943 kcpm					
Digital Scaler	400 kcpm	399,388 kcpm	399,388 kcpm					
Log Scale	50 cpm	50 cpm	50 cpm					
Log Scale	500 cpm	525 cpm	525 cpm					
Log Scale	5 kcpm	5.3 kcpm	5.3 kcpm	-				
Log Scale	50 kcpm	54.2 kcpm	54.2 kcpm					ļ
Log Scale	500 kcpm	540 kcpm	540 kcpm					
					-			

# MJW Technical Sevices, Inc certifies that the above instrument has been calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibration facilities of other International Standards organization members, or have been derived from accepted values of natural physical constants or have been derived by the ratio type of calibration techniques. The calibration system conforms to the requirements of ISO/IEC 17025 and ANSI N323. The Instrument listed above was inspected prior to shipment and it met all the manufacturer's published operating specifications. (MJW technical Services is not responsible for damage incurred during shipment or use of this instrument). Instrument

Reviewed By:

Calibration Date: 07/15/2009

Calibrated By:

Calibration Due: 07/15/2010

Date



# DAILY LD LOG Instrument QC

units are cpm

Make	9	Mo	del	S	/N	Pr	obe	S	/N	DO	9
Iudlum		72	<b>之</b> (	196062	2	6-1		C443	? <i>6</i>	7/15/0	9
Bkgd Co	ount	Source	Count	Source	e #1 ID	Source	#2 ID	Source	#3 ID	CD	
- C		1								1/15/12	)
Date	1/20/12	,									
<b>Intial QC's</b>	1	2	3	4	5	6	7	8	9	10	Tech
Bkgd	1400	1399	1445	1406	1454	1465	1369	1809	1405	1414	An_
Source #1	109207	105650	103888	103881	103377	101845	100682	114999	113951	114 129	A
Source #2	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NA	NA	NIA	Aw
Source #3	AIIA	MA	NIA	NIA	MA	NIA	NIA	NA	NIA	11/12	Ale

			Daily QC's			
Date	Bkgd	Source #1 (CS-/37) a / β /γ)	Source #2 ( ) a / β / γ	Source #3 ( ) a / β / γ	Battery OK	Tech
1/27/10	1345	118001	NIA	NA	Yes /) No	A
1/28/10	1483	106975	NA	~1	Yes / No	PSC
2/3/10	1418	106552	MA	NIA	প্ৰভি∮ No	2
214/10	)441	103451	NIA	NIA	€ / No	N/D
2-5-10	1471	105551	~4	NA	(Ýes) / No	වාර
2/16/10	1881	107505	NA	NIA	Yes / No	A
2/16/10	1367	104355	NIA	NIA	Yes / No	Au
2/17/10	1327	104459	NIA	NIA	(Yes) No	Au
2-18-10	1475	104165	NIA	NIA	Yes / No	Acis
2-22-10	1387	104705	NIA	NIA	Yesy No	au
2-23-10	1447	104125	NIA	NIA	Yes / No	AW
3/1/10	1475	107458	NIA	NIH	(Yes/) No	TAW
					Yes / No	
					Yes / No	
					Yes / No	
Project#08-380.	08				Yes / No	



Calibration Certificate ID Number: 19020532197-0

Customer:

Chuck Mikaitis

Cabrera Services, Inc.

473 Silver Lane

East Hartford, CT 06118-

Instrument

Serial Number

Ludlum Model 2221

190205

Probe Model

Serial Number

Bicron G-1

C436E

		Precision Check		
Test 1	Test 2	Test 3	Mean	Results
4.08 Kcpm	4.06 Kcpm	4.04 Kopm	4.06 Kcpm	Satisfactory

		Accuracy Check	医三种性性性质 蒙古物中的复数形式形式的
Range	Target Value	As Found	As Left
X1000	400 Kcpm	399.28 Kcpm #	399.28 Kcpm #
X1000	100 Kcpm	99.560 Kcpm #	99.560 Kcpm #
X100	40 Kcpm	40.670 Kcpm #	40,670 Kcpm #
X100	10 Kcpm	10.150 Kcpm #	10.150 Kcpm #
X10	4 Kcpm	4.070 Kcpm #	4.070 Kcpm #
X10	1 Kcpm	1,004 Kcpm #	1.004 Kcpm #
X1	400 cpm	401 cpm #	401 cpm #
X1	100 cpm	99.5 cpm #	99.5 cpm #

Readings with * indicate ranges where As-Found readings are >20% of Target value. Readings with ** indicate As-left readings are >10% of Target value Readings with # indicate ranges were calibrated using a pulser

Probe Model & SN	Isotope	Efficiency	NIST Source ID	Goometry
G-1 C436E	Ba-133	0.1687 C/D	Ba-133 (SN: 380-39-1)	@1cm
G-1 C436E	Co-57	0.0965 C/D	Co-57 (SN: 129584)	@1cm
G-1 C436E	Cs-137	0.0447 C/D	Cs-137(Gamma) (SN: 14290)	@1cm
G-1 C436E	I-125	0.1149 C/D	I-129 (SN: NES-186S)	@1cm

MTE Instrument Type	Model	CalDueDate
Pulser	Ludlum 500-4SN; 66151	01/21/2010

١	Outer Physical Check: Pass Internal Check: Pass Geotropism Check: Pass	Mechanical Zero: Pass Tap Test: Pass
	Geotropism Check: Pass	1 ap 1 csc. 7 ass

Electronics Checks	As Found	As Left
High Voltage	852 Volts	852 Volts
Low Level Discriminator #1	10.0 mv	10.0 mv
Window	Out	Out

Comments: Analog and digital displays reflect appropriate congruence.

Calibrated by

DA/40C

QA Poviovr 122

Date: 10/09/2009

Expires: 10/09/2010

Atmospheric Conditions - Temperature: 78° F Humidity: 29% Barometric Pressure:29.95 in/hg

This calibration was performed by RSCS Inc. 91 Portsmouth ave, Stratham NH 03885 using a NIST Traceable radiation source, in conformance to the following standards: ANSI N323A (1997). RSCS New Hampshire Radioactive Material License Number: 381R. RSCS calibration services are performed in accordance with the RSCS Radiation Protection Program Manual and Standard Operating Procedure. This calibration certificate shall not be reproduced except in full without the express written consent of RSCS, Inc.

Make	<b>2</b>	Mo	del	S	/N	Pro	be	S	/N	DC	C
Ludium	າ	222		1900	05	G-1		C43	6 <del>5</del>	10/91	109
Bkgd Co	ount	Source	Count		#1 ID	Source	#2 ID	Sourc	e #3 ID	CD	D
/		/		05-137		NIG	1	NIA		1019	אוע
Date	2/2/10	<u> </u>									
Intial QC's	1	2	3	4	5	6	7	8	9	10	Tech
Bkgd	1558	1520	1452	1478	1533	1420	1493	1462	1439	1468	ΑW
Source #1		14141	1127436	1/1860	109136	111725	109870	108491	108039	111131	AW
Source #2	NIA	NA	1/1/7	NIH	NA	X/IA	NIA	NIA	NIA	NA	1//A
Source #3	NIA	WA	NIA	AliA	N/A-	NIA	NIA	NIA	NIA	NA	MA

			Daily QC's			
Date	Bkgd	Source #1 (CS-137) a / β (γγ)	Source #2 ( ) a / $\beta/\gamma$	Source #3 ( ) a / β / γ	Battery OK	Tech
2/2/10	111515	<b>&gt;</b>	_		(Yes) No	-AW
			1		Yes / No	
2/2/10	1505	1/15/5			Yes / No	Aw
2/3/10	1505	112859			(Yes)/ No	1
214/10	1510	102841			₹es DNo	1
2/23/10	1543	109623			Yes)/ No	XW
2/24/10	1537	108695			(Yes) No	Re
2/25/10	1550	109766			Yes / No	Ha)
311110	1500	106196			Yes No	tu
					Yes / No	
					Yes / No	,
					Yes / No.	
					∖,Yes / No	4
					Yes / No	
					Yes / No	
Project# <del>0</del> 8=380.	_ස ^{භධ} 08-380ව.				Yes / No	



Calibration Certificate ID Number: C854F27924-0

Customer:

Hank Siegrist

Cabrera Services, Inc.

473 Silver Lane

East Hartford, CT 06118-

Instrument

Bicron Model MicroRem

Serial Number

C854F

		Precision Check		
Test 1	Test 2	Test 3	Mean	Results
16.00 mrem/hr	16,00 mrem/hr	16.00 mrem/hr	16.00 mrem/hr	Satisfactory

	Target Value	Accuracy Check As Found	As Left
Range	160 mrem/hr	165 mrem/hr	165 mrem/hr
X1000	40 mrem/hr	40 mrem/hr	40 mrem/hr
X1000	16 mrem/hr	16 mrem/hr	16 mrem/hr
X100	4 mrem/hr	4 mrem/hr	4 mrem/hr
X100		1.4 mrem/hr	1.6 mrem/hr
X10	1.6 mrem/hr	0.35 mrem/hr	0.4 mrem/hr
X10	0.4 mrem/hr	140 µrem/hr	160 µrem/hr
X1	160 µrem/hr	30 urem/hr #*	40 µrem/hr #
X1	40 µrem/hr		16 µrem/hr #
X0.1	16 µrem/hr	13 µrem/hr # 3 µrem/hr # *	4 µrem/hr #

Readings with * indicate ranges where As-Found readings are >20% of Target value. Readings with ** indicate As-left readings are >10% of Target value os where nulser was used.

Readings with # Indicate ranges the p		the formation of the second second second second second second second second second second second second second
	leboM	CalDueDate
MTE Instrument Type	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	O ACCUSAGO DO LACALIZADA A CAMPARA DA CAMPA
Dulons	Ludlum 500-4 SN: 66151	01/21/2010
Pulser		

Outer Physical Check: Pass Internal Check: Pass Geotropism Check: Pass Mechanical Zero: Pass Tap Test: Pass

Comments: All As Left readings taken subsequent to repair.

Calibrated by:

OCOM Review:

Calibration Date: 04/22/2009

Expires: 04/22/2010

Atmospheric Conditions - Temperature: 72°F Humidity: 36% Barometric Pressure: 29.63°hg
This calibration was performed by RSCS Inc. 91 Portsmouth ave, Stratham NH 03885 using a NIST Traceable radiation source (Cs-137 Beam Source SN: S-364), in conformance to the following standards: ANSI N323A (1997), RSCS New Hampshire Radioactive Material License Number: 381R. RSCS calibration services are performed in accordance with the RSCS Radiation Protection Program Manual and Standard Operating Procedure 2.4.2. This calibration certificate shall not be reproduced except in full without the express written consent of RSCS, Inc



# DAILY FOD LOG Instrument QC

Mak	е	Mo	odel		/N	Pro	obe	S/N		DOC	
		Bicc		C85	16	MA	-	NIA	•	4/22	109
Bkgd Co	ount	Source	e Count	Sourc	e #1 ID	Source	e #2 ID	Sourc	e #3 ID	CE	
$\mathcal{M}_{I}$	M	N/	4	C5-18	37	NIA	1	N//	a	4/22	10
Date	12/7/	09									
Intial QC's	1	2	3	4	5	6	7	8	9	10	Tech
Bkgd	6	5	7	5	5	6	6	6	5	6	Aci
Source #1	70	80	80	60	60	70	80	70	90	80	AZO
Source #2	NIA	NA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	de
Source #3	NIA	NIA	NIA	NIA	NIA	NIA	NIA	VIA	NIA	NIA	AW

			Daily QC's			
Date	Bkgd	Source #1 ( (3-137) α / β (γ)	Source #2 ( ) α / β / γ	Source #3 ( ) α / β / γ	Battery OK	Tech
12/1/09	6	80			Yes / No	ØW
12/8/09	6	PD			Yes / No	GIR
1/4/10	6				Yes)/ No	aco
1/13/10	5	80			(Yes) No	XW
1/19/10	5	80			(Yes) No	AW
1/20/10	9	80			Yee / No	the
1/26/10	5	70		\.	Yes / No	AW
1/27/10	6	70	NA	NA	Yes)/ No	(du)
1/29/10	5	70	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Yes / No	41)
2/2/10	5	70	\		(Yes)/ No	00
3-1-10	4	80			Yes No	- 15×
3-3-10	<u> </u>	80			(Yes') No	AW
					Yes / No	
	SU-182 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				Yes / No	
					Yes / No	
Project#08-380.	08			\	Yes / No	

Project Name: Middlesex Municipal Landfill

Page 1 of 6



Designer and Manufacturer of Scientific and Industrial Instruments

#### CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494

FAX NO. 325-235-4672

501 OAK STREET SWEETWATER, TEXAS 79556, U.S.A.

CUSTOMER CABRERA SERVICES ORDER NO.	20135420/339001
Mfg. Ludlum Measurements, Inc. Model 2241-2 Serial No.	217869
Mfg. Ludium Measurements, Inc. Model 44-9 Serial No.	PR 229888
Cal. Date 18-Jun-09 Cal Due Date 18-Jun-10 Cal. Interval 1 Year	Meterface 44-9
Check mark vapplies to applicable instr. and/or detector IAW mfg. spec. T. 74 °F RH 45 %	698.8 mm Hg
New Instrument Instrument Received Within Toler. +-10% 10-20% Out of Tol. Requiring Repair	Other-See comments
	ut Sens. Linearity
F/S Resp. ck	
Audio ck. Alarm Setting ck. Batt. ck. (Min. Volt) 2.2 VDC  Calibrated in accordance with LMI SOP 14.8 rev 12/05/89. Calibrated in accordance with LMI SOP 14.9 rev 0	2/07/97.
Instrument Volt Set Comments V Input Sens. Comments mV Det. Oper. Comments V at continued mV Dial Re	_ 1_1
	ado
COMMENTS: Det 1 Det 2	
Deadtime: 80 μSec 00 μSec  Cal Constant: 100 e-2 100 e-2	
R Alarm: 50 kC/m 50 kcpm	
R Alert: 20 kC/m 20 kcpm High voltage: 900 v 35mv 900 v 35mv	
Firmware: P-06 10	
EFF: FOR TC-99 #5279 act.28,800dpm ct.6796cpm -Bg60 ct.6736cpm 23% 4Pi	
NOASfords due to no setups (Repural 44-9)	
	RUMENT
RANGE/MULTIPLIER CAL. POINT "AS FOUND READING" METE	ER READING*
AUTO	
AUTO	
	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
*Uncertainty within ± 10% C.F. within ± 20% All Range(s	Calibrated Electronically
REFERENCE INSTRUMENT REFERENCE INSTRUMENT	
CAL. POINT RECEIVED METER READING* CAL. POINT RECEIVED	METER READING*
Ratemeter Readout 800K cpm  Readout 800K cpm  200K cpm  200K cpm	20010
2007 (2017)	8010
20K cpm / 20 / 20K cpm	
8K cpm 8 8K cpm	- 800 ( 700 )
2K cpm 2 2K cpm 800 cpm	80 (
800 cpm 200 cpm 200 cpm 200 cpm	20
	libration facilities of
Ludium Measurements, Inc. certifies that the above instrument has been calibrated by standards traceable to the National Institute of Standards and Technology, or to the call building the standards of the call building the standards of the call building the standards of the call building the standards of the call building the standards of the call building the standards of the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call building the call build	ration fechniques. alibration License No. LO-1963
The calibration system conforms to the requirements of ANSINCSL 2340-1-1994 and ANSI NO23-1970.	Bibliototi Ettatioa itai 10 jaco
	Neutron Am-241 Be S/N T-304
many that is	
Alpha S/N	
	<b>ひつつてひごう</b>
▼ m 500 S/N 189506 Oscilloscope S/N V Multimeter S/N	
Calibrated By:  Reviewed By:  Oscilloscope S/N  Date  V Multimeter S/N  Date  18-Juno 7  Reviewed By:  Date  Date	



### LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET

FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

#### CONVERSION CHART

Customer	CABRERA SERVICES		Date	18-Jun-09	Order #.	20135420/339001
Model	2241-2 Serial No. Z	17869	Detector Model	44-9	Serial No	PR229888
Source	Cs-137 194.6 mCi	Cs-137 20 m	Ci		High Voltage	<u>9</u> の v <u>35</u> mv
Count time	fareneses.					
	Reference Point	"As Found" f with Deadtime	Readings (CPM): w/o Deadtime		er Adjustment F Deadtime	Readings (CPM): w/o Deadtime
	150 mR/hr			52	7 Kgm	Digital
	50 mR/hr	<u></u>	1.5		70	i (
	15 mR/hr			50	·7 \	
	5 mR/hr	· · ·			4	
	1.5 mR/hr	9	14	5.	48/	
	1.0 mR/hr			3,	26	
						<u> </u>
•						
-						
Signature	: Duan	Ack		Date	18-Jan	<del>-9</del>



Make	Mode	el	S/	N	Pro	obe	S	N	DO	C
indum	2241-8	2	21786	,9	44-0	9	PMZQQ	1888	6/18	109
Bkgd Count	Source C	Count	Source	#1 ID	Source	#2 ID	Source	#3 ID	CD	D
- 1			Tc-91	9 (11101)	11/	4	1//	7	6/18/	10
Date 2//8	110									
Intial QC's 🧱 追。	2-17	3	4	<b>第</b> 75	<b>6</b>	7: 7:	8 1	98	- 10端	Tech
Bkgd 36	34	36	35	37	4 B	34	36	38	38	AW
Source #1 3/7	5 3027	3144	3102	3099_	3166	3178	3170	3152	3/67	TU.
Source##2			· <u> </u>	N						
*Source #3					A					

			Daily QC's			
Date	Bkgd	Source #1 (( ) a / β/γ	Source #2** ( ) α / β //γ	Source #3 () α / β//γ_	Battery OK	Tech
2/22 ho	36	3123	/	/	Yes No_	AW
2/22/10 2/23/10	37	3149			Yes) No.	10W
			/		Yes / No	'
	-		/		Yes / No	
			/	/	Yes / No	
_			/ /	/	Yes / No	
			$\wedge$	M/a	Yes / No	
		· <del></del>	/A	1/A	Yes / No	
			/		Yes / No	
			/		Yes / No	
			/	/	Yes / No	
			/ /		Yes / No	
		-			Yes / No	
					Yes / No	
			7	/	Yes / No	
Project#08-3800.08	3	. ,	γ ,	/	Yes / No	1 1 5 37

Project Name: Middlesex Municipal Landfill

Page 1 of Z

### Designer and Manufacturer of Scientific and Industrial

#### CERTIFICATE OF CALIBRATION

### LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494

AC Inst. Passed Dielectric (Hi-Pot) and Continuity Test
Only Failed:

501 OAK STREET	FAX NO. 325-235-4672
SWEETWATER, TEXAS	79556, U.S.A.
ORDER NO.	20142511/343304
Serial No. /	672

CUSTO	MER ENVIRONME	NTAL RESTORATIO	N GROUP			ORE	DER NO.	20142511/34	3304
Mfg.	Thermo		Model	MICRO REM	И	Serial No.	/(	250	
Mfg.			Model			Serial No.			
Cal. Dat	te 18-O	ct-09 Cal D	ue Date	18-Oct-10	Cal. Inte	erval 1	Year Mete	erface 0-20	00µrem/
	rk applies to applic			T.	74 °F	RH	38 %		mm Hg
				,	Out of Tol.			Other-See comme	
		_	_	_		Requiring K			ents
1.0	chanical ck. Resp. ck	✓ Meter Zero ✓ Reset ck.	ed	Background Window Op			Geotrop	ens. Linearity	
✓ Aud		Alarm Setti	ing ck	Batt. ck. (M		VDC	Geotion	JISITI	
-	rated in accordance wi			/	accordance wi		4 9 rev 02/07	7/97	
			mV Det. Ope				Threshold Dial Ratio	=	m
	HV Readout (2 points)	Ref./Inst.	/		V Ref./Inst.		/		V
COMME		Rei./ilist.			V Rei./ilist.				
šamma Cali	ibration: GM detectors pos RANGE/MULTIF x 1000	PLIER C	source except for M 44-9 in v EFERENCE AL. POINT nR/hr	INST	RUMENT R FOUND REA / 4/5	EC'D	15	READING*	
	x 1000	50 n	nR/hr		45		4	18	
	x 100		nR/hr		145		/	50	
	x 100		nR/hr		45			18	
	x 10	1500			150			50	
	x 10		uR/hr	-	180			O	
	x 1		uR/hr					50	
	x 1		uR/hr	-	120			90	
	x0.1 x0.1	15)	uR/hr	-	150			50	
		0.5 111 2004				P	ango/e) Cali	brated Electron	ically
	*Uncertainty within ± 10% REFERENCE	INSTRUMENT	INSTRUMENT	Гр	FERENCE		UMENT	INSTRUME	
igital eadout	CAL. POINT	RECEIVED	METER READING*		AL. POINT	RECEI		METER REA	
Referenc Cs-137 Gam Alph m 50	nal Standards Organization me system conforms to the require te Instruments and/orma S/N 1162 0 0 S/N	embers, or have been derive ements of ANSI/NCSL Z540-	394/1122 1131		s or have been deriv 9 280 51 720	ed by the ratio typ	e of calibration to Texas Calibrat		
Reviewed		de Hain				18 Och			

This certificate shall not be reproduced except in full, without the written approval of Ludlum Measurements, Inc. FORM C22A 10/15/2008





Make	Model	S/N	Probe	S/N	DOC
131000	Mim Kem	1622	NIH	NIA	
Bkgd Count	Source Count	Source #1 ID	Source #2 ID	Source #3 ID	CDD
MA	NIH	05137	NA	NIA	
Date	J 1.				
Intial QC's 1	2 3	4 5	6 7:::	821 9	7:10 Tech
Bkga 4	5 4	4 5	4 6	5 5	4 Stu
Source #1	80 70	70 80	80 90	90 80	80 de
Source,#2 NIA	NA NIA	NIA XITA	NIA NIA	NIA NIA	1 //H du
Source #3 N//2	MA NIA	- NIA NIA	KAP KUA	I NIA I NIA	1 ///// Aw

			Daily QC's			
Date	' Bkgd	Source #1   (* '''') a / β(/'\)	Source #2 ( , , , ) α / β / v	Source #3 (''' β/γ'	Battery OK 🖙	Tech
2/110/10 Au	4	(1)		Control Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of th	(Yes / No	De
3/1/10	4	80		/	(Yes)/ No	D2C
3/2/10	5	80		/	(Yes / No	Su
3/3/10	6	80-			Yes /-No	Acc
			/		Yes / No	
				. /	Yes / No	
			M/		Yes / No	
			1/H	N /	Yes / No	
			/ ' '	/ / /	Yes / No	
					Yes / No	
				/	Yes / No	
					Yes / No	<u> </u>
					Yes / No	
			/	/	Yes / No	
	· · · · · · · · · · · · · · · · · · ·	***	/	· ·	Yes / No	
) 0.000-ject#08	8		/	/ ·	Yes / No	<u> </u>
oject Name: Mido	dlesex Municipal Landfill	/	/		Pa	ge 1 of 🗷

## CABRERA ALPHA-BETA COUNTING INSTRUMENT (Rev 6)

Со	unting Inst			2929	Detector:	43-1			oration Date:	1/5/2010								
		Serial #:		29566	Serial #:	PR132	2720	12 month o	alibration:	1/5/2011								
	Detec	tor Active	e Area or A	rea Covered b	y Smear (cm²):	100												
	Efficiency (fraction)	Source Nuclide	Source Number	Original Source Activity (DPM)	Source Creation Date	T _{1/2} (yr)	Source Decayed Activity	Required MDA (DPM/100cm ² )	Control Chart & Daily Bkg Count Time	Control Chart & Daily Source- Sample Count Time	Control Chart bkg Average α/β cpm	Control Chart bkg 1 sigma, cpm	Control Chart Source-bkg Average α/β cpm	Control Chart source 1 sigma, cpm				
Alpha	0.3130	Th-230	1160	17,500	4/29/2002	7.54E+04	1.75E+04	10	10	2	0.09	0.10	5485.9	66.01				
Beta	0.2360	Tc-99	1161	17,700	4/29/2002	2.11E+05	1.77E+04	500	10	2	39.39	1.60	4170.2	60.20				
											•							
Date	Daily Bkg		•	Source Counts	Daily Bkg Ra			ource Rate (cpm)	Bkg QC F		Source QC				$\alpha$ MDA	β MDA	H.P.	Technician
	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	MDA $\alpha$ (dpm)		OK?	OK?	Technician	Initials
1/19/2010	0	373	11094	8521	0.0	37.3	5547.0	4223.2	PASS	PASS	PASS	PASS	4.79	72	Yes	Yes	AW	AW
1/20/2010	0	403	10788	8481	0.0	40.3	5394.0	4200.2	PASS	PASS	PASS	PASS	4.79	75	Yes	Yes	AW	AW
1/26/2010	0	384	11259	8410	0.0	38.4	5629.5	4166.6	PASS	PASS	QUESTION	PASS	4.79	73	Yes	Yes	DJC	DJC
1/27/2010	1	371	10804	8365	0.1	37.1	5401.9	4145.4	PASS	PASS	PASS	PASS	7.37	72	Yes	Yes	AW	AW
1/28/2010	0	365	11136	8401	0.0	36.5	5568.0	4164.0	PASS	PASS	PASS	PASS	4.79	72	Yes	Yes	AW	AW
1/29/2010	1	381	11111	8460	0.1	38.1	5555.4	4191.9	PASS	PASS	PASS	PASS	7.37	73	Yes	Yes	AW	AW
2/3/2010	2	391	11174	8466	0.2	39.1	5586.8	4193.9	PASS	PASS	PASS	PASS	8.43	74	Yes	Yes	DJC	DJC
2/4/2010	0	420	11027	8578	0.0	42.0	5513.5	4247.0	PASS	PASS	PASS	PASS	4.79	76	Yes	Yes	AW	AW
2/5/2010 2/15/2010	3	417 383	11109 11008	8511 8631	0.3 0.0	41.7 38.3	5554.2 5504.0	4213.8 4277.2	QUESTION PASS	PASS PASS	PASS PASS	PASS PASS	9.25 4.79	76 73	Yes Yes	Yes Yes	AW AW	AW AW
2/15/2010	0	396	10997	8477	0.0	39.6	5498.5	4198.9	PASS	PASS	PASS	PASS	4.79	74	Yes	Yes	AW	AW
2/17/2010	1	410	10996	8555	0.1	41.0	5497.9	4236.5	PASS	PASS	PASS	PASS	7.37	75	Yes	Yes	AW	AW
2/18/2010	2	412	11130	8589	0.2	41.2	5564.8	4253.3	PASS	PASS	PASS	PASS	8.43	76	Yes	Yes	AW	AW
2/23/2010	0	405	11139	8433	0.0	40.5	5569.5	4176.0	PASS	PASS	PASS	PASS	4.79	75	Yes	Yes	AW	AW
2/24/2010	0	380	10955	8503	0.0	38.0	5477.5	4213.5	PASS	PASS	PASS	PASS	4.79	73	Yes	Yes	AW	AW
3/1/2010	2	413	10811	8540	0.2	41.3	5405.3	4228.7	PASS	PASS	PASS	PASS	8.43	76	Yes	Yes	AW	AW
3/2/2010	0	402	11189	8495	0.0	40.2	5594.5	4207.3	PASS	PASS	PASS	PASS	4.79	75	Yes	Yes	AW	AW
3/3/2010	2	407	11163	8609	0.2	40.7	5581.3	4263.8	PASS	PASS	PASS	PASS	8.43	75	Yes	Yes	AW	AW
_																		_

# CABRERA ALPHA-BETA COUNTING INSTRUMENT (Rev 6)

Со	unting Inst	trument:	2	224-1	Detector:	43-	93	Calib	ration Date:	8/13/2009								
	;	Serial #:	22	27244	Serial #:	PR24	4545	12 month o	alibration:	8/13/2010								
	Detec	tor Activ	e Area or A	rea Covered b	y Smear (cm²):	100												
	Efficiency (fraction)	Source Nuclide	Source Number	Original Source Activity (DPM)	Source Creation Date	T _{1/2} (yr)	Source Decayed Activity	Required MDA (DPM/100cm ² )	Control Chart & Daily Bkg Count Time	Control Chart & Daily Source- Sample Count Time	Control Chart bkg Average α/β cpm		Control Chart Source-bkg Average α/β cpm	Control Chart source 1 sigma, cpm				
Alpha	0.2000	Th-230	1160	17,500	4/29/2002	7.54E+04	1.75E+04	50	1	1	1.20	1.40	3579.5	90.06				
Beta	0.1873	Tc-99	1161	17,700	4/29/2002	2.11E+05	1.77E+04	2500	1	1	219.30	14.01	3308.0	179.72				
		•		•						•	•							
Date	Daily Bkg		•	Source Counts	Daily Bkg Ra			ource Rate (cpm)	Bkg QC		Source QC				$\alpha$ MDA	β MDA	H.P.	Technician
	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	MDA $\alpha$ (dpm)		OK?	OK?	Technician	Initials
12/9/2009	0	232	3601	3471	0.0	232.0	3601.0	3239.0	PASS	PASS	PASS	PASS	15.00	394	Yes	Yes	GB	GB
12/10/2009	1	199	3659	3696	1.0	199.0	3658.0	3497.0	PASS	PASS	PASS	PASS	38.26	366	Yes	Yes	GB	GB
12/14/2009	0	193	3661	3752	0.0	193.0	3661.0	3559.0	PASS	PASS	PASS	PASS	15.00	361	Yes	Yes	GB	GB
12/15/2009	0	203	3712	3460	0.0	203.0	3712.0	3257.0	PASS	PASS	PASS	PASS	15.00	370	Yes	Yes	GB	GB
1/19/2010 1/26/2010	0	193 185	3532 3566	3558 3638	2.0 0.0	193.0 185.0	3530.0 3566.0	3365.0 3453.0	PASS PASS	PASS QUESTION	PASS PASS	PASS PASS	47.90 15.00	361 354	Yes Yes	Yes Yes	AW DJC	AW DJC
1/26/2010	1	195	3651	3532	1.0	195.0	3650.0	3337.0	PASS	PASS	PASS	PASS	38.26	363	Yes	Yes	DJC	DJC
1/28/2010	0	184	3642	3539	0.0	184.0	3642.0	3355.0	PASS	QUESTION	PASS	PASS	15.00	353	Yes	Yes	AW	AW
1/29/2010	1	190	3631	3506	1.0	190.0	3630.0	3316.0	PASS	QUESTION	PASS	PASS	38.26	358	Yes	Yes	AW	AW
2/3/2010	1	200	3545	3669	1.0	200.0	3544.0	3469.0	PASS	PASS	PASS	PASS	38.26	367	Yes	Yes	DJC	DJC
2/4/2010	2	194	3527	3533	2.0	194.0	3525.0	3339.0	PASS	PASS	PASS	PASS	47.90	362	Yes	Yes	AJ	AJ
2/5/2010	1	204	3582	3602	1.0	204.0	3581.0	3398.0	PASS	PASS	PASS	PASS	38.26	371	Yes	Yes	DJC	DJC
2/15/2010	2	207 190	3571 3557	3712 3497	2.0 1.0	207.0	3569.0	3505.0 3307.0	PASS	PASS	PASS	PASS	47.90	373	Yes Yes	Yes Yes	AW AW	AW AW
2/17/2010 2/23/2010	<u> </u>	190	3597	3769	1.0	190.0 193.0	3556.0 3596.0	3576.0	PASS PASS	QUESTION PASS	PASS PASS	PASS PASS	38.26 38.26	358 361	Yes	Yes	AW	AW
3/1/2010	0	198	3573	3601	0.0	198.0	3573.0	3403.0	PASS	PASS	PASS	PASS	15.00	366	Yes	Yes	AW	AW
3/2/2010	0	193	3541	3595	0.0	193.0	3541.0	3402.0	PASS	PASS	PASS	PASS	15.00	361	Yes	Yes	AW	AW
3/3/2010	0	197	3520	3613	0.0	197.0	3520.0	3416.0	PASS	PASS	PASS	PASS	15.00	365	Yes	Yes	AW	AW
3/3/2010	0	107	3320	3013	0.0	137.0	3320.0	3410.0	1700	1 700	1 700	1700	13.00	303	100	100	7.00	AVV

# CABRERA ALPHA-BETA COUNTING INSTRUMENT (Rev 6)

Со	unting Inst	trument:	2	2360	Detector:	43-1	0-1	Calib	oration Date:	6/30/2009								
	,	Serial #:	19	93635	Serial #:	PR20:	2583	12 month o	alibration:	6/30/2010								
	Detec	tor Active	e Area or A	rea Covered b	y Smear (cm²):	100												
	Efficiency (fraction)	Source Nuclide		Original Source	, ,	T _{1/2} (yr)	Source Decayed Activity	Required MDA (DPM/100cm ² )	Control Chart & Daily Bkg Count Time	Control Chart & Daily Source- Sample Count Time	Control Chart bkg Average α/β cpm	Control Chart bkg 1 sigma, cpm	Control Chart Source-bkg Average α/β cpm	Control Chart source 1 sigma, cpm				
Alpha	0.3840	Th-230	1160	17,500	4/29/2002	7.54E+04	1.75E+04	10	10	2	0.20	0.15	5846.6	59.43				
Beta	0.2510	Tc-99	1161	17,700	4/29/2002	2.11E+05	1.77E+04	500	10	2	50.46	2.93	5321.3	69.30				
				•							•							
Date	Daily Bkg			Source Counts	Daily Bkg Ra			ource Rate (cpm)	Bkg QC		Source QC				$\alpha$ MDA	βMDA	H.P.	Technician
	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	MDA α (dpm)			OK?	Technician	Initials
12/9/2009	1	493	11648	10830	0.1	49.3	5823.9	5365.7	PASS	PASS	PASS	PASS	6.00	77	Yes Yes	Yes Yes	GB	GB
12/10/2009 12/11/2009	2	511 511	11651 11573	10828 10984	0.2 0.1	51.1 51.1	5825.3 5786.4	5362.9 5440.9	PASS	PASS	PASS	PASS	6.87	79	Yes	Yes	GB GB	GB GB
12/11/2009	4	511	11668	11005	0.1	51.1	5786.4	5440.9	PASS PASS	PASS PASS	PASS PASS	PASS PASS	6.00 8.10	79 81	Yes	Yes	GB GB	GB
12/14/2009	1	537	11576	10784	0.4	53.7	5787.9	5338.3	PASS	PASS	PASS	PASS	6.00	80	Yes	Yes	GB	GB
1/4/2010	2	526	11672	10885	0.1	52.6	5835.8	5389.9	PASS	PASS	PASS	PASS	6.87	80	Yes	Yes	AW	AW
1/11/2010	1	507	11757	10890	0.1	50.7	5878.4	5394.3	PASS	PASS	PASS	PASS	6.00	78	Yes	Yes	AW	AW
1/3/2010	4	484	11626	10842	0.4	48.4	5812.6	5372.6	PASS	PASS	PASS	PASS	8.10	77	Yes	Yes	AW	AW
_																	_	

Inst.#44-9 (217869) BKGD										
QC Daily Source										
Date	Result (cpm)	P/F								
2/22/2010	36	Pass Pass								
2/23/2010	37	Pass								

Inst.#44-9	(217869) BKGD	Source Ser. #	
Initial So	urce Readings	Nuclide	BKGD
Date	Result (cpm)		
2/18/2010	36		
2/18/2010	34		
2/18/2010	36		
2/18/2010	35		
2/18/2010	37		
2/18/2010	34		
2/18/2010	34		
2/18/2010	36		
2/18/2010	38		
2/18/2010	38		
	Average		
	36		



Inst.#44-9 (217869) Source			
	QC Daily Source		
Date	Result (cpm)	P/F	
2/22/2010	3123	Pass	
2/23/2010	3149	Pass	

Inst.#44-9	(217869) Source	Source Ser. #	1161
Initial So	urce Readings	Nuclide	Tc-99
Date	Result (cpm)		
2/18/2010	3175		
2/18/2010	3027		
2/18/2010	3144		
2/18/2010	3102		
2/18/2010	3099		
2/18/2010	3166		
2/18/2010	3178		
2/18/2010	3170		
2/18/2010	3152		
2/18/2010	3167		
	Average		
	3138		



Inst.#44-9 (142299) BKGD			
	QC Daily Source		
Date	Result (cpm)	P/F	
12/2/2009	31	Pass	
12/3/2009	35	Pass	
12/4/2009	31	Pass	

Inst.#44-9	(142299) BKGD	Source Ser. #	
Initial Sou	urce Readings	Nuclide	BKGD
Date	Result (cpm)		
12/2/2009	46		
12/2/2009	36		
12/2/2009	39		
12/2/2009	27		
12/2/2009	27		
12/2/2009	33		
12/2/2009	36		
12/2/2009	48		
12/2/2009	31		
12/2/2009	30		
	Average		
	35		



Inst.#44-9 (142299) SOURCE			
	QC Daily Source		
Date	Result (cpm)	P/F	
12/2/2009	3312	Pass	
12/3/2009	3129	Pass	
12/4/2009	3100	Pass	

Inst.#44-9 (	142299) SOURCE	Source Ser. #	1161
Initial So	urce Readings	Nuclide	Tc-99
Date	Result (cpm)		
12/2/2009	3206		
12/2/2009	3229		
12/2/2009	3220		
12/2/2009	3205		
12/2/2009	3143		
12/2/2009	3302		
12/2/2009	3246		
12/2/2009	3285		
12/2/2009	3137		
12/2/2009	3232		
	Average		
	3221		



Inst.#44-9 (142299) BKGD				
	QC Daily Source			
Date	Result (cpm)	P/F		
12/2/2009	31	Pass		
12/3/2009	35	Pass		
12/4/2009	31	Pass		
12/7/2009	37	Pass		
12/8/2009	31	Pass		
12/9/2009	32	Pass		
12/10/2009	36	Pass		
12/11/2009	39	Pass		
12/14/2009	42	Pass		
12/15/2009	38	Pass		
1/4/2010	37	Pass		
1/21/2010	36	Pass		
2/2/2010	33	Pass		
2/3/2010	34	Pass		
2/4/2010	30	Pass		
2/5/2010	30	Pass		
2/15/2010	33	Pass		
2/16/2010	34	Pass		
2/17/2010	36	Pass		
2/18/2010	32	Pass		

Inst.#44-9	(142299) BKGD	Source Ser. #	
Initial So	urce Readings	Nuclide	BKGD
Date	Result (cpm)		
12/2/2010	46		
12/2/2010	36		
12/2/2010	39		
12/2/2010	27		
12/2/2010	27		
12/2/2010	33		
12/2/2010	36		
12/2/2010	48		
12/2/2010	31		
12/2/2010	30		
	Average		
	35		



Inst.#44-9 (142299) SOURCE			
QC Daily Source			
Date	Result (cpm)	P/F	
12/2/2009	3312	Pass	
12/3/2009	3129	Pass	
12/4/2009	3100	Pass	
12/7/2009	3165	Pass	
12/8/2009	3308	Pass	
12/9/2009	3311	Pass	
12/10/2009	3262	Pass	
12/11/2009	3365	Pass	
12/14/2009	3481	Pass	
12/15/2009	3376	Pass	
1/4/2010	3486	Pass	
1/21/2010	3420	Pass	
2/2/2010	3433	Pass	
2/3/2010	3283	Pass	
2/4/2010	3442	Pass	
2/5/2010	3390	Pass	
2/15/2010	3481	Pass	
2/16/2010	3243	Pass	
2/17/2010	3384	Pass	
2/18/2010	3224	Pass	

Inst.#44-9 (	142299) SOURCE	Source Ser. #	1161
Initial So	urce Readings	Nuclide	Tc-99
Date	Result (cpm)		
12/2/2010	3206		
12/2/2010	3229		
12/2/2010	3220		
12/2/2010	3205		
12/2/2010	3143		
12/2/2010	3302		
12/2/2010	3246		
12/2/2010	3285		
12/2/2010	3137		
12/2/2010	3232		
	Average		
	3221		



Inst.#44-20 (196087) BKGD			
	QC Daily Source		
Date	Result (cpm)	P/F	
12/2/2009	6501	Pass	

Inst.#44-20	(196087) BKGD	Source Ser. #	
Initial So	Initial Source Readings		BKGD
Date	Result (cpm)		
12/2/2009	6319		
12/2/2009	6290		
12/2/2009	6508		
12/2/2009	6344		
12/2/2009	6329		
12/2/2009	6353		
12/2/2009	6335		
12/2/2009	6399		
12/2/2009	6462		
12/2/2009	6522		
	Average		
	6386		



Inst.#44-20 (196087) SOURCE			
	QC Daily Source		
Date	Result (cpm)	P/F	
12/2/2009	358712	Pass	

Inst.#44-20	(196087) SOURCE	Source Ser. #	1162
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (cpm)		
12/2/2009	361188		
12/2/2009	361243		
12/2/2009	359655		
12/2/2009	359487		
12/2/2009	360249		
12/2/2009	353732		
12/2/2009	359001		
12/2/2009	358411		
12/2/2009	360236		
12/2/2009	360252		
	Average		
	359345		



Inst.#44-20 (196087) BKGD			
	QC Daily Source		
Date	Result (cpm)	P/F	
12/7/2009	14401	Pass	
12/8/2009	14261	Pass	
12/10/2009	14262	Pass	
12/14/2009	13682	Pass	
1/13/2010	13495	Pass	
1/14/2010	15034	Pass	
1/18/2010	14844	Pass	
1/19/2010	14792	Pass	
1/20/2010	15646	Pass	
1/21/2010	14746	Pass	
1/26/2010	14999	Pass	
1/27/2010	15265	Pass	
1/28/2010	14875	Pass	
1/29/2010	14372	Pass	
2/2/2010	14888	Pass	
2/3/2010	14386	Pass	
2/4/2010	15560	Pass	
2/5/2010	14985	Pass	
2/15/2010	14444	Pass	
2/16/2010	14753	Pass	
2/24/2010	14348	Pass	
2/25/2010	15192	Pass	

Inst.#44-20	) (196087) BKGD	Source Ser. #	
Initial So	Initial Source Readings		BKGD
Date	Result (cpm)		
12/7/2009	14720		
12/7/2009	14514		
12/7/2009	14432		
12/7/2009	14267		
12/7/2009	14554		
12/7/2009	14399		
12/7/2009	14194		
12/7/2009	14493		
12/7/2009	14196		
12/7/2009	14277		
	Average		
	14405		



Inst.#44-20 (196087) SOURCE			
QC Daily Source			
Date	Result (cpm)	P/F	
12/7/2009	381714	Pass	
12/8/2009	377456	Pass	
12/10/2009	358751	Pass	
12/14/2009	347105	Pass	
1/13/2010	382250	Pass	
1/14/2010	359588	Pass	
1/18/2010	378010	Pass	
1/19/2010	381676	Pass	
1/20/2010	361023	Pass	
1/21/2010	373221	Pass	
1/26/2010	389060	Pass	
1/27/2010	371728	Pass	
1/28/2010	359877	Pass	
1/29/2010	342213	Pass	
2/2/2010	363688	Pass	
2/3/2010	360760	Pass	
2/4/2010	389708	Pass	
2/5/2010	374551	Pass	
2/15/2010	364287	Pass	
2/16/2010	386304	Pass	
2/24/2010	370398	Pass	
2/25/2010	370830	Pass	

Inst.#44-20	(196087) SOURCE	Source Ser. #	1162
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (cpm)		
12/7/2009	357582		
12/7/2009	383122		
12/7/2009	353310		
12/7/2009	382812		
12/7/2009	375345		
12/7/2009	376418		
12/7/2009	366517		
12/7/2009	366727		
12/7/2009	384069		
12/7/2009	374190		
	Average		
	372009		



Inst.#44-20 (218559) BKGD			
QC Daily Source			
Date	Result (cpm)	P/F	
1/11/2010	12661	Pass	
1/13/2010	11998	Pass	
1/14/2010	12816	Pass	
1/18/2010	13746	Pass	
1/19/2010	13491	Pass	
1/20/2010	14080	Pass	
1/21/2010	13959	Pass	
1/26/2010	13755	Pass	
1/27/2010	13645	Pass	
1/28/2010	13858	Pass	
1/29/2010	13422	Pass	
2/2/2010	13710	Pass	
2/3/2010	13521	Pass	
2/4/2010	13667	Pass	
2/16/2010	12459	Pass	
2/17/2010	12662	Pass	
2/18/2010	13219	Pass	
2/22/2010	13229	Pass	
2/23/2010	13430	Pass	

Inst.#44-20	Inst.#44-20 (218559) BKGD		
Initial So	urce Readings	Nuclide	BKGD
Date	Result (cpm)		
1/11/2010	12773		
1/11/2010	12575		
1/11/2010	12729		
1/11/2010	12738		
1/11/2010	12768		
1/11/2010	12850		
1/11/2010	12580		
1/11/2010	12622		
1/11/2010	12825		
1/11/2010	12807		
	Average		
	12727		



Inst.#44-20 (218559) SOURCE			
_	QC Daily Source		
Date	Result (cpm)	P/F	
1/11/2010	347774	Pass	
1/13/2010	363868	Pass	
1/14/2010	352981	Pass	
1/18/2010	353039	Pass	
1/19/2010	369466	Pass	
1/20/2010	344849	Pass	
1/21/2010	348286	Pass	
1/26/2010	355802	Pass	
1/27/2010	342403	Pass	
1/28/2010	341663	Pass	
1/29/2010	362840	Pass	
2/2/2010	356991	Pass	
2/3/2010	340921	Pass	
2/4/2010	365881	Pass	
2/16/2010	351053	Pass	
2/17/2010	350365	Pass	
2/18/2010	361420	Pass	
2/22/2010	348140	Pass	
2/23/2010	358571	Pass	

Inst.#44-20	(218559) SOURCE	Source Ser. #	1162
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (cpm)		
1/11/2010	347707		
1/11/2010	348080		
1/11/2010	348009		
1/11/2010	347632		
1/11/2010	346627		
1/11/2010	348218		
1/11/2010	348580		
1/11/2010	348467		
1/11/2010	348157		
1/11/2010	347931		
	Average		
	347941		



Inst.#44-20 (71235) BKGD QC Daily Source			
	QC Daily Source		
Date	Result (cpm)	P/F	
1/21/2010	14768	Pass	
1/26/2010	14408	Pass	
1/27/2010	14384	Pass	
1/28/2010	14322	Pass	
1/29/2010	13964	Pass	

Inst.#44-20 (71235) BKGD		Source Ser. #	
Initial Source Readings		Nuclide	BKGD
Date	Result (cpm)		
1/20/2010	15216		
1/20/2010	15396		
1/20/2010	15392		
1/20/2010	15174		
1/20/2010	15200		
1/20/2010	15315		
1/20/2010	15533		
1/20/2010	15149		
1/20/2010	15251		
1/20/2010	15135		
	Average		
	15276		



Inst.#44-20 (71235) SOURCE					
QC Daily Source					
Date	Result (cpm)	P/F			
1/21/2010	336352	Pass			
1/26/2010	346829	Pass			
1/27/2010	359576	Pass			
1/28/2010	352516	Pass			
1/29/2010	364964	Pass			

Inst.#44-20 (71235) SOURCE		Source Ser. #	1162
Initial Source Readings		Nuclide	Cs-137
Date	Result (cpm)		
1/20/2010	335982		
1/20/2010	335500		
1/20/2010	336228		
1/20/2010	336971		
1/20/2010	336186		
1/20/2010	315797		
1/20/2010	315466		
1/20/2010	315035		
1/20/2010	314393		
1/20/2010	314500		
	Average		
	325606		



Inst.#44-20 (161580) BKGD					
QC Daily Source					
Date					
12/2/2009	5979	Pass			
12/3/2009	6822	Pass			

Inst.#44-20	(161580) BKGD	Source Ser. #	
Initial So	urce Readings	Nuclide	BKGD
Date	Result (cpm)		
12/2/2009	5924		
12/2/2009	5993		
12/2/2009	6053		
12/2/2009	6100		
12/2/2009	6105		
12/2/2009	6041		
12/2/2009	6125		
12/2/2009	6033		
12/2/2009	6070		
12/2/2009	6183		
	Average		
	6063		



Inst.#44-20 (161580) SOURCE			
QC Daily Source			
Date	Result (cpm)	P/F	
12/2/2009	352817	Pass Pass	
12/3/2009	329031	Pass	

Inst.#44-20 (	161580) SOURCE	Source Ser. #	1162
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (cpm)		
12/2/2009	354296		
12/2/2009	352290		
12/2/2009	353622		
12/2/2009	350728		
12/2/2009	343542		
12/2/2009	354287		
12/2/2009	353789		
12/2/2009	353282		
12/2/2009	346325		
12/2/2009	346241		
	Average		
	350840		



Inst.#44-20 (161580) BKGD					
QC Daily Source					
Date					
12/7/2009	12940	Pass			
12/8/2009	13030	Pass			
12/10/2009	13360	Pass			
12/11/2009	13050	Pass			
12/14/2009	12879	Pass			
12/15/2009	12954	Pass			
1/4/2010	11709	Pass			
1/11/2010	13144	Pass			
1/13/2010	12840	Pass			
1/14/2010	12820	Pass			
1/18/2010	14123	Pass			
1/19/2010	13822	Pass			
1/20/2010	14368	Pass			
1/21/2010	14379	Pass			

Inst.#44-20	) (161580) BKGD	Source Ser. #	
Initial So	urce Readings	Nuclide	BKGD
Date	Result (cpm)		
12/7/2009	13425		
12/7/2009	13126		
12/7/2009	12912		
12/7/2009	12936		
12/7/2009	13233		
12/7/2009	13714		
12/7/2009	13221		
12/7/2009	13073		
12/7/2009	12933		
12/7/2009	13092		
	Average		
	13167		



Inst.#44-20 (161580) SOURCE			
QC Daily Source			
Date	Result (cpm)	P/F	
12/7/2009	341276	Pass	
12/8/2009	370098	Pass	
12/10/2009	343057	Pass	
12/11/2009	368321	Pass	
12/14/2009	342764	Pass	
12/15/2009	363335	Pass	
1/4/2010	365835	Pass	
1/11/2010	358493	Pass	
1/13/2010	364322	Pass	
1/13/2010	351994	Pass	
1/14/2010	391428	Pass	
1/19/2010	344924	Pass	
1/20/2010	347492	Pass	
1/21/2010	354517	Pass	

Inst.#44-20	(161580) SOURCE	Source Ser. #	1162
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (cpm)		
12/7/2009	366952		
12/7/2009	329474		
12/7/2009	332600		
12/7/2009	346294		
12/7/2009	329855		
12/7/2009	346005		
12/7/2009	370375		
12/7/2009	369236		
12/7/2009	370567		
12/7/2009	369154		
	Average		
	353051		



Inst.#44-20 (190171) BKGD			
QC Daily Source			
Date	Result (cpm)	P/F	
1/21/2010	15694	Pass	
3/1/2010	16328	Pass	
3/2/2010	13980	Pass	
3/3/2010	15339	Pass	

Inst.#44-20	(190171) BKGD	Source Ser. #	
Initial So	urce Readings	Nuclide	BKGD
Date	Result (cpm)		
1/20/2010	15390		
1/20/2010	15503		
1/20/2010	15610		
1/20/2010	15744		
1/20/2010	15467		
1/20/2010	15563		
1/20/2010	15757		
1/20/2010	15635		
1/20/2010	15590		
1/20/2010	15924		
	Average		
	15618		



Inst.#44-20 (190171) SOURCE			
QC Daily Source			
Date	Result (cpm)	P/F	
1/21/2010	358904	Pass	
3/1/2010	386322	Pass	
3/2/2010	376303	Pass	
3/3/2010	363089	Pass	

Inst.#44-20 (	190171) SOURCE	Source Ser. #	1162
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (cpm)		
1/20/2010	386656		
1/20/2010	386882		
1/20/2010	387677		
1/20/2010	387259		
1/20/2010	387289		
1/20/2010	386811		
1/20/2010	386466		
1/20/2010	387731		
1/20/2010	386714		
1/20/2010	358206		
	Average		
	384169		



Inst.#G-1 (196062) BKGD			
QC Daily Source			
Date	Result (cpm)	P/F	
1/27/2010	1345	Pass	
1/28/2010	1483	Pass	
2/3/2010	1418	Pass	
2/4/2010	1441	Pass	
2/5/2010	1471	Pass	
2/15/2010	1381	Pass	
2/16/2010	1367	Pass	
2/17/2010	1327	Pass	
2/18/2010	1475	Pass	
2/22/2010	1387	Pass	
2/23/2010	1447	Pass	
3/1/2010	1475	Pass	

Inst.#G-1	(196062) BKGD	Source Ser. #	
Initial So	urce Readings	Nuclide	BKGD
Date	Result (cpm)		
1/20/2010	1400		
1/20/2010	1399		
1/20/2010	1445		
1/20/2010	1406		
1/20/2010	1454		
1/20/2010	1465		
1/20/2010	1369		
1/20/2010	1509		
1/20/2010	1405		
1/20/2010	1414		
	Average		
	1427		



Inst.#G-1 (196062) SOURCE			
QC Daily Source			
Date	Result (cpm)	P/F	
1/27/2010	118001	Pass	
1/28/2010	106925	Pass	
2/3/2010	106552	Pass	
2/4/2010	103451	Pass	
2/5/2010	105551	Pass	
2/15/2010	107505	Pass	
2/16/2010	104355	Pass	
2/17/2010	104459	Pass	
2/18/2010	104465	Pass	
2/22/2010	104705	Pass	
2/23/2010	104125	Pass	
3/1/2010	107458	Pass	

Inst.#G-1 (	196062) SOURCE	Source Ser. #	1162
Initial So	Initial Source Readings		Cs-137
Date	Result (cpm)		
1/20/2010	109207		
1/20/2010	105650		
1/20/2010	103888		
1/20/2010	103881		
1/20/2010	103377		
1/20/2010	101845		
1/20/2010	100682		
1/20/2010	114888		
1/20/2010	113951		
1/20/2010	114129		
	Average		
	107150		



Inst.#G-1 (190205) BKGD			
QC Daily Source			
Date	Result (cpm)	P/F	
2/2/2010	1505	Pass	
2/3/2010	1505	Pass	
2/4/2010	1510	Pass	
2/23/2010	1543	Pass	
2/24/2010	1537	Pass	
2/25/2010	1550	Pass	
3/1/2010	1500	Pass	

Inst.#G-1	(190205) BKGD	Source Ser. #	
Initial Sc	ource Readings	Nuclide	BKGD
Date	Result (cpm)		
2/2/2010	1558		
2/2/2010	1520		
2/2/2010	1452		
2/2/2010	1478		
2/2/2010	1533		
2/2/2010	1420		
2/2/2010	1493		
2/2/2010	1462		
2/2/2010	1439		
2/2/2010	1468		
	Average		
	1482		



Inst.#G-1 (190205) SOURCE			
QC Daily Source			
Date	Result (cpm)	P/F	
2/2/2010	111515	Pass	
2/3/2010	112559	Pass	
2/4/2010	102841	Pass	
2/23/2010	109623	Pass	
2/24/2010	108695	Pass	
2/25/2010	109766	Pass	
3/1/2010	106196	Pass	

Inst.#G-1 (	190205) SOURCE	Source Ser. #	1162
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (cpm)		
2/2/2010	111258		
2/2/2010	111141		
2/2/2010	112436		
2/2/2010	111860		
2/2/2010	109136		
2/2/2010	111725		
2/2/2010	109870		
2/2/2010	108491		
2/2/2010	108039		
2/2/2010	111131		
	Average		
	110509		



Inst.#Bicron (C854F) BKGD			
QC Daily Source			
Date	Result (μrem/hr)	P/F	
12/7/2009	6	Pass	
12/8/2009	6	Pass	
1/4/2010	6	Pass	
1/13/2010	5	Pass	
1/19/2010	5	Pass	
1/20/2010	6	Pass	
1/26/2010	5	Pass	
1/27/2010	6	Pass	
1/29/2010	5	Pass	
2/2/2010	5	Pass	
3/3/2010	6	Pass	

Inst.#Bicro	on (C854F) BKGD	Source Ser. #	
Initial So	urce Readings	Nuclide	BKGD
Date	Result (µrem/hr)		
12/7/2009	6		
12/7/2009	5		
12/7/2009	7		
12/7/2009	5		
12/7/2009	5		
12/7/2009	6		
12/7/2009	6		
12/7/2009	6		
12/7/2009	5		
12/7/2009	6		
	Average		
	6		



Inst.#Bicron (C854F) SOURCE				
QC Daily Source				
Date	Result (µrem/hr)	P/F		
12/7/2009	80	Pass		
12/8/2009	80	Pass		
1/4/2010	70	Pass		
1/13/2010	80	Pass		
1/19/2010	80	Pass		
1/20/2010	80	Pass		
1/26/2010	70	Pass		
1/27/2010	70	Pass		
1/29/2010	70	Pass		
2/2/2010	70	Pass		
3/3/2010	80	Pass		

Inst.#Bicron	(C854F) SOURCE	Source Ser. #	1162
Initial Sc	ource Readings	Nuclide	Cs-137
Date	Result (µrem/hr)		
12/7/2009	70		
12/7/2009	80		
12/7/2009	80		
12/7/2009	60		
12/7/2009	60		
12/7/2009	70		
12/7/2009	80		
12/7/2009	70		
12/7/2009	90		
12/7/2009	80		
	Average		
	74		



Inst	#Bicron (1622) BKGI	)									
	QC Daily Source										
Date	Result (µrem/hr)	P/F									
2/25/2010	4	Pass									
3/1/2010	4	Pass									
3/2/2019	5	Pass									

Inst.#Bicr	on (1622) BKGD	Source Ser. #	
Initial So	urce Readings	Nuclide	BKGD
Date	Result (µrem/hr)		
2/25/2010	4		
2/25/2010	5		
2/25/2010	4		
2/25/2010	4		
2/25/2010	5		
2/25/2010	4		
2/25/2010	6		
2/25/2010	5		
2/25/2010	5		
2/25/2010	4		
	Average		
	5		



Inst.#	Bicron (1622) SOUR	CE
	QC Daily Source	
Date	Result (µrem/hr)	P/F
2/25/2010	80	Pass
3/1/2010	80	Pass
3/2/2019	80	Pass

Inst.#Bicro	n (1622) SOURCE	Source Ser. #	1162
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (µrem/hr)		
2/25/2010	80		
2/25/2010	80		
2/25/2010	70		
2/25/2010	70		
2/25/2010	80		
2/25/2010	80		
2/25/2010	90		
2/25/2010	90		
2/25/2010	80		
2/25/2010	80		
	Average		
	80		



# APPENDIX F-3 DATA QUALITY ASSESSMENT FOR MIDDLESEX MUNICIPAL LANDFILL

#### 1.0 INTRODUCTION

Medium-specific environmental sampling events were conducted for Middlesex Municipal Landfill (MML) located within the Borough of Middlesex, New Jersey (NJ) in accordance with Field Sampling Plan (FSP) (USACE, 2010a). These activities were conducted during the Site Investigation (SI) to provide sufficient information to determine the need for a full remedial investigation (RI) or other actions in accordance with Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), based on preliminary site data and field sampling for contamination. As a part of the FSP, Quality Assurance/Quality Control (QA/QC) activities were performed under this project in accordance with applicable technical standards, U.S. Environmental Protection Agency (EPA) regulations, government regulations and guidelines, and specific project goals and requirements. The objectives for these QA/QC activities are to demonstrate that environmental data generated during this investigation can withstand scientific scrutiny, are appropriate for their intended purpose, are technically defensible, and are of known and acceptable precision, and accuracy. This assessment presents the results of QA/QC evaluation performed for MML by utilizing the sampling results of radiological isotopes as they may be potential radiological contaminants of concerns for the site.

#### 2.0 CONTRACTED LABORATORY PROGRAMS

Analytical Laboratory Services (ALS) of Fort Collins, Colorado was selected as a laboratory to perform sampling analyses for primary and QC samples collected from different environmental media as a part of SI for MML.

#### 3.0 QUALITY-INDICATOR SAMPLES

The Quality-Indicator Samples (QIS) were collected for soil, as part of field and laboratory QC measures and were submitted for analysis to ALS. The QIS are used to evaluate the usability of data. The identity of duplicate QC samples is held blind to the analysts and the purpose of these samples is to provide activity-specific, field-originated information regarding the homogeneity of the sampled matrix and the consistency of the sampling effort. These samples were collected concurrently with the primary environmental samples and equally represent the medium at a given time and location. QIS samples consisted of the following types – laboratory duplicate (DUP), laboratory control sample (LCS), matrix spikes (MS), matrix spikes duplicates (MSD) and method blank (MB). They were analyzed at a rate of one per ten for duplicate samples and one per 20 samples for MS/MSD for each analysis performed on each matrix.

#### 4.0 DATA EVALUATION

The evaluation/assessment of measurement data is required to ensure that the QA objectives for the program are met and that quantitative measures of data quality are provided. The data

1

evaluation procedures, calculations and applications used for the project are based on the criteria presented in *USACE Kansas City and St. Louis District Radionuclide Data Quality Evaluation Guidance for Alpha and Gamma Spectroscopy* (USACE, 2002).

All samples have been reviewed with respect to condition of sample receipt from the laboratory. All sample containers were received by ALS in good condition and under proper chain of custody (COC). All samples were extracted and analyzed within 180 days from time of sample collection. The routine quality control procedures conducted in the laboratory include proper instrument maintenance, calibration and continuing calibration checks, and internal quality control analyses at the required frequencies. One of the additional ongoing data assessment processes is maintaining control charts for representative QC sample analyses to monitor system performance. This provides verification that the system is in statistical control, and indicated when performance problems occur, so that the problems can be corrected as soon as possible. When reporting the sample data, the laboratory also provides the results of associated QC sample analyses. The following sections summarize the data evaluation process conducted for the MML

#### 4.1 Data Assessment Procedures

The primary objective of the data assessment phase was to assess and summarize the quality and reliability of the data for the intended use and to document factors that may affect the usability of the data. Qualifiers were applied to each field and analytical result to indicate the usability of the data for its intended purpose. Data assessment procedures performed for this project includes:

- Initial review of analytical and field data for complete and accurate documentation, holding time compliance, and required frequency of QC samples
- Evaluation of blank results to identify systematic contamination
- Statistical calculations for accuracy and precision using the appropriate quality control sample results
- Estimates of completeness, in terms of the percent of valid unqualified data
- Assigning data qualifier flags to the data as necessary to reflect limitations identified by the process

# 4.2 Data Quality Indicators

The data quality indicators that were used during the data assessment process are summarized in the following sections.

#### 4.2.1 Precision

The degree of agreement between the numerical values of a set of duplicate samples performed in an identical fashion constitutes the precision of the measurement. During the collection of data using field methods and/or instruments, precision is checked by reporting measurements at one location and comparing results. Control limits for control sample analyses, acceptability limits for replicate analyses, and response factor agreement criteria specified for calibration and internal QC checks are based upon precision, in terms of the relative percent difference, RPD.

The RPD calculation allows for the comparison of two analysis values in terms of precision with no estimate of accuracy. Relative percent difference is calculated as:

$$RPD = \frac{|M - m|}{\left(\frac{M + m}{2}\right)} \times 100$$

where:

M = First measurement value; and m = Second measurement value.

RPD evaluations are not typically performed on radiological samples because of the possibility of the results being net negative, e.g. sample concentration being lower than representative background sample. Therefore, a normalized absolute difference (NAD) was also calculated between the values by using the following equation:

Normalized Absolute Difference Duplicate = 
$$\frac{\left| \text{Sample - Duplicate} \right|}{\sqrt{\sigma_{\text{Sample}}^2 + \sigma_{\text{Duplicate}}^2}}$$

Where: Sample = first sample value (original)

 $\sigma_{\text{Sample}} = 2$  counting uncertainty of the sample

Duplicate = second sample value (duplicate)

 $\sigma_{\text{Duplicate}} = 2$  counting uncertainty of the duplicate

The calculated NAD results will be compared to a performance criteria of less than or equal to 1.96. Calculated NAD values less than 1.96 will be considered acceptable and values greater than 1.96 will be investigated for possible discrepancies in analytical precision.

#### 4.2.2 Accuracy

Accuracy is the degree of agreement of a measurement, X, with an accepted reference or true value, T. Accuracy is usually expressed as the difference between the two values, X-T, or the difference as a percentage of the reference or true value, 100(X-T)/T, and sometimes expressed as a ratio, X/T. Accuracy is a measure of the bias in a system and is assessed by means of reference samples and percent recoveries. Error may arise from personnel, instrument, or method factors.

Analytical accuracy is expressed as the percent recovery of an analyte that has been added to the control samples or a standard matrix (e.g., blank soil, analyte-free water, etc.) at a known concentration prior to analysis. Two types of analytical check samples can be used: laboratory control samples (blank spike) and the matrix spike. For this project, percent spike recovery calculation was used to determine the performance of a method for recovery of a spike concentration added to a sample is the percent spike recovery calculation. The percent spike recovery was determined as:

% Spike Recovery = 
$$\frac{[(Measured\ Sample\ Value\ Plus\ Spike) - (Measured\ Sample\ Value)]}{(Value\ of\ Spike\ Added)} \times 100$$

# 4.2.3 Completeness

Completeness is a measure of the degree to which the amount of sample data collected meets the scope and a measure of the relative number of analytical data points that meet the acceptance criteria, including accuracy, precision, and any other criteria required by the specific analytical method used. Completeness is defined as a comparison of the actual numbers of valid data points and expected numbers of points expressed as a percentage.

The QA objectives for completeness will be based upon a project goal of 90%. If data cannot be reported without qualifications, project completion goals may still be met if the qualified data, i.e., data of known quality even if not perfect, are suitable for the specified project goals.

# 4.2.4 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter that is most concerned with the proper design of the sampling program. The representativeness criteria are best satisfied by making certain that sampling locations are properly selected and a sufficient number of samples are collected. Representativeness is addressed by describing sampling techniques and rationale used to select sampling locations. The SI performed at the MML was designed using guidance in Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (NRC, 2000). Additionally, EPA-approved and American Society for Testing and Materials (ASTM)-approved and standardized sampling procedures were used where practical, and considered as guidance in other cases, to ensure the representativeness of sample data.

#### 4.2.5 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. The comparability of the data, a relative measure, is influenced by sampling and analytical procedures. By providing specific protocols to be used for obtaining and analyzing samples, data sets should be comparable regardless of who obtains the sample or performs the analysis.

The analytical laboratory was responsible for enhancing comparability using the following controls:

- Use of current, standard EPA-approved methodology for sample preservation, holding, and analysis
- Consistent reporting units for each parameter in similar matrices
- EPA- or NIST-traceable standards, when available
- Analysis of EPA QC samples, when available
- Participation in inter-laboratory performance evaluation studies

#### 4.3 Results of Data Assessment

The following sections summarized the data evaluation procedures to be used for each QIS.

#### 4.3.1 Standard Traceability

All standards used in the preparation of QC sampling including LCS, MS or sample-specific tracers are traceable to a reliable source (e.g. NIST, IAEA).

# 4.3.2 Laboratory Control Sample (LCS)

The purpose of the LCS is to monitor the accuracy of sample preparation and analysis. The LCS must be the same matrix type as the analytical samples. It is prepared and analyzed using the same methods as the project samples. An LCS spike recovery QC criterion for LCS is 75-125%. The percentage spike recovery rate for Ra-226 and Uranium isotopes falls within the QC criteria.

# 4.3.3 Laboratory Duplicate (LD)

The purpose of the LD is to monitor the precision of the analytical method, provided the sample is fully homogenized prior to preparation and analysis. For sample and LD result pairs, a normalized absolute difference (NAD) was calculated between the values. The calculated NAD results were compared to a performance criteria of less than or equal to 1.96. Calculated NAD values less than 1.96 were considered acceptable and values greater than 1.96 will be investigated for possible discrepancies in analytical precision.

Additionally, relative percent difference (RPD) values were calculated for each analyte based on sample and LD sampling results. All calculated RPD between the sample and the corresponding LD were compared to the QC criteria (RPD <50).

Table 1 presents the results of NAD and RPD for sample and laboratory duplicate samples. The results showed that NAD values are less than 1.96 for the all duplicate samples. All calculated RPD between the sample and the corresponding LD met the QC criteria (RPD <50)

**Table 1: Determination of NAD and RPD for Soil Sampling Results** 

			Ac-2	28					Ra-2	26	•		U-238					
Sample ID	SM	IP	DU	P	NAD	RPD	SMP		DUP		NAD	RPD	SMP		DU	P	NAD	RPD
	Result	TPU	Result	TPU	NAD	KPD	Result	TPU	Result	TPU	NAD	KPD	Result	TPU	Result	TPU	NAD	KPD
MML-SBG01-P-10.0-12.0	0.72	0.34	0.53	0.19	0.5	30%	1	1.2	0.5	1.1	0.3	67%	0.67	0.16	0.47	0.13	1.0	35%
MML-SBG05-P-2.0-3.5	0.76	0.17			NC	NC	1.72	0.94			NC	NC	0.69	0.17	0.66	0.16	0.1	4%
MML-SBG13-P-4.0-5.0	1.77	0.24	1.58	0.24	0.6	11%	2.08	0.77	1.69	0.79	0.4	21%	1.01	0.22			NC	NC
MML-SBG14-P-0.5-4.0	1.15	0.23	0.95	0.22	0.6	19%	3.2	1.3	5.1	1.2	1.1	46%	1.24	0.27	1.48	0.3	0.6	18%
MML-SBG17-P-2.0-5.0	0.79	0.2	0.72	0.13	0.3	9%	1.14	0.73	1.53	0.64	0.4	29%	0.55	0.15	0.65	0.16	0.5	17%
MML-SBG18-P-1.5-3.0	0.64	0.26	0.8	0.28	0.4	22%	1	1.1	1.1	1.3	0.1	10%	0.62	0.17			NC	NC
MML-SBG21-P-1.0-3.0	0.76	0.27	0.71	0.25	0.1	7%	1.7	1.1	0.7	1.4	0.6	83%	0.87	0.2	1.05	0.23	0.6	19%
MML-SBG28-P-0.5-2.0	0.95	0.2	0.72	0.15	0.9	28%	2.41	0.72	1.93	0.81	0.4	22%	0.59	0.15			NC	NC
MML-SBG35-P-0.0-3.0	1.09	0.2	1.2	0.17	0.4	10%	1.77	0.76	2.1	0.79	0.3	17%	0.95	0.22	0.95	0.22	0.0	0%
MML-SBG37-P-9.0-11.0	0.71	0.17	0.8	0.18	0.4	12%	0.81	0.76	1.42	0.77	0.6	55%	0.59	0.15			NC	NC
MML-SBG38-D-10.0-12.0	1.23	0.22			NC	NC	1.06	0.8			NC	NC	0.84	0.19	0.77	0.18	0.3	9%
MML-SBG40-D-6.0-8.0	0.65	0.17			NC	NC	1.17	0.77			NC	NC	0.51	0.13	0.67	0.16	0.8	27%
MML-SBG43-P-6.0-9.0	1.08	0.29	0.85	0.29	0.6	24%	1.2	1.4	2	1.3	0.4	50%	0.83	0.19	0.71	0.17	0.5	16%
MML-SBG45-P-3.5-4.5	0.83	0.23	1.13	0.37	0.7	31%	2.8	1.2	1.1	1.7	0.8	87%	1.92	0.36	1.92	0.36	0.0	0%
MML-SBG46-B-0.0-1.0	188	39	111	32	1.5	52%					NC	NC					NC	NC
MML-SBG48-P-1.0-3.0	1.39	0.23	1.52	0.25	0.4	9%	1.58	0.94	1.6	1	0.0	1%	1.05	0.23	0.96	0.21	0.3	9%
MML-SBT11-B-0.0-0.5(3)	0.63	0.23			NC	NC	2.8	1.2			NC	NC	1.19	0.26	1.06	0.23	0.4	12%
MML-SBT13-B-0.0-1.5	0.92	0.2	0.83	0.18	0.3	10%	1.04	0.74	1.38	0.85	0.3	28%	0.68	0.16			NC	NC
MML-SBT14-B-4.5-5.5	32	14	40.8	8.8	0.5	24%	114	14			NC	NC	114	19			NC	NC
MML-SSC01-P-0.0-0.5	0.73	0.15	0.75	0.16	0.1	3%	4.4	1	4.38	0.95	0.0	0%	2.93	0.63			NC	NC
MML-SSC10-P-0.0-0.5	0.85	0.26			NC	NC	10	2.2			NC	NC	2.71	0.57	2.48	0.55	0.3	9%
MML-SSC11-P-0.0-0.5	1.04	0.2	1.01	0.16	0.1	3%	2.74	0.92	2.61	0.79	0.1	5%	1.02	0.28			NC	NC
MML-SSC14-P-0.0-0.5	1.31	0.21	1.1	0.22	0.7	17%	1.55	0.79	2.51	0.92	0.8	47%	0.76	0.23			NC	NC
MML-SSC15-P-0.0-0.5	1.2	0.23	1.02	0.21	0.6	16%	1.7	1.1	1.92	0.87	0.2	12%	0.96	0.27			NC	NC
MML-SSC18-P-0.0-0.5	1.1	0.21			NC	NC	0.9	1			NC	NC	0.77 0.19		1.03	0.28	0.8	29%
MML-SSC23-P-0.0-0.5	1.14	0.17			NC	NC	1.54	0.64			NC	NC	0.54	0.19	0.82	0.2	1.0	41%
MML-SSC26-P-0.0-0.5	0.82	0.28			NC	NC	15.1	2.6			NC	NC	4.07	0.72	4.16	0.72	0.1	2%
MML-SSC27-D-0.0-1.0	8.8	1.2	9.8	1.3	0.6	11%	23	4	14.3	3.5	1.6	47%	5.8	1			NC	NC
MML-SSC29-D-0.0-0.5	0.94	0.2			NC	NC	66.5	8			NC	NC	11.3	2.4	10.5	2	0.3	7%

Table 1: Determination of NAD and RPD for Soil Sampling Results (Cont'd)

			Ac-2	28					Ra-2	26			U-238							
Sample ID	SM	P	DUP		NAD RPD		SMP		DUP		NAD RPD		SMP		DUP		NAD	RPD		
	Result	TPU	Result	TPU	NAD	KID	Result	TPU	Result	TPU	NAD	KID	Result	TPU	Result	TPU	NAD	KID		
MML-SSC34-P-0.0-0.5	1.58	0.24	1.46	0.37	0.3	8%	2.34	0.8	2.2	1.7	0.1	6%	1.16	0.25	1.24	0.26	0.2	7%		
MML-SSC38-P-0.0-0.5	0.91	0.15	0.76	0.2	0.6	18%	10.9	1.5	9.3	1.6	0.7	16%	4.75	0.81			NC	NC		
MML-SSC39-P-0.0-0.5	0.87	0.25			NC	NC	2.1	1.1			NC	NC	1.19	0.26	1.17	0.25	0.1	2%		
MML-SSW01-P-0.0-0.5	0.91	0.27	0.79	0.24	0.3	14%	2.2	1.3	1.3	1.1	0.5	51%	1.03	0.23	0.7	0.18	1.1	38%		
MML-SSW08-P-0.0-0.5	1.91	0.26	1.62	0.25	0.8	16%	2.08	0.85	1.72	0.84	0.3	19%	0.95	0.21	0.87	0.2	0.3	9%		

Footnote

NC Not calculated

Unit in pCi/g.

#### 4.3.4 Matrix Spike (MS)/ Matrix Spike Duplicates (MSD)

The purpose of the MS/MSD is to measure the effect of interferences from the sample matrix that will hinder accurate quantitation by the instrument. The MS assumes that the sample matrix has been fully homogenized prior to preparation and analysis. The MS spike recovery QC criteria is 75-125%. The percentage spike recovery rate for Uranium isotopes falls within the QC acceptable criteria.

#### 4.3.5 Method Blank (MB)

The purpose of the MB is to monitor the presence of external sources of contamination for analytes of interest in the sample preparation and analysis process. The MB is a laboratory-generated sample of the same matrix as the analytical samples but in absence of the analytes of interest. During this project, the results of all radionuclides of interest in the MB were compared to their corresponding MDCs. The measured activities for few radionuclides of interest are higher than the calculated MDCs. However, they are below the requested MDCs.

#### 4.3.6 Tracer Yield

A tracer is defined as a radioactive isotope, introduced into the sample preparation/analysis process that will behave chemically similar to the analyte isotopes of interest. Tracers provide a means of evaluating chemical separation. The activity of the tracer detected at the end of analysis compared to that of the spiked amount is used to calculate the percent recovery. The QC limits for tracer recovery are 20-110%. Generally, a low tracer yield is indicative of losses of the spiked tracer through sample separation. Recoveries greater than expected are indicative of instrumental problems or contamination. The percent recovery results of U-232 for all samples are within the acceptable QC limits.

# 4.3.7 Required Detection Limits (RDLs)

The MDCs for all radionuclides of interest must be less than the RDLs. The MDC for each radionuclide of interest was compared to its corresponding RDL. The reported MDCs for a large number of the sample results for Ac-228 are greater than the project's MDL. The reported MDCs for 15 sample results for U-238 are greater than the project's MDL.

### 4.4 Data Usability

The overall quality of the sampling information meets or exceeds the established project objectives. Data, as presented, has been qualified as usable, but estimated when necessary. Data that have been estimated have concentrations/activities that are below the quantitation limit or are indicative of accuracy and precision being less than desired but adequate for interpretation.

Data produced for this project demonstrates that it can withstand scientific scrutiny, is appropriate for its intended purpose, is technically defensible, and is of known and acceptable precision, and accuracy. Data integrity has been documented through proper implementation of Quality Assurance and Quality Control measures.

# APPENDIX G EFFLUENT AIR MONITORING DATA

# PERSONNEL AIR MONITORING DATA CALCULATION LOG (Rev 3)

Co	unting Inst	rument:	29	929	Detector:	43-1	0-1		Cal. Date:	1/5/2010										
		Serial #:	129	9566	Serial #:	PR13	2720	Cal. D	ue Date OK?	WARNING										
					_		Source													
	Counting			Original Source	Source		Decayed	Sample	Background											
Radiation	Efficiency	Source	Source	Activity (DPM)	Creation		Activity	Count time	Count time											
Type	(fraction)	Nuclide	Number		Date	T _{1/2} (yr)	Activity	(min)	(min)		Isotope	of Concern								
												10CFR20								
Alpha	0.3130	Th-230	1160	17,500	4/29/2002	7.54E+04	17499	10	10		Isotope	Occup. DAC								
Beta	0.2360	Tc-99	1161	17,700	4/29/2002	2.11E+05	17700	10	10		Th-232	5.00E-13								
-			Air Sample	Air Sample				Comple					Comple	Sample	Alpho	Beta				
			Start Time	End Time		Total BZ	Flow	Sample Gross	Sample	Alpha Bkg	Beta Bkg	Filter	Sample Alpha	Beta	Alpha Count	Count	Alpha	Beta	Almha MDA	Beta MDA
			Period	Period		Run Time	rate		<b>Gross Beta</b>			Efficiency	Activity	Activity	Concen.	Concen.	DAC-	DAC-	Alpha MDA (uCi/cc)	(uCi/cc)
_			Date/Time	Date/Time	Count	(min)	(lpm)	Alpha (Counts)	(Counts)	(cpm)	(cpm)	(fraction)	•	•	(uCi/cc)	(uCi/cc)	hours	hours	(uonce)	(401/00)
	on Monitor	ed			Date	0.40	0.5	(,	070	0.00	205.00	4.00	(dpm)	(dpm)	(	` '				
Scott (129	,		1/27/10 9:20	1/27/10 16:17	01/28/10	340	2.5	1	370	0.00	365.00	1.00	0	-1390	1.69E-13	-7.37E-10	1.9	-8347.3	4.59E-13	6.37E-11
Stephan (1 Warren (10			1/27/10 9:36 1/27/10 14:53	1/27/10 16:48 1/27/10 16:29	01/28/10 02/03/10	356 96	2.5 2.5	0	365 412	0.00 2.00	365.00 391.00	1.00	-6	-1392 -1482	0.00E+00 -1.20E-11	-7.04E-10 -2.78E-09	0.0 -38.4	-8360.1 -8902.1	4.38E-13 1.41E-11	6.09E-11 2.34E-10
John (1204	,		1/27/10 14:45	1/27/10 16:29	02/03/10	113	2.5	2	401	2.00	391.00	1.00	-6	-1482	-1.20E-11 -9.17E-12	-2.78E-09 -2.37E-09	-34.5	-8930.1	1.41E-11 1.20E-11	1.98E-10
Scott (107			1/28/10 8:06	1/28/10 16:15	02/03/10	550	2.5	2	402	2.00	391.00	1.00	-6	-1486	-1.88E-12	-4.87E-10	-34.5	-8927.6	2.46E-12	4.08E-11
Stephan (1			1/28/10 8:09	1/28/10 16:16	02/03/10	547	2.5	1	412	2.00	391.00	1.00	-6	-1482	-2.00E-12	-4.88E-10	-36.5	-8902.1	2.47E-12	4.10E-11
Warren (12			1/28/10 8:35	1/28/10 01:14	02/03/10	276	2.5	2	376	2.00	391.00	1.00	-6	-1497	-3.75E-12	-9.78E-10	-34.5	-8993.7	4.91E-12	8.12E-11
Dennis (12			1/28/10 8:35	1/28/10 01:14	02/03/10	279	2.5	0	408	2.00	391.00	1.00	-6	-1484	-4.13E-12	-9.58E-10	-38.4	-8912.3	4.85E-12	8.04E-11
	6) same filte	er	1/28/10 8:06	1/29/10 14:30	02/03/10	1063	2.5	3	405	2.00	391.00	1.00	-5	-1485	-9.21E-13	-2.52E-10	-32.6	-8919.9	1.27E-12	2.11E-11
	(204) same		1/28/10 8:09	1/29/10 14:30	02/03/10	1060	2.5	1	401	2.00	391.00	1.00	-6	-1487	-1.03E-12	-2.53E-10	-36.5	-8930.1	1.28E-12	2.12E-11
Scott (107	6)		2/3/10 10:00	2/4/10 16:50	02/16/10	869	2.5	2	407	0.00	396.00	1.00	1	-1506	1.32E-13	-3.12E-10	3.8	-9042.1	1.80E-13	2.60E-11
John (1294	4)		2/3/10 10:00	2/4/10 16:50	02/16/10	863	2.5	0	395	0.00	396.00	1.00	0	-1511	0.00E+00	-3.15E-10	0.0	-9072.6	1.81E-13	2.61E-11
Dennis (12	204)		2/3/10 9:15	2/3/10 16:50	02/16/10	902	2.5	1	370	0.00	396.00	1.00	0	-1521	2.32E-13	-1.11E-09	1.9	-9136.3	6.29E-13	9.10E-11
Dennis (12	204)		2/5/10 7:37	2/4/10 11:45	02/16/10	248	2.5	0	375	0.00	396.00	1.00	0	-1519	0.00E+00	-1.16E-09	0.0	-9123.5	6.64E-13	9.60E-11
John (1076	3)		2/5/10 7:49	2/5/10 11:44	02/16/10	235	2.5	0	358	0.00	396.00	1.00	0	-1526	0.00E+00	-1.18E-09	0.0	-9166.8	6.67E-13	9.64E-11
Scott (120:	5)		2/5/10 7:37	2/5/10 11:45	02/16/10	234	2.5	1	360	0.00	396.00	1.00	0	-1525	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
John (1204	4)		2/15/10 8:10	2/15/10 16:40	02/16/10	510	2.5	0	370	0.00	396.00	1.00	0	-1521	0.00E+00	-5.37E-10	0.0	-9136.3	3.06E-13	4.42E-11
Scott (107			2/15/10 8:10	2/15/10 16:40	02/16/10	510	2.5	0	378	0.00	396.00	1.00	0	-1518	0.00E+00	-5.36E-10	0.0	-9115.9	3.06E-13	4.42E-11
Scott (107			2/16/10 8:02	2/17/10 16:42	02/23/10	597	2.5	2	414	0.00	405.00	1.00	1	-1541	1.93E-13	-4.65E-10	3.8	-9253.3	2.61E-13	3.82E-11
John (1204			2/16/10 8:02	2/17/10 16:42	02/23/10	596	2.5	1	373	0.00	405.00	1.00	0	-1558	9.66E-14	-4.71E-10	1.9	-9357.7	2.62E-13	3.83E-11
Scott (120			2/17/10 8:10	2/17/10 16:40	02/23/10	520	2.5	1	388	0.00	405.00	1.00	0	-1552	1.11E-13	-5.38E-10	1.9	-9319.5	3.00E-13	4.39E-11
John (1294	,		2/17/10 8:05	2/17/10 16:40	02/23/10	525	2.5	1	374	0.00	405.00	1.00	0	-1558	1.10E-13	-5.35E-10	1.9	-9355.1	2.97E-13	4.35E-11
Scott (120	,		2/18/10 8:00	2/18/10 15:20	02/23/10	440	2.5	0	401	0.00	405.00	1.00	0	-1546	0.00E+00	-6.33E-10	0.0	-9286.4	3.55E-13	5.18E-11
John (1294	,		2/18/10 7:51	2/18/10 15:20	02/23/10	449	2.5	0 2	414	0.00	405.00	1.00	0	-1541	0.00E+00	-6.18E-10	0.0	-9253.3	3.47E-13	5.08E-11
Scott (107)	- /		2/22/10 6:45 2/22/10 9:00	2/22/10 17:07	02/23/10 02/23/10	622 486	2.5 2.5	0	433 366	0.00	405.00 405.00	1.00 1.00	1	-1533	1.85E-13	-4.44E-10	3.8	-9205.0	2.51E-13	3.67E-11
Mike (1294 John (1205			2/22/10 9:00	2/22/10 17:07 2/22/10 17:07	02/23/10	623	2.5	1	417	0.00	405.00	1.00	0	-1561 -1539	0.00E+00 9.24E-14	-5.79E-10 -4.45E-10	0.0 1.9	-9375.5 -9245.7	3.21E-13 2.50E-13	4.69E-11 3.66E-11
Scott (120:			2/22/10 6:45	2/23/10 17:07	02/23/10	554	2.5	1	356	0.00	405.00	1.00	0	-1539	9.24E-14 1.04E-13	-4.45E-10 -5.05E-10	1.9	-9245.7 -9324.6	2.82E-13	4.10E-11
Dennis (12	,		2/23/10 7:38	2/23/10 16:53	03/02/10	554	2.5	1	375	0.00	402.00	1.00	0	-1544	1.04E-13	-5.05E-10 -5.02E-10	1.9	-9324.6	2.82E-13	4.10E-11 4.10E-11
John (1076			2/23/10 7:42	2/23/10 16:53	03/02/10	551	2.5	4	373	0.00	402.00	1.00	1	-1544	4.18E-13	-5.02E-10	7.7	-9276.2	2.83E-13	4.10E-11 4.13E-11
Scott (129			2/24/10 7:55	2/24/10 17:09	03/02/10	551	2.5	1	368	0.00	402.00	1.00	0	-1545	1.04E-13	-5.06E-10	1.9	-9294.0	2.83E-13	4.13E-11 4.13E-11
Dennis (12			2/24/10 7:55	2/24/10 17:09	03/02/10	550	2.5	0	348	0.00	402.00	1.00	0	-1556	0.00E+00	-5.10E-10	0.0	-9344.9	2.84E-13	4.13E-11
Scott (129			2/25/10 6:50	2/25/10 10:41	03/02/10	231	2.5	0	391	0.00	402.00	1.00	0	-1538	0.00E+00	-1.20E-09	0.0	-9235.5	6.75E-13	9.84E-11
Dennis (12			2/25/10 6:50	2/25/10 10:41	03/02/10	231	2.5	2	354	0.00	402.00	1.00	1	-1553	4.98E-13	-1.21E-09	3.8	-9329.7	6.75E-13	9.84E-11
John (1204			3/1/10 6:50	3/1/10 12:48	03/02/10	352	2.5	0	356	0.00	402.00	1.00	0	-1553	0.00E+00	-7.95E-10	0.0	-9324.6	4.43E-13	6.46E-11
Dennis (12	,		3/1/10 7:02	3/1/10 12:48	03/02/10	343	2.5	1	397	0.00	402.00	1.00	0	-1535	1.68E-13	-8.06E-10	1.9	-9220.2	4.55E-13	6.63E-11
	,								•											

# **GENERAL/EFFLUENT AIRBORNE CONCENTRATION LOG (Rev 3)**

Co	unting Inst	rument:			Detector:				Cal. Date:											
		Serial #:			Serial #:			Cal. D	ue Date OK?											
	ı			,																
Radiation Type	Counting Efficiency (fraction)	Source Nuclide	Source Number	Original Source Activity (DPM)	Source Creation Date	T _{1/2} (yr)	Source Decayed Activity	Sample Count time (min)	Background Count time (min)		Isotope of	Concern								
Alpha							#DIV/0!				Isotope	10CFR20 Occupational /Effluent DAC								
Beta							#DIV/0!													
	Туре		Air Sample Start Date/Time	Air Sample End Date/Time	Count Date	Run Time (min)	Flow Rate (Ipm)	Sample Gross Alpha (Counts)	Sample Gross Beta (Counts)	Alpha Bkg (cpm)	Beta Bkg (cpm)	Filter Efficiency (fraction)	Sample Alpha Activity (dpm)	Sample Beta Activity (dpm)	Alpha Count Concen. (uCi/cc)	Beta Count Concen. (uCi/cc)	Fraction Environ. Effluent Limit Alpha	Fraction Environ. Effluent Limit Beta	Alpha MDA (uCi/cc)	Beta MDA (uCi/cc)

# Hi-Q HIGH VOLUME GENERAL/EFFLUENT AIRBORNE CONCENTRATION LOG (Rev 9)

Co	ounting Inst	rument:	29	929	Detector:	43-1	0-1		Cal. Date:	1/5/2010										
	;	Serial #:	129	9566	Serial #:	PR132	2720	Cal. D	ue Date OK?	WARNING										
				, ,		1				1										<b></b>
Radiation Type	,	Source Nuclide	Source Number	Original Source Activity (DPM)	Source Creation Date	T _{1/2} (yr)	Source Decayed Activity	Sample Count time (min)	Background Count time (min)			Alpha Isotope Concern		Limiti	ng Beta Iso Concern	tope of		Filter Are (Adjusts fo Filter that i On	r Portion of s Counted	
Alpha	0.3130	Th-230	1160	17,500	4/29/2002	7.54E+04	17499	10	10		Isotope	10CFR20 Occupational DAC /Effluent		Isotope	Occupati	FR20 onal DAC luent		4.0	67	
Beta	0.2360	Tc-99	1161	17,700	4/29/2002	2.11E+05	17700	10	10		Th-232	4.00E-15						Caution ! Ro associated w	ith Filter Area	
																		Fac	tor	
	Туре		Air Sample Start Date/Time	Air Sample End Date/Time	Count Date	Run Time (min)	Flow Rate (CFM)	Sample Gross Alpha (Counts)	Sample Gross Beta (Counts)	Alpha Bkg (cpm)	(cpm)	Filter Efficiency (fraction)	Sample Alpha Activity (dpm)	Sample Beta Activity (dpm)	Alpha Count Concen. (uCi/cc)	Beta Count Concen. (uCi/cc)	Fraction of DAC or Environ. Effluent Limit Alpha	Fraction of DAC or Environ. Effluent Limit Beta	Alpha MDA (uCi/cc)	Beta MDA (uCi/cc)
	30 - DW @		1/27/10 14:45		02/03/10	92	20.0	0	398	2.00	391.00	1.00	-6	-1488	-2.58E-13	-6.01E-11	-64.49	#DIV/0!	3.03E-13	5.02E-12
	329 - UW @		1/27/10 14:45		02/03/10	92	20.0	1	382	2.00	391.00	1.00	-6	-1495	-2.41E-13	-6.03E-11	-60.30	#DIV/0!	3.03E-13	5.02E-12
	32 - UW @ 1		1/27/10 9:30	1/27/10 16:47	02/03/10	437	10.0	3	367	2.00	391.00	1.00	-5	-1501	-8.74E-14	-2.55E-11	-21.86	#DIV/0!	1.28E-13	2.11E-12
	26 - DW @ T		1/27/10 9:30	1/27/10 16:47	02/03/10	437 279	10.0	1	367 366	2.00	391.00	1.00	-6	-1501	-1.02E-13	-2.55E-11	-25.39	#DIV/0!	1.28E-13	2.11E-12
	6830 - DW @ 1 - UW @ G		1/28/10 8:35 1/28/10 8:35	1/28/10 13:14 1/28/10 10:35	02/03/10 02/03/10	120	15.0 15.0	3 1	366	2.00	391.00 391.00	1.00 1.00	-5 -6	-1502 -1497	-9.13E-14 -2.47E-13	-2.67E-11 -6.18E-11	-22.82 -61.64	#DIV/0! #DIV/0!	1.33E-13 3.10E-13	2.21E-12 5.13E-12
	7 - UW @ G		1/28/10 8:35		02/03/10	120	15.0	0	389	2.00	391.00	1.00	-6	-1497	-2.47E-13	-6.16E-11	-65.92	#DIV/0!	3.10E-13 3.10E-13	5.13E-12 5.13E-12
	26 - DW @ 1		1/28/10 8:17		02/03/10	508	10.0	2	368	2.00	391.00	1.00	-6	-1501	-8.13E-14	-0.10E-11	-20.32	#DIV/0!	1.10E-13	1.82E-12
	29 - UW @ 1		1/28/10 8:17		02/03/10	508	15.0	0	359	2.00	391.00	1.00	-6	-1505	-6.23E-14	-1.47E-11	-15.57	#DIV/0!	7.32E-14	1.02L-12 1.21E-12
	6826 - DW @		1/29/10 8:05		02/03/10	495	15.0	0	368	2.00	391.00	1.00	-6	-1501	-6.39E-14	-1.50E-11	-15.98	#DIV/0!	7.52E-14	1.24E-12
	6829 - UW @				02/03/10	495	15.0	0	363	2.00	391.00	1.00	-6	-1503	-6.39E-14	-1.50E-11	-15.98	#DIV/0!	7.52E-14	1.24E-12
	6 - UW @ G		2/3/10 9:15	2/3/10 16:59	02/16/10	464	20.0	1	388	0.00	396.00	1.00	0	-1514	3.32E-15	-1.21E-11	0.83	#DIV/0!	6.93E-15	1.00E-12
	0 - DW @ G		2/3/10 9:15	2/3/10 16:59	02/16/10	464	20.0	0	388	0.00	396.00	1.00	0	-1514	0.00E+00	-1.21E-11	0.00	#DIV/0!	6.93E-15	1.00E-12
	9 - DW @ G		2/4/10 7:49	2/4/10 16:50	02/16/10	541	20.0	0	340	0.00	396.00	1.00	0	-1534	0.00E+00	-1.05E-11	0.00	#DIV/0!	5.94E-15	8.60E-13
Hi-Q 16826	6 - UW @ G	P-	2/4/10 7:49	2/4/10 16:50	02/16/10	541	20.0	0	377	0.00	396.00	1.00	0	-1518	0.00E+00	-1.04E-11	0.00	#DIV/0!	5.94E-15	8.60E-13
Hi-Q 16826	6 - UW @ G	P-	2/5/10 7:47	2/5/10 11:44	02/16/10	237	20.0	0	401	0.00	396.00	1.00	0	-1508	0.00E+00	-2.36E-11	0.00	#DIV/0!	1.36E-14	1.96E-12
Hi-Q 16829	9 - DW @ G	P-	2/5/10 7:48	2/5/10 11:44	02/16/10	236	20.0	0	346	0.00	396.00	1.00	0	-1531	0.00E+00	-2.41E-11	0.00	#DIV/0!	1.36E-14	1.97E-12
Hi-Q 1682	6 - DW @ G	P-	2/15/10 8:10	2/15/10 16:40	02/16/10	510	20.0	1	384	0.00	396.00	1.00	0	-1515	3.02E-15	-1.10E-11	0.76	#DIV/0!	6.31E-15	9.12E-13
Hi-Q 16829	9 - UW @ G	P-	2/15/10 8:10	2/15/10 16:40	02/16/10	510	20.0	1	374	0.00	396.00	1.00	0	-1519	3.02E-15	-1.11E-11	0.76	#DIV/0!	6.31E-15	9.12E-13
Hi-Q 16826	6 - DW		2/17/10 8:05	2/17/10 16:40	03/02/10	525	20.0	1	394	0.00	402.00	1.00	0	-1536	2.94E-15	-1.09E-11	0.73	#DIV/0!	6.13E-15	8.92E-13
Hi-Q 16829				2/17/10 16:40	03/02/10	525	20.0	1	395	0.00	402.00	1.00	0	-1536	2.94E-15	-1.09E-11	0.73	#DIV/0!	6.13E-15	8.92E-13
Hi-Q 1682				2/18/10 15:20	03/02/10	440	20.0	1	380	0.00	402.00	1.00	0	-1542	3.51E-15	-1.30E-11	0.88	#DIV/0!	7.31E-15	1.06E-12
Hi-Q 16829			2/18/10 8:00		03/02/10	440	20.0	0	340	0.00	402.00	1.00	0	-1559	0.00E+00	-1.32E-11	0.00	#DIV/0!	7.31E-15	1.06E-12
Hi-Q 1682				2/22/10 17:07	03/02/10	622	20.0	1	345	0.00	402.00	1.00	0	-1557	2.48E-15	-9.30E-12	0.62	#DIV/0!	5.17E-15	7.53E-13
Hi-Q 16829				2/22/10 17:07	03/02/10	622	20.0	11	361	0.00	402.00	1.00	0	-1550	2.48E-15	-9.26E-12	0.62	#DIV/0!	5.17E-15	7.53E-13
Hi-Q 1682				2/23/10 16:53	03/02/10	554	20.0	0	399	0.00	402.00	1.00	0	-1534	0.00E+00	-1.03E-11	0.00	#DIV/0!	5.80E-15	8.46E-13
Hi-Q 16829				2/23/10 16:53	03/02/10	554	20.0	0	372	0.00	402.00	1.00	0	-1546	0.00E+00	-1.04E-11	0.00	#DIV/0!	5.80E-15	8.46E-13
Hi-Q 16826					03/02/10	551	20.0	1	376	0.00	402.00	1.00	0	-1544	2.80E-15	-1.04E-11	0.70	#DIV/0!	5.84E-15	8.50E-13
Hi-Q 16829					03/02/10	551	20.0	1	383	0.00	402.00	1.00	0	-1541	2.80E-15	-1.04E-11	0.70	#DIV/0!	5.84E-15	8.50E-13
Hi-Q 16829			2/25/10 6:50 2/25/10 6:50		03/02/10 03/02/10	231 231	20.0	0 2	417 385	0.00	402.00 402.00	1.00	0	-1527 -1540	0.00E+00 1.34E-14	-2.45E-11 -2.48E-11	0.00 3.34	#DIV/0! #DIV/0!	1.39E-14 1.39E-14	2.03E-12 2.03E-12
Hi-Q 16829			3/1/10 6:50		03/02/10	352	20.0	0	385	0.00	402.00	1.00	0	-1540 -1541	1.34E-14 0.00E+00	-2.48E-11 -1.63E-11	0.00	#DIV/0! #DIV/0!	1.39E-14 9.14E-15	1.33E-12
Hi-Q 16829			3/1/10 6:50	3/1/10 12:48	03/02/10	352	20.0	0	393	0.00	402.00	1.00	0	-1541	0.00E+00 0.00E+00	-1.63E-11	0.00	#DIV/0! #DIV/0!	9.14E-15 9.14E-15	1.33E-12 1.33E-12
11-Q 100Z	3 - UVV		3/1/10 0.30	3/1/10 12.48	03/02/10	332	20.0	U	383	0.00	402.00	1.00	U	-103/	0.00E+00	-1.02E-11	0.00	#DIV/U!	9.14E-15	1.33E-12

This sheet provides for any net count rate greater than the decision level to represent the presence of activity in the sample.

The decision level for the net count rate is from Strom & Stansbury 1992 as shown in NUREG 1400 eqn 6.11:

$$DL(R_n) = 1.645 (R_b(1/T_b + 1/T_g)^{1/2}$$

where 1.645 corresponds to a 5% false alarm rate (i.e., 1 sample in 20 that has no activity present will exceed this count rate simply due to random statistical fluctuations). Exceeding this net count rate would be judged to be significant with a 5% chance of being a false alarm

 $R_n$  = net count rate, counts/min

R_b = background count rate, counts/min

 $T_b$  = background counting time, min

 $T_q$  = gross counting time, min

R_b = background count rate, counts/min

 $T_b$  = background counting time, min

 $T_g$  = gross counting time, min

	80	
	10	
	1	
$DL(R_n) =$	15.43	cpm