
GROUNDWATER SAMPLING REPORT FOR MW-9 AT AREA OF CONCERN 3 FORMER SCHENECTADY ARMY DEPOT - VOORHEESVILLE AREA GUILDERLAND, NEW YORK

Prepared For:

U.S. ARMY CORPS OF ENGINEERS Contract No. W912DY-08-D-0003

Task Order No. 0007

Prepared By:

PARSONS

November 2011

Table of Contents _____ INTRODUCTION1 1.0 2.0 SITE HISTORY AND BACKGROUND......2 SAMPLING AND ANALYTICAL METHODOLOGY......4 3.0 4.0 RESULTS5 5.0 *Tables*_____ Table 1 Summary of Detected Compounds in MW-9 Figures _____ Figure 1 Site Plan Appendices _____ Appendix A Data Quality Review Report Appendix B Laboratory Analytical Data Report

1.0 INTRODUCTION

This Groundwater Sampling Report has been prepared by Parsons for the U.S. Army Corps of Engineers (USACE) – New York District in compliance with the Contract No. W912DY-08-D-0003, Task Order No. 0007 with the USACE – Huntsville Center.

This is the fifth year of a five-year groundwater monitoring program that was started by Shaw Environmental, Inc. (Shaw) at the completion of the interim removal action for the former burn pit area known as Area of Concern (AOC) 3 at the Former Schenectady Army Depot – Voorheesville Area (SADVA). The purpose of this sampling effort is to monitor groundwater quality at MW-9, where the concentration of trichloroethene has been slightly above the New York State Class GA groundwater quality standard.

This report presents the results of groundwater sampling at MW-9 conducted in June 2011.

2.0 SITE HISTORY AND BACKGROUND

AOC 3 is the designation given to a former burn pit area that was used for burning of wastes during Department of Defense operation of the SADVA. Department of Defense operation of SADVA began in 1941 and continued for a period of 28 years. The burn pit area was used to burn a multitude of depot waste materials in several small depressions. AOC 3 was less than 10 acres in size, and was located in the north end of the SADVA. SADVA was closed in 1969 and the property was subsequently sold. Since that time, the property has been used as an industrial park, and is now known as the Northeastern Industrial Park. In addition, the nearby Guilderland School District facilities previously utilized the groundwater in the vicinity of AOC 3 for irrigation and lawn sprinkling purposes.

From the Fall of 2002 to the Spring of 2003, an interim removal action was completed within AOC 3. This removal action, performed by Shaw under USACE direction, consisted of the excavation and disposal of waste materials and impacted soils followed by restoration to grade. The removal action resulted in the excavation and off-site disposal of approximately 4,000 cubic yards of waste and impacted soils. As part of the investigations leading up to and during the interim removal action, several wells were installed within and around the AOC 3 area. These wells were utilized following completion of the excavation activities to monitor groundwater quality and site impacts.

In 2006, USACE agreed to conduct a single-well groundwater monitoring program to develop a data set for groundwater quality located downgradient of AOC 3, within the Guilderland High School grounds. This well, MW-9 (Figure 1) was found to be impacted by volatile organic compounds during the previously completed AOC 3 groundwater monitoring program and is being monitored for five annual events to determine any applicable course of action. The results for all the MW-9 sampling events are summarized in the text and table below:

Detected	Class	2007	2008	2009	2010	2011
Compound	GA	Results	Results	Results	Results	Results
(ND = not detected)	Standard	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
	(ug/l)					
Trichloroethene	5	5.4	5.5	5.4	6.9	7.5
cis-1,2-	5	ND	1.1	1.0	1.2	1.3
Dichloroethene						
Tetrachloroethene	5	ND	ND	ND	ND	0.38

The first of the five scheduled events was completed in June 2007, and the concentration of trichloroethene was 5.4 micrograms per liter (ug/l), slightly above the New York State Class GA groundwater standard of 5 ug/l. No other volatile organic compounds were detected in 2007.

Results for the June 2008 event can be summarized as follows:

- o Trichloroethylene was detected at 5.5 ug/l, slightly above the New York State Class GA standard of 5 ug/l, and slightly above the 2007 concentration of 5.4 ug/l.
- o cis-1,2-Dichloroethene was the only other volatile organic compound detected, at a concentration of 1.1 ug/l, well below the New York State Class GA standard of 5 ug/l. cis-1,2-Dichloroethene is a breakdown product of trichloroethene.

Results for the June 2009 event can be summarized as follows:

- o Trichloroethylene was detected at 5.4 ug/l, slightly above the New York State Class GA standard of 5 ug/l, and slightly below the 2008 concentration of 5.5 ug/l and the same as the 2007 concentration of 5.4 ug/l.
- o cis-1,2-Dichloroethene was the only other volatile organic compound detected, at a concentration of 1.0 ug/l, well below the New York State Class GA standard of 5 ug/l. cis-1,2-Dichloroethene is a breakdown product of trichloroethene. The 2008 concentration of cis-1,2-dichloroethene was 1.1 ug/l. It was not detected in 2007.

Results for the April 2010 event can be summarized as follows:

- O Trichloroethylene was detected at 6.9 ug/l, slightly above the New York State Class GA standard of 5 ug/l, and slightly above the 2009 concentration of 5.4 ug/l, the 2008 concentration of 5.5 ug/l, and the same as the 2007 concentration of 5.4 ug/l.
- o cis-1,2-Dichloroethene was the only other volatile organic compound detected, at a concentration of 1.2 ug/l, well below the New York State Class GA standard of 5 ug/l. cis-1,2-Dichloroethene is a breakdown product of trichloroethene. The 2009 concentration of cis-1,2-dichloroethene was 1.0 ug/l. The 2008 concentration of cis-1,2-dichloroethene was 1.1 ug/l. It was not detected in 2007.

3.0 SAMPLING AND ANALYTICAL METHODOLOGY

Monitoring well MW-9 was sampled on June 21, 2011 in accordance with the procedures previously used for the AOC 3 groundwater monitoring program. These procedures included the following:

- Prior to sample collection, the well was gauged for depth to water, depth to nonaqueous phase liquids, and depth to bottom of well.
- The well was purged and sampled using low-flow techniques to ensure that the samples were collected from representative groundwater with minimal disturbance. During purging activities, a continuous flow-through water quality meter was used to measure the temperature, conductivity, and turbidity of the water. Purging continued until there was no more than a ten percent variation in the field measured water quality parameters between each measuring point. More than three well volumes (about 8 gallons) were purged from MW-9.
- The sample was packaged, shipped overnight and delivered under Chain of Custody for analysis at a DoD Environmental Laboratory Accreditation Program (ELAP) subcontract laboratory (Alpha Analytical in Westborough, Massachusetts) for volatile organic compounds, pH, color, coliforms, odor, turbidity, and total dissolved solids.

A data usability report is provided in Appendix A, and the Alpha Analytical data report is provided in Appendix B.

.

4.0 RESULTS

4.1 Groundwater Quality

Results for the June 2011 sampling are summarized on Table 1. The laboratory report is attached as Appendix B. Results for pH, total dissolved solids, color, turbidity and odor were within the applicable New York State Class GA quality criteria, as follows:

- o pH was 6.9; Class GA criterion is 6.5 to 8.5.
- o Color was not detected (< 5 units); the Class GA standard is 15 units.
- o Total dissolved solids were 340,000 micrograms per liter (ug/l); Class GA criterion is 500,000 ug/l.
- o Odor was not present; Class GA criterion is 3 units.
- o Turbidity was 0.27 nephelometric units; the Class GA criterion is 5 units.
- o Total coliforms were at 29 in the sample; the Class GA standard is 50.

4.2 Chemical Constituent Concentrations

The MW-9 sample was analyzed for volatile organic compounds. Table 1 presents a summary of the analytical results for MW-9. Results for the June 2011 event can be summarized as follows:

- O Trichloroethylene was detected at 7.5 ug/l, slightly above the New York State Class GA standard of 5 ug/l, and slightly above the 2010 concentration of 6.9, 2009 concentration of 5.4 ug/l, the 2008 concentration of 5.5 ug/l, and the 2007 concentration of 5.4 ug/l.
- o cis-1,2-Dichloroethene was detected at a concentration of 1.3 ug/l, well below the New York State Class GA standard of 5 ug/l. cis-1,2-Dichloroethene is a breakdown product of trichloroethene. The 2010 concentration was 1.2 ug/l, the 2009 concentration was 1.0 ug/l, and the 2008 concentration of cis-1,2-dichloroethene was 1.1 ug/l. It was not detected in 2007.
- o Tetrachloroethene was detected at 0.38 ug/l, far below the Class GA standard of 5 ug/l. Tetrachloroethene is a solvent, commonly used in dry cleaning operations. This is the first time tetrachloroethene has been detected in MW-9.

4.3 Quality Control Results

Field Quality Control consisted of the submittal of a Trip Blank, which had only methylene chloride, a common laboratory contaminant, detected. The laboratory report, attached as Appendix B, was reviewed for data usability and the sample results meet all applicable criteria with regards to data quality necessary for project usability. The data usability report can be found in Appendix A.

5.0 CONCLUSIONS and RECOMMENDATIONS

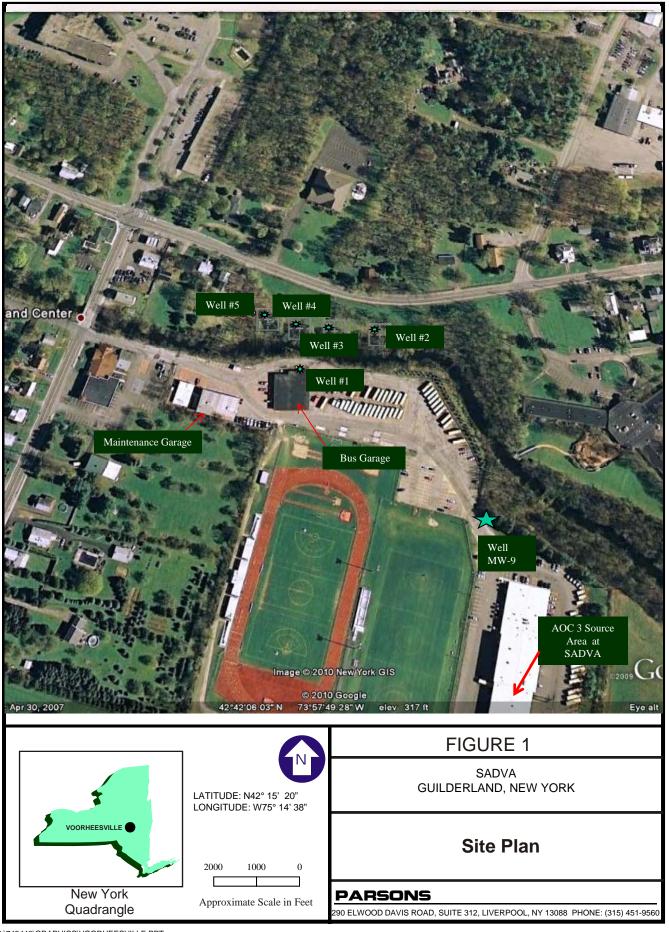

- The concentration of trichloroethene increased slightly from 2010, and remains slightly above the New York State Class GA standard.
- A breakdown product of trichloroethene, cis-1,2-dichloroethene, and tetrachloroethene were present at a concentrations below the New York State Class GA standard.
- A feasibility study will be conducted to evaluate alternatives to address the concentrations of TCE related to AOC 3.

Table 1 Summary of Compounds Detected in MW-9

SAMPLE ID:			MW-9		TRIP BLANK	
SAMPLING DATE:	NYS		6/21/2011		6/21/2011	
LAB SAMPLE ID:	Class GA		L1109044-06		L1109044-07	
	Standard	Units		Qual		Qual
General Chemistry						
·						
Turbidity	5	NTU	0.27			
Odor	1	TON		NO		
Color, Apparent	15	A.P.C.U.	5	U		
Solids, Total Dissolved	500,000	ug/l	340,000			
рН	6.5-8.5	SU	6.9			
Microbiological Analysis						
,						
Coliform, Total (MF)	50	col/100ml	29			
Volatile Organics						
1,1,1,2-Tetrachloroethane	5	ug/l	0.5	U	0.5	U
1,1,1-Trichloroethane	5	ug/l	0.5	U	0.5	U
1,1,2,2-Tetrachloroethane	5	ug/l	0.5	U	0.5	U
1,1,2-Trichloroethane	1	ug/l	0.5	U	0.5	U
1,1-Dichloroethane	5	ug/l	0.5	U	0.5	U
1,1-Dichloroethene	5	ug/l	0.5	U	0.5	U
1,1-Dichloropropene	NS	ug/l	0.5	U	0.5	U
1,2,3-Trichlorobenzene	5	ug/l	0.5	U	0.5	U
1,2,3-Trichloropropane	0.04	ug/l	0.5	U	0.5	U
1,2,4-Trichlorobenzene	5	ug/l	0.5	U	0.5	U
1,2,4-Trimethylbenzene	5	ug/l	0.5	U	0.5	U
1,2-Dibromo-3-chloropropane	0.04	ug/l	2	U	2	U
1,2-Dibromoethane	NS	ug/l	0.5	U	0.5	U
1,2-Dichlorobenzene	3	ug/l	0.5	U	0.5	U
1,2-Dichloroethane	0.6	ug/l	0.5	U	0.5	U
1,2-Dichloropropane	1	ug/l	0.5	U	0.5	U
1,3,5-Trimethylbenzene	5	ug/l	0.5	U	0.5	U
1,3-Dichlorobenzene	3	ug/l	0.5	U	0.5	U
1,3-Dichloropropane	5	ug/l	0.5	U	0.5	U
1,4-Dichlorobenzene	3	ug/l	0.5	U	0.5	U
2,2-Dichloropropane	5	ug/l	0.5	U	0.5	U
Benzene	1	ug/l	0.5	U	0.5	U
Bromobenzene	5	ug/l	0.5	U	0.5	U
Bromochloromethane	5	ug/l	0.5	U	0.5	U
Bromodichloromethane	NS	ug/l	0.5	U	0.5	U
Bromoform	NS	ug/l	0.5	U	0.5	U
Bromomethane	5	ug/l	0.5	U	0.5	U
Carbon tetrachloride	5	ug/l	0.5	U	0.5	U
Chlorobenzene	5	ug/l	0.5	U	0.5	U
Chloroethane	5	ug/l	0.5	U	0.5	U
Chloroform	7	ug/l	0.5	U	0.5	U
Chloromethane	NS	ug/l	0.5	U	0.5	U
cis-1,2-Dichloroethene	5	ug/l	1.3		0.5	U
cis-1,3-Dichloropropene		Ü				
ICIS-1,J-DICHIOLOPLOPCHE	0.4	ug/l	0.5	U	0.5	U

Table 1 Summary of Compounds Detected in MW-9

SAMPLE ID:			MW-9		TRIP BLANK	
SAMPLING DATE:	NYS		6/21/2011		6/21/2011	
LAB SAMPLE ID:	Class GA		L1109044-06		L1109044-07	
	Standard	Units	"	Qual		Qual
Dibromomethane	5	ug/l	0.5	U	0.5	U
Dichlorodifluoromethane	5	ug/l	0.5	U	0.5	U
Ethylbenzene	5	ug/l	0.5	U	0.5	U
Hexachlorobutadiene	0.5	ug/l	0.5	U	0.5	U
Isopropylbenzene	5	ug/l	0.5	U	0.5	U
Methyl tert butyl ether	NS	ug/l	0.5	U	0.5	U
Methylene chloride	5	ug/l	0.5	U	0.32	J
n-Butylbenzene	5	ug/l	0.5	U	0.5	U
n-Propylbenzene	5	ug/l	0.5	U	0.5	U
Naphthalene	NA	ug/l	0.5	U	0.5	U
o-Chlorotoluene	5	ug/l	0.5	U	0.5	U
o-Xylene	5	ug/l	0.5	U	0.5	U
p-Chlorotoluene	5	ug/l	0.5	U	0.5	U
p-Isopropyltoluene	5	ug/l	0.5	U	0.5	U
p/m-Xylene	5	ug/l	1	U	1	U
sec-Butylbenzene	5	ug/l	0.5	U	0.5	U
Styrene	5	ug/l	0.5	U	0.5	U
tert-Butylbenzene	5	ug/l	0.5	U	0.5	U
Tetrachloroethene	5	ug/l	0.38	J	0.5	U
Toluene	5	ug/l	0.5	U	0.5	U
trans-1,2-Dichloroethene	5	ug/l	0.5	U	0.5	U
trans-1,3-Dichloropropene	0.4	ug/l	0.5	U	0.5	U
Trichloroethene	5	ug/l	7.5		0.5	U
Trichlorofluoromethane	5	ug/l	0.5	U	0.5	U
Vinyl chloride	2	ug/l	0.5	U	0.5	U
Qual: data qualifier						
U - not detected at the reporting limit	provided					
J - estimated value (concentration is be	_	_			etection level)	
7.5	concentrat	ion is above	e the Class GA sta	ndard		
	compound	present at o	concentration belo	ow Class	s GA standard	
NTU - nephelometric turbidity units						
TON - threshold odor number						
A.P.C.U. Apparent color units						
ug/l - micrograms per liter						
NS - no Class GA standard						

APPENDIX A

Data Usability Report

DATA QUALITY REVIEW REPORT

Former Schenectady Army Depot AOC-3 Guilderland, New York

DATA QUALITY REVIEW AND ASSESSMENT

Data Quality Review Process

A Parsons Corporation project-specific data quality review was performed on 100% of the sample results and associated QA/QC data reported in the analytical report for Alpha Analytical Project ID L110904, Parsons Project ID SADVA-Schenectady Depot. The data review results in this report are for one water sample and one trip blank collected at the AOC-3 site by Parsons' personnel. The samples were analyzed for the parameters listed in the Sample Summary Table. The data review pertained to the method EPA 524.2 volatile organic compounds (VOCs), method SM21-2540C total dissolved solids (TDS), method SM18-2120B color, method SM18-2150 odor, method SM21-4500H+-B pH, method EPA 180.1 turbidity, and method SM18-922B total coliform. The laboratory met all turnaround commitments and the final report was dated June 30, 2011.

	Sample Summary Table									
Parsons Sample ID	Laboratory Sample ID	Sample Collection Date	Sample Matrix	Analyses Performed (as listed on Chain of Custody record)						
MW-9	L110904-06	06/21/11	Water	VOCs (EPA 524.2), TDS (SM18-2540C), Color (SM18 2120-B), Odor (SM18 2150), pH (SM21 4500H+-B), Total Coliform, (SM18 9222B), Turbidity (EPA 180.1)						
Trip Blank TB-1	1006452-004	04/27/2010	Water	VOCs (EPA 524.2)						

All of the samples were properly preserved and analyzed within the holding time. The sample coolers were received with temperature of 2.2°C, which is within the acceptance range of 2-6 degrees Celsius. Chain-of-custody documentation was accurate and complete.

The data quality review consisted of manually examining the analytical data report to compare the laboratory QC sample results with the established laboratory QC limits, and with established USEPA sample preservation and analytical holding time requirements, in order to evaluate impacts, if any, on data quality and usability of the reported sample results. The data quality review addressed analytical data associated with the following, as applicable to the analytical method: sample preservation and shipping cooler temperatures, analytical holding times, method blanks, trip blanks, surrogate spike recoveries, laboratory duplicate results, laboratory control sample results, and matrix spike/matix spike duplicate results.

The following sections describe the overall QA/QC indicators.

Volatile Organics in Water by EPA Method 524.2

All samples were analyzed on 06/27/2011, which is within the holding time. Evaluation results for specific QC samples results are as follows:

- Laboratory method blank: The method blank contained no reported analytes at concentrations above the reporting limit.
- Laboratory control sample (spike) (LCS): The LCS recoveries for all analytes were within project criteria.
- Surrogate compounds: All surrogate recoveries were within acceptance limits for samples and QC samples.
- Matrix spike/matrix spike duplicate (MS/MSD): Sample MW-9 was used for MS/MSD analyses; results met QC acceptance criteria.
- Field QC: Methylene chloride was reported as detected (0.32 µg/L) in the trip blank, but was not detected in any of the associated samples.

TDS in Water by Method SM21-2540C

All samples were analyzed on 06/24/2011, which is within the holding time.

Evaluation results for specific QC samples results are as follows:

- Laboratory method blank: The method blank contained no TDS at a concentration above the reporting limit.
- Laboratory control sample (spike) (LCS): The LCS recoveries for all analytes were within project criteria.
- Laboratory duplicate sample: Sample MW-9 was used for laboratory duplicate analysis; results met QC acceptance criteria.

pH in Water by Method SM18-4500H+-B

All samples were analyzed on 06/22/2011, which is within the holding time.

Evaluation results for specific QC samples results are as follows:

- Laboratory control sample (spike) (LCS): The LCS recoveries for all analytes were within project criteria.
- Laboratory duplicate sample: Sample Well#1 was used for laboratory duplicate analysis; results met QC acceptance criteria.

Coliform in Water by Method SM18-9222B

All samples were analyzed on 06/22/2011, which is within the holding time.

Evaluation results for specific QC samples results are as follows:

• Laboratory method blank: The method blank contained no TDS at a concentration above the reporting limit.

Turbidity in Water by Method EPA 180.1

All samples were analyzed on 06/24/2011, which is within the holding time.

Evaluation results for specific QC samples results are as follows:

- Laboratory method blank: The method blank contained no TDS at a concentration above the reporting limit.
- Laboratory control sample (spike) (LCS): The LCS recoveries for all analytes were within project criteria.
- Laboratory duplicate sample: results met QC acceptance criteria.

Odor in Water by Method SM18-2520

All samples were analyzed on 06/22/2011, which is within the holding time.

Evaluation results for specific QC samples results are as follows:

- Laboratory method blank: The method blank contained no TDS at a concentration above the reporting limit.
- Laboratory duplicate sample: results met QC acceptance criteria.

Color in Water by Method SM18-2520C

All samples were analyzed on 06/23/2011, which is within the holding time.

Evaluation results for specific QC samples results are as follows:

• Laboratory duplicate sample: results met QC acceptance criteria.

Data Quality Summary

Based on evaluation of the results of the data quality review, the overall quality control data for methods EPA 524.2 VOCs, SM18-2540C TDS, SM18-2120B Color, SM18-2150B Odor, EPA 180.1 Turbidity, SM18-4500H+-B pH, and Coliform SM18-9222B provided in the laboratory report are representative of adequate method accuracy, precision, representativeness, and comparability with regard to project objectives. The reported data should be utilized, without reservation, in the intended project decision-making process.

APPENDIX B

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number: L1109044

Client: Parsons

301 Plainfield Road

Suite 350

Syracuse, NY 13212

ATTN: George Moreau Phone: (315) 552-9715

Project Name: SADVA

Project Number: Not Specified Report Date: 06/30/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:SADVALab Number:L1109044Project Number:Not SpecifiedReport Date:06/30/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, p	please contact Client Services at	t 800-624-9220.	

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Testing performed for the reported analyses followed the guidelines established under the DoD QSM 4.2, where applicable.

Note: When manual integrations are performed, they are assigned one of the following codes, and can be found on the raw data provided within the data deliverable package.

Manual Integration Codes

M1 Split or tailing peak, auto integration stopped early resulting in false low area count.

M2 Peak not found by automatic integration algorithm.

M3 Misidentification of the peak (i.e. 1,4-dichlorobenzene identified as 1,3-dichlorobenzene), or

Project Name:SADVALab Number:L1109044Project Number:Not SpecifiedReport Date:06/30/11

Case Narrative (continued)

misidentification from 2 partially resolved peaks not being split.

M4 Poor automated baseline construction.

M5 Manual integration over a retention time range required, i.e. for hydrocarbon range methods.

M6 Misassignment of peak valley by automated integration (poor split of 2 peaks).

M7 A qualifier ion was manually integrated (only for GC/MS data).

M8 Integration of individual analyte eluting on top of an unresolved complex.

M9 Other: Explain on chromatogram.

Coliform, Fecal (MF)

L1109044-04 through -06: All presumptive and atypical colonies were confirmed in MPN phase for the presence of Total Coliform.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

King L. Wisters Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 06/30/11

ORGANICS

VOLATILES

06/22/11

Not Specified

Date Received:

Field Prep:

Project Name: SADVA Lab Number: L1109044

Project Number: Not Specified Report Date: 06/30/11

SAMPLE RESULTS

Lab ID: Date Collected: 06/21/11 14:30

Client ID: MW-9
Sample Location: ALBANY,NY

Matrix: Dw
Analytical Method: 16,524.2
Analytical Date: 06/27/11 10:21

Analyst: TT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ough Lab					
Methylene chloride	ND		ug/l	0.50	0.12	1
1,1-Dichloroethane	ND		ug/l	0.50	0.11	1
Chloroform	ND		ug/l	0.50	0.13	1
Carbon tetrachloride	ND		ug/l	0.50	0.05	1
1,2-Dichloropropane	ND		ug/l	0.50	0.12	1
Dibromochloromethane	ND		ug/l	0.50	0.11	1
1,1,2-Trichloroethane	ND		ug/l	0.50	0.11	1
Tetrachloroethene	0.38	J	ug/l	0.50	0.12	1
Chlorobenzene	ND		ug/l	0.50	0.12	1
Trichlorofluoromethane	ND		ug/l	0.50	0.10	1
1,2-Dichloroethane	ND		ug/l	0.50	0.12	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.09	1
Bromodichloromethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.11	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.12	1
Bromoform	ND		ug/l	0.50	0.12	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.07	1
Toluene	ND		ug/l	0.50	0.06	1
Ethylbenzene	ND		ug/l	0.50	0.08	1
p/m-Xylene	ND		ug/l	1.0	0.19	1
Chloromethane	ND		ug/l	0.50	0.13	1
Bromomethane	ND		ug/l	0.50	0.18	1
Vinyl chloride	ND		ug/l	0.50	0.08	1
Chloroethane	ND		ug/l	0.50	0.12	1
1,1-Dichloroethene	ND		ug/l	0.50	0.09	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	0.12	1
cis-1,2-Dichloroethene	1.3		ug/l	0.50	0.13	1
Trichloroethene	7.5		ug/l	0.50	0.09	1
1,2-Dichlorobenzene	ND		ug/l	0.50	0.11	1
1,3-Dichlorobenzene	ND		ug/l	0.50	0.11	1

Project Name: SADVA Lab Number: L1109044

Project Number: Not Specified Report Date: 06/30/11

SAMPLE RESULTS

Lab ID: L1109044-06 Date Collected: 06/21/11 14:30

Client ID: MW-9 Date Received: 06/22/11
Sample Location: ALBANY,NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab 1,4-Dichlorobenzene ND 0.50 ug/l 0.11 1 Styrene ND ug/l 0.50 0.07 1 ND 1 o-Xylene ug/l 0.50 0.08 ND 0.50 0.07 1 1,1-Dichloropropene ug/l ND ug/l 0.50 0.09 1 2,2-Dichloropropane ND 0.50 1 1,1,1,2-Tetrachloroethane ug/l 0.14 ND 0.50 1 1,2,3-Trichloropropane ug/l 0.11 Bromochloromethane ND ug/l 0.50 0.16 1 n-Butylbenzene ND ug/l 0.50 0.09 1 Dichlorodifluoromethane ND ug/l 0.50 0.09 1 ND Hexachlorobutadiene ug/l 0.50 0.13 1 ND 0.50 1 Isopropylbenzene ug/l 0.12 ND p-Isopropyltoluene ug/l 0.50 0.11 1 Naphthalene ND ug/l 0.50 0.05 1 ND 1 n-Propylbenzene ug/l 0.50 0.11 ND 0.50 1 sec-Butylbenzene ug/l 0.12 ND 0.50 1 tert-Butylbenzene ug/l 0.10 ND 0.50 1,2,3-Trichlorobenzene 0.14 1 ug/l 1,2,4-Trichlorobenzene ND 0.50 0.09 1 ug/l ND 0.50 1 1,2,4-Trimethylbenzene ug/l 0.10 ND 1 1,3,5-Trimethylbenzene ug/l 0.50 0.11 Bromobenzene ND ug/l 0.50 0.13 1 ND 0.50 o-Chlorotoluene ug/l 0.18 1 p-Chlorotoluene ND ug/l 0.50 0.10 1 Dibromomethane ND ug/l 0.50 0.11 1 1,2-Dibromoethane ND ug/l 0.50 0.16 1 1,2-Dibromo-3-chloropropane ND ug/l 2.0 0.18 1 1,3-Dichloropropane ND ug/l 0.50 0.13 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	105		70-130	
4-Bromofluorobenzene	91		70-130	

ug/l

0.50

0.09

1

ND

Methyl tert butyl ether

Project Name: SADVA Lab Number: L1109044

Project Number: Not Specified Report Date: 06/30/11

SAMPLE RESULTS

Lab ID: Date Collected: 06/21/11 00:00

Client ID: TRIP BLANK Date Received: 06/22/11 Sample Location: ALBANY,NY Field Prep: Not Specified

Matrix: Dw
Analytical Method: 16,524.2
Analytical Date: 06/27/11 14:05

Analyst: TT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ugh Lab					
Methylene chloride	0.32	J	ug/l	0.50	0.12	1
1,1-Dichloroethane	ND		ug/l	0.50	0.11	1
Chloroform	ND		ug/l	0.50	0.13	1
Carbon tetrachloride	ND		ug/l	0.50	0.05	1
1,2-Dichloropropane	ND		ug/l	0.50	0.12	1
Dibromochloromethane	ND		ug/l	0.50	0.11	1
1,1,2-Trichloroethane	ND		ug/l	0.50	0.11	1
Tetrachloroethene	ND		ug/l	0.50	0.12	1
Chlorobenzene	ND		ug/l	0.50	0.12	1
Trichlorofluoromethane	ND		ug/l	0.50	0.10	1
1,2-Dichloroethane	ND		ug/l	0.50	0.12	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.09	1
Bromodichloromethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.11	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.12	1
Bromoform	ND		ug/l	0.50	0.12	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.07	1
Toluene	ND		ug/l	0.50	0.06	1
Ethylbenzene	ND		ug/l	0.50	0.08	1
p/m-Xylene	ND		ug/l	1.0	0.19	1
Chloromethane	ND		ug/l	0.50	0.13	1
Bromomethane	ND		ug/l	0.50	0.18	1
Vinyl chloride	ND		ug/l	0.50	0.08	1
Chloroethane	ND		ug/l	0.50	0.12	1
1,1-Dichloroethene	ND		ug/l	0.50	0.09	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	0.12	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.13	1
Trichloroethene	ND		ug/l	0.50	0.09	1
1,2-Dichlorobenzene	ND		ug/l	0.50	0.11	1
1,3-Dichlorobenzene	ND		ug/l	0.50	0.11	1

Project Name: SADVA Lab Number: L1109044

Project Number: Not Specified Report Date: 06/30/11

SAMPLE RESULTS

Lab ID: Date Collected: 06/21/11 00:00

Client ID: TRIP BLANK Date Received: 06/22/11

Sample Location: ALBANY,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
1,4-Dichlorobenzene	ND		ug/l	0.50	0.11	1
Styrene	ND		ug/l	0.50	0.07	1
o-Xylene	ND		ug/l	0.50	0.08	1
1,1-Dichloropropene	ND		ug/l	0.50	0.07	1
2,2-Dichloropropane	ND		ug/l	0.50	0.09	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
1,2,3-Trichloropropane	ND		ug/l	0.50	0.11	1
Bromochloromethane	ND		ug/l	0.50	0.16	1
n-Butylbenzene	ND		ug/l	0.50	0.09	1
Dichlorodifluoromethane	ND		ug/l	0.50	0.09	1
Hexachlorobutadiene	ND		ug/l	0.50	0.13	1
Isopropylbenzene	ND		ug/l	0.50	0.12	1
p-Isopropyltoluene	ND		ug/l	0.50	0.11	1
Naphthalene	ND		ug/l	0.50	0.05	1
n-Propylbenzene	ND		ug/l	0.50	0.11	1
sec-Butylbenzene	ND		ug/l	0.50	0.12	1
tert-Butylbenzene	ND		ug/l	0.50	0.10	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	0.14	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	0.09	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	0.10	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	0.11	1
Bromobenzene	ND		ug/l	0.50	0.13	1
o-Chlorotoluene	ND		ug/l	0.50	0.18	1
p-Chlorotoluene	ND		ug/l	0.50	0.10	1
Dibromomethane	ND		ug/l	0.50	0.11	1
1,2-Dibromoethane	ND		ug/l	0.50	0.16	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0	0.18	1
1,3-Dichloropropane	ND		ug/l	0.50	0.13	1
Methyl tert butyl ether	ND		ug/l	0.50	0.09	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	105		70-130	
4-Bromofluorobenzene	89		70-130	

Project Name: SADVA Lab Number: L1109044

Project Number: Not Specified Report Date: 06/30/11

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 06/27/11 07:52

Analyst: TT

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s):	01-07	Batch: WG47	'5672-2
Methylene chloride	ND		ug/l	0.50	0.12
1,1-Dichloroethane	ND		ug/l	0.50	0.11
Chloroform	ND		ug/l	0.50	0.13
Carbon tetrachloride	ND		ug/l	0.50	0.05
1,2-Dichloropropane	ND		ug/l	0.50	0.12
Dibromochloromethane	ND		ug/l	0.50	0.11
1,1,2-Trichloroethane	ND		ug/l	0.50	0.11
Tetrachloroethene	ND		ug/l	0.50	0.12
Chlorobenzene	ND		ug/l	0.50	0.12
Trichlorofluoromethane	ND		ug/l	0.50	0.10
1,2-Dichloroethane	ND		ug/l	0.50	0.12
1,1,1-Trichloroethane	ND		ug/l	0.50	0.09
Bromodichloromethane	ND		ug/l	0.50	0.13
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.11
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.12
Bromoform	ND		ug/l	0.50	0.12
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17
Benzene	ND		ug/l	0.50	0.07
Toluene	ND		ug/l	0.50	0.06
Ethylbenzene	ND		ug/l	0.50	0.08
p/m-Xylene	ND		ug/l	1.0	0.19
Chloromethane	ND		ug/l	0.50	0.13
Bromomethane	ND		ug/l	0.50	0.18
Vinyl chloride	ND		ug/l	0.50	0.08
Chloroethane	ND		ug/l	0.50	0.12
1,1-Dichloroethene	ND		ug/l	0.50	0.09
trans-1,2-Dichloroethene	ND		ug/l	0.50	0.12
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.13
Trichloroethene	ND		ug/l	0.50	0.09
1,2-Dichlorobenzene	ND		ug/l	0.50	0.11
1,3-Dichlorobenzene	ND		ug/l	0.50	0.11

Project Name: SADVA Lab Number: L1109044

Project Number: Not Specified Report Date: 06/30/11

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 06/27/11 07:52

Analyst: TT

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough L	ab for sample(s):	01-07	Batch: WO	G475672-2
1,4-Dichlorobenzene	ND		ug/l	0.50	0.11
Styrene	ND		ug/l	0.50	0.07
o-Xylene	ND		ug/l	0.50	0.08
1,1-Dichloropropene	ND		ug/l	0.50	0.07
2,2-Dichloropropane	ND		ug/l	0.50	0.09
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.14
1,2,3-Trichloropropane	ND		ug/l	0.50	0.11
Bromochloromethane	ND		ug/l	0.50	0.16
n-Butylbenzene	ND		ug/l	0.50	0.09
Dichlorodifluoromethane	ND		ug/l	0.50	0.09
Hexachlorobutadiene	ND		ug/l	0.50	0.13
Isopropylbenzene	ND		ug/l	0.50	0.12
p-Isopropyltoluene	ND		ug/l	0.50	0.11
Naphthalene	ND		ug/l	0.50	0.05
n-Propylbenzene	ND		ug/l	0.50	0.11
sec-Butylbenzene	ND		ug/l	0.50	0.12
tert-Butylbenzene	ND		ug/l	0.50	0.10
1,2,3-Trichlorobenzene	ND		ug/l	0.50	0.14
1,2,4-Trichlorobenzene	ND		ug/l	0.50	0.09
1,2,4-Trimethylbenzene	ND		ug/l	0.50	0.10
1,3,5-Trimethylbenzene	ND		ug/l	0.50	0.11
Bromobenzene	ND		ug/l	0.50	0.13
o-Chlorotoluene	ND		ug/l	0.50	0.18
p-Chlorotoluene	ND		ug/l	0.50	0.10
Dibromomethane	ND		ug/l	0.50	0.11
1,2-Dibromoethane	ND		ug/l	0.50	0.16
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0	0.18
1,3-Dichloropropane	ND		ug/l	0.50	0.13
Methyl tert butyl ether	ND		ug/l	0.50	0.09

Project Name: Lab Number: SADVA L1109044

Not Specified **Project Number: Report Date:** 06/30/11

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 16,524.2 06/27/11 07:52 Analytical Date:

Analyst: TT

> Result Qualifier Units RLMDL Parameter

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-07 Batch: WG475672-2

	Acceptance							
Surrogate	%Recovery	Qualifier	Criteria					
1,2-Dichlorobenzene-d4	105		70-130					
4-Bromofluorobenzene	93		70-130					

Project Name: SADVA

Project Number: Not Specified

Lab Number: L1109044

Report Date: 06/30/11

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-07 E	Batch:	WG475672-	1			
Methylene chloride	110		-			70-130	-		
1,1-Dichloroethane	120		-			70-130	-		
Chloroform	113		-			70-130	-		
Carbon tetrachloride	117		-			70-130	-		
1,2-Dichloropropane	109		-			70-130	-		
Dibromochloromethane	96		-			70-130	-		
1,1,2-Trichloroethane	103		-			70-130	-		
Tetrachloroethene	123		-			70-130	-		
Chlorobenzene	110		-			70-130	-		
Trichlorofluoromethane	114		-			70-130	-		
1,2-Dichloroethane	101		-			70-130	-		
1,1,1-Trichloroethane	121		-			70-130	-		
Bromodichloromethane	103		-			70-130	-		
trans-1,3-Dichloropropene	87		-			70-130	-		
cis-1,3-Dichloropropene	103		-			70-130	-		
Bromoform	87		-			70-130	-		
1,1,2,2-Tetrachloroethane	92		-			70-130	-		
Benzene	117		-			70-130	-		
Toluene	121		-			70-130	-		
Ethylbenzene	111		-			70-130	-		
p/m-Xylene	110		-			70-130	-		

Project Name: SADVA

Project Number: Not Specified

Lab Number: L1109044

Report Date: 06/30/11

Chloromethane	Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Bromomethane 109 - 70-130 - Vinyl chloride 128 - 70-130 - Chloroethane 121 - 70-130 - 1,1-Dichloroethene 119 - 70-130 - dis-1,2-Dichloroethene 119 - 70-130 - Trichloroethene 119 - 70-130 - Trichloroethene 122 - 70-130 - 1,2-Dichloroethene 122 - 70-130 - 1,3-Dichlorobenzene 99 - 70-130 - 1,4-Dichlorobenzene 96 - 70-130 - Styrene 102 - 70-130 - Styrene 102 70-130 - 0-Xylene 106 - 70-130 - 1,1-Dichloropropane 108 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,2,3-Trichloropropa	Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-07 E	Batch:	WG475672-	1			
Vinyl chloride 128 70-130 - Chloroethane 121 70-130 - 1,1-Dichloroethene 119 70-130 - trans-1,2-Dichloroethene 122 70-130 - cis-1,2-Dichloroethene 119 70-130 - Trichloroethene 122 70-130 - 1,2-Dichlorobenzene 99 70-130 - 1,3-Dichlorobenzene 96 70-130 - 1,4-Dichlorobenzene 96 70-130 - Styrene 102 70-130 - 0-Xylene 106 70-130 - 1,1-Dichloropropene 126 70-130 - 2,2-Dichloropropane 108 70-130 - 1,1,2-Tetrachloroethane 101 70-130 - 1,2,3-Trichloropropane 96 70-130 - Bromochloromethane 106 70-130 - Bromochloromethane 108 70-130 - Dichlorodifluo	Chloromethane	112		-			70-130	-		
Chloroethane 121 - 70-130 - 1,1-Dichloroethene 119 - 70-130 - trans-1,2-Dichloroethene 122 - 70-130 - cis-1,2-Dichloroethene 119 - 70-130 - Trichloroethene 122 - 70-130 - 1,2-Dichlorobenzene 99 - 70-130 - 1,3-Dichlorobenzene 96 - 70-130 - Styrene 102 - 70-130 - o-Xylene 106 - 70-130 - 1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - Bromochloromethane 106 - 70-130 <td< td=""><td>Bromomethane</td><td>109</td><td></td><td>-</td><td></td><td></td><td>70-130</td><td>-</td><td></td><td></td></td<>	Bromomethane	109		-			70-130	-		
1,1-Dichloroethene 119 - 70-130 - trans-1,2-Dichloroethene 122 - 70-130 - Cis-1,2-Dichloroethene 119 - 70-130 - Trichloroethene 122 - 70-130 - 1,2-Dichlorobenzene 99 - 70-130 - 1,3-Dichlorobenzene 100 - 70-130 - 1,4-Dichlorobenzene 96 - 70-130 - Styrene 102 - 70-130 - o-Xylene 106 - 70-130 - 1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodiffluoromethane 109 - 70-130 -<	Vinyl chloride	128		-			70-130	-		
trans-1,2-Dichloroethene 122 - 70-130 - cis-1,2-Dichloroethene 119 - 70-130 - Trichloroethene 122 - 70-130 - 1,2-Dichlorobenzene 99 - 70-130 - 1,3-Dichlorobenzene 100 - 70-130 - 1,4-Dichlorobenzene 96 - 70-130 - Styrene 102 - 70-130 - 0-Xylene 106 - 70-130 - 1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130	Chloroethane	121		-			70-130	-		
cis-1,2-Dichloroethene 119 - 70-130 - Trichloroethene 122 - 70-130 - 1,2-Dichlorobenzene 99 - 70-130 - 1,3-Dichlorobenzene 100 - 70-130 - 1,4-Dichlorobenzene 96 - 70-130 - Styrene 102 - 70-130 - o-Xylene 106 - 70-130 - 1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodiffluoromethane 109 - 70-130 -	1,1-Dichloroethene	119		-			70-130	-		
Trichloroethene 122 - 70-130 - 1,2-Dichlorobenzene 99 - 70-130 - 1,3-Dichlorobenzene 100 - 70-130 - 1,4-Dichlorobenzene 96 - 70-130 - Styrene 102 - 70-130 - c-Xylene 106 - 70-130 - 1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	trans-1,2-Dichloroethene	122		-			70-130	-		
1,2-Dichlorobenzene 99 - 70-130 - 1,3-Dichlorobenzene 100 - 70-130 - 1,4-Dichlorobenzene 96 - 70-130 - Styrene 102 - 70-130 - o-Xylene 106 - 70-130 - 1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	cis-1,2-Dichloroethene	119		-			70-130	-		
1,3-Dichlorobenzene 100 - 70-130 - 1,4-Dichlorobenzene 96 - 70-130 - Styrene 102 - 70-130 - o-Xylene 106 - 70-130 - 1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	Trichloroethene	122		-			70-130	-		
1,4-Dichlorobenzene 96 - 70-130 - Styrene 102 - 70-130 - o-Xylene 106 - 70-130 - 1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	1,2-Dichlorobenzene	99		-			70-130	-		
Styrene 102 - 70-130 - o-Xylene 106 - 70-130 - 1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	1,3-Dichlorobenzene	100		-			70-130	-		
o-Xylene 106 - 70-130 - 1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	1,4-Dichlorobenzene	96		-			70-130	-		
1,1-Dichloropropene 126 - 70-130 - 2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	Styrene	102		-			70-130	-		
2,2-Dichloropropane 108 - 70-130 - 1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	o-Xylene	106		-			70-130	-		
1,1,1,2-Tetrachloroethane 101 - 70-130 - 1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	1,1-Dichloropropene	126		-			70-130	-		
1,2,3-Trichloropropane 96 - 70-130 - Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	2,2-Dichloropropane	108		-			70-130	-		
Bromochloromethane 106 - 70-130 - n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	1,1,1,2-Tetrachloroethane	101		-			70-130	-		
n-Butylbenzene 115 - 70-130 - Dichlorodifluoromethane 109 - 70-130 -	1,2,3-Trichloropropane	96		-			70-130	-		
Dichlorodifluoromethane 109 - 70-130 -	Bromochloromethane	106		-			70-130	-		
	n-Butylbenzene	115		-			70-130	-		
Hexachlorobutadiene 119 - 70-130 -	Dichlorodifluoromethane	109		-			70-130	-		
	Hexachlorobutadiene	119		-			70-130	-		

Project Name: SADVA

Project Number: Not Specified

Lab Number: L1109044

Report Date: 06/30/11

arameter	LCS %Recovery	Qual	_	CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-07	Batch:	WG475672	-1			
Isopropylbenzene	97			-		70-130	-		
p-Isopropyltoluene	108			-		70-130	-		
Naphthalene	99			-		70-130	-		
n-Propylbenzene	111			-		70-130	-		
sec-Butylbenzene	114			-		70-130	-		
tert-Butylbenzene	112			-		70-130	-		
1,2,3-Trichlorobenzene	99			-		70-130	-		
1,2,4-Trichlorobenzene	113			-		70-130	-		
1,2,4-Trimethylbenzene	108			-		70-130	-		
1,3,5-Trimethylbenzene	114			-		70-130	-		
Bromobenzene	101			-		70-130	-		
o-Chlorotoluene	112			-		70-130	-		
p-Chlorotoluene	104			-		70-130	-		
Dibromomethane	97			-		70-130	-		
1,2-Dibromoethane	95			-		70-130	-		
1,2-Dibromo-3-chloropropane	85			-		70-130	-		
1,3-Dichloropropane	106			-		70-130	-		
Methyl tert butyl ether	88			-		70-130	-		

Lab Number: L1109044

Project Number: Not Specified Report Date:

06/30/11

	LCS		LCSD		%Recovery			
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	RPD Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-07 Batch: WG475672-1

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
1,2-Dichlorobenzene-d4	100				70-130	_
4-Bromofluorobenzene	100				70-130	

Project Name:

SADVA

Matrix Spike Analysis Batch Quality Control

Project Name: SADVA

Project Number: Not Specified

Lab Number:

L1109044

Report Date:

06/30/11

rameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery ual Limits	RPD	RPD Qual Limits
olatile Organics by GC/Mi : MW-9	S - Westborough	n Lab Assoc	ciated sample	(s): 01-07 Q	C Batch ID: WG47	5672-3 WG47567	72-4 QC Samp	ole: L1	109044-06 Clie
Methylene chloride	ND	4	4.3	108	4.4	111	70-130	2	30
1,1-Dichloroethane	ND	4	4.5	113	4.5	113	70-130	0	30
Chloroform	ND	4	4.4	109	4.4	109	70-130	0	30
Carbon tetrachloride	ND	4	4.5	113	4.5	113	70-130	0	30
1,2-Dichloropropane	ND	4	4.2	106	4.3	108	70-130	2	30
Dibromochloromethane	ND	4	3.8	95	4.0	99	70-130	5	30
1,1,2-Trichloroethane	ND	4	3.9	98	4.2	105	70-130	7	30
Tetrachloroethene	0.38J	4	5.0	125	5.0	124	70-130	0	30
Chlorobenzene	ND	4	4.2	104	4.2	106	70-130	0	30
Trichlorofluoromethane	ND	4	4.2	105	4.2	105	70-130	0	30
1,2-Dichloroethane	ND	4	4.0	101	4.1	102	70-130	2	30
1,1,1-Trichloroethane	ND	4	4.5	114	4.5	113	70-130	0	30
Bromodichloromethane	ND	4	4.0	99	4.1	103	70-130	2	30
trans-1,3-Dichloropropene	ND	4	3.4	85	3.4	86	70-130	0	30
cis-1,3-Dichloropropene	ND	4	4.0	100	4.1	102	70-130	2	30
Bromoform	ND	4	3.2	82	3.4	86	70-130	6	30
1,1,2,2-Tetrachloroethane	ND	4	3.5	87	3.6	91	70-130	3	30
Benzene	ND	4	4.5	112	4.5	113	70-130	0	30
Toluene	ND	4	4.5	112	4.5	113	70-130	0	30
Ethylbenzene	ND	4	4.1	103	4.1	104	70-130	0	30
p/m-Xylene	ND	8	8.3	104	8.2	103	70-130	1	30

Matrix Spike Analysis Batch Quality Control

Project Name: SADVA

Project Number: Not Specified

Lab Number:

L1109044

Report Date:

06/30/11

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits	RPD		PD mits
olatile Organics by GC/MiD: MW-9	S - Westborough	n Lab Assoc	iated sample	e(s): 01-07 Q	C Batch ID: WG4	75672-3 WG475672-4	4 QC Samp	le: L1	109044-06	Clier
Chloromethane	ND	4	4.3	107	4.1	102	70-130	5		30
Bromomethane	ND	4	4.0	100	3.8	94	70-130	5		30
Vinyl chloride	ND	4	5.1	127	5.0	126	70-130	2		30
Chloroethane	ND	4	4.6	115	4.5	114	70-130	2		30
1,1-Dichloroethene	ND	4	4.6	114	4.6	115	70-130	0		30
trans-1,2-Dichloroethene	ND	4	4.6	116	4.7	119	70-130	2		30
cis-1,2-Dichloroethene	1.3	4	5.6	109	5.8	113	70-130	4		30
Trichloroethene	7.5	4	12	109	12	111	70-130	0		30
1,2-Dichlorobenzene	ND	4	3.9	97	3.9	98	70-130	0		30
1,3-Dichlorobenzene	ND	4	3.9	98	3.9	98	70-130	0		30
1,4-Dichlorobenzene	ND	4	3.8	95	3.8	95	70-130	0		30
Styrene	ND	4	3.8	95	3.9	98	70-130	3		30
o-Xylene	ND	4	3.9	98	4.0	100	70-130	3		30
1,1-Dichloropropene	ND	4	4.7	117	4.8	120	70-130	2		30
2,2-Dichloropropane	ND	4	3.9	97	3.8	95	70-130	3		30
1,1,1,2-Tetrachloroethane	ND	4	3.8	96	4.0	99	70-130	5		30
1,2,3-Trichloropropane	ND	4	3.6	89	3.7	93	70-130	3		30
Bromochloromethane	ND	4	4.2	105	4.4	109	70-130	5		30
n-Butylbenzene	ND	4	4.4	110	4.3	107	70-130	2		30
Dichlorodifluoromethane	ND	4	4.0	99	3.7	94	70-130	8		30
Hexachlorobutadiene	ND	4	4.6	114	4.6	114	70-130	0		30

Matrix Spike Analysis Batch Quality Control

Project Name: SADVA

Project Number: Not Specified

Lab Number:

L1109044

Report Date:

06/30/11

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limits	•	RPD Qual Limits
/olatile Organics by GC/MS D: MW-9	- Westborough	Lab Assoc	iated sample	(s): 01-07 C	QC Batch ID: WG47	5672-3 WG47	75672-4 QC S	ample: L1	109044-06 Clien
Isopropylbenzene	ND	4	3.6	90	3.6	90	70-130	0	30
p-Isopropyltoluene	ND	4	4.0	100	4.0	100	70-130	0	30
Naphthalene	ND	4	3.9	98	4.0	101	70-130	3	30
n-Propylbenzene	ND	4	4.1	102	4.1	102	70-130	0	30
sec-Butylbenzene	ND	4	4.2	106	4.2	106	70-130	0	30
tert-Butylbenzene	ND	4	4.1	103	4.1	104	70-130	0	30
1,2,3-Trichlorobenzene	ND	4	4.0	101	4.1	103	70-130	2	30
1,2,4-Trichlorobenzene	ND	4	4.5	113	4.6	114	70-130	2	30
1,2,4-Trimethylbenzene	ND	4	4.0	100	4.0	101	70-130	0	30
1,3,5-Trimethylbenzene	ND	4	4.2	105	4.2	105	70-130	0	30
Bromobenzene	ND	4	3.8	96	3.9	98	70-130	3	30
o-Chlorotoluene	ND	4	4.2	105	4.2	105	70-130	0	30
p-Chlorotoluene	ND	4	3.8	96	3.9	97	70-130	3	30
Dibromomethane	ND	4	3.8	94	4.0	101	70-130	5	30
1,2-Dibromoethane	ND	4	3.7	93	3.8	95	70-130	3	30
1,2-Dibromo-3-chloropropane	ND	4	3.6	90	3.3	82	70-130	9	30
1,3-Dichloropropane	ND	4	4.1	103	4.2	104	70-130	2	30
Methyl tert butyl ether	ND	4	3.4	86	3.5	87	70-130	3	30

Matrix Spike Analysis Batch Quality Control

Project Name: SADVA

Project Number:

Not Specified

Lab Number:

L1109044

Report Date:

06/30/11

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-07 QC Batch ID: WG475672-3 WG475672-4 QC Sample: L1109044-06 ID: MW-9

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichlorobenzene-d4	102	101	70-130	
4-Bromofluorobenzene	98	98	70-130	

INORGANICS & MISCELLANEOUS

Project Name: SADVA Lab Number: L1109044

Project Number: Not Specified Report Date: 06/30/11

SAMPLE RESULTS

Lab ID: L1109044-06

Client ID: MW-9
Sample Location: ALBANY,NY

Matrix: Dw

Date Collected: 06/21/11 14:30

Date Received: 06/22/11 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis	s - Westborough	n Lab								
Coliform, Total (MF)	29		col/100ml	1.0	NA	1	-	06/22/11 17:45	30,9222B	DW
General Chemistry - We	estborough Lab									
Turbidity	0.27		NTU	0.20	0.20	1	-	06/22/11 23:00	44,180.1	KK
ODOR	NO ODOR		TON	1	1.0	1	-	06/22/11 21:00	30,2150B	KK
Color, Apparent	ND		A.P.C.U.	5.0	5.0	1	-	06/22/11 21:00	30,2120B	KK
Solids, Total Dissolved	340		mg/l	10	4.4	1	-	06/24/11 21:00	30,2540C	DW
pH (H)	6.9		SU	-	NA	1	_	06/22/11 21:40	30,4500H+-B	KK

Project Name: SADVA Lab Number: L1109044

Project Number: Not Specified Report Date: 06/30/11

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab fo	or sample(s):	01-04,06	Batch:	WG474787-	1			
ODOR	NO ODOR	TON	1	1.0	1	-	06/22/11 21:00	30,2150B	KK
General Chemistry - We	estborough Lab fo	or sample(s):	01-04,06	Batch:	WG474798-	1			
Turbidity	ND	NTU	0.20	0.20	1	-	06/22/11 23:00	44,180.1	KK
Microbiological Analysis	s - Westborough L	ab for sample	e(s): 01-0	6 Batc	h: WG47484	0-1			
Coliform, Total (MF)	ND	col/100	ml 1.0	NA	1	-	06/22/11 17:45	30,9222B	DW
General Chemistry - We	estborough Lab fo	or sample(s):	01-04,06	Batch:	WG475260-	1			
Solids, Total Dissolved	ND	mg/l	10	4.4	1	-	06/24/11 21:00	30,2540C	DW

Lab Control Sample Analysis Batch Quality Control

Project Name: SADVA

Project Number:

,,,,,,

Not Specified

Lab Number:

L1109044

Report Date:

06/30/11

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-04,06	Batch: WG47	74789-1				
рН	100		-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s):	01-04,06	Batch: WG47	4798-2				
Turbidity	97		-		95-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01-04,06	Batch: WG47	75260-2				
Solids, Total Dissolved	92		-		72-121	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: SADVA

Project Number: Not Specified

Lab Number:

L1109044

Report Date:

06/30/11

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough La	b Associated sample(s): 01-04,06	QC Batch ID: WG474785-1	QC Sample:	L1109044-01	Client ID:	WELL #1
Color, Apparent	15.	15	A.P.C.U.	0		
General Chemistry - Westborough La	b Associated sample(s): 01-04,06	QC Batch ID: WG474787-2	QC Sample:	L1109044-01	Client ID:	WELL #1
ODOR	NO ODOR	NO ODOR	TON	NC		
General Chemistry - Westborough La	b Associated sample(s): 01-04,06	QC Batch ID: WG474789-2	QC Sample:	L1109044-01	Client ID:	WELL #1
pH (H)	7.4	7.4	SU	0		5
General Chemistry - Westborough La	b Associated sample(s): 01-04,06	QC Batch ID: WG474798-3	QC Sample:	L1109044-01	Client ID:	WELL #1
Turbidity	3.1	3.1	NTU	0		13
General Chemistry - Westborough La	b Associated sample(s): 01-04,06	QC Batch ID: WG475260-3	QC Sample:	L1109044-06	Client ID:	MW-9
Solids, Total Dissolved	340	340	mg/l	0		11

Project Name:SADVALab Number:L1109044Project Number:Not SpecifiedReport Date:06/30/11

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent B Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg Ċ	Pres	Seal	Analysis(*)
L1109044-01A	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-01B	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-01C	Amber 1000ml unpreserved	В	7	2.1	Y	Absent	COLOR-A-2120(2),TURB- 180(2),PH-4500(.01),TDS- 2540(7),ODOR-2150(1)
L1109044-01D	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-01E	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-02A	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-02B	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-02C	Amber 1000ml unpreserved	В	7	2.1	Y	Absent	COLOR-A-2120(2),TURB- 180(2),PH-4500(.01),TDS- 2540(7),ODOR-2150(1)
L1109044-02D	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-02E	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-03A	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-03B	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-03C	Amber 1000ml unpreserved	В	7	2.1	Υ	Absent	COLOR-A-2120(2),TURB- 180(2),PH-4500(.01),TDS- 2540(7),ODOR-2150(1)
L1109044-03D	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-03E	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-04A	Vial Ascorbic Acid/HCl preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-04B	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-04C	Amber 1000ml unpreserved	В	7	2.1	Y	Absent	COLOR-A-2120(2),TURB- 180(2),PH-4500(.01),TDS- 2540(7),ODOR-2150(1)
L1109044-04D	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-04E	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-05A	Vial Ascorbic Acid/HCl preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-05B	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)

Project Name:SADVALab Number:L1109044Project Number:Not SpecifiedReport Date:06/30/11

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1109044-05D	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-05E	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-06A	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-06B	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-06C	Amber 1000ml unpreserved	В	7	2.1	Υ	Absent	COLOR-A-2120(2),TURB- 180(2),PH-4500(.01),TDS- 2540(7),ODOR-2150(1)
L1109044-06D	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-06E	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-06F	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-06G	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-06H	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-06I	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-06J	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-06K	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-06L	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-06M	Bacteria Cup Na2S2O3 preserved	Α	N/A	2.2	Υ	Absent	T-COLI-MF(1.25)
L1109044-06N	Amber 1000ml unpreserved	В	7	2.1	Y	Absent	COLOR-A-2120(2),TURB- 180(2),PH-4500(.01),TDS- 2540(7),ODOR-2150(1)
L1109044-06O	Amber 1000ml unpreserved	В	7	2.1	Y	Absent	COLOR-A-2120(2),TURB- 180(2),PH-4500(.01),TDS- 2540(7),ODOR-2150(1)
L1109044-07A	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)
L1109044-07B	Vial Ascorbic Acid/HCI preserved	Α	N/A	2.2	Υ	Absent	DOD-524.2(14)

Project Name:SADVALab Number:L1109044Project Number:Not SpecifiedReport Date:06/30/11

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: DU Report with "J" Qualifiers

Project Name:SADVALab Number:L1109044Project Number:Not SpecifiedReport Date:06/30/11

Data Qualifiers

than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

 J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL). This represents an estimated concentration for Tentatively Identified Compounds (TICs).

ND - Not detected at the method detection limit (MDL) for the sample.

Report Format: DU Report with "J" Qualifiers

Project Name:SADVALab Number:L1109044Project Number:Not SpecifiedReport Date:06/30/11

REFERENCES

Methods for the Determination of Organic Compounds in Drinking Water - Supplement II. EPA/600/R-92/129, August 1992.

- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.

The analyses performed on the sample(s) within this report are in accordance with the minimum established guidelines set forth in the Department of Defense Quality Systems Manual, Version 4.2, issued October 25, 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised June 7, 2011 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB), 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D))

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. Organic Parameters: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-B, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,TI) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl, V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B;Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, 9050A, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3510C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. Organic Parameters: SW-846 3540C, 3546, 3580A, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 8270C-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 7196A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 9014, 9012A, 9040B, 9045C, 9050A, 9065. Organic Parameters: SW-846 8015B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 8270C-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B.. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources Certificate/Lab ID: 666. Organic Parameters: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited. Drinking Water* (Organic Parameters: EPA 524.2)

Non-Potable Water (Inorganic Parameters: EPA 1312. Organic Parameters: EPA 3510C, 5030B, 625, 624, 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 6010B, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. Organic Parameters: 3540C, 3545, 3546, 3550B,

3580A, 3630C, 5035, 8015B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH*. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. **NELAP Accredited.** Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. Organic Parameters: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

Pa		SECTION AND ADDRESS OF THE PROPERTY OF THE PRO			_				n-2010)	FORM NO: 01-01 (rev. 18-Jan-2010)
Aprila si ferrits and conditoris:			1		,		,			
start until any ambiguities are resolved. All samples submitted are subject to contain the samples submitted are submitted are submitted are submitted and submitted are submitted	Date/Time	Received By:	Recei	Date/Time			Relinquished By:	Reling	or CT RCP?	MA MCP o
in and turnaround time clock will not to		AAH	BAAAA	Preservative	-		-		ROJECT :	IS YOUR PROJECT
		AAB	VAAA	Container Type	Con				PLEASE ANSWER QUESTIONS ABOVE!	PLEASE ANSWER
									•	
			1	į	with	1	150	C	Trop Blank	07-109
		1	1 1 1 1	£04	water	11 1450	6-21-	054	16-MM	06 -68
		000	5	EQ.4	witer	11/430	6-21-11	16	1 6 -MW	00 -07
		1	7 7 7	FOR.	1 Wister	11430	6-21-4		10-mp	-0 6
	MS 6/23/11	K	777	MON.	With	1218	62/-		Wall to	100 1000
		Secretary in the second	2000	KEN .	Note 18	1-11 1208	6-21-		Well #4	707
		the last vision	0000	ETH.	With	11/1/8	11-12-9		Well #3	703
		uuc	2000	W3	Works	11/46	6.2411		Well #2	-02
		1	177	E04	N. S. S.	11 1135	6-2/-		No11 #1	0904H -01
Sample Specific Comments s		\ \L \Z	/	Initials	Matrix	Time	Date	ole ID	Sample ID	(Lab Use Only)
(w)		60 H (4)		Sampler's	Sample	Collection	ဂ			ALPHA Lab ID
Preservation T Lab to do		15/15/15/15	2				v			
eeded o do		12 7 LE 16 16 16 16 16 16 16 16 16 16 16 16 16	.C.	ρ.	be performe	at tests MS to	ples and what soil samples	Comments which sams require MS every 20	If MS is required , indicate in Sample Specific Comments which samples and what tests MS to be performed. (Note: All <i>CAM</i> methods for inorganic analyses require MS every 20 soil samples)	If MS is required, indi (Note: All CAM meth
Filtration #	(ma)	4 12 1	20			mits:	tection Li	ts/Comments/De	Other Project Specific Requirements/Comments/Detection Limits:	Other Project Sp
SAMPLE HANDLING	80/32	212 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/	YS/S (2) 25 4		Time:	6/29/11		Date Due:	These samples have been previously analyzed by Alpha	☐ These samples hav
	22	J. C.		approved!)	ly confirmed if pre-	RUSH (only confirmed if pre-approved!)	dard	Standard	,	Email:
otocols) Required?	Are CT RCP (Reasonable Confidence Protocols) Required?	Are CT RCP (Rea							451-55-124	Fax:
Are MCP Analytical Methods Required? Is Matrix Spike (MS) Required on this SDG? (If yes see note in Comments)	Are MCP Analytical Methods Required? Is Matrix Spike (MS) Required on this SE	Are MCP Analytic Is Matrix Spike (N	□ Yes □ No			īme	Turn-Around Time	1. 3	755	ne: 3/4
RESOMPTIVE CERTAINT CT REASONABLE CONFIDENCE PROTO	IN I I CT REASO	IMPTIVE CERTA	7	7-6-21-11	5 6046	74715	ALPHA Quote #:	Ø	1 4/2	c'
	Criteria	η	State /Fed Program	a	Musseur	Gerras.	Project Manager:	Project	MON R	Address:
		y Requirements/Report Limits			147152	フィン	#	Project #:		Oclient: /@ハシッケ
	bles	☐ Add'l Deliverables			12/2	4/6 G W.	Project Location:	Project		Client Information
Same as Client info PO#:		□ EMAIL	□ FAX			FOUA	Project Name: SANCA	Project	TEL: 508-822-9300 FAX: 508-822-3288	TEL: 508-898-9220 FAX: 508-898-9193
Billing Information		ıformation - Data Deliverables	Report Informa			ation	Project Information	Proje	MANSFIELD, MA	WESTBORO, MA
ALPHA Job#: L1109044	ALPHA	:: 6/22/11	Date Rec'd in Lab:	OF	PAGE		JSTO	CHAIN OF CUSTODY	CHAI	
				•		1				