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1. INTRODUCTION

1.1. General

The US Army Corps of Engineers, New York District (CENAN)-is conducting a comprehensive

feasibility-level reformulation of the shore protection and storm damage reduction project for the
south shore of Long Island, New York, from Fire Island Inlet to Montauk Point. The
Reformulation Study is a multi-year effort, involving project planning and engineering,
economic analyses, and environmental studies. Numerous study tasks are involved in the

planning of storm damage reduction projects for the approximately 83-mile study area length.

The project area is located entirely in Suffolk County, Long Island, New York, along the Atlantic
and bay shores of the towns of Babylon, Islip, Brookhaven, Southampton and East Hampton.
The study area encompasses Great South Bay, Moriches Bay and Shinnecock Bay which interact
with the Atlantic Ocean through Fire Island Inlet, Moriches Inlet and Shinnecock Inlet,

respectively. The project area includes the ocean and bay shorelines, Fire Island, Moriches and

" Shinnecock Inlets, barrier island beaches, the mainland, as well as the borrow areas for beach

construction and replenishment.

1.2. Obj ective

This submission presents work performed as part of the Inlet Dynamics Study for the
Reformulation study. The present submission presents the results of numerical models for each
of the study area jnlets and bays to identify impacts associated with barrier island breaches on
bay physical properties including salinity, temperature, and residence time. Model calibration
for existing conditions is presented along with results for breached, i.e. future without-project,

conditions,

1
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Note that the present submission is closely associated with the inlet dynamics study performed
for historic and.existing conditions described in Interim Submission No. 94, Inlet Dynamics -
Existing Conditions (February, 1999) and future-without project conditions described in Inferim
Submission No. 9B, Inlet Dynamics — Without-Project Future Conditions (March, 1999).

1.3. Scope of Work

The scope of work for the modeling study is summarized below.

Task 1 — Data Collection. The availability of data for the performance of this study will be

-ascertained. Data requirements include:

Previous numerical modeling studies performed for the bays
Bay bathymetry records
Field measured current and tide data sets (circulation pattems)

Existing temperature and salinity data

V.V V VYV V¥

Freshwater inputs from previous studies or reports; potential data to include rivers,

creeks, surface runoff, groundwater, sewerage and other effluents)

Task 2 — Mesh Preparation. A numeﬁcal computation mesh will be created to represent the
géo_metry and bathymetry of Shinnecock, Moriches, and Great South Bay, Fire Island Inlet and
adjoining water bodies. This mesh will be created through use of existing conditions bathymetry

records.

~ Task 3 — Model Calibration. Available data sources will be examined to determine data that

are applicable to the calibration of the numerical flow model to ensure that estuary circulation

patterns are well represented. All numerical modeling will be performed through use of the
MIKE 21 software suite. | |

2
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Task 4 — Model Application. The model will be applied to estimate the impacts on water
quality parameters (i.e. residence times, circulation, salinity, and temperature) of a barrier island
breach along Fire Island. Model applications will be performed for a combination of breach
scenarios for normal tide conditions, where these scenarios are defined by breach location and
geometry (i.e. cross-sectional area). One existing condition will be simulated for normal tide

conditions.

Task 5 — Recommendation for Additional Analyses. Recommendations for future analyses
will be performed based on results of the proposed modeling study and based on coordination
with CENAN personnel. |

3
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2. BAY ENVIRONMENTAL CONDITIONS

2.1. General

The Federally authorized project area extends east from Fire Island Inlet to Montauk Point along
the Atlantic Coast of Suffolk County, Long Island, New York, as shown in Figure 2.1. The
study area includes the barrier islands, the Atlantic Ocean shorelines and adjacent back-bay areas
along Great South, Moriches and Shinnecock Bays. The total study length encompasses
approximately 83 miles along the Atlantic Ocean and comprises approximately 70 percent of the

total ocean frontage of Long Island, as well as several hundred miles of bay shoreline. Locations

- and features pertinent to the project area and referenced below are depicted in Figures 2.2 to 2.8.

A series of barrier islands characterize the western portion of the study area extending
approximat.ely 50 miles from Fire Island Inlet to Southampton. The barrier island chain includes
the 30 mile segment extending east from Fire Island Inlet to Moriches Inlet; the 16-mile barrier -
1sland segment between Moriches Inlet and Shinnecock Inlet which contains Westhampton and

' Tiana Beaches; and the 4-mile long barrier island extending from Shinnecock Imlet to

Southampton.

.The study area estuarial system, which separates the barrier island chain from the Long Island
mainland, is comprised of Great South, Moriches, and Shinnecock Bays. These bays have
connections with the Atlantic Ocean through Fire Island, Moriches, and Shinnecock Inlets,
respectively. These inlets account for three of the six openings in the barrier island chain along
the south shore of Long Island. Federal navigation projects have been established at each project
inlet. Fire Island, Moriches, and Shinnecock Inlets, as well as adj acent barrier island beaches
and bay areas (i.e. those areas directly impacted by inlet processes), comprise the elements of the

inlet dynamics study area.

Great South Bay. Great South Bay is the largest of the project area estuaries with a total water

surface area of about 110 square miles. The bay extends about 33 miles from Massapequa in the

4
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west along South Oyster Bay to Smith Point in the east near Bellport Bay. Numerous tidal rivers
and creeks, as well as several significant embayments, including Patchogue and Nicoll Bays and
Great Cove, characterize the northern shore of Great South Bay. The larger tidal rivers include
the Connetquot River and Champlin Creek. Great South Bay may generally be separated into
two distinct basins relative to the location of Fire Island Inlet. East of the inlet, bay widths vary
from between 2 to 5 miles with water depths averaging roughly 6 to 8 feet. Maximum bay water
depths reach about 15 feet. West of the inlet, Great South Bay and South Oyster Bay are
characterized by widths which are generally less than 1.5 miles. Water depths to the west of the

inlet are shallow, averaging approximately 2 feet.

Moriches Bay. Moriches Bay is a relatively small éstuary with a number of tidal rivers and

creeks and is connected to the ocean via Moriches Inlet. Moriches Bay is separated from the
Atlantic Ocean by Westhampton Beach and Fire Island and has a surface area of roughly 16
square miles. The Bay consists of two basins w1th average water depths of 6 to 7 feet. Moriches
Bay extends to Smith Point (inclusive of Narrow Bay) in the western basin where it adjoins
Great South Bay and to Potunk Point in the eastern basin where it meets Shinnecock Bay through
the Quantuck and Quogue Canals. Moriches Bay is about 14 miles long (East-West) and has _
widths (North-South) which range from 0.75 to 2.5 miles. Widths in Narrow Bay range from
approximately 0.2 to 0.4 miles. Connections to Great South and Shinnecock Bays are greatly
constricted by landmasses as evident in Figures 2.2 to 2.8. The northern side of the bay features

numerous streams and tidal creeks, the largest of which are the Forge River and Seatuck Creek.

Shinnecock Bay. Shinmecock Bay, similar to Moriches Bay to the west, is a relatively small

estuary comprised of an ocean entrance, a western connection to Moriches Bay, and several tidal

rivers and creeks. The bay covers a total water surface area of approximately 15 square miles

- and extends from the Village of Southampton to the east to the Village of Quogue to the west

where it connects with Moriches Bay through the Quantuck and Quogue Canals. These canals,
which are about 200 feet in width, are connected by Quantuck Bay which has a surface area of
about 2 square miles, and ailow the exchange of water between Moriches and Shinnecock Bays.
Shinnecock Bay is about 9 miles in length and has widths that range from about 0.4 to 2.8 miles.
Average water depths in the bay are about 6 feet with maximum depths of 10 feet. Of the

5
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tributaries on the north shore of Shinnecock Bay, Tiana Bay and Weesuck Creek are the largest

and are located within the bay’s western basin.

2.2. Water Levels

Water levels in Great South, Moriches, and Shinnecock Bays are dominated by astronomical
tides under normal conditions and by storm tides during northeasters and hurricanes.
Astronomical tides in the bays are semi-diurnal and controlled by tidal elevations at Fire Island,
Moriches, and Shinnecock Inlets. Bay tides are somewhat smailer than and lag the ocean tide.
Variations in tidal ranges throughout the estuaries are relatively small. The uniformity of tide
ranges throughout Great South, Moriches, and Shinnecock Bays is a characteristic of the so-
called “pumping mode” of inlet-bay hydraulics where water levels within an embayment remain
nearly horizontal during filling and emptying. Table 2.1 shows the mean tide range and tidal
prism at each inlet (NOAA, 1996).

Inlet Tide Range ‘Tidal Prism Range
nle
(at Inlet) (feet) t* x 105
Democrat Point = 2.6
Fire Island : 1,840 to 3,380
Fire Island Breakwater = 4.1 _

Moriches 2.9 230 to 990

Shinnecock 2.9 960 to 1,120

2.3. Fresh Water Sources

Fresh water enters the study area primarily through tributaries and groundwater seepage.
However, little information is available for fresh water sources. - The U.S. Geological Slirvey

(USGS) monitors several tributaries in the Great South Bay watershed at locations significantly

6
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upstream from the bays. Table 2.2 shows the average daily flow rates into the study area for the

USGS monitored tributaries (see Figures 2.2 to 2.8 for locations).

Source
Carlls River 26.4
Carmans River 253
Champlin Creek 7.1
Connetquot River 39.2
Massapequa Creek 8.2
Patchogue River 20.5
Penataquit Creek 6.3
Sampawams Creek 10.0
Santapogue River 4.2
Swan River 12.3

- The cumulative fresh water flow from these stations averages approximately 160 f’/s. CENAN

='(1975) estimated that these 10 gauging stations accounted for 62% of the drainage area for the

Great South Bay watershed indicating that the total fresh water flow into Great South Bay is on.

the order of 260 f’/s.

2.4. Bay Salinity

Pritchard (1983) indicates that spatial and temporal salinity distributions in the bays along the

south shore of Long Island depend on two major factors: (1) freshwater inflow rates which vary

both yearly and seasonally, and (2) exchange rate of sea and bay waters through tidal inlets.

Therefore, salinity levels are dictated by the balance between: (1) saltwater inflow through bay

inlets, (2) flow exchanges between bays and (3) freshwater flow entering the bay via major rivers

and creeks (sce Figures 2.2 to 2.8) and other sources (i.c. groundwater, sewage, etc.).

7
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Salinity data for the present study were obtained from the Department of Health Services, Office
of Ecology, Suffolk County, New York. The data consist of salinity and temperature
measurements for 31 stations throughout Great South Bay shown in Figure 2.9, 10 stations
located in Moriches Bay shown in Figure 2.10, and 10 stations located in Shinnecock Bay shown
in Figure 2.11 for the period from March 1977 through December 1997. Measurements were

taken on a monthly to annual basis.

Great South Bay. Spatial and temporal salinity values in Great South Bay varied significantly

during the March 1977 to December 1997 data collection period. Average salinity, salinity
ranges, and standard deviations of the salinity values at each measurement station during the 20-
year measurement period are listed in Tables 2.3 and 2.4 for stations east and west of Fire Island
Inlet (including the inlet), respectively. Stations 280, 290, and 300 will not be considered in this
study due to the lack of synoptic data at these stations.

Figure 2.12 depicfs salinity values at measurement stations 150, 230, and 250 shown in Figure
2.8 located in eastern Great South Bay, Fire Island Inlet, and South Oyster Bay (west of Great
South Bay), respectively. Frequency distributions of the salinity values in Figure 2.12 are shown

. in Figure 2.13. Salinity ranged from 20 to 30 parts per thousand (ppt) in the eastern basin 21 to

32 ppt in the western basin, and 28 to 34 ppt in the inlet.

: 8
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| Stafo N verae (ppt) Range (ppt) Std. Dev. (ppt)
100 255 21.8-305 23
110 243 18.9-29.2 25
120 25.2. 17.4-28.3 2.5
130 25.2 21.2-279 2.0
140 26.4 222-293 2.3
150 - 26.2 22.5-294 2.1
160 25.6 22.1-29.1 2.2
170 27.6 24.8-31.1 1.9
180 28.6 25.7-30.9 1.4
190 27.0 24.5-30.8 1.6

Statio 1 Average (ppt) Range (ppt) Std. Dev.)
200 29.6 272-322 1.5
210 : 29.2 26.2-31.2 1.4
220 314 29.5-329 0.9
230 30.9 28.2-33.2 1.2
240 278 23.8-30.5 1.7
250 28.9 24.6 - 30.7 1.6
260 30.6 25.6-32.3 - 1.6
270 29.6 25.1-31.7 _ 1.5

The high salinity variations experienced in Great South Bay are judged to result from the influx
of fresh water from the many tributaries supplying Great South Bay. Pritchard and Gomes-
Reyes (1986) determined that nearly 25% of all surface freshwater influx to Great South Bay
enters via Carman’s River in eastern Great South Bay, corresponding approximately to

measurement station 110 in Figure 2.9. The high volume of freshwater influx into eastern Great

9
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South Bay is not evident from the freshwater inflow data as Carman’s river does not appear to be
a large source. This freshwater influx is, however, reflected in salinity values throughout the
bay. Average salinity is lowest at the mouth of Carman’s River and increases with distance from
the river with the highest average bay salinities occurring in South Oyster Bay west of Great
South Bay. Furthermore, flow exchanges between Great South Bay and Moriches Bay may

exhibit additional influence on salinity levels within the eastern basin of Great South Bay.

Moriches Bay. As in Great South Bay, salinity values within Moriches Bay varied during the
March 1977 to December 1997 data collection period. Average salinity, salinity ranges, and
standard deviations of the salinity values at each measurement station during the 20-year

measurement period are listed in Table 2.5.

* Historical salinity variations are presented in Figure 2.14 for Stations 120, 140, and 180 (see

Figure 2.10) located in the western basin of Moriches Bay, at Moriches Inlet, and in the eastem

basin of Moriches Bay, respectively. Frequency distributions for the salinity values in Figure

- 2.14 are shown in Figure 2.15.

, Salinity variations in the eastern basin and Moriches Inlet have ranged from 28 to 33 ppt. Large

_variations have occurred in the western basin where salinity has ranged from a low of 21 ppt to

approximately 33 ppt. The relatively high salinity variations experienced in the western basin
are expected since most of the rivers and creeks discharging freshwater into Moriches Bay are

located within the western basin. Furtherhmre, flow exchanges between Great South Bay and

the western basin may influence salinity levels within the western basin whereas there is little

flow exchange between the eastern basin and Shinnecock Bay. Average salinities in the inlet,
the eastern basin and the western basin during the 20-year measurement period were 31.0 , 29.9

and 28.6 ppt, respectively.

: 10
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rage (ppt) Range t) S Dev. (ppt)
100 27.0 20.8-31.7 2.6
110 26.5 202 -30.9 2.4
120 28.6 21.9-323 2.6
i 130 30.2 24.6-32.7 2.0
| 140 31.0 27.3-33.0 | 1.2
| 150 30.4 24.5-32.7 1.4
B 160 29.6 274-31.6 0.9
2 170 284 195-315 1.9
| 180 T 209 26.9-31.8 1.0
R | 190 28.8 26.0-31.1 1.2
I 200 27.4 23.6-304 1.4

Shinnecock Bay. The average values, salinity ranges, and standard deviations of the salinity
- measured at each station during the 20-year collection period in Shinnecock Bay are listed in
Table 2.6.

Historical salinity variations are depicted in Figure 2.16 for Stations 120, 140, and 180 (see
Figure 2.10) located in the eastern basin of Shinnecock Bay, at Shinnecock Inlet, and in the
western basin of Shinnecock Bay, respectively. Frequency distributions for the salinity values in |

Figure 2.16 are shown in Figure 2.17.

11
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Averag .:‘ Std. Dev. (ppt)
100 279 25.7-31.1 1.1
110 30.1 27.1-323 1.1
120 29.7 27.2-324 1.2
130 30.4 27.3-341 1.2
140 31.1 28.7-32.6 0.9
150 30.2 28.0-32.1 1.0
160 31.0 28.9-329 0.9
170 30.7 279-328 1.1
180 29.4 26.1-32.6 1.2
190 28.0 23.8-30.9 1.2

Salinity variations throughout Shinnecock Bay have been moderate and have ranged from 26 to

33 ppt. The relatively uniform salinity variations in Shinnecock Bay reflect the uniform

- distribution of freshwater sources between the eastern and western basin. Furthermore, there is -

hittle flow exchange between Moriches Bay and Shinnecock Bay, reducing the effects of

Moriches Bay on Shinnecock Bay salinity. Average salinities in the inlet, the eastern basin and
the western basin during the 20-year measurement period were 31.1 , 29.7 and 29.4 ppt,

respectively.

2.5. Bay Temperature

Spatial and temporal temperature distributions in the bays along the south shore of Long Island
are dependent upon: (1) season, and (2) exchange rate of sea and bay waters through tidal inlets.
Temperature levels are dictated by the balance between: (1) ocean water temperatures through
bay inlets, (2) freshwater flow entering the bay via major rivers and creeks (see Figures 2.2 to
2.8) and (3) solar radiation. | | |
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Temperature data for the present study were obtained from the Department of Health Services,
Office of Ecology, Suffolk County, New York data set.

Great South Bay. Temporal temperature values in Great South Bay vary significantly during

~the March 1977 to December 1997 data collection period due to change in season. Average
temperatures, temperature ranges, and standard deviations of the temperature values at each
measurement station during the 20-year measurement period ai‘e listed in Table 2.7. Stations
280, 290, and 300 will not be considered in this discussion due to the paucity of data

measurements taken at these stations.

Figure 2.18 depicts temperature values at measurement stations 150, 230, and 250 located in
castern Great South Bay, Fire Island Inlet, and South Oyster Bay (west of Great South Bay),
respectively. Frequency distributions of the temperature values in Figure 2.18 are shown in
Figure 2.19. Temperature values ranged from 0 to 30 °C in the castern and westem basins and 3
to 27 °C in the inlet. Average temperatures in Great South Bay varied spatially only £1.2 °C
- from the median temperature. These results indicate that bay water temperature is similar to the
ocean water temperature and that bay temperatures are more sensitive to differences in solar

“heating due to water depth variations.

Station | Average(°C) | Range (°C) Std. Dev. (°C)
100 156 {4-252 71
110 158 12-254 72
120 156 10-254 73
130 157 17-256 71
120 156 0.6-252 72

150 16.1 0.1-257 75
160 16.3 09-255 74

13
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170 i6.1 0.4-263 7.5
180 15.8 2.6-258 7.3
190 16.3 1.1-26.8 7.5
200 15.1 24-254 7.0
210 163 3.8-248 7.0
220 14.1 1.6-22.1 6.3
230 14.5 1.6-244 6.3
240 16.5 29-253 7.1
250 16.5 4.5-254 7.0
260 16.0 3.5-25.0 6.8
270 16.3 43-25.1 6.7

Moriches Bay. Time-averaged temperatures throughout Moriches Bay fall within a 1.4°C range

from 11.9 to 13.3 °C with the spatial mean of the bay temperature 1.1°C higher than the ocean
temperature at the inlet. This indicates that the bay is heated relatively evenly and temperatures

in the bay are similar to the ocean temperatures. Howé:vei', temperature values varied drastically

" through time during the March 1977 to December 1997 data collection period. Time-averaged

temperatures, temperature ranges, and standard deviations of the temperature values at each

measurement station during the 20-year measurement period are listed in Table 2.8.

Historical temperature variations are depicted in Figure 2.20 for Stations 120, 140, and 180 (see
Figure 2.10) located in the western basin of Moriches Bay, at Moriches Inlet, and in the eastern

basin of Moriches Bay, respectively. Frequency distributions for the temperature values in Figure

2.20 are shown in Figure 2.21.

Average temperatures tend increase with distance inland from the inlet. This temperature

gradient can be attributed to the majority of the temperature measurements occurring during the

- late spring, summer, and early fall months at which point the bay is warmed slightly more than

the ocean due to solar radiation.

14
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T

_______ i Average (° Ran (" td. Dev. (°
100 13.1 0.0-268 7.6
110 132 0.7-263 75
120 12.6 13-266 7.0
130 11.9 1.7-25.8 6.4
s 140 116 19-246 6.1
i ' 150 122 22-244 6.4
160 12.8 12-25.1 6.9
170 132 15-256 7.0
180 126 2.0-255 6.8
190 13.1 0.6-258 73
200 133 0.7-268 7.7

Shinnecock Bay, As in Moriches Bay, time-averaged temperatures throughout Shinnecock Bay
" range from 11.6 to 12.6°C with the spatial mean of temperatures 0.6°C higher than the ocean

‘temperature at the inlet, indicating that the bay is heated relatively evenly and temperatures in the
B bay are similar to the ocean temperatures. Temperature values varied drastically temporally
during the March 1977 to December 1997 data collection period, due to seasonal changes. Time-
averaged temperatures, temperature ranges, and standard deviations of the temperature values at

each measurement station during the 20-year measurement period are listed in Table 2.9.

. Station | Average (°C) Range (°C) Std. Dev. (°C)
N 100 12.2 0.0-255 7.3

H | 110 12.0 0.0-259 6.8
R 120 11.8 0.0 - 24.4 6.6
o 15
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130 11.6 0.1-23.9 6.2
140 11.3 1.6 -21.8 5.7
150 11.8 05-23.6 6.4
160 11.6 1.5-22.9 59
170 11.8 0.6-24.8 6.1
180 12.1 0.1-26.0 6.7
190 12.6 0.0-27.7 7.3

Historical temperature variations are depicted in Figure 2.22 for Stations 120, 140, and 180 (see
Figurc 2.11) located in the eastern basin of Shinnecock Bay, at Shinnecock Inlet, and in the

western basin of Shinnecock Bay, respectively. Frequency distributions for the temperature

‘values in Figure 2.22 are shown in Figure 2.23.

Average temperatures tend to be higher at stations further inland from the inlet. As in Moriches

Bay, this temperature gradient can be attributed to the majority of the temperature measurements

occurring during the late spring, summer, and eaﬂy fall months at which point the ocean is

. slightly cooler than the bay.
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3. SIMULATION MODELS

B 3.1. General Description

Tidal hydrodynamics, salinity distributions, temperature distributions, and residence times within
the Moriches Bay estuarial system were simulated using two numerical models. The first model,
MIKE 21 HD, simulates tidal hydrodynamics. Results from the hydrodynamic model were then
coupled with an advection/dispersion model, MIKE 21 AD, which simulates constituent
: l traﬁsport. Both numerical models use the finite difference method to solve the appropriate

governing equations for depth averaged unsteady flow.

3.2. Hydrodynamic Model (MIKE 21 HD)

The hydrodynamic model simulates two-dimensional flow in rivers and estuaries by solving the
depth-averaged Navier Stokes equations for flow velocity and water depth. The equations
+ account for friction losses, eddy viscosity, Coriolis forces and surface wind stresses. The general

governing equations are:

o ox Oy
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ot oyl h ox\ h Oy
gir'+q* 1[8 3
A — Zur, -k |-
C*-h P, 0x oy
h O
. —]-_..__(pa :0
TP,y )

where:
h(x, y,t) = water depth (f})
¢ (x, y,t) = surface elevation (ft)
P>4,(x, y,t) = flux densities in x - and y - directions (ft*/s/ft) = (uh,vh);
(#,v) = depth averaged velocityin x - and y - directions
C(x,y) = Chezy resistance (ft'*/s)
g = acceleration due to gravity (ft/s*)
f(V) = wind friction factor
- V.V, V (xy,9)= wind speed and components in x - and y - direction (ft/s)
 Q(xy)= Coriolis parameter, latitude dependent CR)
P.(x,y,t) = atmospheric pressure (Ib/ft/s*)
p, = density of water (Ib/&*)
x,y = space coordinates (ft)
t = time(s)
T s Ty T,, = cOmponents of effective shear stress

33. Advection-Dispersion Model (MIKE 21 AD)

The advection-dispersion model simulates two-dimensional depth-averaged constituent transport
in nivers and estuaries. The model solves the governing equation of advection-dispersion (i.e.,
constituent transport of salt or tracer concentration in this case) using the velocities and water

depths generated by the hydrodynamic model at_each time step. The governing equation is:
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—‘3-(hc)+-a—(uh(j)+i(vhc)=—a—(h-Dx-?2)+3h-p % FhC+S
ot o dy ox ox) & oy

where:

C= combound concentration (arbitrary units)

u,v = horizontal velocity componentsin the x - and y - directions (ft/s)
h = water depth (ft) _

D,,D, = dispersion coefficients in the x - and y - directions (ft*/s)

F = linear decay coefficient (1/s)
§=0,-(C,-C)

Q, = source / sink discharge (ft*/s/ft*)

C, = concentration of compound in the source / sink discharge

The primary limitation of the modeling system used in this investigation is that the equations are
depth-averaged (i.e., two-dimensional in horizontal plane). Therefore, the vertical distributions
of tidal currents and constituent concentration distributions are not modeled. Regardless, the

model is judged to be an excellent representation of the well-mixed estuarial systems modeled in

 this study. Little additional accuracy would be gainéd from a three dimensional model although

use of such a model would dramatically increase computation time and calibration efforts.

3.4. Residence Time Computations

‘Residence time is defined as the average length of time that water particles reside in a basin (Van

de Kreeke, 1983). As indicated by the definition, the residence time is a measure of the renewal
rate of embayment waters, and therefore has often been used as a relative measure of the water

quality of a tidal embayment.

Considering an idealized, well-mixed control volume, V, and an exchange rate, Q, between the
control volume and outside waters, the residence time of the control volume, under steady-state -

conditions can be written as:
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Tr=

(Y

- Now consider that the rate of loss of mass is due to “decay” according to the following general

equation:
C(t)=C,-e™™

where:
C(t)= tracer concentration at time t
C.= initial tracer concentration

K=decay coefficient

The mass balance for tracer concentration in the control volume can be written as:

V%zQ(Ce -CO)-K¥VC

Where:

C, = tracer concentration supplied to the control volume from the outside waters
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Upon reaching steady-state (i.e. dC/dt=0) a steady state tracer concentration C=C, is achieved
and represents the balance of mass lost to “decay” over time with that replaced by outside
waters. The following equation can be derived from the above equations assuming steady state

conditions:

vV C,—-C,
0 KC,
‘Therefore, the residence time is given by:
r-Y_G-G
0 KC,

Residence times have been computed for the present study according to the following procedure:

¢ Begin computations with an initial tracer concentration of 1.0 over the entire element mesh.

» Specify an equal decay coefficient, K, for each point of the mesh.

* Set a constant tracer coefficient of 1.0 at each model boundary (i.e. C, = 1).

e Run the pollutant transport model until steady state conditions are achieved (ie. C; is
determined over the entire mesh).

e Compute the residence time at each point using the above equai_tion.

It should be noted that residence times computed using the above methodology represent the
time it takes for water particles to leave any of the model boundaries. The residence times do not
necessarily represent the time necessary for water particles to reach the ocean inasmuch as water

particles can also exit via the lateral boundaries of the computational mesh.
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4. NUMERICAL MESH GENERATION

4.1. General

The factors governing development of a finite-difference mesh are (1) the level of detail or
resolution necessary to adequately represent the estuary and maintain numerical stability of the
model and (2) the required extent or coverage of the mesh. MIKE21 is capable of accurately
simulating tidal elevations/flows over a wide range of mesh resolutions. Accordingly, the
bathymetric features of the estuary generally dictéte mesh detail. However, model tun times
require consideration when developing a finite-difference ‘mesh. Extremely fine meshes can

result in inordinately long run times which may make calibration and/or production runs costly

- and difficult. In the present study, the level of detail required to accurately represent the study

inlets determined the necessary resolution for the remainder of each mesh.

There are several factors that guide decisions regarding the aerial extent of the mesh. First, it is

desirable to extend the mesh to areas that are sufficiently removed from the proposed areas of

- change so as to be unaffected by that change. Secondly, the outer regions of the mesh must be

located along boundaries where conditions can be reasonably measured and described to the

model. For example, it is more convenient to locate a boundary along a line crossing a well-
defined channel than to locate a boundary across the middle of a large embayment, because flow

conditions and/or tidal elevations are more easily stipulated for the well defined channel than in

'th_e open embayment.

4.2, Béthymetric Data

MIKE?21 requires two types of data for mesh generation, namely: (1) bathymetric data, including
horizontal coordinates and associated depths, and (2) shoreline coordinates defining land
boundaries within the mesh. Shoreline and bathymetric data for Great South, Moriches and

Shinnecock Bays were obtained from National Ocean Service/National Oceanic and
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Atmospheric Administration (NOS/NOAA) nautical charts Nos. 12352 and 12353. Recent

surveys were used for Moriches and Shinnecock Inlets. Recent surveys at Fire Island Inlet were

_incomplete. Shorelines adjacent to all inlets were based on 1995 topography. The resulting

mesh geometries were checked relative to the nautical charts and alternations were made as
deemed necessary to: (1) improve physical representation of the estuaries and (2) improve model

stability in areas of large depth gradients.

The finite difference meshes created for Great South, Moriches and Shinnecock Bays are .
presented in Figures 4.1 to 4.3, respectively. The Great South Bay mesh (see Figure 4.1) =
includes 700 grid points (east to west) by 272 grid points (north. to south). The grid covers

approximately 415 square miles, including South Oyster Bay, Bellport Bay, and a portion of

western Narrow Bay. The western boundary of Great South Bay was located between Biltmore
Shores and Tobay Beach along the western end of South Oyster Bay in Nassau County. To the
east, the Great South Bay gnd extends to Smith Point at the confluence of Great South and
Narrow Bays. The seaward extent of the finite difference mesh is located 6 to 8 miles offshore
approximately along the 80-foot contour. The northem boundary was located inland in order to

tnclude the major tributaries connected to Great South Bay.

Figure 4.2 shows the finite difference mesh generated for Moriches Bay. Moriches Bay is

represented by 600 grid points east to west and 360 grid points north to south, and covers

'app_r'oximately 100 square miles. All of Moriches Bay was included, extending east from Smith

Point_'along Narrow Bay to the Quantuck Canal. The seaward boundary for Moriches Bay was.
located approximately along the 80-ft contour. The mesh was extended north to include all

major tributaries to Moriches Bay.

The numerical grid for Shinnecock Bay is shown in Figure 4.3. This mesh includes 570 grid
points (east to west) by 375 grid points (north to south), and covers about 75 square miles. The
Quogue Canal defines the western limit of the mesh, which extends north to the Shinnecock
Canal. The finite difference mesh extends east of Heady Creek, and south to the 80-ft contour.
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4.3. Mesh Parameters

The spacing of the finite difference mesh influences the stability and accuracy of the
hydrodynamic model. As stated previously, it is best when the boundary conditions are located
in well-defined areas with boundary flows perpendicular to the mesh.  To imprm?e model
stability in the present study, each mesh was aligned so that the offshore boundary was parallel -
to the shoreline (see Figures 4.1 to 4.3). '

: The___’Courz-mt number serves as an empirical prediction of mesh quality and hydrodynamic model

stability. The definition of the Courant number is as follows:

Ce =c><-ét—
' Ax
c=.lgxh

- Where:

Ax = element side length (or grid spacing)
'  0 = celerity '
g= gravitational constant

~ h=water depth

A low Courant number generally indicates improved numerical stability. The suggested
maximum Courant number is about 10 (Danish Hydraulic Institute, 1996). Inasmuch as the
Courant number is inversely related to grid spacing, larger elements typically lead to improved
stability. Larger elements, on the other hand, reduce bathymetric resolution. Grid resolution
must, therefore, be assessed considering both geometric detail and numerical stability. Grid
spacings of 75, 40, and 30 meters were _selecte_d for Great South, Moriches and Shinnccock Bays,

respectively.
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5. MODEL CALIBRATION (EXISTING CONDITIONS)

5.1. General

The objective of the modeling effort is to determine the impact of barrier island breaches on tidal

- elevations, flushing rates, and salinity/temperature distributions within the bays. The problem

requires the use of two models: 1) a hydrodynamic model, which computes the temporal and
spatial distribution of water sm'facé elevation and velocity; and 2) an advection-dispersion
model, which computes the distributions of salinity and temperature. The hydrodynamic model
considers the most important phenomena of the system, i.e., the rise and fall of the tide and
variations in currents, before and after a breach.. The currents from the hydrodynamic model are
the driving force for the advective processes in the salinity/temperature model. The dispersive
(diffusive) processes in the salinity/temperature model are computed from horizontal gradients
and the dispersion coefficient. The dispersion coefﬁcient is obtained during the model -
calibration process. The primary calibration parameters in the hydrodynamic model are the

bottom frictional coefficient (Manning number) and the horizontal eddy viscosity.

As outlined below, there is sufficient elevation and current information available for determining

boundary conditions and calibrating the hydrodynamic model. However, the available salinity
and temperature data are of lower quality, consisting of single grab measurements at monthly (or
longer) intervals. Furthermore, the freshwater input into the model, which includes surface and
groundwater components, is difficult to quantify from existing records. Consequently, it was not
possible to calibrate the dispersion coefficients in salinity and temperature to a high degree of
accuracy. The approach taken was to establish boundary conditions and interior comparison
points using average .salinity and temperature values, and to adjust the dispersion coefficient to
approximately match the average values. The impacts were then determined based on changes
in these average values under different breach scenarios. This approach is reasonable for the
purposes of this study, since changes in the salinity/temperature fields should be largely

dependent on changes in the advective processes in the bays. Additional data sets which would
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enable model comparisons to synoptic salinity data have been made available and will be

incorporated into future modeling efforts.

Numerical models are typically calibrated with field measurements (e.g. measured tidal
elevations, current velocities, salinities, water temperatures, etc.) in order to demonstrate that the
mode] accurately reproduces the hydrodynamic system. The calibration process consists of
adjusting model parameters so that model predictions match field observations as closely as
possible. The model is considered properly calibrated when numerjcal results closely match field
observations. Upon completion of satisfactory calibration, the model can be used to evaluate
estuary hydrodynamics or the impacts of changes to the system (e.g. construction of training
sﬁ'uctures, island breaching or dredging).

Model calibration is best achieved by means of a set of simultaneous measurements along the
model boundaries and throughout the modeled estuary. Data important to the present study
include hydrodynamics, flow velocities (or discharge), temperature, and salinity. Wind effects,
though important in many systems were ignored in the present study based on both (1) analyses

by Pritchard (1981), who indicated wind-induced cwrrents in Moriches Bay are an order of

_ magnitude less than tidally-driven currents, and (2) previous modeling experience in the project

area (Moffatt & Nichol, 1994).

5.2, -Tidal Hydrodynamics

Since tidal elevation measurements were limited, MIKE 21 HD was calibrated for Great South,
Moriches and Shinnecock Béys using predicted tidal elevation data based on NOAA tidal
constituents. Discharge boundary conditions were also tested during model calibration at lateral
boundaries of Great South Bay (South Oyster Bay at Biltmore Shores and Narrow Bay),
Moriches Bay (Narow Bay and Quantuck/Quogue Canals), and Shinnecock Bay
(Quantuck/Quogue Canals) to determine the influence of various discharge conditions on model

results. The seclected discharge boundary conditions represent those parameters that best
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reproduced tidal elevations within each estuary. Boundary condition locations for Great South,
Moriches, and Shinnecock Bays are presented in Figures 5.1 to 5.3, respectively.

5.2.1. Model Parameters

The most dominant hydrodynamic model calibration parameters in MIKE 21 HD are eddy
viscosity and bottom roughness (Manning’s number), which affect lateral mixing and bottom
friction in the hydrodynamic system, respectively. Different combinations of parameters were
tested as part of the calibration process. - Selected eddy viscosities and Mamning’s numbers
correspond to those values that yield the best agreement between NOAA. predicted and MIKE 21
HD simulated tides.

5.2.2. Calibration Resulis

Hydrodynamic model calibration for Great South, Moriches, and Shinnecock Bays was

performed for and discussed in detail in Interim Submission 9B: Inlet Dynamics ~ Without-

" Project Future Conditions (USACE, 1999). The results of the hydrodynamic model calibration

“are summarized below.

The period selected for model calibration corresponds to the period used in Interim Submission
9B: Inlet Dynamics - Without-Project Future Conditions (USACE, 1999) for the
hydrodynamic modeling, spanning 72 hours from 24 to 27 December 1989 and representing
approxifnate mean tidal conditions for each estuary. Measured data for calibration at Great

Sduth, Moriches, and Shinnecock Bays were generally unavailable, and the use of available data

~was complicated by datum uncertainties (Note: measured data for Great South, Moriches, and

Shinnecock Bays became available after calibration was completed and will be incorporated into
future report revisions). Therefore, tidal boundary conditions were specified based on published
NOAA tidal constituents. Great South and Shinnecock Bays were modeled with 30 second time

steps and Moriches Bay required a 20 second time step for solution stability.
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Great Sogth Bay. Tidal flow enters Great South Bay through Fire Island Inlet, Narrow Bay and

South Oyster Bay. The average modecled tide range at the Fire Island Breakwater for the
calibration period was approximately 3.9 feet. This range is close to the mean tidal range of 4.1
feet (NOAA, 1996) at the Fire Island Breakwater. Manning’s numbers were estimated for

- various water depths with higher friction values in shallow water and, conversely, lower values

in deeper water. Model results were somewhat insensitive to changes in eddy viscosity. The
MIKE 21 default eddy viscosity, 43 fi*/s, was used throughout the mesh with ocean and inlet

values modified to improve calibration results.

 Moriches Bay. Moriches Bay tides are controlled by flows entering via Moriches Inlet, Narrow

Bay, and Quogue Canal. Sensitivity analyses confirmed that Moriches Bay is relatively
insensitive to a range of discharges at Quogue Canal. Therefore, the eastern boundary condition
was represented by a no flow boundary condition. The average modeled tidal range at the inlet is
approximately 3.2 feet, which closely matches the published (NOAA, 1996) mean tide range of
3.5 feet. Analyses also revealed that variations in Manning’s numbers and eddy viscosities had
minor impacts on calibration results for Moriches Bay. Accordingly, the model-default bottom

friction, i.e. Manning’s number, and eddy viscosity coefficients were used throughout the mesh

. with the coefficients in the bay refined to improve results during calibration.

Shinnecock Bay. The offshore (Ocean) and Quogue Canal boundary conditions in the

Shinnecock Bay mesh were comprised of a time series of tidal elevations, whereas a zero flow
boundary conditions was applied at the Shinnecock Canal. The average modeled tidal range at
the inlet is approximately 2.6 feet, which is slightly lower than the 2.9-ft mean tide range
published by NOAA (1996) for Shinnecock Inlet. Model calibration parameters used for
Shinnecock Bay are similar to those used for Moriches Bay. MIKE 21 HD default values were
used throughout the mesh with modified eddy viscosity in the bay to improve the calibration
results. - Selected values are similar to results determined in USACE (1998). Model results

compare well with predicted tidal elevations and amplitudes. Correlation between predicted and

modeled tide elevations is 99 to 100% with a standard error of less than one inch.
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5.3. Advection/Dispersion

The MIKE 21 AD advection/dispersion model was calibrated in a manner similar to the
hydrodynamic model. Model parameters were adjusted until the modeled water quality

distributions throughout the estuarial system reproduced average measured values.

5.3.1. Moedel Parameters

In the case of the advection/dispersion model, the dispersion coefficients in the X and Y
directions were adjusted to calibrate the model. Selection of the dispersion coefficients was
based on comparing average measured and average modeled concentrations at locations
throughout the bays and adjusting the dispersion coefficient accordingly to improve agreement
between the two sets of concentrations. Calibrated dispersion coefficients are presente& in Table
5.1.

Great South Bay - 540 5
Moriches Bay 129 129
‘Shinnecock Bay 183 _ 183

For model stability reasons, the following upper limit, derived from the stability criteria for a

pure diffusive case, was placed on the dispersion coefficients:

(D, /Ax*+D,/Ay*)-dt <0.5

A\
1l

Diffusion in X direction (mn®/s)
Diffusion in Y direction (m?s) .

R
i
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Ax = Grid spacing in X direction (m)
Ay = Grid spacing in Y direction (m)
dt = time step (s)

~ As is demonstrated in the above equation, stability of the advection/dispersion model is

dependent on the time step used. To improve stability, time steps were reduced to 10 seconds for

each model.

5.3.2. Salinity Boundary Conditions

Salinity, i.e. advection/dispersion, boundary conditions must be specified at the same locations as
the hydrodynamic model boundary conditions. The Department of Health Services 1977 to 1997

salinity data were used to calibrate the advection/dispersion model. Because each set of data for

“each date in the record was collected over several hours, the data shows the effect of the tide

changing phase. To reduce the effects of tidal phase and seasonal changes, the salinity data was

averaged and this average salinity was used to calibrate the model. Additionally, the salinity

- data were filtered to remove incomplete data sets thereby avoiding biasing the data.

Great South Bay. Average salinities in Great South Bay range from 24.3 ppt in Bellport Bay to

30.9 ppt at the inlet. Average values at each measurement station are listed in Tables 2.3 and
24,

Model boundary | conditions were determined from measurement stations at locations
cbrresponding to the boundary locations. The offshore boundary was set to the local ocean
salinity of 33 ppt. The eastemn .bouncllary, corresponding to station 100 (see Figure 2.8) in
Narrow Bay equals 25.5 ppt and the western boundary was set to a range of values varying froni_
30.6 ppt near station 260 in the south to 29.6 ppt at station 270 near Biltmore.

Fresh water was introduced into Great South Bay at the rivers and creeks corresponding to the

monitoring data collected by USGS. No additional fresh water data was available. Additional
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USACE INTERNAL USE ONLY NOT FOR DISTIBUTION




------

Fire Island Inlet to Montauk Point Reformulation Study Water Quality Modeling - Draft

effects of fresh water inflow into Great South Bay were incorporated into lateral boundary

conditions. Salinity at the modeled sources was set to zero.

Moriches Bay. Average salinity in Moriches Bay ranged from 26.5 ppt at station 110 (see

Figure 2.9) near the Forge River to 31.0 ppt at station 140 near Moriches Inlet. Average values

at each measurement station are listed in Table 2.5.

Salinity at the ocean boundary was set to 33 ppt (local ocean salinity). At the eastern and

western boundaries, salinity was derived from corresponding measurement stations as 27.4 ppt

. (corresponding to station 200), and 27.0 ppt (corresponding to station 100), respectively.

Freshwater source data was unavailable for sources in Moriches Bay and was not included in this

study. Modeled salinity in Moriches Bay was controlled via salinity at the lateral boundaries of

- the modeled region.

Shinnecock Bay. Shinnecock Bay average salinity ranged from 27.9 ppt at station 100 (see
Figure 2.10) near Shinnecock Canal to 31.1 ppt at station 140 near Shinnecock Inlet. Average

. values at each measurement station are listed in Table 2.6.

Salinity boundary conditions were set to 33 ppt at the ocean boundary (local ocean salinity) and

28.0 ppt at the western boundary (Quogune Canal near station 190).
As was the case for Moriches Bay, freshwater source data was unavailable for sources in

Shinnecock Bay and was not included in this sfudy. Moedeled salinity in Shinnecock Bay was

dependent upon salinity at the lateral boundaries.

5.3.3. Salinity Calibration Results

Advection/dispersion model calibration results are shown for each measurement station (shown

in Figures 2.8 to 2.10) and compare measured values to modeled values. Modeled salinity values
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were averaged over the final 5 tidal cycles (~62 hours) of the simulation and were compared to
average measured values. The standard deviation of the measured salinity, shown in Tables 2.3

to 2.6, is plotted with the average values, providing a range of potential results.

Great South Bay. Advection/Dispersion modeling shows that salinity in Great South Bay is

influenced by freshwater inflow from the streams and rivers feeding the bay. Calibration results
shown in Figure 5.4 indicate that average modeled values compare well with average measured

values. The calibration results show that modeled salinity at measurement stations 160, 190, and

240 is higher than measured values due to undervalued fresh water inflow in these aress.

Modeled salinity at stations 170, 180, 200, and 230 was also hlgher than expected due to

excessive ocean water entering the bay through the inlet.
Modeled values typically fall within one standard deviation of the measured values. The
standard error of the values equals 0.96 ppt. Figures 5.5 and 5.6 show salinity at peak ebb and

flood tides respectively.

Moriches Bay. Comparisons between the average simulated and average measured salinity,

~shown in Figure 5.7 for various locations throughout ‘Moriches Bay, show generally good

agreement for the entire bay system. It is noted, however, that the simulated salinity at station )
110 was significantly higher (2.4 ppt) than measured values, possibly due to unaccounted for
ﬁfeshwater inflow from the Forge River. Predicted salinity was slightly higher than measured
salinity for many of the remaining stations (120, 130, 140, 150, 160, and 170) indicating that
additional, unaccounted for fresh water is entering the bay, possibly through | groundwater

seepage and additional surface sources. Differences between modeled and measured salinity

~ were as much as 2.4 ppt with a standard error of 0.7 ppt. Peak ebb and flood tide salinity

contours are shown in Figures 5.8 and 5.9, respectively.

Shinnecock Bay. Average modeled salinity in Shinnecock Bay compared well with average

measured values as shown in Figure 5.10. It is noted, howsver, that the simulated salinity was
higher than measured salinity at stations in the eastern basin of Shinnecock Bay (stations 100,
120, 130, and 150) as well as at the inlet (station 140} due to influences from Shinnecock Canal .
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3 which was not modeled in this study. Predicted salinity was less than measured salinity in the
western basin of Shinnecock Bay (stations 160, 170, 180, and 190) indicating that insufficient
| |~ ocean water is mixing with the bay water in the western basin. This can also be attributed to
changes in flow patterns at and near the inlet due to the absence of Shinnecock Canal in the
L] - model. Peak differences between measured and modeled values were as high as 1.3 ppt with a
standard error of 0.8 ppt. Figures 5.11 and 5.12 show salinity in Shinnecock Bay at peak ebb and

' ‘ peak flood, respectively.

3.3.4. Temperature Boundary Conditions

Temperature data boundary conditions must be specified at the same mesh boundaries used in
| _______ } the hydrodynamic model. As previously mentioned, temperature data are available at various
locations in each bay for a period extending from 1977 through 1997. As with the salinity data,
the temperature data shows the effect of the tide changing phase and was averaged to reduce the
effects of tidal phase and seasonal changes. Additionally, the temperature data were filtered to

s remove incomplete data sets, thereby avoiding biasing the data.

N  Great South Bay. Average temperatures in Great South Bay range from 15.1 °C at the inlet to

16.5 °C near Babylon and Bellport. Model boundary conditions were determined from

measurement stations at locations corresponding to the boundary locations. The offshore

boundary was set to the local ocean temperature of 14.0 °C. The eastern boundary of the model

~ at Narrow Bay equals 15.6 °C which corresponds to station 100 and the western boundary was

M set to a range of values varying from 16.0 °C near station 260 in the south to 16.3 °C at station
|
270 near Biltmore.

Fresh water sources into Great South Bay were also calibrated to produce the correct temperature
at the corresponding measurement stations. Temperatures at the modeled sources were set to -
values corresponding to the location of the source in the model. The freshwater sources and their

B ~ respective temperatures af the model boundary are listed in Table 5.2.
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Source

emperature °C

Carlls River 16.5
Carmans River . 15.8
Champlin Creek 16.5
Connetquot River 16.3
Massapequa 16.2
Patchogue River 15.7
Penataquit Creek 16.3
Sampawams 16.5
Santapogue - . 16.5
Swan River 15.7

- Moriches Bay. Average temperatures measured in Moriches Bay ranged from 13.2 °C at

station 110 near the Forge River to 11.6 °C at station 140 at Moriches Inlet. Temperature

boundary conditions values were set in a2 manner similar to the salinity boundary conditions

where the boundary values were extracted from measurement stations in close proximity to the
model boundaries. Temperature at the ocean boundary was set to-11.0 °C, at the eastern
boundary corresponding to station 200 in Quantuck Bay temperature was set to 13.3 °C, and at

the western boundary corresponding to station 100 in Narrow Bay temperature was set to 13.1

°C.

Shinnecock Bay. Average temperatures measured in Shinnecock Bay ranged between 12.6 °C
at station 190 near Quogue Canal to 11.3 °C at station 140 near Shinnecock Inlet. The

temperature at the model boundary was set to 11 °C in the ocean and 12.6 °C at the westemn _

boundary.
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5.3.5. Temperature Calibration Results

Advection/dispersion model calibration results are shown for each measurement station (shown
in Figures 2.8 to 2.10) and compare measured values to modeled values. As was the case with
salinity, modeled temperature values were averaged over the final 5 tidal cycles (~62 .hours) of
the simulation and were compared to average measured values. The standard deviation of the
measured temperature, shown in Tables 2.7 to 2.9, is plotted with the average values, providing a

range of potential differences in model results.

Great South Bay, Temperature calibration results shown in Figure 5.13 indicate that modeled
temperatures compare well with measured temperatures. Modeled values fall within one standard
deviation of the measured values. Modeled temperature at stations 170, 180, 200, and 230 was
lower than expected due to excessive ocean water entering the bay through the inlet.
Temperature distributions at peak ebb and peak flood are shown in Figures 5.14 and 5.15,

réspectively.

Moriches Bay. Moriches Bay calibration results for temperature are shown in Figure 5.16.

. Modeled and measured temperature comparisons at measurement locations throughout Morniches

'Bay show excellent agreement for the entire bay syétem. Differences between measured and

modeled temperatures were less than 0.4 °C with a standard error of 0.2 °C for all of the
measurement stations. Figures 5.17 and 5.18 show temperature distributions in Moriches Bay at

peak ébb and peak flood tides, respectively.

- Shinnecock Bay. Temperature calibration results for Shinnecock Bay, shown in Figure 5.19,

indicate excellent agreement between measured and modeled values throughout the entire bay

system. Computed differences in calibration results were less than 0.2 °C at each station with a

standard error of 0.15 °C for all of the stations. Temperature calibration for Shinnecock Bay

appears to be unaffected by the absence of Shinnecock Canal. Temperature distributions in
Shinnecock Bay are shown in Figure 5.20 and 5.21 for peak ebb and peak flood tid_es,_

respectively.
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53 6. Residence Time

The method used to compute residence times is based on the method described in Section 3.4.
Note that particles leaving a bay via lateral boundaries are considered to have left the system and
their residence time is determined as the time to reach these boundaries. Calibrated diffusion
coefficients from salinity and témperature modeling were kept constant. The model was run for
440 hours for Great South Bay and 315 hours for Moriches and Shinnecock Bays to allow the

constituents to reach equilibrium.

Great South Bay. Tracer concentration decay curves are shown in Figure 5.22 for locations

corresponding to measurement stations 150, 230, and 250. The curves show that the tracer
concentration, while tidally varying, has reached a dynamic equilibrium. Figure 5.23 shows the
time averaged residence time throughout Great South Bay. Peak residence times occur in the

eastern basin of Great South Bay with times Ionger that 20 days.

Moriches Bay. Representative decay curves of tracer concentration within the eastern basin
(180), the western basin (120) and the inlet entrance (140) are shown in Figure 5.24. The figure

' shows that all three curves reach steady-state tracer concentrations although considerable
oscillations of tracer concentration occur close to the inlet enirance area. The contours of

residence time for the entire bay are presented in Figure 5.25. The predicted residence times

reach 3 to 5 days within the western basin. Maximum residence times greater than 10 days occur
within the eastern basin. That the residence times within the eastern basin are high relative to the
western basin is consistent with the relatively low flow exchange between Moriches and

Shinnecock bay at the eastern boundary of the computational mesh.

Shinnecock Bay. Tracer concentration decay curves are shown in Figure 5.26 for locations

corresponding to measurement stations 120 in the eastern basin, 140 near the inlet, and 180 in the
western basin. Residence time contours for Shinnecock Bay are shown in Figure 5.27.

Residence times in the eastern basin and western basin are on the order of 3 to 7 days.
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6. IMPACTS OF BARRIER ISLAND BREACHING

60.1. General

The calibrated tidal hydrodynamic model (USACE, 1999) and advection/dispersion model were
used to evaluate the impacts of breaches on salinity, temperature and residence times throughout
Great South, Moriches, and Shinnecock Bays under normal tide conditions. Boundary conditions

used for calibration purposes were also used for breach conditions.

6.2. Breach Characteristics

The selected breaches for future without-project conditions are discussed in detail in USACE
(1999) and are summarized below. A single breach location was selected for each bay, based on
USACE (1996) updated to reflect recent construction (i.e. Westhampton Interim) and reported

erosion hotspots (i.e. west of Shinnecock Inlet). Figures 6.1 to 6.4 summarize potential breach

 locations. The model was applied to the location in each bay judged to be most vulnerable to

breaching, Each breach was modeled with cross-sections corresponding to three-month and

nine-month closure periods.

6.2.1. Breach Locations

Great South Bay. Locations along Fire Island that were judged to have at least a moderate
likelihood of breach formation included Old Inlet, Atlantique, Water Island and Barrett Beach
(USACE 1996). Old Inlet is backed by shallow bay waters and historic records indicate that a

breach at this location is unlikely. The Atlantique area has experienced significant storm erosion
during recent years, but the barrier in this area is relatively wide with widths from 800 to 1,000
fect. The Water Island and Barrett Beach location was judged vulnerable to permanent inlet

formation. This area is characterized by large dunes with low swales, barrier widths less than
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300 feet, and recently severe bluffl recession. A breach at Water Island/Barrett Beach would
have significant impacts on Fire Island Inlet, as it is further removed from the inlet.
Consequently, a breach near Water Island and Barrett Beach was selected. Figure 6.5 shows the
finite-difference model mesh for Great South Bay including the breach.

Moriches Bay. Locations vulnerable to breaching along Moriches Bay include Pikes Beach and

a narrow barmer island segment east of Pattersquash Island. Recent construction of the

Westhampton Interim Project reduces the likelihood of a breach immediately east of Moriches

Inlet. Immediately west of Moriches Inlet, accretion predominates for a distance of

approximately two miles. The likelihood of a permanent breach further west is low, as water
depths in Narrow Bay may be inadequate to support breach growth. The selected breach location

for Moriches Bay was at Pikes Beach (see Figure 6.6).

Shinnecock Bay. The shoreline 3,000 feet west of Shinnecock Inlet was estimated in USACE

(1996) to have a moderate potential for barrier island breaching. Recent severe erosion in this
area has, however, increased the likelihood of a breach. Previous analyses indicate that breaches

have a greater impact on existing inlets when the breach is removed from the inlet vicinity -

~ {Moffatt and Nichol, 1994). Nonetheless, the high likelihood of a breach immediately west of

Shinnecock Inlet makes it necessary to examine the consequences of a breach at this location.
The breach location for Shinnecock Bay is reflected in the finite-difference mesh shown in

Figures 6.7.

6.2.2. Breach Sizes

Impacts to study area tidal inlets are dependent upon the interval from breach formation to

closure. During this tnterval, it is anticipated that tidal flows through the existing inlet are

reduced with a concomitant increase in shoaling while the breach is open. As the breach

~ enlarges, impacts to the bay and existing inlet increase. Breach impacts were examined for two

scenarios, namely: (1) Breach Contingency Plan with a closure period of three months, and (2)

Westhampton - breach closure period of nine months. The former scenario reflects a rapid
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response to breach formation, a smaller breach opening and reduced impacts to existing inlets.
The latter scenario examines the effects of slower response to breach formation. Breach cross-
sectional areas relative to time for Great South, Moriches and Shinnecock Bays are summarized
in Table 6.1 and correspond to locations described previously. Existing inlet cross-sectional

areas were not changed for modeled breach scenarios.

Breach Cross-Sectional Area (ft")
Estuary Breach Location
3 Months 9 Months
Great South Bay 15,800 29,200 Water Island/Barrett Beach
Moriches Bay 9,500 14,900 Pikes Beach
Shinnecock Bay 10,100 15,900 West of Shinnecock Inlet

6.3. Breach Case 1 (3-Month Breach)

Breach Case 1 corresponds to a breach with dimensions similar to a breach that has been open
for three months (three-month breach). Existing condition bathymetry for each bay was
modified to include a breach with dimensions equivalent to a three-month breach. The calibrated
models were run using the breach-modified bathymetry to simulate the effects of a breach on
hydrodynamics and water quality. Imterim Submission 9B: Inlet Dynamics - Without-Project
Fature Conditions (USACE, 1999) describes the effects of the three-month breach on
hydrodynamics. The effects of the breach on water quality, described in the following sections,

reflect breach-nduced changes in the hydrodynamics.

6.3.1. Salinity

Great South Bay, Advection/Dispersion modeling results for the three-month breach case,

shown in Figure 6.8, indicate that salinity is increased in the eastern basin close to the breach and

decreased slightly in locations remote from the breach. When compared to existing conditions,
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average salinity is increased at stations 120, 130, 140, and 150 directly by the influx of additional
ocean water through the breach. Increases range from a maximum of approximately 1.6 ppt
closest to the mlet to 0.7 ppt in Patchogue Bay. Stations further west in Great South Bay have
smaller increases in salinity. Near the existing inlet and further west beyond the inlet salinity
decreases by 0.1 to 0.3 ppt during breach conditions. Decreases in the western sections of the
bay can be atiributed to a reduction in flow through the existing inlet, which decreases
circulation in western sections of the bay. In the extreme western sections of the bay, salinity is
dominated by flow from Hempstead Bay (stations 250, 260, and 270) and experience little
change as a result of the breach. Salinity in the center of Great South Bay decreases 0.1 to 0.3

ppt due to changes in circulation patterns at the inlet.

Figures 6.9 and 6.10 show salinity in Great South Bay at peak ebb and peak flood tide
conditions, respectively, while Figures 6.11 and 6.12 graphically depict the relative difference mn
salinity between existing conditions and the three-month breach case. Positive values indicate
areas where existing salinity values are higher than salinity values for the three-month breach

case.

- Moriches Bay. The impacts of a breach at Pikes Beach on salinity in Moriches Bay are

summarized in Figure 6.13 (see Figure 2.10 for station locations). Salinities at stations 150, 170,
and 190 in the eastern basin close to the breach increase 0.2 to 0.3 ppt relative to existing
conditions. Salinities at stations near the existing inlet (stations 100, 110, and 140) are
unchénged from existing conditions. At stations 120 and 130 in the western basin, salinity
increases 0.1 ppt as a result of a redirection of flow from the existiﬁg inlet into the western basin.
Finally, salinity at station 180, located close to the breach, increases by 1.7 ppt. Salinities within
the eastern basin are increased as ocean waters more readily reach the eastern basin through the

breach.

Salinity contour plot are presented in Figures 6.14 and 6.15 for peak ebb and peak flood tides,
respectively. Figures 6.16 and 6.17 show the relative change in salinity from existing conditions

to the 3-month breach conditions for peak ebb and peak flood tides, respectively.
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Shinnecock Bay. Salinity in eastern Shinnecock Bay is significantly impacted by a breach

immediately west of Shinnecock Inlet. Comparisons of existing condition salinity versus with-
breach salinity are shown in Figure 6.18 for each measurement station (see Figure 2.11).
Analysis of these results shows that salinity is increased by 0.7 to 0.8 ppt at stations 100, 110,
and 120 and by 0.3 to 0.5 ppt at stations 130, 140, 150, and 160 three months afier a breach
occurs. These increases can be attributed to additional ocean water entering the bay via the .
breach. The effects on salinity are less pronounced at stations 130, 140, 150, and 160 as these
stations are closer to the inlet and, therefore, closer to ocean salinity under existing conditions.
Salinity in the far western basin of Shinnecock Bay is reduced during a breach. Analysis of the
results presented in Figure 6.18 for station 180 shows that salinity decreases by 0.4 ppt during a
breach. This reduction can be attributed to a shift in the flow of saline waters toward the eastern

basin, which allows fresher water into the bay through Quogue Canal at the western boundary.
Salinity contour plots at peak ebb tide and peak flood tide for the 3-month breach are shown in

Figures 6.19 and 6.20, respectively. The difference between existing conditions and the 3-month
breach conditions are shown in Figure 6.21 for peak ebb tide and Figure 6.22 for peak flood tide.

6.3.2. Temperature

Great South Bay. Advection/Dispersion modeling indicates that temperature in Great South

Bay is relatively un_changéd by breaching. Figure 6.23 shows average existing condition

 temperatures compared to average temperature for the three-month breach case. Average

temperature decreases in the vicinity of the breach are on the order of 0.5°C. Temperatures
throughout the rest of Great South Bay increased slightly by less than 0.1°C. Average
temperatures in the bay are shown in Figures 6.24 and 6.25 for peak ebb and peak flood tide
conditions, respectively, with the relative difference in average temperatures between existing
conditions and the three-month breach case shown in Figure 6.26 and 6.27 for peak ebb and peak
flood tides, respectively.
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Moriches Bay. The impacts of a breach at Pikes Beach on temperature distributions in Moriches

Bay are summarized in Figure 6.28. Temperature contour plots for peak ebb tide and peak flood
tide are shown in Figures 6.29 and 6.30, respectively. Analysis of the results shows that
temperatures are essentially unchanged for the three-month breach case except for areas
mmmediately in front of the breach which decrease up to 0.8 °C due to the additional ocean water
entering the bay via the breach. Figures 6.31 and 6.32 show contours of the difference in
temperature between existing conditions and the 3-month breach.for peak ebb tide and peak
flood tide, respectively.

Shinpecock Bay. The effects of a breach west of Shinnecock Inlet on temperature in

_ Shinnecock Bay are minimal. Figure 6.33 shows comparisons of existing conditions and with-

breach temperatures. There is a minor increase in temperature at stations 170 and 180 due to the
inlet forcing flow to the eastern basin resulting in less ocean water and more water from the
Quogue Canal in the western basin. Contours of temperature difference between existing
conditions and the with-breach case are shown in Figure 6.36 for peak ebb tide and 6.37 for peak
flood tide. '

6.3.3. Residence Times

Great South Bay. Figure 6.38 shows the residence time for Great South Bay for the three-

month breach case. Residence times were significantly impacted by a breach in eastern Great
South Bay with reductions in residence times on the order of 3 to 4 weeks. High local reductions
in residence times are expected as the bréach was located in an area with high residence times
under existing conditions. Residence times in western Great South Bay increased 4 to 6 days as
the breach affected circulation patterns and reduced flow via the existing inlet. Figure 6.39
shows the change in residence time for the three-month breach case relative to existing

conditions. -

Moriches Bay. Residence time throughout Moriches Bay is shown in Figure 6.40 for the three-

month breach case. Relative changes in residence time compared to existing conditions are
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shown in Figure 6.41. Residence times in Moriches Bay decreased with a breach at Pikes Beach
with changes on the order of 0.5 to 0.8 days. Decreases in residence time close to the breach
were approximately 8 days as the breach was located in an area with high residence times under
existing conditions. Residence times close to the bay entrances (i.e. the inlet and lateral

boundaries) decrease minimally.

Shinnecock Bay, Shinnecock Bay residence time is shown in Figure 6.42 for the three-month

breach case. The three-month breach case is compared to existing conditions in Figure 6.43
which shows the relative difference in residence time. Residence time decreases throughout the
bay on the order of 0.5 tol.5 days except in the extreme eastern and western basins where
résidence time actually increases by 0.3 to 0.9 days. Residence time decreased significantly
close to the breach. A breach in the westem basin, where residence time is on the order of 7

days, would be expected to show a much higher impact on local residence times.

6.4. Breach Case 2 (9-Month Breach)

Breach Case 2 corresponds to a breach with dimensions similar to a breach that has been open

 for nine months (nine-month breach). Existing condition bathymetry for each bay was modified

to include a breach with dimensions equivalent to a nine-month breach. The calibrated models
were run using the breach-modified bathymetry to simulate the effects of a breach with these

dimensions on hydrodynamics and water quality. Interimm Submission 9B: Inlet Dynamics -

~ Without-Project Future Conditions (USACE, 1999) describes the effects of the nine-month

breach on hydrodynamics.

6.4.1. Salinity

Great South Bay. Modeling results show very little difference in the effects of a three- or nine-

month breach on bay salinity. Average modeled salinjfy at each measurement station is shown in
Figure 6.23 for existing conditions, the three-month breach, and the nine-month breach. Figures
6.44 and 6.45 show salinity at peak ebb and peak flood tides, respectively. Figures 6.46 and
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6.47 show the relative change in salinity throughout the bay for peak ebb and peak flood tides,

respectively.

Moriches Bay. The impacts of a nine-month breach on salinity distributions are similar to those

of a three-month breach and are summarized in Figure 6.13. Salinity at stations 180 and 190 in
the eastern basin of Moriches Bay increased 0.3 and 0.1 ppt, respectively, relative to the three-
month breach due to increased flow of ocean water via the larger breach. Salinity at stations 120
and 130 in the western basin decreased 0.1 ppt. Salinity contour plots" showing salinity at peak
ebb tide and peak flood tide are presented in Figure 6.48 and 6.49, respectively. Figures 6.50
and 6.51 show plots of the difference in salinity between existing conditions and the nine-month

breach.

Shinnecock Bay. Salinity in Shinnecock Bay nine months after a breach is very similar to

salinity three months after a breach. Figure 6.17 shows that salinity at the measurement stations

1s the same for both cases. Salinity contour plots showing salinity at peak ebb tide and peak

. flood tide are presented in Figure 6.52 and 6.53, respectively. Figures 6.54 and 6.55 show plots

of the difference in salinity between existing conditions and the nine-month breach.

6.4.2. Temperature

Great South Bay. Modeled average temperature in Great South Bay is shown in Figure 6.23 at

each measurement station for existing conditions, the three-month breach case, and the nine-

- month breach case. These results indicate that there is very little additional impact from the

nine-month breach as resuits are nearly identical to those of the three-month breach. Figures
6.56 and 6.57 show the temperature throughout the bay at peak ebb and peak flood tides,
respectively. The relative difference in temperature between existing conditions and the nine-
month breach case is shown in Figure 6.58 for peak ebB tide and Figure 6.59 for peak flood tide

conditions.
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Moriches Bay. The three month and nine month breach impacts on Moriches Bay are similar.

Temperature contour plots shoWing temperature at peak ebb tide and peak flood tide are
presented in Figure 6.60 and 6.61, respectively. Figures 6.62 and 6.63 show plots of the

difference in temperature between existing conditions and the nine-month breach.

Shinnecock Bay. In Shinnecock Bay, the effects on temperature of a breach open for nine
months are very similar to the effects of a breach open for three months. Comparisons of
temperature at each measurement station, shown in Figure 6.26, indicate no difference between
the three- and nine-month breach cases. Temperature contour plots showing temperature at peak

ebb tide and peak flood tide are presented in Figure 6.64 and 6.65, respectively. Figures 6.66

. and 6.67 show plots of the difference in temperature between existing conditions and the nine-

month breach.

6.4.3. Residence Time

Great South Bay. Figure 6.68 shows the residence time throughout Great South Bay for the

nine-month breach case. Residence times are decreased an additional 3 days close to the breach

| ﬁnd 05t01 day in other areas of the bay relative to the three-month breach. The impacts of the

nine-month breach can be attributed to high existing condition residence times and the location
of the breach in the eastern basin. The relative changes in residence time for the nine-month

breach compared to existing conditions is shown in Figure 6.69.

. Moriches Bay. Residence times throughout Moriches Bay are shown in Figure 6.70 with the

relative change in residence time between the nine-month breach and existing conditions shown
in Figure 6.71. Results indicate that residence times decrease further for the nine-month breach
case. Residence times in the vjcinity of the nine-month breach are 0.7 days less than for the
three-month breach. Residence time decrease by less than 0.1 days in areas further removed
from the breach. |
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Shinnecock Bay. Shinnecock Bay residence times are shown in Figure 6.72 and the relative

change in residence time due to the nine-month breach is shown in Figure 6.73. Residence times
in the western basin were further lowered on the order of 0.2 days compared to the three-month
breach. Residence times in the western basin increase 0.1 to 0.2 days relative to the three-month

breach.
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7. FINDINGS AND CONCLUSIONS

7.1. General

This report presented future without-project conditions at Great South, Moriches, and
Shinnecock Bays, specifically salinity, temperature, and residénce time. The results in this
report follow Interim Submission No. 94, Inlet Dynamics - Existing Conditions (February,
1999) and Interim Submission No. 9B, Inlet Dynamics — Without-Project Future Conditions
(March, 1999). Advection/dispersion modeling was performed using the MIKE 21 finite
difference model to simulate inlet and estuarial salinity, temperature and residence time response

to the presence of barrier island breaches.

7.2. Model Calibration

Analyses show that the advection/dispersion model was successfully calibrated for each inlet/bay

- system. Calibration results are summarized as follows:

» Average modeled salinity was within 2 ppt of average measured values for each station in

~ each bay;
» Average modeled temperature was within 1°C of average measured values for each

station in each bay.

7.3. Future Witﬁout—Proj ect Inlet/Bay Water Quality

Breach scenarios for each inlet/bay system were investigated as the future without-project

‘conditton using the calibrated advection/dispersion model. Breaches with dimensions typical of

breaches open for three months and nine months were modeled to reflect the differences between
closure operations at Westhampton Beach in 1993 and operations proposed as part of the Breach
. 173 .
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Contingency Plan (USACE, 1996). Future without-project modeling results are summarized in

the following sections.

! 7.3.1. Future Without-Project Inlet/Bay Salinity

Generally, impacts of the barrier island breaches on salinity in Great South, Moriches, and

Shinnecock Bays were localized to the areas near the breaches and existing inlets.

Great South Bay.

> Salinity in the vicinity of the breach in Gfeat South Bay increased 1.6 and 2.0 ppt for the
three-month and nine-month cases, respectively;

> Salinity changed 0.1 ppt in areas further removed from the breach; and

» Salinity in the vicinity of the existing inlet decreased on the order of 0.5 ppt.

" Moriches Bay.

> Moriches Bay salinity changes were highést near the breach; specifically, salinity
j increased near the breach by 1.7 and 2.0 ppt for the three- and nine-month breach cases,
respectively;
» Changes to salinity distant from the breach location were on the order of #0.1 to 0.3 ppt;
~and

» There was no éigﬁiﬁcant difference between three- and nine-month salinities.

Shinnecock Bay.

> Shinnecock Bay salinity changes were highest in the eastern basin with increases of over

s 0.6 ppt;

> Salinity increases in the western basin were typically less than 0.4 ppt; and

N % There was no significant difference between three- and nine-month salinities.

174
USACE INTERNAL USE ONLY NOT FOR DISTIBUTION

------




Fire Island Inlet to Montauk Point Reformulation Study

Water Quality Modeling - Draft

7.3.2. Future Without-Project InIeMBay' Temperature

As was the case with salinity, impacts of the barrier island breaches on temperature in Great

South, Moriches, and Shinnecock Bays were near the breaches and existing inlets.

Great South Bay.

>

>
>

Temperature in the vicinity of the breach in Great South Bay decreased 0.5 and 0.7°C for
the three-month and nine-month cases, respectively; |
Temperature changed +0.1°C in areas further removed from the breach; and
Salinity inland from the inlet increased slightly as flow into the bay via the inlet was

reduced due to the breach.

Moriches Bay.

» Temperatures in Moriches Bay were largely unaffected by the breaches except for the
area directly inland from the breach;
> Temperature decreased at the breach by 0.8 and 1.0°C for the three- and nine-month
| breach cases, respectively;
» Changes to temperature in Moriches Bay in areas other than the breach location were on
the order of £0.1°C; and
- » There was no significant difference in impact due to the modeled six-month breach
closure delay.
Shinnecqck Bay.
> Temperatures in the eastern basin of Shinnecock Bay were slightly depressed while
temperatures in the western basin were slightly increased;
> Teinperature_s in the eastern basin decreased less than 0.2°C;
> Temperature increases in the western basin were less than 0.3 ppt; and _
» There was no significant difference in impact due to the modeled six-month breach

closure delay.

175
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7.3.3. Future Without-Project Inlet/Bay Residence Time

Residence time results reflect the changes in circulation caused by the breaches. These results
also demonstrate the impact of breach location has on circulation. For example, residence time
will change significantly when the breach occurs in an area of low bay circulation, but will show

modest changes near an existing inlet.

Greaf South Bav.

» Residence times were significantly impacted by a breach in eastermn Great South Bay with
reductions in residénce times on the order of 3 to 4 weeks.

» Residence times in western Great South Bay increased 4 to 6 days as the breach affected
circulation patterns and reduced flow through the existing inlet.

» The reductions in residence times for the three-month and nine-month breaches are

approximately 3 days close to the breach and 0.5 to 1 day in other areas of the bay.

Moriches Bay.

> A breach at Pikes Beach reduces residence times in Moriches Bay by 0.5 to 0.8 days;
» Decreases in residence time close to the breach are on the order of 8 days; while
> Residence times close to the bay entrances (i.c., the inlet and lateral boundaries) decrease

only 0.5 days.

' Shilmecock Bay.

» Residence time decreases throughout the bay (0.5 tol.5 days) except in the extreme
eastern and western basins where residence time increases by 0.3 to 0.9 days;

> As with the other bays, the fésidence time decreased the most near the breach; and

> A breach in the western basin, where residence time is on the order of 7 days, would be

expected to show a much higher impact on local residence times.
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