ATTACHMENT A

BEACHFILL DIFFUSION CALCULATIONS

Date: July 18, 2013 Analyst: Rob Hampson, Moffatt & Nichol Client: U.S. Army Corps of Engineers Project: Fire Island Interim Analysis: Alongshore Diffusivity

Solving for the Alongshore Diffusivity along Fire Island based on predicted Gross Sediment Transport Rate

Reference: Dean R. G., Dalymple R. A., 2002. "Coastal Processes with Engineering Applications," Cambridge University Press, New York, NY.)

Definitions

gross sediment transport at Fire Island (Gravens et al., 1999)
specific gravity of sand
porosity of sand
breaking wave index
sediment transport coefficient for medium sand (e.g. 0.3 mm) (Komar & Inman 1970)
effective breaking wave angle
depth of closure (NGVD)
berm elevation (NGVD)
assumed effective wave period

CERC Sediment Transport Equation

$$GST = \mathbf{I} \cdot Cp \cdot Hb^{2} \cdot sin(2 \cdot \theta b)$$
 CERC Equation

Cp := K
$$\cdot \frac{\sqrt{\frac{g}{\gamma b}}}{16 \cdot (S-1) \cdot (1-p)} = 0.159 \,\mathrm{m}^{0.5} \cdot \mathrm{s}^{-1}$$

Hb :=
$$\left(\frac{\text{GST}}{\text{Cp} \cdot \sin(2 \cdot \theta b)}\right)^{\frac{2}{5}} = 1.114 \text{ m}$$

effective breaking wave height

Alongshore Diffusivity, G

$$G_{\text{W}} = 2 \cdot \text{Cp} \cdot \text{Hb}^{\frac{5}{2}} \cdot \frac{\cos(2 \cdot \theta b)}{hc + B} = 0.035 \text{ m}^2 \cdot \text{s}^{-1}$$

Effect of Wave Refraction on Alongshore Diffusivity, G

Reference: Dean R. G., 2005. "Advanced Series on Ocean Engineering - Volume 18: Beach Nourishment Theory and Practice," World Scientific Publishing Co., Hackensack, NJ.)

Dean showed that wave refaction at a beachfill project can reduce the alongshore diffusivity by the ratio Cb/Cc where Cb and Cc are the wave celerity at breaking and depth of closure respectively

Wave Length and Celerity at depth of closure

 $L := 150 \cdot m$ Initial value

Given

$$L = \frac{g}{2 \cdot \pi} \cdot T^2 \cdot \tanh\left(2 \cdot \pi \cdot \frac{\text{depth}}{L}\right)$$

Wavel(T, depth) := Find(L)

Lc := Wavel(Tp,hc) = 65.641 m

$$Cc := \frac{Lc}{Tp} = 8.205 \,\mathrm{m \cdot s}^{-1}$$

Wave Length and Celerity at break point

L:= 150·m Initial value

Given

$$L = \frac{g}{2 \cdot \pi} \cdot T^2 \cdot \tanh\left(2 \cdot \pi \cdot \frac{\text{depth}}{L}\right)$$

Wavel(T, depth) := Find(L)

Lb := Wavel
$$\left(Tp, \frac{Hb}{\gamma b}\right)$$

Cb := $\frac{Lb}{Tp} = 3.687 \,\mathrm{m \cdot s}^{-1}$
 $\frac{Cb}{Cc} = 0.449$
ref := 0.4 set reduction factor to 0.4

Adjusted Alongshore Diffusivity, G $G := G \cdot ref = 0.014 \text{ m}^2 \cdot \text{s}^{-1}$

Figure III-2-6. Coefficient K versus median grain size D_{s0} (del Valle, Medina, and Losada 1993) Reproduced from CEM, Page III-2-15

Date: July 18, 2013 Analyst: Rob Hampson, Moffatt & Nichol Client: U.S. Army Corps of Engineers Project: Fire Island Interim Analysis: Beachfill Diffusion - Western Fire Island - MIDU

Calculate fraction of beachfill volume remaining with Pelnard-Considere Equation for Rectangular Beachfill

Reference: Dean R. G., Dalymple R. A., 2002. "Coastal Processes with Engineering Applications," Cambridge University Press, New York, NY.)

Note: This analysis does not include beachfill tapers, the final analysis for the Fire Island Interim Project applied 6 degree berm tapers, which requires the trapazoidal beachfill solution to the Pelnard-Considere Equation. The trapzoidal beachfill solution was solved numerically in Matlab.

Definitions

$hc := 27 \cdot ft$	depth of closure (NGVD)
$\mathbf{B} := 9.5 \cdot \mathrm{ft}$	berm elevation (NGVD)
$\mathbf{G} \coloneqq 0.014 \cdot \frac{\mathrm{m}^2}{\mathrm{s}}$	alongshore diffusivity
Yo := 50.5·ft	initial cross-shore distance between MIDU design shoreline and natural shoreline
$Yb := 0 \cdot ft$	offset between MIDU baseline and evaluated baseline
Ya := 20·ft	advance nourishment width
l∷= 41800·ft	alongshore length of beachfill
t := 4yr	time after initial placement
be := $3 \cdot \frac{\text{ft}}{\text{yr}}$	background erosion rate

$$M := \begin{bmatrix} \sqrt{4 \cdot G \cdot t} \cdot \left[e^{-\left(\frac{1}{\sqrt{4 \cdot G \cdot t}}\right)^{2}} - 1 \right] + erf\left(\frac{1}{\sqrt{4G \cdot t}}\right) \end{bmatrix} - \frac{be \cdot t}{(Yo + Yb + Ya)}$$
 fraction of initial fill remaining after time t

$$M = 0.712$$

$$re := (1 - M) \cdot \frac{(Yo + Yb + Ya)}{t} = 5.075 \cdot \frac{ft}{yr}$$
 representative erosion rate

$$de := re - be = 2.075 \cdot \frac{ft}{yr}$$
 diffusive erosion rate

Date: July 18, 2013 Analyst: Rob Hampson, Moffatt & Nichol Client: U.S. Army Corps of Engineers Project: Fire Island Interim Analysis: Beachfill Diffusion - Western Fire Island - MREI

Calculate fraction of beachfill volume remaining with Pelnard-Considere Equation for Rectangular Beachfill

Reference: Dean R. G., Dalymple R. A., 2002. "Coastal Processes with Engineering Applications," Cambridge University Press, New York, NY.)

Note: This analysis does not include beachfill tapers, the final analysis for the Fire Island Interim Project applied 6 degree berm tapers, which requires the trapazoidal beachfill solution to the Pelnard-Considere Equation. The trapzoidal beachfill solution was solved numerically in Matlab.

Definitions

$hc := 27 \cdot ft$	depth of closure (NGVD)
$\mathbf{B} := 9.5 \cdot \mathrm{ft}$	berm elevation (NGVD)
$\mathbf{G} \coloneqq 0.014 \cdot \frac{\mathrm{m}^2}{\mathrm{s}}$	alongshore diffusivity
Yo := 50.5·ft	initial cross-shore distance between MIDU design shoreline and natural shoreline
Yb := 34.80·ft	offset between MIDU baseline and evaluated baseline
Ya := 24.3·ft	advance nourishment width
$1 = 41800 \cdot \text{ft}$	alongshore length of beachfill
t := 4yr	time after initial placement
be := $3 \cdot \frac{\text{ft}}{\text{yr}}$	background erosion rate

Analytical Solution to Pelnard-Considere for Rectangular Beachfill Project

$$M := \begin{bmatrix} \sqrt{4 \cdot G \cdot t} \\ 1 \cdot \sqrt{\pi} \end{bmatrix} e^{-\left(\frac{1}{\sqrt{4 \cdot G \cdot t}}\right)^{2}} - 1 + erf\left(\frac{1}{\sqrt{4G \cdot t}}\right) = -\frac{be \cdot t}{(Yo + Yb + Ya)} & \text{fraction of initial fill remaining after time t} \\ M = 0.773 \\ re := (1 - M) \cdot \frac{(Yo + Yb + Ya)}{t} = 6.226 \cdot \frac{ft}{yr} & \text{representative erosion rate} \\ de := re - be = 3.226 \cdot \frac{ft}{yr} & \text{diffusive erosion rate} \end{bmatrix}$$

moffatt & nichol

Date: July 18, 2013 Analyst: Rob Hampson, Moffatt & Nichol Client: U.S. Army Corps of Engineers Project: Fire Island Interim Analysis: Beachfill Diffusion - Fire Island Pines - MIDU

Calculate fraction of beachfill volume remaining with Pelnard-Considere Equation for Rectangular Beachfill

Reference: Dean R. G., Dalyrmple R. A., 2002. "Coastal Processes with Engineering Applications," Cambridge University Press, New York, NY.)

Note: This analysis does not include beachfill tapers, the final analysis for the Fire Island Interim Project applied 6 degree berm tapers, which requires the trapazoidal beachfill solution to the Pelnard-Considere Equation. The trapzoidal beachfill solution was solved numerically in Matlab.

Definitions

$hc := 27 \cdot ft$	depth of closure (NGVD)
$\mathbf{B} := 9.5 \cdot \mathrm{ft}$	berm elevation (NGVD)
$\mathbf{G} := 0.014 \cdot \frac{\mathrm{m}^2}{\mathrm{s}}$	alongshore diffusivity
Yo := 28.2·ft	initial cross-shore distance between MIDU design shoreline and natural shoreline
$Yb := 0 \cdot ft$	offset between MIDU baseline and evaluated baseline
Ya := 40·ft	advance nourishment width
$1 = 6400 \cdot \text{ft}$	alongshore length of beachfill
t := 4yr	time after initial placement
be := $0 \cdot \frac{\text{ft}}{\text{yr}}$	background erosion rate

Analytical Solution to Pelnard-Considere for Rectangular Beachfill Project

$$M := \left[\frac{\sqrt{4 \cdot G \cdot t}}{1 \cdot \sqrt{\pi}} \cdot \left[e^{-\left(\frac{1}{\sqrt{4 \cdot G \cdot t}}\right)^{2}} - 1\right] + \operatorname{erf}\left(\frac{1}{\sqrt{4G \cdot t}}\right)\right] - \frac{\operatorname{be} \cdot t}{(\operatorname{Yo} + \operatorname{Yb} + \operatorname{Ya})}$$

fraction of initial fill remaining after time t

M = 0.38

$$re := (1 - M) \cdot \frac{(Yo + Yb + Ya)}{t} = 10.563 \cdot \frac{ft}{yr}$$
 representative erosion rate

 $de := re - be = 10.563 \cdot \frac{ft}{yr}$

diffusive erosion rate

Date: July 18, 2013 Analyst: Rob Hampson, Moffatt & Nichol Client: U.S. Army Corps of Engineers Project: Fire Island Interim Analysis: Beachfill Diffusion - Fire Island Pines - MREI

Calculate fraction of beachfill volume remaining with Pelnard-Considere Equation for Rectangular Beachfill

Reference: Dean R. G., Dalyrmple R. A., 2002. "Coastal Processes with Engineering Applications," Cambridge University Press, New York, NY.)

Note: This analysis does not include beachfill tapers, the final analysis for the Fire Island Interim Project applied 6 degree berm tapers, which requires the trapazoidal beachfill solution to the Pelnard-Considere Equation. The trapzoidal beachfill solution was solved numerically in Matlab.

Definitions

$hc := 27 \cdot ft$	depth of closure (NGVD)
$\mathbf{B} := 9.5 \cdot \mathrm{ft}$	berm elevation (NGVD)
$\mathbf{G} \coloneqq 0.014 \cdot \frac{\mathrm{m}^2}{\mathrm{s}}$	alongshore diffusivity
Yo := 28.2·ft	initial cross-shore distance between MIDU design shoreline and natural shoreline
Yb := 34.4·ft	offset between MIDU baseline and evaluated baseline
Ya := 77.1·ft	advance nourishment width
$1 := 6400 \cdot \text{ft}$	alongshore length of beachfill
t := 4yr	time after initial placement
be := $0 \cdot \frac{\text{ft}}{\text{yr}}$	background erosion rate

Analytical Solution to Pelnard-Considere for Rectangular Beachfill Project

$$M := \left[\frac{\sqrt{4 \cdot G \cdot t}}{1 \cdot \sqrt{\pi}} \cdot \left[e^{-\left(\frac{1}{\sqrt{4 \cdot G \cdot t}}\right)^{2}} - 1\right] + \operatorname{erf}\left(\frac{1}{\sqrt{4G \cdot t}}\right)\right] - \frac{\operatorname{be} \cdot t}{(\operatorname{Yo} + \operatorname{Yb} + \operatorname{Ya})}$$

fraction of initial fill remaining after time t

M = 0.38

$$re := (1 - M) \cdot \frac{(Yo + Yb + Ya)}{t} = 21.638 \cdot \frac{ft}{yr} \qquad representative erosion rate$$

 $de := re - be = 21.638 \cdot \frac{ft}{yr}$

diffusive erosion rate

Date: July 18, 2013 Analyst: Rob Hampson, Moffatt & Nichol Client: U.S. Army Corps of Engineers Project: Fire Island Interim Analysis: Beachfill Diffusion - Davis Park - MIDU

Calculate fraction of beachfill volume remaining with Pelnard-Considere Equation for Rectangular Beachfill

Reference: Dean R. G., Dalyrmple R. A., 2002. "Coastal Processes with Engineering Applications," Cambridge University Press, New York, NY.)

Note: This analysis does not include beachfill tapers, the final analysis for the Fire Island Interim Project applied 6 degree berm tapers, which requires the trapazoidal beachfill solution to the Pelnard-Considere Equation. The trapzoidal beachfill solution was solved numerically in Matlab.

Definitions

$hc := 27 \cdot ft$	depth of closure (NGVD)
$\mathbf{B} := 9.5 \cdot \mathrm{ft}$	berm elevation (NGVD)
$\mathbf{G} \coloneqq 0.014 \cdot \frac{\mathrm{m}^2}{\mathrm{s}}$	alongshore diffusivity
Yo := 20.4·ft	initial cross-shore distance between MIDU design shoreline and natural shoreline
$Yb := 0 \cdot ft$	offset between MIDU baseline and evaluated baseline
Ya := 48·ft	advance nourishment width
$1 = 4200 \cdot \text{ft}$	alongshore length of beachfill
t := 4yr	time after initial placement
be := $0 \cdot \frac{\text{ft}}{\text{yr}}$	background erosion rate

$$M := \begin{bmatrix} \sqrt{4 \cdot G \cdot t} \\ 1 \cdot \sqrt{\pi} \cdot \begin{bmatrix} e^{-\left(\frac{1}{\sqrt{4 \cdot G \cdot t}}\right)^2} \\ 1 \cdot \sqrt{\pi} \end{bmatrix} + erf\left(\frac{1}{\sqrt{4G \cdot t}}\right) \end{bmatrix} - \frac{be \cdot t}{(Yo + Yb + Ya)}$$
 fraction of initial fill remaining after time t

$$M = 0.262$$

$$re := (1 - M) \cdot \frac{(Yo + Yb + Ya)}{t} = 12.626 \cdot \frac{ft}{yr}$$
 representative erosion rate

$$de := re - be = 12.626 \cdot \frac{ft}{yr}$$
 diffusive erosion rate

Date: July 18, 2013 Analyst: Rob Hampson, Moffatt & Nichol Client: U.S. Army Corps of Engineers Project: Fire Island Interim Analysis: Beachfill Diffusion - Davis Park - MREI

Calculate fraction of beachfill volume remaining with Pelnard-Considere Equation for Rectangular Beachfill

Reference: Dean R. G., Dalymple R. A., 2002. "Coastal Processes with Engineering Applications," Cambridge University Press, New York, NY.)

Note: This analysis does not include beachfill tapers, the final analysis for the Fire Island Interim Project applied 6 degree berm tapers, which requires the trapazoidal beachfill solution to the Pelnard-Considere Equation. The trapzoidal beachfill solution was solved numerically in Matlab.

Definitions

$hc := 27 \cdot ft$	depth of closure (NGVD)
$\mathbf{B} := 9.5 \cdot \mathrm{ft}$	berm elevation (NGVD)
$\mathbf{G} \coloneqq 0.014 \cdot \frac{\mathrm{m}^2}{\mathrm{s}}$	alongshore diffusivity
Yo := 20.4·ft	initial cross-shore distance between MIDU design shoreline and natural shoreline
Yb := 72.6·ft	offset between MIDU baseline and evaluated baseline
Ya := 145.7 · ft	advance nourishment width
$1 = 4200 \cdot \text{ft}$	alongshore length of beachfill
t := 4yr	time after initial placement
be := $0 \cdot \frac{\text{ft}}{\text{yr}}$	background erosion rate

$$M := \begin{bmatrix} \sqrt{4 \cdot G \cdot t} \\ 1 \cdot \sqrt{\pi} \end{bmatrix} \left[e^{-\left(\frac{1}{\sqrt{4 \cdot G \cdot t}}\right)^2} - 1 \right] + erf\left(\frac{1}{\sqrt{4G \cdot t}}\right) \right] - \frac{be \cdot t}{(Yo + Yb + Ya)}$$
 fraction of initial fill remaining after time t

$$M = 0.262$$

$$re := (1 - M) \cdot \frac{(Yo + Yb + Ya)}{t} = 44.062 \cdot \frac{ft}{yr}$$
 representative erosion rate

$$de := re - be = 44.062 \cdot \frac{ft}{yr}$$
 diffusive erosion rate

Date: July 18, 2013 Analyst: Rob Hampson, Moffatt & Nichol Client: U.S. Army Corps of Engineers Project: Fire Island Interim Analysis: Beachfill Diffusion - Eastern Fire Island - MIDU

Calculate fraction of beachfill volume remaining with Pelnard-Considere Equation for Rectangular Beachfill

Reference: Dean R. G., Dalyrmple R. A., 2002. "Coastal Processes with Engineering Applications," Cambridge University Press, New York, NY.)

Note: This analysis does not include beachfill tapers, the final analysis for the Fire Island Interim Project applied 6 degree berm tapers, which requires the trapazoidal beachfill solution to the Pelnard-Considere Equation. The trapzoidal beachfill solution was solved numerically in Matlab.

Definitions

$hc := 27 \cdot ft$	depth of closure (NGVD)
$\mathbf{B} := 9.5 \cdot \mathrm{ft}$	berm elevation (NGVD)
$\mathbf{G} \coloneqq 0.014 \cdot \frac{\mathrm{m}^2}{\mathrm{s}}$	alongshore diffusivity
Yo := 6.8·ft	initial cross-shore distance between MIDU design shoreline and natural shoreline
$Yb := 0 \cdot ft$	offset between MIDU baseline and evaluated baseline
$Ya := 8 \cdot ft$	advance nourishment width
l;= 19400∙ft	alongshore length of beachfill
t := 4yr	time after initial placement
be := $1 \cdot \frac{\text{ft}}{\text{yr}}$	background erosion rate

