APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): JAN 30 2014

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: New York District; Rochsa, LLC; NAN-2013-01172

C. PROJECT LOCATION AND BACKGROUND INFORMATION: South side of Silver Beach Road
State: NY
County/parish/borough: Saratoga
City: Malta
Center coordinates of site (lat/long in degree decimal format): Lat. 43.00616° N, Long. -73.7738° W
Universal Transverse Mercator:
Name of nearest waterbody: Drummond Creek
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Saratoga Lake
Name of watershed or Hydrologic Unit Code (HUC): 02020003, Hudson-Hoosic
☐ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): October 8, 2013

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: 1539 linear feet: varying width (ft) and/or ___________ acres.
 Wetlands: 40.92 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual
 Elevation of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable):³
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
³ Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section IIIA.1 and Section III.D.1 only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections IIIA.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 194.5 acres
 Drainage area: greater than 3 square miles
 Average annual rainfall: 35.74 inches
 Average annual snowfall: 63.9 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ✗ Tributary flows directly into TNW.
 ☑ Tributary flows through Pick List tributaries before entering TNW.

 Project waters are 1-2 river miles from TNW.
 Project waters are Pick List river miles from RPW.
 Project waters are 1-2 aerial (straight) miles from TNW.
 Project waters are Pick List aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: Project waters do not cross or serve as state boundaries.

 Identify flow route to TNW\(^5\): The on-site perennial RPW stream, Drummond Creek, flows off-site to the north and directly into Saratoga Lake, a TNW.

\(^4\) Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary stream order, if known: Second.

(b) General Tributary Characteristics (check all that apply):

Tributary is:
- Natural
- Artificial (man-made). Explain:
- Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: Minimum 6, but varying feet
- Average depth: At least 2 feet
- Average side slopes: 2:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Cobbles
- Gravel
- Bedrock
- Vegetation. Type/cover:
- Concrete
- Muck
- Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Channel appears stable.
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Meandering
Tributary gradient (approximate average slope): less than 2%

(c) Flow:

Tributary provides for: Pick List
Estimate average number of flow events in review area/year: 20 (or greater)
Describe flow regime: This stream is perennial and this section is being completed to assist in significant nexus determination for one adjacent wetland area that occurs on the site.
Other information on duration and volume: Portions of stream appear to be affected by beaver activity.

Surface flow is: Confined. Characteristics:
Subsurface flow: Unknown. Explain findings: likely present but not confirmed by testing.
- Dye (or other) test performed:

Tributary has (check all that apply):
- Bed and banks
- OHWM\(^6\) (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
- Discontinuous OHWM\(^7\). Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list):
- Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: Water color is clear.
Identify specific pollutants, if known: those generated from typical runoff from road.

\(^6\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\)Ibid.
(iv) **Biological Characteristics. Channel supports (check all that apply):**

- Riparian corridor. Characteristics (type, average width): Mostly wetlands on-site, but also includes forested uplands. Width exceeds 100 feet.

- Wetland fringe. Characteristics:
 - Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings: The stream is fish-bearing, with extensive abutting and adjacent wetlands and forested uplands on the site. A variety of mammals, birds and amphibians have been observed using these waters.

2. **Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW**

(i) **Physical Characteristics:**

(a) **General Wetland Characteristics:**

- Properties:
 - Wetland size: 0.06 acres
 - Wetland type. Explain: Forested wetland.
 - Wetland quality. Explain: Good quality as there is no evidence of recent disturbances, nor any encroachment with invasive species.
 - Project wetlands cross or serve as state boundaries. Explain: Wetlands do not cross or serve as state boundaries.

(b) **General Flow Relationship with Non-TNW:**

- Flow is: Intermittent flow. Explain: Water flows from the adjacent wetland to Drummond Creek, mostly from the surface and on a seasonal basis. Groundwater flow from wetland to Drummond Creek likely present but not confirmed by testing.

- Surface flow is: Overland sheetflow

- Characteristics: There is little topographic variation on the site. Flood waters, when receding, would discharge from the wetland to the watercourse.

- Subsurface flow: Unknown. Explain findings:
 - Dye (or other) test performed:

(c) **Wetland Adjacency Determination with Non-TNW:**

- Not directly abutting
 - Discrete wetland hydrologic connection. Explain: Wetland A is 0.06 acre, and is separated from the Wetland 1/Drummond Creek complex by approximately 25 feet. The upland separating these waters is not considered a berm and is only slightly higher in elevation than the surrounding wetlands. Wetland A and 1 and the uplands in between share the same water marks at the same elevation on trees showing a distinct hydrological connection on a seasonal basis. The wetlands are well within the 100 year floodplain of the creek and are routinely flooded. These flood waters recede and discharge from the wetlands to the watercourse.

- Ecological connection. Explain: Wetlands A and 1 have the same composition when located near one another and function the same. A number of species, including white-tailed deer, wild turkey, raccoon, coyote, black bear, songbirds, wood frog, green frog and spring peepers were documented by the environmental consultant as utilizing the wetlands and stream on-site. Insects breeding in the wetlands are a food source for fish that inhabit the stream.

- Separated by berm/barrier. Explain:

(d) **Proximity (Relationship) to TNW**

- Project wetlands are 1-2 river miles from TNW.
- Project waters are 1-2 aerial (straight) miles from TNW.
- Flow is from: Wetland to navigable waters.
- Estimate approximate location of wetland as within the 20-50-year floodplain.

(ii) **Chemical Characteristics:**

- Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics, etc.). Explain: Water is clear, wetland serves of retain potential pollutants to improve water quality within the stream.

- Identify specific pollutants, if known: None known.

(iii) **Biological Characteristics. Wetland supports (check all that apply):**

- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain: Forested, with little understory but 100 percent cover in canopy.
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
Aquatic/wildlife diversity. Explain findings: Same findings as those discussed above concerning ecological connection to Drummond Creek.

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: 2
 Approximately (40.92) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>40.86</td>
<td>N</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: Both wetlands are on-site and are similarly situated topographically. Wetland A is forested, like a large portion of Wetland 1. The portion of Wetland 1 closest to Drummond Creek contains more emergent and shrub dominated cover types. The wetlands function as floodplains for Drummond Creek, and also retain and filter waters that flow into the creek. Functions to varying degrees include floodflow alteration, sediment/toxicant retention, nutrient removal/retention, production export, sediment/shoreline stabilization, recreation, and wildlife habitat, and have educational and aesthetic value.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself; then go to Section III.D:

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The 0.06 acre Wetland A is adjacent to the perennial Drummond Creek and its 40.86 acres of directly abutting wetlands (Wetland 1) on the site. Wetlands A and 1 are similarly situated in relation to the creek and function the same. Drummond Creek is a direct tributary to a TNW. Given the functions of Drummond Creek and its adjacent wetlands along with their proximity to the TNW, these waters, which includes the adjacent but not directly abutting Wetland A, carry floodwaters to the TNW, but mostly reduce the amount of pollutants and flood waters reaching the TNW. In addition, Drummond Creek and its adjacent wetlands has more than a speculative capacity to transfer nutrients and organic carbon that would support downstream foodwebs, and they provide habitat and lifecycle support functions, notably feeding, for fish that are present in the TNW. Therefore, the tributary and its adjacent wetlands, are found to have a significant nexus to Saratoga Lake, the TNW into which these waters flow.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):
1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs: linear feet width (ft), Or: acres.
- Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: The on-site tributary to Saratoga Lake, a TNW is Drummond Creek. The stream on-site as well as the overall reach is determined to be perennial based upon direct observation of flow during inspections and delineation, its presence as a perennial stream on all resource mapping, review of aerial imagery, and channel size and characteristics.
- Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: 1539 linear feet varying width (ft).
- Other non-wetland waters: acres.

Identify type(s) of waters:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.

Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland 1 directly abuts Drummond Creek. The entire site was reviewed in the field and there are no man-made or natural physical separations between Wetland 1 and the stream, as shown on the wetland delineation drawing.

- Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW.

Provide acreage estimates for jurisdictional wetlands in the review area: 40.86 acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: 0.06 acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters. As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

- Demonstrate that impoundment was created from “waters of the U.S.” or

8See Footnote # 3.
9To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10
- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain: .
- Other factors. Explain: .

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters: .
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with a substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
- Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: .
- Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below:
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Drawing entitled "Wetland Delineation Map of Lands of Rochsa LLC, Prepared For Charles Daoud, No. 4060 Silver Beach Road, Tax ID. Nos. 205.00-1-9 and 218.05-1-6, Deed Inst. No. 2011-005600", prepared by Northeast Land Survey & Land Development Consultants, P.C., dated January 4, 2013, and last revised December 2013.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: listing for Saratoga Lake.

10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
B. ADDITIONAL COMMENTS TO SUPPORT JD: None.