APPENDIX J

HUMAN HEALTH RISK ASSESSMENT REPORTS FOR AOC 1 AND 7 COMBINED

APPENDIX J HUMAN HEALTH RISK ASSESSMENT AT AOCs 1 & 7 – U.S. ARMY SOUTHERN LANDFILL AND TRIANGULAR DISPOSAL AREA FORMER SCHENECTADY ARMY DEPOT – VOORHEESVILLE AREA

Prepared For:

U.S. ARMY CORPS OF ENGINEERS

Prepared By:

PARSONS

290 Elwood Davis Road, Suite 312 Liverpool, New York 13088 Phone: (315) 451-9560 Fax: (315) 451-9570

August 2007

TABLE OF CONTENTS

	Page
ACRONYMS AND ABBREVIATIONS	vi
SECTION J.1 INTRODUCTION	1-1
J.1.1 PROJECT BACKGROUND	1-1
J.1.2 FACILITY AND SITE DESCRIPTION	1-2
J.1.3 RISK ASSESSMENT PROCESS	1-4
J.1.4 ORGANIZATION OF HHRA REPORT	1-6
SECTION J.2 DATA EVALUATION AND IDENTIFICATION OF CHEMICALS OF POTENTIAL CONCERN	2-1
J.2.1 INTRODUCTION	2-1
J.2.2 SCREENING CRITERIA OVERVIEW	2-1
J.2.3 RISK RATIO APPROACH	2-2
J.2.4 SURFACE AND SUBSURFACE SOIL SAMPLES	2-4
J.2.5 GROUNDWATER SAMPLES	2-5
J.2.6 SEDIMENT SAMPLES	2-5
J.2.7 SURFACE WATER SAMPLES	2-6
SECTION J.3 EXPOSURE ASSESSMENT	3-1
J.3.1 OBJECTIVE	3-1
J.3.2 CONCEPTUAL SITE MODEL	3-1
J.3.3 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS	3-2
J.3.4 EXPOSURE PATHWAYS	3-4
SECTION J.4 RISK RATIO AND SCREENING CRITERIA ASSESSMENT	r4-1
J.4.1 SCREENING AND COMPARISON CRITERIA ASSESSMENT	4-1
J.4.2 RISK RATIO ASSESSMENT	4-2
J.4.3 SCREENING CRITERIA	4-3
144 RISK RATIO FOUATIONS	4-6

Photo J.7.6

TABLE OF CONTENTS (CONTINUED)

	<u>Page</u>	
SECTION J.	5 RISK ASSESSMENT RESULTS AND UNCERTAINTIES5-1	
J.5.1 INT	RODUCTION5-1	
J.5.2 SUN	MMARY OF CARCINOGENIC AND NON-CARCINOGENIC RISK 5-1	
SECTION J.	6 REFERENCES6-1	
SECTION J.7 FIGURES, SITE PHOTOGRAPHS, AND TABLES (DATA AND RISK CALCULATION TABLES)7-1		
1	LIST OF FIGURES AND SITE VISIT PHOTOGRAPHS	
Figure J.1 Sit	te Vicinity	
Figure J2 Site	e Plan	
Figure J.3 A0	OC 1 and AOC 7 Site Planl	
Figure J.4 Hu	ıman Health Conceptual Site Model	
Photo J.7.1	Facing from the Northeast Side of AOC 1 – Pond and Drainage Area	
Photo J.7.2	Facing from the Northeast Side of AOC 1 – Typical Vegation for Pond and Drainage Area	
Photo J.7.3	Facing Northeast Adjacent from AOC 1 – Fence Boundary of SADVA	
Photo J.7.4	Northeast Side of AOC 1 – Terrestrial Vegetation	
Photo J.7.5	Abandoned Railroad Tracks Leading to AOC 7	

Freshwater Wetland Vegetation at AOC 7

TABLE OF CONTENTS (CONTINUED)

LIST OF TABLES

- Table J.7.1 Detected Chemicals in Surface Soil
- Table J.7.2. Detected Chemicals in Mixed (Surface/Subsurface) Soil
- Table J.7.3 Detected Chemicals in Groundwater and Screening Concentrations for Potential Vapor Intrusion of VOCs into Indoor Air
- Table J.7.3a Detected Chemicals in Groundwater and NYSDEC Screening Concentrations for Groundwater Quality
- Table J.7.3b Detected Chemicals in Groundwater and NYSDEC Screening Concentrations for Groundwater Quality
- Table J.7.4 Detected Chemicals in Sediment
- Table J.7.5 Detected Chemicals in Surface Water
- Table J.7.6 Comparison of Site Concentration to Background Surface Soils
- Table J.7.7 Comparison of Site Concentration to Background Mixed Depth Soils
- Table J.7.8 Comparison of Site Concentration to Background Sediment
- Table J.7.9 Comparison of Site Concentration to Background Surface Water
- Table J.7.10 Comparison to NYSDEC Screening Criteria Surface Soil
- Table J.7.11 Comparison to NYSDEC Screening Criteria Mixed Depth Soils
- Table J.7.12 Comparison to NYSDEC Screening Criteria Sediment
- Table J.7.13 Comparison to NYSDEC Screening Criteria Surface Water
- Table J.7.14 Risk Ratio Calculations Surface Soil
- Table J.7.15 Risk Ratio Calculations Mixed Depth Soils
- Table J.7.16 Risk Ratio Calculations Surface Sediment
- Table J.7.17 Risk Ratio Calculations Surface Water
- Table J.7.18 Risk Ratio Calculations AOC 1/7 Well Number E4800
- Table J.7.19 Risk Ratio Calculations AOC 1/7 Well Number E4801
- Table J.7.20 Risk Ratio Calculations AOC 1/7 Well Number E4802
- Table J.7.21 Risk Ratio Calculations AOC 1/7 Well Number E4803
- Table J.7.22 Risk Ratio Calculations AOC 1/7 Well Number E4804

TABLE OF CONTENTS (CONTINUED)

LIST OF TABLES (CONTINUED)

Table J.7.23	Risk Ratio Calculations AOC 1/7 Well Number E4806
Table J.7.24	Risk Ratio Calculations AOC 1/7 Well Number E4807
Table J.7.25	Risk Ratio Calculations AOC 1/7 Well Number E4808
Table J.7.26	Risk Ratio Calculations AOC 1/7 Well Number E4809
Table J.7.27	Risk Ratio Calculations AOC 1/7 Well Number E4810
Table J.7.28	Risk Ratio Calculations AOC 1/7 Well Number E4811
Table J.7.29	Risk Ratio Calculations AOC 1/7 Well Number E4812
Table J.7.30	Risk Ratio Calculations AOC 1/7 Well Number E4813
Table J.7.31	Risk Ratio Calculations AOC 1/7 Well Number E4880
Table J.7.32	Risk Ratio Calculations AOC 1/7 Well Number E4794
Table J.7.33	Risk Ratio Calculations AOC 1/7 Well Number E4795
Table J.7.34	Risk Ratio Calculations AOC 1/7 Well Number E4796
Table J.7.35	Risk Ratio Calculations AOC 1/7 Well Number E5306
Table J.7.36	Risk Ratio Calculations AOC 1/7 Well Number E7497
Table J.7.37	Risk Ratio Calculations AOC 1/7 Well Number MW-ACE2
Table J.7.38	Risk Ratio Calculations AOC 1/7 Well Number MW-AMW1
Table J.7.39	Risk Ratio Calculations AOC 1/7 Well Number MW-AMW2
Table J.7.40	Risk Ratio Calculations AOC 1/7 Well Number MW-AMW11
Table J.7.41	Risk Ratio Calculations AOC 1/7 Well Number MW-AMW-3
Table J.7.42	Risk Ratio Calculations AOC 1/7 Well Number MW-AMW-4
Table J.7.43	Risk Ratio Calculations AOC 1/7 Well Number MW-AMW-104
Table J.7.44	Risk Ratio Calculations AOC 1/7 Well Number SD-GW01-AOC7
Table J.7.45	Risk Ratio Calculations AOC 1/7 Well Number SD-GW03-AOC7
Table J.7.46	Risk Ratio Calculations AOC 1/7 Well Number MW-ACE4
Table J.7.47	Risk Ratio Calculations AOC 1/7 Well Number MW-ACE3
Table I 7.48	Rick Ratio Calculations AOC 1/7 Well Number MW-2-2

TABLE OF CONTENTS (CONTINUED)

LIST OF TABLES (CONTINUED)

Table J.7.49	Risk Ratio Calculations AOC 1/7 Well Number MW-ACE5
Table J.7.50	Risk Ratio Calculations AOC 1/7 Well Number MW-2BMW9
Table J.7.51	Risk Ratio Calculations AOC 1/7 Well Number MW-2AMW6
Table J.7.52	Risk Ratio Calculations AOC 1/7 Well Number MW-2BMW8
Table J.7.53	Risk Ratio Calculations AOC 1/7 Well Number MW-2AMW3
Table J.7.54	Risk Ratio Calculations AOC 1/7 Well Number MW-1
Table J.7.55	Risk Ratio Calculations AOC 1/7 Well Number MW-2
Table J.7.56	Risk Ratio Calculations AOC 1/7 Well Number MW-3
Table J.7.57	Risk Ratio Calculations AOC 1/7 Well Number MW-4
Table J.7.58	Risk Ratio Calculations AOC 1/7 Well Number AOC7-2AMW7
Table J.7.59	Risk Ratio Calculations AOC 1/7 Well Number AOC7-2AMW-5
Table J.7.60	Risk Ratio Calculations AOC 1/7 Well Number AOC7-HP01
Table J.7.61	Risk Ratio Calculations AOC 1/7 Well Number AOC7-HP02
Table J.7.62	Risk Ratio Calculations AOC 1/7 Well Number ACO7-HP03
Table J.7.63	Risk Ratio Calculations AOC 1/7 Well Number SD-GW02-AOC7
Table J.7.64	Risk Ratio Calculations AOC $1/7$ Well Number SC-2AMW5-AOC1
Table J.7.65	Risk Ratio Calculations AOC 1/7 Well Number SD-2AMW7-AOC1
Table I 7 66	Risk Ratio Calculations AOC 1/7 Well Number SD-GW13-AOC1

ACRONYMS AND ABBREVIATIONS

AOC	Area of concern
D&D	Construction and Debris
COPC	Chemical of potential concern
CSM	Conceptual site model
DERP-FUDS	Defense Environmental Restoration Program for Formerly Used Defense Sites
DOA	U.S. Department of the Army
DoD	Department of Defense
EIS	Environmental Impact Statement
EPC	Exposure point concentration
GURA	Guilderland Urban Renewal Agency
HHRA	Human health risk assessment
MCL	Maximum contaminant level
MSSL	Medium-specific screening level
NEIP	Northeast Industrial Park
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OSWER	Office of Solid Waste & Emergency Response
PAH	Polynuclear aromatic hydrocarbon
PCB	Polychlorinated biphenyl
PCL	Protective concentration level
PVC	Polyvinylchloride
RAB	Restoration Advisory Board
RAGS	Assessment Guidance for Superfund
RI	Remedial Investigation
SADVA	Schenectady Army Depot, Voorheesville Area
SQL	Sample quantitation limit
SVOC	Semivolatile organic compound
TCE	Trichlorethene
TCEQ	Texas Commission on Environmental Quality
TLC	Target Compound List
TRRP	Texas Risk Reduction Program
UCL	Upper confidence limit (95% UCL)
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
VOC	Volatile organic compound

SECTION J.1

INTRODUCTION

J.1.1 PROJECT BACKGROUND

- J.1.1.1 This quantitative human health risk assessment (HHRA) has been prepared by Parsons as part of the Remedial Investigation (RI) for combined Areas of Concern (AOCs) 1 and 7, located near the southeastern boundary of the former Schenectady Army Depot, Voorheesville Area (SADVA). AOC 1 is the former U.S. Army Southern Landfill and AOC 7 is the Triangular Disposal Area. AOCs 1 and 7 are being combined as a single site in this HHRA because the areas are nearly contiguous. The two AOCs are referred to as the "site" or the "area" throughout this HHRA.
- J.1.1.2 The specific objective of this quantitative HHRA is to provide a quantitative risk assessment of the soil, groundwater, sediment and surface water at the site. The HHRA will determine if there is potential risk to human health associated with exposure to these environmental media.
- J.1.1.3 This HHRA was conducted under the authority of the Defense Environmental Restoration Program for Formerly Used Defense Sites (DERP-FUDS). The SADVA site is DERP-FUDS site number C02NY0002. This HHRA has been prepared to satisfy the U.S. Army Corps of Engineers (USACE) requirements for RI projects. This HHRA is presented as Appendix J to the Parsons RI report and supports the evaluation and conclusions of potential impacts on soil, groundwater, sediment and surface water related to previous SADVA-related activities at the site.
- J.1.1.4 Although the HHRA for AOCs 1 and 7 has not been required by the State of New York or by the U.S. Environmental Protection Agency (USEPA), there are numerous guidelines and criteria from the State and the USEPA that are relevant to this HHRA. As described further in this HHRA, the assessment will use applicable guidelines including those provided by the New York State Department of Environmental Conservation (NYSDEC), the New York State Department of Health (NYSDOH), and the USEPA.
- J.1.1.5 As an appendix to the Parsons RI for AOCs 1 and 7, this HHRA refers to information provided in the RI report, including figures and tables relevant to the HHRA. The Parsons RI Report contains specific information related to the site history and regulatory status, land use, environmental setting (*e.g.*, surface features, hydrogeology, geology, and soils), and nature and extent of contamination. This HHRA refers to the RI Report for more detailed information as needed. All of the new figures and tables developed for this HHRA, site photographs taken during a site visit performed by the project risk assessment team in July 2006, and selected figures from the RI report are provided at the end of this HHRA.

J.1.2 FACILITY AND SITE DESCRIPTION

- J.1.2.1 The former SADVA is located 0.25 miles southeast of the Village of Guilderland Center, New York (Figure J.1). The former SADVA site plan showing AOCs 1 and 7 is provided on Figure J.2. The Department of Defense (DoD) held ownership of the SADVA property from 1941 through 1969. The site was originally constructed as a regulating station and a holding and reconsignment point, and later became a general Army depot. The principal mission of the installation was the receipt, storage, maintenance, and distribution of supply items for the U.S. Department of the Army (DOA).
- J.1.2.2 SADVA was closed in 1969 and most of the SADVA property, including AOCs 1 and 7, were sold to the Town of Guilderland Urban Renewal Agency (GURA). GURA leased the property to Galesi Group, Inc., which established the Northeast Industrial Park (NEIP). The NEIP has been in operation as an industrial park since this time. Various open spaces and buildings on the property are leased to tenants. The leased area has been used for manufacturing, maintenance and repair operations, and storage of goods.

Area of Concern 1 – U.S. Army Southern Landfill

- J.1.2.3 AOC 1 is the former U.S. Army Southern Landfill (Figure J.3). The site is approximately 10 acres in size and is situated near the southeastern boundary of the former SADVA. There is an approximately two-acre perennial pond located adjacent to the landfill. The landfill rises approximately four to six feet above the pond and swale, and is gently mounded, forming the elongated landfill. The pond has no apparent inlet. The water appears to be sustained by overland flow from topographically higher areas to the east and south, and groundwater seeping from the adjacent landfill mass. When the water level is high enough, the pond drains through a vegetation-choked swale that extends along the eastern edge of the landfill. There are two wetland areas located approximately 200 to 600 feet west of the southwestern end of the landfill. The pond and wetland areas ultimately discharge to Black Creek. Black Creek flows into the Bozenkill, and the Bozenkill flows into Watervliet Reservoir at a point about four miles downstream of AOC 1.
- J.1.2.4 The western edge of the landfill tapers into a railroad spur. A dirt road provides access to the landfill from the north and extends to the south end of the landfill. The landfill is covered by a soil layer that supports a variety of vegetation consisting of grass, shrubs, and a few isolated trees. The thickness and nature of the soil cover is inconsistent across the site and there are some areas of sparse vegetation, particularly in the southern portion of the site.
- J.1.2.5 Aerial photographs indicated activity at AOC 1 prior to 1942 and extending through 1968, (based on 1942, 1952, 1963, and 1968 aerial photographs). The landfill appeared to be inactive between 1973 and 1995 (based on 1973, 1978, 1982, 1986, and 1995 aerial photographs). Most activities occurred during the time SADVA was operated by the DoD. However, according to a report by the U.S. Army Toxic and Materials Agency (1980), no written records were found that would indicate that disposal of wastes occurred at the former SADVA. It is not unusual for there to be few, if any, written records of waste disposal for sites of this age and type.

- J.1.2.6 In 1990, ERM-Northeast conducted investigations for the Galesi Group, owners of NEIP (ERM-Northeast, 1990). Buried drums, construction and demolition (C&D) debris, ash, metal debris, chemical solvent odors, floating product, and oil-saturated sand above the water table were observed in test pits. Test pits and soil borings characterized the nature and extent of the fill. Information from the Malcolm Pirnie RI (1997) indicates that the fill consists of black ash, slag, metallic debris, steel cable, C&D material, wood, asphalt, red brick, black fill, and sludge-like materials. The fill ranges from less than 1 foot thick along the northeastern side to approximately 13 feet thick along the northwestern side. The presence of volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), and metals in surface soil, subsurface soil and groundwater had been detected, particularly in the southern section, where the fill is approximately 5 feet deep.
- J.1.2.7 Photos J.7.1 through J.7.4 show the typical vegetation and land features at AOC 1. These photos were taken during the site visit by the Parsons risk assessment team in July 2006.

Area of Concern 7 – Triangular Disposal Area

- J.1.2.8 AOC 7 is a triangular-shaped area located near the southeastern end of the former SADVA and west of AOC 1 (Figure J.3). This area was formerly bounded by railroad tracks on each of the three sides. Aerial photographs from the early 1940s indicate the presence of a possible dump in this triangular area, though no storage containers or debris were noted. It was speculated that the debris had been buried. A 1952 aerial photograph showed the area was inactive and partially vegetated. A review of aerial photographs from 1963, 1968 and 1974 showed some of the tracks had been removed and the site was partially vegetated open space. The site was inactive in a 1977 aerial photograph, but the tracks along the southern and eastern sides of the triangular area had been removed and the area was surrounded by woods on all sides.
- J.1.2.9 No previous written documentation has been found to confirm the presence of a dump area, or to indicate the types of materials that may have been disposed at the site. During the 1990s, the USACE conducted geophysical surveys to investigate the presence of subsurface disposal areas. The 1999 geophysical survey showed ground conductivity anomalies, suggesting that subsurface disposal areas or fill material may be present in this AOC. Four probable disposal areas were identified along the northeastern side. Two areas were attributed to buried metallic debris and two areas were attributed to nonmetallic conductive material.
- J.1.2.10 The objective of the Parsons RI was to assess the presence or absence of fill materials and to characterize surface soils, subsurface soils, and groundwater. Surface and subsurface soil samples were collected from four test pits that were excavated in the areas where the ground conductivity anomalies had been identified during the 1999 geophysical survey. A small amount of fill was encountered in the test pits. The fill consisted of railroad ties, charred wood, angular gravel, glass bottles, black stain, and asphalt. Groundwater samples were collected in July and August 2000 from three temporary wells and two monitoring wells. Metals concentrations in the groundwater samples from temporary wells may have been affected by high turbidity. Permanent wells were installed and sampled in 2004 and 2006 to improve the integrity of groundwater samples.

J.1.2.11 Photos J.7.5 and J.7.6 show the typical vegetation and land features at AOC 7. These photos were taken during the site visit by the Parsons risk assessment team in July 2006.

J.1.3 RISK ASSESSMENT PROCESS

Summary of Available Data for AOCs 1 and 7

- J.1.3.1 This quantitative HHRA for AOCs 1 and 7 uses the results of the data collected for the Parsons RI, the Malcolm Pirnie RI (Malcolm Pirnie, 1997), and other previous investigations that were summarized in the Malcolm Pirnie RI Report. Environmental sampling at the site has included surface soil, subsurface soil, groundwater, sediment, and surface water. Additional groundwater samples were also collected as part of the Parsons RI data gap work in 2004 and 2006. The 2006 data gap work included collecting an additional round of groundwater samples from 11 monitoring wells in the vicinity of AOCs 1 and 7. These samples were collected in June 2006 to provide an updated characterization of the VOC plume previously identified at AOC 1, to confirm the presence or absence of Target Compound List (TCL) VOCs in the vicinity of AOC 7, and to assess the water chemistry parameters related to natural attenuation processes. Additionally, a site visit was performed at AOCs 1 and 7 on July 11, 2006, by a Parsons team involved in the risk assessment process for the site. The site visit verified site characteristics and potential exposure pathways for AOCs 1 and 7.
- J.1.3.2 The data for all chemicals detected in each environmental media at AOCs 1 and 7 are provided in data summary tables at the end of this HHRA (Tables J.7.1 through J.7.5).

General HHRA Approach and Guidance Documents

- J.1.3.3 Techniques and methodology developed or recognized by the USACE and the USEPA were used for this HHRA. This quantitative HHRA is intended to satisfy USACE requirements for risk assessments during RI projects. As recommended by USACE, the quantitative HHRA uses a risk ratio approach to quantify potential risk. USEPA Region 6 risk-based human health screening values, and other screening values listed below, were used for the risk ratio analyses. NYSDEC human health criteria were qualitatively used in the risk ratio approach but were not used to develop the final risk ratio results. The NYSDEC criteria are not specifically derived for cancer and non-cancer risk assessments and thus these criteria were used for comparison only. The NYSDEC soil criteria are not based on human health effects, and the NYSDEC sediment criteria are based on effects to aquatic life only.
- J.1.3.4 The primary resources for conducting this quantitative risk ratio HHRA are listed and described below.
 - Standard Scopes of Work for HTRW Risk Assessments (USACE, 2001).
 - USEPA Region 6 *Human Health Medium-Specific Screening Levels* (USEPA, 2006a). These medium-specific screening levels (MSSL) are available for soil, groundwater, and surface water.

- Technical and Administrative Guidance Memorandum #4046, *Determination of Soil Cleanup Objectives and Cleanup Levels* (NYSDEC, 1994).
- Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations (NYSDEC, 1999).
- Human health-based sediment screening levels are not available from the State of New York or the USEPA. As presented in the HHRA methodology/assumptions, this HHRA uses the Tier 1 sediment protective concentration levels (PCL) developed by the Texas Commission on Environmental Quality (TCEQ) Texas Risk Reduction Program (TRRP), *Determining PCLs for Surface Water and Sediment* (TCEQ, 2006). The sediment PCLs are based on incidental ingestion of sediment and dermal contact with sediment by a residential receptor.
- To evaluate vapor intrusion of shallow groundwater contaminants into buildings, the primary resource included the USEPA (2002) OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). This document contains target groundwater concentrations that are calculated to correspond to target indoor air concentrations that are protective of human health if vapor intrusion occurs. The target groundwater concentrations are derived to ensure protection of a residential receptor, and thus provide a conservative evaluation for a potential future indoor worker in the area. Based on future land use plans at SADVA, as described in the Northeastern Industrial Park Generic Environmental Impact Statement (NEIP EIS) (Clough, Harbour & Associates LLP, June 2005), the Master Plan indicates office buildings and parking lots may be developed in the area of AOCs 1 and 7. The Plan describes buildings and parking lots consisting of three 20,000 square foot (ft²) offices and two parking areas with a total of 800 parking spaces. The site will not be converted to residential use, based on information presented in the Master Plan.
- The use of the target groundwater concentrations provides an initial screening for If this evaluation shows the potential for potentially unacceptable risks. unacceptable risk, further work may be necessary at the site. Additional work will follow the U.S. Army's Interim Vapor Intrusion Policy (USACE, 2006) and the USEPA User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings (USEPA, 2004a). The USEPA methodology uses the Johnson and Ettinger (J&E) model to evaluate vapor intrusion into buildings from groundwater. The New York State guidance documents, Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006) and DER-13 / Strategy for Evaluating Soil Vapor Intrusion at Remedial Sites in New York (NYSDEC, 2006) will also be considered and used, if necessary. Based on the guidance documents from the State of New York, all J&E results must be supported by actual sampling results, such as soil vapor samples, sub-slab vapor samples, crawl space samples, indoor air samples, and outdoor air samples. These types of samples will be required to satisfy New York guidelines.

• The USEPA provides the basic background and approach for performing standard HHRAs (e.g., data evaluation, exposure assessments, etc.). General procedures identified in the USEPA's Risk Assessment Guidance for Superfund (RAGS) (USEPA, 1989), were also followed for this HHRA in terms of data evaluation, the exposure assessment, and the toxicity assessment. Supplemental USEPA guidelines were also used in conjunction with RAGS.

J.1.4 ORGANIZATION OF HHRA REPORT

The overall risk assessment process consists of four key steps: data evaluation, exposure assessment, toxicity assessment, and risk characterization. These four steps of risk assessment provide the general outline of a quantitative risk assessment report. Because this HHRA uses the risk ratio approach, the outline and overall format is slightly modified from the traditional HHRA. This HHRA is still consistent with USEPA guidelines as presented in *Risk Assessment Guidance for Superfund* (RAGS) (USEPA, 1989) and supporting supplemental guidance including the *Standard Scopes of Work for HTRW Risk Assessments* (USACE, 2001). This HHRA uses the risk ratio approach organized into seven sections, as outlined below.

- A.1 Introduction,
- A.2 Data Evaluation and Identification of Chemicals of Potential Concern,
- A.3 Exposure Assessment,
- A.4 Risk Ratio and Screening Criteria Assessment,
- A.5 Risk Assessment Results and Uncertainties,
- A.6 References, and
- A.7 Figures, Site Photographs, and Tables (Data and Risk Calculation Tables).

SECTION J.2

DATA EVALUATION AND IDENTIFICATION OF CHEMICALS OF POTENTIAL CONCERN

J.2.1 INTRODUCTION

- J.2.1.1 Several chemicals were identified in the Parsons RI and the Malcolm Pirnie RI (1997) as posing a potential impact on human health. Soil, groundwater, sediment and surface water have been sampled at the site. Sampling results for the chemicals detected in each environmental medium are summarized in Tables J.7.1 through J.7.5. The dates of sample collection are shown in the tables. Samples collected in 1996 were for the Malcolm Pirnie RI. Samples collected prior to 1996 were from previous investigations that were summarized in the Malcolm Pirnie RI Report. Samples collected in 2000 and thereafter are from the Parsons RI and associated Parsons RI data gap work.
- J.2.1.2 Samples were analyzed for VOCs, semivolatile organic compounds (SVOC), pesticides, polychlorinated biphenyls (PCB), and metals. Appendix B of the Parsons RI report includes all of the analytical data and data validation reports for samples collected during the Parsons RI. The Malcolm Pirnie RI Report also includes a data validation report. It is assumed that data validation was performed on the data generated during the Malcolm Pirnie RI. It is unlikely that data from earlier investigations had been validated.
- J.2.1.3 The Parsons RI and the Malcolm Pirnie RI identified NYSDEC criteria for each of the detected chemicals/metals in each environmental medium. Site-specific background samples were also collected for each environmental medium and were used in conjunction with the NYSDEC criteria to evaluate the nature and extent of contamination. Numerous chemicals/metals were found to be above the NYSDEC and/or background criteria for soil, groundwater, sediment, and surface water.
- J.2.1.4 To provide a more precise estimate of groundwater contamination for this human health risk assessment, each of the monitoring wells and the residential wells located adjacent to the site that were sampled by Albany County Health Department in 1990 were assessed separately (see Table J.7.3a and J.7.3b, respectively, for a data summary).

J.2.2 SCREENING CRITERIA OVERVIEW

J.2.2.1 Based on USEPA RAGS guidance (USEPA, 1989) and supplemental guidance for data evaluation, the chemical of potential concern (COPC) list was refined during an initial screening. One of the screening steps is to eliminate essential nutrients from the HHRA. The essential nutrients calcium, magnesium, potassium, iron and sodium were removed from the list of chemicals included in this HHRA.

- J.2.2.2 All other chemicals/metals (hereafter referred to as "chemicals") detected in the Parsons RI and the Malcom Pirnie RI samples were included in the initial screening. As a default step in the screening process, the maximum detected chemical concentrations were used as the exposure point concentrations (EPCs) and those EPCs were compared to background concentrations. Using maximum concentrations provides a conservative (i.e,. most healthprotective) estimate of exposure to that chemical. For each chemical, if the EPC was greater than the background concentration, it was retained for the risk assessment. If an EPC was less than the background concentration, it was assumed not to pose a potential risk that is attributable to site activities, and was not included in the risk assessment. If no background concentration was available for a chemical, the chemical was retained for the risk assessment. If the initial risk ratio calculations identified a risk for a particular chemical, a 95% upper confidence limit (95% UCL) was calculated (see below for details) to ensure that the one sample with the maximum concentration was not driving the risk. The 95% UCL was used as the EPC and then the EPC was re-screened against the background concentration. The EPC for each chemical, using either the maximum detected concentration or the 95% UCL concentration, are compared to background concentrations on Tables J.7.6 (surface soil), J.7.7 (mixed soil), J.7.8 (sediment), and J.7.9 (surface water). There are no background concentrations available for groundwater.
- J.2.2.3 NYSDEC soil, groundwater, sediment and surface water quality criteria were qualitatively used in the risk ratio approach but were not used as the final risk ratio calculations. The NYSDEC criteria are not specifically derived for cancer and non-cancer risk assessments, and thus these criteria were used for qualitative comparison only. For each chemical retained after screening against the background value, the EPC was compared to the NYSDEC criteria, shown in Tables J.7.10 (surface soil), J.7.11 (mixed soil), J.7.12 (sediment), and J.7.13 (surface water). For completeness, the USEPA risk-based soil and surface water criteria (and the TCEQ sediment criteria) are included in the tables. For groundwater, the analytes that exceed the NYSDEC criteria are shown in bold on Tables J.7.3a and J.7.3b.

J.2.3 RISK RATIO APPROACH

- J.2.3.1 All chemicals that were retained after the comparison to background concentrations were considered COPC. This quantitative HHRA uses a risk ratio approach to quantify potential cancer risk and non-cancer hazard for each COPC in each contaminated media. The risk ratio method considers risk averaged across an entire exposure area (*e.g.*, surface soil across AOCs 1 and 7) and follows a tiered approach.
- J.2.3.2 Initially, maximum detected concentrations were used to calculate risk. Use of maximum concentrations provides a conservative (*i.e.*, most health-protective) estimate of exposure to that chemical. If unacceptable risk is calculated using maximum detected concentrations, then the 95% UCL is calculated and used as the EPC in the risk ratio approach. The 95% UCLs were calculated using the percentile bootstrap method assuming a non-parametric distribution for the particular chemical. This method was performed using USEPA's ProUCL Version 3.0 software (USEPA, 2004b). A minimum of 10 samples is needed for the purposes of calculating the 95% UCL. The data used to calculate UCLs are shown in Tables J.7.1 through J.7.5. For all chemicals that were detected in at least one sample, one half of the

detection limit was used as the concentration value in the 95% UCL calculations for samples that were non-detects (laboratory qualifier 'U').

- J.2.3.3 For groundwater, different approaches to determining the EPC were used, depending on the number of samples collected from each well. There were 19 residential wells, each with only a single sample. If an analyte was detected, the detected concentration was used as the EPC. There were also 35 non-residential wells, with one, two, or three sampling events at each well.
 - For the wells with a single sampling event, the concentration of each detected analyte was used as the EPC.
 - For the wells with two sampling events;
 - o If an analyte was detected during both sampling events, the average concentration of that analyte was used as the EPC.
 - o If an analyte was detected in only one of the two samples, the detected concentration was used as the EPC, even if the detected concentration was lower than the detection limit. In many cases, one-half the detection limit was higher than the detected concentration. Therefore, using an average of the detected concentration and half the detection limit would artificially increase the EPC, and would not be an accurate representation of risk at the well.
 - For wells with 3 sampling events, if an analyte was detected in one sample, the detected concentration was used as the EPC. If an analyte was detected in two or three samples from a given well, the data were inspected to determine if the chemical concentration was changing over time. If there was a trend (either upward or downward) in concentration over time, the latest concentration was used as the EPC. If there was no consistent trend over time, the average of the three data points was used as the EPC in risk calculations.
- J.2.3.4 In the risk ratio procedure, the ratio of the EPC (as derived following the procedures in the preceding paragraphs) was divided by the appropriate screening level for the environmental medium. As discussed above, the primary criteria for the risk ratio analysis were USEPA Region 6 MSSLs and TCEQ sediment PCLs.
- J.2.3.5 After calculating the risk ratios for individual chemicals using the USEPA MSSLs and TCEQ PCLs, the ratios for all the individual chemicals were then summed to determine the cumulative risk for each media. In the first tier, all carcinogenic chemicals were evaluated together, as were all non-carcinogenic chemicals. Carcinogenic risk ratios greater than the upper bound of the CERCLA acceptable risk range, 1.0 x 10⁻⁴, indicate a potentially unacceptable carcinogenic risk. Non- carcinogenic risk ratios greater than 1 (one) also indicate a potentially unacceptable risk. Should the non-carcinogenic chemicals have indicated an unacceptable risk, they would have been evaluated using specific target organs or organ groupings. To estimate the

risk associated with multiple non-carcinogenic chemicals, the risks are considered cumulative if the chemicals affect the same target organ. Therefore, if necessary, the target organs would have been identified for all non-carcinogenic chemicals. Although there were some non-carcinogenic risks identified in this HHRA, the risks were primarily driven by only one or two chemicals, and thus the use of target organ groupings would not have added value in this assessment. The primary chemicals driving the non-cancer risk are discussed in Section J.5 (Risk Assessment Results and Uncertainties).

- J.2.3.6 Based on USEPA RAGS guidance (USEPA, 1989) and supplemental guidance for data evaluation, the COPC list can be refined during initial screening. One of the steps is to screen essential nutrients from the HHRA. Thus, analytical results for any essential nutrients (e.g., calcium, magnesium, potassium, iron, sodium) were removed from the COPC list and not considered further in this HHRA.
- J.2.3.7 In addition to the chemicals eliminated during the initial screening process, another chemical that was not quantified using the risk ratio approach was lead. According to USEPA guidance, lead should be evaluated based on blood lead levels and not the potential for cancer or non-cancer risks. In the absence of blood lead data, lead concentrations detected at the site have been directly compared to the treatment technique action level. For groundwater and surface water, the maximum contaminant level (MCL) for lead is used as the treatment technique action level. For soil, both the commercial/industrial and the residential treatment technique action levels for lead are used. A detailed discussion of the development of the soil lead values is discussed in the USEPA Region 6 *Human Health Medium-Specific Screening Levels* user's guide (USEPA, 2006a). If lead concentrations at the site exceed the criteria, then unacceptable risk may occur. If lead concentrations are lower than the criteria, then there is no unacceptable risk.
- J.2.3.8 USEPA guidance also allows elimination of COPCs if they are detected in fewer than 5% of the samples in a particular medium. This requires at least 20 samples. However, detection frequency was only qualitatively reviewed on a case by case basis in this HHRA and only following the risk ratio analysis (*e.g.*, infrequently detected chemicals that are driving an unacceptable risk are identified). Thus, chemicals were not eliminated from the HHRA due to detection frequency. In summary, all COPCs, except essential nutrients and those chemicals with a maximum concentration less than the background concentrations were evaluated in this HHRA.
- J.2.3.9 The risk ratio calculations for AOCs 1 and 7 are presented in Tables J.7.14 (surface soil), J.7.15 (mixed soil), J.7.16 (sediment) and J.7.17 (surface water). For the residential wells, risk ratio calculations are presented for each well in Tables J.7.18 through J.7.36. For nonresidential (monitoring) wells, risk ratio calculations are presented for each well in Tables J.7.37 through J.7.66.

J.2.4 SURFACE AND SUBSURFACE SOIL SAMPLES

J.2.4.1 Surface soil samples were collected at various depths during the different investigations, with surface soil sample intervals ranging from zero to two inches, zero to six inches and zero to two feet. Therefore, surface soil at the site is defined as soil collected at

depths less than two feet from the surface and include exposure pathways with no, or very minor, soil disturbance (*e.g.*, wind dispersion of surface soil, landscaping/grounds keeping activities in surface soil).

- J.2.4.2 Subsurface samples were collected during the various investigations at depths between three and 40 feet. The subsurface sampling results were combined with the surface sampling results to evaluate exposure pathways involving mixed soils (e.g., during land development involving excavation and construction activities). The exposure assessment assumes that surface and subsurface soils are mixed during excavation/construction activities, and that potential exposure occurs to contaminants during the excavation/construction phase, or when contaminants are brought to and deposited near the surface.
- J.2.4.3 A total of 19 surface soil samples and 13 subsurface soil samples were collected at AOCs 1 and 7. Tables J.7.1 and J.7.2 of this HHRA further summarize the analytical data for surface soil and mixed (surface/subsurface) soils.

J.2.5 GROUNDWATER SAMPLES

- J.2.5.1 A total of 68 groundwater samples were collected from 35 nonresidential wells and 19 residential wells (see Table J.7.3a and J.7.3b, respectively) at and around AOCs 1 and 7. Several of these samples were collected at the same wells during different time frames and not all sampling activities included analyses for a complete suite of analytes. Many samples were single sampling events from individual wells.
- J.2.5.2 In the vicinity of AOCs 1 and 7 there is a dense layer of glacial till between the overburden and bedrock water-bearing zones. The glacial till separates the bedrock water-bearing zone from the shallow overburden water-bearing zone. The occurrence and depths to groundwater in the overburden (upper zone/unconfined layer) across SADVA have ranged from 2.5 feet at AOC 5 (in the southern part of SADVA), 23.9 feet at AOC 3 (in the northwest corner of SADVA), to as deep as 67 feet (in the southeast portion of SADVA near AOC 1). The wells are identified in Table J.7.3a and Table J.7.3b as either shallow or bedrock. Many of the samples (mostly within the 1990 and 1996 sample sets) did not indicate the depth of the well to determine whether it was a shallow well or a deeper well. The shallow wells and wells with unknown depths were used in the risk assessment to evaluate the vapor intrusion pathway (*i.e.*, intrusion of VOCs into indoor air from shallow groundwater). Wells with unknown depths were included in the analysis as a conservative approach. EPCs for each well were used as described above.

J.2.6 SEDIMENT SAMPLES

A total of 21 sediment samples were collected at AOC 1. The samples were collected from the wetland areas, pond and drainage areas, a seasonally wet area just west of the access road, and in the intermittently-flooded forested area between AOCs 1 and 7. Table J.7.4 summarizes the analytical data for sediment samples.

J.2.7 SURFACE WATER SAMPLES

- J.2.7.1 A total of 12 surface water samples were collected in pond and wetland areas around AOCs 1 and 7. Table J.7.5 of this HHRA summarizes the analytical data for surface water samples.
- J.2.7.2 Background surface water samples were collected from Black Creek, upstream of the former SADVA. These upstream locations are south and southwest of AOC 1 as shown on Figure 3.1 of the Parsons RI Report. Three background samples were collected from Black Creek near Route 201 and two additional samples were collected from Black Creek near Route 202 and upstream of Route 202.
- J.2.7.3 AOCs 1 and 7 are located within the Black Creek drainage area. The main Black Creek channel is located as much as 1,500 feet west of AOC 1. The Black Creek channel is surrounded by New York State wetland V-19. Wetland V-19 extends east of Black Creek and is adjacent to the western side of AOC 1. There is a pond and seasonally-wet area on the eastern side of AOC 1. This area is connected to wetland V-19 by a drainage ditch.
- J.2.7.4 The New York State Bureau of Watershed Management and the NYSDEC have classified the section of Black Creek adjacent to SADVA as a Class C stream. Class C waters are suitable for fishing and fish propagation and primary and secondary recreation, even though other factors may limit the use for that purpose. Individuals were known to withdraw water from Black Creek just south of where Black Creek joins the Bozenkill (Guilderland Water Department, 2000). That stretch of the Black Creek is classified as a Class B waterway by the NYSDEC. Class B waters are considered suitable for primary contact recreation and any other uses except as a source of water supply for drinking, culinary or food processing purposes. Further downstream, the Watervliet Reservoir is a Class A water body which is suitable for drinking water, culinary or food processing purposes, and all other uses. The reservoir is approximately four miles downstream of AOCs 1 and 7, and 2.5 miles downstream of the former SADVA. The Watervliet Reservoir water supply serves a population of over 40,000.
- J.2.7.5 For the Parsons RI, surface water sample results are compared to Class A and Class C criteria. The comparison of site samples to Class A criteria has been made for information purposes to address Restoration Advisory Board (RAB) concerns that water in Black Creek makes its way to the Watervliet Reservoir drinking water supply. Thus, for this HHRA, it was assumed that a residential receptor may be exposed to chemicals in the pond and wetland samples based on the connection between these areas and Black Creek, and Black Creek's ultimate connection to the Watervliet Reservoir. This scenario includes ingestion of surface water as drinking water and inhalation of volatiles from use of surface water in the home (e.g., showering, laundering, and dish washing). However, the Watervliet Reservoir is approximately four miles downstream of AOCs 1 and 7 and results for the AOC 8 (Black Creek) HHRA do not indicate an unacceptable risk exists, based on chemicals detected in Black Creek (refer to Appendix K for details).

SECTION J.3

EXPOSURE ASSESSMENT

J.3.1 OBJECTIVE

- J.3.1.1 The objective of the exposure assessment is to estimate the type and magnitude of potential exposures to COPCs at the site. The exposure assessment includes identification of potential exposure pathways, receptors, and exposure scenarios, as well as quantification of exposure. Characterization of the exposure setting and identification of all potentially exposed receptors and exposure pathways are discussed in this section. A conceptual site model (CSM) showing results of the exposure assessment is shown on Figure J.7.1 at the end of this section. Quantification of exposure involves quantifying the magnitude, frequency, and duration of exposure for the receptors and exposure pathways of concern.
- J.3.1.2 Surface soil, mixed (surface/subsurface) soil, groundwater, sediment and surface water have been evaluated as the environmental media of concern at AOCs 1 and 7. The exposure pathways relevant to the site are described in this exposure assessment and shown in the CSM.

J.3.2 CONCEPTUAL SITE MODEL

- J.3.2.1 A CSM is an effective tool for defining site dynamics, streamlining risk assessments, establishing exposure hypotheses, and developing appropriate corrective actions. The CSM for AOCs 1 and 7 is provided on Figure J.4 in Section J.7. CSMs are useful for identifying completed exposure pathways between the contaminated media and potential receptors. The purpose of the CSM is to aid in understanding and describing a site and presents the assumptions regarding:
 - Suspected sources and types of contaminants present;
 - Contaminant release and transport mechanisms;
 - Affected media;
 - Potential receptors that could come in contact with site-related contaminants in affected media under current and future land use scenarios; and
 - Potential routes of exposure.
- J.3.2.2 An overall description of contaminant sources, release mechanisms, and affected media was provided in previous sections. The potential receptors and completed exposure pathways is discussed in the following subsections. Further description of site characterization information is described in the Parsons RI and Malcolm Pirnie RI reports.

J.3.3 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS

- J.3.3.1 Potential human receptors are defined as individuals who may be exposed to site-related contaminants in environmental media. Consistent with USEPA (1989) guidance, current and reasonably anticipated land uses were considered in the receptor selection process.
- J.3.3.2 USEPA (1989) defines an exposure pathway as: "The course a chemical or physical agent takes from a source to an exposed organism. An exposure pathway describes a unique mechanism by which an individual or population is exposed to chemicals or physical agents at or originating from a site. Each exposure pathway includes a source or release from a source, an exposure point, and an exposure route. If the exposure point differs from the source, a transport/exposure medium (e.g., air) or media (in cases of intermedia transfer) is also included."
- J.3.3.3 A review of potential exposure pathways links the sources, locations, and types of environmental releases with receptor locations and activity patterns to determine the significant pathways of concern.
- J.3.3.4 Based on the previous investigations and the site visit by the project team performing the risk assessment for the site, the observations and reasonable assumptions for the potential human receptors for AOCs 1 and 7 are listed below.
 - **Current Receptors** AOCs 1 and 7 are currently vacant and located in a remote area of the NEIP that has limited access. Current NEIP land use includes infrequent visits to the site, such as those that would be performed during site sampling investigations. Incidental ingestion of surface soil, inhalation of volatiles from surface soil, and dermal contact with surface soil by an outdoor worker were assumed. However, this calculation assumes an exposure frequency of 225 days per year and an exposure duration of 25 years. Thus, it provides a very conservative evaluation for a potential current outdoor worker who would have much less exposure. This scenario is still conservative but much more likely for future use of the property as indicated in the NEIP EIS Master Plan (Clough, Harbour & Associates LLP, June 2005). The Master Plan indicates that the area may be used for offices and parking lots. The Plan describes buildings and parking lots consisting of three 20,000 ft² offices and two parking areas with a total of 800 parking spaces. The site will not be converted to residential use, based on information presented in the Master Plan.
 - **Future Receptors** Although the site is not residential and will not be converted to residential use based on the Master Plan, a residential pathway was shown for comparative purposes. Thus, incidental ingestion of surface soil, inhalation of volatiles from surface soil, and dermal contact with surface soil by a future resident were calculated. This provides the most conservative risk assessment (*i.e.*, most health protective evaluation) than for other types of receptors. Since this is not a complete exposure pathway, it is considered to be hypothetical and used for comparison only.

Based on future land use plans at NEIP as proposed in the Master Plan, it was assumed that the area could be developed and that future land use may include commercial use of the property (the offices and parking lots described above). The above current receptor evaluation is conservative for the future outdoor worker and thus this did not need to be re-evaluated for the future scenario. The current receptor evaluation is also very protective of a future indoor worker because indoor worker exposure to soils would be much less. Thus, the indoor worker exposure scenario was considered to be conservatively evaluated by the current outdoor worker.

• Current and Future Residential Exposure to Groundwater – The site is currently vacant and located in a remote part of the NEIP. The Master Plan indicates proposed commercial use of the land in the future (the offices and parking areas described above). The site will not be converted to residential use, based on information presented in the Master Plan. Although these are the current and foreseen land uses, several other conditions and assumptions were used for the groundwater exposure pathway.

Local shallow groundwater flow at AOC 1 is primarily toward Black Creek (to the west-southwest). At AOC 7, a component of shallow groundwater flow is also to the west-southwest toward Black Creek and the adjoining wetlands. The sites are located near the southeast end of the NEIP. The area surrounding the south and east boundaries of NEIP is composed of agricultural land and scattered residences. However, there are homes and businesses in the nearby off-site areas that may still use wells for drinking water or other purposes. Met Weld Inc. is a manufacturing plant that fabricates and welds fluid processing skids, gas process skids, and standalone electrical control buildings. Met Weld Inc. is located east of AOC 1 near the intersection of Ostrander Road and Depot Road (County Route 201). Met Weld Inc. apparently uses groundwater; it has a well that has been periodically tested by the NYSDOH.

Groundwater has been used periodically in the past at the Guilderland Central School for irrigation of school grounds and athletic fields. The school is approximately 1.2 miles from the AOCs 1 and 7 area, and not in the direction of groundwater flow. Most local residents are now on the Town of Guilderland public water supply (Town of Guilderland, 2000). The Town of Guilderland public water supply lines run along Route 201 as far as the railroad tracks west of the intersection of Ostrander Road and Route 201. The NEIP is supplied by the Town of Guilderland Water Department, as are most residents west and south of the area.

The USEPA groundwater MSSL used in the risk ratio analysis assumes residential exposure, and thus provides an estimate of risk to potential residents who may still be using a well. Onsite groundwater data were used in the risk analysis and thus the evaluation assumes that residents are living onsite, or are using site groundwater for drinking. NYSDEC Class GA groundwater standards also provide protection for groundwater designated as a source of drinking water and all other uses.

Residential receptors and exposure pathways are considered to provide a conservative estimate of risk for other potential receptors. For example, ingestion of groundwater by a resident will produce a higher level of risk than ingestion of groundwater by a current and/or future indoor and/or outdoor worker, because residents are expected to ingest more water over a longer period of time than a worker. Thus, worker scenarios for ingestion of groundwater were not evaluated separately because they are assumed to be conservatively evaluated via the residential exposure pathway.

J.3.4 EXPOSURE PATHWAYS

Surface Soil Exposure Pathways

J.3.4.1 All surface soil samples were collected at depths from 0 to 2 feet. Therefore, surface soil at the site is defined as soil collected at depths less than two feet from the surface and includes exposure pathways with no, or very minor, soil disturbance (e.g., general grounds maintenance, sampling investigations). Exposure occurs by direct contact and wind dispersion of contaminants. The receptors and pathways evaluated for surface soil are listed below.

- Incidental ingestion of surface soil, inhalation of volatiles from surface soil, and dermal contact with surface soil by a current outdoor worker. This calculation assumes an exposure frequency of 225 days per year and an exposure duration of 25 years. Thus, it provides a very conservative evaluation for a potential current outdoor worker who, under actual, current conditions, would have much less exposure.
- Incidental ingestion of surface soil, inhalation of volatiles from surface soil, and dermal contact with surface soil by a future outdoor worker. This is a complete exposure pathway but is not included separately in the risk ratio analysis because it is assumed to be conservatively evaluated under the current outdoor worker scenario (based on the exposure frequency and exposure duration).
- Incidental ingestion of surface soil, inhalation of volatiles from surface soil, and dermal contact with surface soil by a future indoor worker. This is a complete exposure pathway but is not included separately in the risk ratio analysis because it is assumed to be conservatively evaluated under the current outdoor worker scenario (future indoor workers would have much less exposure to surface soils than outdoor workers).
- Although the site is not residential and is not planned to be converted to residential use (based on the Master Plan), a residential pathway was shown for comparative purposes. Thus, incidental ingestion of surface soil, inhalation of volatiles from surface soil, and dermal contact with surface soil by a future resident were calculated. This provides the most conservative risk assessment (*i.e.*, most health protective evaluation) than for other types of receptors.

J.3.4.2 The chemicals detected in surface soil are shown in Table J.7.1. The exposure and risk ratio calculations for the surface soil pathway are presented in Table J.7.14.

Mixed Soil Exposure Pathways

- J.3.4.3 The subsurface soil sample results were combined with the surface soil sample results to evaluate exposure pathways involving mixed soils (*e.g.*, future land development including excavation activities). The exposure assessment assumes that surface and subsurface soils are mixed during excavation/digging activities, and that potential exposure occurs to contaminants during the excavation/construction phase or to contaminants brought to the surface after excavation and site development. Subsurface samples from the site were collected at depths between three and 40 feet. Thus, the mixed soil interval at the site is zero to 40 feet (the zero to two feet deep surface soils and the three to 40 feet deep subsurface soils).
- J.3.4.4 The receptors and pathways evaluated for mixed soil are exactly the same as those listed above for surface soil. They are included below for purposes of completing the CSM.
 - Incidental ingestion of mixed soil, inhalation of volatiles from mixed soil, and dermal contact with mixed soil by a current outdoor worker. This calculation assumes an exposure frequency of 225 days per year and an exposure duration of 25 years. Thus, it provides a very conservative evaluation for a potential current outdoor worker who, under actual, current conditions, would have much less exposure.
 - Incidental ingestion of mixed soil, inhalation of volatiles from mixed soil, and dermal contact with mixed soil by a future outdoor worker. This is a complete exposure pathway but is not included separately in the risk ratio analysis because it is assumed to be conservatively evaluated under the current outdoor worker scenario (based on the exposure frequency and exposure duration).
 - Incidental ingestion of mixed soil, inhalation of volatiles from mixed soil, and dermal contact with mixed soil by a future indoor worker. This is a complete exposure pathway but is not included separately in the risk ratio analysis because it is assumed to be conservatively evaluated under the current outdoor worker scenario (future indoor workers would have much less exposure to mixed soils than outdoor workers).
 - Although the site is not residential and is not planned to be converted to residential use (based on the Master Plan), a residential pathway was shown for comparative purposes. Thus, incidental ingestion of mixed soil, inhalation of volatiles from mixed soil, and dermal contact with mixed soil by a future resident where calculated. This provides the most conservative risk assessment (*i.e.*, most health protective evaluation) than for other types of receptors.
- J.3.4.5 Chemicals detected in mixed soil are shown in Table J.7.2. Exposure and risk ratio calculations for this pathway are presented in Table J.7.15.

Groundwater Exposure Pathways

- J.3.4.6 AOCs 1 and 7 are currently vacant and located in a remote area of the NEIP that has limited access. The site is not expected to be converted to residential land use based on the NEIP Master Plan. The area surrounding the south and east boundaries of the NEIP, close to AOCs 1 and 7, is composed of agricultural land and scattered residences. It is uncertain whether all homes in this area have converted to the Town of Guilderland public drinking water supply. The nearby Met Weld, Inc property has a groundwater supply well that has been tested periodically by the Albany County Health Department. Thus, there are some homes and businesses in this area that may still use private wells for drinking water or other purposes. Groundwater beneath the site is also very shallow and there may be potential for vapor intrusion of contaminants into indoor air (*e.g.*, vapor intrusion into buildings that may be constructed on site or possibly homes/businesses located near the site).
- J.3.4.7 Based on these potential exposure scenarios, the groundwater at the site was evaluated for the receptors listed below.
 - Ingestion of groundwater as drinking water and inhalation of volatiles from use of groundwater in the home (e.g., showering, laundering, and dish washing) by a current residential receptor. Residential receptors and exposure pathways are considered to provide a conservative estimate of risk for other potential receptors. Thus, ingestion of groundwater by a resident will produce a higher level of risk than ingestion of groundwater by a current and/or future indoor and/or outdoor worker. The worker scenarios may be complete exposure pathways if groundwater was used as drinking water; however, these pathways are not included in the risk ratio analysis because they are assumed to be conservatively evaluated under the residential scenario.
 - Inhalation of volatiles (from vapor intrusion of groundwater VOCs into indoor air) by a current resident and a future industrial/commercial worker. These exposure pathways are considered to be potentially complete because groundwater beneath the site is very shallow and VOCs in groundwater could possibly intrude into indoor air. The examples given above include vapor intrusion into future buildings that may be constructed on site or possibly homes/businesses currently located near the site.
- J.3.4.8 Chemicals detected in groundwater are shown in Table J.7.3 for the vapor intrusion pathway. The vapor intrusion pathway was assessed for the all the residential wells and for all the nonresidential wells combined. If an unacceptable risk was determined due to vapor intrusion, the well(s) responsible for driving vapor intrusion risk were assessed separately. Exposure and risk ratio calculations for the drinking water pathway in each residential well are presented in Tables J.7.18 through J.7.36. Exposure and risk ratio calculations for the drinking water pathway in each nonresidential (monitoring) well are presented in Table J.7.37 through J.7.66.

Sediment Exposure Pathways

- J.3.4.9 Sediment sample results were compared to TCEQ Tier 1 sediment PCLs which are screening values developed to be protective of residential exposure to sediment. Thus, these values are considered to be conservative for current or future workers who might come into contact with contaminated sediment. The worker scenarios may be complete exposure pathways if workers were to come in contact with contaminated sediment; however, these pathways are not separately included in the risk ratio analysis because they are assumed to be conservatively evaluated under the residential scenario.
- J.3.4.10 The PCL screening values incorporate incidental ingestion of sediment and dermal contact with sediment. The exposure areas at the site include the wetland areas, an approximately 2-acre perennial pond located adjacent to the landfill, drainage areas, a seasonally wet area just west of the access road, and the intermittently-flooded forested area between AOCs 1 and 7.
- J.3.4.11 Chemicals detected in sediment are shown in Table J.7.4. Exposure and risk ratio calculations for the residential sediment exposure pathway are presented in Table J.7.16.

Surface Water Exposure Pathways

- J.3.4.12 AOCs 1 and 7 are located within the Black Creek drainage area. The main Black Creek channel is located up to 1,500 feet west of AOC 1, where it is surrounded by New York State wetland V-19. Wetland V-19 extends east of Black Creek and is adjacent to the western side of AOC 1. There is a pond and seasonally-wet area on the eastern side of AOC 1. This area is connected to wetland V-19 by a drainage ditch.
- J.3.4.13 The section of Black Creek adjacent to SADVA has been classified by the New York State Bureau of Watershed Management and the NYSDEC as a Class C stream. Class C waters are suitable for fishing and fish propagation and primary and secondary recreation. Black Creek flows north and joins the Bozenkill. Individuals were known to withdraw water from Black Creek just south of its confluence with the Bozenkill (Guilderland Water Department, 2000). That stretch of the Black Creek is classified as a Class B waterway by the NYSDEC. Class B waters are suitable for primary contact recreation and any other uses except as a source of water supply for drinking, culinary, or food processing purposes. Farther downstream, approximately four miles from AOCs 1 and 7, the Watervliet Reservoir is a Class A water body, which is suitable for drinking, culinary or food processing, and all other uses. The Watervliet Reservoir water supply serves a population of over 40,000.
 - J.3.4.14 Based on land use, the surface water receptors and exposure pathway will be:
 - Ingestion of surface water as drinking water and inhalation of volatiles from use of surface water in the home (e.g., showering, laundering, and dish washing) by a current and/or future residential receptor. The residential "tap water" screening level will be used. The residential exposure scenario is protective of other receptor scenarios. Thus, if surface water were to be used by indoor or outdoor workers,

the residential values would be protective for the workers. Thus, the potential worker scenarios were not evaluated.

J.3.4.15 Chemicals detected in surface water are shown in Table J.7.5. Exposure and risk ratio calculations for the residential surface water exposure pathway are presented in Table J.7.17.

SECTION J.4

RISK RATIO AND SCREENING CRITERIA ASSESSMENT

J.4.1 SCREENING AND COMPARISON CRITERIA ASSESSMENT

- J.4.1.1 The screening criteria assessment considers that if the EPC is less than the background value, there is no risk from that chemical attributable to the site. In addition to essential nutrients being eliminated from this HHRA, the following chemicals were eliminated from further analysis. In surface soil, the following chemical concentrations did not exceed background and were eliminated from further consideration (Table J.7.6):
 - Benzo(k)fluoranthene
 - 4,4'-DDE
 - 4,4'-DDT
 - Aluminum
 - Antimony
 - Arsenic
 - Barium
 - Beryllium
 - Lead
 - Manganese
 - Mercury
 - Selenium
 - Thallium
 - Zinc
- J.4.1.2 In mixed soil, the following chemical concentrations did not exceed background and were eliminated from further consideration (Table J.7.7):
 - Benzo(a)pyrene
 - Benzo(b)fluoranthene
 - Benzo(k)fluoranthene
 - 4,4'-DDE
 - 4,4'-DDT
 - Aluminum
 - Antimony
 - Arsenic
 - Lead

- Manganese
- Mercury
- Selenium
- Thallium
- Zinc
- J.4.1.3 In sediment, the following chemical concentrations did not exceed background and were eliminated from further consideration (Table J.7.8):
 - Acetone
 - Aluminum
 - Thallium
- J.4.1.4 In surface water, the following chemical concentrations did not exceed background and were eliminated from further consideration (Table J.7.9):
 - Aluminum
 - Beryllium
 - Manganese
 - Mercury
- J.4.1.5 Tables J.7.10 through J.7.13 show the qualitative comparison of the EPCs for surface soil, mixed soil, sediment and surface water to the NYSDEC screening criteria, as well as the USEPA Region MSSLs and TCEQ PCLs, as appropriate. Tables J.7.3a and J.7.3b show the qualitative comparison of the EPCs for groundwater to the NYSDEC Class GA groundwater quality criteria; concentrations exceeding the criteria are shown in bold. These tables are presented for informational purposes.

J.4.2 RISK RATIO ASSESSMENT

J.4.2.1 The risk ratio method considers risk averaged across an entire exposure area (e.g., surface soil across AOCs 1 and 7) and follows a tiered approach. For the risk ratio assessment for soil, the maximum detected chemical concentrations were the EPCs initially used to calculate risk. Use of maximum concentrations provides the most health-protective estimate of exposure to a particular chemical. If unacceptable risk is calculated based on the maximum detected concentration, then the 95% UCL was calculated and used in the risk ratio approach. This was done to ensure that one sample having the maximum detected concentration was not completely driving the risk calculation. The 95% UCLs were calculated using the percentile bootstrap method, assuming a non-parametric distribution of the particular chemical. This method was performed using USEPA's ProUCL Version 3.0 software (USEPA, 2004b). A minimum of 10 samples was needed to calculate the 95% UCL. A 95% UCL was only calculated for chemicals that have been detected in at least one sample. One-half the sample quantitation limit (SQL) was used as a concentration value for samples in which the chemical was reported as not detected.

- J.4.2.2 The EPC for groundwater was the detected concentration, if only one sample was collected in a well. For wells with two sampling events, the average concentration was used as the EPC, unless there was only one detected concentration in the two sampling events. In the latter case, the detected concentration was used as the EPC. In wells with 3 sampling events, for each detected analyte, the data were inspected to determine if there was a consistent downward or upward trend. If there was a consistent downward or upward trend, the latest concentration was used as the EPC. If there were three detected concentrations and no obvious trend, the average concentration was used as the EPC. For wells where a duplicate sample was collected, the highest result of the primary or duplicate sample was used as the EPC.
- J.4.2.3 In the risk ratio analysis, the ratio of the EPC was divided by the appropriate screening level for the environmental medium. For soil, the EPC for detected analytes are either the maximum detected concentration or the 95% UCL. For groundwater, the EPCs for each detected analyte in each well are calculated as described above (*e.g.*, the detected concentration, the average concentration, or the latest concentration). If the EPC was within the background range for a particular chemical, the risk ratio was not calculated for that chemical. Background concentrations were available for PAHs, pesticides/PCBs, metals, and other miscellaneous volatile or semivolatile chemicals that are sometimes found in the environment from regional anthropogenic sources. Background concentrations were not available for groundwater.
- J.4.2.4 Following calculation of the risk ratios for individual chemicals, the ratios were then summed to determine the cumulative risk. Carcinogenic risk ratios greater than the upper bound of the CERCLA acceptable risk range, 1.0 x 10⁻⁴, indicate a potentially unacceptable carcinogenic risk. Non-carcinogenic risk ratios greater than 1 (one) also indicate a potential unacceptable risk. In the first tier, all carcinogenic chemicals were evaluated together, as were all non-carcinogenic chemicals. Should the non-carcinogenic chemicals have indicated an unacceptable risk, they would have been evaluated using specific target organs or organ groupings. To estimate the risk associated with multiple non-carcinogenic chemicals, the risks are considered cumulative if the chemicals affect the same target organ. Therefore, if necessary, the target organs would have been identified for all non-carcinogenic chemicals. Although there were some non-carcinogenic risks identified in this HHRA, the risks were primarily driven by only a few chemicals, and thus the use of target organ groupings would not add value or additional information to this assessment. The primary chemicals driving the non-cancer risk are discussed in Section J.5 (Risk Assessment Results and Uncertainties).

J.4.3 SCREENING CRITERIA

Soil Screening Criteria

J.4.3.1 The soil sample results were compared to NYSDEC soil criteria, background concentrations, and USEPA soil screening levels (*i.e.*, USEPA soil MSSLs). The NYSDEC-recommended soil cleanup criteria for metals include provisions for using site-specific background concentrations, as well as reference concentrations for eastern U.S. soils. The background metals concentrations were integrated into the NYSDEC soil criteria using the guidance provided by NYSDEC (1994). Thus, the criteria for metals were derived by integrating

the NYSDEC criteria with the background concentrations and using the higher of the two concentrations as the screening criteria (NYSDEC, 1994). The higher of the reference eastern U.S. soil concentrations and the site-specific background concentration for each metal was accepted as the "RI background concentration" for comparison purposes in the Parsons RI.

- J.4.3.2 Based on the exposure assessment for current and future land use (discussed in Section J.3), the soil risk-based levels from USEPA Region 6 (*i.e.*, the soil MSSLs) were the following:
 - Current outdoor industrial (commercial) worker the risk ratio screening levels are the cancer (corresponding to a risk of 10⁻⁶) and non-cancer (HQ=1) values calculated for incidental ingestion of soil, inhalation of volatiles from soil, and dermal contact with soil. These values are very conservative for a current scenario because they are based on an exposure frequency of 225 days and an exposure duration of 25 years. As previously discussed, these values are protective of potential future outdoor or indoor workers.
 - Although the site is not residential and is not expected to be converted to residential use, a residential pathway was shown for comparative purposes. Thus, incidental ingestion of soil, inhalation of volatiles from soil, and dermal contact with soil by a future resident where calculated. This provides the most conservative risk assessment (*i.e.*, most health protective evaluation) as compared to other types of receptors.
- J.4.3.3 One screening value was derived for the combined exposure routes. Thus, incidental ingestion of soil, inhalation of volatiles from soil, and dermal contact with soil were included as the combined exposure route.

Groundwater Screening Criteria

- J.4.3.4 Groundwater results were compared to NYSDEC Class GA groundwater standards (NYSDEC, 1998). Class GA groundwater standards provide protection for groundwater designated as a source of drinking water and all other uses.
- J.4.3.5 Based on the exposure assessment for current and future land use, the groundwater risk-based levels from USEPA Region 6 (*i.e.*, the groundwater MSSLs) are those listed below:
 - Current residential receptor the risk ratio screening levels are the cancer (10⁻⁶) and non-cancer (HQ=1) "tap water" values calculated for ingestion of groundwater as drinking water, and inhalation of volatiles from use of groundwater in the home (e.g., showering, laundering, and dish washing). Residential receptors and exposure pathways are considered to provide a conservative estimate of risk for other potential receptors. As previously discussed, these values are protective of potential future outdoor or indoor workers.

• Screening criteria to evaluate vapor intrusion of shallow groundwater VOCs into buildings were based on USEPA (2002) target groundwater concentrations. The target groundwater concentrations are calculated to correspond to target indoor air concentrations that are protective of human health if vapor intrusion occurs. As previously discussed, the target groundwater concentrations are derived to ensure protection of a residential receptor, and thus provide a conservative evaluation for a potential future indoor worker. Based on future land use plans as described in the NEIP EIS Master Plan (Clough, Harbour & Associates LLP, June 2005), future land use for AOCs 1 and 7 may include office buildings and parking lots. The site will not be converted to residential use, based on information provided in the Master Plan.

Sediment Screening Criteria

- J.4.3.6 The sediment risk-based levels (*i.e.*, sediment Tier 1 PCLs) from TCEQ are based on the following assumption:
 - Residential receptor the risk ratio screening levels are the cancer (10⁻⁵) and non-cancer (HQ=1) values calculated for incidental ingestion of sediment and dermal contact with sediment.
- J.4.3.7 No PCLs will be developed for indoor and outdoor industrial (commercial) workers. The sediment PCLs are based on residential exposure. Because of the residential-based calculation of the sediment PCLs, the values are very conservative and thus would also be protective for a current outdoor worker or a future outdoor construction worker.

Surface Water Screening Criteria

- J.4.3.8 Surface water results were compared to NYSDEC Class A and Class C surface water standards/guidance values (NYSDEC, 1998) and/or background concentrations. AOCs 1 and 7 are located within the Black Creek drainage area. It is unlikely that runoff from AOC 7 would reach Black Creek; the area is flat and there are no ditches draining the AOC 7 area. The main Black Creek channel is located approximately 1,500 feet west of AOC 1. The Black Creek channel is surrounded by New York State wetland V-19. Wetland V-19 extends east of Black Creek and is adjacent to the western side of AOC 1. There is a pond and seasonally-wet area on the eastern side of AOC 1. The pond is connected to wetland V-19 by a drainage ditch.
- J.4.3.9 For the Parsons RI, surface water sample results were compared to Class A and Class C criteria. The comparison of site samples to Class A criteria has been made for informational purposes based on RAB concerns that water in Black Creek may make its way to the Watervliet Reservoir drinking water supply.
- J.4.3.10 Based on land use, the surface water risk-based levels (*i.e.*, surface water MSSLs) from USEPA Region 6 will be:

• Residential receptor – the risk ratio screening levels are the cancer (10⁻⁶) and non-cancer (HQ=1) "tap water" values calculated for ingestion of surface water as drinking water and inhalation of volatiles from use of surface water in the home (e.g., showering, laundering, and dish washing). As previously discussed, residential receptors and exposure pathways are considered to provide a conservative estimate of risk for other potential receptors. Thus, these values are protective for potential future outdoor or indoor workers.

J.4.4 RISK RATIO EQUATIONS

J.4.4.1 Cancer risks were estimated using the following equation. This equation assumes use of maximum concentrations or the 95% UCLs for the EPCs.

Cumulative Risk =
$$\sum (TR) \frac{(EPC_i)}{MSSL_{c-i}}$$

where:

Cumulative Risk = Cumulative risk for carcinogenic COPCs one through "i"

(unitless), where $(TR)\frac{(EPC_i)}{MSSL_{c-i}}$ is the chemical-specific

cancer risk for chemical "i";

TR = Target lifetime excess cancer risk of 10^{-6} (unitless) or 10^{-5} for

sediment only;

EPC_i = Exposure point concentration for chemical "i" (mg/kg for

soil/sediment or µg/L for water); and

MSSL_{c-i} = USEPA Region 6 (2006a) residential cancer-based medium-

specific screening level (MSSL) (mg/kg for soil or μ g/L for water) for chemical "i" (for sediment evaluations, the TCEQ PCL is

used).

J.4.4.2 Non-cancer risks were estimated using the following equation. This equation assumes use of maximum concentrations or the 95% UCLs for the EPCs.

$$HI = \sum (THQ) \frac{(EPC_i)}{MSSL_{nc-i}}$$

where:

HI = Cumulative hazard index for non-cancer COPCs one through "i" (unitless), where $(THQ)\frac{(EPC_i)}{MSSL_{nc-i}}$ is the chemical-specific non-cancer hazard quotient (HQ) for chemical "i";

THQ = Target hazard quotient of one (unitless);

EPC_i = Exposure point concentration for chemical "i" (mg/kg for soil/sediment or μg/L for water); and

 $MSSL_{nc\text{-}i} = USEPA \ Region \ 6 \ (2006a) \ residential \ cancer-based \ medium-specific screening level (MSSL) (mg/kg for soil or <math>\mu$ g/L for water) for chemical "i" (for sediment evaluations, the TCEQ PCL is used).

SECTION J.5

RISK ASSESSMENT RESULTS AND UNCERTAINTIES

J.5.1 INTRODUCTION

J.5.1.1 The primary objective of this HHRA was to quantitatively characterize the human health risk associated with current and reasonably expected future exposure to contaminated media at AOCs 1 and 7. As discussed in Section J.3, all potentially complete exposure pathways for the site were evaluated or were assumed to be evaluated based on more protective exposure scenarios (*e.g.*, the residential scenarios provide very conservative estimates for standard worker scenarios). The exposure pathways were outlined in Section J.3 and were also shown on the CSM (Figure J.7.1). The results of the risk ratio quantification are presented in this section.

J.5.2 ESTIMATED RISKS FOR SURFACE SOIL

- J.5.2.1 The calculated risks for surface soil are shown in Table J.7.14.
- J.5.2.2 No unacceptable risks were calculated for the non-carcinogenic COPCs in the surface soils at AOCs 1 and 7. The cumulative non-carcinogenic risk ratio results were 0.94 and 0.26 for the residential and industrial receptors, respectively. These results are below the cumulative risk ratio threshold of 1 (one) indicating no unacceptable risk is expected.
- J.5.2.3 No unacceptable risks were calculated for the carcinogenic COPCs in the surface soils at AOCs 1 and 7. The cumulative carcinogenic risk ratios were 3.1×10^{-5} and 1.0×10^{-5} for residential and industrial receptors, respectively. These results are within the acceptable range of 1×10^{-4} and 1×10^{-6} .

J.5.3 ESTIMATED RISKS FOR MIXED SOIL

- J.5.2.4 The calculated risks for mixed soil are shown in Table J.7.15.
- J.5.2.5 As with surface soils at AOCs 1 and 7, no unacceptable risks were calculated for the non-carcinogenic chemicals detected in the mixed soils at the site. The cumulative non-carcinogenic risk ratio results were 0.72 and 0.16 for the residential and industrial receptors, respectively. These results are well below the cumulative risk ratio of one, indicating no unacceptable risk occurs for the mixed soil exposure pathways.
- J.5.2.6 Similar to surface soil, there were no unacceptable risks associated with carcinogenic chemicals in mixed soils at AOCs 1 and 7. The cumulative risk ratios for carcinogenic chemicals were 1.7×10^{-5} and 6.4×10^{-6} , which are within the acceptable range of 1×10^{-4} and 1×10^{-6} .

J.5.4 ESTIMATED RISKS FOR GROUNDWATER USED AS DRINKING WATER

J.5.2.7 The calculated risks for groundwater were evaluated for each individual well. There were no background concentrations available for groundwater, so the results are qualitatively compared to NYSDEC Class GA criteria prior to the risk ratio calculations, as shown in Tables J.7.3a (nonresidential wells) and J.7.3b (residential wells). No analytes were eliminated from consideration in the SLRA.

Residential Wells

- J.5.3.1 Tables J.7.18 through J.7.36 present the results of the risk ratio calculations for each of the residential wells. For all of the residential wells except well E5306 (Table J.7.35, discussed below), there were no unacceptable carcinogenic risks associated with contaminants in the wells. The highest carcinogenic risk for any of the residential wells was 1.1×10^{-6} , which is less than the upper end of USEPA's acceptable risk range of 1.0×10^{-4} . The highest cumulative non-carcinogenic risk for any of the residential wells is 0.11, which is significantly less than one, indicating that there is no unacceptable non-carcinogenic risk in any of the residential wells.
- J.5.3.2. For well E5306, the cumulative non-carcinogenic risk (0.0015) is less than one, indicating no unacceptable non-carcinogenic risks. The cumulative carcinogenic risks in well E5306 were 1.8×10^{-4} , which is greater than the upper end of USEPA's acceptable risk range of 1.0×10^{-4} . The chemical that is driving the cumulative risk in this well is arsenic, with a detected concentration of $7.9 \,\mu\text{g/L}$. The guidelines of the Safe Drinking Water Act as developed by the USEPA sets a drinking water standard for arsenic at $10 \,\mu\text{g/L}$ The safe water drinking water standard is higher than the detected concentration of arsenic at well E5306, indicating that the detected concentration of arsenic in this well is less than the concentration of arsenic allowed in drinking water.
- J.5.3.3 Lead is not assessed in the cumulative risk ratios described above, but is assessed individually. There was lead detected in only one residential well, E4880 (Table J.7.31). The detected concentration of lead in well E4880 exceeded the USEPA screening value by a factor of 3.3, indicating that there is a potential for an unacceptable risk due to lead in well E4880. This well was only sampled in 1990, and it is not known if lead has attenuated in the well since that sampling event. Additionally, well construction was not reviewed to determine if lead pipe was used in the construction of the well.

Nonresidential Wells

Tables J.7.37 through J.7.66 present the results of the risk ratio calculations for each of the nonresidential (monitoring) wells. Because of the large number of wells, the results of groundwater analyses at nonresidential wells will be further divided into those wells with calculated non-carcinogenic risk, carcinogenic risk, and risks due to lead.

Non-carcinogenic Risks in Nonresidential Wells

Five nonresidential wells have cumulative non-carcinogenic risks greater than one.

- Well MW-AMW1 (Table J.7.38) has a cumulative non-carcinogenic risk ratio value of 1.6, primarily due to the presence of the VOC cis-1,2-dichlorethene (risk ratio = 1.4). The EPC for cis-1,2-dichlorethene is based on one sample collected in 1996, and because no additional samples have been collected, it is not known if attenuation has occurred at this well.
- Well MW-AMW11 (Table J.7.40) has a cumulative non-carcinogenic risk ratio value of 1.6, primarily due to the presence of several metals (aluminum, antimony, selenium, and vanadium). The EPC for each of the metals is based on 2 samples, which were averaged to determine the final EPC. In all cases, the concentration in the second sample (collected in 2004) was less than the concentration in the first sample (collected in 2001), but without at least one additional sample, it cannot be definitively determined if this is attenuation of contaminant concentrations or simply variation in contaminant concentrations.
- Well AOC7-2AMW-7 (Table J.7.58) has a cumulative non-carcinogenic risk ratio value of 1.8, primarily due to the presence of manganese in the sample. The EPC for manganese is the highest value of the primary and duplicate sample collected in 2000. There is potentially human health risk at this well due to exposure to manganese in drinking water. Since no additional samples have been collected in this well, it is not known if concentrations of manganese have attenuated at this well.
- Well AOC7-HP02 (Table J.7.61) has a cumulative non-carcinogenic risk ratio value of 31, primarily due to the presence of several metals (aluminum, manganese, nickel, thallium and vanadium). The EPC for each of the metals is the detected concentration based on a single sampling event, collected in 2000. This was a temporary wellpoint sample that was suspected to have elevated turbidity; as a result, a permanent well was installed near this location (GW03) and there was no unacceptable risk in that well.
- Well AOC7-HP03 (Table J.7.62) has a cumulative non-carcinogenic risk ratio value of 1.5, primarily due to the presence of two metals (aluminum and manganese). The EPC for each of the metals is the detected concentration based on a single sampling event in 2000. This was a temporary wellpoint sample that was suspected to have elevated turbidity; as a result, a permanent well was installed near this location (GW02) and there was no unacceptable risk in that well.

Carcinogenic risks in nonresidential wells.

Eighteen nonresidential wells have calculated carcinogenic risk values greater than the upper bound of the CERCLA risk range of 1.0×10^{-4} .

• Well MW-ACE2 (Table J.7.37) has a cumulative carcinogenic risk ratio of 1.7 x 10⁻², primarily due to the VOCs trichloroethene (6 x 10⁻³) and vinyl chloride (1.1 x 10⁻²), and the metal arsenic (1.3 x 10⁻⁴). The EPC for trichloroethene is based on the average of three sampling events. The first sampling event had a

higher concentration than the third (and latest) event, but the second sample collected exhibited a higher concentration than the other two samples. Therefore, there was no obvious trend in the data, and the average was used as the EPC. Additional sampling at the well may reveal that natural attenuation has occurred in the well. A downward trend was observed for vinyl chloride; therefore, the EPC is based on the latest value, indicating that natural attenuation may have occurred in this well. The EPC for arsenic is based on the only sample analyzed for metals collected in 1996 (6 $\mu g/L$). The Safe Drinking Water standard of 10 $\mu g/L$ is greater than the maximum concentration of arsenic in this well, indicating that the detected concentration of arsenic in this well is less than the concentration allowed in drinking water.

- Well MW-AMW1 (Table J.7.38) has a cumulative carcinogenic risk ratio of 1.5 x 10⁻³, primarily from the VOC vinyl chloride (1.4 x 10⁻³). A downward trend was observed for vinyl chloride; therefore, the EPC is based on the latest value of three sampling events, indicating that natural attenuation may be occurring.
- Well MW-AMW11 (Table J.7.40) has a cumulative carcinogenic risk ratio of 1.6 x 10⁻³, primarily due to the presence of arsenic. The EPC is based on the average concentration of two sampling events. The concentration of arsenic in the first sampling event (collected in 2001) is larger than the concentration in the second event (collected in 2004), but without additional sampling, a trend of natural attenuation cannot be verified. Further, the concentration in the second sample collected (15.9 μg/L) is greater than the safe drinking water standard of 10 μg/L, indicating there may be potential risk due to exposure to arsenic in the groundwater at this well.
- Well AMW-104, a duplicate sample from AMW-1, (Table J.7.43) has a cumulative carcinogenic risk ratio of 2.4 x 10⁻⁴, primarily due to the presence of the VOC vinyl chloride (2.3 x 10⁻⁴). The EPC is based on a single sampling event (collected in 2006). There may be a potential risk due to exposure to VOCs in the groundwater at this well.
- Well MW-ACE4 (Table J.7.46) has a cumulative carcinogenic risk ratio of 2.2 x 10⁻⁴, due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 1996). The detected concentration is 10 μg/L, which is equal to the safe drinking water standard of 10 μg/L. Therefore, the detected concentration of arsenic is equal to what would be allowed in drinking water.
- Well MW-ACE3 (Table J.7.47) has a cumulative carcinogenic risk ratio of 1.1 x 10⁻⁴, due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 1996). The detected concentration of 5 μg/L is less than the safe drinking water standard of 10 μg/L, indicating that the detected concentration of arsenic would be allowed in drinking water.

- Well MW-2-2 (Table J.7.48) has a cumulative carcinogenic risk ratio of 1.3 x 10⁻⁴, due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 1996). The detected concentration of 6 μg/L is less than the safe drinking water standard of 10 μg/L, indicating that the detected concentration of arsenic would be allowed in drinking water.
- Well MW-2AMW8 (Table J.7.52) has a cumulative carcinogenic risk ratio of 1.8 x 10⁻³, due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 1996). The detected concentration of 82 μg/L is much greater than the safe drinking water standard of 10 μg/L, indicating there may be adverse effects to humans from exposure to arsenic at this well.
- Well MW-2AMW3 (Table J.7.53) has a cumulative carcinogenic risk ratio of 1.1 x 10⁻⁴, due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 1996). The detected concentration of 5 μg/L is less than the safe drinking water standard of 10 μg/L, indicating that the detected concentration of arsenic would be allowed in drinking water.
- Well MW-1 (Table J.7.54) has a cumulative carcinogenic risk ratio of 1.5 x 10⁻⁴, due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 1988). The detected concentration of 6.6 μg/L is less than the safe drinking water standard of 10 μg/L, indicating that the detected concentration of arsenic would be allowed in drinking water.
- Well MW-2 (Table J.7.55) has a cumulative carcinogenic risk ratio of 6.9 x 10⁻⁴, due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 1988). The detected concentration of 31 μg/L is greater than the safe drinking water standard of 10 μg/L, indicating there may be adverse effects to humans from exposure to arsenic at this well. Since no additional samples have been collected in this well, it is not known if concentrations of arsenic are attenuating.
- Well MW-3 (Table J.7.56) has a cumulative carcinogenic risk ratio of 6.2 x 10⁻⁴, primarily due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 1988). The detected concentration of 28 µg/L is greater than the safe drinking water standard of 10 µg/L, indicating there may be adverse effects to humans from exposure to arsenic at this well. Since no additional samples have been collected in this well, it is not known if concentrations of arsenic are attenuating.
- Well MW-4 (Table J.7.57) has a cumulative carcinogenic risk ratio of 5.1×10^{-4} , due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 1988). The detected concentration of $23 \mu g/L$ is greater than the safe drinking water standard of $10 \mu g/L$, indicating there may be adverse effects to humans from exposure to arsenic at this well. Since no additional samples have

been collected in this well, it is not known if concentrations of arsenic are attenuating.

- Well AOC7-2AMW-5 (Table J.7.59) has a cumulative carcinogenic risk ratio of 3.3 x 10⁻⁴, due to the presence of arsenic and bis(2-ethylhexyl)phthalate. The EPC for both chemicals is based on a single sampling event (collected in 2000). The chemical bis(2-ethylhexyl)phthalate is a common laboratory contaminant that may have been detected due to contamination of the sample at the laboratory. The detected concentration of arsenic of 14.7 μg/L is greater than the safe drinking water standard of 10 μg/L, indicating there is may be adverse effects to humans from exposure to arsenic at this well. Since no additional samples have been collected in this well, it is not known if concentrations of arsenic are attenuating.
- Well AOC7-HP01 (Table J.7.60) has a cumulative carcinogenic risk ratio of 1.2 x 10⁻⁴, due to the presence arsenic and bis(2-ethylhexyl)phthalate. The EPC for both chemicals is based on a single sampling event (collected in 2000). The chemical bis(2-ethylhexyl)phthalate is a common laboratory contaminant that may have been detected due to contamination of the sample at the laboratory. The detected concentration of arsenic of 4.8 μg/L is less than the safe drinking water standard of 10 μg/L, indicating that the detected concentration of arsenic would be allowed in drinking water.
- Well AOC7-HP02 (Table J.7.61) has a cumulative carcinogenic risk ratio of 4.6 x 10⁻³, primarily due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 2000). The detected concentration of 207 µg/L is much greater than the safe drinking water standard of 10 µg/L. This was a temporary wellpoint sample that was suspected to have elevated turbidity; as a result, a permanent well was installed near this location (GW03) and there was no unacceptable risk in that well.
- Well AOC7-HP03 (Table J.7.62) has a cumulative carcinogenic risk ratio of 2.3 x 10⁻⁴, primarily due to the presence of arsenic. The EPC for arsenic is based on a single sampling event (collected in 2000). The detected concentration of 10.2 µg/L is slightly greater than the safe drinking water standard of 10 µg/L. This was a temporary wellpoint sample that was suspected to have elevated turbidity; as a result, a permanent well was installed near this location (GW02) and there was no unacceptable risk in that well.
- Well SC-2AMW5-AOC1 (Table J.7.64) has a cumulative carcinogenic risk ratio of 2.6 x 10⁻⁴, primarily due to primarily due to the presence of arsenic and bis(2-ethylhexyl) phthalate. The EPC for both chemicals is based on a single sampling event (collected in 2000). The chemical bis(2-ethylhexyl) phthalate is a common laboratory contaminant and may have been detected due to contamination of the sample at the laboratory. The detected concentration of arsenic at 11.6 μg/L is greater than the safe drinking water standard of 10 μg/L, indicating there may be adverse effects to humans from exposure to arsenic at this well. Since no

additional samples have been collected in this well, it is not known if concentrations of arsenic are attenuating.

Risks of lead in nonresidential wells

Lead was detected in 14 nonresidential wells. However, for only 5 wells was the risk ratio for lead greater than one. Therefore, there are not likely to be adverse effects on humans due to exposure to lead in wells MW-AMW1 (Table J.7.38), MW-AMW2 (Table J.7.39), MW-AMW11 (Table J.7.40), MW-2AMW3 (Table J.7.53), MW-1 (Table J.7.54), AOC7-2AMS-7 (Table J.7.58), AOC7-2AMW-5 (Table J.7.59), AOC7-HP01 (Table J.7.60), AOC7-HP02 (Table J.7.60), or SD-2AMW5-AOC1 (Table J.7.64). Lead concentrations in the remaining wells are assessed below:

- Well MW-ACE2 (Table J.7.37) has detection of lead of 79 µg/L, which exceeded the USEPA screening value by a factor of 5.2, indicating that there is a potential for an unacceptable risk due to lead in this well.
- Well MW-2 (Table J.7.55) has detection of lead of 90 µg/L, which exceeded the USEPA screening value by a factor of 6.0, indicating that there is a potential for an unacceptable risk due to lead in this well.
- Well MW-3 (Table J.7.56) has detection of lead of 66 µg/L, which exceeded the USEPA screening value by a factor of 4.4, indicating that there is a potential for an unacceptable risk due to lead in this well.
- Well MW-4 (Table J.7.57) has detection of lead of 69 µg/L, which exceeded the USEPA screening value by a factor of 4.6, indicating that there is a potential for an unacceptable risk due to lead in this well.
- Well AOC7-HP02 (Table J.7.61) has detection of lead of 388 μ g/L, which exceeded the USEPA screening value by a factor of 25.86, indicating that there is a potential for an unacceptable risk due to lead in this well. This was a temporary wellpoint sample that was suspected to have elevated turbidity; as a result, a permanent well was installed near this location (GW03) and there was no unacceptable risk in that well.
- J.5.2.13 An uncertainty associated with the groundwater risk ratio results is that, in most cases, there was a single sampling event, and therefore the detected concentration of each chemical was used as the EPC and compared to the USEPA "tap water" MSSLs. Without additional samples, there is no way to determine if natural attenuation of chemicals in wells has occurred.
- J.5.2.14 Another uncertainty associated with the groundwater risk ratio results is that the residential exposure pathway is extremely unlikely. Most of the homes in the area have converted to the Town of Guilderland public drinking water supply. However, the area consists of scattered country homes and it is uncertain whether all homes in this area have converted to

public water. Thus, there may be some homes and businesses in this area that may still use private wells for drinking water or other purposes. Additionally, as previously discussed, the site is not proposed for residential development. Based on the NEIP EIS Master Plan, future land use includes proposed office buildings and parking lots (Clough, Harbour & Associates LLP, June 2005).

Estimated Risks and Uncertainties for Vapor Intrusion of Groundwater into Indoor Air

- J.5.2.15 Groundwater beneath the site is very shallow and there may be potential for vapor intrusion of contaminants into indoor air. Thus, future buildings that may be constructed on site or possibly homes/businesses located near the site may be susceptible to vapor intrusion. The deeper bedrock and upgradient well locations were not included in the evaluation. Table J.7.3 shows which samples are the shallow samples, the bedrock samples, and the upgradient samples.
- J.5.2.16 Screening criteria to evaluate vapor intrusion of shallow groundwater VOCs into buildings were based on USEPA (2002) target groundwater concentrations. The target groundwater concentrations are calculated to correspond to target indoor air concentrations that are protective of human health if vapor intrusion occurs. Table J.7.3 compares detected concentrations to screening criteria. In the vapor intrusion analysis, five VOCs were found to be above the target screening value. The five chemicals were 1,2-dichloroethane (1,2-DCA), trans(1,2)dichloroethene (trans-1,2-DCE), cis(1,2)dichloroethene (cis-1,2-DCE), TCE, and vinyl chloride. Only one well had the highest concentrations of these chemicals, which also were the concentrations that exceeded the target screening value for groundwater to indoor air. This well was identified as MW-ACE2 (sampled in July 1996) and also identified as ACE-2 (sampled in June 2000 and June 2006). Most of the exceedances of the target screening values were related to the 1996 sampling event. The 2000 sampling event still had high concentrations for three VOCs (trans-1,2-DCE, TCE, and vinyl chloride). When this well was sampled in June 2006, concentrations were all lower, but there were still the same three VOCs above the target screening values (trans-1,2-DCE, TCE, and vinyl chloride).
- J.5.2.17 There are several levels of uncertainty associated with this exposure pathway analysis. The target screening values are a first-step approach to evaluating chemicals that may pose a risk due to the vapor intrusion pathway. The State of New York guidance documents, Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006) and DER-13 / Strategy for Evaluating Soil Vapor Intrusion at Remedial Sites in New York (NYSDEC, 2006) need to be followed to satisfy New York State guidelines. As discussed in previous sections of this HHRA, the guidance documents from the State of New York require all sites with groundwater contamination to perform air sampling for the vapor intrusion pathway. Therefore, any results from a target screening approach (used in this HHRA) or from modeling approaches (such as the J&E model) must be supported by air sampling results. Such sampling may include soil vapor samples, sub-slab vapor samples, crawl space air samples, indoor air samples, and outdoor air samples.
- J.5.2.18 According to the USACE policy for vapor intrusion, *U.S. Army's Interim Vapor Intrusion Policy* (USACE, 2006), the Army would accept modeling for cases where the future

construction of a building may take place at a site. If the modeling indicated a potential risk, the Army may chose to amend its installation management plan or file a deed notice in accordance with State law. Such forms of notice would notify Army employees, contractors and others that the issue of vapor intrusion must be considered if a building is to be constructed on the site in question.

J.5.2.19 Another level of uncertainty is that the target screening concentrations are derived to ensure protection of a residential receptor, and thus provide an overly conservative evaluation for the current and/or future worker exposure scenarios expected for the site.

Estimated Risks for Sediment

- J.5.2.20 The calculated risks for sediment are shown in Table J.7.16 (Risk Ratio Calculations for Sediment).
- J.5.2.21 As shown in the risk calculation table, there are no non-carcinogenic or carcinogenic risks associated with the sediments at AOCs 1 and 7. The non-carcinogenic risk ratio result for the site is 0.73 and the carcinogenic risk ratio result is 7.8×10^{-6} . These values are lower than the acceptable thresholds of one (non-carcinogenic) and 1×10^{-4} (carcinogenic), and thus indicate that there is no unacceptable risk due to exposure to sediments.

Estimated Risks and Uncertainties for Surface Water

- J.5.2.22 The calculated risks for surface water are shown in Table J.7.17 (Risk Ratio Calculations for Surface Water).
- J.5.2.23 Risk calculations indicate that there may be potential for non-carcinogenic and carcinogenic risk for the surface water exposure pathways at the site. The non-carcinogenic risk was 1.7 and was primarily due to exposure to cadmium in pond water. The carcinogenic risk was 2.8×10^{-4} and was primarily due to exposure to TCE, BEHP, and arsenic in pond water.
- J.5.2.24 These results are very conservative and overestimate potential risk; thus, it is very unlikely that surface water poses a potential risk. There are several factors in this HHRA that overestimate potential risk. Surface water sampling results were compared to the USEPA "tap water" MSSLs. These MSSLs assume residential exposure to surface water used as drinking water and inhalation of volatiles from use of surface water in the home (*e.g.*, showering, laundering, and dish washing). The comparison of pond samples to residential criteria was made for informational purposes based on RAB concerns that water in Black Creek may make its way to the Watervliet Reservoir drinking water supply. The pond water has no known use, including use as drinking water. It is possible for pond water to flow through a ditch to the wetland and possibly to Black Creek. A separate HHRA completed for surface water in Black Creek showed no unacceptable risk exists.
- J.5.2.25 A total of 12 surface water samples were collected for the site. It is noted that of these 12 samples, the contaminants were not frequently detected. Although lead was detected at seven locations and BEHP was detected at three locations, TCE, arsenic, and cadmium were only detected at one location each. The single detections of TCE and cadmium were from the same

PARSONS

sampling location (SW-4 in the pond). Thus, there was only a single detection of cadmium that was driving the risk. No sampling has been performed for surface water at AOCs 1 and 7 since July 2000. Lead values were only high in the samples collected in 1988. Since that time lead levels have been below the "tap water" MSSLs. Lead in surface water does not present a risk for the site. *Bis*(2-ethylhexyl)phthalate was not included in surface water analyses prior to the July 2000 samples. Thus, the three detections occurred in the 2000 data set (which included only four samples). Although BEHP was detected in three of the four surface water samples, it is not unusual to detect this phthalate in environmental media. BEHP is a common laboratory contaminant and phthalates are prevalent in the environment because of their use in plastics such as polyvinylchloride (PVC).

SECTION J.6

REFERENCES

- Clough, Harbour & Associates LLP, 2005. Draft Generic Environmental Impact Statement, Northeastern Industrial Park, Town of Guilderland, Albany County, New York. Prepared for Galesi Group, Guilderland Center, New York. June 6, 2005.
- ERM-Northeast, 1990. "Report of Findings Environmental Liability Review Northeast Industrial Park." March 15, 1990.
- Malcolm Pirnie, 1997. "Final Limited Remedial Investigation Report, Former Voorheesville Army Depot, U.S. Army Southern Disposal Landfill, Guilderland, New York." Prepared for U.S. Army Corps of Engineers-Baltimore District. April 1997.
- NYSDEC, 1994. Technical and Administrative Guidance Memorandum #4046, Determination of Soil Cleanup Objectives and Cleanup Levels. New York State Department of Environmental Conservation, Division of Environmental Remediation. HWR-94-4046. January 24, 1994.
- NYSDEC, 1999. 6 NYCRR Part 703, Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations. New York State Department of Environmental Conservation. Last amended August 1999.
- NYSDEC, 2006. DER-13 / Strategy for Evaluating Soil Vapor Intrusion at Remedial Sites in New York. New York State Department of Environmental Conservation, Office of Air and Waste Management. DEC Program Policy, Regulation ID: NY0013976. Date updated: October 18, 2006.
- NYSDOH, 2006. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation. October 2006.
- Parsons, 2005. Remedial Investigation at the Former Schenectady Army Depot Voorheesville Area, Guilderland, New York. Prepared for the U.S. Army Corps of Engineers, Huntsville Center. May 2005.
- TCEQ, 2006. TRRP Protective Concentration Levels, Human Health Sediment PCLs. Texas Commission on Environmental Quality, Texas Risk Reduction Program. March 2006.
- Town of Guilderland, 2000. Public Water Supply coverage. Personal communication with William West of the Guilderland Water Department. November 16, 2000.
- USACE, 2001. Standard Scopes of Work for HTRW Risk Assessments. U.S. Army Corps of Engineers, Washington, DC. Pamphlet No. 200-1-15. December 15, 2001.

- USACE, 2006. U.S. Army's Interim Vapor Intrusion Policy. U.S. Army Corps of Engineers. September 11, 2006.
- U.S. Army Toxic and Hazardous Materials Agency, 1980. "Historical Summary and Report of Findings at Schenectady General Depot, Guilderland, New York." July 1980.
- USEPA, 1989. Risk Assessment Guidance for Superfund (RAGS), Volume 1 Human Health Evaluation Manual (Part A). Interim final. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. Washington, DC. EPA/540/1-89/002.
- USEPA, 2002. OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530-D-02-004. November 2002.
- USEPA, 2004a. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. Revised February 22, 2004.
- USEPA, 2004b. ProUCL Version 3.0 User Guide. U.S. Environmental Protection Agency. EPA/600/R04/079. April 2004.
- USEPA, 2006a. Human Health Medium-Specific Screening Levels. U.S. Environmental Protection Agency, Region 6. March 3, 2006.
- USEPA, 2006b. List of Drinking Water Contaminants & MCLs. Online. Last updated February 28, 2006. www.epa.gov/safewater/mcl.html.

SECTION J.7

FIGURES, SITE PHOTOGRAPHS, AND TABLES (DATA AND RISK CALCULATION TABLES)

Figure J.4 Human Health Conceptual Site Model

Potential Medium	Potential Route	Potentially Exposed	Pathway Completeness and Assumptions
of Concern	of Exposure	Population	
Soil (Surface and/or Mixed Soil)	 Incidental ingestion of surface/mixed soil Inhalation of volatiles from surface/mixed soil Dermal contact with surface/mixed soil 	 Current outdoor worker Future outdoor worker Future indoor worker Current/future resident 	 Current outdoor worker is a complete exposure pathway. An exposure frequency of 225 days per year and an exposure duration of 25 years are assumed for this scenario. Thus, it is a very conservative (protective) evaluation for a potential current outdoor worker who would have much less exposure (e.g., current worker that visits the site to perform site sampling activities). Future outdoor worker is a complete exposure pathway. The Master Plan indicates proposed office buildings and parking lots for the area, consisting of three 20,000 ft² offices and two parking lots with 800 parking spaces. This pathway is not included in the risk ratio analysis because it is assumed to be conservatively evaluated under the current outdoor worker scenario (based on the exposure frequency and exposure duration). Future indoor worker is a complete exposure pathway (based on Master Plan). This pathway is not included in the risk ratio analysis because it is assumed to be conservatively evaluated under the current outdoor worker scenario (future indoor workers would have much less exposure to surface and/or mixed soils). Although the site is not residential and will not be converted to residential use (based on the Master Plan), a residential pathway was shown for comparative purposes. This provides the most conservative risk assessment (i.e., most health protective evaluation) than for other types of receptors.

Figure J.4 continued

Groundwater	 Ingestion of groundwater as drinking water Inhalation of groundwater from use of groundwater in the home (e.g., showering, laundering, and dish washing) Inhalation of volatiles due to vapor intrusion of VOCs from shallow groundwater into indoor air 	 Current outdoor worker Future outdoor worker Future indoor worker Current/future resident 	 The area surrounding the south and east boundaries of the former SADVA, close to AOCs 1 and 7, is composed of agricultural land and scattered country homes. It is uncertain whether all homes in the area have converted to the Town of Guilderland public drinking water supply. Thus, there may be some homes and businesses that still use private wells for drinking water or other purposes. Residential receptors and exposure pathways are considered to provide a conservative estimate of risk for other potential receptors. Thus, ingestion of groundwater by a resident will produce a higher level of risk than ingestion of groundwater by a current and/or future indoor and/or outdoor worker. The worker scenarios may be complete exposure pathways if groundwater were to be used as drinking water; however, these pathways are not included in the risk ratio analysis because they are assumed to be conservatively evaluated under the residential scenario. Inhalation of volatiles (from vapor intrusion of VOCs from shallow groundwater into indoor air) by a current/future resident and a future industrial/commercial worker. These exposure pathways are considered to be potentially complete because groundwater beneath the site is very shallow and VOCs in groundwater could possibly intrude into indoor air (e.g., vapor intrusion into buildings that may be constructed on site or possible homes/businesses located near the site).

Figure J.4 continued

Sediment	 Incidental ingestion of sediment Dermal contact with sediment 	 Current outdoor worker Future outdoor worker Future indoor worker Current/future resident 	• PCLs are screening values protective of residential exposure to sediment. Thus, these values are considered to be conservative for current or future workers who might come into contact with contaminated sediment. The worker scenarios may be complete exposure pathways if workers were to come in contact with contaminated sediment; however, these pathways are not included in the risk ratio analysis because they are assumed to be conservatively evaluated under the residential scenario.
Surface Water (samples from pond and surrounding wetland areas)	 Ingestion of surface water as drinking water Inhalation of surface water from use of surface water in the home (e.g., showering, laundering, and dish washing) 	 Current outdoor worker Future outdoor worker Future indoor worker Current/future resident 	 Approximately four miles downstream from AOCs 1 and 7, the Watervliet Reservoir is a Class A water body, which is suitable for drinking and all other uses. The Watervliet Reservoir water supply serves a population of over 40,000. The residential surface water pathway was evaluated for information purposes to address RAB concerns that water in Black Creek may make its way to the Watervliet Reservoir drinking water supply. The pond at AOC 1 drains to a ditch that discharges to a wetland area. Black Creek flows through that wetland area, and eventually discharges to the Bozenkill, before entering Watervliet Reservoir, approximately four miles downstream of AOC 1 and 7. The residential exposure scenario is protective of other receptor scenarios. Thus, if surface water were to be used by indoor or outdoor workers, the residential values would be protective for the workers. Thus, the potential worker scenarios were not evaluated.

Photo J.7.2 Facing from the Northeast Side of AOC 1 – Typical Vegetation for Pond and Drainage Area

Photo J.7.3 Facing Northeast Adjacent from AOC 1 – Fence Boundary of SADVA

Photo J.7.4 Northeast Side of AOC 1 – Terrestrial Vegetation (Monitoring Well Location Shown in Center of Photo)

Photo J.7.5 Abandoned Railroad Tracks Leading to AOC 7

Table J.7.1 **Detected Chemicals in Surface Soil** SADVA - AOCs 1 and 7

		SAMPLE ID:		SD-SS-GW01-0-0.5	SD-SS-GW02-0-0.5	SD-SS-GW03-0-0.5 ^a	AOC7-SB01A	AOC7-SB02A	AOC7-SB03A	AOC7-SB04A	SS-04-0,18 ^b	SS-05-12,18
		DEPTH: SAMPLED:		0-0.5' 6/14/2004	0-0.5' 6/15/2004	0-0.5' 6/15/2004	0.2' 7/21/2000	0.2' 7/21/2000	0.2' 7/21/2000	0.2' 7/21/2000	1-1.5 27-Jun-96	1-1.5 27-Jun-96
PARAMETER	CAS NUMBER	UNITS:	MAX VALUE	0/14/2004	0/13/2004	0/13/2004	772172000	772172000	772172000	772172000	27-3011-90	27-3011-30
VOLATILES												
Acetone	67-64-1	μg/kg	2600	-			23 U	22 U	23 U	24 U	29 U	6 U
Ethylbenzene	100-41-4	μg/kg	24				5.7 U	5.6 U	5.6 U	6 U	24 J	6 U
Toluene	108-88-3	μg/kg	4				5.7 U	5.6 U	5.6 U	6 U	4 J	6 U
Trichloroethene	79-01-6	μg/kg	8				5.7 U	5.6 U	5.6 U	6 U	8 J	6 U
Methyl Ethyl Ketone (2-Butanone) Xylene (total)	78-93-3 1330-20-7	μg/kg μg/kg	170 530				23 UJ 5.7 U	22 UJ 5.6 U	23 UJ 5.6 U	24 UJ 6 U	170 530	6 U 6 U
	1550-20-7	μу/ку	330				3.7 0	3.0 0	3.0 0	0.0	330	0.0
SEMIVOLATILES Acenaphthene	83-32-9	ua/ka	350	360 U	350 J	360 U	370 U	370 U	370 U	390 U	- -	T
Acenaphthylene	208-96-8	μg/kg μg/kg	120	360 U	39 J	360 U	370 U	370 U	370 U	390 U		
Anthracene	120-12-7	μg/kg	730	360 U	730	360 U	370 U	370 U	370 U	390 U		
Benzo(a)anthracene	56-55-3	μg/kg	2400	54 J	2400	360 U	16 J	13 J	10 J	39 J		
Benzo(b)fluoranthene	205-99-2	μg/kg	2700	82 J	2700	55 J	18 J	25 J	12 J	56 J		
Benzo(k)fluoranthene	207-08-9	μg/kg	940	360 U	940	360 U	24 J	25 J	15 J	65 J		
Benzo(a)pyrene	50-32-8	μg/kg	2400	46 J	2400	360 U	15 J	13 J	9.7 J	43 J		
Benzo(g,h,i)perylene	191-24-2	μg/kg	1600	59 J	1600	44 J	10 J	12 J	370 U	27 J		
Chrysona	86-74-8 218-01-9	μg/kg	1300 2800	360 U 94 J	310 J 2800	360 U 71 J	370 U 26 J	370 U 29 J	370 U 14 J	390 U 67 J		
Chrysene Dibenz(a,h)anthracene	53-70-3	μg/kg μg/kg	420	360 U	420	360 U	370 U	370 U	370 U	390 U		
Dibenzofuran	132-64-9	μg/kg	120	360 U	120 J	360 U	370 U	370 U	370 U	390 U		
Di-n-butylphthalate	84-74-2	μg/kg	100	46 J	37 J	42 J	370 U	370 U	100 J	390 U		
Fluoranthene	206-44-0	μg/kg	6100	93 J	6100	85 J	38 J	41 J	23 J	89 J		
Fluorene	86-73-7	μg/kg	220				370 U	370 U	370 U	390 U		
Indeno(1,2,3-cd)pyrene	193-39-5	μg/kg	1700	53 J	1700	37 J	11 J	11 J	370 U	29 J		
Naphthalene	91-20-3	μg/kg	410	360 U	74 J	360 U	370 U	370 U	370 U	390 U		
Phenanthrene	85-01-8	μg/kg	3100	57 J	3100	37 J	16 J	19 J	370 U	44 J		
Pyrene	129-00-0	μg/kg	4200	90 J	4200	73 J	28 J	29 J	17 J	64 J		
2,4-Dimethylphenol 2-Methylnaphthalene	105-67-9 91-57-6	μg/kg μg/kg	150 230	 360 U	 50 J	 360 U	370 U 370 U	370 U 370 U	370 U 370 U	390 U 390 U		
Dibenzofuran	132-64-9	μg/kg	110				370 U	370 U	370 U	390 U		
N-Nitrosodiphenylamine	86-30-6	μg/kg	68				370 U	370 U	370 U	390 U		
PESTICIDES/PCBs		, , , , , ,	•	•	•			•	•	•	•	
4,4'-DDE	72-55-9	μg/kg	2.1				0.077 JN	0.29 JN	2.1 J	0.65 JN		
Endrin	72-20-8	μg/kg	0.29				1.9 U	0.29 JN	1.9 U	2 U		
Endrin aldehyde	7421-93-4	μg/kg	2.9				1.9 U	1.9 U	2.9 J	2 U		
4,4'-DDD	72-54-8	μg/kg	2.7				1.9 U	1.9 U	2.7 JN	2 U		
4,4'-DDT	50-29-3	μg/kg	6.9				1.9 U	0.45 J	6.9 JN	0.9 JN		
Aroclor 1260	1336-36-3	μ g/kg	160	-			1.9 U	1.9 U	160	2 U		
Metals												
Aluminum	7429-90-5	mg/kg	12100				10600	10400	9850	12100		
Antimony	7440-36-0	mg/kg	0.36				0.19 J	0.29 J	0.27 J	0.36 J		
Arsenic Barium	7440-38-2 7440-39-3	mg/kg	6.7 47.4				5.9 40	5.7 39.4	5.4 41	6.7 47.4		
Beryllium	7440-39-3	mg/kg mg/kg	0.59				0.52 J	0.54 J	0.49 J	47.4 0.59 J		
Cadmium	7440-43-9	mg/kg	0.65				0.53 J	0.44 J	0.53 J	0.65		
Calcium	7440-70-2	mg/kg					7350	3890	13500	5580		
Chromium	7440-47-3	mg/kg	337	-			16.9 J	15.7 J	19.4 J	19.3 J		
Chromium VI	18540-29-9	mg/kg	350									
Cobalt	7440-48-4	mg/kg	13.3				11.8 J	11.8 J	11.2 J	13.3 J		
Copper	7440-50-8	mg/kg	32.7				29.2	24.9	30.9	32.7		
Iron Lead	7439-89-6 7439-92-1	mg/kg	35.4	-			26700 J 19.3	25400 J	25100 J 35.4	30000 J 25.9		
Magnesium	7439-92-1 7439-95-4	mg/kg mg/kg	33.4				19.3 6340	15.2 4820	35.4 8550	6760		
Manganese	7439-96-5	mg/kg	649				649	549	517	615		
Mercury	7439-90-6	mg/kg	0.064				0.044	0.047	0.04	0.064		
Nickel	7440-02-0	mg/kg	27.3				26.2 J	22.9 J	24.8 J	27.3 J		
Potassium	7440-09-7	mg/kg	·				1370	1140	1270	1600		
Silver	7440-22-4	mg/kg	1.9				0.12 J	0.15 J	0.16 J	0.12 J		
Sodium	7440-23-5	mg/kg					50.4 J	46.3 J	57.6 J	59.2 J		
Thallium	7440-28-0	mg/kg	0.55				0.44 U	0.44 U	0.44 U	0.55 J		
Vanadium	7440-62-2	mg/kg	25.2				20.9	22.9	18.6	25.2		
Zinc	7440-66-6	mg/kg	114				88.9	79.8	84.5	114		
J = Estimated Value												

J = Estimated Value
UJ = Analyte not detected; the number is the estimated analytical reporting limit.

U = Analyte not detected; the number is the analytical reporting limit.
R = Rejected during data validation

D = Diluted

ND = Not Detected
a) The highest result between samples SD-SS-GW03-0-0.5 and SD-SS-GW103-0-0.5
(dup of SD-SS-GW03-0-0.5) is reported.
b) The highest result between samples SS-04-12,18 and SS-04-12,18DUP is reported.
c) The highest result between samples SS-04-0,18 and SS-04-0,18 DUP is reported.

Table J.7.1 **Detected Chemicals in Surface Soil** SADVA - AOCs 1 and 7

DEPTH: 1-1.5 1-1.5 1-1.5 0-1.5 0-2 0-2 0-2 0-2 0-2 0-2				1	1		I		I	1	1	T	1
Address			SAMPLE ID:	SS-01-12,18	SS-02-12,18	SS-03-12,18	SS-06-12,18	SS-04-0,18 ^c	SS-05-0,24	SS-01-0,24	SS-02-0,24	SS-03-0,24	SS-06-0,24
PARAMETER			DEPTH:	1-1.5	1-1.5	1-1.5	1-1.5	0-1.5	0-2	0-2	0-2	0-2	0-2
PARAMETER													27-Jun-96
MARTINE	PARAMETER	CAS NUMBER											1
April		O/10 HOMBER	011110.					<u> </u>		<u> </u>			
Pightener 1964-15													
Delete	Acetone		μg/kg	6 U	2600 D	6 U	6 U						
Part complement Part compl	Ethylbenzene	100-41-4	μ g/kg	6 U	6 UJ	6 U	6 U						
Figure 20	Toluene	108-88-3	μg/kg	6 U	6 UJ	6 U	6 U						
Mary England 1992	Trichloroethene	79-01-6		6 U	6 U	6 U	6 U						
Select (1986) 1986-297 1986 1980 1													
Second S										-		-	
Accomprise		1000 20 7	μβ/κβ	1 00	0 00			<u> </u>		<u> </u>			
Amening	SEMIVOLATILES												
Accompanies \$25.5	Acenaphthene	83-32-9	μg/kg					270 J	370 UJ	410 UJ	15 J	380 U	20 J
Intervacion 100-127	Acenaphthylene	208-96-8						120 J	23 J	410 UJ	410 U	380 U	29 J
Beneral part Section								490 J	20 J	410 UJ	30 J	14 J	70 J
Record Princement 200-20-2 1985									61 J			59 J	180 J
Record photosthere 207.08.9 199.9 - - - - - -													
Recompley proper 99-254 1992													
Seronic 1913-9-2 pipts 470 14 J													
Carburder Charloside (2) 10 10 1													
Christian Chri													
Sheering histophenome Sp703 1995g													
Debrushians 132-84-9 piglog													
De-in-complete 0474-22	V - 7							130 J		410 UJ	410 U	6 J	370 U
Fluorenthmee				-									
Florene 86-73-7	Di-n-butylphthalate												
Fluorene 88-73-7	Fluoranthene	206-44-0	μ g/kg					2800 J	86 J	410 UJ	240 J	120 J	360 J
Findentic 23dilyrore 193-96 1998g	Fluorene	86-73-7						220 J	370 UJ	410 UJ	410 U	380 U	370 U
Naphmalene	Indeno(1,2,3-cd)pyrene							530 J					69 J
Pheneman 129-10-0	71.5												
Pyrone 128-00-0													
2.4-Dimethylophenol 105.67.9 198g - - - 150.J 370 UJ 410 UJ 410 UJ 380 U 370 U December of the property of													
2-Methypaphthalene	,												
Debendorfurian 132-64-9 jightg													
National phenymanine 86-30-6 19/19													
PESTICUES PCBS													
44-ODE 72-55-9	N-Nitrosodiphenylamine	86-30-6	μ g/kg					68 J	370 UJ	410 UJ	410 U	380 U	370 U
44-ODE 72-55-9	PESTICIDES/PCRs												
Endrin		72-55-0	ua/ka		I				I	T	T		T
Entrin aldehyde 74219944	,									-		-	
4.4-DDD 72.648 1.99/kg													
A4-DDT													
Netable Neta													
Muminum	,												
Aluminum 7429-90-5 mg/kg	Aroclor 1260	1336-36-3	μg/kg										
Authorny 7429-90-5 mg/kg	Metals												
Antimony 7440-36-0 mg/kg		7420 00 5	ma/ka										
Arsenic								1					
Barum 7440-39-3 mg/kg 4.1 37.1 1.6 3.5 4.6 4.3	,												
Beryllium													
Cadmium 744043.9 mg/kg													
Calcium	Beryllium							-					
Chromium T440-47-3								-					
Chromium VI													
Cobalt 7440-84-4 mg/kg <				-									
Cobalt 7440-48-4 mg/kg <	Chromium VI		mg/kg					350 J	0.11 UJ	0.12 UJ	0.12 UJ	0.17 J	0.12 J
Copper T440-50-8 mg/kg	Cobalt			-									-
Iron	Copper	7440-50-8											
Lead 7439-92-1 mg/kg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>								1					
Magnesium 7439-95-4 mg/kg													
Manganese 7439-96-5 mg/kg <td></td>													
Mercury 7439-97-6 mg/kg <t< th=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>								1					
Nickel 7440-02-0 mg/kg <th< th=""><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	· ·												
Potassium 7440-09-7 mg/kg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td>										-		-	
Silver 7440-22-4 mg/kg 1.9 0.47 U 0.52 U 0.52 U 0.48 U 0.47 U Sodium 7440-23-5 mg/kg <										-		-	
Sodium 7440-23-5 mg/kg <td< th=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Thallium 7440-28-0 mg/kg								1.9	0.47 U	0.52 U	0.52 U	0.48 U	0.47 U
	Thallium		mg/kg										
	Vanadium	7440-62-2											
Zinc 7440-66-6 mg/kg								1					
J = Estimated Value			,		1	1	1				1		

UJ = Analyte not detected; the number is the estimated analytical reporting limit.

U = Analyte not detected; the number is the analytical reporting limit.
R = Rejected during data validation

D = Diluted

ND = Not Detected
a) The highest result between samples SD-SS-GW03-0-0.5 and SD-SS-GW103-0-0.5
(dup of SD-SS-GW03-0-0.5) is reported.
b) The highest result between samples SS-04-12,18 and SS-04-12,18DUP is reported.
c) The highest result between samples SS-04-0,18 and SS-04-0,18 DUP is reported.

Table J.7.2 Detected Chemicals in Mixed (Surface/Subsurface) Soil SADVA - AOCs 1 and 7

		SAMPLE ID: DEPTH:		SD-SS-GW01-0-0.5 0-0.5'	0-0.5'	SD-SS-GW03-0-0.5 ^a 0-0.5'	SD-GW12C AOC1 6-8'	SD-GW14DE AOC1 6-10'	SD-SS-GW01-10-12 10-12'	SD-SS-GW02-38-40 38-40'	SD-SS-GW03-10-12 10-12'	AOC7-SB01A 0.2'	AOC7-SB02A 0.2'
PARAMETER	CAS NUMBER	SAMPLED: UNITS:	MAX VALUE	6/14/2004	6/15/2004	6/15/2004	11/23/2004	11/19/2004	6/14/2004	6/15/2004	6/15/2004	7/21/2000	7/21/2000
	CAS NUMBER	JUNITO.											<u></u>
VOLATILES	07.04.4	1 "	1 0000	1			Т	1	1		T	20.11	
Acetone Ethylbenzene	67-64-1 100-41-4	μg/kg	2600 24									23 U 5.7 U	22 U 5.6 U
Toluene	108-88-3	μg/kg μg/kg	4									5.7 U	5.6 U
Trichloroethene	79-01-6	μg/kg	8									5.7 U	5.6 U
Methyl Ethyl Ketone (2-Butanone)	78-93-3	μg/kg	170									23 UJ	22 UJ
Xylene (total)	1330-20-7	μg/kg	530			-				1		5.7 U	5.6 U
SEMIVOLATILES		•	·	•	•		•	•	•		•		
Acenaphthene	83-32-9	μg/kg	350	360 U	350 J	360 U			750 U	360 U	420 U	370 U	370 U
Acenaphthylene	208-96-8	μg/kg	120	360 U	39 J	360 U			750 U	360 U	420 U	370 U	370 U
Anthracene	120-12-7	μg/kg	730	360 U	730	360 U			750 U	360 U	420 U	370 U	370 U
Benzo(a)anthracene	56-55-3	μg/kg	2400	54 J	2400	360 U			750 U	360 U	420	16 J	13 J
Benzo(b)fluoranthene	205-99-2	μg/kg	2700	82 J	2700	55 J		-	750 U	360 U	420	18 J	25 J
Benzo(k)fluoranthene	207-08-9 50-32-8	μg/kg	940 2400	360 U 46 J	940 2400	360 U 360 U			750 U 750 U	360 U 360 U	420 420	24 J 15 J	25 J 13 J
Benzo(a)pyrene Benzo(g,h,i)perylene	191-24-2	μg/kg μg/kg	1600	46 J 59 J	1600	360 U 44 J			750 U	360 U	420 U	10 J	13 J 12 J
bis(2-Ethylhexyl)phthalate	117-81-7	μg/kg	74				360 U	74 J				370 U	370 U
Carbazole	86-74-8	μg/kg	1300	360 U	310 J	360 U			750 U	360 U	420 U	370 U	370 U
Chrysene	218-01-9	μg/kg	2800	94 J	2800	71 J			750 U	360 U	420 U	26 J	29 J
Dibenz(a,h)anthracene	53-70-3	μ g/kg	420	360 U	420	360 U			750 U	360 U	420 U	370 U	370 U
Dibenzofuran	132-64-9	μ g/kg	120	360 U	120 J	360 U			750 U	360 U	420 U	370 U	370 U
Di-n-butylphthalate	84-74-2 206-44-0	μg/kg	100 6100	46 J 93 J	37 J 6100	42 J 85 J			750 U 750 U	360 U 360 U	420 U 420 U	370 U	370 U 41 J
Fluoranthene Fluorene	86-73-7	μg/kg μg/kg	220	95 0		 05 J			750 0	360 U 	420 0	38 J 370 U	370 U
Indeno(1,2,3-cd)pyrene	193-39-5	μg/kg μg/kg	1700	53 J	1700	37 J			750 U	360 U	420 U	11 J	11 J
Naphthalene	91-20-3	μg/kg	410	360 U	74 J	360 U			750 U	360 U	420 U	370 U	370 U
Phenanthrene	85-01-8	μg/kg	3100	57 J	3100	37 J			750 U	360 U	420 U	16 J	19 J
Pyrene	129-00-0	μg/kg	4200	90 J	4200	73 J			750 U	360 U	420 U	28 J	29 J
2,4-Dimethylphenol	105-67-9	μ g/kg	150							-		370 U	370 U
2-Methylnaphthalene	91-57-6	μg/kg	230	360 U	50 J	360 U			750 U	360 U	420 U	370 U	370 U
Dibenzofuran N-Nitrosodiphenylamine	132-64-9 86-30-6	μg/kg μg/kg	110 68									370 U 370 U	370 U 370 U
' '	00-30-0	μg/κg	08	1								370 0	370 0
PESTICIDES/PCBs	70.55.0		0.4	1			T	T	T			0.077 IN	- 0.00 IN
4,4'-DDE Endrin	72-55-9 72-20-8	μg/kg μg/kg	2.1 0.29									0.077 JN 1.9 U	0.29 JN 0.29 JN
Endrin aldehyde	7421-93-4	μg/kg μg/kg	2.9					-				1.9 U	1.9 U
4,4'-DDD	72-54-8	μg/kg	2.7									1.9 U	1.9 U
4,4'-DDT	50-29-3	μg/kg	6.9									1.9 U	0.45 J
Aroclor 1260	1336-36-3	μg/kg	160							-		1.9 U	1.9 U
Metals													
Aluminum	7429-90-5	mg/kg	15100				10700	10300				10600	10400
Antimony	7440-36-0	mg/kg	0.36							-		0.19 J	0.29 J
Arsenic	7440-38-2	mg/kg	8.6				7.7	5.8				5.9	5.7
Barium	7440-39-3	mg/kg	140				140 J	60 J		-		40	39.4
Beryllium	7440-41-7	mg/kg	1.2				0.81	0.82				0.52 J	0.54 J
Cadmium Calcium	7440-43-9 7440-70-2	mg/kg	0.65				0.33 J 18500 J	0.31 J 21500 J				0.53 J 7350	0.44 J 3890
Chromium	7440-70-2	mg/kg mg/kg	337				15.8	15.2				16.9 J	15.7 J
Chromium VI	18540-29-9	mg/kg	350										
Cobalt	7440-48-4	mg/kg	15				11	10.1				11.8 J	11.8 J
Copper	7440-50-8	mg/kg	32.7			-	27.7	27.3		1		29.2	24.9
Iron	7439-89-6	mg/kg					24600	24800				26700 J	25400 J
Lead	7439-92-1	mg/kg	35.4		-		12.8 J	9.8 J				19.3	15.2
Magnesium	7439-95-4	mg/kg	040				8470	8570				6340	4820
Manganese Mercury	7439-96-5 7439-97-6	mg/kg mg/kg	649 0.064				477 0.023 J	483 0.014 J				649 0.044	549 0.047
Nickel	7440-02-0	mg/kg	27.3				0.023 J 24.6 J	23.8 J				26.2 J	22.9 J
Potassium	7440-02-0	mg/kg	21.0				1910	1850				1370	1140
Selenium	7782-49-2	mg/kg	1				1 J	0.94 J				0.24 U	0.24 U
Silver	7440-22-4	mg/kg	1.9		-	-	0.13 J	0.12 J		1		0.12 J	0.15 J
Sodium	7440-23-5	mg/kg					153 J	133 J				50.4 J	46.3 J
Thallium	7440-28-0	mg/kg	0.95									0.44 U	0.44 U
Vanadium	7440-62-2	mg/kg	35.7				20.5	20.3				20.9	22.9
Zinc J = Estimated Value	7440-66-6	mg/kg	114				53.3 J	53.5 J				88.9	79.8

UJ = Analyte not detected; the number is the estimated analytical reporting limit.

ND = Not Detected

N = Presumptive Evidence; compound identification is not definitive

SB = Site Background

Concentration above NYSDEC Soil Criteria.

a) The highest result between samples SD-SS-GW03-0-0.5 and SD-SS-GW103-0-0.5

(dup of SD-SS-GW03-0-0.5) is reported.

c) The highest result between samples SS-04-0,18 and SS-04-0,18 DUP is reported.

U = Analyte not detected; the number is the analytical reporting limit.
R = Rejected during data validation

D = Diluted

NS = No Standard

Table J.7.2 Detected Chemicals in Mixed (Surface/Subsurface) Soil SADVA - AOCs 1 and 7

				1						_			_	
		SAMPLE ID:	AOC7-SB03A	AOC7-SB04A	AOC7-SB01B	AOC7-SB01C	AOC7-SB02B	AOC7-SB02C	AOC7-SB03B	AOC7-SB03C	AOC7-SB04B	AOC7-SB04C	SS-04-12,18 ^b	SS-05
		DEPTH:	0.2'	0.2'	3'	5'	3'	5'	3'	5'	3'	5'	1-1.5	1-1
PARAMETER	CAS NUMBER	SAMPLED: UNITS:	7/21/2000	7/21/2000	8/15/2000	8/15/2000	8/15/2000	8/15/2000	8/15/2000	8/15/2000	8/15/2000	8/15/2000	01-Jul-96	01-Jı
	CAS NUMBER	UNITO.				<u> </u>		<u> </u>						
VOLATILES	07.04.4	1 "	1 00.11	04.11	1 00.111	1 00 1	04.111	05.111	04.111			04.111	07.11	
Acetone Ethylbenzene	67-64-1 100-41-4	μg/kg	23 U 5.6 U	24 U 6 U	22 UJ 5.5 U	30 J 6 U	21 UJ 5.3 U	25 UJ 6.3 U	21 UJ 5.3 U	4 J 6.3 U	22 UJ 5.5 U	24 UJ 6 U	27 U 24 J	6
Toluene	108-88-3	μg/kg μg/kg	5.6 U	6 U	5.5 U	6 U	1.6 J	3.1 J	5.3 U	6.3 U	5.5 U	6 U	4 J	6
Trichloroethene	79-01-6	μg/kg	5.6 U	6 U	5.5 U	6 U	5.3 U	6.3 U	5.3 U	6.3 U	5.5 U	6 U	8 J	6
Methyl Ethyl Ketone (2-Butanone)	78-93-3	μg/kg	23 UJ	24 UJ	22 UJ	24 UJ	21 UJ	25 UJ	21 UJ	25 UJ	22 UJ	24 UJ	170	6
Xylene (total)	1330-20-7	μg/kg	5.6 U	6 U	5.5 U	6 U	5.3 U	6.3 U	5.3 U	6.3 U	5.5 U	6 U	530	6
SEMIVOLATILES														
Acenaphthene	83-32-9	μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
Acenaphthylene	208-96-8	μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
Anthracene	120-12-7	μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
Benzo(a)anthracene	56-55-3	μg/kg	10 J	39 J 56 J	360 U	390 U	350 U	420 U	350 U	410 U	29 J 360 U	390 U		
Benzo(b)fluoranthene Benzo(k)fluoranthene	205-99-2 207-08-9	μg/kg μg/kg	12 J 15 J	65 J	360 U 360 U	390 U 390 U	350 U 350 U	420 U 420 U	350 U 350 U	410 U 410 U	360 U	390 U 390 U		
Benzo(a)pyrene	50-32-8	μg/kg	9.7 J	43 J	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
Benzo(g,h,i)perylene	191-24-2	μg/kg	370 U	27 J	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
bis(2-Ethylhexyl)phthalate	117-81-7	μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	58 J	390 U		
Carbazole	86-74-8	μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
Chrysene	218-01-9	μg/kg	14 J	67 J	360 U	390 U	350 U	420 U	350 U	410 U	53 J	390 U		
Dibenz(a,h)anthracene Dibenzofuran	53-70-3 132-64-9	μg/kg	370 U 370 U	390 U 390 U	360 U 360 U	390 U 390 U	350 U 350 U	420 U 420 U	350 U 350 U	410 U 410 U	360 U 360 U	390 U 390 U		
Di-n-butylphthalate	84-74-2	μg/kg μg/kg	100 J	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
Fluoranthene	206-44-0	μg/kg	23 J	89 J	360 U	390 U	350 U	420 U	350 U	410 U	170 J	390 U		
Fluorene	86-73-7	μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U	-	
Indeno(1,2,3-cd)pyrene	193-39-5	μg/kg	370 U	29 J	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
Naphthalene	91-20-3	μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
Phenanthrene Pyrene	85-01-8 129-00-0	μg/kg	370 U 17 J	44 J 64 J	360 U 360 U	390 U 390 U	350 U 350 U	420 U 420 U	350 U 350 U	410 U 410 U	30 J 100 J	390 U 390 U		
2,4-Dimethylphenol	105-67-9	μg/kg μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
2-Methylnaphthalene	91-57-6	μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
Dibenzofuran	132-64-9	μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
N-Nitrosodiphenylamine	86-30-6	μg/kg	370 U	390 U	360 U	390 U	350 U	420 U	350 U	410 U	360 U	390 U		
PESTICIDES/PCBs														
4,4'-DDE	72-55-9	μg/kg	2.1 J	0.65 JN	1.9 U	2 U	1.8 U	2.1 U	1.8 U	2.1 U	0.069 JN	2 U		T
Endrin	72-20-8	μg/kg	1.9 U	2 U	1.9 U	2 U	1.8 U	2.1 U	1.8 U	2.1 U	1.9 U	2 U		
Endrin aldehyde	7421-93-4	μg/kg	2.9 J	2 U	1.9 U	2 U	1.8 U	2.1 U	1.8 U	2.1 U	1.9 U	2 U		
4,4'-DDD 4,4'-DDT	72-54-8 50-29-3	μg/kg	2.7 JN 6.9 JN	2 U 0.9 JN	1.9 U	2 U	1.8 U	2.1 U	1.8 U	2.1 U	1.9 U	2 U 2 U		
Aroclor 1260	1336-36-3	μg/kg μg/kg	160	0.9 JN 2 U	1.9 U 1.9 U	2 U 2 U	1.8 U 1.8 U	2.1 U 2.1 U	1.8 U 1.8 U	2.1 U 2.1 U	1.9 U 1.9 U	2 U		+
	1000 00 0	μβικί	100		1.0 0		1.0 0	2.1 0	1.0 0	2.1 0	1.0 0			
Metals Aluminum	7429-90-5	malka	9850	12100	11000	15100	10000	13900	10300	11300	10200	14800		T
Antimony	7440-36-0	mg/kg mg/kg	0.27 J	0.36 J	0.17 J	0.17 UJ	0.32 J	0.18 UJ	0.15 UJ	0.2 J	0.16 UJ	0.17 UJ		
Arsenic	7440-38-2	mg/kg	5.4	6.7	4.9	5.4	6.9	8.1	4.7	8.6	6.5	4.3	_	
Barium	7440-39-3	mg/kg	41	47.4	31	84.3	50.9	98.7	28.7	64.4	33	97.2		
Beryllium	7440-41-7	mg/kg	0.49 J	0.59 J	0.45 J	0.95	0.58	1.2	0.41 J	0.91	0.5 J	1		
Cadmium	7440-43-9	mg/kg	0.53 J	0.65	0.092 J	0.059 U	0.06 J	0.062 U	0.095 J	0.062 U	0.17 J	0.059 U		
Calcium Chromium	7440-70-2 7440-47-3	mg/kg	13500 19.4 J	5580 19.3 J	17500 15.8	1360 16.7	23800 15.6	2650 15.1	31500 13.9	3370 13.6	21300 15	2790 15.4		
Chromium VI	18540-29-9	mg/kg mg/kg	19.4 J	19.5 J	15.0		15.0		13.9	13.0				
Cobalt	7440-48-4	mg/kg	11.2 J	13.3 J	11.2	13.6	12.7	15	11.2	13.5	12.4	8.8	_	
Copper	7440-50-8	mg/kg	30.9	32.7	23.5 J	19.9 J	29.8 J	27.2 J	21.6 J	27.1 J	28.8 J	17.3 J		
Iron	7439-89-6	mg/kg	25100 J	30000 J	26800	38400	26300	42600	25000	34200	27600	28700		
Lead	7439-92-1	mg/kg	35.4	25.9	10.6	11.1	11.6	8.7	11	7.5	11.2	7.7		
Magnesium	7439-95-4	mg/kg	8550	6760	7090	3710	7050	3310	13300	3570	8070	3130		
Manganese Mercury	7439-96-5 7439-97-6	mg/kg mg/kg	517 0.04	615 0.064	647 0.019 J	205 0.028 J	523 0.025 J	183 0.035 J	614 0.016 J	246 0.039 J	599 0.023 J	174 0.034 J		
Nickel	7440-02-0	mg/kg	24.8 J	27.3 J	21.6	20.7	24.1	24.6	21.4	22.9	24.2	16.6		
Potassium	7440-09-7	mg/kg	1270	1600	677	497 J	1130	533 J	673	594 J	880	453 J		
Selenium	7782-49-2	mg/kg	0.24 U	0.25 U	0.23 U	0.25 U	0.22 U	0.26 U	0.22 U	0.26 U	0.23 U	0.25 U		
Silver	7440-22-4	mg/kg	0.16 J	0.12 J	0.1 U	0.11 U	0.099 U	0.12 U	0.099 U	0.12 U	0.1 U	0.11 U	-	
Sodium	7440-23-5	mg/kg	57.6 J	59.2 J	50.3 J	73.3 J	64.4 J	89.4 J	67.9 J	119 J	64.2 J	128 J		
Thallium	7440-28-0	mg/kg	0.44 U	0.55 J	0.43 U	0.46 U	0.41 U	0.83 J	0.95 J	0.49 U	0.93 J	0.46 U		
Vanadium Zinc	7440-62-2 7440-66-6	mg/kg mg/kg	18.6 84.5	25.2 114	16.2 J 71.3	27.5 J 48.2	18.8 J 68.4	35.7 J 59.1	14.7 J 73.1	32.2 J 52.6	18.4 J 93.8	31.7 J 40.8		
J = Estimated Value	1												1	

UJ = Analyte not detected; the number is the estimated analytical reporting limit.
U = Analyte not detected; the number is the analytical reporting limit.
R = Rejected during data validation

ND = Not Detected

N = Presumptive Evidence; compound identification is not definitive

SB = Site Background

Concentration above NYSDEC Soil Criteria.

- a) The highest result between samples SD-SS-GW03-0-0.5 and SD-SS-GW103-0-0.5 (dup of SD-SS-GW03-0-0.5) is reported.
- c) The highest result between samples SS-04-0,18 and SS-04-0,18 DUP is reported.

D = Diluted

NS = No Standard

Table J.7.2 Detected Chemicals in Mixed (Surface/Subsurface) Soil SADVA - AOCs 1 and 7

		SAMPLE ID: DEPTH:	1-12,18 1.5	SS-01-12,18 1-1.5	SS-02-12,18 1-1.5	SS-03-12,18 1-1.5	SS-06-12,18 1-1.5	SS-04-0,18 ^c 0-1.5	SS-05-0,24 0-2	SS-01-0,24 0-2	SS-02-0,24 0-2	SS-03-0,24 0-2	SS-06-0,24 0-2
PARAMETER	CAS NUMBER	SAMPLED:	ul-96	01-Jul-96	01-Jul-96	02-Jul-96	01-Jul-96	02-Jul-96	02-Jul-96	02-Jul-96	02-Jul-96	02-Jul-96	02-Jul-96
	CAS NUMBER	UNITS:											
/OLATILES													
Acetone	67-64-1	μg/kg	U	6 U	2600 D	6 U	6 U			-			
Ethylbenzene	100-41-4	μg/kg	U	6 U	6 UJ	6 U	6 U						
Toluene	108-88-3	μg/kg	U	6 U	6 UJ	6 U	6 U			-			
Trichloroethene	79-01-6	μ g/kg	U	6 U	6 U	6 U	6 U			-			-
Methyl Ethyl Ketone (2-Butanone)	78-93-3 1330-20-7	μg/kg	U	6 U 6 U	6 U 6 UJ	6 U	6 U 6 U				-		
Xylene (total)	1330-20-7	μ g/kg	U	60	6 03	6.0	60						
SEMIVOLATILES													
Acenaphthene	83-32-9	μg/kg						270 J	370 UJ	410 UJ	15 J	380 U	20 J
Acenaphthylene	208-96-8	μg/kg						120 J	23 J	410 UJ	410 U	380 U	29 J
Anthracene	120-12-7	μg/kg						490 J	20 J	410 UJ	30 J	14 J	70 J
Benzo(a)anthracene	56-55-3	μg/kg						1500 J	61 J	410 UJ	110 J	59 J	180 J
Benzo(b)fluoranthene	205-99-2	μg/kg						2100 J	100 J	410 UJ	140 J	75 J	270 J
Benzo(k)fluoranthene	207-08-9 50-32-8	μg/kg					-	750 J 1300 J	36 J 57 J	410 UJ 410 UJ	53 J 97 J	28 J 54 J	84 J 170 J
Benzo(a)pyrene		μg/kg										30 J	
Benzo(g,h,i)perylene bis(2-Ethylhexyl)phthalate	191-24-2 117-81-7	μg/kg μg/kg						470 J 360 UJ	14 J 370 UJ	410 UJ 410 UJ	410 U 410 U	30 J 380 U	60 J 560 U
Carbazole	86-74-8	μg/kg μg/kg						1300 J	370 UJ	410 UJ	410 U	380 U	370 U
Chrysene	218-01-9	μg/kg μg/kg						1500 J	84 J	410 UJ	120 J	66 J	200 J
Dibenz(a,h)anthracene	53-70-3	μg/kg						130 J	370 UJ	410 UJ	410 U	6 J	370 U
Dibenzofuran	132-64-9	μg/kg		_									
Di-n-butylphthalate	84-74-2	μg/kg						360 UJ	780 UJ	480 UJ	410 U	500 U	370 U
Fluoranthene	206-44-0	μg/kg						2800 J	86 J	410 UJ	240 J	120 J	360 J
Fluorene	86-73-7	μg/kg						220 J	370 UJ	410 UJ	410 U	380 U	370 U
Indeno(1,2,3-cd)pyrene	193-39-5	μg/kg		-				530 J	28 J	410 UJ	32 J	29 J	69 J
Naphthalene	91-20-3	μg/kg						410 J	5 J	410 UJ	410 U	380 U	370 U
Phenanthrene	85-01-8	μg/kg						1900 J	36 J	410 UJ	150 J	62 J	220 J
Pyrene	129-00-0	μg/kg						3100 DJ	110 J	410 UJ	200 J	110 J	330 J
2,4-Dimethylphenol	105-67-9	μ g/kg						150 J	370 UJ	410 UJ	410 U	380 U	370 U
2-Methylnaphthalene	91-57-6	μg/kg						230 J	7 J	410 UJ	410 U	380 U	370 U
Dibenzofuran	132-64-9	μg/kg						110 J	370 UJ	410 UJ	410 U	380 U	10 J
N-Nitrosodiphenylamine	86-30-6	μ g/kg						68 J	370 UJ	410 UJ	410 U	380 U	370 U
PESTICIDES/PCBs													
4,4'-DDE	72-55-9	μg/kg											
Endrin	72-20-8	μg/kg											
Endrin aldehyde	7421-93-4	μg/kg								-			
4,4'-DDD	72-54-8	μg/kg								-			
4,4'-DDT	50-29-3	μg/kg											
Aroclor 1260	1336-36-3	μg/kg								-			-
Metals													
Aluminum	7429-90-5	mg/kg											
Antimony	7440-36-0	mg/kg								-			
Arsenic	7440-38-2	mg/kg											
Barium	7440-39-3	mg/kg					-	4.1	37.1	1.6	3.5	4.6	4.3
Beryllium	7440-41-7	mg/kg											
Cadmium	7440-43-9	mg/kg											
Calcium	7440-70-2	mg/kg											
Chromium	7440-47-3	mg/kg					-	337	21.4	13.2	19.2	36.1	14.1
Chromium VI	18540-29-9	mg/kg						350 J	0.11 UJ	0.12 UJ	0.12 UJ	0.17 J	0.12 J
Copper	7440-48-4 7440-50-8	mg/kg											
Copper	7440-50-8 7439-89-6	mg/kg											
Iron Lead	7439-89-6	mg/kg mg/kg											
Magnesium	7439-92-1	mg/kg											
Manganese	7439-96-5	mg/kg											
Mercury	7439-97-6	mg/kg											
Nickel	7440-02-0	mg/kg		_									
Potassium	7440-09-7	mg/kg											
Selenium	7782-49-2	mg/kg											
Silver	7440-22-4	mg/kg						1.9	0.47 U	0.52 U	0.52 U	0.48 U	0.47 U
Sodium	7440-23-5	mg/kg											
Thallium	7440-28-0	mg/kg		-			-						
Vanadium	7440-62-2	mg/kg											

UJ = Analyte not detected; the number is the estimated analytical reporting limit.

U = Analyte not detected; the number is the analytical reporting limit.
R = Rejected during data validation

D = Diluted

ND = Not Detected

N = Presumptive Evidence; compound identification is not definitive

SB = Site Background

NS = No Standard

Concentration above NYSDEC Soil Criteria.

a) The highest result between samples SD-SS-GW03-0-0.5 and SD-SS-GW103-0-0.5 (dup of SD-SS-GW03-0-0.5) is reported.

c) The highest result between samples SS-04-0,18 and SS-04-0,18 DUP is reported.

Table J.7.3 Detected Chemicals in Groundwater and Screening Concentrations for Potential Vapor Intrusion of VOCs into Indoor Air SADVA - AOCs 1 and 7

PARAMETER VOLATILES	CAS NUMBER	SAMPLE ID: SAMPLED: DEPTH ZONE: UNITS:		MAX VALUE AFFECTING	INDOOR AIR SCREENING VALUE	ACE-2 6/15/2006 Shallow	AMW-1 6/15/2006 Shallow	AMW-2 6/15/2006 Bedrock	AMW-3 6/14/2006 Shallow	AMW-4 6/14/2006 Shallow	AMW-104 6/14/2006 Unknown	GW-01 6/16/2006 Shallow	GW-03 6/16/2006 Shallow	GW-12 6/14/2006 Shallow	GW-13 6/16/2006 Shallow	GW-14 6/16/2006 Shallow	MW-2B 6/15/2006	SD-GW11R-AOC-1 28-Jul-04	07-Dec-04
	CAS NUMBER	DEPTH ZONE:		AFFECTING															
	CAS NUMBER				VALUE	Shallow	Shallow	Bedrock	Shallow	Shallow	Unknown	Shallow	Shallow	Shallow	Challow	Challow	C1 11	TO 1 1	
	CAS NUMBER	LINITS:							Dilairo	Silanow	Clikilowii	Shanow	Silanow	Shanow	Shanow	Shanow	Shallow	Bedrock	Shallow
VOLATILES		OINITO.	MAX VALUE	INDOOR AIR	$(Risk = 1x10^{-6})$														
O Dutanana	70.00.0		0.0	0.0	4.405.05	100 11	15 11	221	. T.	2.1	. T.	C 11	C 11	5 XX		C 11	5 H		
2-Butanone 1,1-Dichloroethene	78-93-3 75-35-4	μg/L	2.3	2.3	4.40E+05 1.90E+02	100 U	15 U	2.3 J	5 U	2 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U		
1,2-Dichloroethane		μg/L μg/L	5	<u>4</u> 5	5.00E+02	11	 1 / T	 1 II	 1 TT	 1 II	 1 II	 1 II	 1 II	 1 II	 1 II	 1 II	 1 II		
1,2-Dichloroethane	107-06-2 540-59-0		990	990	1.80E+02	20 U 530	1.4 J 78	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U		
cis-1,2-Dichloroethene	156-59-2	μg/L μg/L	930	930	2.10E+02														
trans-1,2-Dichloroethene	156-60-5	μg/L μg/L	43	43	1.80E+02														
Acetone	67-64-1	μg/L	1600	57	2.20E+05														
Benzene	71-43-2	μg/L	4	4	5.00E+00	20 U	3 U	1 U	1 U	0.28 J	0.81 J	1 U	1 U	1 U	1 U	1 U	1 U		
Chlorobenzene	108-90-7	μg/L	2	2	3.90E+02														
Methylene chloride	75-09-2	μg/L	4.8	4.8	5.80E+01														
Toluene	108-88-3	μg/L	0.62	0.6	1.50E+03	20 U	3 U	0.28 J	1 U	0.23 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.62 J	1 U
Trichloroethene	79-01-6	μg/L	300	300	5.00E+00	44	2.5 J	1 U	0.26 J	1 U	0.32 J	1 U	1 U	1 U	1 U	1 U	1 U		
Vinyl chloride	75-01-4	μg/L	360	360	2.00E+00	160	21	1 U	1 U	1 J	3.4 J	1 U	1 U	1 U	1 U	1 U	1 U		
Xylenes (total)***	1330-20-7	μg/L	0.7	0.7	2.20E+04														
SEMIVOLATILES						•	•					•							•
	+		1							I									1
bis(2-Ethylhexyl) phthalate	117-81-7	μg/L	100															6.8	9.8 U
Butyl benzyl phthalate	85-68-7	μg/L	0.12																
Carbazole	86-74-8	μg/L	0.13																
Di-n-butyl phthalate	84-74-2	μg/L	5.4															5.4	1.1 J
Diethyl phthalate	84-66-2	μg/L	1.7																
Fluoranthene	206-44-0	μg/L	2.5															4.9 U	2.5 J
Pyrene	129-00-0	μ g /L	0.95															4.9 U	0.95 J
PESTICIDES / PCBs																			
alpha-BHC	319-84-6	μg/L	0.0023												-			0.005 U	0.0023 J
gamma-BHC (Lindane)	58-89-9	μg/L	0.0017															0.005 U	0.0023 J
4,4'-DDE	72-55-9	μg/L	0.023																
4,4'-DDD	72-54-8	μg/L	0.035															0.005 U	0.027 J
4,4'-DDT	50-29-3	μg/L	0.087															0.0039 JN	0.014 JN
Endrin	72-20-8	μg/L	0.0077															0.005 U	0.0077 JN
Endrin Ketone	53494-70-5	μg/L	0.0027															0.005 U	0.0027 J
Endrin aldehyde	7421-93-4	μg/L	0.0065														-	0.0065 JN	0.0019 JN
METALS																			
Aluminum	7429-90-5	μg/L	389000															1860 J	8 U
Antimony	7440-36-0	μg/L	11.5															6.5 J	3.2 U
Arsenic	7440-38-2	μg/L	207															15.6	3.3 U
Barium	7440-39-3	μg/L	1990															116 J	36.5 J
Beryllium	7440-41-7	μg/L	20.7															1.2 J	0.71 J
Cadmium Calcium	7440-43-9 7440-70-2	μg/L	9.1															1690 J	 441000
Chromium	7440-70-2	μg/L μg/L	544															3.3 J	7
Chromium VI	18540-29-9	μg/L μg/L	J 44															3.3 J 	
Cobalt	7440-48-4	μg/L	423															1.1 J	0.53 U
Copper	7440-50-8	μg/L	989															14.1 J	1.2 J
Iron	7439-89-6	μg/L	300															2220 J	18 U
Lead	7439-92-1	μg/L	388															2.2 J	1.6 U
Magnesium	7439-95-4	μg/L																653 J	168000
Manganese	7439-96-5	μg/L	16200															30	90.2
Mercury	7439-97-6	μg/L	0.97																
Nickel	7440-02-0	μg/L	857															7 J	2.4 J
Potassium	7440-09-7	μg/L																4240 J	47800
Selenium	7782-49-2	μg/L	84.5														1	11.2	8.4 J
Silver	7440-22-4	μg/L	4.1																
Sodium	7440-23-5	μg/L																352000	74600
Jouluiii																			
Strontium	7440-24-6	μg/L	269																
Strontium Thallium	7440-28-0	μg/L	7.8																
Strontium						 	1	 										 8 J 339	4.9 J 30.6

B = The analyte was found in an associated blank, as well as in the sample.

J = The analyte was positively identified, the quantitation is an estimation.

U - The analyte was analyzed for, but not detected. The associated numerical value is the MDL.

^{* -} Analytes also detected in Blank.

^{** -} trans-1,2-Dichloroethene screening value used as a surrogate for 1,2-Dichloroethene (total).

^{**** -} p-Xylene screening value used as a surrogate for Xylenes (total).

a) The highest result between samples 2AMW-7 and 2AMW-17 (dup of 2AMW-7) is reported.

b) The highest result between samples HP01 and HP04 (dup of HP01) is reported. c) The highest result between samples MW-ACE3 and MW-ACE3 DUP is reported.

d) The highest result between samples MW-ACE2 and MW-ACE2 DUP is reported.

Table J.7.3 Detected Chemicals in Groundwater and Screening Concentrations for Potential Vapor Intrusion of VOCs into Indoor Air SADVA - AOCs 1 and 7

		SAMPLE ID:	SD-GW01-AOC-	7 SD-GW101-AOC-7	SD-GW02-AOC-7	SD-GW03-AOC	C-7 SD-2AMW5-AOC-	1 SD-2AMW7-AOC-1	AOC-1 GW-11R	AMW-11	AMW-2	ACE-6	ACE-2	AMW-1	AOC7-2AMW-7	AOC7-2AMW-5
		SAMPLED:	21-Jul-04	21-Jul-04	22-Jul-04	22-Jul-04	21-Jul-04	21-Jul-04	11-Jan-01	29-Jun-00	29-Jun-00	29-Jun-00	29-Jun-00	29-Jun-00	16-Aug-00	16-Aug-00
		DEPTH ZONE:	Shallow	Shallow	Bedrock	Shallow	Shallow	Shallow	Bedrock	Bedrock	Bedrock	Shallow	Shallow	Shallow	Shallow	Shallow
PARAMETER	CAS NUMBER	UNITS:	UPGRADIENT	Dup of SD-GW01-AOC-7	DOWNG	GRADIENT	UPGF	RADIENT								
/OLATILES			•													
2-Butanone	78-93-3	μg/L							5 UJ						R	R
1,1-Dichloroethene	75-35-4	μg/L							1 U						1 Ü	1 U
1,2-Dichloroethane	107-06-2	μg/L							1 U						1 U	1 U
1,2-Dichloroethene (total)**	540-59-0	μg/L							1 U	ND	ND	ND	990	120	1 U	1 U
cis-1,2-Dichloroethene	156-59-2	μg/L							1 U						1 U	1 U
trans-1,2-Dichloroethene	156-60-5	μg/L							1 U							
Acetone	67-64-1	μg/L							4.3 J						10 U	10 U
Benzene	71-43-2 108-90-7	μg/L							1 U 1 U						1 U 1 U	1 U
Chlorobenzene Methylene chloride	75-09-2	μg/L μg/L				+			2 U						2 U	1 U 2 U
Toluene	108-88-3	μg/L							0.3 J						1 U	1 U
Trichloroethene	79-01-6	μg/L							1 U	ND	ND	ND	300	11	1 U	1 U
Vinyl chloride	75-01-4	μg/L							2 U	ND	ND	ND	270	42	2 U	2 U
Xylenes (total)***	1330-20-7	μg/L							1 U						1 U	1 U
SEMIVOLATILES																
bis(2-Ethylhexyl) phthalate	117-81-7	μg/L	22 J	1.6 J	16	7.6	27	4.1 J	10 U						5.9 J	15
Butyl benzyl phthalate	85-68-7	μg/L	4.7 U	4.8 U	4.8 U	4.7 U	0.12 J	4.8 U	10 U						10 U	10 U
Carbazole	86-74-8	μg/L	4.7 U	4.8 U	4.8 U	4.7 U	0.13 J	4.8 U	10 U						10 U	10 U
Di-n-butyl phthalate	84-74-2	μg/L	4.7 U	4.8 U	4.8 U	4.7 U	0.28 J	4.8 U	10 U						10 U	10 U
Diethyl phthalate	84-66-2	μg/L	4.7 U	4.8 U	1.7 J	4.7 U	0.35 J	1.6 J	10 U						10 U	10 U
Fluoranthene	206-44-0 129-00-0	μg/L μg/L	4.7 U 4.7 U	4.8 U 4.8 U	4.8 U 4.8 U	4.7 U 4.7 U	0.2 J 0.17 J	4.8 U 4.8 U	10 U 10 U						10 U 10 U	10 U 10 U
Pyrene PESTICIDES / PCBs	129-00-0	μg/L	4.7 0	4.6 0	4.0 U	4.7 0	0.17 3	4.0 0	10 0						10 0	100
alpha-BHC	319-84-6	/1							0.05 U						0.05 U	0.05 U
gamma-BHC (Lindane)	58-89-9	μg/L μg/L							0.05 U						0.05 U	0.05 U
4,4'-DDE	72-55-9	μg/L							0.05 U						0.05 U	0.05 U
4,4'-DDD	72-54-8	μg/L							0.05 U						0.05 U	0.05 U
4,4'-DDT	50-29-3	μg/L							0.05 U						0.05 U	0.05 U
Endrin	72-20-8	μg/L							0.05 U						0.05 U	0.05 U
Endrin Ketone	53494-70-5	μg/L							0.05 U						0.05 U	0.05 U
Endrin aldehyde	7421-93-4	μg/L				1			0.05 U						0.05 U	0.05 U
METALS				_												-
Aluminum	7429-90-5	μg/L	12.1 J	13.7 J	59.9 J	27.4 J	79.4 J	29.5 J	12800						3560	1600
Antimony	7440-36-0	μg/L							11.5 J						1.5 U	1.5 U
Arsenic	7440-38-2	μg/L	3.3 U	3.3 U	3.3 U	3.3 U	11.6	3.3 U	131						2.6 U	14.7
Barium	7440-39-3	μg/L	38.1 J	40.7 J	197 J	10.4 J	41.6 J	16.3 J	357						33.8 J	44.6 J
Beryllium	7440-41-7	μg/L	0.53 J	0.48 J	0.42 U	0.42 U	0.42 U	0.42 U	0.8 J						0.12 J	0.071 U
Cadmium Calcium	7440-43-9 7440-70-2	μg/L	184000	185000	97600	161000	226000	274000	0.49 U 2810 J						0.49 U 238000	0.49 U 250000
Chromium	7440-70-2	μg/L μg/L	104000	100000	31000	101000	220000	214000	2810 J 21						238000 4 J	1.8 J
Chromium VI	18540-29-9	μg/L				+										1.0 J
Cobalt	7440-48-4	μg/L				1			5.6 J						3.2 U	3.2 U
Copper	7440-50-8	μg/L	1.2 U	1.2 U	1.2 U	2 J	4.6 J	1.2 U	25.4						6.8 J	63.3 U
Iron	7439-89-6	μg/L	2840	3100	5360	18 U	2540	18 U	12800					***	3010	3880
Lead	7439-92-1	μg/L	1.6 U	1.6 U	1.6 U	1.6 U	1.6 J	1.6 U	15.8						2 J	5.2
Magnesium	7439-95-4	μg/L	128000	131000	15100	29900	47000	178000	3210 J						111000	49500
Manganese	7439-96-5 7439-97-6	μg/L	1480	1700	456	59	810	135	120						1980	124
Mercury Nickel	7439-97-6	μg/L μg/L	1.2 U	1.2 U	1.2 U	1.2 U	2 J	1.2 U	0.049 J 17.3 J						0.045 U 6.1 U	0.045 U 6.1 U
Potassium	7440-02-0	μg/L	3820 J	4500 J	1140 J	296 J	5740	1090 J	9060						2270 J	7460
Selenium	7782-49-2	μg/L	33200				55		84.5						2.1 U	2.3 J
Silver	7440-22-4	μg/L	0.59 J	0.75 J	0.3 U	0.3 U	0.3 U	0.3 U	0.94 U						0.94 U	0.94 U
Sodium	7440-23-5	μg/L	37300	38900	19200	5510	9730	24100	437000						15900	8780
Strontium	7440-24-6	μg/L							3.9 U							
Thallium	7440-28-0	μg/L				1		1							3.9 U	3.9 U
Vanadium	7440-62-2	μg/L	1 U	1 U	1 U	1.1 J	5.4 J	7.6 J	61.7						10.1 J	4.4 J
Zinc	7440-66-6	μg/L s in the sample.	3.4 J	4 J	2.1 J	12.4 J	11.6 J	6.6 J	21.2						22.3	17.5 J

B = The analyte was found in an associated blank, as well as in the sample.

J = The analyte was positively identified, the quantitation is an estimation.

U - The analyte was analyzed for, but not detected. The associated numerical value is the MDL

^{* -} Analytes also detected in Blank.

^{** -} trans-1,2-Dichloroethene screening value used as a surrogate for 1,2-Dichloroethene (total)

^{**** -} p-Xylene screening value used as a surrogate for Xylenes (total).

a) The highest result between samples 2AMW-7 and 2AMW-17 (dup of 2AMW-7) is reported.

b) The highest result between samples HP01 and HP04 (dup of HP01) is reported.

c) The highest result between samples MW-ACE3 and MW-ACE3 DUP is reported.

d) The highest result between samples MW-ACE2 and MW-ACE2 DUP is reported.

Table J.7.3 Detected Chemicals in Groundwater and Screening Concentrations for Potential Vapor Intrusion of VOCs into Indoor Air SADVA - AOCs 1 and 7

							0/12 1/1	AOOS I allu	•							
		SAMPLE ID:	AOC7-2AMW-7 a	AOC7-HP01 b	AOC7-HP02	AOC7-HP03	AOC7-HP04	MW-ACE4	MW-ACE3 ^c	MW-2-2	MW-ACE5	MW-2BMW9	MW-2AMW6	MW-2AMW8	MW-2AMW3	MW-ACE2 d
		SAMPLED:	16-Aug-00	02-Aug-00	31-Jul-00	31-Jul-00	8/2/2000	23-Jul-96	23-Jul-96	24-Jul-96	24-Jul-96	24-Jul-96	24-Jul-96	24-Jul-96	24-Jul-96	25-Jul-96
		DEPTH ZONE:	Shallow	Shallow	Shallow	Shallow	Shallow	Unknown	Shallow	Unknown	Unknown	Shallow	Shallow	Shallow	Unknown	Shallow
PARAMETER	CAS NUMBER	UNITS:														1
VOLATILES																
2-Butanone	78-93-3	μg/L	R	R	ND	ND		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	75-35-4	μg/L μg/L	1 U	1 U	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	4 J
1,2-Dichloroethane	107-06-2	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5
1,2-Dichloroethene (total)**	540-59-0	μg/L	1 1 0	1 U	1 U	1 U	1 U	3 0								
cis-1,2-Dichloroethene	156-59-2	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	930
trans-1,2-Dichloroethene	156-60-5	μg/L						5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	43
Acetone	67-64-1	μg/L	10 U	4.2 J	2.4 J	10 U	4.2 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	71-43-2	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	4 J
Chlorobenzene	108-90-7	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 J
Methylene chloride	75-09-2	μg/L	2 U	2 U	2 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene Trichloroethene	108-88-3 79-01-6	μg/L μg/L	1 U 1 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	0.6 J 160				
Vinyl chloride	75-01-4	μg/L	2 U	2 U	2 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	360 D
Xylenes (total)***	1330-20-7	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.7 J
SEMIVOLATILES	1,000 =0.	F-9-														
	447.04.7	,		00	100	10	0.5 :									
bis(2-Ethylhexyl) phthalate	117-81-7	μg/L	27 J	69	100	13	8.5 J									
Butyl benzyl phthalate Carbazole	85-68-7 86-74-8	μg/L μg/L	10 U 10 U													
Di-n-butyl phthalate	84-74-2	μg/L	10 U													
Diethyl phthalate	84-66-2	μg/L	10 U													
Fluoranthene	206-44-0	μg/L	10 U													
Pyrene	129-00-0	μg/L	10 U	-												
PESTICIDES / PCBs																
alpha-BHC	319-84-6	μg/L	0.05 U													
gamma-BHC (Lindane)	58-89-9	μg/L	0.05 U													
4,4'-DDE	72-55-9	μg/L	0.05 U	0.05 U	0.05 U	0.023 J	0.05 U									
4,4'-DDD	72-54-8	μg/L	0.05 U	0.05 U	0.05 U	0.035 JN	0.05 U									
4,4'-DDT	50-29-3	μg/L	0.05 U	0.05 U	0.05 U	0.087	0.05 U									
Endrin	72-20-8	μg/L	0.05 U													
Endrin Ketone Endrin aldehyde	53494-70-5 7421-93-4	μg/L μg/L	0.05 U 0.05 U													
Í	7421-93-4	μg/L	0.05 0	0.05 0	0.05 0	0.05 0	0.05 0									
METALS		1		1	1	1	I		1		I	1	I		I	
Aluminum	7429-90-5	μg/L	3560	5940	389000	19600	5310	-								
Antimony	7440-36-0	μg/L	1.5 U													
Arsenic Barium	7440-38-2 7440-39-3	μg/L	2.6 U 33.8 J	4.8 J 85 J	207 1990	10.2 187 J	2.7 J 72.3 J	10 104	5 42	6 79	2 U 13	2 U 28	2 U 14	82 51	5 107	6 131
Beryllium	7440-39-3	μg/L μg/L	0.12 J	0.41 J	20.7	1.2 J	0.41 J									
Cadmium	7440-43-9	μg/L	0.49 U	0.41 J	9.1 J	0.49 U	0.41 J									
Calcium	7440-70-2	μg/L	238000	255000	694000	147000	255000									
Chromium	7440-47-3	μg/L	4 J	11.9	544	31.1	11.2	22	17	18	4 U	4 U	4 U	50	34	18
Chromium VI	18540-29-9	μg/L						20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Cobalt	7440-48-4	μg/L	3.2 U	3.8 J	423	15 J	3.2 U									
Copper	7440-50-8	μg/L	10.3 J	13.8 J	989	37.7	13.3 J									
Iron Lead	7439-89-6 7439-92-1	μg/L	3010 2 J	9920 4.9	912000 388	31200 12.1	8910 4.9	 6 U	 2 U	 6 U	 6 U	 6 U	 6 U	 2 U	13	79
Magnesium	7439-95-4	μg/L μg/L	111000	106000	313000	40000	96200									
Manganese	7439-96-5	μg/L	2700	461	16200	989	422									
Mercury	7439-97-6	μg/L	0.045 U	0.069 J	0.97	0.067 J	0.06 J									
Nickel	7440-02-0	μg/L	6.1 U	12.4 J	857	46.5	8.1 J	1		-						
Potassium	7440-09-7	μg/L	2270 J	46800	73700	17100	32000									
Selenium	7782-49-2	μg/L	2.1 U	-												
Silver	7440-22-4	μg/L	0.94 U	0.94 U	4.1 J	0.94 U	0.94 U									
Sodium	7440-23-5	μg/L	15900	143000	74700	14300	134000									
Strontium Thallium	7440-24-6	μg/L		3.9 U	7.8	3.9 U	3.9 U									
Vanadium	7440-28-0 7440-62-2	μg/L μg/L	3.9 U 10.1 J	3.9 U 15.8 J	7.8	3.9 U 41.5 J	3.9 U 15.6 J									
Zinc	7440-66-6	μg/L	22.3	56.9	2090	109	46.8									
B = The analyte was found in an				, 23.0			,		1		1	1	1	I.	1	

B = The analyte was found in an associated blank, as well as in the sample.

J = The analyte was positively identified, the quantitation is an estimation.

U - The analyte was analyzed for, but not detected. The associated numerical value is the MDL

^{* -} Analytes also detected in Blank.

^{** -} trans-1,2-Dichloroethene screening value used as a surrogate for 1,2-Dichloroethene (total)

^{**** -} p-Xylene screening value used as a surrogate for Xylenes (total).

a) The highest result between samples 2AMW-7 and 2AMW-17 (dup of 2AMW-7) is reported.

b) The highest result between samples HP01 and HP04 (dup of HP01) is reported.

c) The highest result between samples MW-ACE3 and MW-ACE3 DUP is reported.

d) The highest result between samples MW-ACE2 and MW-ACE2 DUP is reported.

Table J.7.3 Detected Chemicals in Groundwater and Screening Concentrations for Potential Vapor Intrusion of VOCs into Indoor Air SADVA - AOCs 1 and 7

							OAD 11	A - AOOS 1 a	11 4 7						
		SAMPLE ID: SAMPLED: DEPTH ZONE:	MW-AMW1 25-Jul-96 Shallow	MW-AMW2 26-Jul-96 Bedrock	MW-AMW11 30-Jul-96 Bedrock	E4800 27-Aug-90 Unknown	E4801 27-Aug-90 Unknown	E4802 27-Aug-90 Unknown	E4803 27-Aug-90 Unknown	E4804 27-Aug-90 Unknown	E4806 27-Aug-90 Unknown	E4807 27-Aug-90 Unknown	E4808 27-Aug-90 Unknown	E4809 27-Aug-90 Unknown	E4810 27-Aug-90 Unknown
PARAMETER	CAS NUMBER	UNITS:	Shanow	Bearook	Bedrock	Chkhowh	Chriown	Chillown	Chkhowh	Chkhowh	Chkhowh	Chkhown	Chkhowh	Chkhowh	Chkhown
	OAO ITOMBER	OTTTO.		<u>I</u>	<u> </u>		<u> </u>			<u>I</u>					
VOLATILES				ı	1	1	1	ı		ı		1			
2-Butanone	78-93-3	μg/L	5 U	5 U	50 UJ										
1,1-Dichloroethene	75-35-4	μg/L	5 U	5 U	50 UJ										
1,2-Dichloroethane	107-06-2	μg/L	3 J	5 U	50 UJ										
1,2-Dichloroethene (total)**	540-59-0	μg/L													
cis-1,2-Dichloroethene	156-59-2	μg/L	87	5 U	50 UJ										
trans-1,2-Dichloroethene	156-60-5 67-64-1	μg/L	14 5 U	5 U	50 UJ 1600 DJ	29 *	21 *	20 *							
Acetone Benzene	71-43-2	μg/L μg/L	5 U	5 U	50 UJ										
Chlorobenzene	108-90-7	μg/L μg/L	5 U	5 U	50 UJ										
Methylene chloride	75-09-2	μg/L	5 U	5 U	50 UJ	2.4 *	4.8 *	1.9 *		2.6 *	1.6 *	1.2 *	2.3 *	1.1 *	3.4 *
Toluene	108-88-3	μg/L	5 U	5 U	50 UJ										
Trichloroethene	79-01-6	μg/L	12	5 U	50 UJ										
Vinyl chloride	75-01-4	μg/L	66	5 U	50 UJ										
Xylenes (total)***	1330-20-7	μg/L	5 U	5 U	50 UJ										
SEMIVOLATILES															
bis(2-Ethylhexyl) phthalate	117-81-7	μg/L													
Butyl benzyl phthalate	85-68-7	μg/L													
Carbazole	86-74-8	μg/L													
Di-n-butyl phthalate	84-74-2	μg/L													
Diethyl phthalate	84-66-2	μg/L													
Fluoranthene	206-44-0	μg/L													
Pyrene	129-00-0	μg/L													
PESTICIDES / PCBs		1					1		_		_	1	_	_	
alpha-BHC	319-84-6	μg/L													
gamma-BHC (Lindane)	58-89-9	μg/L													
4,4'-DDE	72-55-9	μg/L													
4,4'-DDD	72-54-8	μg/L													
4,4'-DDT	50-29-3	μg/L													
Endrin	72-20-8	μg/L													
Endrin Ketone	53494-70-5	μg/L													
Endrin aldehyde	7421-93-4	μg/L													
METALS															
Aluminum	7429-90-5	μg/L													
Antimony	7440-36-0	μg/L													
Arsenic	7440-38-2	μg/L	2 U	2 U	NA										
Barium	7440-39-3	μg/L	44	69	NA				319						
Beryllium	7440-41-7	μg/L													
Cadmium	7440-43-9	μg/L													
Calcium	7440-70-2	μg/L							1.7						
Chromium	7440-47-3	μg/L	4 U	7	NA		10	10	44	30		20			20
Chromium VI	18540-29-9	μg/L	20 U	20 UJ	NA										
Cobalt	7440-48-4	μg/L													
Copper	7440-50-8	μg/L							55						
Iron	7439-89-6	μg/L							6						
Lead	7439-92-1	μg/L	2	2	NA										
Magnesium	7439-95-4 7439-96-5	μg/L													
Manganese	7439-96-5 7439-97-6	μg/L													
Mercury Nickel	7440-02-0	μg/L μg/l							3.4						
Potassium	7440-02-0	μg/L μg/L							397						
Selenium	7782-49-2	μg/L													
Silver	7440-22-4	μg/L													
Sodium	7440-23-5	μg/L							456						
Strontium	7440-24-6	μg/L													
Thallium	7440-28-0	μg/L													
Vanadium	7440-62-2	μg/L													
Zinc	7440-66-6	μg/L				10	20	20		30	30	30	20	10	20
B = The analyte was found in an a	associated blank, as well as	s in the sample.													

B = The analyte was found in an associated blank, as well as in the sample.

J = The analyte was positively identified, the quantitation is an estimation.

U - The analyte was analyzed for, but not detected. The associated numerical value is the MDL

^{* -} Analytes also detected in Blank.

^{** -} trans-1,2-Dichloroethene screening value used as a surrogate for 1,2-Dichloroethene (total)

^{**** -} p-Xylene screening value used as a surrogate for Xylenes (total).

a) The highest result between samples 2AMW-7 and 2AMW-17 (dup of 2AMW-7) is reported.

b) The highest result between samples HP01 and HP04 (dup of HP01) is reported.

c) The highest result between samples MW-ACE3 and MW-ACE3 DUP is reported.

d) The highest result between samples MW-ACE2 and MW-ACE2 DUP is reported.

Table J.7.3 Detected Chemicals in Groundwater and Screening Concentrations for Potential Vapor Intrusion of VOCs into Indoor Air SADVA - AOCs 1 and 7

MANAMETER F-Sym				ı	1		1	1	ı	1					1	т
Color Colo																
MARIETER MARIETER						_						_				
Selection 18.83				Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
5.6 1.6	PARAMETER	CAS NUMBER	UNITS:													
1. Decimination 1. Decimin	VOLATILES															
1.1 Convergence 19-9-4	2-Butanone	78-93-3	ug/L													
1.2 Octoverhime (1907)					-	+					+	+	+	+		
1,2016 1					+	1					1	1	1	1		
Control Cont					+						1	1	1	1		
Decision Crisis	cis-1,2-Dichloroethene	156-59-2														
Bassane 77-457 195	trans-1,2-Dichloroethene	156-60-5	μg/L													
Chicateoreme 109.07	Acetone			22 *		15 *		21 *	57 *	42 *		22 *				
Selected 186 187																
Total 1988																
Institutional Institutiona					+	-										
Virgin Principle 15-91-5					+	1					1	+	+	 		
September 1998-1997 1998-1998 1998															+	
SEMPOLE PRINCIPATION STATE STATE	,			+			1	1				+		+	1	+
Bell	` ` `	1330-20-7	μg/L													
Burget principal member Book 6-74 Burget	SEMIVOLATILES				1		1	T	1	T					T	т
Burget principal member Book 6-74 Burget	bis(2-Ethylhexyl) phthalate	117-81-7	μg/L													
Contention September Sep																
Discript phtholishe		86-74-8														
Piper 19950 pgt	Di-n-butyl phthalate	84-74-2	μg/L													
Pyring 126.00 190 100			μg/L													
PESTICIDES / PCBs	Fluoranthene															
1994 6 1904 1904 1904 1904 1905	Pyrene	129-00-0	μg/L													
General Set Clindane Set Sep	PESTICIDES / PCBs				Т	1		T	1	T	1	1	1	1	T	
A4-DDE	alpha-BHC	319-84-6	μg/L													
4.4-DDD		58-89-9	μg/L													
44-PDT 50-29-3 199																
Endrin 12-20-8	,															
Endrin Rébre 53494-70-6 µg/L	,															
Endinabelly-leg					+	+		1			-	+	 	 		
METALS All A					+		1	+								1
Aluminum	Endrin aldenyde	7421-93-4	μg/L													
Antimory 7440-36-0 190 1	METALS		<u> </u>	T	T	Т		1	ī	1	Т	T	T	T	1	
Arsenic 7440-38-2 µg/L 7.9 6.6 31 28 23	Aluminum	7429-90-5	μg/L													
Bayllum	Antimony	7440-36-0	μg/L													
Beryllum 7440-41-7 190/L											7.9					
Cadium							63					73	82	 		
Calcium																
Chromium 7440-47-3 119					+	1					+		 	 		
Chomium VI					+											
Cobalt 7440-80-8 μg/L <																
Copper 7440-50-8 µg/L 29 107 107	0 1 1	=														
Fron						+									1	
Lead 7439-92-1						1		1		1	+	l	+	+		
Magnesium 7439-95-4 µg/L 797 <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td> </td> <td></td> <td></td> <td></td> <td></td>					+	+					-	 				
Manganese 7439-96-5 μg/L <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>†</td> <td></td> <td></td> <td></td> <td></td>						1						†				
Mercury 7439-97-6 μg/L	ū														-	
Nickel 7440-02-0 µg/L																
Potassium 7440-09-7 μg/L 29.6 2.2 Selenium 7782-49-2 μg/L <td< td=""><td></td><td></td><td>μg/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			μg/L													
Silver 7440-22-4 μg/L <			μg/L				29.6					2.2				
Sodium 7440-23-5 μg/L <																
Strontium 7440-24-6 μg/L 23 Thallium 7440-28-0 μg/L <t< td=""><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						+										
Thallium 7440-28-0 μg/L <						1		1		1	+		+	+		
Vanadium 7440-62-2 μg/L					+	-					-			l		
Zinc 7440-66-6 μg/L 20 20 140 30 47 80 10					+	1					-	1	+	l		
				20	20	140		30	41	00	10					

B = The analyte was found in an associated blank, as well as in the sample.

J = The analyte was positively identified, the quantitation is an estimation.

U - The analyte was analyzed for, but not detected. The associated numerical value is the MDL

^{* -} Analytes also detected in Blank.

^{** -} trans-1,2-Dichloroethene screening value used as a surrogate for 1,2-Dichloroethene (total)

^{**** -} p-Xylene screening value used as a surrogate for Xylenes (total).

a) The highest result between samples 2AMW-7 and 2AMW-17 (dup of 2AMW-7) is reported.

b) The highest result between samples HP01 and HP04 (dup of HP01) is reported.

c) The highest result between samples MW-ACE3 and MW-ACE3 DUP is reported.

d) The highest result between samples MW-ACE2 and MW-ACE2 DUP is reported.

Table J.7.3a Detected Chemicals in Groundwater and NYSDEC Screening Concentrations for Groundwater Quality Former Schenectedy Army Depot - Voorheesville Area

			SAMPLE ID:	MW-ACE2	d A	CE-2 ACE-2	+		B.ANA	-AMW1 AN	/W-1 AMW-1	1		MW-AMW2	AMW	/-2 AMW-2	1		MW-AMW11	AMW-11	AOC-1 GW 445	RSD-GW11R-AOC-1	+	AMW-3	+
	NVODEO		SAMPLED:	25-Jul-96		Jun-00 6/15/2006					Jun-00 6/15/2006	1 1		26-Jul-96	29-Jun				30-Jul-96	29-Jun-00	11-Jan-01	28-Jul-04		6/14/2006	+
	NYSDEC		DEPTH ZONE:			nallow Shal	low		S	nallow Sh	allow Shallow			Bedrock	Bedro	ock Bedrock			Bedrock	Bedrock	Bedrock	Bedrock		Shalle	low
040 11111111	Recommended Cleanup Objective Basi							A CIE A TIN				AMW-1					AMW-2						AMW-11		
CAS NUMBER	(µg/L) Clea	nup Objective	UNITS:	 	_	1	-	ACE-2 EPC		+ + + -		EPC					EPC		 		1	 	EPC		+
				 	_	<u> </u>	-			+ +		+			 							ļ	_		+
3-93-3	50	H(WS)	μg/L	5 U		1	.00 U			5 U -	- 15 U			5 U		2.3 J	2.3		50 UJ		5 UJ				5 U
5-35-4	5	H(WS)	μg/L	4 J				4		5 U -				5 U					50 UJ		1 U				
7-06-2	0.6	H(WS)	μg/L	5			20 U	5		3 J -	- 1.4 J	2.2		5 U		1 U			50 UJ		1 U				1 U
10-59-0			μg/L	973	99	0 5	30	530		120	78	99			ND	1 U				ND	1 U				1 U
6-59-2	5		μg/L					0	8	7 -		87		5 U											
	50			511	-			0	1	511		14		5 11									802.15		-
-43-2	1				- - :		20 U	4		5 U -	- 3 U			5 U		1 U					4.3 J		802.13	_	1 U
8-90-7	5	H(WS)	μg/L	2 J				2		5 U -				5 U					50 UJ		1 U				
5-09-2	5		μg/L	5 U						5 U -				5 U					50 UJ		2 U				
08-88-3	5						20 U			5 U -	- 3 U	2.5		5 U			0.28					0.62 J	25.15		1 U
	5											2.5		5 11							.,,,		_	0.2	26 J
330-20-7		11(445)			- 21					5 U -		21		5 U											
															\bot										ナ
7-81-7	5	H(WS)	μg/L																		10 U	6.8	6.8		
5-68-7	50	H(WS)	μg/L																				+	_	-
	50	H(///S)										+					 					 E A	5.4	-	-
-66-2	30	11(110)								+ + -	 	+									10 U		3.4		+
06-44-0	50	H(WS)			<u> </u>																10 U	4.9 U			-
9-00-0	50	H(WS)	μg/L																		10 U	4.9 U			\equiv
-	0.04	11(///0)		\vdash	_	 				+	+	1			 						0.05	0.00511	+		+
					_							+											+		-
2-55-9																						0.005 0	1		-
2-54-8	0.3	H(WS)																			0.05 U	0.005 U			_
)-29-3	0.2	H(WS)	μg/L																		0.05 U	0.0039 JN	0.0039		=
2-20-8		11040																							_
	5				_							+											0.0065		4
121-93-4	3	H(WS)	μg/L							-	-										0.05 0	0.0003 JIN	0.0003		+
29-90-5			μg/L		- l																12800	1860 J	7330		-
140-36-0	3	H(WS)	μg/L																		11.5 J	6.5 J			
				6		-		6		2 U -		4.4		2 U											
	1000			131	-			131		4 -		44		69			69		NA				236.5		-
140-43-9	5																					1.2 J	1		+
140-70-2		-/	μg/L		-																2810 J	1690 J	2250		
140-47-3	50	H(WS)	μg/L	18				18		4 U -				7			7		NA		21	3.3 J	12.15		
	50	H(WS)		20 U					2	0 U -				20 UJ					NA				2.25		
	200	H/M/S)			- 	-	-					+													
139-89-6	300	E E			+	_						1			 						12800	2220 J			+
139-92-1	25	H(WS)	μg/L	79		-		79		2 -	-	2		2			2		NA		15.8	2.2 J	9		
139-95-4	35000	H(WS)	μg/L																		3210 J	653 J	1931.5		
139-96-5	0.7	Π////C/	μg/L								-										120	30	75	-	
					+					-	1 -	1			 - 		1					7 1			+
140-02-0	100	11(440)									-	1									9060	4240 J			+
82-49-2	10	H(WS)	μg/L								<u> </u>					-					84.5	11.2	47.85		〓
140-22-4	50	H(WS)	μg/L							- -											0.94 U				
	 		μg/L								-											352000	394500	-	
140-24-6 140-28-0	0.5	H(WS)	μg/L μg/L								1 -	+ +									3.9 U		+ +		+
140-62-2	0.0	()	μg/L									1 1			 - 						61.7	8 J	34.85		+
	2000	H(WS)	μg/L																		21.2	339	180.1		
33-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	35-4 -35-4 -36-2 -59-0 -59-0 -59-2 -60-5 -60-5 -64-1 -32-2 -90-7 -99-2 -90-7 -99-2 -88-7 -74-8 -74-8 -74-8 -74-8 -74-8 -74-8 -74-8 -74-8 -74-8 -74-9 -90-7 -98-7 -99-9	CAS NUMBER (μg/L) 93-3 50 35-4 5	CAS NUMBER (μg/L) Cleanup Objective 93-3 50 H(WS) 35-4 5 H(WS)	Cas Number Ca	Cas Number Cheanup Objective UNITS: Supplementaries Sup	Cas Number Ca	Cas NUMBER (μg/L) Cleanup Objective UNITS:	Cleanup Objective UNITS:	ACE-2 EPC ACE-2 EPC	ACB NUMBER (i.i.gl.) Cleanup Objective UNITS: 39-3 50 H(WS)	AS NUMBER (μg/L) Cleanup Objective UNITS:	ACE Composition Composit	AGE STANDARE (upt) Cleanup Objective UNTS:	Accepted Accepted	AS NUMBER (upt) Cleanup Objective UNITS:	AS ALMERE (ug/L) Cleanup Objective (NATS)	Act Company Company Deptember William Company Company	Company Opension OPTIS	Change Objective UNITS	Change C	According Column Co	As Market	Control Cont	Canada Part Part	Part

Table J.7.3a

Detected Chemicals in Groundwater and NYSDEC Screening Concentrations for Groundwater Quality Former Schenectedy Army Depot - Voorheesville Area

														+						4		
		4		SAMPLE ID: SAMPLED:	AMW-4 6/14/2006	-	AMW-104 6/14/2006		01-AOC-7 lul-04	SD-GW101-AOC-7	GW-01 6/16/2006		SD-GW03-AOC-7 22-Jul-04	GW-03 6/16/2006		GW-12 6/14/2006		GW-13 6/16/2006	GW-14 6/16/2006	MW-2B 6/15/2006	ACE-6 29-Jun-00	MW-A 23-Ju
		NYSDEC		DEPTH ZONE:	6/14/2006 Shallow				illow	21-Jul-04 Shallow	6/16/2006 Shallo	v	22-Jul-04 Shallow	6/16/2006 Shallow		6/14/2006 Shallo	W.	6/16/2006 Shallow	6/16/2006 Shallow		Shallow	Unkn
		Recommended			Shanow		Cdiowii	Sile		Sidilow	Shallo			Shanow		Silalio		Shanow	Shanow	Sharow	Silation	Cirkii
DAMETED	CACAUMDES		Basis of NYSDEC Cleanup Objective					11000	ADIENT	D (OD C		GW-01	DOWNGR ADIENT		GW-03 EPC							
RAMETER	CAS NUMBER	(µg/L)	Cleanup Objective	UNITS:				UPGR	ADIENT	Dup of SD-GW01-AOC-7		EPC	ADIENT	+	EPC					4 + -		
DLATILES					 									+							+ + -	
2-Butanone	78-93-3	50	H(WS)	μg/L	2 J		5 U				5	U		5 U		5	U	5 U	5 U	5 U		5
1,1-Dichloroethene	75-35-4	5	H(WS)	μg/L													-					5
1,2-Dichloroethane	107-06-2	0.6	H(WS)	μg/L	1 U		1 U				1	U		1 U		1	U	1 U	1 U	1 U		5
1,2-Dichloroethene (total)**	540-59-0			μg/L	1 U		1 U				1	U		1 U		1	U	1 U	1 U	1 U	ND	
cis-1,2-Dichloroethene	156-59-2	5	H(WS)	μg/L													-					5
trans-1,2-Dichloroethene Acetone	156-60-5 67-64-1	50	H(WS) H(WS)	μg/L μg/L													-					5 5
Benzene	71-43-2	1	H(WS)	μg/L	0.28 J		0.81 J				1	U		1 U		1	U	1 U	1 U	1 U		5
Chlorobenzene	108-90-7	5	H(WS)	μg/L												-	-					5
Methylene chloride	75-09-2	5	H(WS)	μg/L												-	-					5
Toluene Trichloroethene	108-88-3 79-01-6	5	H(WS) H(WS)	μg/L μg/L	0.23 J		1 U 0.32 J				1	U		1 11			U	1 11	1 U		ND	5
Vinyl chloride	75-01-4	2	H(WS)	μg/L	1 J		3.4 J				1	U		1 U			U	1 U	10	10	ND	5
Xylenes (total)***	1330-20-7		, ,	μg/L													-					5
EMIVOLATILES	117.01.7		H(MO)					22		1.61			7.0	++				\vdash		4		
bis(2-Ethylhexyl) phthalate Butyl benzyl phthalate	117-81-7 85-68-7	5 50	H(WS) H(WS)	μg/L μg/L				4.7		1.6 J 4.8 U		22	7.6 4.7 U		7.6	-				4 		
Carbazole	86-74-8	30	11(440)	μg/L				4.7		4.8 U			4.7 U			-	-					
Di-n-butyl phthalate	84-74-2	50	H(WS)	μg/L				4.7	U	4.8 U			4.7 U			-	-					
Diethyl phthalate	84-66-2	F.	11/14/07	μg/L						4.8 U			4.7 U				-			4 -		
Fluoranthene Pyrene	206-44-0 129-00-0	50 50	H(WS) H(WS)	μg/L μg/l				4.7		4.8 U 4.8 U			4.7 U 4.7 U			-				 		
PESTICIDES / PCBs	127-00-0	30	11(W3)	μg/L	 			4.7		4.00	 		4.7 0	 		-		 " 		 	 	-
alpha-BHC	319-84-6	0.01	H(WS)	μg/L												-	-					
gamma-BHC (Lindane)	58-89-9	0.05	H(WS)	μg/L													-			4 -		
4,4'-DDE 4,4'-DDD	72-55-9 72-54-8	0.2	H(WS) H(WS)	μg/L μg/l						 						-				 		
4,4'-DDT	72-54-8 50-29-3	0.3	H(WS)	μg/L μg/L						 		- 								 		
Endrin	72-20-8		,	μg/L													-					
Endrin Ketone	53494-70-5	5	H(WS)	μg/L													-					
Endrin aldehyde	7421-93-4	5	H(WS)	μg/L						 						-				4 + -		
IETALS Aluminum	7429-90-5			μg/L				12.1	J	13.7 J		13.7	27.4 J		27.4	-				 		
Antimony	7440-36-0	3	H(WS)	μg/L								13.7			27.1	-						
Arsenic	7440-38-2	25	H(WS)	μg/L						3.3 U			3.3 U			-						10
Barium	7440-39-3 7440-41-7	1000	H(WS)	μg/L				38.1		40.7 J 0.48 J		40.7 0.53	10.4 J		10.4	-				4 + -		104
Beryllium Cadmium	7440-41-7	5	H(WS) H(WS)	μg/L μg/L				0.53	J	U.40 J		0.53	0.42 U							 		
Calcium	7440-70-2			μg/L				184000		185000		185000	161000		161000	-						
Chromium	7440-47-3	50	H(WS)	μg/L												-						22
Chromium VI	18540-29-9 7440-48-4	50	H(WS)	μg/L												-				4 + -		20
Cobalt Copper	7440-48-4 7440-50-8	200	H(WS)	μg/L μg/L				1.2	U	1.2 U			21.1		2					 		
Iron	7439-89-6	300	E	μg/L						3100	-	3100	18 U		2	_	-			 		
Lead	7439-92-1	25	H(WS)	μg/L				1.6	U	1.6 U			1.6 U			-	-					6
Magnesium	7439-95-4	35000	H(WS)	μg/L				128000		131000		131000			29900		-			4		
Manganese Mercury	7439-96-5 7439-97-6	0.7	H(WS)	μg/L μg/L				1480		1700		1700	59		59	-				4 		
Nickel	7440-02-0	100	H(WS)	μg/L				1.2	U	1.2 U			1.2 U			-	-					
Potassium	7440-09-7		7	μg/L				3820		4500 J		4500	296 J		296		-					
Selenium	7782-49-2	10	H(WS)	μg/L						0.75		2	0.011				-			4		
Sodium	7440-22-4	50	H(WS)	μg/L μg/l				0.59 37300		0.75 J		0.75	0.3 U		5510	-				4 		
Strontium	7440-23-5			μg/L μg/L	-					50300		30900	3310		3310					 	 	
	7440-28-0	0.5	H(WS)	μg/L										<u> </u>		-	-					
7.	7440-62-2	05	110112	μg/L	-			1	U	1 U			1.1 J		1.1	-						
	7440-66-6		H(WS)	μg/L				3.4	J	4 J		4	12.4 J		12.4	-	-					
Sodium Strontium Thallium Vanadium Zinc 3 = The analyte was found in at = The analyte was positively it J - The analyte was analyzed for - Analytes also detected in Bt *- trans-1,2-Dichloroethene sc** - p-Xylene screening value to (IWS) - drinking water (ground : - aesthetic Sold concentrations were detect to) The highest result between solon The highest result	T440-23-5 T440-24-6 T440-62-2 T440-66-6 a associated blank, as dentified, the quantita yr, but not detected. ank. reening value used as sed as a surrogate fowater) ted above the NYSD samples 2AMW-7 and samples HP01 and H	0.5 2000 s well as in the sample tion is an estimation. The associated numer is a surrogate for 1,2-D r Xylenes (total).	H(WS) H(WS) cal value is the MDL ichloroethene (total). allyte MW-7) is reported.	μg/L μg/L μg/L μg/L μg/L				37300	U	38900 1 U 4 J	-	38900	5510 1.1 J		5510 1.1 12.4	-					-	

Table J.7.3a

Detected Chemicals in Groundwater and NYSDEC Screening Concentrations for Groundwater Quality Former Schenectedy Army Depot - Voorheesville Area

				0444015.5	2				104/	104/5	104/			Acres.	1000	100=	100=-
		_		SAMPLE ID: SAMPLED:	MW-ACE3 ^c 23-Jul-96	MW-2-2 24-Jul-96	MW-ACE5 24-Jul-96	MW-2BMW9 24-Jul-96	MW-2AMW6 24-Jul-96	MW-2AMW8 24-Jul-96	MW-2AMW3 24-Jul-96	MW-1 1988	MW-2 1988	MW-3 1988	MW-4 1988	AOC7-2AMW-7 16-Aug-00	AOC7-2AM 16-Aug-
		NYSDEC		DEPTH ZONE:	Shallow	Unknown	Unknown	Shallow	Shallow	Shallow	Unknown	Unknown	Unknown	Unknown	Unknown	Shallow	Shallo
		Recommended Cleanup Objective	Basis of NYSDEC														
RAMETER	CAS NUMBER	(µg/L)	Cleanup Objective	UNITS:													
LATILES																	
2-Butanone	78-93-3	50	H(WS)	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U					R	R
,1-Dichloroethene	75-35-4	5	H(WS)	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U					1 U	1
.2-Dichloroethane	107-06-2	0.6	H(WS)	μg/L	511	511	511	511	5 U	511	511					111	1
.2-Dichloroethene (total)**	540-59-0	0.0	11(110)	μg/L											-	10	1
sis-1,2-Dichloroethene	156-59-2	5	H(WS)	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U					1 U	1
rans-1,2-Dichloroethene	156-60-5	5	H(WS)	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U						
Acetone Benzene	67-64-1 71-43-2	50	H(WS) H(WS)	μg/L μg/L	5 U	5 U	5 U 5 U	5 0	5 U	5 U	5 U					10 0	10
Chlorobenzene	108-90-7	5	H(WS)	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U					10	1
Methylene chloride	75-09-2	5	H(WS)	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U					2 U	2
oluene	108-88-3	5	H(WS)	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U					1 U	1
richloroethene /inyl chloride	79-01-6 75-01-4	5	H(WS) H(WS)	μg/L μg/L	5 U	5 U	5 U 5 U	5 U 5 U	5 U	5 U	5 U					1 0	1 2
(ylenes (total)***	1330-20-7		11(440)	μg/L μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U					1 U	1
MIVOLATILES																	
pis(2-Ethylhexyl) phthalate	117-81-7	5	H(WS)	μg/L												5.9 J	27
Butyl benzyl phthalate Carbazole	85-68-7 86-74-8	50	H(WS)	μg/L μg/L												10 U	10
Di-n-butyl phthalate	84-74-2	50	H(WS)	μg/L												10 U	10
Diethyl phthalate	84-66-2			μg/L								-				10 U	10
Fluoranthene	206-44-0	50	H(WS)	μg/L												10 U	10
Pyrene STICIDES / PCBs	129-00-0	50	H(WS)	μg/L					-	-	-					100	10
lpha-BHC	319-84-6	0.01	H(WS)	μg/L												0.05 U	0.05
jamma-BHC (Lindane)	58-89-9	0.05	H(WS)	μg/L								-				0.05 U	0.05
I,4'-DDE	72-55-9	0.2	H(WS)	μg/L												0.05 U	0.05
I,4'-DDD I,4'-DDT	72-54-8 50-29-3	0.3 0.2	H(WS) H(WS)	μg/L μg/L		-				-						0.05 U 0.05 U	0.05 0.05
ndrin	72-20-8	0.2	()	μg/L												0.05 U	0.05
Endrin Ketone	53494-70-5	5	H(WS)	μg/L								-				0.05 U	0.05
Endrin aldehyde	7421-93-4	5	H(WS)	μg/L												0.05 U	0.05
ETALS Aluminum	7429-90-5			μg/L												3560	3560
Antimony	7440-36-0	3	H(WS)	μg/L								-				1.5 U	1.5
Arsenic	7440-38-2	25	H(WS)	μg/L	5	6	2 U	2 U	2 U	82	5	6.6	31	28	23	2.6 U	2.6
Barium Beryllium	7440-39-3 7440-41-7	1000	H(WS) H(WS)	μg/L	42	79	13	28	14	51	107	82	356	187	232	33.8 J 0.12 J	33.8 0.12
Cadmium	7440-43-9	5	H(WS)	μg/L μg/L					-							0.12 J	0.12
Calcium	7440-70-2		` '	μg/L												2E+05	238000
Chromium	7440-47-3	50	H(WS)	μg/L	17	18	4 U	4 U	4 U 20 U	50	34	19	144	83	66	4 J	4
Chromium VI Cobalt	18540-29-9 7440-48-4	50	H(WS)	μg/L μg/L	20 U	20 0	20 U	20 U	20 0	20 0	20 U					3,2 U	3.2
Copper	7440-48-4	200	H(WS)	μg/L μg/L												6.8 J	10.3
ron	7439-89-6	300	E	μg/L												3010	3010
Lead	7439-92-1 7439-95-4	25	H(WS)	μg/L	2 U	6 U	6 U	6 U	6 U	2 U	13	14	90	66	69	2 J 1E+05	111000
Magnesium Manganese	7439-95-4	35000	H(WS)	μg/L μg/L												1E+05 1980	111000 2700
Mercury	7439-97-6	0.7	H(WS)	μg/L												0.045 U	0.045
Nickel	7440-02-0	100	H(WS)	μg/L												6.1 U	6.1
Potassium Selenium	7440-09-7 7782-49-2	10	H(WS)	μg/L												2270 J 2.1 U	2270 2.1
Silver	7440-22-4	50	H(WS)	μg/L μg/L												0.94 U	0.94
Sodium	7440-23-5		···-/	μg/L												15900	15900
Strontium	7440-24-6	6.5	11/14/07	μg/L													
Thallium /anadium	7440-28-0 7440-62-2	0.5	H(WS)	μg/L μg/l												3.9 U 10.1 J	3.9 10.1
•	7440-62-2	2000	H(WS)	μg/L μg/L												22.3	22.3
= The analyte was found in a The analyte was positively The analyte was analyzed Analytes also detected in B trans-1,2-Dichloroethene s -p-Xylene screening value WS) - drinking water (ground aesthetic Ild concentrations were dete The highest result between	identified, the quantita for, but not detected. slank. creening value used a used as a surrogate fo dwater) cted above the NYSD samples 2AMW-7 and	tion is an estimation. The associated numer s a surrogate for 1,2-C or Xylenes (total). EC criterion for that ar	ical value is the MDL. Dichloroethene (total). Dichloroethene (total). Dichloroethene (total). Dichloroethene (total).														

Table J.7.3a

Detected Chemicals in Groundwater and NYSDEC Screening Concentrations for Groundwater Quality Former Schenectedy Army Depot - Voorheesville Area

				SAMPLE ID:		۸00	7-2AMW-5	AOC7-I	JDO1 b ACC	7-HP04		AOC7-HF	02	AOC7-HF	203	SD CM	02-AOC-7		SD-2AMW5-AOC-	1	D-2AMW7-AOC-1	· ·	SD-GW
				SAMPLED:			-Aug-00	02-Au		/2000		31-Jul-0		31-Jul-0			Jul-04		21-Jul-04	1 3	21-Jul-04		07-E
		NYSDEC		DEPTH ZONE:			hallow	Shal		allow		Shallov		Shallov			drock		Shallow		Shallow		Sh
		Recommended	Basis of NYSDEC		2AMW-											DOWNGR		UPGRAD	u l				
ARAMETER	CAS NUMBER	(µg/L)	Cleanup Objective	UNITS:	7 EPC						HP-01 EPC					ADIENT		ENT	"				
DLATILES	OAO NOMBER	(μg/ = /	Oleanap Objective	011110	0						0.2.0					/ LD I LI I							
	70.00.0	50	11010	/1				_	 			110		ND								-	—
-Butanone	78-93-3	50	H(WS)	μg/L			₹	, , ,	4			ND		ND									
1,1-Dichloroethene	75-35-4	5	H(WS)	μg/L			1 U	1	U	1 U		1 (1	J								
1,2-Dichloroethane	107-06-2	0.6	H(WS)	μg/L			1 U	4	U	1 U		1 l		1	J								
1,2-Dichloroethene (total)**	540-59-0			μg/L			1 U	1	U	1 U		1 l		1									
cis-1,2-Dichloroethene	156-59-2	5	H(WS)	μg/L			1 U	1	U	1 U		1 l		1	J							4	
trans-1,2-Dichloroethene Acetone	156-60-5 67-64-1	5 50	H(WS) H(WS)	μg/L		1	- DIU	4.2		.2 J	4.2	2.4		10									
Benzene	71-43-2	1	H(WS)	μg/L μg/L			1111	4.2	111	1 I I	4.2	2.4		10								-	_
Chlorobenzene	108-90-7	5	H(WS)	μg/L			1 U	-	U	1 U		1 1		1									_
Methylene chloride	75-09-2	5	H(WS)	μg/L			2 U	2	2 U	2 U		2 (2	J								-
Toluene	108-88-3	5	H(WS)	μg/L			1 U		U	1 U		1 (1									1
Trichloroethene	79-01-6	5	H(WS)	μg/L			1 U		U	1 U		1 1		1									
Vinyl chloride Xvlenes (total)***	75-01-4 1330-20-7		H(WS)	μg/L μg/L	+ +		2 U			2 U		1 1		1			+ +						
EMIVOLATILES	.550 20 7			µg/L	1 1		· -		 	+		'I'		'									
bis(2-Ethylhexyl) phthalate	117-81-7	5	H(WS)	μg/L	5.9	1		69		. 5 J	69	100		13		16			27		4.1 J		9.8
Butyl benzyl phthalate	85-68-7	50	H(WS)	μg/L			U	10		10 U		10 (10		4.8			12 J		4.8 U		
Carbazole	86-74-8	F-2	11040	μg/L			D U	10		10 U		10 (10		4.8		0.			4.8 U		
Di-n-butyl phthalate Diethyl phthalate	84-74-2 84-66-2	50	H(WS)	μg/L μg/L			D U			10 U 10 U		10 0		10		4.8			28 J 35 J		4.8 U 1.6 J		1.1
Fluoranthene	206-44-0	50	H(WS)	μg/L μg/L	 		DIU	10	, 0	10 U		10 0		10		4.8	-		0.2 J		4.8 U		2.5
Pyrene	129-00-0	50	H(WS)	μg/L			υ	10		10 U		10 (10		4.8			17 J		4.8 U		0.95
PESTICIDES / PCBs			, ,																				
alpha-BHC	319-84-6	0.01	H(WS)	μg/L		0.0		0.05		05 U		0.05		0.05									0.002
gamma-BHC (Lindane)	58-89-9	0.05	H(WS)	μg/L		0.0		0.05		05 U		0.05		0.05									0.002
4,4'-DDE 4.4'-DDD	72-55-9 72-54-8	0.2	H(WS) H(WS)	μg/L μg/L		0.0		0.05		05 U 05 U		0.05 0.05 0.05		0.023								-	0.027
4,4'-DDT	50-29-3	0.2	H(WS)	μg/L		0.0		0.05		05 U		0.05		0.033) N								0.027
Endrin	72-20-8		7	μg/L		0.0	5 U	0.05	5 U 0.0	05 U		0.05		0.05									0.008
Endrin Ketone	53494-70-5	5	H(WS)	μg/L		0.0		0.05		05 U		0.05		0.05									0.003
Endrin aldehyde	7421-93-4	5	H(WS)	μg/L		0.0	5 U	0.05	5 U 0.0	05 U		0.05	'	0.05	J								0.002
METALS Aluminum	7429-90-5			μg/L	3560	160	1	5940	53	10	5940	389000		19600		59.9		70	.4 J		29.5 J	-	- 9
Antimony	7440-36-0	3	H(WS)	μg/L	3300	1.00		1.5		.5 U	3340	1.5 (1.5	J	59.8	3	- 13			29.00		3.2
Arsenic	7440-38-2	25	H(WS)	μg/L		14.		4.8		.7 J	4.8	207		10.2		3.3	U	11	.6		3.3 U		3.3
Barium	7440-39-3	1000	H(WS)	μg/L	33.8	44.		85		.3 J	85	1990		187 .	J	197	J	41			16.3 J		36.5
Beryllium	7440-41-7	3	H(WS)	μg/L	0.12	0.07		0.41		41 J	0.41	20.7		1.2		0.42	U	0.	42 U		0.42 U		0.71
Cadmium Calcium	7440-43-9 7440-70-2	5	H(WS)	μg/L	2E+05	0.4 25000		0.49 255000	25500	49 U	255000	9.1 694000		0.49 147000	J	97600		2260	20	2	E+05	4	4E+05
Chromium	7440-70-2	50	H(WS)	μg/L μg/L	2E+05 4	25000		255000) 25500		11.9	544		31.1		97600		2260	50	3	E+05	4	+E+03
Chromium VI	18540-29-9	50	H(WS)	μg/L		- '	-	-	 		1110											-	-
Cobalt	7440-48-4		` '	μg/L		3.		3.8		.2 U		423		15	J								0.53
Copper	7440-50-8	200	H(WS)	μg/L	6.8	63.		13.8		.3 J	13.8	989		37.7		1.2	_		.6 J		1.2 U		1.2
Iron Lead	7439-89-6 7439-92-1	300 25	E H(WS)	μg/L μg/L	3010	388 5.		9920			9920 4.9	912000 388		31200 12.1		5360		25	.6 J		18 U 1.6 U		1.6
Magnesium	7439-92-1	35000	H(WS)	μg/L μg/L	1E+05	4950		106000	9620		106000	313000		40000		15100		470		2	E+05	-	2E+05
Manganese	7439-96-5	55000		μg/L	1980	12		461			461	16200		989		456	1	8			135		90.2
Mercury	7439-97-6	0.7	H(WS)	μg/L		0.04	5 U	0.069) J 0.0	06 J	0.069	0.97		0.067				-					-
Nickel	7440-02-0	100	H(WS)	μg/L		6.		12.4		.1 J	12.4	857		46.5		1.2			2 J		1.2 U		2.4
Potassium	7440-09-7	10	HAME	μg/L	2270	746		46800			46800	73700		17100	_	1140	J	57	40		1090 J		47800 8.4
Selenium Silver	7782-49-2 7440-22-4	10 50	H(WS) H(WS)	μg/L μg/L	+ +	0.9		0.94		.1 U 94 U		2.1 U		2.1 0.94		0.3	h,		.3 U		0.3 U		8.4
Sodium	7440-22-4	30	11(449)	μg/L μg/L	15900	878		143000	13400		143000	74700		14300		19200		97		2	24100	-	74600
Strontium	7440-24-6			μg/L		3.0	-		5400		. 10000					.5200				-			
Thallium	7440-28-0	0.5	H(WS)	μg/L		3.		3.9		.9 U		7.8		3.9									
Vanadium	7440-62-2		11/11/0	μg/L	10.1	4.	4 J	15.8	10	.6 J	15.8	704		41.5			U		.4 J		7.6 J		4.9
Zinc = The analyte was found in ar	7440-66-6	2000	H(WS)	μg/L	22.3	17.	ol 1	56.9	9 46	.8	56.9	2090		109		2.1	Ŋ	11	.6J		6.6 J		30.6
= The analyte was positively ic - The analyte was analyzed fc - Analytes also detected in Bla - trans-1,2-Dichloroethene sci - p-Xylene screening value u (WS) - drinking water (groundv - aesthetic old concentrations were detec The highest result between s The highest result between s	lentified, the quantita r, but not detected. Tank. eening value used as sed as a surrogate for vater) ted above the NYSDI amples 2AMW-7 and amples HP01 and HF	tion is an estimation. The associated numer s a surrogate for 1,2-D ir Xylenes (total). EC criterion for that an 1 2AMW-17 (dup of 2A 704 (dup of HPO1) is r	ical value is the MDL ichloroethene (total). alyte MW-7) is reported. eported.																				

Table J.7.3b Detected Chemicals in Groundwater and NYSDEC Screening Concentrations for Groundwater Quality Former Schenectedy Army Depot - Voorheesville Area

Resdential Wells AOC 1/7

Residential Wells ACC 1		NYSDEC	Basis of	SAMPLE ID:	E4800	E4801	E4802	E4803	E4804	E4806	E4807	E4808	E4809	E4810	E4811	E4812	E4813	E4880	E4794	E4795	E4796	E5306	E4797
		Recommended	NYSDEC	SAMPLED:	27-Aug-90																		
			Cleanup	DEPTH ZONE:	Unknown																		
PARAMETER	CAS NUMBER	Cleanup Objective	Objective	UNITS:	Ulikilowii																		
	CAS NUMBER	(µg/L)	Objective	UNITS:																			
VOLATILES	70.00.0			/1																			
2-Butanone	78-93-3			μg/L															-				
1,1-Dichloroethene	75-35-4			μg/L				-															
1,2-Dichloroethane	107-06-2			μg/L				-															
1,2-Dichloroethene (total)**	540-59-0			μg/L																			
cis-1,2-Dichloroethene	156-59-2			μ g/L				Ŧ		==													
trans-1,2-Dichloroethene	156-60-5			μg/L																			
Acetone	67-64-1	N/A		μg/L	29 *	21 *	20 *								22 *		15 *		21 *	57 *	42 *		22 *
Benzene	71-43-2			μg/L																			
Chlorobenzene	108-90-7			μg/L				1															
Methylene chloride	75-09-2	5	H(WS)	μg/L	2.4 *	4.8 *	1.9 *	-	2.6 *	1.6 *	1.2 *	2.3 *	1.1 *	3.4 *	2.1 *	1.1 *	2.6 *		1.6 *	1.4 *	2.4 *	1.2 *	2.8 *
Toluene	108-88-3			μg/L																			
Trichloroethene	79-01-6			μg/L																			
Vinyl chloride	75-01-4			μg/L																			
Xylenes (total)***	1330-20-7			μg/L																			
SEMIVOLATILÉS																							
bis(2-Ethylhexyl) phthalate	117-81-7			μg/L																			
Butyl benzyl phthalate	85-68-7			μg/L																			
Carbazole	86-74-8			μg/L																			
Di-n-butyl phthalate	84-74-2			μg/L																			
Diethyl phthalate	84-66-2			μg/L																			
Fluoranthene	206-44-0			μg/L																			
Pyrene	129-00-0			μg/L																			
PESTICIDES / PCBs	127 00 0			μg/L																			
alpha-BHC	319-84-6			μg/L																			
gamma-BHC (Lindane)	58-89-9			μg/L																			
4.4'-DDE	72-55-9																						
4,4'-DDD	72-54-8			μg/L																			
4,4'-DDD 4,4'-DDT				μg/L														ļ	-				
	50-29-3			μg/L																			
Endrin	72-20-8			μg/L															-		==		
Endrin Ketone	53494-70-5			μg/L								-											
Endrin aldehyde	7421-93-4			μg/L																			
METALS	7100.00.5																						
Aluminum	7429-90-5			μg/L															-				
Antimony	7440-36-0			μg/L				-											-				
Arsenic	7440-38-2	25	H(WS)	μg/L																		7.9	
Barium	7440-39-3	1000	H(WS)	μg/L				319										63	-				73
Beryllium	7440-41-7			μg/L																			
Cadmium	7440-43-9			μg/L																			
Calcium	7440-70-2			μg/L				1.7				-						94					
Chromium	7440-47-3	50	H(WS)	μg/L		10	10	44	30		20			20	10		50	10	30	20	90	30	
Chromium VI	18540-29-9			μg/L																			
Cobalt	7440-48-4			μg/L																			
Copper	7440-50-8	200	H(WS)	μg/L				55										29					107
Iron	7439-89-6	300	E	μg/L				6															
Lead	7439-92-1	25	H(WS)	μg/L														49					
Magnesium	7439-95-4			μg/L				1										797					
Manganese	7439-96-5			μg/L																			
Mercury	7439-97-6			μg/L																			
Nickel	7440-02-0	100	H(WS)	μg/L				3.4														-	
Potassium	7440-09-7	N/A		μg/L				397										29.6					2.2
Selenium	7782-49-2			μg/L																			
Silver	7440-22-4			μg/L																			
Sodium	7440-23-5	N/A		μg/L				456															338
Strontium	7440-24-6	.4// \		μg/L														23					269
Thallium	7440-28-0			μg/L μg/L																			
Vanadium	7440-62-2			μg/L																			
Zinc	7440-62-2	N/A		μg/L μg/L	10	20	20		30	30	30	20	10	20	20	20	140		30	47	80	10	
ZIIIC	7 440-00-0	IN/A		μ y /L	IV	20	20		JU	JU	JU	ZU	ΙU			Z U	140		JU	41	ου	IU	

Zinc

Tea analyte was positively identified, the quantitation is an estimation.

U - The analyte was analyzed for, but not detected. The associated numerical value is the MDL.

B = The analyte was found in an associated blank, as well as in the sample.

- Analytes also detected in Blank.

- Analytes also detected in Blank.

- trans-1,2-Dichloroethene screening value used as a surrogate for 1,2-Dichloroethene (total).

- p-Xylene screening value used as a surrogate for Xylenes (total).

The highest result between samples 2AMW-7 and 2AMW-17 (dup of 2AMW-7) is reported.

The highest result between samples HP01 and HP04 (dup of HP01) is reported.

The highest result between samples MW-ACE3 and MW-ACE3 DUP is reported.

The highest result between samples MW-ACE2 and MW-ACE2 DUP is reported.

Bold concentrations were detected above the NYSDEC criterion for that analyte H(WS) - drinking water (groundwater)

H(WS) - drinking water (groundwater) E - aesthetic

Table J.7.4 **Detected Chemicals in Sediment** SADVA - AOCs 1 and 7

					0,121,11,10					
		SAMPLE ID: DEPTH: SAMPLED:		SD-SD08-0-0.2-AOC-1 0-0.2 7/19/2004	SD-SD08-0.5-0.75-AOC-1 0.5-0.75 7/19/2004	SD-SD09-0-0.2-AOC-1 0-0.2 7/19/2004	SD-SD09-0.5-0.8-AOC-1 0.5-0.8 7/19/2004	SD-SD10-0-0.2-AOC-1 ^a 0-0.2 7/19/2004	SD-SD10-0.5-0.75-AOC-1 0.5-0.75 7/19/2004	SD-SD11-0-0.2-AOC-1 0-0.2 7/19/2004
PARAMETER	CAS NUMBER	UNITS:	MAX VALUE		1,10,200	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,10,200
VOLATILES		•	•	•				•		·
Acetone	67-64-1	μg/kg	7.5	T						
	07 04 1	μην	7.0					!	<u> </u>	
SEMIVOLATILES	00.00.0	1 /	700			1			T	T
Acenaphthene	83-32-9	μg/kg	700			-		-		
Anthracene Benzo(a)anthracene	120-12-7 56-55-3	μg/kg	1500 2400							
Benzo(a)pyrene	50-32-8	μg/kg μg/kg	2200							
Benzo(b)fluoranthene	205-99-2	μg/kg μg/kg	1900							
Benzo(ghi)perylene	191-24-2	μg/kg	570							
Benzo(k)fluoranthene	207-08-9	μg/kg	2300							
bis(2-Ethylhexyl) phthalate	117-81-7	μg/kg	390							
Carbazole	86-74-8	μg/kg	740							
Chrysene	218-01-9	μg/kg	2400							
Dibenzofuran	132-64-9	μg/kg	310							
Di-n-butyl phthalate	84-74-2	μg/kg	350	8700 UJ	360 U	220 J	39 J	6100 UJ	37 J	350 J
Dibenz(a,h)anthracene	53-70-3	μ g /kg	280							
Fluoranthene	206-44-0	μ g /kg	5400	1600 J	360 U	2200 UJ	390 U	6100 UJ	390 U	2800 UJ
Fluorene	86-73-7	μ g/kg	650							
Indeno(1,2,3-cd)pyrene	193-39-5	μ g /kg	650							
2-Methylnaphthalene	91-57-6	μ g /kg	230							
Naphthalene	91-20-3	μ g /kg	300							
Phenanthrene	85-01-8	μ g/kg	5800	900 J	360 U	2200 UJ	390 U	6100 UJ	390 U	2800 UJ
Pyrene	129-00-0	μ g /kg	3600	1300 J	360 U	2200 UJ	390 U	6100 UJ	390 U	2800 UJ
PESTICIDES/PCBS										
beta-BHC	319-85-7	μ g/kg	4.5	11 UJ	1.9 U	5.6 UJ	2 U	4.5 JN	2 U	7.2 UJ
delta-BHC	319-86-8	μg/kg	3.2	11 UJ	1.9 UJ	5.6 UJ	2 UJ	7.8 UJ	2 UJ	7.2 UJ
gamma-BHC (Lindane)	58-89-9	μ g /kg	1.5	11 UJ	1.9 U	5.6 UJ	2 U	7.8 UJ	2 U	7.2 UJ
Endosulfan I	959-98-8	μ g/kg	3.6	3.6 J	1.9 U	0.78 JN	0.2 J	0.88 JN	2 U	7.2 UJ
Endrin	72-20-8	μ g/kg	0.23	11 UJ	1.9 U	5.6 UJ	0.23 JN	7.8 UJ	2 U	7.2 UJ
Endosulfan II	33213-65-9	μ g /kg	0.31	11 UJ	1.9 U	5.6 UJ	2 U	7.8 UJ	0.31 JN	7.2 UJ
4,4'-DDE	72-55-9	μ g /kg	540	60 J	0.68 JN	46 J	1.8 JN	35 JN	1.5 J	9.9 JN
4,4'-DDD	72-54-8	μg/kg	2400	63 J	2 J	21 J	2.3	22 J	1.7 J	8.4 J
4,4'-DDT	50-29-3	μg/kg	630	11 UJ	1.9 U	28 J	1.4 J	33 J	2 U	7.6 J
alpha-Chlordane	5103-71-9	μg/kg	1.1	11 UJ	1.9 U	5.6 UJ	2 U	1.1 JN	2 U	7.2 UJ
Aroclor 1254	11097-69-1	μg/kg	290							
METALS										
Aluminum	7429-90-5	mg/kg	16400	9940 J	11100	5830 J	11100	7100 J	10000	8070 J
Antimony	7440-36-0	mg/kg	7.9	2.2 J	0.35 U	1.4 J	0.38 U	2.8 J	0.38 U	1.7 J
Arsenic	7440-38-2	mg/kg	9.5	5.1 J	5.4	3.1 J	5.9	4.3 J	4.9	3.4 J
Barium	7440-39-3	mg/kg	258	125 J	56.7	84.8 J	57.9	112 J	47	106 J
Beryllium	7440-41-7	mg/kg	7.6	1.4 J	0.78	0.67 J	0.83	0.93 J	0.71	0.93 J
Cadmium	7440-43-9	mg/kg	1.2	0.91 J	0.23 J	0.44 J	0.26 J	0.74 J	0.26 J	0.52 J
Calcium	7440-70-2	mg/kg	050	139000 J	14600	112000 J	16100	156000 J	16100	134000 J
Chromium	7440-47-3	mg/kg	359	23.6 J	15.4	11.8 J	16	17 J	14.4	15.2 J
Cobalt	7440-48-4	mg/kg	47.4	12.7 J	9.4	6.7 J	10.8	8.7 J	9.2	9.2 J
Copper	7440-50-8 7439-89-6	mg/kg	491	123 J 26900 J	26.3 23400	46 J 14700 J	32 26200	75.3 J 18800 J	28.3 22800	47.7 J 20300 J
Iron Lead	7439-92-1	mg/kg	2440	109 J	23400	36.1 J	12.1	65.5 J	11.9	40.8 J
Magnesium	7439-92-1	mg/kg mg/kg	2440	7230 J	6830	5220 J	6750	6460 J	6470	6900 J
Manganese	7439-96-5	mg/kg	4800	978 J	438	981 J	542	1120 J	541	1530 J
Mercury	7439-97-6	mg/kg	0.11	0.078 UJ	0.023 J	0.039 UJ	0.018 J	0.054 UJ	0.029 J	0.05 UJ
Nickel	7440-02-0	mg/kg	124	42.1 J	21.6	23.8 J	25.8	30.3 J	21.4	27.5 J
Potassium	7440-02-0	mg/kg	127	1880 J	1440	989 J	1350	1340 J	1180	1370 J
Selenium	7782-49-2	mg/kg	1.5							
Silver	7440-22-4	mg/kg	0.66	0.44 J	0.098 J	0.3 J	0.091 J	0.39 J	0.12 J	0.43 J
Sodium	7440-23-5	mg/kg	3.00	1470 J	144 J	628 J	149 J	890 J	139 J	813 J
Thallium	7440-28-0	mg/kg	0.58							
Vanadium	7440-62-2	mg/kg	97	81.4 J	21.8	45.6 J	21.6	61.2 J	19.8	53.3 J
Zinc	7440-66-6	mg/kg	2960	378 J	54.2	152 J	69.4	256 J	68.7	178 J
A - Concentration exceeds Lowest Effor				+ 0.00	+	.020				

A - Concentration exceeds Lowest Effort Level (NYSDEC Technical Guidance for Screening Contaminated Sediments, 1993).

U = Analyte not detected; the number is the analytical reporting limit.

J = Estimated Value

UJ = Analyte not detected: the number is the estimated analytical reporting limit.

ND = Not Detected

a) The highest result between samples SD-SD10-0-0.2-AOC-1 and SD-SD110-0-0.2-AOC-1 (duplicate)

b) The highest result between samples R35SL-002-011 and R35SL-002-011 (duplicate) is reported.

Table J.7.4 **Detected Chemicals in Sediment** SADVA - AOCs 1 and 7

		SAMPLE ID: DEPTH:	SD-SD11-0.5-0.75-AOC-1 0.5-0.75	SD-SD12-0-0.2-AOC-1 0-0.2	SD-SD12-0.5-0.75-AOC-1 0.5-0.75	AOC1-SD04 0.2'	AOC1-SD05 0.2'	AOC1-SD06 0.2'	AOC1-SD07 0.2'	AOC1-SD08 0.2'
PARAMETER	CAS NUMBER	SAMPLED: UNITS:	7/19/2004	7/20/2004	7/19/2004	7/13/2000	7/13/2000	7/13/2000	7/13/2000	7/13/2000
VOLATILES					<u> </u>					
VOLATILES Acetone	67-64-1	μg/kg				7.5	30 U	89 UJ	5.1	6.6
	67-64-1	μg/кg				7.5	30 0	99 03	5.1	0.0
SEMIVOLATILES				.			-			
Acenaphthene	83-32-9	μg/kg				700	490 U	1500 UJ	570 U	660
Anthracene	120-12-7	μg/kg				1200	490 U	1500 UJ	570 U	1500
Benzo(a)anthracene	56-55-3	μg/kg				2400	17	94	570 U	2400
Benzo(a)pyrene	50-32-8	μg/kg				2200	18	110	570 U	2100
Benzo(b)fluoranthene	205-99-2	μg/kg				1900	19	160	570 U	1900
Benzo(ghi)perylene Benzo(k)fluoranthene	191-24-2	μg/kg				570 2300	490 U 22	1500 UJ 130	570 U 570 U	500 2300
bis(2-Ethylhexyl) phthalate	207-08-9 117-81-7	μg/kg				390	15	100	25	290
Carbazole	86-74-8	μg/kg μg/kg				740	490 U	1500 UJ	570 U	690
Chrysene	218-01-9	μg/kg				2400	23	140	570 U	2300
Dibenzofuran	132-64-9	μg/kg				300	490 U	1500 UJ	570 U	310
Di-n-butyl phthalate	84-74-2	μg/kg	49 J	11000 UJ	59 J	580 U	490 U	1500 UJ	570 U	630 U
Dibenz(a,h)anthracene	53-70-3	μg/kg				280	490 U	1500 UJ	570 U	260
Fluoranthene	206-44-0	μg/kg	390 U	11000 UJ	46 J	4700	490 U	300	570 U	5400
Fluorene	86-73-7	μg/kg				590	490 U	1500 UJ	570 U	650
Indeno(1,2,3-cd)pyrene	193-39-5	μg/kg				650	490 U	1500 UJ	570 U	580
2-Methylnaphthalene	91-57-6	μg/kg				130	490 U	230	570 U	90
Naphthalene	91-20-3	μg/kg				300	490 U	190	570 U	150
Phenanthrene	85-01-8	μg/kg	390 U	11000 UJ	390 U	5200	490 U	160	570 U	5800
Pyrene	129-00-0	μg/kg	390 U	11000 UJ	390 U	3500	24	180	570 U	3600
PESTICIDES/PCBS										
beta-BHC	319-85-7	μg/kg	2 U	14 UJ	2 U	30 U	2.5 U	150 UJ	2.9 U	33 U
delta-BHC	319-86-8	μg/kg	2 UJ	3.2 JN	2 UJ	30 U	2.5 U	150 UJ	2.9 U	33 U
gamma-BHC (Lindane)	58-89-9	μg/kg	2 U	1.5 JN	2 U	30 U	2.5 U	150 UJ	2.9 U	33 U
Endosulfan I	959-98-8	μg/kg	2 U	14 UJ	2 U	30 U	2.5 U	150 UJ	2.9 U	33 U
Endrin	72-20-8	μg/kg	2 U	14 UJ	2 U	30 U	2.5 U	150 UJ	2.9 U	33 U
Endosulfan II	33213-65-9	μg/kg	2 U	14 UJ	2 U	30 U	2.5 U	150 UJ	2.9 U	33 U
4,4'-DDE	72-55-9	μg/kg	3.2	34 JN	12	21	0.22	540	18	32
4,4'-DDD	72-54-8	μg/kg	3.1	29 J	22	42	2.5 U	2400	2	54
4,4'-DDT	50-29-3	μg/kg	0.96 JN	14 UJ	2 U	130	2.5 U	630	1.3	110
alpha-Chlordane	5103-71-9	μg/kg	2 U	14 UJ	2 U	30 U	2.5 U	150 UJ	2.9 U	33 U
Aroclor 1254	11097-69-1	μg/kg				69	2.5 U	150 UJ	57 U	290
METALS										
Aluminum	7429-90-5	mg/kg	6940	9650 J	11400	15300	16400	9440	12600	12600
Antimony	7440-36-0	mg/kg	0.37 U	2.6 UJ	0.38 U	7.9	0.22 UJ	2.1	0.25 UJ	6.8
Arsenic	7440-38-2	mg/kg	6	4.6 J	6.6	9.5	2.5	9.1	7.6	7
Barium	7440-39-3	mg/kg	90.7	87.5 J	63	205	128	71.6	258	216
Beryllium	7440-41-7	mg/kg	0.7	1.4 J	0.88	7.6	0.89	3.2	0.81	7
Cadmium	7440-43-9	mg/kg	0.34 J	0.87 J	0.34 J	1.2	0.55	1.1	1.1	0.96
Calcium	7440-70-2	mg/kg	53300	54900 J	22600	29900	5070	4850	2230	20200
Chromium	7440-47-3	mg/kg	11.1	17.3 J	17	359	15.3	60.3	16.9	193
Cobalt	7440-48-4	mg/kg	7.8	10.7 J	12.5	47.4	6.2	12.7	22.3	38.5
Copper	7440-50-8	mg/kg	29.3	53.7 J	33.2	478	17.2	298	24.1	491
Iron	7439-89-6	mg/kg	19800	25300 J	26700	86800	15200	22900	31200	54800
Lead	7439-92-1	mg/kg	10.8	43.2 J	14.2	2440	23.1	442	16.3	1300
Magnesium	7439-95-4	mg/kg	6160	5880 J	7650	6080	3240	4300	3940	3500
Manganese	7439-96-5	mg/kg	654	573 J	802	918	98	209	4800	553
Mercury	7439-97-6	mg/kg	0.018 J	0.097 UJ	0.019 J	0.038	0.083	0.11	0.029	0.036
Nickel	7440-02-0	mg/kg	18	31.6 J	27.8	124	17.4	47.5	25.1	114
Potassium	7440-09-7	mg/kg	968	1600 J	1500	1330	1150	1440	956	1230
Selenium	7782-49-2	mg/kg		0.40 1		0.37 U	0.65	1.5	1.8 U	0.4 U
Silver	7440-22-4 7440-23-5	mg/kg	0.15 J 149 J	0.48 J	0.14 J	0.49 630	0.14 U 108	0.66 680	0.47 84.5	0.42 677
Sodium Thallium	7440-23-5	mg/kg	149 J	1410 J 	171 J	0.68 U	0.58	1.7 UJ	84.5 3.3 U	0.74 U
Vanadium	7440-28-0	mg/kg	15.7	57.5 J	23.1	97	22.8	49.4	25.6	89.9
Zinc	7440-62-2	mg/kg mg/kg	61.6	170 J	78.1	2960	76.5	979	87.1	2630
A Concentration avocade Lougat Eff.		and for Servening	01.0	170 J	70.1	2900	70.0	313	07.1	2030

A - Concentration exceeds Lowest Effort Level (NYSDEC Technical Guidance for Screening Contaminated Sediments, 1993).

U = Analyte not detected; the number is the analytical reporting limit.

J = Estimated Value

UJ = Analyte not detected: the number is the estimated analytical reporting limit.

ND = Not Detected

a) The highest result between samples SD-SD10-0-0.2-AOC-1 and SD-SD110-0-0.2-AOC-1 (duplicate)

b) The highest result between samples R35SL-002-011 and R35SL-002-011 (duplicate) is reported.

Table J.7.4 **Detected Chemicals in Sediment** SADVA - AOCs 1 and 7

								AOO3 i dila i
		SAMPLE ID:	SED-1	SED-2	SED-3	SED-4	R35SL-001-001	R35SL-002-001 a
		DEPTH:						
		SAMPLED:	1990	1990	1990	1990	11/14/90	11/14/90
PARAMETER	CAS NUMBER	UNITS:					.,,,,,,,,	
								l .
VOLATILES		,			1	1		1
Acetone	67-64-1	μg/kg						
SEMIVOLATILES								
Acenaphthene	83-32-9	μg/kg						
Anthracene	120-12-7	μg/kg						
Benzo(a)anthracene	56-55-3	μg/kg					0.161 U	0.108
Benzo(a)pyrene	50-32-8	μg/kg				-	0.241 U	0.108 J
Benzo(b)fluoranthene	205-99-2	μg/kg					0.193 U	0.161
Benzo(ghi)perylene	191-24-2	μg/kg		-		-	0.804 U	1.048
Benzo(k)fluoranthene	207-08-9	μg/kg		-			0.193 U	0.056 J
bis(2-Ethylhexyl) phthalate	117-81-7	μg/kg					0.130 C	
Carbazole	86-74-8	μg/kg μg/kg		-				
	218-01-9							
Chrysene		μg/kg				-		
Dibenzofuran	132-64-9	μg/kg				-		
Di-n-butyl phthalate	84-74-2	μg/kg				-		
Dibenz(a,h)anthracene	53-70-3	μg/kg						
Fluoranthene	206-44-0	μg/kg		-			2.412 U	0.507 J
Fluorene	86-73-7	μg/kg						
Indeno(1,2,3-cd)pyrene	193-39-5	μ g /kg						
2-Methylnaphthalene	91-57-6	μg/kg		-		-	-	
Naphthalene	91-20-3	μg/kg		-		-		
Phenanthrene	85-01-8	μ g/kg				-	6.431 U	0.6 J
Pyrene	129-00-0	μg/kg						
PESTICIDES/PCBS								
beta-BHC	319-85-7	μg/kg						
delta-BHC	319-86-8	μg/kg						
gamma-BHC (Lindane)	58-89-9	μg/kg						
Endosulfan I	959-98-8	μg/kg μg/kg		-		-		
Endrin	72-20-8	μg/kg						
Endosulfan II	33213-65-9	μg/kg						
4,4'-DDE	72-55-9		ND	ND	24	ND		
		μg/kg	ND ND		120	ND ND		
4,4'-DDD	72-54-8	μg/kg		ND				
4,4'-DDT	50-29-3	μg/kg	ND	ND	20	ND		
alpha-Chlordane	5103-71-9	μg/kg						
Aroclor 1254	11097-69-1	μg/kg						
METALS								
Aluminum	7429-90-5	mg/kg						
Antimony	7440-36-0	mg/kg		-		-	-	
Arsenic	7440-38-2	mg/kg	8.55	ND	2.51	ND		
Barium	7440-39-3	mg/kg					71.4	45.0
Beryllium	7440-41-7	mg/kg	0.65	0.3	0.35	0.4		
Cadmium	7440-43-9	mg/kg	0.15	0.1	0.53	0.3		
Calcium	7440-70-2	mg/kg	5.10	Ş		5.0		
Chromium	7440-47-3	mg/kg	13	4.7	11.8	7.98	9.8	7.9
Cobalt	7440-48-4	mg/kg		,		7.50	3.0 	
Copper	7440-50-8	mg/kg	17.4	14.3	22.6	29.3		
Iron	7439-89-6	mg/kg	17.4	17.5	22.0	20.0		
Lead	7439-92-1		6.1	3.7	28.6	20.9	6 U	9.7
		mg/kg	0.1	3.1	20.0	20.9		
Magnesium	7439-95-4	mg/kg						
Manganese	7439-96-5	mg/kg						
Mercury	7439-97-6	mg/kg				4-	0.1 U	0.1 U
Nickel	7440-02-0	mg/kg	19	1	29	15		
Potassium	7440-09-7	mg/kg		-				
Selenium	7782-49-2	mg/kg						
Silver	7440-22-4	mg/kg						
Sodium	7440-23-5	mg/kg		-				
Thallium	7440-28-0	mg/kg		-				
Vanadium	7440-62-2	mg/kg						
Zinc	7440-66-6	mg/kg	58	31	80	94		
A - Concentration exceeds Lowest Effort	Loyal (NIVSDEC Tachnical Guidar	oco for Scrooning						

A - Concentration exceeds Lowest Effort Level (NYSDEC Technical Guidance for Screening Contaminated Sediments, 1993).

U = Analyte not detected; the number is the analytical reporting limit.

J = Estimated Value

UJ = Analyte not detected: the number is the estimated analytical reporting limit.

ND = Not Detected

a) The highest result between samples SD-SD10-0-0.2-AOC-1 and SD-SD110-0-0.2-AOC-1 (duplicate)

b) The highest result between samples R35SL-002-011 and R35SL-002-011 (duplicate) is reported.

Table J.7.5 **Detected Chemicals in Surface Water** SADVA - AOCs 1 and 7

							Dup of SW-04								
		SAMPLE ID:		AOC1-SW04	AOC1-SW06	AOC1-SW07	AOC1-SW08	SW-1	SW-2	SW-4	SW-1	SW-2	SW-3	SW-4	SW-5
		SAMPLED:		13-Jul-00	13-Jul-00	13-Jul-00	13-Jul-00	30-Jul-96	30-Jul-96	ERM, 1990	M&E, 1988				
		UNITS:	MAX VALUE												
PARAMETER	CAS NUMBER														
VOLATILES															
Acetone	67-64-1	μg/L	10	10 U	2.5	2.2	10 U	5 U	5 U		10 J	10 UJ	10 U	10 UJ	10 U
Carbon disulfide	75-15-0	μg/L	0.99	1 U	0.99	0.36	1 U	5 U	5 U						
1,1-Dichloroethane	75-34-3	μg/L	27	1 U	1 U	1 U	1 U	5 U	5 U	27					
Toluene	108-88-3	μg/L	0.24	1 U	1 U	0.24	1 U	5 U	5 U						
Trichloroethene	79-01-6	μg/L	10	1 U	1 U	1 U	1 U	5 U	5 U	10		-	-		
SEMIVOLATILES															ļ
bis(2-Ethylhexyl) phthalate	117-81-7	μg/L	73	16	19	10 U	73								
METALS															
Aluminum	7429-90-5	μg/L	313	27.7	313	61.2	24.9								1
Arsenic	7440-38-2	μg/L	3.8	2.6 U	2.6 U	2.6 U	2.6 U	2 U	2 U		3.8	1.5 U	1.5 U	1.5 U	1.5 U
Barium	7440-39-3	μg/L	55	21.1	27.9	2.8	21.3	22	19		13	37	22	55	22
Beryllium	7440-41-7	μg/L	0.09	0.071 U	0.071 U	0.071 U	0.09								
Cadmium	7440-43-9	μg/L	30	0.49 U	0.49 U	0.49 U	0.49 U			30					
Calcium	7440-70-2	μg/L		26000	30600	16800	27000								
Chromium	7440-47-3	μg/L	18	1 U	1.3	1 U	1 U	4 U	4 U		18	5 U	5 U	5 U	5 U
Copper	7440-50-8	μg/L	3.7	2.2 U	3.7	2.2 U	2.2 U								
Iron	7439-89-6	μg/L		109	734	919	101								
Lead	7439-92-1	μg/L	42	1.9 U	3.7	1.9 U	1.9 U	4	3		39	16	27	42	2.5 U
Magnesium	7439-95-4	μg/L		17100	17300	4650	17700								
Manganese	7439-96-5	μg/L	320	98.5	320	116	96.9								
Mercury	7439-97-6	μg/L	0.058	0.047	0.058	0.045 U	0.05								
Potassium	7440-09-7	μg/L		2380	2530	558	2720								
Selenium	7782-49-2	μg/L	2.6	2.6	2.1 U	2.1 U	2.1 U	-				-	-		
Sodium	7440-23-5	μg/L		83200	82800	1160	85400								
Zinc	7440-66-6	μg/L	24.3	20.1	24.3	15.2	11.6								

AOC1-SW08 is a field duplicate of AOC 1-SW04.

U = Analyte not detected; the number is the analytical reporting limit.

J = Estimated Value

ND = Not Detected

a. < and J reported together indicate that the analyte was detected at a concentration lower than the instrument detection limit. The value reported is the instrument detection limit.

b. < indicates that the analyte was not detected. The value reported is the detection limit.

c. Sample aliquot warmed for 15 minutes at ambient air temperature (16C) before measuring temperature.

Table J.7.6 Comparison of Site Concentration to Background Surface Soils SADVA - AOCs 1 and 7

CAS No. Compound		Т	1			1			
\$7.64.1 Acetone	CAS No.		Concent	ration		Site Ba		Range	EPC Exceeds Background?
78-93-3 2-Butanone									
1904-14						ND -	3.1	μg/kg	_
108-88.3 Toluene									
Tago									•
Semivolatiles									•
Semivolatiles									_
1867-14 Carbazole	1000-20-7	Aylenes (total)	330	pg/kg	IVIGA				ycs
1867-14 Carbazole		Semivolatiles							
105-67-9 2.4-Dimethylphenol 150	86-74-8		1300	ua/ka	Max	ND -	54	ua/ka	ves
Section								F-3:3	_
Section									,
56-55-3 Benzo(a) purple 730 μg/kg UCL ND - 410 μg/kg yes	86-30-6	N-Nitrosodiphenylamine	68		Max				•
56-55-3 Benzo(a) purple 730 μg/kg UCL ND - 410 μg/kg yes		, ,							,
September Force		CPAHs							
205-99-2 Benzoklyfluoranthene 850		Benzo(a)anthracene							yes
207-08-9 Benzolki fluoranthene 330 jg/kg UCL ND 550 jg/kg no 2800 jg/kg Max ND 680 jg/kg yes 53-70-3 Dibenz(a,h)anthracene 230 jg/kg UCL ND 55 jg/kg yes 193-39-5 Indeno(1,2,3-cd)pyrene 460 jg/kg UCL ND 55 jg/kg yes 193-39-5 Indeno(1,2,3-cd)pyrene 460 jg/kg UCL ND 230 jg/kg yes 193-39-5 Indeno(1,2,3-cd)pyrene 460 jg/kg UCL ND 230 jg/kg yes 193-39-5 Indeno(1,2,3-cd)pyrene 460 jg/kg UCL ND 230 jg/kg yes 193-39-5 Indeno(1,2,3-cd)pyrene 460 jg/kg Max yes 193-64-0 ND 193-64 ND									yes
218-01-9 Chrysene 2800 μg/kg Max ND 680 μg/kg yes									•
S3-70-3 Dibenz(a h)anthracene 230 μg/kg UCL ND 55 μg/kg yes									
193-39-5 Indeno(1,2,3-cd)pyrene									•
NPAH S3-32-9 Acenaphthene 350 µg/kg Max yes 200-96-8 Acenaphthylene (as Acenaphthene) 120 µg/kg Max ND - 61 µg/kg yes 132-64-9 Dibenzofuran 120 µg/kg Max ND - 61 µg/kg yes 206-44-0 Fluoranthene 6100 µg/kg Max ND - 940 µg/kg yes 86-73-7 Fluorene 220 µg/kg Max ND - 940 µg/kg yes 91-87-6 2-Methylnaphthalene (as Naphthalene) 220 µg/kg Max ND - 23 µg/kg yes 91-87-6 2-Methylnaphthalene 230 µg/kg Max ND - 23 µg/kg yes 91-87-6 2-Methylnaphthalene 3100 µg/kg Max ND - 480 µg/kg yes 91-80-18 Phenanthrene (as Pyrene) 3100 µg/kg Max ND - 480 µg/kg yes 92-00-0 Pyrene 4200 µg/kg Max ND - 750 µg/kg yes 92-00-0 Pyrene 4200 µg/kg Max ND - 750 µg/kg yes 92-00-0 Pyrene 4200 µg/kg Max ND - 750 µg/kg yes 92-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 92-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 92-00-0 Pyrene 44-00-00 Pyrene 4200 µg/kg Max ND - 9.4 µg/kg yes 92-00-00 Pyrene 44-00-00 Pyrene 4200 µg/kg Max ND - 9.4 µg/kg yes 92-00-00 Pyrene 44-00-00 Pyrene 4200 µg/kg Max ND - 9.4 µg/kg yes 92-00-00 Pyrene 44-00-00 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes PESTICIDE Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes PESTICIDE Pyrene 44-00-00 Pyrene 44-00-00 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg Pyrene PESTICIDE Pyrene 44-00-00 Pyrene Pyrene 4200 Pyrene Pyrene 4200 Pyrene Pyrene Pyrene 4200 Pyrene Pyrene									•
83-32-9 Acenaphthene 350 µg/kg Max yes yes 200-96-8 Acenaphthylprice (as Acenaphthene) 120 µg/kg Max yes yes 132-64-9 Dibenzofuran 120 µg/kg Max ND - 61 µg/kg yes yes 132-64-9 Dibenzofuran 120 µg/kg Max ND - 940 µg/kg yes 91-87-6 Pitoranthene 6100 µg/kg Max ND - 940 µg/kg yes 91-87-6 2-Methylnaphthalene (as Naphthalene) 220 µg/kg Max ND - 23 µg/kg yes 91-87-6 2-Methylnaphthalene (as Naphthalene) 230 µg/kg Max ND - 23 µg/kg yes yes 91-87-6 2-Methylnaphthalene 410 µg/kg Max ND - 480 µg/kg yes yes 91-80-0 Pyrene 4200 µg/kg Max ND - 750 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 750 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 750 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg no 12-25-9 µg/kg Max ND - 9.4 µg/kg no 12-25-9 µg/kg Max ND - 9.4 µg/kg no 12-20-8 Endrin 0.29 µg/kg Max 0.61 - 15 µg/kg no 12-20-8 Endrin 0.29 µg/kg Max 0.61 - 15 µg/kg no 12-20-8 Endrin 0.29 µg/kg Max 0.61 - 15 µg/kg no 12-20-8 Polish Polis	193-39-5	Indeno(1,2,3-cd)pyrene	460	μg/kg	UCL	ND -	230	μg/kg	yes
83-32-9 Acenaphthene 350 µg/kg Max yes yes 200-96-8 Acenaphthylipen (as Acenaphthene) 120 µg/kg Max ND - 61 µg/kg yes 132-64-9 Dibenzofuran 120 µg/kg Max ND - 61 µg/kg yes 326-64-9 Dibenzofuran 120 µg/kg Max ND - 940 µg/kg yes 91-87-6 Pitoranthene 6100 µg/kg Max ND - 940 µg/kg yes 91-87-6 2-Methylnaphthalene (as Naphthalene) 230 µg/kg Max ND - 23 µg/kg yes 91-87-6 2-Methylnaphthalene (as Naphthalene) 230 µg/kg Max ND - 23 µg/kg yes 91-87-6 2-Methylnaphthalene 410 µg/kg Max ND - 480 µg/kg yes 91-80-0 Pyrene 4200 µg/kg Max ND - 750 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 750 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 750 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 750 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 1.2 µg/kg yes 129-00-0 Pyrene 4200 µg/kg Max ND - 9.4 µg/kg no 12-25-9 µg/kg Max ND - 9.4 µg/kg no 12-25-9 µg/kg Max ND - 9.4 µg/kg no 12-20-8 Endrin 0.29 µg/kg Max 0.61 - 15 µg/kg no 12-20-8 Endrin 0.29 µg/kg Max 0.61 - 15 µg/kg no 12-20-8 Endrin 0.29 µg/kg Max 0.61 - 15 µg/kg no 12-20-8 Endrin 0.29 µg/kg Max 0.20 0.59 mg/kg no 12-20-8 Arsenic 6.7 mg/kg Max 0.20 0.59 mg/kg no 12-20-8 Arsenic 6.7 mg/kg Max 0.20 0.59 mg/kg no 12-20-8 M		NDAH							
200-96-8 Acenaphthylene (as Acenaphthene) 120	02 22 0		250	ua/ka	Mov				1/00
120-12-7									
132.64-9 Dibenzofuran 120 19/kg Max ND - 940 19/kg yes 206-44-0 Fluoranthene 6100 19/kg Max ND - 940 19/kg yes 91-57-6 2-Methylnaphthalene (as Naphthalene) 230 19/kg Max ND - 23 19/kg yes 91-20-3 Naphthalene 410 19/kg Max ND - 480 19/kg yes 91-20-3 Naphthalene 410 19/kg Max ND - 480 19/kg yes 129-00-0 Pyrene 4200 19/kg Max ND - 750 19/kg yes 129-00-0 Pyrene 4200 19/kg Max ND - 750 19/kg yes 129-00-0 Pyrene 4200 19/kg Max ND - 750 19/kg yes 129-00-0 Pyrene 4200 19/kg Max ND - 1.2 19/kg yes 129-00-0 Pyrene 4200 19/kg Max ND - 1.2 19/kg yes 129-00-0 Pyrene 4200 19/kg Max ND - 1.2 19/kg yes 129-00-0 Pyrene 4200 19/kg Max ND - 1.2 19/kg yes 129-00-0 Pyrene 4200 19/kg Max ND - 1.2 19/kg yes 129-00-0 Pyrene 4200 19/kg Max ND - 1.2 19/kg yes 129-00-0 Pyrene 4200 19/kg Max ND - 9.4 19/kg no 10/kg 10/						ND -	61	ua/ka	•
20644-0 Fluoranthene 6100 μg/kg Max ND 940 μg/kg yes 86-73-7 Fluorene 220 μg/kg Max ND 23 μg/kg yes 91-57-6 2-Methylnaphthalene (as Naphthalene) 230 μg/kg Max ND 23 μg/kg yes 91-20-3 Naphthalene 410 μg/kg Max yes 91-20-3 Naphthalene 410 μg/kg Max ND 480 μg/kg yes 95-01-8 Phenanthrene (as Pyrene) 3100 μg/kg Max ND 480 μg/kg yes 129-00-0 Pyrene 4200 μg/kg Max ND 750 μg/kg yes 129-00-0 Pyrene 4200 μg/kg Max ND 750 μg/kg yes 129-00-0 Pyrene 4200 μg/kg Max ND 750 μg/kg yes 129-00-0 Pyrene 4200 μg/kg Max ND 750 μg/kg yes 129-00-0 Pyrene 4200 μg/kg Max ND 750 μg/kg yes 129-00-0 Pyrene 4200 μg/kg Max ND 750 μg/kg yes 129-00-0 Pyrene 4200 μg/kg Max ND 750 μg/kg yes 129-00-0 Pyrene 4200 μg/kg Max ND 750 μg/kg yes 129-00-0 Pyrene 4200 μg/kg Max ND 750 μg/kg NO 12,000 Ng/kg NO 12,000 Ng/kg NO 12,000 Ng/kg NO Ng/kg NG Ng/k						ND -	01	μg/kg	_
Be-73-7 Fluorene 220 pg/kg Max ND - 23 pg/kg yes						ND -	940	ua/ka	
91-57-6 2-Methylnaphthalene (as Naphthalene) 230 µg/kg Max yes									•
Section Sect								1.0.0	•
129-00-0 Pyrene			410		Max				_
PESTICIDE	85-01-8	Phenanthrene (as Pyrene)	3100	μg/kg	Max	ND -	480	μg/kg	yes
72-54-8	129-00-0	Pyrene	4200	μg/kg	Max	ND -	750	μg/kg	yes
72-54-8									
72-55-9									
50-29-3									
72-20-8 Endrin		,							
PCBs		,				0.61 -	15	μg/kg	
PCBs 11096-82-5 Arcolor 1260 160 μg/kg Max yes METALS 7429-90-5 Aluminum 12100 mg/kg Max 7,080 - 12,800 mg/kg no 7440-36-0 Antimony 0.36 mg/kg Max 0.2 - 0.59 mg/kg no 7440-38-2 Arsenic 6.7 mg/kg Max 4.3 - 16.4 mg/kg no 7440-39-3 Barium 47.4 mg/kg Max 33 - 104 mg/kg no 7440-41-7 Beryllium 0.59 mg/kg Max 0.38 - 0.67 mg/kg no 7440-43-9 Cadmium 0.65 mg/kg Max 0.21 - 0.52 mg/kg yes 7440-47-3 Chromium (total) 110 mg/kg UCL 9.3 - 17.5 mg/kg yes 18540-29-9 Chromium VI 350 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-48-4 Cobalt 13.3 mg/kg Max 13.4 - 26.9 mg/kg yes 7439-92-1 Lead 35.4 mg/kg Max 16.5 - 60.8 mg/kg no 7439-96-5 Manganese 649 mg/kg Max 197 - 875 mg/kg no 7439-97-6 Mercury 0.064 mg/kg Max 0.044 - 1.2 mg/kg yes 7782-49-2 Selenium 0 mg/kg Max 0.16 - 24.8 mg/kg yes 7740-22-4 Silver 1.9 mg/kg Max 0.16 - 0.17 mg/kg yes 7440-22-4 Silver 1.9 mg/kg Max 13.7 - 24 mg/kg yes 7440-22-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-840 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes 7440-									
METALS	7421-93-4	Endrin aldenyde (based on endrin)	2.9	µg/кд	IVIAX				yes
METALS		DCDc							
METALS James Angel Selenium James Angel Selenium <td>11006-82-5</td> <td></td> <td>160</td> <td>ua/ka</td> <td>May</td> <td></td> <td></td> <td></td> <td>VAC</td>	11006-82-5		160	ua/ka	May				VAC
7429-90-5 Aluminum 12100 mg/kg Max 7,080 - 12,800 mg/kg no 7440-36-0 Antimony 0.36 mg/kg Max 0.2 - 0.59 mg/kg no 7440-38-2 Arsenic 6.7 mg/kg Max 4.3 - 16.4 mg/kg no 7440-39-3 Barium 47.4 mg/kg Max 33 - 104 mg/kg no 7440-41-7 Beryllium 0.59 mg/kg Max 0.38 - 0.67 mg/kg no 7440-43-9 Cadmium 0.65 mg/kg Max 0.21 - 0.52 mg/kg yes 7440-47-3 Chromium (total) 110 mg/kg UCL 9.3 - 17.5 mg/kg yes 7440-48-4 Cobalt 13.3 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-8-4- Copper 32.7 mg/kg Max 13.4 - 26.9 mg/kg yes <	11030-02-3	7100011200	100	pg/kg	IVIGA				ycs
7429-90-5 Aluminum 12100 mg/kg Max 7,080 - 12,800 mg/kg no 7440-36-0 Antimony 0.36 mg/kg Max 0.2 - 0.59 mg/kg no 7440-38-2 Arsenic 6.7 mg/kg Max 4.3 - 16.4 mg/kg no 7440-39-3 Barium 47.4 mg/kg Max 33 - 104 mg/kg no 7440-41-7 Beryllium 0.59 mg/kg Max 0.38 - 0.67 mg/kg no 7440-43-9 Cadmium 0.65 mg/kg Max 0.21 - 0.52 mg/kg yes 7440-47-3 Chromium (total) 110 mg/kg UCL 9.3 - 17.5 mg/kg yes 7440-48-4 Cobalt 13.3 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-8-4- Copper 32.7 mg/kg Max 13.4 - 26.9 mg/kg yes <		METALS							
7440-36-0 Antimony 0.36 mg/kg Max 0.2 - 0.59 mg/kg no 7440-38-2 Arsenic 6.7 mg/kg Max 4.3 - 16.4 mg/kg no 7440-39-3 Barium 47.4 mg/kg Max 33 - 104 mg/kg no 7440-41-7 Beryllium 0.59 mg/kg Max 0.38 - 0.67 mg/kg no 7440-43-9 Cadmium 0.65 mg/kg Max 0.21 - 0.52 mg/kg no 7440-47-3 Chromium (total) 110 mg/kg Max 0.21 - 0.52 mg/kg yes 7440-48-4 Cobalt 13.3 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-8-8 Copper 32.7 mg/kg Max 13.4 - 26.9 mg/kg yes 7439-92-1 Lead 35.4 mg/kg	7429-90-5		12100	mg/ka	Max	7,080 -	12,800	mg/ka	no
7440-38-2 Arsenic 6.7 mg/kg Max 4.3 - 16.4 mg/kg no 7440-39-3 Barium 47.4 mg/kg Max 33 - 104 mg/kg no 7440-41-7 Beryllium 0.59 mg/kg Max 0.38 - 0.67 mg/kg no 7440-43-9 Cadmium 0.65 mg/kg Max 0.21 0.52 mg/kg yes 7440-47-3 Chromium (total) 110 mg/kg UCL 9.3 - 17.5 mg/kg yes 7440-48-4 Cobalt 13.3 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-50-8 Copper 32.7 mg/kg Max 13.4 - 26.9 mg/kg yes 7439-92-1 Lead 35.4 mg/kg Max 16.5 - 60.8 mg/kg no 7439-97-6 Mercury 0.064 mg/kg <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td></td<>							,		
7440-41-7 Beryllium 0.59 mg/kg Max 0.38 - 0.67 mg/kg no 7440-43-9 Cadmium 0.65 mg/kg Max 0.21 - 0.52 mg/kg yes 7440-47-3 Chromium (total) 110 mg/kg UCL 9.3 - 17.5 mg/kg yes 18540-29-9 Chromium VI 350 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-48-4 Cobalt 13.3 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-80-8 Copper 32.7 mg/kg Max 13.4 - 26.9 mg/kg yes 7439-92-1 Lead 35.4 mg/kg Max 16.5 - 60.8 mg/kg no 7439-96-5 Manganese 649 mg/kg Max 197 - 875 mg/kg no 7440-02-0 Nickel 27.3						4.3 -			
7440-41-7 Beryllium 0.59 mg/kg Max 0.38 - 0.67 mg/kg no 7440-43-9 Cadmium 0.65 mg/kg Max 0.21 - 0.52 mg/kg yes 7440-47-3 Chromium (total) 110 mg/kg UCL 9.3 - 17.5 mg/kg yes 18540-29-9 Chromium VI 350 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-48-4 Cobalt 13.3 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-80-8 Copper 32.7 mg/kg Max 13.4 - 26.9 mg/kg yes 7439-92-1 Lead 35.4 mg/kg Max 16.5 - 60.8 mg/kg no 7439-96-5 Manganese 649 mg/kg Max 197 - 875 mg/kg no 7440-02-0 Nickel 27.3			47.4			33 -	104		no
7440-47-3 Chromium (total) 110 mg/kg UCL 9.3 - 17.5 mg/kg yes 18540-29-9 Chromium VI 350 mg/kg Max yes yes 7440-48-4 Cobalt 13.3 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-50-8 Copper 32.7 mg/kg Max 13.4 - 26.9 mg/kg yes 7439-92-1 Lead 35.4 mg/kg Max 16.5 - 60.8 mg/kg no 7439-96-5 Manganese 649 mg/kg Max 197 - 875 mg/kg no 7439-97-6 Mercury 0.064 mg/kg Max 0.039 - 0.095 mg/kg no 7440-02-0 Nickel 27.3 mg/kg Max 10.6 - 24.8 mg/kg yes 7782-49-2 Selenium 0 mg/kg Max 0.44		Beryllium	0.59		Max		0.67		no
18540-29-9 Chromium VI 350 mg/kg Max yes 7440-48-4 Cobalt 13.3 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-50-8 Copper 32.7 mg/kg Max 13.4 - 26.9 mg/kg yes 7439-92-1 Lead 35.4 mg/kg Max 16.5 - 60.8 mg/kg no 7439-96-5 Manganese 649 mg/kg Max 197 - 875 mg/kg no 7439-97-6 Mercury 0.064 mg/kg Max 0.039 - 0.095 mg/kg no 7440-02-0 Nickel 27.3 mg/kg Max 10.6 - 24.8 mg/kg yes 7782-49-2 Selenium 0 mg/kg Max 0.44 - 1.2 mg/kg no 7440-22-4 Silver 1.9 mg/kg Max 0.16 0.17 mg/kg yes 7440-28-0 Thallium 0.55 mg/kg Max ND - 0.67 mg/kg no 7440-6									yes
7440-48-4 Cobalt 13.3 mg/kg Max 5.3 - 12.2 mg/kg yes 7440-50-8 Copper 32.7 mg/kg Max 13.4 - 26.9 mg/kg yes 7439-92-1 Lead 35.4 mg/kg Max 16.5 - 60.8 mg/kg no 7439-96-5 Manganese 649 mg/kg Max 197 - 875 mg/kg no 7439-97-6 Mercury 0.064 mg/kg Max 0.039 - 0.95 mg/kg no 7440-02-0 Nickel 27.3 mg/kg Max 10.6 - 24.8 mg/kg yes 7782-49-2 Selenium 0 mg/kg Max 0.44 - 1.2 mg/kg no 7440-22-4 Silver 1.9 mg/kg Max 0.16 0.17 mg/kg yes 7440-28-0 Thallium 0.55 mg/kg Max <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.3 -</td> <td>17.5</td> <td>mg/kg</td> <td>yes</td>						9.3 -	17.5	mg/kg	yes
7440-50-8 Copper 32.7 mg/kg Max 13.4 - 26.9 mg/kg yes 7439-92-1 Lead 35.4 mg/kg Max 16.5 - 60.8 mg/kg no 7439-96-5 Manganese 649 mg/kg Max 197 - 875 mg/kg no 7439-97-6 Mercury 0.064 mg/kg Max 0.039 - 0.095 mg/kg no 7440-02-0 Nickel 27.3 mg/kg Max 10.6 - 24.8 mg/kg yes 7782-49-2 Selenium 0 mg/kg Max 0.44 - 1.2 mg/kg no 7440-22-4 Silver 1.9 mg/kg Max 0.16 0.17 mg/kg yes 7440-28-0 Thallium 0.55 mg/kg Max ND - 0.67 mg/kg no 7440-62-2 Vanadium 25.2 mg/kg Max <td></td> <td></td> <td></td> <td>0 0</td> <td></td> <td></td> <td></td> <td></td> <td></td>				0 0					
7439-92-1 Lead 35.4 mg/kg Max 16.5 - 60.8 mg/kg no 7439-96-5 Manganese 649 mg/kg Max 197 - 875 mg/kg no 7439-97-6 Mercury 0.064 mg/kg Max 0.039 - 0.095 mg/kg no 7440-02-0 Nickel 27.3 mg/kg Max 10.6 - 24.8 mg/kg yes 7782-49-2 Selenium 0 mg/kg Max 0.44 - 1.2 mg/kg no 7440-22-4 Silver 1.9 mg/kg Max 0.16 0.17 mg/kg yes 7440-28-0 Thallium 0.55 mg/kg Max ND - 0.67 mg/kg no 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes									
7439-96-5 Manganese 649 mg/kg Max 197 - 875 mg/kg no 7439-97-6 Mercury 0.064 mg/kg Max 0.039 - 0.095 mg/kg no 7440-02-0 Nickel 27.3 mg/kg Max 10.6 - 24.8 mg/kg yes 7782-49-2 Selenium 0 mg/kg Max 0.44 - 1.2 mg/kg no 7440-22-4 Silver 1.9 mg/kg Max 0.16 - 0.17 mg/kg yes 7440-28-0 Thallium 0.55 mg/kg Max ND - 0.67 mg/kg no 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes									
7439-97-6 Mercury 0.064 mg/kg Max 0.039 - 0.095 mg/kg no 7440-02-0 Nickel 27.3 mg/kg Max 10.6 - 24.8 mg/kg yes 7782-49-2 Selenium 0 mg/kg Max 0.44 - 1.2 mg/kg no 7440-22-4 Silver 1.9 mg/kg Max 0.16 0.17 mg/kg yes 7440-28-0 Thallium 0.55 mg/kg Max ND - 0.67 mg/kg no 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes									
7440-02-0 Nickel 27.3 mg/kg Max 10.6 - 24.8 mg/kg yes 7782-49-2 Selenium 0 mg/kg Max 0.44 - 1.2 mg/kg no 7440-22-4 Silver 1.9 mg/kg Max 0.16 - 0.17 mg/kg yes 7440-28-0 Thallium 0.55 mg/kg Max ND - 0.67 mg/kg no 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes									
7782-49-2 Selenium 0 mg/kg Max 0.44 - 1.2 mg/kg no 7440-22-4 Silver 1.9 mg/kg Max 0.16 - 0.17 mg/kg yes 7440-28-0 Thallium 0.55 mg/kg Max ND - 0.67 mg/kg no 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes		,							
7440-22-4 Silver 1.9 mg/kg Max 0.16 - 0.17 mg/kg yes 7440-28-0 Thallium 0.55 mg/kg Max ND - 0.67 mg/kg no 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes									_
7440-28-0 Thallium 0.55 mg/kg Max ND - 0.67 mg/kg no 7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes									
7440-62-2 Vanadium 25.2 mg/kg Max 13.7 - 24 mg/kg yes									
11/44U-66-6 IZINC I 114 ma/kal Max I 46 - 134 ma/kal no	7440-62-2	Zinc	114	mg/kg	Max	46 -		mg/kg	no

 $^{^{1}\,}$ Compounds detected in previous studies, including Parsons RI (2005), Malcolm-Pirnie Limited RI (1997).

ND non-detect UCL 95% Upper Confidence Limit

Table J.7.7 Comparison of Site Concentration to Background Mixed Depth Soils SADVA - AOCs 1 and 7

CAS No.	Compound ¹ Volatiles	Exposur Concen (uni	tration	EPC Max or UCL?	Site Bac	ckgroun	d Ran	ge (units)	EPC Exceeds Background?
67-64-1	Acetone	2600	μg/kg	Max	ND	-	3.1	μg/kg	yes
78-93-3	2-Butanone	170	μg/kg	Max				10 0	yes
100-41-4	Ethylbenzene	24	μg/kg	Max					yes
108-88-3	Toluene	4	μg/kg	Max					yes
79-01-6	Trichloroethene	3.8	μg/kg	UCL					yes
1330-20-7	Xylenes (total)	530	μg/kg	Max					yes
	Semivolatiles								
86-74-8	Carbazole	1300	μg/kg	Max	ND	-	54	μg/kg	yes
105-67-9	2,4-Dimethylphenol	150	μg/kg	Max					yes
84-74-2	Di-n-butyl phthalate	100	μg/kg	Max					yes
86-30-6	N-Nitrosodiphenylamine	68	μg/kg	Max					yes
	CPAHs								
EG EE 2		E10	ua/ka	LICI	ND		110	ua/ka	1100
56-55-3 50-32-8	Benzo(a)anthracene Benzo(a)pyrene	510 480	μg/kg μg/kg	UCL UCL	ND ND		410 550	μg/kg μg/kg	yes no
205-99-2	Benzo(a)pyrene Benzo(b)fluoranthene	580	μg/kg μg/kg	UCL	ND		320 320	μg/kg μg/kg	no
205-99-2	Benzo(k)fluoranthene	290	μg/kg μg/kg	UCL	ND		550	μg/kg μg/kg	no
218-01-9	Chrysene	2800	μg/kg μg/kg	Max	ND		680	μg/kg μg/kg	ves
53-70-3	Dibenz(a,h)anthracene	220	μg/kg μg/kg	UCL	ND	-	55	μg/kg μg/kg	yes
193-39-5	Indeno(1,2,3-cd)pyrene	350	μg/kg μg/kg	UCL	ND		230	μg/kg μg/kg	yes
100 00 0	macric(1,2,0 cd)pyrene	000	ругчу	002	IND			pg/Ng	ycc
	NPAH								
83-32-9	Acenaphthene	350	μg/kg	Max					yes
200-96-8	Acenaphthylene	120	μg/kg	Max					yes
120-12-7	Anthracene	730	μg/kg	Max	ND	-	61	μg/kg	yes
132-64-9	Dibenzofuran	110	μg/kg	Max					yes
206-44-0	Fluoranthene	6100	μg/kg	Max	ND		940	μg/kg	yes
86-73-7	Fluorene	220	μg/kg	Max	ND	-	23	μg/kg	yes
91-57-6	2-Methylnaphthalene	230	μg/kg	Max					yes
91-20-3 85-01-8	Naphthalene	410 3100	μg/kg	Max Max	ND		480	ua/ka	yes
129-00-0	Phenanthrene Pyrene	4200	μg/kg μg/kg	Max	ND		750	μg/kg μg/kg	yes yes
			13 3					1.0 0	, , ,
	PESTICIDE								
72-54-8	4,4'-DDD	2.7	μg/kg	Max	ND		1.2	μg/kg	yes
72-55-9	4,4'-DDE	2.1	μg/kg	Max	ND		9.4	μg/kg	no
50-29-3	4,4'-DDT	6.9	μg/kg	Max	0.61	-	15	μg/kg	no
72-20-8	Endrin	0.29	μg/kg	Max					yes
7421-93-4	Endrin aldehyde (based on endrin)	2.9	μg/kg	Max					yes
	PCBs								
11096-82-5	Aroclor 1260	41	μg/kg	UCL					yes
	METALS								
7429-90-5	Aluminum	12000	mg/kg	UCL	7,080	- 13	2,800	mg/kg	no
7440-36-0	Antimony	0.36	mg/kg	Max	0.2).59	mg/kg	no
7440-38-2	Arsenic	6.7	mg/kg	UCL	4.3		16.4		no
7440-36-2	Barium	140	mg/kg	Max	33		104	mg/kg mg/kg	ves
7440-39-3	Beryllium	1.2	mg/kg	Max	0.38).67	mg/kg	yes
7440-43-9	Cadmium	0.65	mg/kg	Max	0.21).52	mg/kg	yes
7440-47-3	Chromium (total)	64	mg/kg	UCL	9.3		17.5	mg/kg	yes
18540-29-9	Chromium VI	350	mg/kg	Max					yes
7440-48-4	Cobalt	15	mg/kg	Max	5.3	- '	12.2	mg/kg	yes
7440-50-8	Copper	32.7	mg/kg	Max	13.4		26.9	mg/kg	yes
7439-92-1	Lead	35.4	mg/kg	Max	16.5		8.08	mg/kg	no
7439-96-5	Manganese	649	mg/kg	Max	197		375	mg/kg	no
7439-97-6	Mercury	0.064	mg/kg	Max	0.039		.095	mg/kg	no
7440-02-0	Nickel	27.3	mg/kg	Max	10.6		24.8	mg/kg	yes
7782-49-2	Selenium	1	mg/kg	Max	0.44		1.2	mg/kg	no
7440-22-4	Silver	1.9	mg/kg	Max	0.16).17	mg/kg	yes
7440-28-0	Thallium	0.57	mg/kg	UCL	ND 12.7		0.67	mg/kg	no
7440-62-2 7440-66-6	Vanadium	26	mg/kg	UCL	13.7 46	-	24 134	mg/kg	yes
0-00-U ++ 1	Zinc	114	mg/kg	Max	40	-	134	mg/kg	no

¹ Compounds detected in previous studies, including Parsons RI (2005), Malcolm-Pirnie Limited RI (1997).

ND non-detect UCL 95% Upper Confidence Limit

Table J.7.8 Comparison of Site Concentration to Background Sediment SADVA - AOCs 1 and 7

CAS No.	Compound Volatiles	Exposur Concent	tration	EPC Max or UCL?	Back	gro	e-specifi und/ups ges (unit	tream	EPC Exceed Background?
67-64-1	Acetone	7.5	μg/kg	MAX	ND	-	14	μg/kg	no
	2 1 1 11								
117-81-7	Semivolatiles bis(2-Ethylhexyl) phthalate	390	μg/kg	MAX	ND				1/00
86-74-8	Carbazole	740	μg/kg μg/kg	MAX	ND	_	50	μg/kg	yes yes
132-64-9	Dibenzofuran	310	μg/kg	MAX	ND	-	50	μg/kg	yes
84-74-2	Di-n-butyl Phthalate	350	μg/kg	MAX				<u> </u>	yes
50 55 0	CAPHS	0400		MAN	ND		040		
56-55-3 50-32-8	Benzo(a)anthracene	2400 2200	μg/kg	MAX MAX	ND ND	-	310 330	μg/kg	yes
205-99-2	Benzo(a)pyrene Benzo(b)fluoranthene	1900	μg/kg μg/kg	MAX	ND	-	440	μg/kg μg/kg	yes yes
207-08-9	Benzo(k)fluoranthene	2300	μg/kg	MAX	ND	-	360	μg/kg	yes
218-01-9	Chrysene	2400	μg/kg	MAX	ND	-	730	μg/kg	yes
53-70-3	Dibenz(a,h)anthracene	280	μg/kg	MAX	ND			1.0.0	yes
193-39-5	Indeno(1,2,3-cd)pyrene	650	μg/kg	MAX	ND	-	78	μg/kg	yes
20.00.0	NAPHs	=							
83-32-9 120-12-7	Acenaphthene	700 1500	μg/kg	MAX MAX	ND ND	-	92	μg/kg	yes
120-12-7 191-24-2	Anthracene Benzo(ghi)perylene	570	μg/kg μg/kg	MAX	ND	-	170 66	μg/kg μg/kg	yes yes
206-44-0	Fluoranthene	5400	μg/kg μg/kg	MAX	ND	-	1,200	μg/kg μg/kg	yes
86-73-7	Fluorene	650	μg/kg	MAX	ND	_	100	μg/kg	yes
91-57-6	2-Methylnaphthalene	230	μg/kg	MAX	ND			rg/··g	yes
91-20-3	Naphthalene	300	μg/kg	MAX	ND	-	210	μg/kg	yes
85-01-8	Phenanthrene	5800	μg/kg	MAX	ND	-	400	μg/kg	yes
129-00-0	Pyrene	3600	μg/kg	MAX	ND	-	920	μg/kg	yes
	DOD-								
11097-69-1	PCBs Aroclor 1254	290	μg/kg	MAX	ND				VOS
11097-09-1	AIOGOI 1234	290	ру/ку	IVIAA	IND				yes
	Pesticides								
319-85-7	beta-BHC	4.5	μg/kg	MAX					yes
319-86-8	delta-BHC	3.2	μg/kg	MAX	ND				yes
58-89-9	gamma-BHC (lindane)	1.5	μg/kg	MAX					yes
5103-71-9	alpha-Chlordane	1.1	μg/kg	MAX	ND				yes
72-54-8 72-55-9	4,4'-DDD 4,4'-DDE	2400 540	μg/kg	MAX MAX	ND ND		0.23	ua/ka	yes
72-33-9 50-29-3	4,4'-DDE 4,4'-DDT	630	μg/kg μg/kg	MAX	ND	_	0.23	μg/kg	yes yes
959-99-8	Endosulfan I	3.6	μg/kg	MAX	IND				yes
33213-65-9	Endosulfan II	0.31	μg/kg	MAX					yes
72-20-8	Endrin	0.23	μg/kg	MAX	ND				yes
			•						
7400.00.	Metals	40400			00/0		47.000	"	
7429-90-5 7440-36-0	Antimony	16400	mg/kg	Max	8040		17,900		no
7440-36-0 7440-38-2	Antimony Arsenic	7.9 9.5	mg/kg mg/kg	MAX MAX	ND 3.1	-	0.44 5.1	mg/kg mg/kg	,
7440-36-2 7440-39-3	Barium	258	mg/kg	MAX	53.9	-	141	mg/kg	yes yes
7440-41-7	Beryllium	2.5	mg/kg	UCL	0.62	-	0.92	mg/kg	yes
7440-43-9	Cadmium	1.2	mg/kg	MAX	ND	-	0.75	mg/kg	yes
7440-47-3	Chromium	359	mg/kg	MAX	11.2	-	22	mg/kg	yes
7440-48-4	Cobalt	47.4	mg/kg	MAX	7.1	-	14	mg/kg	yes
7440-50-8	Copper	491	mg/kg	MAX	13	-	27.7	mg/kg	yes
7439-92-1	Lead	450	mg/kg	UCL	7.8	-	20.9	mg/kg	yes
7439-96-5 7439-97-6	Manganese Mercury	1500 0.11	mg/kg mg/kg	UCL MAX	328 0.027	-	0.091	mg/kg mg/kg	yes
7440-02-0	Nickel	124	mg/kg	MAX	15.6	-	24.5	mg/kg	yes yes
7782-49-2	Selenium	1.5	mg/kg	MAX	ND	-	0.81	mg/kg	yes
7440-22-4	Silver	0.66	mg/kg	MAX	ND	-	0.5	mg/kg	yes
7440-28-0	Thallium	0.58	mg/kg	MAX	ND	-	1.5	mg/kg	no
7440-62-2	Vanadium	57	mg/kg	UCL	14.6	-	28.4	mg/kg	yes
7440-66-6	Zinc	2960	mg/kg	MAX	47.7	-	118	mg/kg	yes

ND not detected

Table J.7.9 Comparison of Site Concentration to Background Surface Water SADVA - AOCs 1 and 7

CAS No.	Compound ¹	Exposure Concent (unit	ration	EPC Max or UCL?	-	entr	fic Upst ation Ra inits)		Exceeds Background
67-64-1	Volatiles Acetone	10	//	MAX	ND		2	/1	\/O0
75-15-0	Carbon disulfide	0.99	μg/L	MAX	טא	-		μg/L	yes
75-15-0 75-34-3	1,1-Dichloroethane	27	μg/L	MAX					yes
108-88-3	Toluene	0.24	μg/L μg/L	MAX					yes ves
79-01-6	Trichloroethene	6.42	μg/L μg/L	UCL					ves
19-01-0	Thenioroethene	0.42	μg/L	UCL					yes
	Semivolatiles								
117-81-7	bis(2-Ethylhexyl) phthalate	73	μg/L	MAX	ND	-	26	μg/L	yes
	Metals								
7429-90-5	Aluminum	313	μg/L	MAX	23	-	346	μg/L	no
7440-38-2	Arsenic	1.75	μg/L	UCL					yes
7440-39-3	Barium	55	μg/L	MAX	23	-	44	μg/L	yes
7440-41-7	Beryllium	0.09	μg/L	MAX	0.14	-	0.96	μg/L	no
7440-43-9	Cadmium	30	μg/L	MAX					yes
7440-47-3	Chromium	6.09	μg/L	UCL	ND	-	1.40	μg/L	yes
7440-50-8	Copper	3.7	μg/L	MAX	ND	-	2.50	μg/L	yes
7439-92-1		20.6	μg/L	MAX					yes
7439-96-5	Manganese	320	μg/L	MAX	105	-	691	μg/L	no
7439-97-6	Mercury	0.058	μg/L	MAX	0.065	-	0.093	μg/L	no
7782-49-2	Selenium	2.6	μg/L	MAX				μg/L	yes
7440-66-6	Zinc	24.3	μg/L	MAX	3.90	-	22	μg/L	yes

 $^{^{1}}$ COCs detected in previous studies, including Parsons RI and Malcolm-Pirnie Limited RI, AOC 1.

Table J.7.10 Comparison to NYSDEC Screening Criteria Surface Soil SADVA - AOCs 1 and 7

CAS No.	Compound ¹	Exposure Concent	tration	EPC Max	NYSE Recomm Soil Cle Objective	ended anup	EPC Exceed NYSDEC?	Residential I Region 6 F Based Scre Level (un	Risk- ening	EPC Exceed USEPA Residential?	Industrial U Region 6 Risk Screening (units)	-Based Level	EPC Exceed USEPA Industrial?
	Volatiles												
67-64-1	Acetone	2600	μg/kg	Max	200	μg/kg	yes	14,000,000	μg/kg	no	60,000,000	μg/kg	no
78-93-3	2-Butanone	170	μg/kg	Max	300	μg/kg	no	32,000,000	μg/kg	no	130,000,000	μg/kg	no
100-41-4	Ethylbenzene	24	μg/kg	Max	5,500	μg/kg	no	230,000	μg/kg	no	6,500,000	μg/kg	no
108-88-3	Toluene	4	μg/kg	Max	1,500	μg/kg	no	520,000	μg/kg	no	22,000,000	μg/kg	no
79-01-6	Trichloroethene	4.4	μg/kg	UCL	700	μg/kg	no	46	μg/kg	no	100	μg/kg	no
1330-20-7	Xylenes (total)	530	μg/kg	Max	1,200	μg/kg	no	210,000	μg/kg	no	710,000	μg/kg	no
	Semivolatiles												
00.74.0	Carbazole	1300	//	Max	N/A			24000	//		00.000	//	
86-74-8 105-67-9	2,4-Dimethylphenol	1500	μg/kg	Max	N/A N/A		no	1.200.000	μg/kg	no	96,000 14.000.000	μg/kg	no
84-74-2		100	μg/kg μg/kg	Max	8.100	///	no	6,100,000	μg/kg	no	68,000,000	μg/kg μg/kg	no
84-74-2 86-30-6	Di-n-butyl phthalate N-Nitrosodiphenylamine	68	μg/kg μg/kg	Max	8,100 N/A	μg/kg	no no	99,000	μg/kg μg/kg	no no	390,000	μg/kg μg/kg	no no
00-30-0	in-initiosoulphenylamine	00	µg/kg	IVIAX	IN/A		110	99,000	μg/kg	110	380,000	μg/kg	110
	CPAHs												
56-55-3	Benzo(a)anthracene	730	µg/kg	UCL	224	µg/kg	ves	620	µg/kg	yes	2,300	μg/kg	no
50-33-8	Benzo(a)pyrene	700	μg/kg	UCL	61	μg/kg μg/kg	ves	62	μg/kg μg/kg	ves	230	μg/kg	ves
205-99-2	Benzo(b)fluoranthene	850	µg/kg	UCL	1.100	µg/kg	no	620	µg/kg	ves	2.300	ua/ka	no
218-01-9	Chrysene	2800	µg/kg	Max	400	µg/kg	yes	62,000	µg/kg	no	230.000	μg/kg	no
53-70-3	Dibenz(a,h)anthracene	230	μg/kg	UCL	14	μg/kg	ves	62	µg/kg	ves	230,000	μg/kg	no
193-39-5	Indeno(1,2,3-cd)pyrene	460	μg/kg	UCL	3,200	μg/kg	no	620	μg/kg	no	2,300	μg/kg	no
133-33-3	indeno(1,2,5-ed)pyrene	400	рулку	OOL	3,200	pg/kg	110	020	рулку	110	2,300	рулку	110
	NPAH												
83-32-9	Acenaphthene	350	μg/kg	Max	50,000	μg/kg	no	3,700,000	μg/kg	no	33,000,000	μg/kg	no
200-96-8	Acenaphthylene (as Acenaphthene	120	µg/kg	Max	41,000	μg/kg	no	3,700,000	µg/kg	no	33,000,000	µg/kg	no
120-12-7	Anthracene	730	µg/kg	Max	50,000	µg/kg	no	22,000,000	µg/kg	no	260,000,000	µg/kg	no
132-64-9	Dibenzofuran	120	µg/kg	Max	6.200	µg/kg	no	150.000	µg/kg	no	1.700.000	µg/kg	no
206-44-0	Fluoranthene	6100	μg/kg	Max	50.000	µg/kg	no	2,300,000	µg/kg	no	24,000,000	µg/kg	no
86-73-7	Fluorene	220	μg/kg	Max	50,000	μg/kg	no	2,600,000	μg/kg	no	26,000,000	μg/kg	no
91-57-6	2-Methylnaphthalene (as Naphthal	230	μg/kg	Max	36,400	μg/kg	no	2,600,000	μg/kg	no	26,000,000	μg/kg	no
91-20-3	Naphthalene	410	μg/kg	Max	13,000	μg/kg	no	120,000	μg/kg	no	210,000	μg/kg	no
85-01-8	Phenanthrene (as Pyrene)	3100	μg/kg	Max	50,000	μg/kg	no	120,000	μg/kg	no	210,000	μg/kg	no
129-00-0	Pyrene	4200	μg/kg	Max	50,000	μg/kg	no	2,300,000	μg/kg	no	32,000,000	μg/kg	no
	PESTICIDE												
72-54-8	4,4'-DDD	2.7	μg/kg	Max	2900	μg/kg	no	2,400	μg/kg	no	11,000	μg/kg	no
72-20-8	Endrin	0.29	μg/kg	Max	100	μg/kg	no	18,000	μg/kg	no	210,000	μg/kg	no
7421-93-4	Endrin aldehyde (based on endrin)	2.9	μg/kg	Max	100	μg/kg	no	18,000	μg/kg	no	210,000	μg/kg	no
	PCBs												
11096-82-5	Aroclor 1260	160	μg/kg	Max	1,000	μg/kg	no	220	μg/kg	no	830	μg/kg	no
	METALS												
7440-43-9	Cadmium	0.65	mg/kg	Max	11	mg/kg	no	39	mg/kg	no	560	mg/kg	no
7440-47-3	Chromium (total)	110	mg/kg	UCL	10	mg/kg	yes	210	mg/kg	no	500	mg/kg	no
	Chromium VI	350	mg/kg	Max		mg/kg	no	30	mg/kg	yes	71	mg/kg	yes
7440-48-4	Cobalt	13.3	mg/kg	Max	30	mg/kg	no	900	mg/kg	no	2,100	mg/kg	no
7440-50-8	Copper	32.7	mg/kg	Max	25	mg/kg	yes	2,900	mg/kg	no	42,000	mg/kg	no
7440-02-0	Nickel	27.3	mg/kg	Max	13	mg/kg	yes	1,600	mg/kg	no	23,000	mg/kg	no
7440-22-4	Silver	1.9	mg/kg	Max		mg/kg	no	290	mg/kg	no	5,700	mg/kg	no
7440-62-2	Vanadium	25.2	mg/kg	Max	150	mg/kg	no	78	mg/kg	no	1,100	mg/kg	no

¹ Compounds detected in previous studies, including Parsons RI (2005), Malcolm-Pirnie Limited RI (1997).

ND non-detect UCL 95% Upper Confidence Limit

Table J.7.11 Comparison to NYSDEC Screening Criteria Mixed Depth Soils SADVA - AOCs 1 and 7

							1						
		_			-	DEC		Residentia			Industrial		EPC
			re Point			ended Soil	EPC	Region 6 R		EPC Exceed	Region 6 Ri		Exceed
	1		ntration	EPC Max		Objective	Exceed	Screenin	•	USEPA	Screenin	-	USEPA
CAS No.	Compound 1	(ur	its)	or UCL?	(ur	nits)	NYSDEC?	(uni	ts)	Residential?	(uni	ts)	Industrial?
67-64-1	Volatiles	2600		Max	200			14.000.000			60.000.000		
	Acetone		μg/kg			μg/kg	yes	, ,	μg/kg	no	, ,	μg/kg	no
78-93-3	2-Butanone	170 24	μg/kg	Max	300 5,500	μg/kg	no	32,000,000	μg/kg	no	130,000,000	μg/kg	no
100-41-4	Ethylbenzene		μg/kg	Max		μg/kg	no	230,000	μg/kg	no	6,500,000	μg/kg	no
108-88-3	Toluene	4	μg/kg	Max UCL	1,500	μg/kg	no	520,000	μg/kg	no	22,000,000	μg/kg	no
79-01-6 1330-20-7	Trichloroethene	3.8 530	μg/kg	Max	700 1.200	μg/kg	no	46 210,000	μg/kg	no	100 710.000	μg/kg	no
1330-20-7	Xylenes (total)	530	μg/kg	IVIAX	1,200	μg/kg	no	210,000	μg/kg	no	710,000	μg/kg	no
	Semivolatiles							-					
86-74-8	Carbazole	1300	μg/kg	Max	N/A		no	24.000	µg/kg	no	96.000	μg/kg	no
105-67-9	2,4-Dimethylphenol	1500	μg/kg μg/kg	Max	N/A		no	1,200,000	μg/kg μg/kg	no	14,000,000	μg/kg μg/kg	no
84-74-2	Di-n-butyl phthalate	100		Max	8,100	ualka	no	6,100,000	μg/kg μg/kg	no	68,000,000	μg/kg μg/kg	no
86-30-6	N-Nitrosodiphenylamine	68	μg/kg μg/kg	Max	N/A	μg/kg	no	99,000	μg/kg μg/kg	no	390,000	μg/kg μg/kg	no
00-30-0	14-14III OSOGIPHEN YIAN IIII E	00	μg/kg	IVIAA	IN/A		110	99,000	μg/kg	110	390,000	μg/kg	110
	CPAHs												
56-55-3	Benzo(a)anthracene	510	μg/kg	UCL	224	μg/kg	ves	620	μg/kg	no	2,300	μg/kg	no
218-01-9	Chrysene	2800	μg/kg μg/kg	Max	400	μg/kg μg/kg	ves	62.000	μg/kg μg/kg	no	230.000	μg/kg μg/kg	no
53-70-3	Dibenz(a,h)anthracene	220	μg/kg μg/kg	UCL	14	μg/kg μg/kg	ves	62	μg/kg μg/kg	ves	230,000	μg/kg μg/kg	no
193-39-5	Indeno(1,2,3-cd)pyrene	350	μg/kg μg/kg	UCL	3,200	μg/kg μg/kg	no	620	μg/kg μg/kg	no	2,300	μg/kg μg/kg	no
193-39-3	indeno(1,2,3-cd)pyrene	330	μg/kg	UCL	3,200	ру/ку	110	020	ру/ку	110	2,300	μg/kg	110
	NPAH												
83-32-9	Acenaphthene	350	μg/kg	Max	50,000	μg/kg	no	3,700,000	µg/kg	no	33,000,000	μg/kg	no
200-96-8	Acenaphthylene	120	μg/kg μg/kg	Max	41.000	μg/kg μg/kg	no	3,700,000	μg/kg μg/kg	no	33,000,000	ua/ka	no
120-12-7	Anthracene	730	μg/kg	Max	50,000	μg/kg	no	22,000,000	µg/kg	no	260,000,000	µg/kg	no
132-64-9	Dibenzofuran	110	μg/kg μg/kg	Max	6.200	μg/kg μg/kg	no	150,000	μg/kg μg/kg	no	1.700.000	μg/kg μg/kg	no
206-44-0	Fluoranthene	6100	μg/kg	Max	50,000	μg/kg	no	2,300,000	µg/kg	no	24,000,000	µg/kg	no
86-73-7	Fluorene	220	μg/kg	Max	50,000	μg/kg	no	2,600,000	μg/kg	no	26.000.000	μg/kg	no
91-57-6	2-Methylnaphthalene	230	µg/kg	Max	36,400	μg/kg	no	120,000	µg/kg	no	210,000	µg/kg	no
91-20-3	Naphthalene	410	ua/ka	Max	13.000	µg/kg	no	120,000	µg/kg	no	210,000	µg/kg	no
85-01-8	Phenanthrene	3100	μg/kg	Max	50.000	μg/kg	no	2.300.000	µg/kg	no	32.000.000	μg/kg	no
129-00-0	Pyrene	4200	µg/kg	Max	50.000	µg/kg	no	2,300,000	µg/kg	no	32,000,000	μg/kg	no
	,,,,,,,		F3···3			F33		_,_,_,	F33			Farra	
	PESTICIDE												
72-54-8	4.4'-DDD	2.7	μg/kg	Max	2900	μg/kg	no	2,400	μg/kg	no	11,000	μg/kg	no
72-20-8	Endrin	0.29	μg/kg	Max	100	μg/kg	no	18,000	μg/kg	no	210,000	μg/kg	no
7421-93-4	Endrin aldehyde (based on	2.9	μg/kg	Max	100	μg/kg	no	18,000	μg/kg	no	210,000	μg/kg	no
									13 3		-,		
	PCBs												
11096-82-5	Aroclor 1260	41	μg/kg	UCL	1,000	μg/kg	no	220	μg/kg	no	830	μg/kg	no
						T							
	METALS												
7440-39-3	Barium	140	mg/kg	Max	300	mg/kg	no	16,000	mg/kg	no	230,000	mg/kg	no
7440-41-7	Beryllium	1.2	mg/kg	Max	0.16	mg/kg	yes	150	mg/kg	no	2,200	mg/kg	no
7440-43-9	Cadmium	0.65	mg/kg	Max	1	mg/kg	no	39	mg/kg	no	560	mg/kg	no
7440-47-3	Chromium (total)	64	mg/kg	UCL	10	mg/kg	yes	210	mg/kg	no	500	mg/kg	no
18540-29-9	Chromium VI	350	mg/kg	Max	N/A	mg/kg	no	30	mg/kg	yes	71	mg/kg	yes
7440-48-4	Cobalt	15	mg/kg	Max	30	mg/kg	no	900	mg/kg	no	2,100	mg/kg	no
7440-50-8	Copper	32.7	mg/kg	Max	25	mg/kg	yes	2,900	mg/kg	no	42,000	mg/kg	no
7440-02-0	Nickel	27.3	mg/kg	Max	13	mg/kg	yes	1,600	mg/kg	no	23,000	mg/kg	no
7440-22-4	Silver	1.9	mg/kg	Max		mg/kg	no	290	mg/kg	no	5,700	mg/kg	no
7440-62-2	Vanadium	26	mg/kg	UCL	150	mg/kg	no	78	mg/kg	no	1,100	mg/kg	no

¹ Compounds detected in previous studies, including Parsons RI (2005), Malcolm-Pirnie Limited RI (1997).

UCL 95% Upper Confidence Limit N/A Criterion not available

Table J.7.12 Comparison to NYSDEC Screening Criteria Sediment SADVA - AOCs 1 and 7

	1			1						I	
CAS No.	Compound	Exposur Concen	tration	EPC Max	Recor Cleanu		ded	EPC Exceed	TRRP Sediment		EPC Exceed TRRP?
CAS NO.	Semivolatiles	(uni	15)	OI UCL?	(0	iii(S)		NISDEC	Concentration Le	ever (uriits)	IKKF
117-81-7	bis(2-Ethylhexyl) phthalate	390	µg/kg	MAX	2.925	С	µg/kg	no	240.000	µg/kg	no
86-74-8	Carbazole	740	µg/kg	MAX	N/A		pg/ng	no	710.000	μg/kg	no
132-64-9	Dibenzofuran	310	µg/kg	MAX	N/A			no	610.000	μg/kg	no
84-74-2	Di-n-butyl Phthalate	350	µg/kg	MAX	N/A			no	15.000.000	µg/kg	no
			F33							FS···S	
	CAPHs										
56-55-3	Benzo(a)anthracene	2400	μg/kg	MAX	19	С	μg/kg	yes	16,000	μg/kg	no
50-32-8	Benzo(a)pyrene	2200	μg/kg	MAX	19	Н	μg/kg	yes	16,000	μg/kg	no
205-99-2	Benzo(b)fluoranthene	1900	μg/kg	MAX	19	Н	μg/kg	yes	16,000	μg/kg	no
207-08-9	Benzo(k)fluoranthene	2300	μg/kg	MAX	19	Н	μg/kg	yes	16,000	μg/kg	no
218-01-9	Chrysene	2400	μg/kg	MAX	19	Н	μg/kg	yes	1,600,000	μg/kg	no
53-70-3	Dibenz(a,h)anthracene	280	μg/kg	MAX	88	LM	μg/kg	yes	16,000	μg/kg	no
193-39-5	Indeno(1,2,3-cd)pyrene	650	μg/kg	MAX	19	Н	μg/kg	yes	16,000	μg/kg	no
	NAPHs										
83-32-9	Acenaphthene	700	μg/kg	MAX	2,058	С	μg/kg	no	7,400,000	μg/kg	no
120-12-7	Anthracene	1500	μg/kg	MAX	1,573	С	μg/kg	no	37,000,000	μg/kg	no
191-24-2	Benzo(ghi)perylene	570	μg/kg	MAX	N/A			no	3,700,000	μg/kg	no
206-44-0	Fluoranthene	5400	μg/kg	MAX	14,994	С	μg/kg	no	4,900,000	μg/kg	no
86-73-7	Fluorene	650	μg/kg	MAX	118	С	μg/kg	yes	4,900,000	μg/kg	no
91-57-6	2-Methylnaphthalene	230	μg/kg	MAX	500	С	μg/kg	no	490,000	μg/kg	no
91-20-3	Naphthalene	300	μg/kg	MAX	441	С	μg/kg	no	2,500,000	μg/kg	no
85-01-8	Phenanthrene	5800	μg/kg	MAX	1,764	С	μg/kg	yes	3,700,000	μg/kg	no
129-00-0	Pyrene	3600	μg/kg	MAX	14,127	С	μg/kg	no	3,700,000	μg/kg	no
	PCBs										
11097-69-1	Aroclor 1254	290	μg/kg	MAX	284	С	μg/kg	yes	2,300	μg/kg	no
	Dantialdan										
319-85-7	Pesticides beta-BHC	4.5	110/100	MAX	N/A				14.000		
319-86-8	delta-BHC	3.2	μg/kg μg/kg	MAX	N/A N/A			no no	14,000	μg/kg	no no
58-89-9	gamma-BHC (lindane)	1.5		MAX	N/A				20.000	μg/kg	
58-89-9 5103-71-9	alpha-Chlordane	1.5	μg/kg μg/kg	MAX	0.44	С	μg/kg	no	41.000	μg/kg μg/kg	no no
72-54-8	4.4'-DDD	2400	μg/kg μg/kg	MAX	14.7	W	μg/kg μg/kg	yes ves	120,000	μg/kg μg/kg	no
72-54-6 72-55-9	4,4-DDD 4.4'-DDE	540	μg/kg μg/kg	MAX	14.7	W	μg/kg μg/kg	ves	87,000	μg/kg μg/kg	no
50-29-3	4.4'-DDE 4.4'-DDT	630	μg/kg μg/kg	MAX	14.7	C	μg/kg μg/kg	ves	87,000	μg/kg μg/kg	no
959-99-8	Endosulfan I	3.6	μg/kg μg/kg	MAX	N/A	U	µg/ng	no	310.000	μg/kg μg/kg	no
33213-65-9	Endosulfan II	0.31	μg/kg μg/kg	MAX	N/A			no	920.000	μg/kg μg/kg	no
72-20-8	Endrin	0.31	μg/kg μg/kg	MAX	0.59	С	µg/kg	no	46.000	μg/kg μg/kg	no
. 2 20 0	2.101.11	0.20	pg/ng	IVI/ UX	0.00		49/NG	110	70,000	P9/N9	110

Table J.7.12 Comparison to NYSDEC Screening Criteria Sediment SADVA - AOCs 1 and 7

CAS No.	Compound	Exposur Concen (uni	tration	EPC Max or UCL?			EPC Exceed TRRP Sediment Protective NYSDEC? Concentration Level (units			EPC Exceed TRRP?	
	Metals										
7440-36-0	Antimony	7.9	mg/kg	MAX	2	L	mg/kg	yes	83	mg/kg	no
7440-38-2	Arsenic	9.5	mg/kg	MAX	6	L	mg/kg	yes	110	mg/kg	no
7440-39-3	Barium	258	mg/kg	MAX	N/A			no	23,000	mg/kg	no
7440-41-7	Beryllium	2.5	mg/kg	UCL	N/A			no	27	mg/kg	no
7440-43-9	Cadmium	1.2	mg/kg	MAX	0.6	L	mg/kg	yes	1,100	mg/kg	no
7440-47-3	Chromium	359	mg/kg	MAX	26	L	mg/kg	yes	36,000	mg/kg	no
7440-48-4	Cobalt	47.4	mg/kg	MAX	N/A			no	32,000	mg/kg	no
7440-50-8	Copper	491	mg/kg	MAX	16	L	mg/kg	yes	21,000	mg/kg	no
7439-92-1	Lead	450	mg/kg	UCL	31	L	mg/kg	yes	500	mg/kg	no
7439-96-5	Manganese	1500	mg/kg	UCL	460	L	mg/kg	yes	14,000	mg/kg	no
7439-97-6	Mercury	0.11	mg/kg	MAX	0.15	L	mg/kg	no	34	mg/kg	no
7440-02-0	Nickel	124	mg/kg	MAX	16	L	mg/kg	yes	1,400	mg/kg	no
7782-49-2	Selenium	1.5	mg/kg	MAX	N/A			no	2,700	mg/kg	no
7440-22-4	Silver	0.66	mg/kg	MAX	1	L	mg/kg	no	350	mg/kg	no
7440-62-2	Vanadium	57	mg/kg	UCL	N/A			no	330	mg/kg	no
7440-66-6	Zinc	2960	mg/kg	MAX	120	L	mg/kg	yes	76,000	mg/kg	no

- N/A screening criteria not available
 (C) Benthic Aquatic Chronic Criteria (TOC Adjusted) (NYSDEC, 1999)
 (H) Human health Bioaccumulation (TOC Adjusted), (NYSDEC, 1999)
 (LM) Medium effects level (TOC adjusted) (Long and Morgan 1990)
 (W) Wildlife Bioaccumulation criteria (TOC adjusted) (NYSDEC, 1999)
- (L) Lowest effect level (metals) (NYSDEC, 1999) UCL 95% Upper Confidence Limit

Table J.7.13 Comparison to NYSDEC Screening Criteria Surface Water SADVA - AOCs 1 and 7

CAS No.	Compound ¹	Exposur Concentrat		EPC Max or UCL?	NYSD Class Surfa Water (r	s A	Water Class A: Type	NYS Clas Surf Water	s C ace	Water Class C: Type	EPC Exceed NYSDEC Class A?	EPC Exceed NYSDEC Class C?	Risk- Screeni	Region 6 Based ng Level nits)	EPC Exceed USEPA?
	Volatiles														
67-64-1	Acetone	10	μg/L	MAX	N/A			N/A			no	no	5,400	μg/L	no
75-15-0	Carbon disulfide	0.99	μg/L	MAX	N/A			N/A			no	no	1,000	μg/L	no
75-34-3	1,1-Dichloroethane	27	μg/L	MAX	N/A			N/A			no	no	1,200	μg/L	no
108-88-3	Toluene	0.24	μg/L	MAX	5	μg/L	H(WS)	6,000	μg/L	H(FC)	no	no	2,300	μg/L	no
79-01-6	Trichloroethene	6.42	μg/L	UCL	5	μg/L	H(WS)	N/A			yes	no	0.028	μg/L	yes
117-81-7	Semivolatiles bis(2-Ethylhexyl) phthalate	73	μg/L	MAX	5	μg/L	H(WS)	N/A			yes	no	4.80	μg/L	yes
	Metals														
7440-38-2	Arsenic	1.75	μg/L	UCL	50	μg/L	H(WS)	N/A			no	no	0.045	μg/L	yes
7440-39-3	Barium	55	μg/L	MAX	1,000	μg/L	H(WS)	N/A			no	no	7,300	μg/L	no
7440-43-9	Cadmium	30	μg/L	MAX	5	μg/L	H(WS)	N/A			yes	no	18	μg/L	yes
7440-47-3	Chromium	6.09	μg/L	UCL	50	μg/L	H(WS)	53	μg/L	A(C) 3*	no	no	110	μg/L	no
7440-50-8	Copper	3.7	μg/L	MAX	200	μg/L	H(WS)	6	μg/L	A(C) 4*	no	no	1,400	μg/L	no
7439-92-1	Lead	20.6	μg/L	MAX	50	μg/L	H(WS)	NC		A(C) 5*	no	no	15	μg/L	yes
7782-49-2	Selenium	2.6	μg/L	MAX	10	μg/L	H(WS)	4.60	μg/L	A(C) *	no	no	180	μg/L	no
7440-66-6	Zinc	24.3	μg/L	MAX	N/A		A(C)	N/A		A(C) 6	no	no	11,000	μg/L	no

 $^{^1}$ COCs detected in previous studies, including Parsons RI and Malcolm-Pirnie Limited RI, AOC 1. 2 Based on average hardness less than 75 ppm (mg/kg).

N/A Screening value not available.

³ Calculated as: (0.86)exp(0.819[ln ppm hardness)] + 0.6848).

⁴ Calculated as: (0.96)exp(0.8545[in ppm hardness)] - 1.702).

Calculated as: (0.96/exp(0.864s)|iii ppin hardness] + 0.145712)exp[in ppm hardness] - 4.297.

⁶ Calculated as: exp(0.85[in ppm hardness] + 0.884.

H(WS) Source of Drinking Water (surface water).

H(FC) Human consumption of Fish (fresh water).

A(C) Fish Propagation (fresh water). E Aesthetic (fresh water).

A lonic form.

^{*} Dissolved form.

Table J.7.14 Risk Ratio Calculations Surface Soil SADVA - AOCs 1 and 7

					Resider		Industrial U	een.					
		_			USEPA Re		Region 6 F					Industrial Non	
		Exposu			Risk-Ba		Based Scre			Residential Non-			Industrial Carc
	1	Concer		EPC Max	Screening			_	Carcino-	Carc Risk Ratio	Risk Ratio	Ratio	Risk Ratio
CAS No.	Compound 1	(un	its)	or UCL?	(units	5)	Level (uni	its) -	genic?	(EPC/USEPA)	(EPC/USEPA)	(EPC/USEPA)	(EPC/USEPA)
67-64-1	Volatiles Acetone	2600	μg/kg	Max	14,000,000	μg/kg	60000000	μg/kg	no	1.9E-04		4.3E-05	
78-93-3	2-Butanone	170	μg/kg μg/kg	Max	32,000,000		130000000	μg/kg	no	5.3E-06		1.3E-06	
100-41-4	Ethylbenzene	24	μg/kg	Max	230,000	μg/kg	6500000	μg/kg	no	1.0E-04		3.7E-06	
108-88-3	Toluene	4	μg/kg	Max	520,000	µg/kg	22000000	µg/kg	no	7.7E-06		1.8E-07	
79-01-6	Trichloroethene	4.4	μg/kg	UCL	46	μg/kg	100	µg/kg	yes		9.6E-08		4.4E-08
1330-20-7	Xylenes (total)	530	μg/kg	Max	210.000	µg/kg	710000	µg/kg	no	2.5E-03		7.5E-04	
	, , , , , , , , , , , , , , , , , , , ,		Farra			F-55		F33					
	Semivolatiles												
86-74-8	Carbazole	1300	μg/kg	Max	24000	μg/kg	96000	μg/kg	yes		5.4E-08	-	1.4E-08
105-67-9	2,4-Dimethylphenol	150	μg/kg	Max	1,200,000	μg/kg	14000000	μg/kg	no	1.3E-04	-	1.1E-05	-
84-74-2	Di-n-butyl phthalate	100	μg/kg	Max	6,100,000	μg/kg	68000000	μg/kg	no	1.6E-05		1.5E-06	
86-30-6	N-Nitrosodiphenylamine	68	μg/kg	Max	99,000	μg/kg	390000	μg/kg	yes		6.9E-10		1.7E-10
50 55 0	CPAHs	700			000		2222				4.05.00		0.05.07
56-55-3	Benzo(a)anthracene	730	μg/kg	UCL	620	μg/kg	2300	μg/kg	yes		1.2E-06		3.2E-07
50-32-8	Benzo(a)pyrene	700	μg/kg	UCL	62	μg/kg	230	μg/kg	yes		1.1E-05		3.0E-06
205-99-2	Benzo(b)fluoranthene	850	μg/kg	UCL	620	μg/kg	2300	μg/kg	yes		1.4E-06		3.7E-07
218-01-9	Chrysene	2800	μg/kg	Max	62,000	μg/kg	230000	μg/kg	yes		4.5E-08		1.2E-08
53-70-3	Dibenz(a,h)anthracene	230 460	μg/kg	UCL	62 620	μg/kg	230 2300	μg/kg	yes		3.7E-06 7.4E-07		1.0E-06 2.0E-07
193-39-5	Indeno(1,2,3-cd)pyrene	460	μg/kg	UCL	620	μg/kg	2300	μg/kg	yes		7.4E-07		2.0E-07
	NPAH												
83-32-9	Acenaphthene	350	μg/kg	Max	3,700,000	μg/kg	33000000	μg/kg	no	9.5E-05		1.1E-05	
200-96-8	Acenaphthylene (as Acenaphthene)	120	µg/kg	Max	3,700,000	µg/kg	33000000	µg/kg	no	3.2E-05		3.6E-06	
120-12-7	Anthracene	730	µg/kg	Max	22.000.000		260000000	µg/kg	no	3.3E-05		2.8E-06	
132-64-9	Dibenzofuran	120	μg/kg	Max	150,000	µg/kg	1700000	µg/kg	no	8.0E-04		7.1E-05	
206-44-0	Fluoranthene	6100	μg/kg	Max	2,300,000	µg/kg	24000000	μg/kg	no	2.7E-03		2.5E-04	
86-73-7	Fluorene	220	μg/kg	Max	2,600,000	µg/kg	26000000	µg/kg	no	8.5E-05		8.5E-06	
91-57-6	2-Methylnaphthalene (as Naphthalene)	230	μg/kg	Max	2,600,000	μg/kg	26000000	μg/kg	no	8.8E-05		8.8E-06	
91-20-3	Naphthalene	410	μg/kg	Max	120,000	µg/kg	210000	μg/kg	no	3.4E-03		2.0E-03	
85-01-8	Phenanthrene (as Pyrene)	3100	μg/kg	Max	120,000	μg/kg	210000	μg/kg	no	2.6E-02	-	1.5E-02	
129-00-0	Pyrene	4200	μg/kg	Max	2,300,000	μg/kg	32000000	μg/kg	no	1.8E-03	-	1.3E-04	-
	PESTICIDE												
72-54-8	4,4'-DDD	2.7	μg/kg	Max	2,400	μg/kg	11000	μg/kg	yes		1.1E-09		2.5E-10
72-20-8	Endrin	0.29	μg/kg	Max	18,000	μg/kg	210000	μg/kg	no	1.6E-05		1.4E-06	
7421-93-4	Endrin aldehyde (based on endrin)	2.9	μg/kg	Max	18,000	μg/kg	210000	μg/kg	no	1.6E-04		1.4E-05	
	200												
44000 00 5	PCBs	160			220		000				7.3E-07		1.9E-07
11096-82-5	Aroclor 1260	160	μg/kg	Max	220	μg/kg	830	μg/kg	yes		7.3E-07		1.9E-07
	METALS												
7440-43-9	Cadmium	0.65	mg/kg	Max	39	mg/kg	560	mg/kg	no	1.7E-02		1.2E-03	
7440-47-3	Chromium (total)	110	mg/kg	UCL	210	mg/kg	500	mg/kg	no	5.2E-01		2.2E-01	
18540-29-9		350	mg/kg	Max	30	mg/kg	71	mg/kg	yes		1.2E-05		4.9E-06
7440-48-4	Cobalt	13.3	mg/kg	Max	900	mg/kg	2100	mg/kg	yes		1.5E-08		6.3E-09
7440-50-8	Copper	32.7	mg/kg	Max	2,900	mg/kg	42000	mg/kg	no	1.1E-02		7.8E-04	
7440-02-0	Nickel	27.3	mg/kg	Max	1,600	mg/kg	23000	mg/kg	no	1.7E-02		1.2E-03	
7440-22-4	Silver	1.9	mg/kg	Max	290	mg/kg	5700	mg/kg	no	6.6E-03		3.3E-04	
7440-62-2	Vanadium	25.2	mg/kg	Max	78	mg/kg	1100	mg/kg	no	3.2E-01		2.3E-02	

 $^{^{1}\,}$ Compounds detected in previous studies, including Parsons RI (2005), Malcolm-Pirnie Limited RI (1997).

0.94 3.1E-05 0.26

1.0E-05

Table J.7.15 Risk Ratio Calculations Mixed Depth Soils SADVA - AOCs 1 and 7

CAS No.	Compound ¹		ıre Point ntration	EPC Max or UCL?	Residential USEP, Risk-Based Scree (units)			Screening	Carcino- genic?	Residenti al Non- Carc Risk Ratio (EPC/USE PA)	Residential Carc Risk Ratio (EPC/USEPA)	Industrial Non-Carc Risk Ratio (EPC/USEP A)	Industrial Carc Risk Ratio (EPC/USEPA)
	Volatiles												
67-64-1	Acetone	2600	μg/kg	Max	14,000,000	μg/kg	60000000	μg/kg	no	1.9E-04		4.3E-05	
78-93-3	2-Butanone	170	μg/kg	Max	32,000,000	μg/kg	130000000	μg/kg	no	5.3E-06		1.3E-06	
100-41-4	Ethylbenzene	24	μg/kg	Max	230,000	μg/kg	6500000	μg/kg	no	1.0E-04		3.7E-06	
108-88-3	Toluene	4	μg/kg	Max	520,000	μg/kg	22000000	μg/kg	no	7.7E-06		1.8E-07	
79-01-6	Trichloroethene	3.8	μg/kg	UCL	46	μg/kg	100	μg/kg	yes		8.3E-08	-	3.8E-08
1330-20-7	Xylenes (total)	530	μg/kg	Max	210,000	μg/kg	710000	μg/kg	no	2.5E-03		7.5E-04	
	Semivolatiles												
86-74-8	Carbazole	1300	μg/kg	Max	24000	μg/kg	96000	μg/kg	yes		5.4E-08		1.4E-08
105-67-9	2,4-Dimethylphenol	150	μg/kg	Max	1,200,000	μg/kg	14000000	μg/kg	no	1.3E-04		1.1E-05	
84-74-2	Di-n-butyl phthalate	100	μg/kg	Max	6,100,000	μg/kg	68000000	μg/kg	no	1.6E-05		1.5E-06	
86-30-6	N-Nitrosodiphenylamine	68	μg/kg	Max	99,000	μg/kg	390000	μg/kg	yes		6.9E-10	-	1.7E-10
-	CPAHs												
56-55-3	Benzo(a)anthracene	510	μg/kg	UCL	620	µg/kg	2300	µg/kg	yes		8.2E-07		2.2E-07
218-01-9	Chrysene	2800	μg/kg	Max	62,000	μg/kg	230000	μg/kg	yes		4.5E-08		1.2E-08
53-70-3	Dibenz(a,h)anthracene	220	μg/kg	UCL	62	μg/kg	230	μg/kg	yes		3.5E-06		9.6E-07
193-39-5	Indeno(1,2,3-cd)pyrene	350	μg/kg	UCL	620	μg/kg	2300	μg/kg	yes		5.6E-07		1.5E-07
	NPAH												
83-32-9	Acenaphthene	350	μg/kg	Max	3,700,000	μg/kg	33000000	μg/kg	no	9.5E-05		1.1E-05	
200-96-8	Acenaphthylene	120	μg/kg	Max	3,700,000	μg/kg	33000000	μg/kg	no	3.2E-05		3.6E-06	
120-12-7	Anthracene	730	µg/kg	Max	22,000,000	µg/kg	260000000	μg/kg	no	3.3E-05		2.8E-06	
132-64-9	Dibenzofuran	110	µg/kg	Max	150,000	µg/kg	1700000	µg/kg	no	7.3E-04		6.5E-05	
206-44-0	Fluoranthene	6100	μg/kg	Max	2,300,000	μg/kg	24000000	μg/kg	no	2.7E-03		2.5E-04	
86-73-7	Fluorene	220	µg/kg	Max	2,600,000	µg/kg	26000000	µg/kg	no	8.5E-05		8.5E-06	
91-57-6	2-Methylnaphthalene	230	μg/kg	Max	120,000	μg/kg	210000	μg/kg	no	1.9E-03		1.1E-03	
91-20-3	Naphthalene	410	µg/kg	Max	120,000	µg/kg	210000	μg/kg	no	3.4E-03		2.0E-03	
85-01-8	Phenanthrene	3100	μg/kg	Max	2,300,000	µg/kg	32000000	μg/kg	no	1.3E-03		9.7E-05	
129-00-0	Pyrene	4200	μg/kg	Max	2,300,000	μg/kg	32000000	μg/kg	no	1.8E-03		1.3E-04	
	PESTICIDE												
72-54-8	4.4'-DDD	2.7	μg/kg	Max	2,400	μg/kg	11000	μg/kg	yes		1.1E-09		2.5E-10
72-34-8	Endrin	0.29	μg/kg μg/kg	Max	18,000	μg/kg μg/kg	210000	μg/kg μg/kg	no	1.6E-05	1.1E-09	1.4E-06	2.5E-10
7421-93-4	Endrin aldehyde (based on end	2.9	μg/kg μg/kg	Max	18,000	μg/kg μg/kg	210000	μg/kg μg/kg	no	1.6E-03		1.4E-05	
	, , , , , , , , , , , , , , , , , , ,		100		.,	100		13 3					
11096-82-5	PCBs Aroclor 1260	41	μα/kα	UCL	220	μg/kg	830	μg/kg	yes		1.9E-07		4.9E-08
. 1000 02-0		71	pgriig	001	220	pg/ng	555	руму	yco		1.52 07		T.UL 00
7440-39-3	METALS Barium	140	mg/kg	Max	16,000	mg/kg	230000	mg/kg	no	8.8E-03		6.1E-04	
7440-39-3		1.2	mg/kg	Max	150	mg/kg	2200	mg/kg	no	8.0E-03		5.5E-04	
7440-41-7		0.65	mg/kg	Max	39	mg/kg	560	mg/kg	no	1.7E-02		1.2E-03	
	Chromium (total)	64	mg/kg	UCL	210	mg/kg	500	mg/kg	no	3.0E-01	-	1.3E-01	
	Chromium VI	350	mg/kg	Max	30	mg/kg	71	mg/kg	yes		1.2E-05		4.9E-06
7440-48-4		15	mg/kg	Max	900	mg/kg	2100	mg/kg	ves	_	1.7E-08		7.1E-09
7440-50-8		32.7	mg/kg	Max	2,900	mg/kg	42000	mg/kg	no	1.1E-02	1.7L-00	7.8E-04	7.1L-03
7440-02-0		27.3	mg/kg	Max	1,600	mg/kg	23000	mg/kg	no	1.7E-02		1.2E-03	
7440-22-4		1.9	mg/kg	Max	290	mg/kg	5700	mg/kg	no	6.6E-03		3.3E-04	
7440-62-2		26	mg/kg	UCL	78	mg/kg	1100	mg/kg	no	3.3E-01		2.4E-02	

¹ Compounds detected in previous studies, including Parsons RI (2005), Malcolm-Pirnie Limited RI (1997).

Cummulative Risk Ratio 0.72 1.7E-05 0.16 6.4E-06

Table J.7.16 Risk Ratio Calculations Sediment SADVA - AOCs 1 and 7

								Non-Carc Risk	Carc Risk
		Exposu	re Point	EPC Max	TRRPSediment Pro		Carcino-	Ratio	Ratio
CAS No.	Compound ¹	Concentrat	ion (units)	or UCL?	Concentration Leve	l (units)	genic?	(EPC/TRRP)	(EPC/TRRP)
	Semivolatiles								
117-81-7	bis(2-Ethylhexyl) phthalate	390	μg/kg	MAX	240,000	μg/kg	yes		1.63E-08
86-74-8	Carbazole	740	μg/kg	MAX	710,000	μg/kg	yes		1.04E-08
132-64-9	Dibenzofuran	310	μg/kg	MAX	610,000	μg/kg	no	5.08E-04	
84-74-2	Di-n-butyl Phthalate	350	μg/kg	MAX	15,000,000	μg/kg	no	2.33E-05	
	CAPHs								
56-55-3	Benzo(a)anthracene	2400	μg/kg	MAX	16,000	μg/kg	yes		1.50E-06
50-32-8	Benzo(a)pyrene	2200	μg/kg	MAX	16,000	μg/kg	yes		1.38E-06
205-99-2	Benzo(b)fluoranthene	1900	μg/kg	MAX	16,000	μg/kg	yes		1.19E-06
207-08-9	Benzo(k)fluoranthene	2300	μg/kg	MAX	16,000	μg/kg	yes		1.44E-06
218-01-9	Chrysene	2400	μg/kg	MAX	1,600,000	μg/kg	yes		1.50E-08
53-70-3	Dibenz(a,h)anthracene	280	μg/kg	MAX	16,000	μg/kg	yes		1.75E-07
193-39-5	Indeno(1,2,3-cd)pyrene	650	μg/kg	MAX	16,000	μg/kg	yes		4.06E-07
	NAPHs								
83-32-9	Acenaphthene	700	μg/kg	MAX	7,400,000	μg/kg	no	9.46E-05	
120-12-7	Anthracene	1500	μg/kg	MAX	37,000,000	μg/kg	no	4.05E-05	
191-24-2	Benzo(ghi)perylene	570	μg/kg	MAX	3,700,000	μg/kg	yes		1.54E-09
206-44-0	Fluoranthene	5400	μg/kg	MAX	4,900,000	μg/kg	no	1.10E-03	
86-73-7	Fluorene	650	μg/kg	MAX	4,900,000	μg/kg	no	1.33E-04	
91-57-6	2-Methylnaphthalene	230	μg/kg	MAX	490,000	μg/kg	no	4.69E-04	
91-20-3	Naphthalene	300	μg/kg	MAX	2,500,000	μg/kg	no	1.20E-04	
85-01-8	Phenanthrene	5800	μg/kg	MAX	3,700,000	μg/kg	no	1.57E-03	
129-00-0	Pyrene	3600	μg/kg	MAX	3,700,000	μg/kg	no	9.73E-04	
	PCBs								
11097-69-1	Aroclor 1254	290	μg/kg	MAX	2,300	μg/kg	yes		1.26E-06
040.05.7	Pesticides	4.5		MAN	11.000				0.045.00
319-85-7 319-86-8	beta-BHC delta-BHC	4.5 3.2	μg/kg	MAX MAX	14,000 14.000	μg/kg	yes		3.21E-09 2.29E-09
58-89-9			μg/kg	MAX	20.000	μg/kg	yes		7.50E-10
5103-71-9	gamma-BHC (lindane) alpha-Chlordane	1.5 1.1	μg/kg μg/kg	MAX	41,000	μg/kg μg/kg	yes		2.68E-10
72-54-8	4,4'-DDD	2400	μg/kg μg/kg	MAX	120,000	μg/kg μg/kg	yes		2.00E-10
72-54-6	4,4'-DDE	540	μg/kg μg/kg	MAX	87,000	μg/kg μg/kg	yes yes		6.21E-08
50-29-3	4,4'-DDT	630	μg/kg μg/kg	MAX	87,000	μg/kg	ves		7.24E-08
959-99-8	Endosulfan I	3.6	μg/kg μg/kg	MAX	310,000	μg/kg	no	1.16E-05	7.24L-00
33213-65-9	Endosulfan II	0.31	μg/kg μg/kg	MAX	920,000	μg/kg	no	3.37E-07	
72-20-8	Endrin	0.23	μg/kg	MAX	46,000	μg/kg	no	5.00E-06	
	Metals								
7440-36-0	Antimony	7.9	mg/kg	MAX	83	mg/kg	no	9.52E-02	
7440-38-2	Arsenic	9.5	mg/kg	MAX	110	mg/kg	no	8.64E-02	
7440-39-3	Barium	258	mg/kg	MAX	23,000	mg/kg	no	1.12E-02	
7440-41-7	Beryllium	2.5	mg/kg	UCL	27	mg/kg	no	9.26E-02	
7440-43-9	Cadmium	1.2	mg/kg	MAX	1,100	mg/kg	no	1.09E-03	
7440-47-3	Chromium	359	mg/kg	MAX	36,000	mg/kg	yes		9.97E-08
7440-48-4	Cobalt	47.4	mg/kg	MAX	32,000	mg/kg	yes		1.48E-08
7440-50-8	Copper	491	mg/kg	MAX	21,000	mg/kg	no	2.34E-02	
7439-92-1	Lead	450	mg/kg	UCL	500	mg/kg	no	9.00E-01	
7439-96-5	Manganese	1500	mg/kg	UCL	14,000	mg/kg	no	1.07E-01	
7439-97-6	Mercury	0.11	mg/kg	MAX	34	mg/kg	no	3.24E-03	
7440-02-0	Nickel	124	mg/kg	MAX	1,400	mg/kg	no	8.86E-02	
7782-49-2	Selenium	1.5	mg/kg	MAX	2,700	mg/kg	no	5.56E-04	
7440-22-4	Silver	0.66	mg/kg	MAX	350	mg/kg	no	1.89E-03	
7440-62-2	Vanadium	57	mg/kg	UCL	330	mg/kg	no	1.73E-01	
7440-66-6	Zinc	2960	mg/kg	MAX	76,000	mg/kg	no	3.89E-02	

Cumulative Risk Ratio 0.73

7.8E-06

 $^{^{1}}$ COCs detected in previous studies, including Parsons RI and Malcolm-Pirnie Limited RI, AOC 1.

Table J.7.17 Risk Ratio Calculations Surface Water SADVA - AOCs 1 and 7

CAS No.	Compound ¹			EPC Max or UCL?	Risk- Screeni	USEPA Region 6 Risk-Based Screening Level (units)		Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
	Volatiles								
67-64-1	Acetone	10	μg/L	MAX	5,400	μg/L	no	1.85E-03	
75-15-0	Carbon disulfide	0.99	μg/L	MAX	1,000	μg/L	no	9.90E-04	
75-34-3	1,1-Dichloroethane	27	μg/L	MAX	1,200	μg/L	no	2.25E-02	
108-88-3	Toluene	0.24	μg/L	MAX	2,300	μg/L	no	1.04E-04	
79-01-6	Trichloroethene	6.42	μg/L	UCL	0.028	μg/L	yes	1	2.29E-04
	Semivolatiles								
117-81-7	bis(2-Ethylhexyl) phthalate	73	μg/L	MAX	4.80	μg/L	yes		1.52E-05
	Metals								
7440-38-2		1.75	μg/L	UCL	0.045	μg/L	yes		3.89E-05
7440-39-3	Barium	55	μg/L	MAX	7,300	μg/L	no	7.53E-03	
7440-43-9	Cadmium	30	μg/L	MAX	18	μg/L	no	1.67E+00	
7440-47-3	Chromium	6.09	μg/L	UCL	110	μg/L	yes		5.54E-08
7440-50-8	Copper	3.7	μg/L	MAX	1,400	μg/L	no	2.64E-03	-
7439-92-1		20.6	μg/L	MAX	15	μg/L	no	1.37E+00	
7782-49-2	Selenium	2.6	μg/L	MAX	180	μg/L	no	1.44E-02	
7440-66-6	Zinc	24.3	μg/L	MAX	11,000	μg/L	no	2.21E-03	-

Not enough samples to calculate UCL

Not enough samples to calculate UCL

1.7 2.8E-04

Cumulative Risk Ratio

 $^{^{\}rm 1}$ COCs detected in previous studies, including Parsons RI and Malcolm-Pirnie Limited RI, AOC 1.

Table J.7.18 Risk Ratio Calculations AOC 1/7 Well Number E4800 Groundwater Former SADVA

Residential Well E4800

CAS NUMBER	Compound	Exposure Point Concentration (μg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone	29	5,475.00	no	0.00530	
75-09-2	Methylene chloride	2.4	4.28	yes		5.6E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium		54,750.00	no		
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	10	10,950.00	no	0.00091	

Cumulative Risk Ratio

0.0062

5.6E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.19 Risk Ratio Calculations AOC 1/7 Well Number E4801 Groundwater Former SADVA

Residential Well E4801

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
	VOLATILES					
67-64-1	Acetone	21	5,475.00	no	0.0038	
75-09-2	Methylene chloride	4.8	4.28	yes		1.1E-06
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	10	54,750.00	no	0.00018	
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	20	10,950.00	no	0.0018	

Cumulative Risk Ratio

0.0058

1.1E-06

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.20 Risk Ratio Calculations AOC 1/7 Well Number E4802 Groundwater Former SADVA

Residential Well E4802

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
67.64.4	VOLATILES	20	E 47E 00		0.0027	
67-64-1	Acetone	20	5,475.00	no	0.0037	
75-09-2	Methylene chloride	1.9	4.28	yes		4.4E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	10	54,750.00	no	0.00018	
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	20	10,950.00	no	0.0018	

Cumulative Risk Ratio

0.0057

4.4E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.21 Risk Ratio Calculations AOC 1/7 Well Number E4803 Groundwater Former SADVA

Residential Well E4803

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone		5,475.00	no		
75-09-2	Methylene chloride		4.28	yes		
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium	319	7,300.00	no	0.044	
7440-47-3	Chromium	44	54,750.00	no	0.00080	
7440-50-8	Copper	55	1,355.71	no	0.041	
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel	3.4	730.00	no	0.0047	
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc		10,950.00	no		

Cumulative Risk Ratio

0.090

0.0E+00

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.22 Risk Ratio Calculations AOC 1/7 Well Number E4804 Groundwater Former SADVA

Residential Well E4804

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone		5,475.00	no		
75-09-2	Methylene chloride	2.6	4.28	yes		6.1E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	30	54,750.00	no	0.00055	
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	30	10,950.00	no	0.0027	

Cumulative Risk Ratio

0.0033

6.1E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.23 Risk Ratio Calculations AOC 1/7 Well Number E4806 Groundwater Former SADVA

Residential Well E4806

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone		5,475.00	no		
75-09-2	Methylene chloride	1.6	4.28	yes		3.7E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium		54,750.00	no		
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	30	10,950.00	no	0.0027	

Cumulative Risk Ratio

0.0027

3.7E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.24 Risk Ratio Calculations AOC 1/7 Well Number E4807 Groundwater Former SADVA

Residential Well E4807

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone		5,475.00	no		
75-09-2	Methylene chloride	1.2	4.28	yes		2.8E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	20	54,750.00	no		
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	30	10,950.00	no	0.0027	

Cumulative Risk Ratio

0.0027

2.8E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.25 Risk Ratio Calculations AOC 1/7 Well Number E4808 Groundwater Former SADVA

Residential Well E4808

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone		5,475.00	no		
75-09-2	Methylene chloride	2.3	4.28	yes		5.4E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium		54,750.00	no		
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	20	10,950.00	no	0.0018	

Cumulative Risk Ratio

0.0018

5.4E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.26 Risk Ratio Calculations AOC 1/7 Well Number E4809 Groundwater Former SADVA

Residential Well E4809

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone		5,475.00	no		
75-09-2	Methylene chloride	1.1	4.28	yes		2.6E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium		54,750.00	no		
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	10	10,950.00	no	0.00091	

Cumulative Risk Ratio

0.00091

2.6E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.27 Risk Ratio Calculations AOC 1/7 Well Number E4810 Groundwater Former SADVA

Residential Well E4810

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
	VOLATILES					
67-64-1	Acetone		5,475.00	no		
75-09-2	Methylene chloride	3.4	4.28	yes		8.0E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	20	54,750.00	no	0.00037	
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	20	10,950.00	no	0.0018	

Cumulative Risk Ratio

0.00219

8.0E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.28 Risk Ratio Calculations AOC 1/7 Well Number E4811 Groundwater Former SADVA

Residential Well E4811

	77011 2-7011					
CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone	22	5,475.00	no	0.0040	
75-09-2	Methylene chloride	2.1	4.28	yes		4.9E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	10	54,750.00	no	0.00018	
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	20	10,950.00	no	0.0018	

Cumulative Risk Ratio

0.0060

4.9E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.29 Risk Ratio Calculations AOC 1/7 Well Number E4812 Groundwater Former SADVA

Residential Well E4812

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone		5,475.00	no		
75-09-2	Methylene chloride	1.1	4.28	yes		2.6E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium		54,750.00	no		
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	20	10,950.00	no	0.0018	

Cumulative Risk Ratio

0.0018

2.6E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.30 Risk Ratio Calculations AOC 1/7 Well Number E4813 Groundwater Former SADVA

Residential Well E4813

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
	VOLATILES					
67-64-1	Acetone	15	5,475.00	no	0.0027	
75-09-2	Methylene chloride	2.6	4.28	yes		6.1E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	50	54,750.00	no	0.00091	
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	140	10,950.00	no	0.013	

Cumulative Risk Ratio

0.01644

6.1E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.31 Risk Ratio Calculations AOC 1/7 Well Number E4880 Groundwater Former SADVA

Residential Well E4880

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone		5,475.00	no		
75-09-2	Methylene chloride		4.28	yes		
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium	63	7,300.00	no	0.0086	
7440-47-3	Chromium	10	54,750.00	no	0.00018	
7440-50-8	Copper	29	1,355.71	no	0.021	
7439-92-1	Lead	49	15.00	no	3.3	
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium	23	21,900.00	no	0.0011	
7440-66-6	Zinc		10,950.00	no		

Cumulative Risk Ratio

0.031

0.0E+00

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.32 Risk Ratio Calculations AOC 1/7 Well Number E4794 Groundwater Former SADVA

Residential Well E4794

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
	VOLATILES					
67-64-1	Acetone	21	5,475.00	no	0.0038	
75-09-2	Methylene chloride	1.6	4.28	yes		3.7E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	30	54,750.00	no	0.00055	
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	30	10,950.00	no	0.0027	

Cumulative Risk Ratio

0.0071

3.7E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.33 Risk Ratio Calculations AOC 1/7 Well Number E4795 Groundwater Former SADVA

Residential Well E4795

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
	VOLATILES					
67-64-1	Acetone	57	5,475.00	no	0.010	
75-09-2	Methylene chloride	1.4	4.28	yes		3.3E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	20	54,750.00	no	0.00037	
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	47	10,950.00	no	0.0043	

Cumulative Risk Ratio

0.015

3.3E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.34 Risk Ratio Calculations AOC 1/7 Well Number E4796 Groundwater Former SADVA

Residential Well E4796

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
07.04.4	VOLATILES	40	F 475 00		0.0077	
67-64-1	Acetone	42	5,475.00	no	0.0077	
75-09-2	Methylene chloride	2.4	4.28	yes		5.6E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	90	54,750.00	no	0.0016	
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	80	10,950.00	no	0.0073	

Cumulative Risk Ratio

0.01662

5.6E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.35 Risk Ratio Calculations AOC 1/7 Well Number E5306 Groundwater Former SADVA

Residential Well E5306

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
	VOLATILES					
67-64-1	Acetone		5,475.00	no		
75-09-2	Methylene chloride	1.2	4.28	yes		2.8E-07
	METALS					
7440-38-2	Arsenic	7.9	0.04	yes		1.8E-04
7440-39-3	Barium		7,300.00	no		
7440-47-3	Chromium	30	54,750.00	no	0.00055	
7440-50-8	Copper		1,355.71	no		
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium		21,900.00	no		
7440-66-6	Zinc	10	10,950.00	no	0.00091	

Cumulative Risk Ratio

0.00146

1.8E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.36 Risk Ratio Calculations AOC 1/7 Well Number E4797 Groundwater Former SADVA

Residential Well E4797

CAS NUMBER	Compound	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk- Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
	VOLATILES					
67-64-1	Acetone	22	5,475.00	no	0.0040	
75-09-2	Methylene chloride	2.8	4.28	yes		6.5E-07
	METALS					
7440-38-2	Arsenic		0.04	yes		
7440-39-3	Barium	73	7,300.00	no	0.010	
7440-47-3	Chromium		54,750.00	no		
7440-50-8	Copper	107	1,355.71	no	0.079	
7439-92-1	Lead		15.00	no		
7440-02-0	Nickel		730.00	no		
7440-24-6	Strontium	269	21,900.00	no	0.012	
7440-66-6	Zinc		10,950.00	no		

Cumulative Risk Ratio

0.11

6.5E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

Table J.7.37 Risk Ratio Calculations AOC 1/7 Well Number MW-ACE2 Groundwater Former SADVA

Nonresidential Well MW-ACE2

COMPOUND	CAS Number	Exposure Point Concentration (µg/L) ^a	EPC Maximum, Mean or Latest?	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES	CAS Nulliber	(µg/L)	Latesti	Level (µg/L)	Carcinogenic	(LFC/USLFA)	(LFG/USLFA)
2-Butanone	78-93-3			7,100.00	no		
1,1-Dichloroethene	75-35-4	4	max	1,200.00	no	0.0033	
1.2-Dichloroethane	107-06-2	5	max	0.12	yes	0.0033	4.2E-05
1,2-Dichloroethane (total)	540-59-0	530	latest	n/a	yes		4.2L-03
cis-1,2-Dichloroethene	156-59-2	330	latest	61	no		
trans-1,2-Dichloroethene	156-60-5			110	no		
Acetone	67-64-1			5,500.00	no		
Benzene	71-43-2	4	max	0.35	yes		1.1E-05
Chlorobenzene	108-90-7	2	max	91	no	0.022	1.11-03
Methylene chloride	75-09-2		IIIdx	4.3	ves	0.022	
Toluene	108-88-3	0.6	max	2,300.00	no	0.00026	
Trichloroethene	79-01-6	168	mean	0.028	yes	0.00020	6.0E-03
Vinyl chloride	75-01-4	160	latest	0.028	yes		1.1E-02
Xylenes (total)	1330-20-7	0.7	max	200	no	0.0035	1.1L-02
SEMIVOLATILES	1330-20-7	0.7	IIIdx	200	110	0.0033	
bis(2-Ethylhexyl) phthalate	117-81-7			4.8	yes		
Butyl benzyl phthalate	85-68-7			7.300.00	no		
Carbazole	86-74-8			3.4	yes		
Di-n-butyl phthalate	84-74-2			3,700.00	no		
Diethyl phthalate	84-66-2			29.000.00	no		
Fluoranthene	206-44-0			1,500.00	no		
Pyrene	129-00-0			180	no		
PESTICIDES	123 00 0			100	110		
4.4'-DDE	72-55-9			0.2	yes		
4,4'-DDD	72-54-8			0.28	yes		
4,4'-DDT	50-29-3			0.2	yes		
METALS	00 = 0			<u> </u>	,,,,		
Aluminum	7429-90-5			37,000.00	no		
Antimony	7440-36-0			15	no		
Arsenic	7440-38-2	6	max	0.045	yes		1.3E-04
Barium	7440-39-3	131	max	7,300.00	no	0.018	
Beryllium	7440-41-7			73	no		
Cadmium	7440-43-9			18	no		
Chromium	7440-47-3	18	max	54,750.00	no	0.00033	
Chromium VI	18540-29-9	-		110	no		
Cobalt	7440-48-4			730	no		
Copper	7440-50-8			1,400.00	no		
Lead	7439-92-1	79	max	15	no	5.3	
Manganese	7439-96-5			1,700.00	no		
Mercury	7439-97-6			11	no		
Nickel	7440-02-0			730	no		
Selenium	7782-49-2			180	no		
Silver	7440-22-4			180	no		
Strontium	7440-24-6			22,000.00	no		
Thallium	7440-28-0			2.6	no		
Vanadium	7440-62-2			180	no		
Zinc	7440-66-6			11,000.00	no		

Cumulative Risk Ratio

0.047

1.7E-02

max is the maximum detected concentration

mean is calculated as the mean of the detected concentrations and 1/2 the detection limit for non-detects latest is the latest detected concentration

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

a - One of the wells used in this analysis had a duplicate sample, and the highest value of the primary sample and the duplicate sample at this well was used for calculations.

Table J.7.38 Risk Ratio Calculations AOC 1/7 Well Number MW-AMW1 Groundwater Former SADVA

Nonresidential Well MW-AMW1

Nonresidentiai vveii ivivv-Aivivv1							1
COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	EPC Maximum, Average or Latest?	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES							
2-Butanone	78-93-3			7,100.00	no		
1,1-Dichloroethene	75-35-4			1,200.00	no		
1,2-Dichloroethane	107-06-2	2.2	mean	0.12	yes		1.8E-05
1,2-Dichloroethene (total)	540-59-0	99	mean	n/a	·		
cis-1,2-Dichloroethene	156-59-2	87	max	61	no	1.4	
trans-1,2-Dichloroethene	156-60-5	14	max	110	no	0.13	
Acetone	67-64-1			5.500.00	no		
Benzene	71-43-2			0.35	yes		
Chlorobenzene	108-90-7			91	no		
Methylene chloride	75-09-2			4.3	yes		
Toluene	108-88-3			2,300.00	no		
Trichloroethene	79-01-6	2.5	latest	0.028	yes		8.9E-05
Vinyl chloride	75-01-4	21	latest	0.015	yes		1.4E-03
Xvlenes (total)	1330-20-7		idiooi	200	no		2 00
SEMIVOLATILES	1000 20 1			200	110		
bis(2-Ethylhexyl) phthalate	117-81-7			4.8	ves		
Butyl benzyl phthalate	85-68-7			7,300.00	no		
Carbazole	86-74-8			3.4	ves		
Di-n-butyl phthalate	84-74-2			3,700.00	no		
Diethyl phthalate	84-66-2			29.000.00	no		
Fluoranthene	206-44-0			1,500.00	no		
Pyrene	129-00-0			180	no		
PESTICIDES	129-00-0			100	110		
4.4'-DDE	72-55-9			0.2	1/00		
4,4'-DDD 4,4'-DDD	72-53-9			0.28	yes yes		
4,4'-DDT	50-29-3			0.28			
METALS	50-29-3			0.2	yes		
Aluminum	7429-90-5			37,000.00			
				37,000.00 15	no		
Antimony	7440-36-0 7440-38-2			0.045	no		
Arsenic		44			yes	0.0000	
Barium	7440-39-3 7440-41-7	44	max	7,300.00 73	no	0.0060	
Beryllium Cadmium	7440-41-7			18	no		
Chromium	7440-43-9			54,750.00	no		
					no		
Chromium VI	18540-29-9			110 730	no		
Cobalt	7440-48-4				no		
Copper	7440-50-8	_		1,400.00	no	0.40	
Lead	7439-92-1	2	max	15	no	0.13	
Manganese	7439-96-5			1,700.00	no		
Mercury	7439-97-6			11	no		
Nickel	7440-02-0			730	no		
Selenium	7782-49-2			180	no		
Silver	7440-22-4			180	no		
Strontium	7440-24-6			22,000.00	no		
Thallium	7440-28-0			2.6	no		
Vanadium	7440-62-2			180	no		
Zinc	7440-66-6			11,000.00	no		

Cumulative Risk Ratio

1.6 1.5E-03

max is the maximum detected concentration

mean is calculated as the mean of the detected concentrations and 1/2 the detection limit for non-detects latest is the latest detected concentration

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.39 Risk Ratio Calculations AOC 1/7 Well Number MW-AMW2 Groundwater Former SADVA

Nonresidential Well MW-AMW2

Nonresidentiai vveii MVV-AMVV2						I	1
COMPOUND	CAS Number	Exposure Point Concentration (µg/L) ^a	EPC Maximum, Average or Latest?	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES							
2-Butanone	78-93-3	2.3	max	7,100.00	no	0.00032	
1,1-Dichloroethene	75-35-4			1,200.00	no		
1.2-Dichloroethane	107-06-2			0.12	ves		
1,2-Dichloroethene (total)	540-59-0			n/a	,		
cis-1.2-Dichloroethene	156-59-2			61	no		
trans-1,2-Dichloroethene	156-60-5			110	no		
Acetone	67-64-1			5.500.00	no		
Benzene	71-43-2			0.35	yes		
Chlorobenzene	108-90-7			91	no		
Methylene chloride	75-09-2			4.3	yes		
Toluene	108-88-3	0.28	max	2,300.00	no	0.00012	
Trichloroethene	79-01-6	0.20	IIIax	0.028		0.00012	
Vinyl chloride	75-01-4			0.028	yes		
Xvlenes (total)	1330-20-7			200	yes		
SEMIVOLATILES	1330-20-7			200	no		
	447.04.7			4.8			
bis(2-Ethylhexyl) phthalate	117-81-7				yes		
Butyl benzyl phthalate	85-68-7			7,300.00	no		
Carbazole	86-74-8			3.4	yes		
Di-n-butyl phthalate	84-74-2			3,700.00	no		
Diethyl phthalate	84-66-2			29,000.00	no		
Fluoranthene	206-44-0			1,500.00	no		
Pyrene	129-00-0			180	no		
PESTICIDES							
4,4'-DDE	72-55-9			0.2	yes		
4,4'-DDD	72-54-8			0.28	yes		
4,4'-DDT	50-29-3			0.2	yes		
METALS							
Aluminum	7429-90-5			37,000.00	no		
Antimony	7440-36-0			15	no		
Arsenic	7440-38-2			0.045	yes		
Barium	7440-39-3	69	max	7,300.00	no	0.0095	
Beryllium	7440-41-7			73	no		
Cadmium	7440-43-9			18	no		
Chromium	7440-47-3	7	max	54,750.00	no	0.00013	
Chromium VI	18540-29-9			110	no		
Cobalt	7440-48-4			730	no		
Copper	7440-50-8			1,400.00	no		
Lead	7439-92-1	2	max	15	no	0.13	
Manganese	7439-96-5			1,700.00	no		
Mercury	7439-97-6			11	no		
Nickel	7440-02-0			730	no		
Selenium	7782-49-2			180	no		
Silver	7440-22-4			180	no		
Strontium	7440-24-6			22,000.00	no		
Thallium	7440-28-0	1		2.6	no		
Vanadium	7440-62-2			180	no		
Zinc	7440-66-6			11,000.00	no		

Cumulative Risk Ratio

0.010

0.0E+00

max is the maximum detected concentration

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well

Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised

a - the highest value of the primary sample and the duplicate sample at this well is reported.

Table J.7.40 Risk Ratio Calculations AOC 1/7 Well Number MW-AMW11 **Groundwater Former SADVA**

Nonresidential Well MW-AMW11 (or AOC1-GW-11R)

VOLATILES	Carc Risk Ratio (EPC/USEPA
2-Butanone	(LFC/USLFA
1.1-Dichloroethene 75-35-4 1.20.00 no 1.20-100 no 1.2-Dichloroethene 107-06-2 0.12 yes 1.2-Dichloroethene (total) 540-59-0 n/a 1.2-Dichloroethene 156-59-2 61 no 1.20-100 no 0.15 1.20-100 no 0.011 1.20-100 no 0.015 yes 0.028 yes 0.029	
1.2-Dichloroethane 107-06-2 0.12 yes 1.2-Dichloroethane (total) 540-59-0 n/a 1.2-Dichloroethane (total) 540-59-0 n/a 1.2-Dichloroethane 156-59-2 61 no 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
1.2-Dichloroethene (total) 540-59-0	
cis-12-Dichloroethene 156-69-2 61 no trans-12-Dichloroethene 156-80-5 110 no Acetone 67-64-1 802.15 mean 5,500.00 no 0.15 Benzene 71-43-2 0.35 yes 0.00 0.00 no 0.15 Chioroberzene 108-90-7 91 no 91 no 0.00 no 0.011 75-09-2 4.3 yes 70 100 no 0.011 75-09-2 4.3 yes 70 100 0.028 yes 100 0.028 yes 100 10	
Trans-1,2-Dichloroethene	
Acetone	
Benzene	
Chlorobenzene 108-90-7 91 no Methylene chloride 75-09-2 4.3 yes Toluene 108-88-3 25.15 mean 2,300.00 no 0.011 Trichloroethene 79-01-6 0.028 yes Wind chloride 75-01-4 0.0115 yes Wyenes (total) 1330-20-7 200 no SEMIVOLATILES	-
Methylene chloride	
Toluene	
Trichloroethene	
Viryl chloride	
Xylenes (total) 1330-20-7 200 no SEMINOLATILES	
SEMIVOLATILÉS bis(2-Ethylhexyl) phthalate 117-81-7 6.8 max 4.8 yes	
bis(2-Ethylhexyl) phthalate	
Butyl benzyl phthalate	1 45 06
Carbazole 86-74-8 3.4 yes Di-h-butyl phthalate 84-74-2 5.4 max 3,700.00 no 0.0015	1.4E-06
Di-n-butyl phthalate	
Diethyl phthalate	
Fluoranthene 206-44-0 1,500.00 no Pyrene 129-00-0 180 no Pyrene 129-00-0 180 no PESTICIDES	-
Pyrene	
PEŚTICIDES	
4,4'-DDE 72-55-9 0.2 yes 4,4'-DDT 72-54-8 0.28 yes 4,4'-DDT 50-29-3 0.0039 max 0.2 yes METALS Aluminum 7429-90-5 7330 mean 37,000.00 no 0.20 Antimony 7440-38-0 9 mean 15 no 0.60 Arsenic 7440-38-2 73.3 mean 0.045 yes Barium 7440-39-3 236.5 mean 7,300.00 no 0.032 Beryllium 7440-41-7 1 mean 73 no 0.014 Cadmium 7440-43-9 18 no 0 Chromium 7440-47-3 12.15 mean 54,750.00 no 0.00022 Chromium VI 18540-29-9 110 no 0 0.0022 Chromium VI 18540-29-9 110 no 0 0.0046 Copper 7440-48-4 3.35 mean 730 no 0.0046 Coppe	
4,4-DDD 72-54-8 0.28 yes - 4,4-DDT 50-29-3 0.0039 max 0.2 yes - METALS	
4,4'-DDT 50-29-3 0.0039 max 0.2 yes METALS Aluminum 7429-90-5 7330 mean 37,000.00 no 0.20 Antimony 7440-36-0 9 mean 15 no 0.60 Arsenic 7440-38-2 73.3 mean 0.045 yes Barium 7440-39-3 236.5 mean 7300.00 no 0.032 Beryllium 7440-41-7 1 mean 73 no 0.014 Cadmium 7440-43-9 18 no 0 0.00022 Chromium 7440-47-3 12.15 mean 54,750.00 no 0.00022 Chromium VI 18540-29-9 1100 no 0 0.00022 110 no 0 Cobalt 7440-48-4 3.35 mean 730 no 0.0046 0 0 0.014 1 1 0 0 0.044 0 <t< td=""><td></td></t<>	
METALS	2.05.00
Aluminum 7429-90-5 7330 mean 37,000.00 no 0.20 Antimony 7440-36-0 9 mean 15 no 0.60 Arsenic 7440-38-2 73.3 mean 0.045 yes Barium 7440-39-3 236.5 mean 7,300.00 no 0.032 Beryllium 7440-41-7 1 mean 73 no 0.014 Cadmium 7440-43-9 1 18 no 0.0014 Chromium 7440-47-3 12.15 mean 54,750.00 no 0.00022 Chromium VI 18540-29-9 110 no 0.00022 Chromium VI 18540-29-9 110 no 0.0046 Copper 7440-48-4 3.35 mean 730 no 0.0046 Copper 7440-50-8 19.75 mean 1,400.00 no 0.014 Lead 7439-92-1 9 mean 15 no 0.60	2.0E-08
Antimony 7440-36-0 9 mean 15 no 0.60 Arsenic 7440-38-2 73.3 mean 0.045 yes Barium 7440-39-3 236.5 mean 7,300.00 no 0.032 Beryllium 7440-41-7 1 mean 73 no 0.014 Cadmium 7440-43-9 18 no 18 no 0.00022 Chromium 7440-47-3 12.15 mean 54,750.00 no 0.00022 Chromium VI 18540-29-9 110 no 0.00022 110 no 0.00022 Cobalt 7440-48-4 3.35 mean 730 no 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0042 0.0042 0.0042 0.0045 0.0045 <td< td=""><td></td></td<>	
Arsenic 7440-38-2 73.3 mean 0.045 yes Barium 7440-39-3 236.5 mean 7,300.00 no 0.032 Beryllium 7440-41-7 1 mean 73 no 0.014 Cadmium 7440-43-9 18 no 0.004 Chromium 7440-47-3 12.15 mean 54,750.00 no 0.00022 Chromium VI 18540-29-9 110 no 0.00022 10 0.00022 0.00022 0.0002 0.00022	-
Barium 7440-39-3 236.5 mean 7,300.00 no 0.032 Beryllium 7440-41-7 1 mean 73 no 0.014 Cadmium 7440-43-9 18 no 0.004 Chromium 7440-47-3 12.15 mean 54,750.00 no 0.00022 Chromium VI 18540-29-9 110 no 0.0046 0.0044 0.0046 0.0044 0.0046 0.0046 0.0044 0.0046 0.0046 0.0044 0.0046 0.0044 0.0046 0.0046	1.6E-03
Beryllium 7440-41-7 1 mean 73 no 0.014 Cadmium 7440-43-9 18 no 0 Chromium 7440-47-3 12.15 mean 54,750.00 no 0.00022 Chromium VI 18540-29-9 1110 no 0.00046 Cobalt 7440-48-4 3.35 mean 730 no 0.0046 Copper 7440-50-8 19.75 mean 1,400.00 no 0.014 Lead 7439-92-1 9 mean 15 no 0.60 Manganese 7439-96-5 75 mean 1,700.00 no 0.044 Mercury 7439-97-6 0.049 max 11 no 0.0045 Nickel 7440-02-0 12.15 mean 730 no 0.017 Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no 22,000.00 no	1.0E-03
Cadmium 7440-43-9 18 no Chromium 7440-47-3 12.15 mean 54,750.00 no 0.00022 Chromium VI 18540-29-9 110 no 0.00022 Cobalt 7440-48-4 3.35 mean 730 no 0.0046 Copper 7440-50-8 19.75 mean 1,400.00 no 0.014 Lead 7439-92-1 9 mean 15 no 0.60 Manganese 7439-96-5 75 mean 1,700.00 no 0.044 Mercury 7439-97-6 0.049 max 11 no 0.0045 Nickel 7440-02-0 12.15 mean 730 no 0.017 Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no 0 0.27 Strontium 7440-28-0 22,000.00 no 0	
Chromium 7440-47-3 12.15 mean 54,750.00 no 0.00022 Chromium VI 18540-29-9 110 no 0.00022 Cobalt 7440-48-4 3.35 mean 730 no 0.0046 Copper 7440-50-8 19.75 mean 1,400.00 no 0.014 Lead 7439-92-1 9 mean 15 no 0.60 Manganese 7439-96-5 75 mean 1,700.00 no 0.044 Mercury 7439-97-6 0.049 max 11 no 0.0045 Nickel 7440-02-0 12.15 mean 730 no 0.017 Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no 22,000.00 no Thallium 7440-28-0 2.6 no	-
Chromium VI 18540-29-9 1110 no 0.0046 Cobalt 7440-48-4 3.35 mean 730 no 0.0046 Copper 7440-50-8 19.75 mean 1,400.00 no 0.014 Lead 7439-92-1 9 mean 15 no 0.60 Manganese 7439-96-5 75 mean 1,700.00 no 0.044 Mercury 7439-97-6 0.049 max 11 no 0.0045 Nickel 7440-02-0 12.15 mean 730 no 0.017 Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no 0 0.27 Strontium 7440-24-6 22,000.00 no 0 Thallium 7440-28-0 2.6 no	
Cobalt 7440-48-4 3.35 mean 730 no 0.0046 Copper 7440-50-8 19.75 mean 1,400.00 no 0.014 Lead 7439-92-1 9 mean 15 no 0.60 Manganese 7439-96-5 75 mean 1,700.00 no 0.044 Mercury 7439-97-6 0.049 max 11 no 0.0045 Nickel 7440-02-0 12.15 mean 730 no 0.017 Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no 180 no 0.027 Strontium 7440-24-6 22,000.00 no 0.00 1.00 1.00 Thallium 7440-28-0 2.6 no 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	-
Copper 7440-50-8 19.75 mean 1,400.00 no 0.014 Lead 7439-92-1 9 mean 15 no 0.60 Manganese 7439-96-5 75 mean 1,700.00 no 0.044 Mercury 7439-97-6 0.049 max 11 no 0.0045 Nickel 7440-02-0 12.15 mean 730 no 0.017 Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no Strontium 7440-24-6 22,000.00 no Thallium 7440-28-0 2.6 no no 1	
Lead 7439-92-1 9 mean 15 no 0.60 Manganese 7439-96-5 75 mean 1,700.00 no 0.044 Mercury 7439-97-6 0.049 max 11 no 0.0045 Nickel 7440-02-0 12.15 mean 730 no 0.017 Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no 0 Strontium 7440-24-6 22,000.00 no 0 Thallium 7440-28-0 2.6 no 0 0 0	
Manganese 7439-96-5 75 mean 1,700.00 no 0.044 Mercury 7439-97-6 0.049 max 11 no 0.0045 Nickel 7440-02-0 12.15 mean 730 no 0.017 Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no 0 Strontium 7440-24-6 22,000.00 no Thallium 7440-28-0 2.6 no	
Mercury 7439-97-6 0.049 max 11 no 0.0045 Nickel 7440-02-0 12.15 mean 730 no 0.017 Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no 180 no <td< td=""><td></td></td<>	
Nickel 7440-02-0 12.15 mean 730 no 0.017 Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no Strontium 7440-24-6 22,000.00 no Thallium 7440-28-0 2.6 no no	
Selenium 7782-49-2 47.85 mean 180 no 0.27 Silver 7440-22-4 180 no Strontium Strontium 7440-24-6 22,000.00 no Thallium 7440-28-0 2.6 no	
Silver 7440-22-4 180 no Strontium 7440-24-6 22,000.00 no Thallium 7440-28-0 2.6 no	
Strontium 7440-24-6 22,000.00 no Thallium 7440-28-0 2.6 no	
Thallium 7440-28-0 2.6 no	
Vanadium 7440-62-2 34.85 mean 180 no 0.19 Zinc 7440-66-6 180.1 mean 11,000.00 no 0.016	

Cumulative Risk Ratio

1.6E-03

1.6

max is the maximum detected concentration
mean is calculated as the mean of the detected concentrations and 1/2 the detection limit for non-detects blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.41 Risk Ratio Calculations AOC 1/7 Well Number AMW-3 Groundwater Former SADVA

Nonresidential Well AMW-3

COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1.1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)	540-59-0		n/a	, , , ,		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1.2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	ves		
Toluene	108-88-3		2.300.00	no		
Trichloroethene	79-01-6	0.26	0.028	yes		9.3E-06
Vinyl chloride	75-01-4	0.20	0.015	yes		3.0L 00
Xylenes (total)	1330-20-7		200	no		
SEMIVOLATILES	1330-20-7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3.700.00	yes no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1.500.00	no		
Pyrene	129-00-0		1,500.00	no		
PESTICIDES	129-00-0		100	TIO		
4.4'-DDE	72-55-9		0.2	1/00		
4,4'-DDD 4.4'-DDD	72-53-9		0.28	yes		
4,4'-DDT	50-29-3		0.28	yes		
METALS	30-29-3		0.2	yes		
Aluminum	7429-90-5		37,000.00			
Antimony	7429-90-5		15	no no		
Arsenic	7440-38-2		0.045			
Barium	7440-36-2		7,300.00	yes no		
Beryllium	7440-39-3		7,300.00	no		
Cadmium	7440-41-7		18	no		
Chromium	7440-43-9		54,750.00			
Chromium VI	18540-29-9		·	no		
Cobalt	7440-48-4		110 730	no		
Copper	7440-48-4		1,400.00	no no		
Lead	7440-50-8		1,400.00	no		
Manganese	7439-92-1		1,700.00	no		
Mercury	7439-96-5		1,700.00	no		
Nickel	7439-97-6		730	no		
Selenium	7782-49-2		180	no		
Silver						
Strontium	7440-22-4		180	no	 	
	7440-24-6		22,000.00	no	-	
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6	<u> </u>	11,000.00	no		

Cumulative Risk Ratio

0.0 9.3E-06

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.42 Risk Ratio Calculations AOC 1/7 Well Number AMW-4 Groundwater Former SADVA

Nonresidential Well AMW-4

Nonresidential Well AWW-4						
		Exposure Point Concentration	USEPA Region 6 Risk-Based Screening		Non-Carc Risk Ratio	Carc Risk Ratio
COMPOUND	CAS Number	(µg/L)	Level (µg/L)	Carcinogenic?	(EPC/USEPA)	(EPC/USEPA)
VOLATILES	OAO Humber	(P9/L)	Level (µg/L)	Our office gerillo.	(LI G/GGLI A)	(LI G/GGLI A)
2-Butanone	78-93-3	2	7,100.00	no	0.00028	
1,1-Dichloroethene	75-35-4		1,200.00	no	0.00020	
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethane (total)	540-59-0		n/a	yes		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2	0.28	0.35	yes		8.0E-07
Chlorobenzene	108-90-7	0.20	91	no		0.02 07
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3	0.23	2,300.00	no	0.00010	
Trichloroethene	79-01-6	0.25	0.028	yes	0.00010	
Vinyl chloride	75-01-4	1	0.015	yes		6.7E-05
Xylenes (total)	1330-20-7	'	200	no		0.7 2 00
SEMIVOLATILES	1000 20 7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3.700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES						
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS				,		
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2		0.045	yes		
Barium	7440-39-3		7,300.00	no		
Beryllium	7440-41-7		73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3		54,750.00	no		
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1		15			
Manganese	7439-96-5		1,700.00	no		
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6		11,000.00	no		

Cumulative Risk Ratio

0.00038

6.7E-05

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead
USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224

kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.43 Risk Ratio Calculations AOC 1/7 Well Number AMW-104 Groundwater Former SADVA

Nonresidential Well AMW-104

COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)	540-59-0	1	n/a	,		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2	0.81	0.35	yes		2.3E-06
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	ves		
Toluene	108-88-3		2.300.00	no		
Trichloroethene	79-01-6	0.32	0.028	yes		1.1E-05
Vinyl chloride	75-01-4	3.4	0.015	yes		2.3E-04
Xylenes (total)	1330-20-7	0.1	200	no		2.02 01
SEMIVOLATILES	1000 20 7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3.700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1.500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES	129-00-0		100	110		
4.4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-53-9		0.28			
4,4'-DDT	50-29-3		0.2	yes		
METALS	30-29-3		0.2	yes		
Aluminum	7429-90-5		37,000.00			
Antimony	7440-36-0			no		
Arsenic	7440-38-2		15 0.045	no		
Barium	7440-39-3		7,300.00	yes no		
Beryllium	7440-39-3		7,300.00	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-43-9		54,750.00			
Chromium VI	18540-29-9		·	no		
Cobalt	7440-48-4		110 730	no		
Copper	7440-48-4		1,400.00	no no		
Lead	7439-92-1		1,400.00	no		
Manganese	_		1,700.00			
Mercury	7439-96-5 7439-97-6		1,700.00	no		
Nickel	7439-97-6		730	no no		
Selenium	7782-49-2		180	no		
Silver						
Strontium	7440-22-4		180	no	 	
	7440-24-6		22,000.00	no	-	
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6	<u> </u>	11,000.00	no		

Cumulative Risk Ratio

0.0 2.4E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.44 Risk Ratio Calculations AOC 1/7 Well Number SD-GW01-AOC7 Groundwater Former SADVA

Nonresidential Well SD-GW01-AOC7

Nonresidential Well SD-GW01-AOC7		1	1		1	1
COMPOUND	CAS Number	Exposure Point Concentration (µg/L) ^a	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)	540-59-0		n/a	•		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	ves		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	ves		
Toluene	108-88-3		2.300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)	1330-20-7		200	no		
SEMIVOLATILES	1000 20 7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7	2	4.8	yes		4.2E-07
Butyl benzyl phthalate	85-68-7		7,300.00	no		4.2L 01
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3.700.00	no		
Diethyl phthalate	84-66-2		29.000.00	no		
Fluoranthene	206-44-0		1.500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES	129-00-0		100	110		
4.4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-53-9		0.28			
4,4'-DDT	50-29-3		0.28	yes		
METALS	50-29-3		0.2	yes		
	7429-90-5	2	37,000.00		0.000054	
Aluminum		2	,	no	0.000054	
Antimony Arsenic	7440-36-0 7440-38-2		15 0.045	no		
		0		yes	0.00007	
Barium	7440-39-3	2	7,300.00	no	0.00027 0.027	
Beryllium	7440-41-7	2	73	no	0.027	
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3		54,750.00	no		
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no	-	
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1	_	15	no	0.0010	
Manganese	7439-96-5	2	1,700.00	no	0.0012	
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4	2	180	no	0.011	
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6	2	11,000.00	no	0.00018	

Cumulative Risk Ratio

0.040

4.2E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

a - One of the wells used in this analysis had a duplicate sample, and the highest value of the primary sample and the duplicate sample at this well was used for calculations.

Table J.7.45 Risk Ratio Calculations AOC 1/7 Well Number SD-GW03-AOC7 Groundwater Former SADVA

Nonresidential Well SD-GW03-AOC7

			EPC	USEPA Region			
		Exposure Point Concentration	Maximum, Average or	6 Risk-Based Screening		Non-Carc Risk Ratio	Carc Risk Ratio
COMPOUND	CAS Number	(µg/L)	Latest?	Level (µg/L)	Carcinogenic?	(EPC/USEPA)	(EPC/USEPA)
VOLATILES		(13-7		(13)		,	
2-Butanone	78-93-3			7,100.00	no		
1,1-Dichloroethene	75-35-4			1,200.00	no		
1.2-Dichloroethane	107-06-2			0.12	yes		
1,2-Dichloroethene (total)	540-59-0			n/a	,		
cis-1.2-Dichloroethene	156-59-2			61	no		
trans-1,2-Dichloroethene	156-60-5			110	no		
Acetone	67-64-1			5,500.00	no		
Benzene	71-43-2			0.35	yes		
Chlorobenzene	108-90-7			91	no		
Methylene chloride	75-09-2			4.3	ves		
Toluene	108-88-3			2,300.00	no		
Trichloroethene	79-01-6			0.028	yes		
Vinyl chloride	75-01-4			0.015	yes		
Xylenes (total)	1330-20-7			200	no		
SEMIVOLÀTILÉS							
bis(2-Ethylhexyl) phthalate	117-81-7	7.6	max	4.8	yes		1.6E-06
Butyl benzyl phthalate	85-68-7			7,300.00	no		
Carbazole	86-74-8			3.4	yes		
Di-n-butyl phthalate	84-74-2			3,700.00	no		
Diethyl phthalate	84-66-2			29,000.00	no		
Fluoranthene	206-44-0			1,500.00	no		
Pyrene	129-00-0			180	no		
PESTICIDES							
4,4'-DDE	72-55-9			0.2	yes		
4,4'-DDD	72-54-8			0.28	yes		
4,4'-DDT	50-29-3			0.2	yes		
METALS					•		
Aluminum	7429-90-5	27.4	max	37,000.00	no	0.00074	
Antimony	7440-36-0			15	no		
Arsenic	7440-38-2			0.045	yes		
Barium	7440-39-3	10.4	max	7,300.00	no	0.0014	
Beryllium	7440-41-7			73	no		
Cadmium	7440-43-9			18	no		
Chromium	7440-47-3			54,750.00	no		
Chromium VI	18540-29-9			110	no		
Cobalt	7440-48-4			730	no		
Copper	7440-50-8	2	max	1,400.00	no	0.0014	
Lead	7439-92-1			15	no		
Manganese	7439-96-5	59	max	1,700.00	no	0.035	
Mercury	7439-97-6			11	no		
Nickel	7440-02-0			730	no		
Selenium	7782-49-2			180	no		
Silver	7440-22-4			180	no		
Strontium	7440-24-6			22,000.00	no		
Thallium	7440-28-0			2.6	no		
Vanadium	7440-62-2	1.1	max	180	no	0.0061	
Zinc	7440-66-6	12.4	max	11,000.00	no	0.0011	

Cumulative Risk Ratio

0.046

1.6E-06

 $\ensuremath{\mathsf{max}}$ is the maximum detected concentration

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised

Table J.7.46 Risk Ratio Calculations AOC 1/7 Well Number MW-ACE4 Groundwater Former SADVA

Nonresidential Well MW-ACE4

Nonresidential Well MW-ACE4						
COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES	0710 110111001	(F3 [,] -)			(=: 0,00=:71)	(=: 0,00=: 1:,
2-Butanone	78-93-3		7,100.00	no		
1.1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)	540-59-0		n/a	you		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1.2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2.300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)	1330-20-7		200	no		
SEMIVOLATILES	1330-20-7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	ves		
Di-n-butyl phthalate	84-74-2		3,700.00	no yes		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1.500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES	129-00-0		160	TIO		
4,4'-DDE	72-55-9		0.2	1/00		
4,4'-DDD 4.4'-DDD	72-55-9		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS	50-29-3		0.2	yes		
Aluminum	7400 00 5		27,000,00			
	7429-90-5 7440-36-0		37,000.00 15	no		
Antimony Arsenic	7440-38-2	10	0.045	no		2.25.04
	7440-38-2	104	7,300.00	yes		2.2E-04
Barium	7440-39-3	104	,	no	0.014	
Beryllium			73	no		
Cadmium Chromium	7440-43-9	22	18 54,750.00	no	0.00040	
	7440-47-3	22		no	0.00040	
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1		15	no		
Manganese	7439-96-5		1,700.00	no		
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6		11,000.00	no		

Cumulative Risk Ratio

0.015 2.2E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.47 Risk Ratio Calculations AOC 1/7 Well Number MW-ACE3 Groundwater Former SADVA

Nonresidential Well MW-ACE3

Nonresidential Well MW-ACE3		1				I
COMPOUND	CAS Number	Exposure Point Concentration (µg/L) ^a	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES		(1-3)	(1.5.)		,	,
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1.2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)	540-59-0		n/a	ycs		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	ves		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028			
Vinyl chloride	75-01-4		0.028	yes		
	1330-20-7		200	yes		
Xylenes (total)	1330-20-7		200	no		
SEMIVOLATILES	447.04.7		4.0			
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3,700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES						
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS						
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	5	0.045	yes		1.1E-04
Barium	7440-39-3	42	7,300.00	no	0.0058	
Beryllium	7440-41-7		73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3	17	54,750.00	no	0.00031	
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1		15	no		
Manganese	7439-96-5		1,700.00	no		
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6		11,000.00	no		

Cumulative Risk Ratio

0.0061

1.1E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

a - the highest value of the primary sample and the duplicate sample at this well is reported.

Table J.7.48 Risk Ratio Calculations AOC 1/7 Well Number MW-2-2 Groundwater Former SADVA

Nonresidential Well MW2-2

Nonresidential Well WW2-2						
COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES			",	<u> </u>	ì	,
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)	540-59-0		n/a	, , ,		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.025	yes		
Xylenes (total)	1330-20-7		200	no		
SEMIVOLATILES	1330-20-7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7		4.8			
Butyl benzyl phthalate	85-68-7		7,300.00	yes no		
Carbazole	86-74-8		3.4			
				yes		
Di-n-butyl phthalate	84-74-2		3,700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES	70.55.0		0.0			
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS	7400 00 5		07.000.00			
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	6	0.045	yes		1.3E-04
Barium	7440-39-3	79	7,300.00	no	0.011	
Beryllium	7440-41-7		73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3	18	54,750.00	no	0.00033	
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1		15	no		
Manganese	7439-96-5		1,700.00	no		
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6		11,000.00	no		

Cumulative Risk Ratio

0.011 1.3E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.49 Risk Ratio Calculations AOC 1/7 Well Number MW-ACE5 Groundwater Former SADVA

Nonresidential Well MW-ACE5

COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1.1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)	540-59-0		n/a	, , , ,		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1.2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	ves		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)	1330-20-7		200	no		
SEMIVOLATILES	1330-20-7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3.700.00	•		
Diethyl phthalate	84-66-2		29,000.00	no no		
Fluoranthene	206-44-0		1.500.00	no		
Pyrene	129-00-0		1,500.00	no		
PESTICIDES	129-00-0		100	TIO		
4.4'-DDE	72-55-9		0.2	1/00		
4,4'-DDD 4.4'-DDD	72-53-9		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS	30-29-3		0.2	yes		
Aluminum	7429-90-5		37,000.00	no.		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2		0.045	no		
Barium	7440-36-2	13	7,300.00	yes no	0.0018	
Beryllium	7440-39-3	13	7,300.00	no	0.0016	
Cadmium	7440-43-9		18	no		
Chromium	7440-43-9		54,750.00			
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-48-4		1,400.00	no no		
Lead	7439-92-1		1,400.00	IIU		
Manganese			1,700.00	200		
Manganese Mercury	7439-96-5 7439-97-6		1,700.00	no		
Nickel	7440-02-0		730	no no		
Selenium	7782-49-2		180			
Silver				no		
Strontium	7440-22-4		180	no	 	
	7440-24-6		22,000.00	no	-	
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6	<u> </u>	11,000.00	no		<u> </u>

Cumulative Risk Ratio

0.0018

0.0E+00

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.50 Risk Ratio Calculations AOC 1/7 Well Number MW-2BMW9 Groundwater Former SADVA

Nonresidential Well MW-2BMW9

Nonresidential Well MW-2BMW9			USEPA Region			
		Exposure Point Concentration	6 Risk-Based Screening		Non-Carc Risk Ratio	Carc Risk Ratio
COMPOUND	CAS Number	(µg/L)	Level (µg/L)	Carcinogenic?	(EPC/USEPA)	(EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)	540-59-0		n/a	,		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2.300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)	1330-20-7		200	no		
SEMIVOLATILES	11000 20 1		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	ves		
Di-n-butyl phthalate	84-74-2		3.700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES	129-00-0		160	110		
4,4'-DDE	72-55-9		0.2	VOC		
4,4'-DDD 4,4'-DDD	72-53-9		0.28	yes yes		
4,4'-DDT	50-29-3		0.28			
METALS	50-29-3		0.2	yes		
	7400 00 5		07.000.00			
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2 7440-39-3	00	0.045	yes	0.0000	
Barium		28	7,300.00	no	0.0038	
Beryllium	7440-41-7		73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3		54,750.00	no		
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1		15	no		
Manganese	7439-96-5		1,700.00	no		
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6		11,000.00	no		

Cumulative Risk Ratio

0.0038

0.0E+00

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.51 Risk Ratio Calculations AOC 1/7 Well Number MW-2AMW6 Groundwater Former SADVA

Nonresidential Well MW-2AMW6

Nonresidential Well MW-2AMW6		T			1	1
COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES	OAO Hulliber	(μg/ Ε)	Level (µg/L)	Oar chiogenic:	(LI G/OOLI A)	(LI G/OOLI A)
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,1-Dichloroetherie	107-06-2		0.12			
1,2-Dichloroethane (total)	540-59-0		0.12 n/a	yes		
cis-1,2-Dichloroethene	156-59-2		61	20		
trans-1,2-Dichloroethene	156-60-5		110	no no		
,	67-64-1		5,500.00			
Acetone				no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)	1330-20-7		200	no		
SEMIVOLATILES						
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3,700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES						
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS						
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2		0.045	yes		
Barium	7440-39-3	14	7,300.00	no	0.0019	
Beryllium	7440-41-7		73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3		54,750.00	no		
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1		15	no		
Manganese	7439-96-5		1,700.00	no		
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6		11,000.00	no		
2110	7 770-00-0		11,000.00	110	1	

Cumulative Risk Ratio

0.0019

0.0E+00

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.52 Risk Ratio Calculations AOC 1/7 Well Number MW-2AMW8 Groundwater Former SADVA

Nonresidential Well MW-2AMW8

Nonresidential Well MW-2AMW8			USEPA Region			
		Exposure Point Concentration	6 Risk-Based Screening		Non-Carc Risk Ratio	Carc Risk Ratio
COMPOUND	CAS Number	(µg/L)	Level (µg/L)	Carcinogenic?	(EPC/USEPA)	(EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)	540-59-0		n/a			
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)	1330-20-7		200	no		
SEMIVOLATILES						
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3,700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES						
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS				,		
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	82	0.045	ves		1.8E-03
Barium	7440-39-3	51	7,300.00	no	0.0070	
Beryllium	7440-41-7	-	73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3	50	54,750.00	no	0.00091	
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1		15	no		
Manganese	7439-96-5		1.700.00	no		
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-62-2		11,000.00	no		

Cumulative Risk Ratio

0.0079

1.8E-03

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.53 Risk Ratio Calculations AOC 1/7 Well Number MW-2AMW3 Groundwater Former SADVA

Nonresidential Well MW-2AMW3

COMPOUND	CAS Number	Exposure Point Concentration (μg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES		(13-7	(1.3-)	J	,	,
2-Butanone	78-93-3		7,100.00	no		
1.1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)	540-59-0		n/a	jee		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.025	yes		
Xylenes (total)	1330-20-7		200	no		
SEMIVOLATILES	1330-20-7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	VOC		
Butyl benzyl phthalate	85-68-7		7,300.00	yes no		
Carbazole	86-74-8		3.4			
Di-n-butyl phthalate	84-74-2		3,700.00	yes no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00			
Pyrene	129-00-0		1,500.00	no no		
PESTICIDES	129-00-0		160	110		
4,4'-DDE	72-55-9		0.2	1/00		
4,4'-DDD 4,4'-DDD	72-53-9		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes yes		
METALS	30-29-3		0.2	yes		
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	5	0.045			1.1E-04
Barium	7440-36-2	107	7,300.00	yes no	0.015	1.16-04
Beryllium	7440-41-7	107	7,300.00	no	0.015	
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3	34	54,750.00	no	0.00062	
Chromium VI	18540-29-9	34	110	no	0.00002	
Cobalt	7440-48-4		730	no		
Copper	7440-48-4		1,400.00			
Lead	7440-50-8	13	1,400.00	no	0.87	
	7439-92-1	13	1,700.00	no	0.07	
Manganese Mercury	7439-96-5		1,700.00	no		
Nickel	7439-97-6		730	no		
				no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6		11,000.00	no	1	

Cumulative Risk Ratio

0.015 1.1E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224

Table J.7.54 Risk Ratio Calculations AOC 1/7 Well Number MW-1 Groundwater Former SADVA

Nonresidential Well MW-1

					i	
COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES	OAO ITUILIDEI	(μg/L)	Level (µg/L)	Oar Chilogeriic :	(LI G/OGLI A)	(LI G/OGLI A)
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,1-Dichloroethene	107-06-2		0.12	yes		
1,2-Dichloroethane (total)**	540-59-0		n/a	yes		
cis-1,2-Dichloroethene	156-59-2		61	20		
trans-1,2-Dichloroethene	156-60-5		110	no no		
Acetone	67-64-1		5,500.00			
			,	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLATILES	T					
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3,700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES						
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS						
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	6.6	0.045	yes		1.5E-04
Barium	7440-39-3	82	7,300.00	no	0.011	
Beryllium	7440-41-7		73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3	19	54,750.00	no	0.00035	
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1	14	15	no	0.93	
Manganese	7439-96-5		1,700.00	no		
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6		11,000.00	no		

Cumulative Risk Ratio

0.012 1.5E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.55 Risk Ratio Calculations AOC 1/7 Well Number MW-2 Groundwater Former SADVA

Nonresidential Well MW-2

			USEPA Region			
		Exposure Point	6 Risk-Based		Non-Carc Risk	Carc Risk
		Concentration	Screening		Ratio	Ratio
COMPOUND	CAS Number	(µg/L)	Level (µg/L)	Carcinogenic?	(EPC/USEPA)	(EPC/USEPA)
VOLATILES						,
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a	•		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLATILES						
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3,700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES						
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS						
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	31	0.045	yes		6.9E-04
Barium	7440-39-3	356	7,300.00	no	0.049	
Beryllium	7440-41-7		73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3	144	54,750.00	no	0.0026	
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1	90	15	no	6.0	
Manganese	7439-96-5		1,700.00	no		
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6		11,000.00	no		

Cumulative Risk Ratio

0.051 6.9E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well

Cumulative Risk Ratio does not include lead
USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.56 Risk Ratio Calculations AOC 1/7 Well Number MW-3 Groundwater Former SADVA

Nonresidential Well MW-3

		Exposure Point	USEPA Region 6 Risk-Based		Non-Carc Risk	Carc Risk
		Concentration	Screening		Ratio	Ratio
COMPOUND	CAS Number	(µg/L)	Level (µg/L)	Carcinogenic?	(EPC/USEPA)	(EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a			
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLATILES						
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3,700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES						
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS						
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	28	0.045	yes		6.2E-04
Barium	7440-39-3	187	7,300.00	no	0.026	
Beryllium	7440-41-7		73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3	83	54,750.00	no	0.0015	
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1	66	15	no	4.4	
Manganese	7439-96-5		1,700.00	no		
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6		11,000.00	no		

Cumulative Risk Ratio

0.027

6.2E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well

Cumulative Risk Ratio does not include lead
USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.57 Risk Ratio Calculations AOC 1/7 Well Number MW-4 Groundwater Former SADVA

Nonresidential Well MW-4

COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES	C/10 Italiiboi	(F9'-)	2010. (μg/2)	our on rogonio :	(2. 6/662. //)	(2: 0/002: //
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1.2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a	,,,,		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5.500.00	no		
Benzene	71-43-2		0.35	ves		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLATILES	1.000 20 .		200			
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3.700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1.500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES	120 00 0		100	1.0		
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4.4'-DDT	50-29-3		0.2	yes		
METALS				, , , ,		
Aluminum	7429-90-5		37.000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	23	0.045	yes		5.1E-04
Barium	7440-39-3	232	7,300.00	no	0.032	
Beryllium	7440-41-7	-	73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3	66	54,750.00	no	0.0012	
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1	69	15	no	4.6	
Manganese	7439-96-5		1,700.00	no	-	
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2		180	no		
Zinc	7440-66-6	1	11,000.00	no		

Cumulative Risk Ratio

0.033

5.1E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.58 Risk Ratio Calculations AOC 1/7 Well Number AOC7-2AMW-7 Groundwater Former SADVA

Nonresidential Well AOC7-2AMW-7

COMPOUND	CAS Number	Exposure Point Concentration (μg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES		" ,	".		ì	Ĺ
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a	,		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xvlenes (total)***	1330-20-7		200	no		
SEMIVOLATILES	1000 20 7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7	27	4.8	yes		5.6E-06
Butyl benzyl phthalate	85-68-7	21	7,300.00	no		3.0L-00
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3.700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES	129-00-0		100	110		
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD 4,4'-DDD	72-53-9		0.28	yes		
4,4'-DDT	50-29-3		0.28			
METALS	50-29-5		0.2	yes		
Aluminum	7429-90-5	3560	37,000.00	no	0.096	
Antimony	7440-36-0	3300	15	no	0.090	
Arsenic	7440-38-2		0.045	yes		
Barium	7440-38-2	33.8	7,300.00	no	0.0046	
Beryllium	7440-39-3	0.12	7,300.00	no	0.0046	
Cadmium	7440-41-7	0.12	18	no	0.0010	
Chromium	7440-43-9	4	54,750.00	no	0.000073	
Chromium VI	18540-29-9	4	110		0.000073	
Cobalt	7440-48-4	1	730	no		
Copper	7440-48-4	10.3	1,400.00	no no	0.0074	
Lead	7439-92-1	10.3	1,400.00	no	0.0074	
Manganese	7439-92-1	2700	1.700.00	no	1.6	
Mercury	7439-96-5	2100	1,700.00	no	0.1	
Nickel	7439-97-6		730			
Selenium	7782-49-2	-	180	no no		
Silver	7440-22-4		180			
Strontium	7440-22-4	 	22,000.00	no		1
Thallium	7440-24-6		,	no		
		40.4	2.6	no	0.050	
Vanadium	7440-62-2	10.1	180	no	0.056	
Zinc	7440-66-6	22.3	11,000.00	no	0.0020	

Cumulative Risk Ratio

1.8 5.6E-06

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.59 Risk Ratio Calculations AOC 1/7 Well Number AOC7-2AMW-5 Groundwater Former SADVA

Nonresidential Well AOC7-2AMW-5

COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Ratio
VOLATILES	O/ (O I (UIII)DOI	(F9/-/	2010: (µg/2)	- Caroniogonio	(2.1 6/662.171)	(2: 0/002: //
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a	you		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1.2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	ves		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	ves		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLATILES	1000 20 7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7	15	4.8	yes		3.1E-06
Butyl benzyl phthalate	85-68-7	10	7.300.00	no		0.12 00
Carbazole	86-74-8		3.4	ves		
Di-n-butyl phthalate	84-74-2		3.700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES	120 00 0		.00			
4.4'-DDE	72-55-9		0.2	yes		
4.4'-DDD	72-54-8		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS	00 20 0		V	you		
Aluminum	7429-90-5	1600	37,000.00	no	0.043	
Antimony	7440-36-0		15	no	0.0.0	
Arsenic	7440-38-2	14.7	0.045	ves		3.3E-04
Barium	7440-39-3	44.6	7.300.00	no	0.0061	
Beryllium	7440-41-7	0.071	73	no	0.00097	
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3	1.8	54,750.00	no	0.000033	
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1	5.2	15	no	0.35	
Manganese	7439-96-5	124	1,700.00	no	0.073	
Mercury	7439-97-6		11	no		
Nickel	7440-02-0		730	no		
Selenium	7782-49-2	2.3	180	no	0.013	
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2	4.4	180	no	0.024	
Zinc	7440-66-6	17.5	11,000.00	no	0.0016	

Cumulative Risk Ratio

0.16 3.3E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.60 Risk Ratio Calculations AOC 1/7 Well Number AOC7-HP01 Groundwater Former SADVA

Nonresidential Well AOC7-HP01

Nonresidential Well AOC7-HP01					1	
COMPOUND	CAS Number	Exposure Point Concentration (µg/L) ^a	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES	OAO Hulliber	(µg/L)	Level (µg/L)	Oar Chilogenic:	(LI G/OOLI A)	(LI G/OGLI A)
2-Butanone	78-93-3		7,100.00	no		
1.1-Dichloroethene	75-35-4		1,200.00	no		
1,1-Dichloroethene	107-06-2		0.12	yes		
1,2-Dichloroethane (total)**	540-59-0		n/a	yes		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1.2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1	4.2	5,500.00	no	0.00076	
Benzene	71-43-2	4.2	0.35	yes	0.00076	
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2.300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.028			
Xylenes (total)***	1330-20-7		200	yes no		
SEMIVOLATILES	1330-20-7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7	69	4.8	yes		1.4E-05
Butyl benzyl phthalate	85-68-7	09	7,300.00	no		1.46-05
Carbazole	86-74-8		3.4	ves		
Di-n-butyl phthalate	84-74-2		3,700.00			
Diethyl phthalate	84-66-2		29,000.00	no no		
Fluoranthene	206-44-0		1.500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES	129-00-0		100	110		
4,4'-DDE	72-55-9		0.2	yes		
4.4'-DDD	72-53-9		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS	30-29-3		0.2	yes		
Aluminum	7429-90-5	5940	37,000.00	no	0.16	
Antimony	7440-36-0	3340	15	no	0.10	
Arsenic	7440-38-2	4.8	0.045	yes		1.1E-04
Barium	7440-39-3	85	7,300.00	no	0.012	1.12-04
Beryllium	7440-41-7	0.41	73	no	0.0056	
Cadmium	7440-43-9	0.41	18	no	0.0000	
Chromium	7440-47-3	11.9	54.750.00	no	0.00022	
Chromium VI	18540-29-9	11.0	110	no	0.00022	
Cobalt	7440-48-4	3.8	730	no	0.0052	
Copper	7440-50-8	13.8	1,400.00	no	0.0032	
Lead	7439-92-1	4.9	15	no	0.33	
Manganese	7439-96-5	461	1,700.00	no	0.27	
Mercury	7439-97-6	0.069	1,700.00	no	0.0063	
Nickel	7440-02-0	12.4	730	no	0.017	
Selenium	7782-49-2	12.7	180	no	0.017	
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no	<u> </u>	
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2	15.8	180	no	0.088	
Zinc	7440-66-6	56.9	11,000.00	no	0.0052	
	1 770-00-0	50.5	11,000.00	110	0.0002	I

Cumulative Risk Ratio

0.58 1.2E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224

Table J.7.61 Risk Ratio Calculations AOC 1/7 Well Number AOC7-HP02 **Groundwater Former SADVA**

Nonresidential Well AOC7-HP02

Nonresidential Well AOC7-HP02			USEPA Region 6			
		Exposure Point	Risk-Based			
		Concentration	Screening Level		Non-Carc Risk	Carc Risk Ratio
COMPOUND	CAS Number	(µg/L)	(µg/L)	Carcinogenic?	Ratio (EPC/USEPA)	(EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a			
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1	2.4	5,500.00	no	0.00044	
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLÀTILÉS						
bis(2-Ethylhexyl) phthalate	117-81-7	100	4.8	yes		2.1E-05
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3.700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES						
4,4'-DDE	72-55-9		0.2	yes		
4.4'-DDD	72-54-8		0.28	yes		
4.4'-DDT	50-29-3		0.2	yes		
METALS			4. —	,		
Aluminum	7429-90-5	389000	37,000.00	no	11	
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	207	0.045	yes		4.6E-03
Barium	7440-39-3	1990	7.300.00	no	0.27	
Beryllium	7440-41-7	20.7	73	no	0.28	-
Cadmium	7440-43-9	9.1	18	no	0.51	
Chromium	7440-47-3	544	54.750.00	no	0.0099	-
Chromium VI	18540-29-9	0	110	no	0.0000	
Cobalt	7440-48-4	423	730	no	0.58	
Copper	7440-50-8	989	1,400.00	no	0.71	
Lead	7439-92-1	388	15	no	26	
Manganese	7439-96-5	16200	1,700,00	no	9.5	
Mercury	7439-90-5	0.97	1,700.00	no	0.088	
Nickel	7440-02-0	857	730	no	1.2	
Selenium	7782-49-2	001	180	no	1.2	
Silver	7440-22-4	4.1	180	no	0.023	
Strontium	7440-24-6	7.1	22,000.00	no	0.023	
Thallium	7440-28-0	7.8	22,000.00	no	3.0	
Vanadium	7440-28-0	7.0	180	no	3.9	
Zinc	7440-62-2	2090	11.000.00		0.19	
∠inc	/440-66-6	2090	11,000.00	no	0.19	-

4.6E-03 31

Cumulative Risk Ratio
blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well
Cumulative Risk Ratio does not include lead
USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised
05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.62 Risk Ratio Calculations AOC 1/7 Well Number AOC7-HPO3 Groundwater Former SADVA

Nonresidential Well AOC7-HP03

Nonresidential Well AOC7-HP03						
COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a	•		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLATILES	1.000 20 .		200			
bis(2-Ethylhexyl) phthalate	117-81-7	13	4.8	yes		2.7E-06
Butyl benzyl phthalate	85-68-7		7,300.00	no		2.7.2.00
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3.700.00	no		
Diethyl phthalate	84-66-2		29,000.00	no		
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES	120 00 0		100	110		
4,4'-DDE	72-55-9	0.023	0.2	yes		1.2E-07
4,4'-DDD	72-54-8	0.035	0.28	yes		1.3E-07
4.4'-DDT	50-29-3	0.087	0.2	yes		4.4E-07
METALS	00 20 0	0.007	U.L	you		
Aluminum	7429-90-5	19600	37,000.00	no	0.53	
Antimony	7440-36-0		15	no	0.00	
Arsenic	7440-38-2	10.2	0.045	yes		2.3E-04
Barium	7440-39-3	187	7,300.00	no	0.026	
Beryllium	7440-41-7	1.2	73	no	0.016	
Cadmium	7440-43-9		18	no	0.0.0	
Chromium	7440-47-3	31.1	54,750.00	no	0.00057	
Chromium VI	18540-29-9	0	110	no	0.0000.	
Cobalt	7440-48-4	15	730	no	0.021	
Copper	7440-50-8	37.7	1,400.00	no	0.027	
Lead	7439-92-1	12.1	15	no	0.81	
Manganese	7439-96-5	989	1.700.00	no	0.58	
Mercury	7439-97-6	0.067	1,700.00	no	0.0061	
Nickel	7440-02-0	46.5	730	no	0.064	
Selenium	7782-49-2	10.0	180	no	0.001	
Silver	7440-22-4		180	no		
Strontium	7440-22-4		22,000.00	no		
Thallium	7440-24-0		2.6	no		
Vanadium	7440-62-2	41.5	180	no	0.23	
Zinc	7440-66-6	109	11,000.00	no	0.0099	
LIIIU	7440-00-0	109	11,000.00	110	0.0099	-

Cumulative Risk Ratio

1.5 2.3E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.63 Risk Ratio Calculations AOC 1/7 Well Number SD-GW02-AOC7 Groundwater Former SADVA

Nonresidential Well SD-GW02-AOC7

Nonresidential Well SD-GW02-AOC1		Exposure Point			Non-Carc Risk	Carc Risk
COMPOUND	04011	Concentration	Screening	0	Ratio	Ratio
COMPOUND	CAS Number	(µg/L)	Level (µg/L)	Carcinogenic?	(EPC/USEPA)	(EPC/USEPA)
VOLATILES	70.00.0		7.400.00			
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a			
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLATILES						
bis(2-Ethylhexyl) phthalate	117-81-7	16	4.8	yes		3.3E-06
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2		3,700.00	no		
Diethyl phthalate	84-66-2	1.7	29,000.00	no	0.000059	
Fluoranthene	206-44-0		1,500.00	no		
Pyrene	129-00-0		180	no		
PESTICIDES						
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4.4'-DDT	50-29-3		0.2	yes		
METALS				,		
Aluminum	7429-90-5	59.9	37,000.00	no	0.0016	
Antimony	7440-36-0		15	no	0.00.0	
Arsenic	7440-38-2		0.045	yes		
Barium	7440-39-3	197	7,300.00	no	0.027	
Beryllium	7440-41-7		73	no	0.02.	
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3		54,750.00	no		
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8		1,400.00	no		
Lead	7439-92-1		15	no		
Manganese	7439-96-5	456	1.700.00	no	0.27	
Mercury	7439-90-5	750	11	no	0.21	
Nickel	7440-02-0		730	no	+	
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180		1	
Strontium	7440-22-4		22,000.00	no no	-	
Thallium	7440-24-6		22,000.00			
				no		
Vanadium	7440-62-2		180	no	-	
Zinc	7440-66-6		11,000.00	no	<u> </u>	

Cumulative Risk Ratio

0.30 3.3E-06

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224

Table J.7.64 Risk Ratio Calculations AOC 1/7 Well Number SD-2AMW5-AOC1 Groundwater Former SADVA

Nonresidential Well DE-2AMW5-AOC1

COMPOUND	CAS Number	Exposure Point Concentration (μg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a			
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLATILES						
bis(2-Ethylhexyl) phthalate	117-81-7	27	4.8	yes		5.6E-06
Butyl benzyl phthalate	85-68-7	0.12	7,300.00	no	0.000016	
Carbazole	86-74-8	0.13	3.4	yes		3.8E-08
Di-n-butyl phthalate	84-74-2	0.28	3,700.00	no	0.000076	
Diethyl phthalate	84-66-2	0.35	29,000.00	no	0.000012	
Fluoranthene	206-44-0	0.2	1,500.00	no	0.00013	
Pyrene	129-00-0	0.17	180	no	0.00094	
PESTICIDES						
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-54-8		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS				· · · · · · · · · · · · · · · · · · ·		
Aluminum	7429-90-5	79.4	37,000.00	no	0.0021	
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	11.6	0.045	yes		2.6E-04
Barium	7440-39-3	41.6	7,300.00	no	0.0057	
Beryllium	7440-41-7		73	no		
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3		54,750.00	no		
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-50-8	4.6	1,400.00	no	0.0033	
Lead	7439-92-1	1.6	15	no	0.11	
Manganese	7439-96-5	810	1,700.00	no	0.48	
Mercury	7439-97-6	0.0	11	no	55	
Nickel	7440-02-0	2	730	no	0.0027	
Selenium	7782-49-2	_	180	no	3.3027	
Silver	7440-22-4		180	no		
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2	5.4	180	no	0.030	
Zinc	7440-66-6	11.6	11,000.00	no	0.0011	

Cumulative Risk Ratio

0.52 2.6E-04

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.65 Risk Ratio Calculations AOC 1/7 Well Number SD-2AMW7-AOC1 Groundwater Former SADVA

Nonresidential Well SD-2AMW7-AOC1

Nonresidential Well SD-2AMW7-A0	001					I
COMPOUND	CAS Number	Exposure Point Concentration (µg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES	0.10.1	(F3-)			(======================================	(=: =, ===:,
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1.2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a	, , , ,		
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1.2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2.300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLATILES	1000 20 7		200	110		
bis(2-Ethylhexyl) phthalate	117-81-7	4.1	4.8	yes		8.5E-07
Butyl benzyl phthalate	85-68-7	7.1	7,300.00	no		0.5L-01
Carbazole	86-74-8		3.4	ves		
Di-n-butyl phthalate	84-74-2		3,700.00	no		
Diethyl phthalate	84-66-2	1.6	29,000.00	no	0.000055	
Fluoranthene	206-44-0	1.0	1.500.00	no	0.000033	
Pyrene	129-00-0		180	no		
PESTICIDES	129-00-0		100	110		
4,4'-DDE	72-55-9		0.2	yes		
4.4'-DDD	72-53-5		0.28	yes		
4,4'-DDT	50-29-3		0.2	yes		
METALS	30-29-3		0.2	yes		
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2		0.045	yes		
Barium	7440-39-3	16.3	7,300.00	no	0.0022	
Beryllium	7440-39-3	10.5	73	no	0.0022	
Cadmium	7440-43-9		18	no		
Chromium	7440-47-3		54,750.00	no		
Chromium VI	18540-29-9		110	no		
Cobalt	7440-48-4		730	no		
Copper	7440-48-4		1,400.00	no		
Lead	7439-92-1		1,400.00	no		
Manganese	7439-92-1	135	1,700.00	no	0.079	
Mercury	7439-96-5	133	1,700.00	no	0.018	
Nickel	7440-02-0		730	no		
Selenium	7782-49-2		180	no		
Silver	7440-22-4		180	no		
Strontium	7440-22-4		22,000.00			
Thallium	7440-24-6		22,000.00	no		
Vanadium	7440-28-0	7.6	2.6 180	no	0.042	
Zinc	7440-62-2	7.6 6.6	11,000.00	no no	0.0042	
ZITIC	7440-00-0	0.0	11,000.00	110	0.00000	

Cumulative Risk Ratio

0.12 8.5E-07

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.

Table J.7.66 Risk Ratio Calculations AOC 1/7 Well Number SD-GW13-AOC1 Groundwater Former SADVA

Nonresidential Wel SD-GW13-AOC1

COMPOUND	CAS Number	Exposure Point Concentration (μg/L)	USEPA Region 6 Risk-Based Screening Level (µg/L)	Carcinogenic?	Non-Carc Risk Ratio (EPC/USEPA)	Carc Risk Ratio (EPC/USEPA)
VOLATILES						
2-Butanone	78-93-3		7,100.00	no		
1,1-Dichloroethene	75-35-4		1,200.00	no		
1,2-Dichloroethane	107-06-2		0.12	yes		
1,2-Dichloroethene (total)**	540-59-0		n/a			
cis-1,2-Dichloroethene	156-59-2		61	no		
trans-1,2-Dichloroethene	156-60-5		110	no		
Acetone	67-64-1		5,500.00	no		
Benzene	71-43-2		0.35	yes		
Chlorobenzene	108-90-7		91	no		
Methylene chloride	75-09-2		4.3	yes		
Toluene	108-88-3		2,300.00	no		
Trichloroethene	79-01-6		0.028	yes		
Vinyl chloride	75-01-4		0.015	yes		
Xylenes (total)***	1330-20-7		200	no		
SEMIVOLATILES	1.000 20 1		200	1.0		
bis(2-Ethylhexyl) phthalate	117-81-7		4.8	yes		
Butyl benzyl phthalate	85-68-7		7,300.00	no		
Carbazole	86-74-8		3.4	yes		
Di-n-butyl phthalate	84-74-2	1.1	3.700.00	no	0.00030	
Diethyl phthalate	84-66-2	1.1	29,000.00	no	0.00000	
Fluoranthene	206-44-0	2.5	1,500.00	no	0.0017	
Pyrene	129-00-0	0.95	180	no	0.0053	
PESTICIDES	123 00 0	0.50	100	110	0.0000	
4,4'-DDE	72-55-9		0.2	yes		
4,4'-DDD	72-53-3	0.027	0.28	yes		9.6E-08
4.4'-DDT	50-29-3	0.027	0.20	yes		7.0E-08
METALS	30-23-3	0.014	0.2	yes		7.02-00
Aluminum	7429-90-5		37,000.00	no		
Antimony	7440-36-0		15	no		
Arsenic	7440-38-2	3.3	0.045	yes		7.3E-05
Barium	7440-38-2	36.5	7,300.00	no	0.0050	7.3E-03
Beryllium	7440-39-3	0.71	7,300.00	no	0.0030	
Cadmium	7440-41-7	0.71	18	no	0.0097	
Chromium	7440-43-9	7	54,750.00	no	0.00013	
Chromium VI	18540-29-9	/	110		0.00013	
Cobalt	7440-48-4			no	-	
		4.0	730 1,400.00	no	0.00086	
Copper	7440-50-8 7439-92-1	1.2	1,400.00	no	0.00086	
Lead		90.2	1.700.00	no	0.053	
Manganese	7439-96-5 7439-97-6	90.2	1,700.00	no	0.053	
Mercury		0.4		no	0.0000	
Nickel	7440-02-0	2.4	730	no	0.0033	
Selenium	7782-49-2	8.4	180	no	0.047	
Silver	7440-22-4		180	no	1	
Strontium	7440-24-6		22,000.00	no		
Thallium	7440-28-0		2.6	no		
Vanadium	7440-62-2	4.9	180	no	0.027	
Zinc	7440-66-6	30.6	11,000.00	no	0.0028	

Cumulative Risk Ratio

0.16 7.3E-05

blank cells for Exposure Point Concentration indicates the chemical was below detection limits in this well Cumulative Risk Ratio does not include lead

USEPA Region 6 Risk-Based Screening Levels were obtained from the Downloadable Excel Spreadsheet (Excel format - 1224 kb) (revised 05/04/07) located at http://www.epa.gov/earth1r6/6pd/rcra_c/pd-n/screen.htm.