FIRE ISLAND INLET TO MONTAUK POINT, NY
REFORMULATION STUDY
DRAFT GENERAL REEVALUATION REPORT
PLATES APPENDIX
JULY 2016

CONTENTS:
Tentatively Selected Plan Beachfill Layout
Tentatively Selected Plan Non Structural Plan Layout
Tentatively Selected Plan Coastal Process Features Layouts

Back Bay Baseline Condition Floodplain Maps Sheets
Back Bay Future Condition Floodplain Maps Sheets
Back Bay Comparison of Baseline Conditions Floodplain Map Sheets
Tentatively Selected Plan Beachfill Layout
REFORMULATION STUDY
FIRE ISLAND INLET TO MONTAUK POINT, NEW YORK

VICINITY MAP

LOCATION PLAN

INDEX OF DRAWINGS

<table>
<thead>
<tr>
<th>PLATE NO.</th>
<th>SHEET TITLE</th>
<th>PLATE NO.</th>
<th>SHEET TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-101</td>
<td>TITLE SHEET</td>
<td>E-122</td>
<td>SHEET 22</td>
</tr>
<tr>
<td>E-102</td>
<td>GENERAL PLAN</td>
<td>E-123</td>
<td>SHEET 23</td>
</tr>
<tr>
<td>E-103</td>
<td>SHEET 1</td>
<td>E-124</td>
<td>SHEET 24</td>
</tr>
<tr>
<td>E-104</td>
<td>SHEET 2</td>
<td>E-125</td>
<td>SHEET 25</td>
</tr>
<tr>
<td>E-105</td>
<td>SHEET 3</td>
<td>E-126</td>
<td>SHEET 26</td>
</tr>
<tr>
<td>E-106</td>
<td>SHEET 4</td>
<td>E-127</td>
<td>SHEET 27</td>
</tr>
<tr>
<td>E-107</td>
<td>SHEET 5</td>
<td>E-128</td>
<td>SHEET 28</td>
</tr>
<tr>
<td>E-108</td>
<td>SHEET 6</td>
<td>E-129</td>
<td>SHEET 29</td>
</tr>
<tr>
<td>E-109</td>
<td>SHEET 7</td>
<td>E-130</td>
<td>SHEET 30</td>
</tr>
<tr>
<td>E-110</td>
<td>SHEET 8</td>
<td>E-131</td>
<td>SHEET 31</td>
</tr>
<tr>
<td>E-111</td>
<td>SHEET 9</td>
<td>E-132</td>
<td>SHEET 32</td>
</tr>
<tr>
<td>E-112</td>
<td>SHEET 10</td>
<td>E-133</td>
<td>SHEET 33</td>
</tr>
<tr>
<td>E-113</td>
<td>SHEET 11</td>
<td>E-134</td>
<td>SHEET 34</td>
</tr>
<tr>
<td>E-114</td>
<td>SHEET 12</td>
<td>E-135</td>
<td>SHEET 35</td>
</tr>
<tr>
<td>E-115</td>
<td>SHEET 13</td>
<td>E-136</td>
<td>SHEET 36</td>
</tr>
<tr>
<td>E-116</td>
<td>SHEET 14</td>
<td>E-137</td>
<td>SHEET 37</td>
</tr>
<tr>
<td>E-117</td>
<td>SHEET 15</td>
<td>E-138</td>
<td>SHEET 38</td>
</tr>
<tr>
<td>E-118</td>
<td>SHEET 16</td>
<td>E-139</td>
<td>SHEET 39</td>
</tr>
<tr>
<td>E-119</td>
<td>SHEET 17</td>
<td>E-140</td>
<td>SHEET 40</td>
</tr>
<tr>
<td>E-120</td>
<td>SHEET 18</td>
<td>E-141</td>
<td>SHEET 41</td>
</tr>
<tr>
<td>E-121</td>
<td>SHEET 19</td>
<td>E-142</td>
<td>SHEET 42</td>
</tr>
<tr>
<td>E-122</td>
<td>SHEET 20</td>
<td>E-143</td>
<td>SHEET 43</td>
</tr>
<tr>
<td>E-123</td>
<td>SHEET 21</td>
<td>E-144</td>
<td>SHEET 44</td>
</tr>
</tbody>
</table>

TENTATIVELY SELECTED PLAN

<table>
<thead>
<tr>
<th>SHEET SIZE (INCHES)</th>
<th>SHEET SIZE (INCHES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5 x 14</td>
<td>8.5 x 14</td>
</tr>
</tbody>
</table>

NEW YORK DISTRICT CORPS OF ENGINEERS
DEPARTMENT OF THE ARMY
NEW YORK, N.Y. 10278-0090
KEY MAP

REFORMULATION STUDY
FIRE ISLAND INLET TO MONTAUK POINT, NEW YORK
TENTATIVELY SELECTED PLAN
SHEET 16

BLUE POINT BEACH

GREAT SOUTH BAY

DAVIS PARK

MHW BASELINE

415 FT DUNE TOP (FIRST FILL) TYP.

BEACH (FIRST FILL) TYP.

SHORELINE (FIRST FILL) TYP.

DESIGN BEACH

DESIGN DUNE TOP

DESIGN SHORELINE

DEBRIS TAIL PLAN

BEACH FILL PLAN

INITIAL CONSTRUCTION

DESIGN TEMPLATE
KEY MAP

REFORMULATION STUDY
FIRE ISLAND INLET TO MONTAUK POINT, NEW YORK
TENTATIVELY SELECTED PLAN

SHEET 32

INITIAL CONSTRUCTION
DESIGN TEMPLATE

NEW YORK DISTRICT CORPS OF ENGINEERS
DEPARTMENT OF THE ARMY
NEW YORK, N.Y. 10278-0090
BEACH FILL PLAN TYPICAL SECTIONS

NEW YORK DISTRICT CORPS OF ENGINEERS
DEPARTMENT OF THE ARMY
NEW YORK, N.Y. 10278-0090

REFORMULATION STUDY
FIRE ISLAND INLET TO MONTAUK POINT, NEW YORK
TENTATIVELY SELECTED PLAN

NOTES:

1. THE TYPICAL SECTION W/O DUNE APPLIES TO SUBREACHES GSB-1A AND M1-1A. THE TYPICAL SECTION WITH 415' DUNE APPLIES TO ALL OTHER BEACH FILL PLAN SUBREACHES.
2. EXISTING PROFILE IS A COMBINATION OF USGS (11/2012) DATA ABOVE HW (44' NOV 2022) AND THE REPRESENTATIVE MORPHOLOGICAL PROFILE BELOW HW.
3. THE WIDTH OF THE CONSTRUCTION TEMPLATE IS BASED UPON THE FILL VOLUME REQUIRED FOR DESIGN PROFILE + ADVANCE FILL AND VARIES FROM PROFILE TO PROFILE.
4. THE ADVANCE FILL WIDTH VARIES FROM BEACH TO BEACH BASED UPON THE EROSION RATE AND REMAINDER INTERVAL.
5. THE DISTANCE FROM MID BASELINE TO SEAWARD EDGE OF BERM IS 120' FOR GSB-1A AND 140' FOR M1-1A.

A. TYPICAL BEACH FILL SECTION WITHOUT DUNE AND 90 FT BERM – STATION 122+00

B. TYPICAL BEACH FILL SECTION WITH 415 FT DUNE AND 90 FT BERM – STATION 429+61
NOTES:
1. THESE TYPICAL SECTIONS APPLY TO ALL PROACTIVE BREACH CLOSURE PLAN SUBREACHES.
2. EXISTING PROFILE IS A COMBINATION OF LGAR (11/2012) DATA ABOVE NAVH (42° NAVH) AND THE REPRESENTATIVE MORPHOLOGICAL PROFILE BELOW NAVH.
3. THE WIDTH OF THE CONSTRUCTION TEMPLATE IS BASED UPON THE FILL VOLUME REQUIRED FOR DESIGN PROFILE AND VARIES FROM PROFILE TO PROFILE.
4. THERE IS NO ADVANCE FILL IN THE PROACTIVE BREACH CLOSURE SECTIONS.

TYPICAL PROACTIVE BREACH CLOSURE SECTION - STATION 2261+43

TYPICAL PROACTIVE BREACH CLOSURE SECTION - STATION 2309+42
NOTES:
1. THESE TYPICAL SECTIONS APPLY TO SUBREACHES P-1G & P-1H
2. EXISTING PROFILE IS A COMBINATION OF UDOAR (11/2012) DATA AND THE REPRESENTATIVE MORPHOLOGICAL PROFILE BELOW NAVH.
3. THE WIDTH OF THE CONSTRUCTION TEMPLATE IS BASED UPON PLACING A FILL VOLUME OF 125,000 CY AT EACH SUBREACH.
4. THERE IS NO DESIGN PROFILE OR ADVANCE FILL IN THE SEDIMENT MANAGEMENT SUBREACHES.
Tentatively Selected Plan Non Structural Plan Layout
Notes
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
10 yr Plan - Structures Assigned
Non-Structural Treatment

Legend
- 10 yr Plan - Structures Assigned
- Non-Structural Treatment
- Street Centerlines
- Existing Structure
- Road Raising

Notes
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Notes

1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
1. Location of the shoreline and structures was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. All buildings selected for treatment under a given plan, will be protected to the baseline condition 100-yr water elevation plus 1 ft. of freeboard.
Tentatively Selected Plan Coastal Process Features Layouts
Index of Drawings

<table>
<thead>
<tr>
<th>PLATE NO.</th>
<th>Sheet Title</th>
<th>PLATE NO.</th>
<th>Sheet Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T-2 Sunken Forest - Baseline Conditions</td>
<td>11</td>
<td>T-7 Tiana – Baseline Conditions</td>
</tr>
<tr>
<td>2</td>
<td>T-2 Sunken Forest – Alternative 1</td>
<td>12</td>
<td>T-7 Tiana – Alternative 1</td>
</tr>
<tr>
<td>3</td>
<td>T-2 Sunken Forest – Alternative 2</td>
<td>13</td>
<td>T-7 Tiana – Alternative 2</td>
</tr>
<tr>
<td>4</td>
<td>T-2 Sunken Forest – Alternative 3</td>
<td>14</td>
<td>T-7 Tiana – Alternative 3</td>
</tr>
<tr>
<td>5</td>
<td>T-3 Reagan Property – Baseline Conditions</td>
<td>15</td>
<td>T-8 WOSI – Baseline Conditions</td>
</tr>
<tr>
<td>6</td>
<td>T-3 Reagan Property – Alternative 1</td>
<td>16</td>
<td>T-8 WOSI – Alternative 1</td>
</tr>
<tr>
<td>7</td>
<td>T-3 Reagan Property – Alternative 2</td>
<td>17</td>
<td>T-8 WOSI – Alternative 2</td>
</tr>
<tr>
<td>8</td>
<td>T-3 Reagan Property – Alternative 3</td>
<td>18</td>
<td>T-8 WOSI – Alternative 3</td>
</tr>
<tr>
<td>9</td>
<td>T-5 Great Gun – Baseline Conditions</td>
<td>19</td>
<td>T-25 Atlantique to Corneille – Baseline Conditions</td>
</tr>
<tr>
<td>10</td>
<td>T-5 Great Gun – Alternative 1</td>
<td>20</td>
<td>T-25 Atlantique to Corneille – Alternative 2</td>
</tr>
</tbody>
</table>
PLATE No. 2
PLATE No. 7
Back Bay Baseline Condition Floodplain Maps Sheets
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman-Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.
3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.
4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes:
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.
3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.
4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.
3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.
4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.
3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.
4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Back Bay Future Condition Floodplain Maps Sheets
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.
3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.
4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.
3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.
4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Back Bay Comparison of Baseline Conditions Floodplain Map Sheets
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations at the point shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes:
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.
3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.
4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.
2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.
3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.
4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.

Legend
- Pre-Sandy BLC 100 yr Flood Extents
- BLC 100 yr Flood Extents
- Existing Structure
- Street Centerlines
- Surge Model Output Station

Notes
- Pre-Sandy BLC 100 yr Flood Extents
- BLC 100 yr Flood Extents
- Existing Structure
- Street Centerlines
- Surge Model Output Station
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to establish frequency of occurrence relationships.
Notes

1. Location of the shoreline, structures, and streets was adapted from the April 1995 topographic maps prepared by Erdman Anthony Consulting Engineers.

2. Floodplain extents are based on stage-frequency curves at the surge model output stations shown on the map and the 1995 Erdman Anthony topographic maps. Stage-frequency curves include locally generated wave-induced setup and an adjustment for sea level rise as of 2000, the baseline year for FIMP.

3. Floodplains are only representative of back bay conditions and do not include ocean flooding of the barrier island.

4. Stage-frequency curves were developed using a combination of numerical models to determine peak water levels during specific storm events and the one-dimensional Empirical Simulation Techniques (EST) to established frequency of occurrence relationships.