South Shore of Staten Island, NY

Coastal Storm Risk Management

Staten Island Feasibility Study

- Phase 1 (Fort Wadsworth to Oakwood Beach)
- Sandy Impacts
- > Alternatives assessed
- Proposed Plan Optimization & Details
- > Sponsor responsibilities
- Next Steps; Schedule

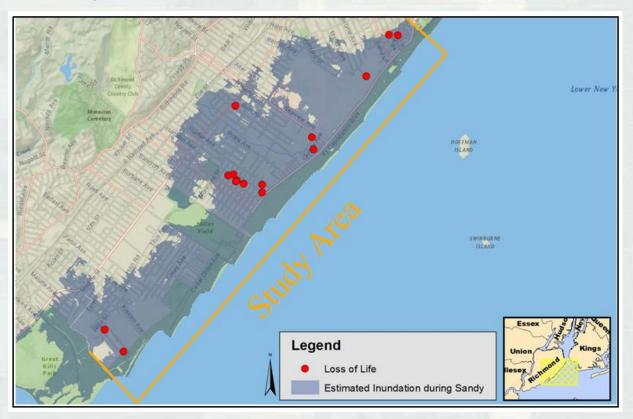
Coastal Storm Risk Management

- ➤ Disaster Relief Appropriations Act of 2013; Public Law 113-2; provides construction authority and Federal funding
- ➤ <u>PL 113-2 objectives</u>: demonstrate project is economically justified, technically feasible, environmentally acceptable
- Evaluate feasibility of Federal participation in implementing solutions to problems and opportunities associated with storm damage and erosion control in study area

Non-Federal Project Partners

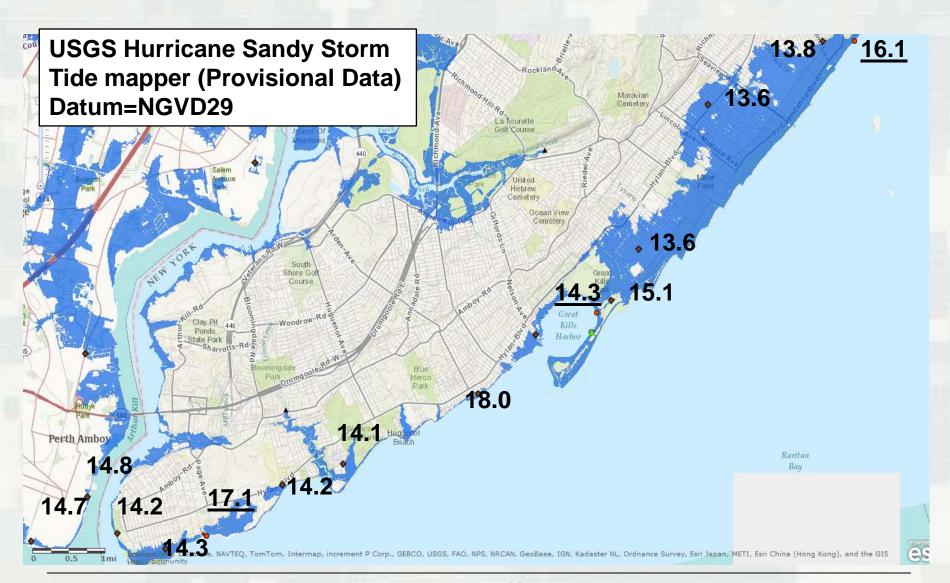
- Project Sponsor is New York State
 Department of Environmental Conservation (NYSDEC)
- NYSDEC in cooperation with the City of New York:
 - NYC Mayor's Office, NYCDEP, NYCDPR, NYCDOT
- NPS properties (Miller Field + Great Kills)
- > 100% Federal cost to complete feasibility study
- Construction to be cost-shared in accordance with Project Partnership Agreement, once executed
 - 65% Federal
 - 35% non-Federal

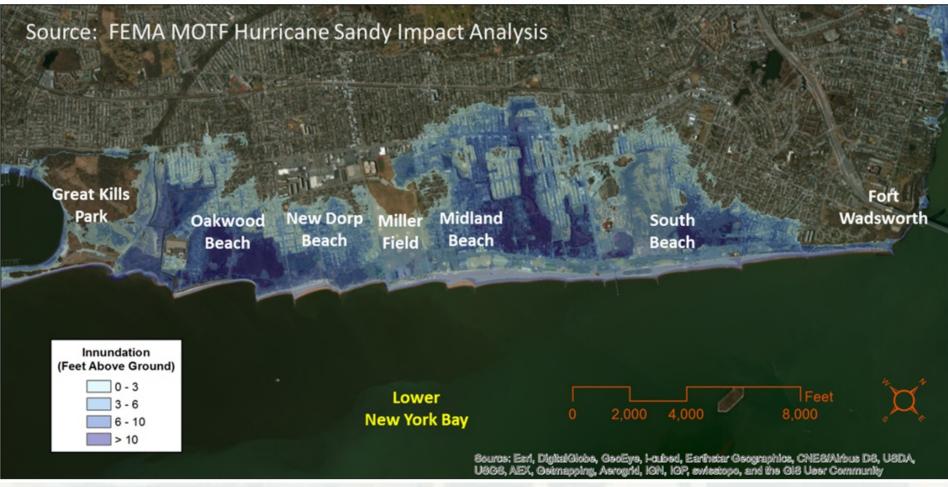
Study Area Phase 1 + Phase 2


Phase 1 = Fort Wadsworth to Oakwood Beach

Phase 2 = Great Kills to Tottenville (separate action)

- Hurricane Sandy generated record storm surges
- Several deaths in area, with thousands of buildings damaged or destroyed





Hurricane Sandy Impacts

Hurricane Sandy Inundation

Without-project Future Conditions

Without-project future conditions

- Continued flooding during severe future storm events
- Continued wave impacts to unprotected shoreline
- Continued development and fill of low-lying storage areas
- Without-project damages estimated over \$34 million annually based on 50-year period of analysis (coastal inundation and interior flood damages)

Sea Level Change

> Storm tide inundation expected to increase over time, resulting in increase of 0.7 ft over 50-year period of analysis

Preliminary Alternatives

Alternatives designed to provide same level of coastal storm risk management; Analyzed to determine highest net benefits

- > No Action
- Non-Structural floodproofing, buyouts
- > Alternative #1 beach fill, seawall, floodwall, levee
- Alternatives #2 & #3 variations of Father Capodanno road raising, buried seawall/armored levee, floodwall, levee
- Alternative #4 buried seawall/armored levee, floodwall, levee

Comparison of Preliminary Alternatives

No Action or Non-structural

Excessive costs

Alternative #1

- High beach fill quantity required (over 3.2 million CY)
- May disrupt present balance and stability of existing beach front
- Difficult to maintain design shoreline; substantial future nourishments; may not maintain design dimensions when exposed to multiple design storm events

Alternatives #2/3

Raising Father Capodanno has significant impacts

<u>Alternative #4 – PROPOSED PLAN (buried seawall/armored levee)</u>

- Lowest estimated cost and greatest net benefits
- Withstand multiple storms

Optimization of the Proposed Plan

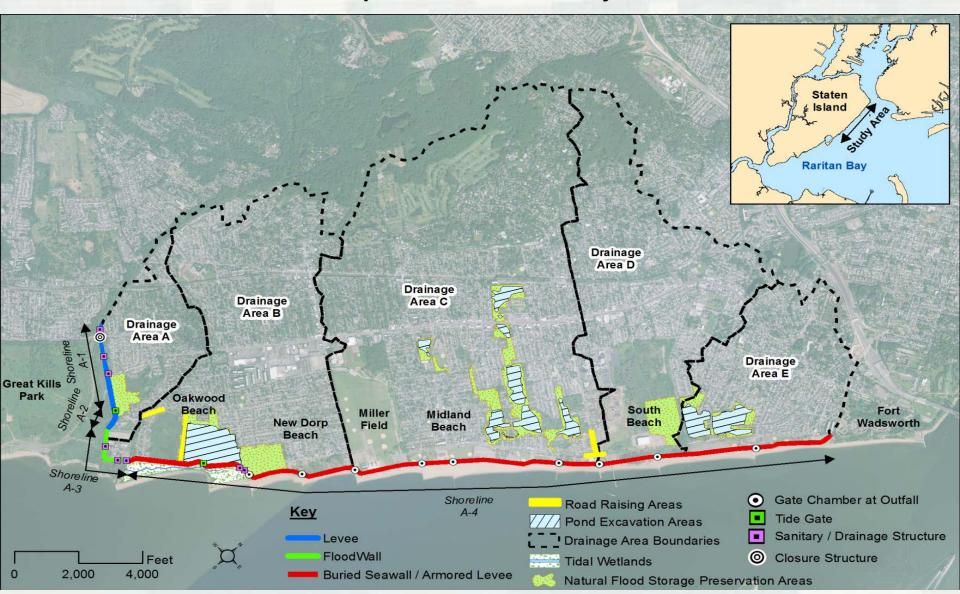

- Alternative #4 buried seawall/armored levee is proposed plan
- Various stillwater design levels analyzed for optimization
- > +15.6 ft. stillwater design provides maximum net benefits

Table 23 – Economic Comparison of Stillwater Designs				
Scenario	13.3 ft. NGVD 1929 Stillwater Design	14.3 ft. NGVD 1929 Stillwater Design	15.6 ft. NGVD 1929 Stillwater Design	16.6 ft. NGVD 1929 Stillwater Design
Annual Benefits	\$22,098,000	\$24,972,000	\$27,732,000	\$29,252,000
Annual Costs	\$17,690,400	\$19,005,400	\$21,551,400	\$23,603,400
Net Benefits	\$4,407,600	\$5,966,600	\$6,180,600	\$5,648,600
BCR	1.2	1.3	1.3	1.2
Selected as NED Plan			\	

Rounded to the nearest thousand, 3.375% Discount Rate

Proposed Plan Layout

Oakwood Beach Area

Hylan Blvd (near Buffalo St)
to
Oakwood Beach Treatment Plant

Road Closure gate @ Hylan Blvd + Levee + Tide Gate + Acquisition/Preservation of open space

Levee (Hylan Blvd to Oakwood Treatment Plant)

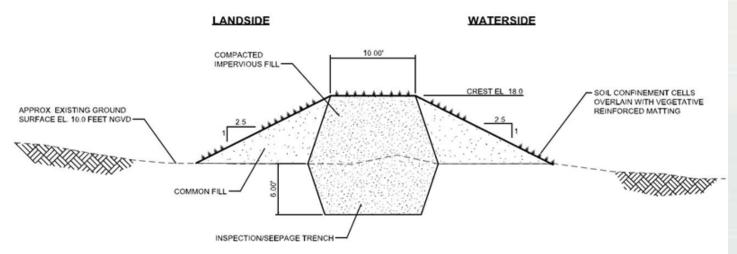
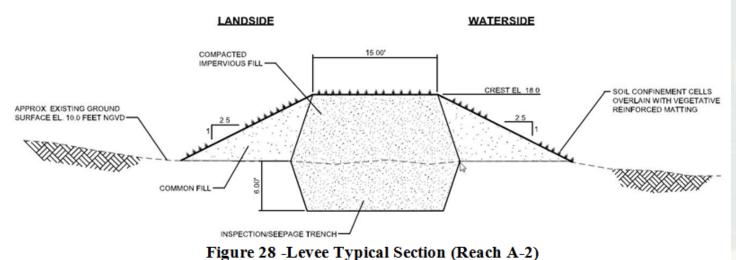
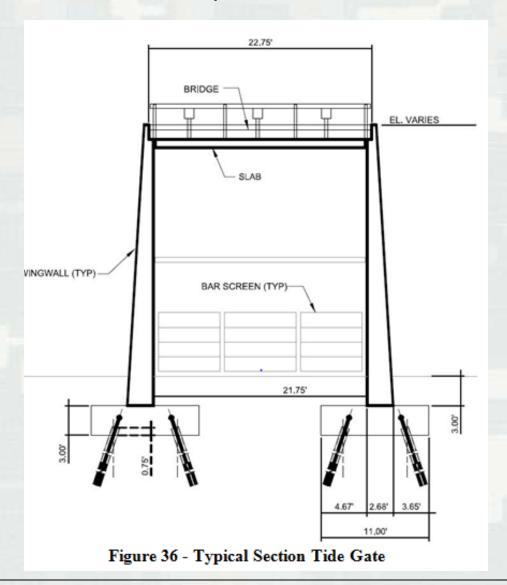




Figure 27 - Levee Typical Section (Reach A-1)

Tide Gate (Oakwood Creek)

Acquisition/Preservation of open space

Oakwood Beach & New Dorp Beach Areas

Oakwood Beach Treatment Plant thru Miller Field

Floodwall + Buried Seawall + Outfall chambers + Tidal Wetlands + Tide Gate + Remove Oakwood Tide Gate + Road Raisings + Acquisition/Preservation/Excavation of open space

Floodwall around Oakwood Treatment Plant

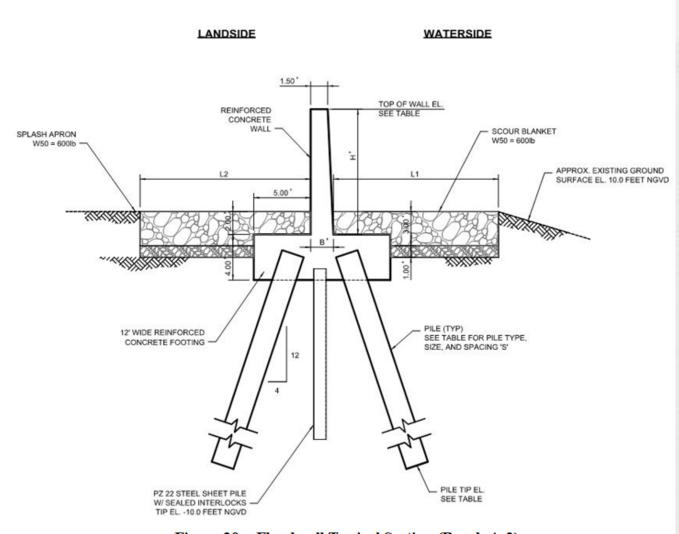


Figure 29 - Floodwall Typical Section (Reach A-3)

Buried Seawall (Oakwood Beach thru Miller Field)

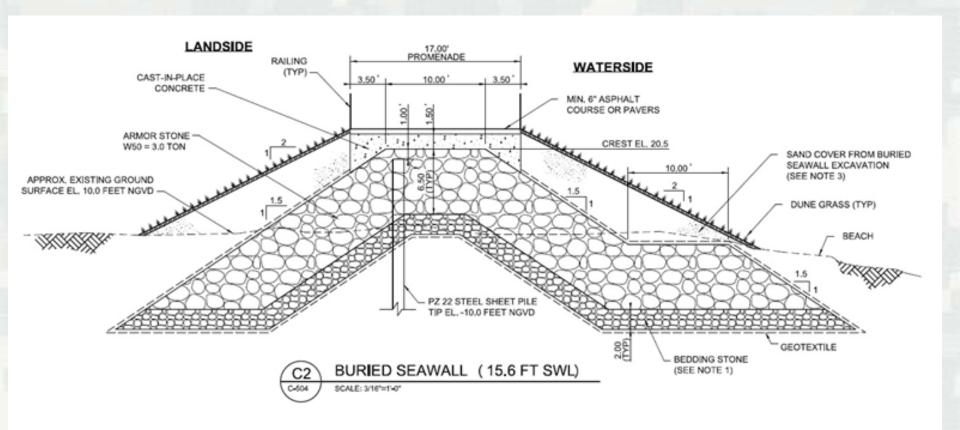
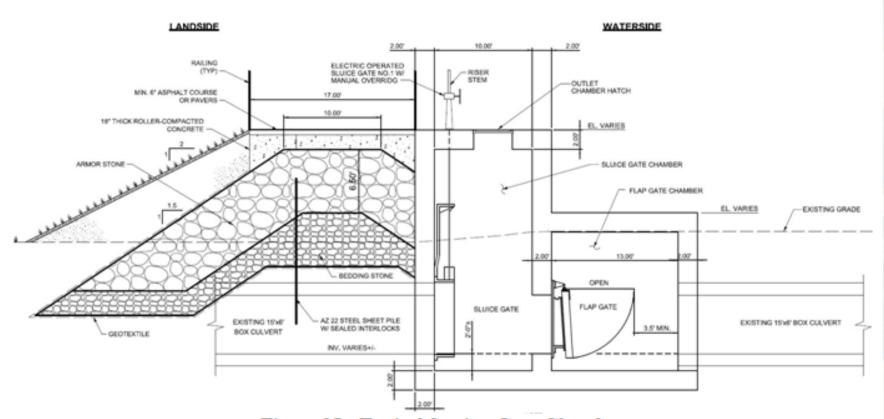
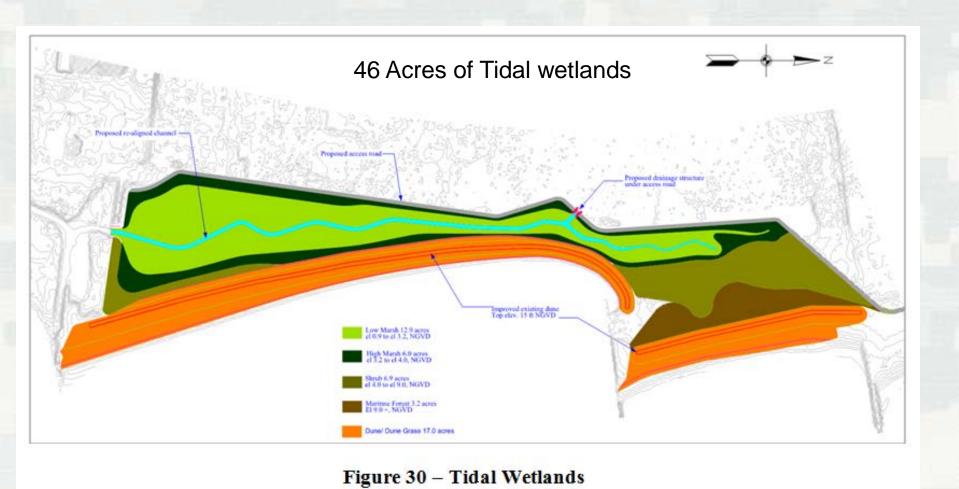
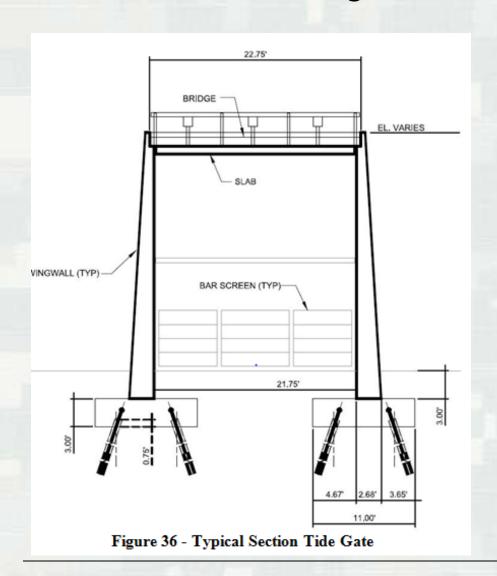


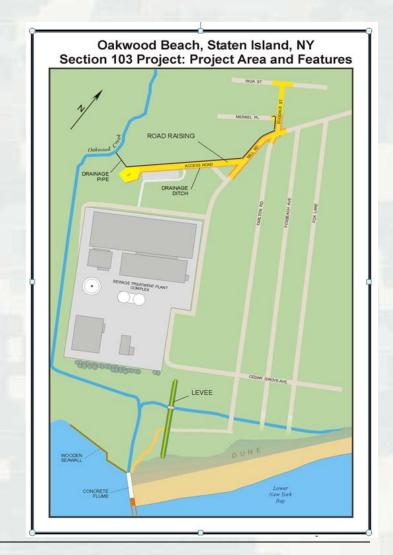
Figure 31 - Buried Seawall Typical Section (Reach A-4)

Gate Chambers for existing outfalls

Tysens Lane, Ebbits Street and New Dorp Lane Sewer Outfalls


Figure 35 - Typical Section Gate Chamber


Tidal Wetlands fronting Buried Seawall in Oakwood Beach area

Tide Gate (Oakwood Creek)

+ Removal of existing Oakwood Beach tide gate/levee

Road Raisings

- ➤ Mill Road
 - Average raise height of + 1 ft.

- Kissam Ave
 - Average raise height of + 3 ft.

Acquisition/Preservation/Excavation of open space

Midland Beach & South Beach Areas

Midland Beach (promenade area)
to
Seaview Avenue

Buried Seawall (replaces existing promenade)

- + Outfall chambers + Road Raisings
- + Acquisition/Preservation/Excavation of open space

Buried Seawall (replaces existing promenade)

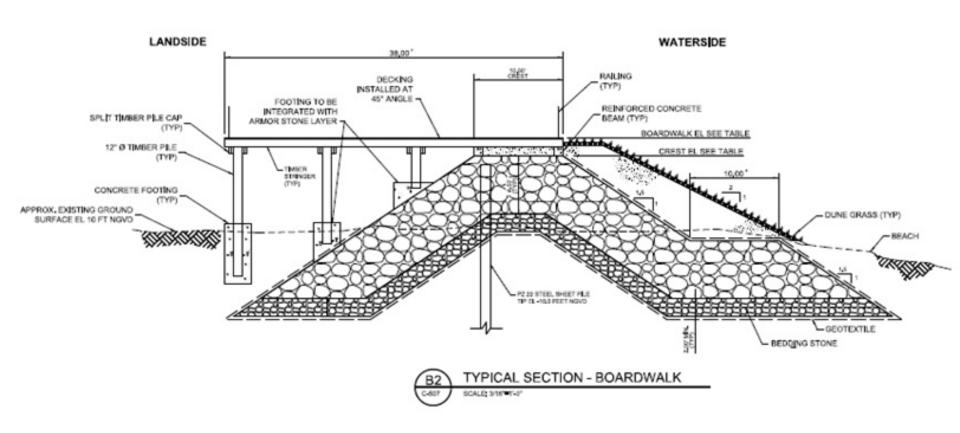


Figure 32 - Boardwalk Typical Section (Reach A-4)

Project Renderings

Existing Promenade Midland Beach Area looking North Buried Seawall with new Boardwalk Midland Beach Area looking North

Gate Chambers for existing outfalls

Greely Ave, Midland Ave, Naughton Ave and Seaview Ave Sewer Outfalls

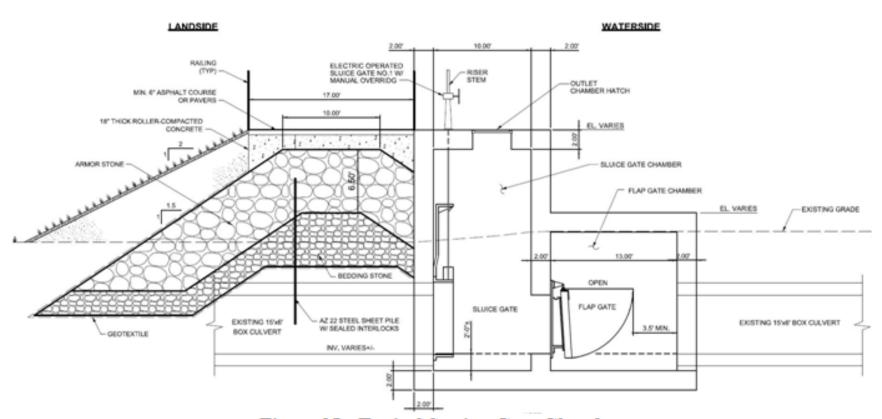


Figure 35 - Typical Section Gate Chamber

Road Raisings

- ➤ Seaview Ave
 - Average raise height of + 1 ft.

- > Father Capodanno Blvd
 - Average raise height of + 1 ft.

Acquisition/Preservation/Excavation of open space

South Beach & Fort Wadsworth Areas

Seaview Avenue (boardwalk area)
to
Fort Wadsworth

Buried Seawall (replaces existing boardwalk) + Outfall chamber + Preservation of open space

Buried Seawall (replaces existing boardwalk) + Outfall chambers

+ Acquisition/Preservation/Excavation of open space

Buried Seawall (replaces existing boardwalk)

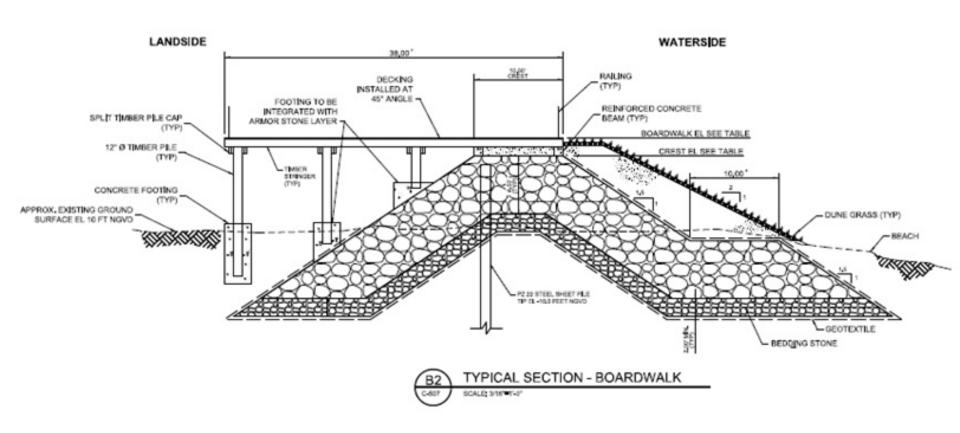
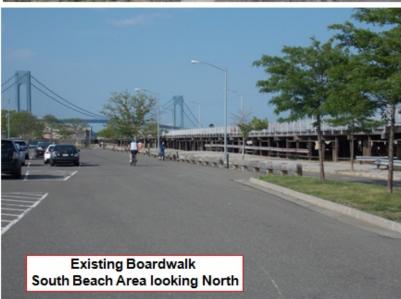



Figure 32 - Boardwalk Typical Section (Reach A-4)

Project Renderings

Gate Chambers for existing outfalls

Quintard Street, Sand Lane, Quincy Ave Sewer Outfalls

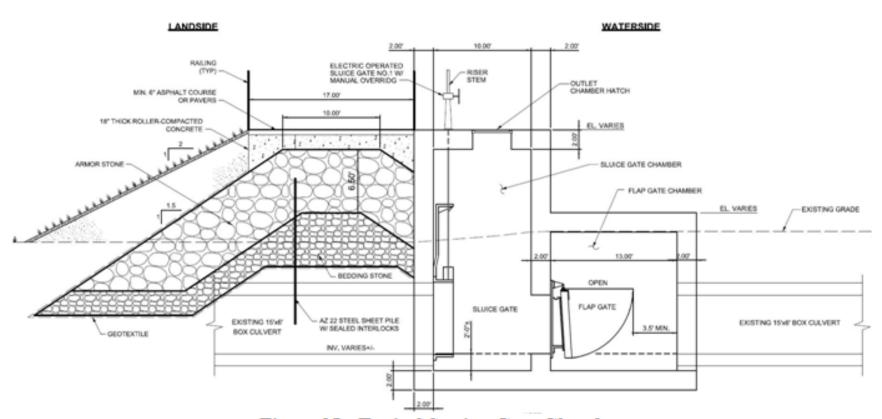


Figure 35 - Typical Section Gate Chamber

Preservation of open space

Acquisition/Preservation/Excavation of open space

Buried Seawall ties off near Fort Wadsworth

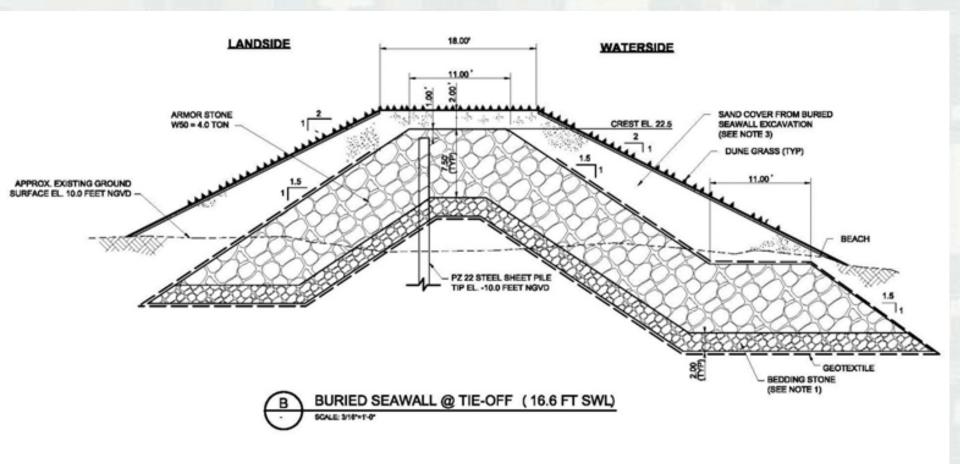
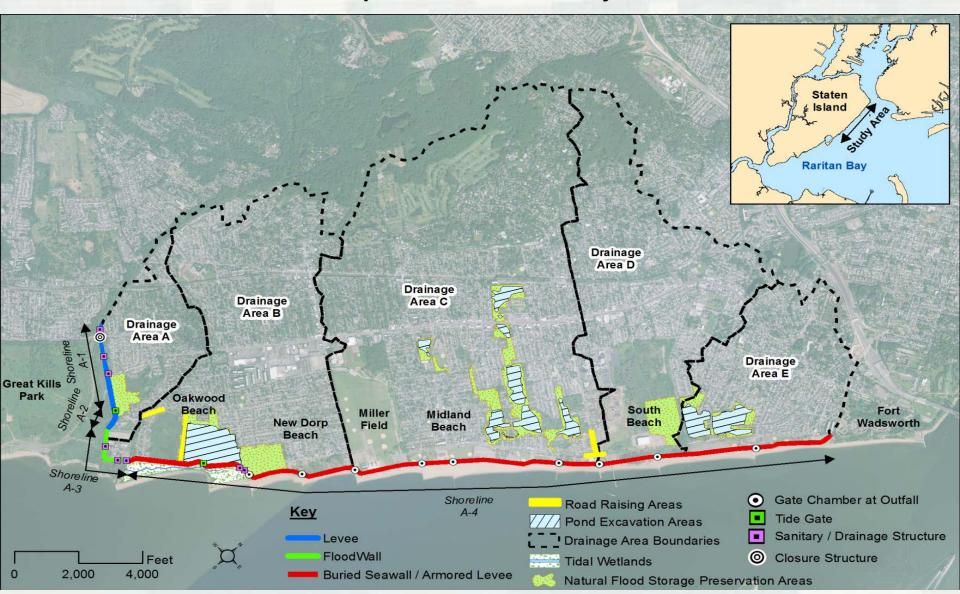



Figure 33 – Buried Seawall Section (Reach A-4)

Proposed Plan Layout

Sea level change and future adaptability

Sea level change over 50 year period

- Historic 0.7 ft increase
- > Intermediate projected 1.1 ft increase
- > High projected 2.5 ft increase

Project adaptable in future for increased sea level change

- >Add concrete parapet wall atop crest of buried seawall
- >Add future cast in place concrete floodwall addition
- >Add impervious backfill to increase levee

Future Adaptability of Proposed Plan

Figure 46 - Raising of Earthen Levee

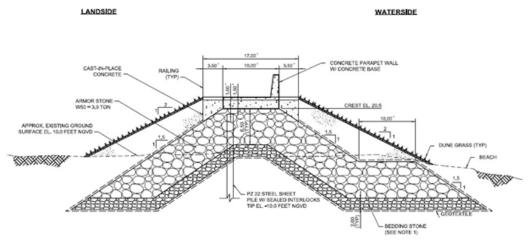


Figure 44 - Concrete Parapet Wall atop Buried Seawall

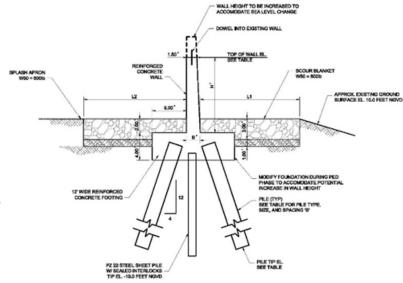


Figure 45 - Raising of Concrete Floodwall

Proposed Plan Project Costs/Benefits and Cost-sharing

Table 36- Cost Apportionment						
Table 30- Cost Apportionment						
Federal Project Cost (65%)	\$376,302,000					
Non-Federal Project Cost (35%)	\$202,624,000					
LERR	\$91,261,000					
LER	\$43,854,000					
Relocations						
Road Raising	\$5,328,000					
Boardwalk	\$42,079,000					
Cash Balance	\$111,363,000					
TOTAL	\$578,926,000					

Table 32 - Feasibility Assessment						
Annual Benefits	\$27,732,000					
Annual Costs	\$24,011,000					
Net Benefits	\$3,721,000					
BCR	1.2					
Economically Feasible	Yes					

Real Estate Requirements

Various Standard Estate easements are required to be obtained by the Sponsor

- Flowage Easements excavation of ponding areas (112 acres)
- Restrictive Easements land restricted from future development (144 acres)
- Flood Protection Levee Easements land for construction, operation and maintenance of project (88 acres)
- Temporary Work Area Easements land for construction staging (63 acres)
- Pipeline and Road Easements O&M of underground drainage, access road to sewer manholes (1.2 acres)

Operation & Maintenance Sponsor Requirements

O&M Requirements (100% non-Federal responsibility)

- Estimated annual cost of \$555,000
- Annual inspections, surveys and report conditions of project features (closure gate, gate chambers, tide gates, ramps, ponds, sand coverage, etc)
- Replacement of sand coverage and dune grass replanting
- Levee mowing + ponds/easement area mowing/maintenance
- Operation/testing of closure gate, tide gates, gate chambers
- Interior drainage replacements (gates, valves, etc) at end of useful project life; estimated 25th year

Proposed Plan Comparison to Hurricane Sandy

- Hurricane Sandy generated record storm surges in area
- Water levels in study area, excluding wave fluctuations, peaked at approximately <u>13.6 ft NGVD</u> during Sandy
- Proposed plan designed to manage and reduce risk of storm damage due to waves, erosion, flooding for coastal storms with total stillwater elevation (tide plus storm surge) of <u>15.6 ft NGVD</u>
- 2 feet higher than peak water levels experienced during Sandy

Proposed Plan comparison to Sandy

- ➤ 15.6 NGVD stillwater design height provides project crest elevations ranging between 18 and 20.5 feet NGVD
- ➤ Design storm estimated annual chance of exceedance of 0.3 % (~300 year event) under current sea level conditions
- ➤ In contrast, existing area is approximately 10 ft. NGVD, with lower spots sporadically thru area (0.1%; 10 year event)

Residual Flooding With Project in place

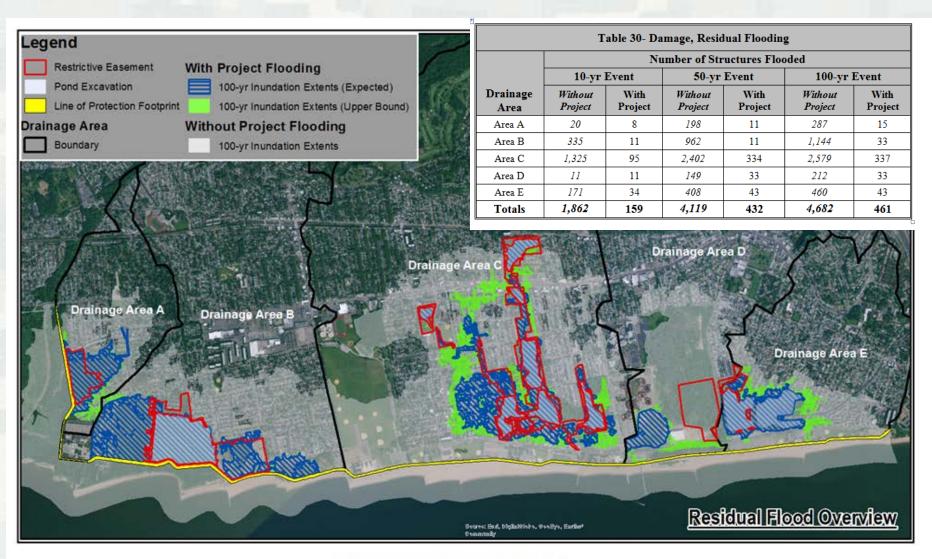


Figure 42 - Residual Flood Overview

Residual Flooding With Project in place

- > Estimated to reduce damages by \$27 million annually
- Will not eliminate all flooding
 - Lower level storm events will continue to cause low level flooding from interior run-off even with project in place
 - Low lying areas will experience ponding of water
- ➤ In rare occurrence stillwater exceeds 15.6 ft NGVD (approximately 0.3% annual chance or ~300 year storm) ocean surge could breach and/or overtop line of protection inundating area
- > Residents must continue to follow NYC evacuation protocols

Project Schedule

Final Draft Report/DEIS

Released for public review
Released for IEPR (external peer) review

Released for Corps HQ review

Jun 2015

DEIS public information meetings

Public Review period closes

Final Report/EIS submitted to Corps HQ

Chief of Engineers Report submitted to ASA ASA approval to execute PPA agreement

Start Plans/Specs for construction contracts Construction Agreement execution with NYS

Real Estate acquisitions completed Advertise/Award construction contracts Construction completion Aug 2015

9 Sep 2015

Dec 2015

May 2016

Sep 2016

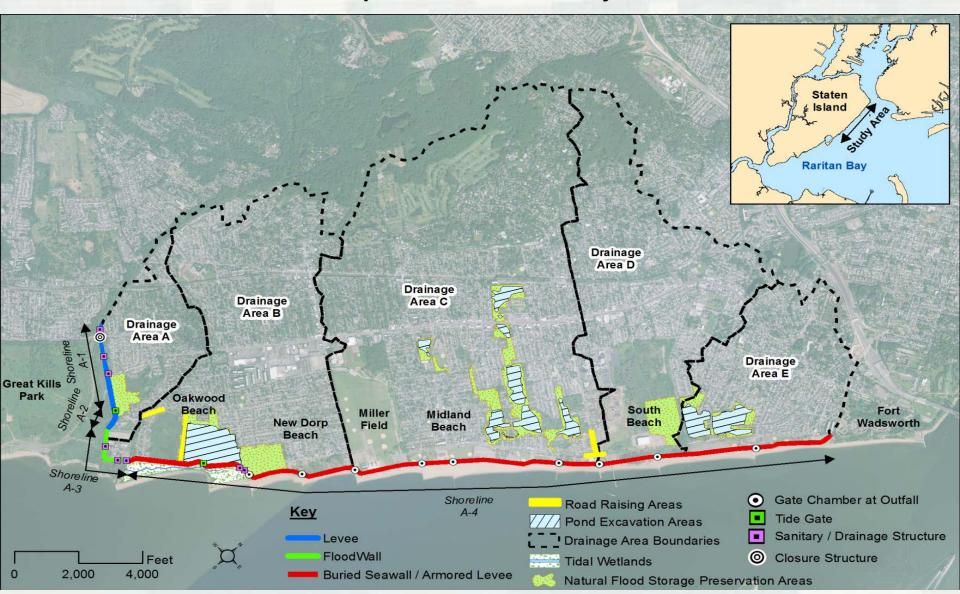
Sep 2016

Oct 2016

Spring 2018 Spring 2018 thru 2021

US Army Corps of Engineers New York State Department of Environmental Conservation City of New York

PUBLIC INFORMATION MEETING


The Draft Environmental Impact Statement is open for public comment through September 9, 2015.

Please address your comments to:

US Army Corps of Engineers – New York District
Attn: Ms. Catherine Alcoba
26 Federal Plaza, Room 2151
New York, NY 10278
catherine.j.alcoba@usace.army.mil

Public comment cards are available at this Information Meeting

Proposed Plan Layout

Line of Protection (Hylan Blvd to Oakwood Treatment Plant)

	Table ES 2 - NED Plan Storm Risk Management Measures Line of Protection							
Reach	Туре	Length	Crest Elevation	Depth	Slope	Materials	Typical Section View	Features
A-1	Levee	2,800 lf.	18 ft. NGVD 1929 or 16.9 ft. NAVD 1988	10 ft. wide at crest	2.5:1.0 (H:V)	compacted impervious fill		The compact impervious fill will extend at least 6 feet below the existing grade to prevent seepage, a closure structure will be constructed along Hylan Boulevard.
A-2	Levee	600 lf.	18 ft. NGVD 1929 or 16.9 ft. NAVD 1988	15 ft. wide at crest	2.5:1.0 (H:V)	compacted impervious fill		The compact impervious fill will extend at least 6 feet below the existing grade to prevent seepage.
A-3	Floodwall	1,800 lf.	20.5 ft. NGVD 1929 or 19.4 ft. NAVD 1988	1.5 ft. wide at crest	vertical	reinforced concrete T- Wall on piles		A vertical steel sheet pile wall will be included below the wall to prevent seepage.

Line of Protection (Oakwood Beach to Fort Wadsworth)

	Table ES 2 - NED Plan Storm Risk Management Measures							
A-4	Buried Seawall / Armored Levee/tidal wetland	9,300 lf.	20.5 ft. NGVD 1929 or 19.4 ft. NAVD 1988	10 ft. wide at crest	1.5:1.0 (H:V)	3-ton armor stone	AND AND AND LAND BY THE PARTY OF THE PARTY O	A vertical steel sheet pile wall will be incorporated to prevent seepage. A 17 ft. wide promenade will be constructed on top of the crest of the buried seawall/armored levee. Tidal wetland will help attenuate wave energy and reduce erosion. It also provides biological habitat value.
A-4	Buried Seawall / Armored Levee	13,400 lf.	20.5 ft. NGVD 1929 or 19.4 ft. NAVD 1988	10 ft. wide at crest	1.5:1.0 (H:V)	3-ton armor stone		A vertical steel sheet pile wall will be incorporated to prevent seepage. A 38 ft. wide pile supported boardwalk will be constructed on top of the crest of the buried seawall/armored levee.

Interior Drainage (Oakwood Beach to Fort Wadsworth)

Interior Drainage									
Interior Drainage Area	Natural Storage	Excavated Pond	Tide Gate	Outlets	Road Raising				
Area A	17.19 acres	х	22.75 ft. by 18 ft. NGVD 1929 (or 16.9 ft. NAVD 1988) by 16 ft. (LxHxD) with 3 @ 5 ft. by 5 ft. sluice gates, wingwalls, and pre- engineered bridge	2 new sluice gate structures (2 ft. by 2ft.) & 2 intermediate pipe outlets with flap gates	X				
AreaB	86.41acres	1 Pond (46 acres) with 94,200 c.y. of excavation to 2.75 ft and NGVD 1929 (1.3ft. NAVD 1988)	22.75 ft. by 20.5 ft. NGVD 1929 (or 19.4 ft. NAVD 1988) by 16 ft. (LxHxD) with 3 @ 5 ft. by 5 ft. sluice gates, wingwalls, and pre- engineered bridge	New gate chambers at Ebbits St., New Dorp Ln., Tysens Ln. outfalls	1,730 lf. by 30 ft. of Kissam Ave. to 7.1 ft. NGVD 1929 (6 ft. NAVD 1988). An average raising height of 3 ft. 630 lf. by 60 ft. of Mill Rd. to 7.1 ft. NGVD 1929 (6 ft. NAVD 88). An average raising height of 1 ft.				
Area C	120.44 acres	7 Ponds (100.51 acres), 377,200 c.y. of excavation to an invert of 2 ft. NGVD 1929 (0.9 ft. NAVD 1988)	х	New gate chambers at Greely Ave., Midland Ave., Naughton Ave., Seaview Ave. outfalls	820 lf. by 90 ft. of Seaview Ave to 10 ft. NGVD 1929 (8.9 ft. NAVD 1988). An average raising height of 1 ft. 300 lf. by 60 ft. of Father Capodamno Blvd. to 10 ft. NGVD 1929 (8.9 ft. NAVD 1988). An average raising height of 1 ft.				
Area D	30.76 acres	Х	Х	New gate chamber at Quintard Street outfall	х				
Area E	46.7 acres	2 Ponds (34 acres), 222,720 c.y. of excavation to an invert of 2 ft. NGVD 1929 (0.9 ft. NAVD 1988)	х	New gate chambers at Sand Lane, Quincy Ave. outfall	x				

